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Crucial components of the vertebrate eye, ear and nose develop from discrete patches of surface epithelium,
called placodes, which fold into spheroids and undergo complex morphogenesis. Little is known about how
the changes in cell and tissue shapes are coordinated with the acquisition of cell fates. Here we explore
whether these processes are regulated by common transcriptional mechanisms in the developing ear. After
specification, inner ear precursors elongate to form the placode, which invaginates and is transformed into
the complex structure of the adult ear. We show that the transcription factor Pax2 plays a key role in
coordinating otic fate and placode morphogenesis, but appears to regulate each process independently. In
the absence of Pax2, otic progenitors not only lose otic marker expression, but also fail to elongate due to the
loss of apically localised N-cadherin and N-CAM. In the absence of either N-cadherin or N-CAM otic cells lose
apical cell–cell contact and their epithelial shape. While misexpression of Pax2 leads to ectopic activation of
both adhesion molecules, it is not sufficient to confer otic identity. These observations suggest that Pax2
controls cell shape independently from cell identity and thus acts as coordinator for these processes.
enter, Developmental Biology,

l rights reserved.
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Introduction

The vertebrate inner ear develops from a simple epithelium, the
otic placode, next to the hindbrain (Ohyama et al., 2007; Riley and
Phillips, 2003; Whitfield et al., 2002). The placode invaginates to form
the otic vesicle, which folds into the complex structure of the mature
ear over time. Otic fate is induced by signals from adjacent tissues:
members of the fibroblast growth factor (FGF) family induce the pre-
otic field, which is then further refined through a combination of
Notch and Wnt signalling (Freter et al., 2008; Jayasena et al., 2008;
Ladher et al., 2000; Leger and Brand, 2002; Maroon et al., 2002;
Ohyama et al., 2006; Phillips et al., 2001; Wright and Mansour, 2003).
In response to these signals, cells begin to express a series of
transcription factors that successively impart otic identity: among the
earliest factors are Foxi1 and Dlx genes, followed Pax8, Pax2 and Sox3
in the otic-epibranchial territory and Eya1, Gata3, Gbx2 and Sox9 in the
otic region (for review see: (Ohyama et al., 2007; Riley and Phillips,
2003; Schlosser, 2006); (Ladher et al., 2010). Studies in zebrafish have
led to a model where Foxi1 acts upstream of Pax8, while Dlx proteins
activate Pax2 slightly later and both Pax proteins then cooperate to
promote otic fate (Hans et al., 2004; Mackereth et al., 2005; Nissen
et al., 2003; Solomon et al., 2003, 2004), but most of these interactions
remain to be verified in amniotes. For example, while Pax2 mutant
85

86

87

88

89

90
mice show late ear defects, the ears of Pax8 mutants develop
relatively normally and double mutant phenotypes have not been
examined (Burton et al., 2004; Christ et al., 2004; Torres et al., 1996).
Thus, in amniotes, a role for Pax genes in otic specification has not
been established.

Following otic induction ectodermal cells undergo morphological
changes critical for the formation of the placode proper and for its
subsequent development into a functional ear. Like the neural plate
(Colas and Schoenwolf, 2001; Schoenwolf and Franks, 1984;Wallingford,
2005), placode cells first lengthen along their apical–basal axis to form a
columnar epithelium and invagination is initiated by apical constriction
leading to vesicle formation (Bancroft and Bellairs, 1977; Hilfer et al.,
1989; Schook, 1980a,b). This process is driven by contraction of the
apically localised F-actin network by myosin (Sai and Ladher, 2008); for
review: (Sawyer et al., 2010). The subsequent morphogenetic processes
that transform the otic vesicle into the intricate structure of the mature
ear are poorly understood, although differential proliferation and
apoptosis have been implicated (Lang et al., 2000). These morphogenetic
events must be tightly coordinated with cell fate acquisition to form a
functional ear and again, little is known about themolecularmechanisms
responsible.

Interestingly, Pax2 is prominently expressed in the ear andelsewhere
at sites where tissue outgrowth and shaping takes place (Dressler et al.,
1990; Grote et al., 2006; Nornes et al., 1990; Rajakumar and Chamberlin,
2007), raising the possibility that Pax2 plays a role in regulating these
events. Here we test the hypothesis that Pax2 coordinates otic identity
andmorphogenesis.Wefind that it is required for the expression of early
otic markers and that it independently controls epithelial integrity of
the placode. Downstream of Pax2, N-cadherin and N-CAM are required
hogenesis and cell fate in the inner ear, Dev. Biol.
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to maintain apical cell adhesion between otic cells as a prerequisite for
placode invagination.

Materials and methods

Embryo culture and electroporation

Fertile hens' eggs were incubated in a humidified incubator at
38 °C until they had reached the appropriate stage (Hamburger and
Hamilton, 1951) (HH). Expression vectors and morpholinos were
transfected into the head ectoderm using electroporation (McLarren
et al., 2003; Mende et al., 2008) and maintained in New culture (New,
1955; Stern and Ireland, 1981) for 16–27 h. Embryos were fixed in 4%
paraformaldehyde, 2 mM EGTA in phosphate buffered saline (PBS)
overnight at 4 °C for in situ hybridisation or in 4% paraformaldehyde
in PBS for 30 min at room temperature for immunocytochemistry.

Morpholinos and expression constructs

All morpholinos (MO) were labelled with fluorescein conjugates
(Gene Tools). MOs targeting Pax2 (Mende et al., 2008) and N-cadherin
(Shiau and Bronner-Fraser, 2009) were described previously. For
N-CAM two differentMOs were designed targeting the translation start
site (MO1: 5′-GCCGCTCCGAAATAGCCGTTCCGTG-3′) and a splice
blocking MO targeting the boundary of exon 7 and intron 7 (MO2: 5′-
AACAGGCAAAAGCTCACCAAAGACT-3′). Each N-CAM MO was tested
separately for efficient knock down (n=7 for MO1, n=8 MO2); the
experiments shown in the results section used electroporation of both
MOs simultaneously. As control we used sense MO or standard control
MO (Gene Tools). The coding sequences of mouse Pax2 (Dressler et al.,
1990) and chick Sox2 (Rexet al., 1997)were cloned into pCAB-IRES-GFP
(McLarrenet al., 2003) to generate Pax2andSox2expressionconstructs.
We confirmed that the Sox2 expression construct produces Sox2
protein by performing Sox2 antibody staining (R&D) after electropora-
tion into the cranial ectoderm.

In situ hybridisation and immunocytochemistry

Whole mount in situ hybridisation was performed as previously
described (Streit et al., 1998) using DIG-labelled anti-sense probes for
Eya1 (Chest668D18), Gata3 (Sheng and Stern, 1999), Pax2 (Streit,
2002), Sox2 and -3 (Rex et al., 1997). Antibody staining was performed
on cryosections as previously described (Bailey et al., 2006) using
polyclonal antibodies against Pax2 (Zymed) andβ-catenin (Abcam)and
monoclonal antibodies against α-catenin (BD Biosciences), N-cadherin
(Sigma) and N-CAM (5e; Developmental Hybridoma Bank). Appropri-
ate secondary antibodies were coupled to Alexa 488, Alexa 594 or Cy5
(Invitrogen). Alexa 488 phalloidin was used to label actin and nuclei
were visualised using DAPI. Sections were analysed using a Leica TCS
SP5 confocalmicroscope. Theelongation index (length/width ratio)was
determined in individual GFP or MO+ otic placode cells by measuring
their maximum length and width. Mean values and standard deviation
were determined and the Mann–Whitney Rank Sum test was used to
determine statistical significance.

Identification of putative Pax2 binding sites on the otic N-cadherin enhancer

Genomic sequences for human, mouse and chick N-cadherin loci
were downloaded from the Ensembl genome browser. A VistaPlot
alignment of the N-cadherin loci was cross-referenced to the position
and sequence of the known chick En2-DP enhancer (Matsumata et al.,
2005). VistaPlot yielded a ClustalW alignment for a conserved non-
coding sequence corresponding to the En2-DP enhancer, fromwhich a
consensus enhancer sequence was derived. Putative conserved
transcription factor binding sites were identifiedwithin the consensus
enhancer sequence according to the consensus recognition sequences
Please cite this article as: Christophorou, N.A.D., et al., Pax2 coordinate
(2010), doi:10.1016/j.ydbio.2010.07.007
for Gata [A/T]GATA[A/G], Pax2 TNGTCA[C/T]GC[A/G]TGA and SoxB1,
ATTGTG. Of the putative binding sites identified, only those with the
highest cross-species conservation were annotated, as follows: Gata
N80% identity, Pax2 N50% identity and SoxB1 N65% identity. These
identity thresholds were chosen to reflect the length and heteroge-
neity of the individual consensus recognition sequences.

Results

Pax2 is required for the specification of otic precursors

To establishwhether Pax2 plays a role in the acquisition of otic fate in
amniotes we designed a knock down approach in chick using two
different morpholinos (MO). Otic identity was assessed by analysing the
expression of the earliest pan-otic markers Gata3, Eya1 and Sox2. Both
MOs, one targeting the translation start site and the other targeting a
splice junction, remove Pax2 protein effectively (Mende et al., 2008).
When electroporated into the otic territory at HH6–8− controlMOs have
no effect (Fig. 1A, A′, C, C′, E, E′), while both Pax2 MOs produce identical
phenotypes: the expression of the otic placode markers Gata3 (15/22),
Eya1 (6/10) andPax2 (22/22) is abolished (Fig. 1B, B′, D,D′, F, F′), but Sox2
expression is normal (n=11; Fig. 1H, H′). To confirm that this effect is
specific, we coexpressed Pax2 with the splice blocking MO and find that
this rescues the loss of Gata3 expression (5/5; Fig. 1G, G′). Thus, in chick
Pax2 is necessary for the expression of some early otic-specific genes and
thus may play a role in conferring otic identity to cranial ectoderm.

Pax2 induces Gata3, but not other early otic markers

In the eye, the Pax family member Pax6 acts as a ‘master regulator’
inducing ectopic eyes when misexpressed (Gehring, 1996). To assess
whether Pax2 has similar properties in the ear we misexpressed Pax2
at HH6/7. Gata3 becomes dramatically upregulated in both the cranial
(18/33; Fig. 2D, D′, d, d′) and trunk (not shown) ectoderm, while Eya1
(n=9; Fig. 2B, B′, b), Sox2 (n=8, not shown), Sox3 (n=7; not
shown) and Pax2 (n=8; Fig. 2E, e′) are unaffected. We never observe
ectopic placode-like structures or vesicles (see below) as seen with
other transcription factors like Spalt4 (Barembaum and Bronner-
Fraser, 2007). Surprisingly, Pax2 overexpression in the placode itself
abolishes the expression of Eya1 and Pax2, but not of Gata3 (Figs. 2B′,
b′, D′, d′, E, e). It is possible that the amount of Pax2 protein is critical
for normal gene expression as suggested by the dose dependent
function of Pax proteins in humans and mouse (for review see: Eccles
et al., 2002). Alternatively, overexpression of Pax2 may sequester
essential Pax2 co-factors and as a result downstream target gene
expression is lost. Together, these observations suggest that Pax2 is
not sufficient to impart otic character or placode morphology to non-
otic ectoderm.

Cell elongation and assembly of adherens junctions in the otic placode

Soon after otic-specific genes start to be expressed, otic precursor
cells noticeably change their shape, as seen in many other morphoge-
netic events (Colas and Schoenwolf, 2001; Pilot and Lecuit, 2005;
Schoenwolf and Franks, 1984; Wallingford, 2005). To visualise these
changes in single cells, we electroporated GFP into the pre-otic domain
to generate mosaic expression and analysed cell shapes by confocal
microscopy. First, otic cells lengthen dramatically along their apical–
basal axis, reflected by an increase in their elongation index (EI;
length/width ratio) from 2.27±0.67 (n=8) and 2.36±0.5 (n=5) at
the 5- and 6-somite stage respectively, to 4.03±0.88 (p=0.0007;
n=8) only 90 min later, at the 7 somite stage (Figs. 3A, B). Shortly
thereafter (HH10), we observe apical accumulation of cortical actin
(Fig. 3D; see also (Sai and Ladher, 2008) and around the 13 somite
stage, the key components of adherens junctionsN-cadherin andα- and
β-catenin (Knust and Bossinger, 2002; Niessen and Gottardi, 2008;
s epithelial morphogenesis and cell fate in the inner ear, Dev. Biol.
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Fig. 1. Pax2 is required for otic marker expression.Control (A, A′, C, C′, E, E′) or Pax2 MOs (B, B′, D, D′, F, F′, H H′) were electroporated into otic precursors at the 1–2 somite stage.
At HH10–12, Eya1 (A–B′, a–b′) and Gata3 (C–D′, c–d′) expression is present in cells carrying control MOs (green in A, a, C, c; arrow heads), but absent in Pax2 MOs electroporated
cells (green in B, b, D, d; arrow heads). Note in d′: non-invaginated placode on targeted side. Pax2 protein expression is not affected by control MOs (E, E′, e, e′; arrow head), but
absent in cells with Pax2MOs (F, F′, f, f′; arrow head). Note the difference in cell shape of the control and Pax2MO cells in e (white arrow head) and f (open arrow head). Loss of Pax2
does not affect Sox2 expression in the otic placode (H, H′, h′). Gata3 expression is rescued when otic cells are co-electroporated with splice blocking MOs and a Pax2 expression
construct (G, G′, g, g′). Lines in A′–D′, E, F, G′ and H′ indicate the level of sections shown in a–g, a′–g′.
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Nishimura andTakeichi, 2009) assemble apically (Fig. 3D),while the cell
adhesion molecule N-CAM accumulates just basal to the actin belt
(Fig. 3C). Thus, cell elongation is followed rapidly by assembly of
apical components necessary for apical constriction and subsequent
invagination.
Please cite this article as: Christophorou, N.A.D., et al., Pax2 coordinate
(2010), doi:10.1016/j.ydbio.2010.07.007
Pax2, N-CAM and N-cadherin are essential for placode integrity

In addition to changes in gene expression after gain or loss of Pax2
expression, we also observe changes in otic placode cell morphology
(compare Figs. 1e and f; 2e). We therefore characterised shape
s epithelial morphogenesis and cell fate in the inner ear, Dev. Biol.

http://dx.doi.org/10.1016/j.ydbio.2010.07.007


Fig. 2. Pax2 is not sufficient to confer otic identify to ectodermal cells.Pax2-GFP (B, B′, D, D′, green; E, brown) or GFP (A, A′, C, C′, green) was misexpressed at the 0–1 somite stage. While Gata3 expression is induced ectopically (D′, d, d′, arrow
head), Eya1 (B′, b′) and Pax2 (E, e′) are not. Pax2 misexpression in the otic placode leads to loss of Eya1 (B′, b; arrow head) and Pax2 (E, e, arrow head), but expression of Gata3 does not change (d). No effect is observed in control
electroporated embryos (A′, a, a′, C′, c). Black lines in A′–E indicate the level of sections shown in a–e and a′–e′.
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Fig. 3. Cell shape changes during otic placode formation and AJC assembly.A. GPF was electroporated into otic precursors to visualise individual cells. Otic cells elongate dramatically after the 6 somite stage and continue to do so over the next
hours. Bottom row: five representative cells from each stage to illustrate elongation. B. The elongation index (length/width ratio; EI) changes significantly between 6 and 7 somites (***p=0.0007); mean values±standard deviation are
shown. C. N-CAM is absent in otic precursors at 5 somites (open arrow); it is first observed at the 9-somite stage (arrow) and intensifies thereafter. At 16 somites, double staining with phalloidin shows N-CAM (open arrow heads) localisation
just basal to apical actin demarcated by the white line in bottom right panel. D. The components of adherens junctions cadherin, α-catenin and β-catenin assemble apically after the 10 somite stage.
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Fig. 4. Pax2 controls cell shape in the otic placode.A. Otic precursors were electroporated with control MOs or GFP (top), Pax2 MOs (middle) or Pax2-GFP (bottom). While control
cells have elongated at the 13–15 somite stage, Pax2 loss and Pax2 overexpression (Pax2 OE) result in loss of placode cell morphology. Right: five representative cells for each
condition. B. Compared to control electroporated cells (WT 13–15ss) the EI is significantly reduced (***) in cells electroporated with Pax2 MOs or Pax2-GFP (Pax2 OE). For
comparison measurements from 6 somite placodes are included (WT 6ss). Graph shows mean values±standard deviation.

Fig. 5. Pax2 is required for N-cadherin and N-CAM expression.A. Control electroporated otic placodes (top row) express N-cadherin (magenta) at the 15–16 somite stage. Loss of
Pax2 (Pax2 MO, middle row) leads to loss of N-cadherin (open arrow heads, magenta), while N-cadherin is upregulated (white arrow heads) when Pax2 is misexpressed (Pax2 OE,
bottom row). Note: N-cadherin is localised apically. B. Control electroporated otic placodes express N-CAM at the 12–13 somite stage (top row, magenta). Loss of Pax2 (Pax2 MO,
middle row) leads to loss of N-CAM (open arrow heads, magenta). In contrast overexpression (Pax2 OE, bottom row) results in increased N-CAM (white arrow heads). Note: N-CAM
is localised along the entire cell surface. C. N-CAM is not expressed in trunk ectoderm (control), however ectopic expression of Pax2 (Pax2 OE) in this tissue leads to upregulation of
N-CAM in electroporated cells (green, white arrow heads), but not in non-electroporated neighbours (open arrow heads); *indicates somite.
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changes in individual cells byelectroporatingPax2MOs into thepre-otic
domain of HH6/7 embryos. Unlike their wild-type neighbours, targeted
cells fail to maintain their columnar shape: their EI is significantly
reduced when compared to cells carrying control MOs (Figs. 4A, B) and
they resemble the ectoderm before placode formation (Pax2 MO:
EI 2.03±0.78, n=9; control MO: EI 5.96±1.21, n=11; p=0.0001;
Fig. 4B). Since components of adherens junctions are required to
maintain cell polarity and epithelial integrity (Nandadasa et al., 2009;
Tinkle et al., 2008; Yang et al., 2009) we asked whether the lack of
columnar morphology is accompanied by loss of N-cadherin and N-CAM.
Indeed, both cell adhesion molecules are absent when Pax2 is knocked
down (N-cadherin: n=7; N-CAM: n=7; Figs. 5A–C).

To assess whether loss of N-CAM or N-cadherin can phenocopy the
loss of Pax2 and whether these molecules themselves are critical for
placode integrity, we used MOs to knock down their expression in the
Fig. 6. N-cadherin and N-CAM are required to maintain otic placode morphology.A. Loss of N
MOs show elongated shape (top row) and N-cadherin expression apically (magenta); panel
placode does not thicken or invaginate in N-cadherin knock downs (bottom row, open
the targeted side, but present on the contralateral side (panel on the right). B. Loss of N-CAM
13–15 somite stage and express N-CAM (red) and Pax2 (blue). In contrast, cells carrying N-CA
but continue toexpress Pax2(blue). Panels on the right showa lowmagnification to include thecon
N-CAM MO carrying cells show the difference in cell shape. G. The elongation index of cells e
electroporated cells (WT 13–16ss). For comparison the EI for placode cells from 6 somite embryo

Please cite this article as: Christophorou, N.A.D., et al., Pax2 coordinate
(2010), doi:10.1016/j.ydbio.2010.07.007
ear. Otic cells carrying N-cadherin or N-CAM, but not control MOs,
lose contact with their neighbours and fail to maintain an elongated,
columnar shape (Fig. 6; control MO: n=16; N-CAM MO: n=15; N-
cadherinMO: n=10). At the 13–16 somite stage, their EI is significantly
reduced compared to cells carrying control MOs (control: EI 5.7±1.6;
N-cadherin: EI 3.2±1.2; N-CAM: EI 3.2±1.3; Figs. 6C and D). Together,
these results suggest that Pax2 controls integrity of the otic placode by
regulating apical cell adhesion via N-CAM and N-cadherin and that
both cell adhesion molecules are required independently to maintain
cell elongation.

Pax2 may control cell shape independent of otic fate

The above results show that Pax2 is required for expression of both
oticmarkers and cell adhesionmolecules, but is unable to induce ectopic
-cadherin mimics the absence of Pax2. At the 16–18 somite stage, cells carrying control
on the right shows an overview of the same section with both placodes. In contrast, the
arrow heads) and cells remain cuboidal. N-cadherin expression is lost (magenta) in
mimics the absence of Pax2. Control electroporated cells (top row) are elongated at the
MMOs (bottom row) are round (open arrow head), have lost N-CAM expression (red),
tralateralplacode for comparison. C. Twenty representative cells fromcontrol,N-cadherinand
xpressing N-cadherin or N-CAM MOs is significantly reduced when compared to control
s are included. Graph shows mean values±standard deviation.
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otic fate. Is the acquisition of otic identity connected directly to the
control of adhesive properties or cell shape? When Pax2 is expressed
ectopically, both N-cadherin (n=6) and N-CAM (n=10) are strongly
induced compared to control electroporated cells, even in trunk
ectoderm (Figs. 5A, C). However, we do not observe cell elongation.
This is probably due to aberrant subcellular localisationofN-CAM:while
N-cadherin is restricted apically as in the normal otic placode, N-CAM
fails todo sobut is spreadalong theentire cell surface (Figs. 5B, C).When
overexpressed in theotic placode itself, Pax2 also induces changes of cell
morphology similar to those observed in the absence of Pax2 (Figs. 4A,
B): their EI is reduced from5.96±1.21 in controls (see above) to 2.98±
1.06 (n=15; p=0.0001). Both N-cadherin and N-CAM (Figs. 5A, B) are
upregulated, while otic markers are lost (see above Fig. 2). In addition,
subcellular localisation of N-CAM is disturbed and placode organisation
is disrupted (Fig. 5B). Thus, although Pax2 does not seem to be sufficient
to initiate the otic programme in cranial ectoderm, it induces ectopic
expression of N-cadherin and N-CAM in both locations. These findings
suggest that Pax2 may control cell shape and otic identity through
independent mechanisms.

Sox2 is not sufficient to rescue otic cell shape in the absence of Pax2

An otic-specific enhancer for N-cadherin has recently been charac-
terised, whose activity depends on SoxB1 group binding sites
(Matsumata et al., 2005; see supplementary Fig. 1). In addition, we
have identified two evolutionary conserved, putative Pax2 binding sites
in this enhancer, one very close to a SoxB1 group binding site (Fig. S1).
To assess if the control of N-cadherin by Pax2 is mediated by Sox
proteins we electroporated otic precursors with Pax2 MOs together
with full length Sox2. Sox2 is unable to rescue the Pax2MO phenotype:
the ectoderm remains cuboidal andN-cadherin is not expressed (Fig. 7).
These findings show that Sox2 alone cannot restore N-cadherin
expression and placode morphology in the absence of Pax2 function,
suggesting that the factors may synergise to activate N-cadherin.

Discussion

Pax2 is among the earliest genes to be expressed in the pre-otic
field (Groves and Bronner-Fraser, 2000; Hans et al., 2004; Hidalgo-
Sanchez et al., 2000; Streit, 2002; Torres et al., 1996). Here we show
that in chick Pax2 plays a dual function as a key regulator of otic cell
identity and shape. Pax2 function is required for the expression of
otic transcription factors and for cell adhesion molecules, which
in turn are necessary for epithelial integrity and subsequent placode
invagination.
Fig. 7. Sox2 is not sufficient to rescue cell shape or placode invagination in the absence of Pax
invagination of the otic placode remain disturbed: compare the non-electroporated control s
or arrow). Pax2 expression (top row, magenta, open arrow head) is absent in electroporated
Panels on the right show higher magnification of the targeted area.
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Pax2 and otic precursor specification

Commitment of ectodermal cells to an otic fate is reflected by the
sequential expression of transcription factors. Members of the Dlx and
Foxi1 families initially demarcate the pre-otic field. In zebrafish they
confer competence to respond to the otic inducing signal FGF (Hans
et al., 2007; Nissen et al., 2003; Solomon and Fritz, 2002; Solomon
et al., 2003, 2004). In response to FGFs, otic progenitors begin to
express Pax2 and Pax8 (Hans et al., 2004; Martin and Groves, 2006;
Wright and Mansour, 2003), which appear to cooperate in promoting
otic development (Hans et al., 2004). In amniotes, however, a role for
Pax proteins in otic specification has not yet been demonstrated. Pax2
mutant mice form an otic vesicle, but develop cochlear defects later
(Torres et al., 1996; Burton, 2004 #2421), while otic development is
merely delayed in Pax8 mutants (Christ et al., 2004); double mutants
have not been examined. Since both Pax genes encode highly related
transcription factors with common biochemical properties (Bouchard
et al., 2000; Pfeffer et al., 1998), the lack of an early ear phenotype in
either mutant is probably due to functional redundancy. Our finding
that loss of chick Pax2 alone leads to the absence of early otic markers
and of the placode itself seems to contradict the above results.
However, it is possible that Pax2 is the only Pax gene expressed early
during otic specification in birds.

The chromosomal region containing the Pax8 locus has undergone
considerable chromosomal rearrangement during evolution (Fan
et al., 2002a,b; Yunis and Prakash, 1982). In humans, the Pax8 locus
is found on 2q13–2q14.1, a region that arose through fusion of two
ancestral chromosomes (Yunis and Prakash, 1982) and analysis of the
syntenic regions in mammals, amphibians and fish reveals frequent
chromosomal rearrangements (AS, unpublished observations). While
in amphibians, medaka and stickleback the Pax8-containing region
clearly corresponds to that in mammals, the zebrafish Pax8 locus on
chromosome 5 shows no synteny with this region. In birds and
reptiles, however, the entire region is missing. It is therefore possible
that the Pax8 locus was lost in Sauropsids, providing an explanation
for why loss of Pax2 alone is sufficient to cause the loss of otic identity
in chick. We therefore propose that in birds Pax2 is the key Pax
protein controlling the specification of otic progenitor cells.

The Pax family member Pax6 plays a central role in eye formation
and is able to induce ectopic eyes in many species across the animal
kingdom (Gehring, 1996). Do other Pax proteins have similar
functions as master regulators of sensory placode formation? Pax3 is
specifically expressed in the ophthalmic portion of the trigeminal
placode (Stark et al., 1997). While it is required for the specification of
trigeminal neurons, Pax3 is unable to induce them ectopically (Dude
et al., 2009). Our results suggest that Pax2 alone may not be sufficient
2.Otic precursors were electroporated with Pax2MOs and Sox2 at HH6/7. Cell shape and
ide (left) and the Pax2 MO/Sox2 expressing contralateral side (green, open arrow head
cells; Sox2 does not rescue N-cadherin expression (bottom row, magenta, open arrow).
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to impart otic character to non-otic ectoderm: Gata3, but none of the
other otic markers tested, is upregulated in response to ectopic Pax2
expression. Thus, the ability to induce ectopic sensory structures
appears to be unique to Pax6.

The Sox, Pax and Gata cassette as coordinator of fate and morphogenesis?

Our results uncover a novel role for Pax2 in controlling placode
morphology. When Pax2 expression levels are disturbed, otic cells fail
to adopt columnar shape and instead remain cuboidal. The expression
of two apically localised cell adhesion molecules, N-cadherin and N-
CAM, is disrupted and as a consequence the placode epithelium loses
integrity and fails to invaginate. Consistent with the idea that Pax2
regulates cell morphology and invagination, α-catenin, α-actinin and
several microtubule associated proteins have been predicted as
potential direct targets of Pax2 based on bioinformatic analysis
(Ramialison et al., 2008). Within the Pax family, both Pax6 and Pax3
have been implicated in controlling cell adhesion, morphology and
behaviour in the eye, neural crest cells and muscle (Buckingham and
Relaix, 2007; Collinson et al., 2000; Edelman and Jones, 1995; Holst
et al., 1997; Kallunki et al., 1995; Mayanil et al., 2000; Smith et al.,
2009; Wiggan and Hamel, 2002). We therefore suggest that Pax
proteins play a fundamental role in development by integrating cell
fate allocation and morphogenetic events.

It is likely however that Pax proteins cooperate with other
transcription factors to control placode morphogenesis. After Pax2,
members of the SoxB1 family and Gata3 become expressed in otic
progenitors. Concomitantly, cells elongate to acquire columnar shape
and then invaginate into an otic cup. In mouse, Sox9 and Gata3 are
necessary for placode invagination (Barrionuevo et al., 2008; Lillevali
et al., 2006) and we suggest that these factors, together with Pax2 and
Sox2, control the expression of N-cadherin and N-CAM to maintain cell
shape. The otic N-cadherin enhancer contains putative binding sites for
all three factors (Fig. S1 and Matsumata et al., 2005) and they may
therefore cooperate to initiate N-cadherin. Although the regulatory
elements that control N-CAM expression in the ear have not been
identified, other N-CAM enhancers contain Pax binding sites (Edelman
and Jones, 1995; Holst et al., 1997).

Pax, Gata and SoxB1 group transcription factors are frequently
coexpressed at sites where cell fate acquisition and morphogenesis are
tightly controlled (Barrionuevo et al., 2008; Grote et al., 2006; Lillevali
et al., 2006; Matsumata et al., 2005; Rajakumar and Chamberlin, 2007;
Smithet al., 2009). SoxB1andPaxproteinsoften synergise to control gene
expression. In the lens, Sox2 and Pax6 control δ-crystallin and N-
cadherin (Matsumata et al., 2005; Smith et al., 2009) and are
coexpressed with Gata3 (see Figs. 1 and 2; Sheng and Stern, 1999).
Likewise, they control the activity of the diencephalic enhancer (N3) of
Sox2 (Inoue et al., 2007), while Sox9 and -10 synergise with Pax3 to
activate neural crest and glia expression of Sox10 (Werner et al., 2007).
Although the role of Gata proteins in this context is lesswell established,
these factors are essential for endoderm invagination in C. elegans
(Sawyer et al., 2010). Thus, Pax, SoxB1 and Gata factors may emerge as
key coordinators of cell behaviour and fate.

Cell adhesion molecules in otic cell morphology and invagination

Our studies reveal an essential role for two cell adhesion molecules,
N-CAM and N-cadherin, in the maintenance of epithelial integrity and
invagination of the otic placode. While N-CAM plays important roles in
the developing and adult nervous system being involved e.g. in neurite
outgrowth, synaptic plasticity and regeneration (Ditlevsen et al., 2008;
Edelman, 1985; Maness and Schachner, 2007), little is known about its
potential role in epithelial morphogenesis. N-CAM is best known for its
function as homophilic cell adhesion molecule in neuronal cells, but
recent evidence suggests that it also acts as a multifunctional regulator
of cell behaviour (Ditlevsen et al., 2008; Hansen et al., 2008) and
Please cite this article as: Christophorou, N.A.D., et al., Pax2 coordinate
(2010), doi:10.1016/j.ydbio.2010.07.007
references therein). It regulates cytoskeletal dynamics by associating
with proteins like spectrin, α- and β tubulin and α-actinin and by
coupling membrane associated complexes to the cytoskeleton. It is
tempting to speculate that interactions similar to those that regulate
neurite outgrowth also modulate epithelial cell behaviour.

Cadherin-based adherens junctions are crucial for remodelling and
folding of epithelial sheets, for maintaining cell polarity and for tissue
integrity (D'Souza-Schorey, 2005; Gumbiner, 2005; Nishimura and
Takeichi, 2009). Transmembrane cadherins attach to cortical actin
throughα-,β- andγ-catenin (Hirano et al., 1987;Matsuzaki et al., 1990;
Nagafuchi and Takeichi, 1988; Ozawa et al., 1989), but are also actively
involved in the assembly of cortical F-actin (Nandadasa et al., 2009).
Cadherins therefore drive morphogenetic tissue movements such as
apical constriction in the neural tube. Our results support the idea that
N-cadherin, downstream of Pax2, plays a similar role in placode
invagination. During neurite outgrowth, N-CAM and N-cadherin
interact with common and distinct intracellular partners and both
modulate FGF-receptor signalling (for review see: Hansen et al., 2008).
In the otic placode, FGF signalling is critical for apical actin accumula-
tion (Sai and Ladher, 2008), raising the possibility that N-CAM andN-
cadherin not only mediate cell–cell adhesion, but may also influence
the signalling pathways involved in invagination.

In conclusion, our studies suggest that during development
transcriptional regulators like Pax proteins play a critical role not only
in assigning cell fate, but also in controlling morphogenetic events. Pax
proteins together with Sox and Gata factors may therefore provide the
missing link between signalling pathways that induce cell identity
and shaping of complex organs.
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