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Abstract

Myeloproliferative neoplasms (MPNs), which includes polycythaemia vera (PV)

and essential thrombocythaemia (ET), are bone marrow disorders that give rise

to a high production of red blood cells and platelets leading to thrombosis and

haemorrhage. Hydroxyurea (HU), is the first line treatment for high-risk PV and

ET patients since it effectively reduces the haematocrit, platelets and white blood

cells counts. Mechanistically, HU acts by inhibiting the ribonucleotide reductase

enzyme, blocking the cell cycle which can lead to cell death. However, additional

effects of HU have also been observed which are unlikely related to this mecha-

nism. Therefore, I hypothesize that HU has an influence on the epigenome, causing

changes in gene expression which contribute to its therapeutic effects. For this, I

assayed and analysed DNA methylation and gene expression from two differentially

developed and clinically relevant cells types from MPN patients and a MPN mouse

model, comparing samples prior to and following HU treatment. I observed that

HU mainly changes gene expression and specifically affects DNA methylation at the

stem cell level. Interestingly, several genes encoding transcription factors involved

in haematopoiesis were also identified as potential mediators of HU effects in both

species. Moreover, SPI1 was found to be upregulated and differentially methylated

following HU treatment. In addition, several differentially expressed genes and dif-

ferentially methylated sites were enriched for SPI1 binding sites. Thus, I propose

that SPI1 is involved in the pathogenesis of the disease and in the therapeutic effect

of HU. Finally, I also provide a list of candidate genes to be further investigated for

their role in the therapeutic effect of HU.
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Chapter 1

Introduction

1.1 Haematopoiesis

Haematopoiesis is a dynamic process that is defined by the differentiation and self-

renewal of multipotent cells that give rise to different cell lineages with various

functions. In mammals, haematopoiesis occurs in two waves, the primitive wave

and the definitive wave, which differ in their cell types produced and anatomical

location (Galloway and Zon, 2003). The primitive wave occurs in the yolk sac and is

transitory (Moore and Owen, 1965, 1967). It involves limited erythroid progenitor

cells which lack renewal capacity and can only differentiate into erythrocytes and

macrophages (Palis, 2001). The definitive wave occurs later in development in what

is known as aorta–gonad–mesonephros, which give rises to haematopoietic stem

cells (HSCs) (Medvinsky et al., 1993; Ivanovs et al., 2011). These cells will be

responsible for the continuous production of all cell lineages during the life of the

organism (Dzierzak and Speck, 2008; Medvinsky et al., 2011). Haematopoiesis then

progresses to the liver, spleen and finally to the bone marrow. After birth, bone

marrow, and to some extent the spleen, are the main sites of haematopoiesis (Ciau-

Uitz et al., 2016). Although much of the information has been obtained from murine

studies, it appears that the human haematopoietic system is closely related to the
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1.1. HAEMATOPOIESIS Introduction

mouse in terms of the sequential progression and tissues involved in haematopoiesis

(Galloway and Zon, 2003).

Hematopoiesis is a hierarchical system where all cells are derived from one multi-

potent cell (Fig. 1.1). The HSCs are at the apex, these can self-renew and differen-

tiate into several progenitor cells that give rise to mature blood cells (Fig. 1.1). The

identification of surface markers has facilitated the characterization of the multiple

cell types that make up the haematopoietic system. In mice, immature stem cells

have low expression of lineage markers, expressing the stem cell antigen-1 (Sca-1)

and CD117 (c-Kit), which are known as LSK (Lineage-Sca+cKit+) (Spangrude et al.,

1988; Uchida, N, and Weissman, 1992). In humans, the CD34 antigen, expressed in

less than 5% of all blood cells, has been widely used to identify haematopoietic stem

and progenitor cells (Civin et al., 1984). However, as this is still a heterogenous pop-

ulation, efforts have been made to sub-classify it further. This led to the identifica-

tion of the stem cell marker CD90 antigen (Baum et al., 1992) which, in combination

with CD38 and CD45RA, that are expressed in differentiated progenitors (Sciences

et al., 1997), made it possible to call HSCs the CD34+CD90+CD38-CD45RA- pop-

ulation. These HSCs give rise to intermediate progenitors, that progressively lose

multilineage potential as more committed stages are reached. HSC differentiation

eventually gives rise to common lymphoid progenitors (CLP) and common myeloid

progenitors (CMP) (Kondo et al., 1997; Akashi et al., 2000). CLP differentiate into

more specialized progenitors to give rise to T cells, B cells and natural killer cells.

While, CMP differentiate to ultimately give rise to platelets, erythrocytes, granu-

locytes, macrophages, osteoclasts and dendritic cells (Fig. 1.1). Collectively, these

mature blood cells constitute the adaptive and innate immune system.

The hierarchy tree concept has been challenged by recent studies which pro-

pose that lineage commitment occurs at the multipotent progenitor stage (Cabezas-

Wallscheid et al., 2014; Pietras et al., 2015) and that the HSCs pool is more het-

erogenous in terms of functionality (Yamamoto et al., 2013; Sanjuan-Pla et al., 2013;
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1.1. HAEMATOPOIESIS Introduction

Figure. 1.1. Classical model of mouse and human haematopoiesis. HSC are at the
apex and then progressively differentiate to multipotent progenitors (MPP) that
give rise to common lymphoid progenitors (CLP) and common myeloid progenitors
(CMP), which are committed cells with limited potency. These eventually differenti-
ate into fully functional mature blood cells. Markers that identified the populations
are indicated in grey and on each cell type. Reprinted with permission from Elsevier.
Hematopoiesis: A human perspective, Cell Stem Cell Doulatov et al. (2012).
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Pellin et al., 2019). These investigations have led to new models being proposed

where haematopoiesis is not a compartmentalized process, but instead, is flexible

and occurs with gradual cell decisions that ultimately allow the cells to respond to

changes in physiological needs (Laurenti and Göttgens, 2018). The hierarchy tree

presented here will be used as a guide to discuss further concepts, since much of the

current knowledge has been based on this model (Fig. 1.1).

1.2 Regulation of haematopoiesis

The haematopoietic system generates approximately one trillion cells every day in

the adult human bone marrow, making blood the most regenerative tissue in mam-

mals (Doulatov et al., 2012). Therefore, a delicate balance between self-renewal

and differentiation is crucial to prevent the development of haematopoietic disor-

ders. Hence, the study of cell fate decisions has become an important topic in

understanding how this balance is maintained.

HSC self-renewal is controlled by the stem cell microenvironment and several

signalling pathways such as Wnt, Notch, integrin and cytokine receptors (Rieger

and Schroeder, 2012; Orkin and Zon, 2008). In addition, there are genetic regula-

tory programs executed by transcriptional and epigenetic regulators, which are also

involved in HSC differentiation (Orkin, 2000). Here, focus will be given to these

genetic programs in definitive haematopoiesis.

1.2.1 Transcription factors

Transcription factors (TFs) regulate gene expression by binding to specific DNA

sequences located in gene promoters, enhancer and silencer regions (Vaquerizas et al.,

2009). TFs, with their ability to reprogram the transcriptional landscape of a cell,

play a key role in controlling the cell stage during cell development. Some TFs

act broadly, controlling multiple genes in different cell types, such as MYC (Nie
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et al., 2012). While other TFs are tissue specific and considered master regulators

of a particular differentiation pathway. Studies involving the disruption of TFs in

mice has helped to understand their relevance during development and how their

deregulation can contribute to a disease stage.

In haematopoiesis, the Stem Cell Leukaemia (SCL), also known as T-cell Acute

Lymphoblastic Leukaemia 1 (TAL1), TF is required for HSC formation that is nec-

essary for primitive and definitive haematopoiesis. Deletion of Scl in the mouse

embryo has shown that no development of blood occurs in its absence (Robb et al.,

1995). Similarly, in adult mice, its deletion blocks haematopoiesis because there

are no HSCs (Porcher et al., 1996). SCL is also involved at the quiescent and self-

renewal stages of HSCs. High levels of SCL mRNA correlates with cells in G0 and

loss of Scl expression with cells in G1 (Lacombe et al., 2010). However, in HSCs

from human cord-blood, SCL is correlated with self-renewal (Reynaud et al., 2005).

These investigations demonstrate that SCL has different functions in embryo (prolif-

erative) and adult (quiescent) HSCs. Runt-related transcription factor 1 (RUNX1)

is equally important for HSC formation. Runx1 deletion blocks the definitive wave

during embryonic development (Okuda et al., 1996). During adult haematopoiesis,

Runx1 deletion results in lineage cell impairment with decreased platelet formation

and a block of T cells and B cells maturation (Ichikawa et al., 2004). Therefore,

RUNX1 is not needed for HSC maintenance in adult haematopoiesis, but rather, for

the development of lineage cells. Another TF involved in self-renewal is HOXB4,

a member of the Hox homeo box genes, which increases self-renewal when it is

over-expressed in HSCs in vivo and in vitro without losing any of its differentiation

capacity (Sauvageau et al., 1995; Thorsteinsdottir et al., 1999; Antonchuk et al.,

2002). The TF pre-B cell leukemia transcription factor 1 (PBX1) impairs self-

renewal when it is deleted using a conditional knock-out mouse (Ficara et al., 2008).

Similarly, deficiency of the early growth response 1 (EGR1) TF in mice, reduces

HSC proliferation (Min et al., 2008) and its overexpression increases differentiation
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towards the macrophage fate (Krishnaraju et al., 2001).

Other TFs work by restricting HSC proliferation. A knock-out mouse of the

Growth factor independent 1 (Gfi1 ), exhibits more proliferative HSCs than wild-

type mice. Moreover, Gfi1 -/- HSCs are able to repopulate the bone marrow of

irradiated mice upon transplantation. However, these transplanted mice eventually

develop pancytopenia because of a lack of mature blood cells (Hock et al., 2004).

Figure. 1.2. Transcription factors of the myeloid differentiation process. The stem
cell leukemia (SCL) and runt-related transcription factor 1 (RUNX1) TFs give rise
to HSCs during embryonic development. The growth factor independent 1 (GFI1) is
involved in HSC self-renewal and the CCAAT/enhancer binding protein-α (C/EBPα)
TF is needed for myeloid commitment of the HSC to common myeloid progenitor
(CMP) and granulocyte/macrophage progenitors (GMP). Macrophage differentia-
tion is regulated by the PU.1 and interferon-γ (INF-γ)-responsive (IRF8) TF. Mean-
while, granulocyte differentiation is regulated by the GFI1 and CCAAT/enhancer
binding protein-ε (C/EBPε) TFs. Reprinted with permission from Springer Na-
ture. Transcription factors in myeloid development: balancing differentiation with
transformation, Nature Reviews Immunology, Rosenbauer and Tenen (2007).

These studies demonstrate that self-renewal and differentiation needs to be bal-

anced. In order for HSCs to progress to differentiation, self-renewal genes need to

turn off. Investigations of TFs in cell lineage choice have mostly followed the clas-

sical model (Fig. 1.1), wherein a TF can either promote the lymphoid or myeloid

lineages. However, the same TFs can act in both lineages at distinct differentiation

stages and can also reprogram cells from one lineage to another (Orkin and Zon,

21



1.2. REGULATION OF HAEMATOPOIESIS Introduction

2008). The most relevant TFs will be discussed below and focus will be given to the

myeloid lineage.

The myeloid transcriptional network starts with PU.1 (encoded by the oncogene

SPI1 ), which is only expressed in blood cells. PU.1 is able to induce multipotent

progenitor (MPP) cell commitment to the myeloid lineage prior to downregulation

of GATA-1 (Nerlov and Graf, 1998), another necessary TF for erythroid matura-

tion (Pevny et al., 1991). PU.1 is not restricted to the myeloid lineage, as it is an

important regulator during early T cell development (Rothenberg et al., 2019). Its

expression levels can also influence the development of progenitors towards B cells

or macrophages (DeKoter and Singh, 2000). This is also the case in the myeloid lin-

eage, where low or high levels of PU.1 lead to the production of either neutrophils

or macrophages, respectively (Dahl et al., 2003). In order to progress from CMP

to the subsequent (GMP) and (MEP) stages, other TFs need to activate. The

CCAAT/enhancer binding protein-α (C/EBPα) is important for the MPP to GMP

transition. C/EBPα is expressed during myeloid commitment and in granulocytes

but not in MEP (Radomska et al., 1998; Akashi et al., 2000). Deletion of C/EBPα

impairs GMP production and granulocyte differentiation (Zhang et al., 1997). Inter-

estingly, if C/EBPα is deleted after GMP, it does not affect granulopoiesis. There-

fore, C/EBPα must play a key role during the first stages of myeloid commitment

(Zhang et al., 2004). After this point, PU.1 and interferon-γ-responsive transcrip-

tion factor (IRF8) are involved in the macrophage versus granulocyte differentiation

(Laslo et al., 2006; Kurotaki et al., 2014). For further specification to neutrophils,

both C/EBPε and GFI1 are necessary. C/EBPε is only expressed in the myeloid

lineage (Williamson et al., 1998) and its deletion in mice impairs granulopoiesis,

resulting in a lack of mature neutrophils (Yamanaka et al., 1997). Likewise, GFI1

deletion in mice has a similar phenotype. These GFI1 knock out mice also show ac-

cumulation of neutrophil precursors with abnormal expression of monocyte-specific

genes, suggesting that GFI1 is needed to repress those genes (Hock et al., 2003).
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In MEP specification, the most relevant TF is GATA1. Deletion of GATA1

during embryonic development cause severe anaemia leading to death (Pevny et al.,

1991). Similarly, during erythroid development low expression of GATA1 blocks

primitive erythropoiesis with substantial accumulation of undifferentiated erythroid

cells (Takahashi et al., 1997). During definitive haematopoiesis, GATA1 is necessary

for erythroid and megakaryocytic development (Takahashi et al., 1998). On the other

hand, overexpression of GATA2 increases megakaryocytic differentiation (Ikonomi

et al., 2000), and it is downregulated during erythroid differentiation (Welch et al.,

2004).

These studies have led to a better understanding of the balance between self-

renewal and differentiation which are crucial to not develop haematological disorders.

This balance has to exist at every stage of differentiation, since every cell population

have a distinct transcriptomic landscape. However, TFs are not the only actors in

gene regulation as they are immersed within a complex network of transcriptomic

regulation that includes epigenetic modifications.

1.2.2 DNA methylation in haematopoiesis and disease

Epigenetic modifications are heritable through mitosis and modulate gene expression

without affecting the DNA sequence (Berger et al., 2009). The two most studied

epigenetic modifications are DNA methylation and histone modifications. DNA

methylation is the addition of a methyl group to the 5’-position of a cytosine nu-

cleotide in the context of the CpG dinucleotide. Histones are the proteins that pack-

age the DNA into nucleosomes. These are post-transcriptionally modified mainly

at their tails, affecting the chromatin organization, and consequently transcription

(Kouzarides, 2007). Because of its particular relevance to this thesis, the role of

DNA methylation in haematopoiesis will be discussed further.

In mammals, DNA methylation mostly occurs at CpG dinucleotides and these

are not evenly distributed in the genome. Regions rich in CpGs are called CpG
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islands (CGIs). CGIs are defined as regions where the ratio between observed CpGs

and expected CpGs is greater than 0.6 using a 200 bp window (Gardiner-Garden and

Frommer, 1987). CGIs are usually located at gene promoters and these are mostly

not methylated. CGIs are also present at intergenic and intragenic locations and

these are typically tissue-specifically and developmentally methylated (Illingworth

et al., 2008; Deaton et al., 2011).

DNA methylation is crucial in biological processes including gene silencing, ge-

nomic imprinting and X chromosome inactivation (Reik, 2007). DNA methylation

is carried out by DNA methyltransferases (DNMTs), a group of proteins which in-

clude DNMT1, DNMT3A and DNMT3B. DNMT1 is involved in the maintenance

of DNA methylation during replication whereas DNMT3A and DNMT3B are in-

volved in de novo methylation (Okano et al., 1998; Lei et al., 1996). The DNMT

family establish and maintain methylation patterns across the genome, which is

necessary for development and cell differentiation (Huang and Fan, 2010). DNA

methylation controls few developmental genes and tissue-specific genes, producing

distinct patterns of DNA methylation along the differentiation of some cell lineages

(Meissner et al., 2008; Bock et al., 2012). Therefore, DNA methylation is also im-

portant for haematopoiesis. During haematopoiesis, a gain in expression and loss of

DNA methylation on some genes that are cell type specific has been observed (i.e

Scl gene) (Attema et al., 2007; Bock et al., 2012). Moreover, comparative analyses

between myeloid and lymphoid lineages reveals that DNA methylation in lymphoid

development is gained at regions that are important for myeloid development (Ji

et al., 2010; Bock et al., 2012; Farlik et al., 2016). In this context, analysis of differ-

entially methylated regions between lineages (myeloid and lymphoid) in human and

mouse reveals enrichment of TF binding sites that are known to be lineage specific,

such as GATA1, GATA2 and RUNX1 (Bock et al., 2012; Farlik et al., 2016). These

findings demonstrate that DNA methylation may help to protect lineage-committed

cells from accidental activation of TFs that could occurs during oncogenesis (Bock

24



1.2. REGULATION OF HAEMATOPOIESIS Introduction

et al., 2012; Langstein et al., 2018).

Mutations in DNMTs are common in hematological diseases and their role on

the fate of HSCs has been demonstrated. HSCs from Dnmt3a conditional knock-out

mice exhibit increased self-renewal and decreased expression of TFs that are crucial

for cell differentiation (Challen et al., 2011). These effects are enhanced in Dnmt3a

and Dnmt3b null mice demonstrating a synergistic effect of the two enzymes (Challen

et al., 2014). In acute myeloid leukaemia (AML) patients, the first mutation de-

scribed in epigenetic modifiers was in the DNMT3A enzyme (Ley et al., 2010). This

finding prompted the investigation of the DNMT3A mutation in other hematological

diseases, including myeloproliferative neoplasms (MPNs), where it was identified in

10% of the patients (Table 1.2)(Roller et al., 2013). Other mutations involved in

epigenetic regulators found in hematological diseases are in TET2, IDH1 and IDH2

enzymes (Table 1.2). The TET enzymes are a family of proteins that includes TET1,

TET2 and TET3, and their function includes the ability to remove DNAmethylation

by oxidation of the 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC),

which can be further oxidized (Tahiliani et al., 2009). The 5-hmC is not recognized

properly by the DNA maintenance machinery and DNA methylation is lost through

cell division (Valinluck and Sowers, 2007). TET2 mutations mostly affect the func-

tional domains compromising the enzymatic activity to oxide 5-mC to 5-hmC (Ko

et al., 2010). Mutations in TET2 have been identified in MPN patients and other

myeloid malignancies, where bone marrow samples show low levels of 5-hmC and

hypermethylation in specific regions compared to healthy controls or patients with

no mutations in TET2 (Ko et al., 2010). Moreover, mice with conditional Tet2

knock-out in the haematopoietic compartment exhibit increased self-renewal and

proliferation of HSCs, with enhanced myeloproliferation and myeloid differentiation

(Moran-Crusio et al., 2011). Analysis of TET2 depleted mouse embryonic stem

cells revealed that enhancer regions are mostly hypermethylated compared to wild-

type cells which are enriched in 5-hmC. These findings suggest that TET2 prevents
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aberrant hypermethylation at enhancer regions that could contribute to changes

in gene expression (Hon et al., 2014). IDH1/IDH2 enzymes convert isocitrate to

α-ketoglutarate producing NADPH and CO2 in the cytoplasm/peroxisome and mi-

tochondrial matrix, respectively. Mutations in these enzymes have been described

in AML patients but rarely in MPN patients (Mardis et al., 2009; Gross et al., 2010;

Pardanani et al., 2010; Brecqueville et al., 2012). Mutations in IDH1/2 switches its

catalytic activity to the conversion of α-ketoglutarate to 2-hydroxyglutarate (2-HG)

by NADPH consumption. The 2-HG molecule is highly similar to α-ketoglutarate.

Therefore, it works as a competitive inhibitor of α-ketoglutarate-dependent dioxyge-

nases, including the TET enzymes (Gross et al., 2010; Xu et al., 2011). Conditional

knock-in mice for Idh1 in haematopoietic cells develop splenomegaly, anaemia and

enhanced proliferation of HSCs. Moreover, hypermethylation is observed at pro-

moters and intragenic regions, which correlates with the DNA methylation pattern

of AML patients with IDH1/2 mutations (Akalin et al., 2012; Sasaki et al., 2012).

These somatic mutations can also be found in cells from individuals with no

haematopoietic malignancies. Most of these mutations have been identified in

around 10 to 15% of people aged 70 and older. The most common mutations are in

the DNMT3A and TET2 genes. Mutations in these genes confer a high risk for devel-

oping haematopoietic malignancies, for which this condition has been termed clonal

haematopoiesis of indeterminate potential (CHIP) (Steensma et al., 2015; Gibson

et al., 2017). Although 0.5 to 1% of individuals with CHIP develop haematopoietic

neoplasms, studying the cause of these mutations may help to prevent the disease

(Heuser et al., 2016).

These studies have demonstrated the importance of conducting whole genome

sequencing in patients to detect point mutations that could explain the causes of

haematological diseases. More importantly, these investigations have revealed that

DNA methylation seems to be an important factor to develop haematological dis-

orders. Therefore, it is also useful to test whether these mutations contribute to
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changes in the epigenomic landscape that can be translated to deregulation of gene

expression. Accordingly, different methods have been developed to assess DNA

methylation. These methods can be locus specific such as direct bisulfite sequencing

in a small region, which is helpful to investigate specific questions related to one

gene or region (Parrish et al., 2012). However, assaying DNA methylation in whole

genome provides valueble information to characterize and to model the effect of spe-

cific factors, such as mutations. Currently, bisulfite sequencing is considered to be

the “gold standard” method to assay DNA methylation. However, this method is

relatively expensive due to the high sequencing depth required. Other cost-effective

alternatives do exist though, such as the Illumina MethylationEPIC BeadChip, a

microarray that is able to quantify DNA methylation in specific genomic regions in

the whole genome (Pidsley et al., 2016). Assaying DNA methylation in haematolog-

ical diseases can provide another layer of information to understand the deregulated

gene expression usually observed in cancer. DNA methylation assays can also con-

stitute a source of information to understand how a drug could be regulating gene

expression in disease and ultimately link this information to its therapeutic effect.

1.3 Myeloproliferative neoplasms

Myeloproliferative neoplasms (MPNs) are a heterogenous group of haematological

disorders characterized by uncontrolled proliferation of haematopoietic stem and

progenitor cells in the bone marrow and peripheral blood. The term MPN collec-

tively refers to chronic myeloid leukaemia (CML), polycythaemia vera (PV), essen-

tial thrombocythaemia (ET) and primary myeloid fibrosis (PMF) conditions (Ar-

ber et al., 2016). CML is characterized by the presence of the fusion gene BCR-

ABL1, which is a constitutively active form of the ABL1 tyrosine kinase involved in

cell proliferation and differentiation (Nowell and Hungerford, 1985). The so-called

‘Philadelphia Chromosome negative’ MPN which include PV, ET and PMF lack this
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mutation. MPN patients have a heterogeneous phenotype and may develop disease

related symptoms, such as splenomegaly and have an increased risk of thrombotic

events and hemorrhage. The criteria to diagnose each of these disorders have been

dictated by the World Health Organization (Table 1.1 diagnosis criteria for PV and

ET) (Arber et al., 2016). PV is characterized by erythrocytosis, as defined by a

sustained increase in haematocrit and frequently may present with concomitant leu-

cocytosis or thrombocytosis. Diagnostic confirmation of ET may require a bone

marrow morphology assessment to distinguish it from PV with co-existent throm-

bocytosis or pre-fibrotic MF (Tefferi et al., 2018b). PMF is a more severe form

of MPN where patients progressively develop fibrous “scar-like” tissue deposition

within the bone marrow that can lead to progressive bone marrow failure, anaemia

and extramedullary haematopoiesis. PV and ET patients may also develop MF –

so called post-PV and post-ET MF – and later progress to acute myeloid leukaemia

(AML), so called post-MPN AML (Iurlo et al., 2019).

The incidence of ET, PV and PMF are 1, 0.7 and 0.5 cases per 100,000 per

year in the European Union, respectively (Frederiksen et al., 2016). The main three

driver mutations contributing to these disorders can be found in the Janus Kinase 2

(JAK2 ), Myeloproliferative Leukemia Virus (MPL) and Calreticulin (CALR) genes.

These mutations are normally mutually exclusive and ultimately result in constitu-

tive activation of the JAK-STAT pathway which is involved in cell proliferation, cell

differentiation, cell migration and apoptosis. These alterations occur at the stem cell

level, where normal stem cells cohabitate with mutant lineage cells (Jamieson et al.,

2006). Some patients do not present with any detectable mutations in these genes,

and are thus classified as triple negative (TN). More rarely, other mutations can

affect the ASXL1, EZH2, TET2, IDH1/2 genes, which are involved in epigenetic

regulation (Table 1.2) (Brecqueville et al., 2012; Stegelmann et al., 2011; Tefferi

et al., 2009).

Characterization of these somatic mutations has helped considerably in under-

28



1.3. MYELOPROLIFERATIVE NEOPLASMS Introduction

Table. 1.1. World Health Organization diagnosis criteria for PV and ET

Diagnosis Major criteria Minor criteria

PV (All 3 major
criteria, or the first 2
major criteria and the
minor criterion)

1. Hb >16.5 g/dL in men and >16.0 in
women
or
Hematocrit >49% in men and >48% in
women
or
increased red cell mass (>25% mean
predicted
2. Bone marrow biopsy

• hypercellularity for age

• trilineage hyperproliferation
(panmyelosis)

• megakaryocytic proliferation with
pleomorphic, mature megakaryocytes

3. Presence of JAK2V617F or JAK2 exon
12 mutation

Subnormal
serum
erythropoietin
level

ET (All 4 major
criteria or the first 3
major criteria and the
minor criterion)

1. Platelet count ≥ 450 x 109/L
2. Bone marrow biopsy

• Megakaryocyte proliferation with
hyperlobulated nuclei.

• No significant increase or left shift in
granulopoiesis or erythropoiesis

• very rarely minor (grade 1) increase in
reticulin fibers

3. Not meeting WHO criteria for
BCR-ABL1 CML, PV, PMF,
myelodysplastic syndromes, or other
myeloid neoplasms
4. Presence of JAK2, CALR, or MPL
mutation

Presence of a
clonal marker or
absence of
evidence for
reactive
thrombocytosis
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Table. 1.2. Genes involved in epigenetic mechanisms, type of mutation, function,
frequency and consequences in MPN patients.

Gene Type of
mutation

Protein function Frequency Disease consequence Reference

DNA methylation

TET2 Missense,
nonsense
deletion

Remove DNA methylation
by oxidation of 5mC into
5hmC
Mutation: loss of function

10%-20%
MPN (ET,
PV, and
PMF)

Initiation, Mutations on 2
alleles associated with
progression

Delhommeau
et al. (2009)

DNMT3A Missense,
hotspot

DNA de novo methylation
during replication
Mutation: loss of function

5%-10%
MPN (ET,
PV, and
PMF)

Initiation
Stegelmann
et al. (2011);
Roller et al.
(2013)

IDH1 Missense,
hotspot

Generation of
α-ketoglutarate
Mutation: generation of
2-hydroxyglutarate
blocking α-ketoglutarate
enzymes

1%-3% PMF Initiation, Disease
progression Tefferi et al.

(2010)

IDH2 Missense,
hotspot

Generation of
α-ketoglutarate
Mutation: generation of
2-hydroxyglutarate
blocking α-ketoglutarate
enzymes

1%-3% PMF Initiation, Disease
progression Tefferi et al.

(2010)

Histone modification

ASXL1 Nonsense/
indel

Chromatin-binding protein
associated with PRC1 and
PRC2
Mutation: loss of function

25% PMF
1%-3%
ET/PV

Initiation, Rapid
progression Carbuccia et al.

(2009)

EZH2 Missense,
indel

H3K27 methyltransferase.
Mutation: Loss of
function.

5%-10% PMF Initiation, Disease
progression Kamminga

(2006); Ernst
et al. (2010);
Puda et al.
(2012)

MPN: myeloproliferative neoplasms; PV: polycythaemia vera; ET: essential thrombocythaemia; PMF: primary myelofibrosis
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standing the basis of the disease and account for common phenotypes. MPN patients

have elevated circulating levels of pro-inflammatory cytokines and deregulation of

anti-inflammatory cytokines have also been observed (Pourcelot et al., 2014; Vaidya

et al., 2012; Panteli et al., 2005). The JAK-STAT signalling pathway is involved in

the release of these molecules and thus inflammation is thought to play an important

role in the development of MPN (Kleppe et al., 2015).

1.3.1 The JAK-STAT pathways and mutations in the JAK2

gene

The JAK family includes the JAK1, JAK2, JAK3 and TYK2 proteins. These

are protein tyrosine kinases that associate with cytokine receptor subunits such

as thrombopoietin receptor (MPL), erythropoietin receptor (EPOR) and granulo-

cyte colony-stimulating factor receptor (G-CSF-R). These receptors are activated

upon binding of cytokines that induce conformational changes resulting in activa-

tion of the JAK proteins by trans-phosphorylation (Fig. 1.3). These activated JAKs

are able to phosphorylate several targets including a tyrosine residue of the STAT

transcription factor family that resides in the cytoplasm. Phosphorylation of STATs

allows dimerization through interaction of their phosphotyrosine and Src homology 2

(SH2) domain. Once phosphorylated, STATs are able to enter the nucleus and bind

to specific regulatory sequences of target genes (Rawlings et al., 2004). Besides STAT

activation, the JAK signalling pathway can also activate the mitogen-activated pro-

tein kinase (MAPK) and phosphatidylinositol-3’-kinase (PI3K) pathways.

The myeloid JAK-STAT signalling pathway is regulated by the homodimeric

receptors which employ mostly JAK2. EPOR mediates the erythroid proliferation

and differentiation mainly through activation of STAT5 (Klingmüller et al., 1997;

Grebien et al., 2008). MPL regulates megakaryocyte and platelet production by ac-

tivation of STAT3 and STAT5 (Bacon et al., 1995; Miyakawa et al., 1996). G-CSF-R

modulates granulopoiesis by strong activation of STAT3 (Dwivedi and Greis, 2017).
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Lymphoid proliferation is also regulated by the JAK-STAT signalling pathway. In

this case, the cytokine receptors such as IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 ac-

tivate the STAT proteins by phosphorylation of JAK1 and JAK3. This signalling

regulates the formation and function of T cells, natural killer cells and B cells (Liao

et al., 2011).

JAK-STAT signalling is transient and three major classes of negative regulators

have been described: PTPs (protein tyrosine phosphatases), SOCS (suppressors of

cytokine signalling), and PIAS (protein inhibitors of activated STAT) (Fig. 1.3)

(Yasukawa et al., 2000). The most characterized PTP is SHP-1, which is mostly

expressed in haematopoietic cells. This protein recognizes phosphorylated tyrosine

residues from receptors such as EPOR or JAK2 proteins and dephosphorylates them

(Fig. 1.3) (Klingmüller et al., 1995). The SOCS proteins work as a negative feedback

loop after JAK-STAT activation which stimulates SOCS transcription. SOCS can

bind to either the phosphotyrosine residues of cytokine receptors (SOCS-2, SOCS-3

and CIS) or to JAKs (SOCS-1) inhibiting their kinase activity (Fig. 1.3) (Endo et al.,

1997; Yoshimura et al., 1995; Schmitz et al., 2000; Greenhalgh et al., 2002). Another

mechanism of inhibition involves the ubiquitination of JAKs which are targeted for

proteosomal degradation (Kile et al., 2002). The PIAS proteins interact with STAT

proteins and block their transcriptional activity by preventing them from binding to

DNA or recruiting co-repressor molecules (Fig. 1.3) (Liu et al., 1998; Chung et al.,

1997; Arora et al., 2003).

In 2005, several published studies have described a mutation in the JAK2 gene

which is present in 90- 95% of PV patients and approximately 50% of ET and

MF patients (Kralovics et al., 2005; Scott et al., 2005; Ugo et al., 2005). This

is a point mutation, a G to T transversion in exon 14 of the JAK2 gene, that

causes a substitution of valine to phenylalanine at amino acid 617 (V617F) in the

JAK2 molecule (Kralovics et al., 2005). This mutation activates the JAK2 protein

independently of cytokine stimulation – so called constitutive activation – which
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Figure. 1.3. JAK-STAT pathway. JAK proteins bind to cytokine receptors that
are activated upon cytokine ligation. The receptor once activated, produces con-
formational changes that brings two JAK proteins close together so that they can
trans-phosphorylate each other. These active phosphorylated JAKs are then able to
phosphorylate other molecules such as STAT transcription factors. STAT proteins
are phosphorylated at one tyrosine residue allowing them to homodimerize with
another phosphorylated STAT. This allows them to enter to the nucleus and bind
to their target genes. The JAK-STAT pathways can also regulate themselves by
allowing the transcription of SOCS proteins through STAT. SOCS proteins act as
negative regulators, which bind to JAKs or receptors inhibiting their kinase activ-
ity. Another two negative regulators are SHP-1 and PIAS. SHP-1 dephosphorylates
JAK, receptors and PIAS prevents STAT from binding to the DNA. (Y: tyrosine
residue, P: phosphorylated tyrosine)
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is associated with homodimeric cytokine receptors, leading to the expansion of all

myeloid lineages (Lu et al., 2008).

Another four somatic mutations in the JAK2 gene have also been described.

These are gain-of-function mutations located in the exon 12. These mutations are

less common, presenting in only approximately 10% of PV patients (Scott et al.,

2010).

Interestingly, the ratio between STAT3 and STAT5 phosphorylation has been

shown to differ between MPN categories. PV patients have increased STAT3 and

STAT5 phosphorylation whereas ET patients have increased STAT3 and reduced

STAT5 phosphorylation. PMF patients have reduced phosphorylation of both STAT3

and STAT5. These findings are independent of the mutational state of JAK2, sug-

gesting that other factors contribute to the state of disease (Teofili et al., 2007).

1.3.2 Clinical management of PV and ET

In the clinical management of PV and ET, patients need to be stratified according

to their risk of thrombotic events. A high-risk patient typically has a history of

thrombosis, or is over 60 years of age, and harbours mutations in the JAK2 gene. By

contrast, a low-risk patient is typically below 60 years, has not had any thrombotic

events, and has no mutations in the JAK2 gene (McMullin et al., 2019).

The goal of the treatment is to relieve the symptoms and prevent cardiovascu-

lar events, such as thrombosis and bleeding, and disease-related symptoms where

present.

Low risk ET patients are generally treated with aspirin and a healthy lifestyle

is encouraged. In addition to aspirin, high risk patients may also require a cytore-

ductive drug treatment such as hydroxycarbamide (hydroxyurea,HU), interferon-α,

anagrelide and rarely busulfan. These treatments aim to lower the levels of platelets

(frequently <400 × 109/L) (Harrison et al., 2010). HU is typically the first line

of treatment, and has been demonstrated to reduce the occurrence of thrombotic
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events significantly (from 24 to 3.6%) (Harrison et al., 2010). However, HU may have

several side effects such as drug related neutropenia, mouth ulcers, fever and skin

lesions (Randi et al., 2005). In younger patients (<60 years of age), interferon-α is

frequently recommended particularly for patients planning to get pregnant (Harrison

et al., 2010).

In the case of PV patients, the risk of thrombosis is reduced by controlling

erythrocytosis, leukocytosis and thrombocytosis with cytoreductive therapy. As-

pirin also helps to reduce thrombotic events (Landolfi et al., 2004). The aim of

the treatment is to maintain hematocrit levels under 45%, for which phlebotomy is

recommended (McMullin et al., 2019). For the reduction of leukocytosis and throm-

bocytosis, HU or interferon-α are the first line treatments. Some patients develop

resistance to HU requiring them to switch therapy. Resistance is associated with a

more aggressive stage of the disease and these patients usually present with a poorer

prognosis (Tefferi et al., 2018a).

HU therapy has been the first-line treatment for MPN patients for many years.

However, limited studies have been conducted to understand better its mechanism

of action in MPN patients. Below, information on what is known about HU in the

context of the disease is reviewed.

1.4 Hydroxyurea

1.4.1 Mechanism of action

The primary target of HU is the inhibition of the ribonucleotide reductase (RNR)

enzyme which catalyses the reduction of ribonucleotide diphosphates to their corre-

sponding deoxyribunocleotide triphosphates (dNTPs), used in DNA synthesis and

repair (Young and Hodas, 1964; Krakoff et al., 1968). HU inhibits the RNR enzyme

and depletes dNTPs during the synthesis (S) phase of the cell cycle. In consequence,

the DNA polymerase movement is slowed down at the replication forks during repli-
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cation (Sogo et al., 2002). This process activates the S phase checkpoint, which is

a highly conserved intracellular signalling pathway that maintains genome stabil-

ity and is activated in response to replication stress. The S checkpoint normally

prevents the cell from moving to the next stage (G2) to allow recovery from the

stalled replication forks (Boddy and Russell, 2001). Cell lines treated with HU have

demonstrated that the S arrest induced by HU is reversible since DNA synthesis can

be restarted when the drug is removed (Petermann et al., 2010). However, when

cells are treated with high concentrations or with prolonged exposure, HU can be

cytotoxic as demonstrated experimentally in primary cells and in cell lines (Johnson

et al., 1992; Warren K. Sinclair, 1967). The cytotoxic effect is produced by fork

collapse, where DNA synthesis can no longer be resumed at the site of stalling, in-

ducing double strand breaks (DSB) that are accumulated with longer exposure to

the drug (Saintigny et al., 2001). During S phase, DSB are repaired by homologous

recombination using the sister chromatid as a template. Failure to repair can result

in chromosome loss, chromosomal rearrangements or apoptosis.

1.4.2 Clinical outcomes

HU was first synthesized in 1869 in Germany and its effects on lymphocyte for-

mation in animals were first reported in 1928 (Rosenthal et al., 1928). But it was

not until the early 60’s when HUs potential use in leukemia was demonstrated with

the use of mouse models and later with clinical trials (Stearns et al., 1963). HU

was first used in CML patients where it caused myelosuppression, decreased spleen

size and increased haemoglobin levels (Thurman et al., 1963; Fishbein et al., 1964).

The need to treat high risk MPN patients with more than just aspirin and phle-

botomy, led clinicians to start using HU in MPN patients in 1981 (Löfvenberg and

Wahlin, 1988). The outcomes were beneficial for MPN patients, with resultant cy-

toreduction, potential relief of symptoms and a low side effect burden. It was also

demonstrated that HU could reduce the risk of thrombotic events in ET patients
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(Cortelazzo et al., 1995), hence HU has been the first-line drug for high risk PV and

ET patients over the age of 60 years (Mcmullin et al., 2015). However, resistance to

the drug can occur, whereby the reduction of blood counts is not achieved within

three months of dose optimised therapy. Some patients may also present with HU

intolerance due to adverse side effects including neutropenia, anaemia and skin ul-

cers. In these patients, a switch to an alternative myelosuppressive drug may be

required, such as anagrelide, interferon-α or busulfan, which are normally used in

younger patients (Alvarez-Larrán et al., 2014). HU has also been suggested to be

associated with a low incidence of leukemic transformation (3-4%), however this is

controversial, albeit this is a risk that increases when used in combinations with other

older myelosuppressive agents (Sterkers et al., 1998; Harrison et al., 2005). Dele-

tion of chromosome arm 17p has been described among individuals treated with HU

that have progressed to AML or myelodysplastic syndrome (MDS) (Sterkers et al.,

1998; Merlat et al., 1999; Bernasconi et al., 2002). Other chromosome abnormali-

ties might vary depending on the type of therapy used before progressing to AML

or MDS (Swolin et al., 2008). HU has also been associated with the induction of

macrocytosis. Macrocytosis is characterized by an increase in the mean corpuscular

volume (MCV) levels, due to large erythrocytes that are over-hydrated and contain

more quantities of haemoglobin than normal (Burns et al., 1986; Spier, 1971). How-

ever, according to what has been observed in patients treated with the drug, this

does not seem to affect the microcirculation since the geometry and deformability

of erythrocytes are not affected (Engström and Löfvenberg, 1998). Another effect

of HU is a reduced expression of endothelial adhesion molecules which are essential

for the inflammatory process, specifically in leading leucocytes, such as neutrophils,

to the site of inflammation (Gambero et al., 2007). HU has also been associated

with nitric oxide (NO) production by two mechanisms: by acting as a NO donor

(a product of its metabolism) (Gladwin and Schechter, 2001), and by stimulating

the endothelial nitric oxide synthase (eNOS) (Cokic et al., 2006). NO, that is also
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secreted by phagocytes and endothelial cells, acts as a signalling molecule causing

vasodilatation, increased local blood flow and reduced platelet activation. NO acti-

vates the soluble guanylate cyclase, which catalyses the formation of cyclic guanosine

monophosphate (cGMP) involved in the vascular regulation tone and platelet func-

tion (Arnold et al., 1977; Brüne and Ullrich, 1987). The NO/cGMP pathway has also

been proposed as a mechanism of foetal haemoglobin (HbF) induction by HU that

has been observed in erythroid progenitors cells (Fig. 1.4) (Platt et al., 1984; Cokic

et al., 2006; Lou et al., 2009). Due to these effects, HU is also used to treat sickle cell

anaemia (SCA), which is a blood disorder caused by a point mutation in the β-globin

gene producing a sickle haemoglobin that decreases erythrocyte deformability lead-

ing to vascular obstruction and ischemia (Platt, 2008). HbF induction may relieves

patients’ symptoms and several studies have been conducted to understand further

the mechanism of action of HU. Some of these studies observed hypomethylation

at the γ-globin promoter, which encodes HbF, following HU treatment in SCA pa-

tients (Walker et al., 2011). Other drugs that induce HbF include 5-azacytidine and

5-aza-2’-deoxycytidine (decitabine) which inhibit DNMT1 (Saunthararajah et al.,

2003; Ley et al., 1983; Christman, 2002).

This evidence indicates that HU has multiple effects that are not always at-

tributed to its main mechanism of action. Efforts have been made to understand

HU clinical effects, however most of the studies have been focussed in SCA rather

than in MPN. One study attempted to assess gene expression in MPN patients com-

paring samples from before HU treatment and after one week of treatment, however

this was a very short period of time where some of the patients did not show signs of

therapeutic effects (Bruchova et al., 2002). Therefore, there is motivation to under-

stand how HU works in MPN patients. Since effects on DNA methylation have been

attributed to HU clinical outcomes, it is an interesting drug to investigate in the

context of a myeloproliferative disease, where abnormal gene expression and DNA

methylation patterns can be expected.
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Figure. 1.4. The effects of hydroxyurea. Hydroxyurea (HU) mechanism of action
is the inhibition of the ribonucleotide reductade (RNR) that is necessary for DNA
synthesis. The result of the RNR inhibition is cell cycle arrest in synthesis phase,
which can lead to apoptosis. This is the main mechanism of action to explain
the reduction of blood cells seen in patients treated with the drug. Another effect
is the release of the vasodilator nitric oxide (NO) caused from the metabolism of
HU. NO also induces cyclic guanosine monophosphate (cGMP) synthesis which, in
turn,induces the foetal haemoglobin (HbF) in erythroid progenitor cells.

39



1.5. MOUSE MODELS OF THE DISEASE Introduction

1.5 Mouse models of the disease

After the description of the JAK2V617F mutation in MPN patients, several mouse

models were generated with the aim of understanding the exact role this single

point mutation holds in the pathogenesis of MPN. The first models were gener-

ated by transplantation of bone marrow cells that were retrovirically transduced

with JAK2V617F which resulted in the development of PV and sometimes, full

progression to a fulminant myelofibrosis-like disease (Bumm et al., 2006; Lacout

et al., 2008; Wernig, 2006; Zaleskas et al., 2006). To generate an inducible/tissue

specific model the Cre/loxP system was used. Transgenic mice were developed to ex-

press JAK2V617F when crossed with mice expressing Cre recombinase (Tiedt et al.,

2008). The level of JAK2V617F expression was determined by using either Vav -Cre

mice, which produce haematopoietic expression only (Georgiades et al., 2002), or

Mx1 -Cre mice, where the expression in the haematopoietic compartment was tran-

sient and dose-dependent with respect to polyinosine-polycytosine (pIpC) injection

(Kühn et al., 1995). The Vav -Cre mice produced low JAK2V617F expression in the

haematopoietic compartment and resembled an ET phenotype with elevated platelet

counts and normal haematocrit. However, using Mx1 -Cre mice, higher JAK2V617F

expression was observed and a PV phenotype was obtained with increased erythro-

cytosis and thrombocytosis (Tiedt et al., 2008). It was demonstrated that the level

of JAK2V617F expression is important in determining the phenotypic subtypes of

MPN. This was also observed in patient samples whereby homozygous mutations

are usually present in PV patients rather than those with ET (Godfrey et al., 2012).

The next generation of MPN models were used to in investigate the effects of

JAK2V617F on a physiological level by expressing it from the endogenous pro-

moter of Jak2. The first Jak2V617F knock-in model was designed to express mu-

tated Jak2 after Cre-mediated recombination (Akada et al., 2010). Homozygous

and heterozygous Jak2V617F mutants were generated (Akada et al., 2010). The

40



1.5. MOUSE MODELS OF THE DISEASE Introduction

expression activity of Jak2V617F in haematopoietic cells was controlled by breed-

ing the mice with Mx1-Cre mice, where Cre expression is conditionally induced by

pIpC. Homozygous mice (Mx1-Cre;V617F/V617F) resembled a PV phenotype with

more appreciable levels of reticulocytosis, leukocytosis, neutrophilia, thrombocytosis

and splenomegaly than heterozygous mice (Mx1-Cre;V617F/+). These homozygous

mice also had a higher platelets count, which is something expected from the ET

phenotype. Moreover, immunoblotting revealed STAT5 constitutive phosphoryla-

tion in homozygous and heterozygous models (Akada et al., 2010). Another two

independent knock-in Jak2V617F mouse models were engineered to have a point

mutation in the exon 13 of the mouse Jak2 gene. One was constitutively active

(Marty et al., 2010) and with STAT5 constitutively phosphorylated. The other

mouse model was conditionally activated by breeding the Jak2V617F floxed mouse

with a E2ACre mouse inducing germ-line expression of Jak2V617F during mouse

embryogenesis (Mullally et al., 2010). Only heterozygous mice that resembled a PV

phenotype were obtained from both research groups. These mice presented erythro-

cytosis, leukocytosis, enlarged spleen size and reduced survival. Another knock-in

model expressed human JAK2V617F under the control of endogenous Jak2 pro-

moter. The expression was controlled by using Mx1-Cre mice and pIpC injections.

After six weeks the mice developed human ET and after 26 weeks, developed PV-like

disease (Li et al., 2010).

These mouse models demonstrate that one point mutation is enough to produce

the MPN phenotype and according to the levels of JAK2V617F expression different

type of disease are generated. These models are a valuable source of information to

investigate MPN as well as investigate drug efficacy.

Accordingly, for this study, the previously generated Jak2V617F floxed mice

(Mullally et al., 2010) were bred with vavCre mice to induce Jak2V617F expression

in the haematopoietic compartment (Chen et al., 2015). These mice resemble the

MPN phenotype with extramedullary haematopoiesis, reflected by splenomegaly
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(Chen et al., 2015). These mice were chosen as they have been routinely used in Dr

Mullally’s laboratory where she investigates the molecular mechanisms of MPN. I

was fortunate enough to have the opportunity to visit her laboratory and learn their

techniques first hand.

In summary, the first-line treatment for MPN patients, used for over 30 years,

is HU. The mechanism of action of HU is the inhibition of the RNR enzyme, that

is necessary for DNA synthesis during replication. However, HU also have several

effects that cannot be explained by this mechanism, such as the induction of foetal

haemoglobin. Some investigations suggest that HU is able to affect DNA methy-

lation and control gene expression but this mechanism is poorly understood and

has not been investigated in MPN before. Therefore, I have hypothesized that HU

treatment influences the epigenome and changes gene expression which contributes

to its therapeutic effect in patients. To test this hypothesis, I have assayed the

effect of HU treatment on gene expression and DNA methylation in MPN patients.

Since transcription is tightly regulated during haematopoiesis, two clinically relevant

and differentially developed cell types where isolated: CD34+ cells and neutrophils.

Moreover, to strengthen the findings identified in patients, the effect of HU was also

assayed in a well-characterized mouse model of the disease. By investigating the

effect of HU in human and mouse, genes that are affected in both species can be

proposed as candidates that explain HU mechanism and clinical effects.

42



Chapter 2

Materials and methods

2.1 Human sample collection and processing

This study was developed in collaboration with the Department of Haematology,

Guy’s and St Thomas’ NHS Foundation Trust. Ethical approval was obtained

from the NRES Committee London - City Road & Hampstead, REC reference

15/LO/0265.

Men and women over 18 years old diagnosed with MPN and prompted to start

HU treatment were included in this study after providing informed consent accord-

ing to the Helsinki Declaration. Peripheral whole blood was collected before HU

treatment and then at three, six and nine months of treatment. Demographic infor-

mation and cell blood counts (CBC) were obtained for each patient and time point

(Appendix A.1).

2.1.1 Neutrophils isolation

Neutrophils were purified from 10 mL of peripheral blood as described previously

(Heit et al., 2002). Briefly, red blood cells were removed using dextran sedimen-

tation (6% Dextran, 0.9% NaCl) and two rounds of hypotonic lysis with ddH2O.

Neutrophils were purified by density-gradient centrifugation with Histopaque-1077
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(cat#10771, Sigma-Aldrich) at 700 x g for 20 mins. The mononuclear layer of cells

was removed with a Pasteur pipette and the supernatant decanted. Neutrophils

were resuspended in 5 mL of Phosphate-buffered saline (PBS) and kept on ice until

use.

2.1.2 Neutrophils purity

An 80 μl aliquot of cells was incubated with 20 μl of Human Fc Receptor Binding

Inhibitor (eBioscience, cat#14-9161-73) for 20 minutes at RT. Cells were imme-

diately incubated with 5 μl of CD16b-PE (Clone CLB-gran11.5, BD Biosciences),

CD14 (Clone M5E2, Biolegend), CD3 (Clone UCHT1, Biolegend) and CD19 (Clone

HIB19, Biolegend) antibodies at RT for 30 minutes in the dark. The cells were

washed to remove unbound antibody with 2 mL of PBS, centrifuged at 300 x g for

5 minutes and resuspended with 300 μL of PBS. The cells were analyzed on a BD

FACSCantoTM II Flow Cytometer (NIHR BRC Flow Cytometry Core Facility). The

data were obtained as .fcs files which were analyzed using FlowJo (Version X) (Fig.

2.1).
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Figure. 2.1. Gate strategy for purity assessment of neutrophils (CD16b+) . Flow
cytometry was used to assess purity of neutrophils after granulocyte enrichment.
For this, an aliquot of cells was stained with four antibodies: CD16b (neutrophils),
CD14 (monocytes), CD19 (B cells), CD3 (T cells). The purity of CD16b purity
was analyzed following the gating strategy presented here. Live and single cells
were gated and then separated between CD16b+ cells and CD16b-cells. To further
identify the type of cells in the CD16b- population, these were separated according
to the expression of other markers: CD14 and CD3. The CD3+CD14- fraction was
further gated in CD3 and CD19.

2.1.3 CD34+ cells isolation

Peripheral blood was collected in EDTA tubes and diluted with PBS at a 1:4 ra-

tio (blood:PBS) and centrifuged for 10 minutes at 3000 rpm. The buffy layer was

collected in a single tube and the same volume of PBS was added. Gradient centrifu-

gation with Histopaque-1077 (cat#10771, Sigma-Aldrich) was used to separate the
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peripheral blood mononuclear cells (PBMC) from red blood cells and granulocytes

following the manufacturer’s instructions. The PBMC were collected in a separate

tube and washed with PBS by centrifugation at 250 x g for 10 minutes. Pelleted cells

were resuspended at about 2x107 cells/mL with RPM1-1640 media completed with

10% FBS, and 5% Penicillin/Streptomycin. Freezing medium, FBS+20%DMSO,

was added to double the cell suspension and 1 ml was dispensed into cryovials,

stored in Mr Frosty at -70ºC and then moved to liquid nitrogen.

Previously frozen PBMC aliquots, were rapidly thawed in a water-bath at 37ºC,

resuspended with 1 mL of complete RPM1-1640 media and collected in 50 mL falcon

tubes containing 3 mL of media. Cells were centrifuged at 300 x g for 5 minutes

and the supernatant aspirated. The pellet was resuspended in 300 μL of PBS +

0.5% BSA + 2mM EDTA and passed through a 40 μm mesh to obtain a single cell

suspension. CD34+ cells were isolated using Miltenyi CD34 Ultrapure Microbeads

(Miltenyi Biotec, Cat#130-100-453) following the manufacturer’s instructions. To

increase purity, double column separation was performed.

2.2 Jak2V617F knock-in and control mice

Heterozygous Jak2V617F knock-in (Jak2VF) mice were generated as previously

described (Mullally et al., 2010). Floxed Jak2V617F animals were crossed with

vav -Cre transgenic mice to induce expression of Jak2V617F in haematopoietic lin-

eages only (Georgiades et al., 2002). The generated Jak2VF knock-in mice were

backcrossed and maintained with a C57Bl/6 background. The genotype was con-

firmed by PCR as previously described (Chen et al., 2015). Wild-type C57Bl/6 and

vav -Cre mice were used as a genotype control and are referred to as wild-type (WT)

indistinctly in the text. All mice were maintained in pathogen-free facilities at the

Brigham and Women’s Hospital, Boston, MA, USA. All mouse experiments were

approved by the institutional ethic committee of Brigham and Women’s Hospital,
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Boston (Protocol#: 2017N000025).

2.2.1 HU mouse treatment

HU was purchased from Sigma-Aldrich (H8627-10G) and diluted with injectable

0.9% NaCl solution (Baxter, Cat# 0338-0051-44). HU solution was prepared freshly

upon administration under sterile conditions. A 0.2 μm syringe filter (Acrodisc

25mm Syringe Filter, Life Science, Cat#PN4192) was used to sterilize the solution

and dispensed into a 5 mL eppendorf tube.

Intraperitoneal injections were administered to Jak2VF and WT mice groups 5

days a week for 6 weeks. The first two weeks, the mice received 50 mg/kg from a 5

mg/mL solution of HU and the following four weeks 100 mg/kg from a 10 mg/mL

solution of HU. Similarly, control groups per genotype received vehicle only. The

treatment was performed in sterile conditions under a Class 2 A1 Biological Safety

Cabinet.

2.2.2 Clinical parameters

CBC were measured weekly. Anesthesia was applied using a Table Top Research

Anesthesia Machine w/O2 Flush. Mice were placed in an induction chamber with O2

flowmeter adjusted to 0.6 L/min and isoflurane vaporizer to 3.5%. Peripheral whole-

blood was obtained from the retro-orbital sinus using Micro-Hematocrit Capillary

Tube, Sodium Heparinized. Blood was collected in K2EDTA coated tubes (BD

Microtainer, Cat#365974) and 75 μL was diluted with 300 μL of PBS to measure

CBC on Advia 2120i Hematology System (Brigham and Women’s Hospital), results

were multiplied by the dilution factor. Mice were weighed every week for dose

adjustment and toxicity monitoring.
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2.2.3 Sample collection

After six weeks of treatment, the mice were divided into groups of 4-5 mice to be

sacrificed daily. Each group received a final dose of HU or vehicle the day before

sacrifice. The weight of each mouse was registered prior to anesthesia. The mice

were placed within an induction chamber with O2 flowmeter adjusted to 0.3 L/min.

Subsequently, isoflurane vaporizer (at 3.5%) was used to anesthetize them. The

peripheral blood was collected by bleeding the mouse from the retro-orbital cavity.

Cervical dislocation was undertaken on all mice to proceed with the dissection.

Femur, tibia and spine were collected in PBS + 3% FBS and kept on ice until use.

2.2.3.1 Isolation of Lineage - Sca-1+c-Kit+(LSK) cells

Whole bone marrow was obtained by crushing the femur, tibia and spinal column in

presence of 5 mL of PBS + 3% FBS. The cells were washed with PBS + 3% FBS,

passed through a 100 μm filter and collected in 50 mL falcon tubes, this was repeated

up to five times. The cells were pelleted by centrifugation at 300 x g for 5 minutes.

To remove erythrocytes, the pellet was resuspended with 10 mL of 1x erythrocyte

lysis buffer (10x BD-lysis-buffer, BD Bioscience, Cat#555899) diluted in ddH2O and

centrifuged again. To remove muscle material, the cells were resuspended in 10 ml

of PBS and passed through a 70 μm cell strainer, then washed with 10 mL of PBS +

3%FBS. This step was repeated using a 40 μm cell strainer and centrifuged at 300 x

g for 5 minutes. The cells were resuspended with 300 μL PBS followed by magnetic

enrichment using 60 uL of Miltenyi CD117 microbeads (Miltenyi Biotec, Cat#130-

091-224). Cells were left to incubate at 4ºC for 20 min. Remaining antibody was

removed by washing with 10 ml of PBS + 3% FBS and centrifuged at 300 x g for

5 mins. The cells were resuspended with 4 mL AutoMACS running buffer (MACS

Miltenyi Bioctec, Cat#130-091-221), passed through 40 μm cell strainer and washed

with 3 mL of PBS + 3% FBS. The cells were then separated using autoMACS®
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Pro Separator.

The positive cell fraction was collected and counted. Aliquots of 5x105cells were

used for fluorochromes compensation. The remaining cells were centrifuged and

resuspended in 200 μL of PBS and incubated on ice for 20 minutes with 1 μL of each

antibody: CD5 (Clone 53-7.3, Bioscience), Gr1 (Clone RB6-8C5, Biolegend), B220

(Clone RA3-6B2, Biolegend), CD3e (Clone 17A2, Biolegend), CD11b (Clone M1/70,

Biolegend), Ter119 (Clone Ter-119, Biolegend), all Pacific Blue fluorochrome. After

a washing step, cells were resuspended in 200 μL of PBS + 3% FBS and stained with

2 μL of c-Kit (APC, Clone 2B8, Bioscience) and Sca-1 (FITC, Clone D7, Bioscience)

on ice for 20 minutes. Finally, cells were sorted on a FACSAria instrument and LSK

cells collected in RLT-plus buffer (Qiagen) with 1% of β-mercaptoethanol to further

isolate DNA and RNA. The gating strategy followed is indicated in Figure 2.2.
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Figure. 2.2. Fluorescence-activated cell sorting of Lin-Sca+cKit+ (LSK) cells.
Cells were isolated from bone marrow and enriched for CD117 marker. These were
subsequently stained using lineages markers, Sca-1 and c-Kit. Live cells were selected
in the first gate and then single cells were double gated. The negative portion of the
lineage markers was selected and then the double positive cells for c-Kit and Sca-1
antibodies were sorted and collected in an eppendorf tube containing LRT buffer.

2.2.3.2 Neutrophil isolation

Approximately 1 mL of blood was extracted from retro-orbital bleeding and collected

in 2 mL tubes with 100 μL of 0.5 M EDTA. The plasma was removed by centrifuga-

tion at 600 x g for 5 minutes. The pelleted cells were transfer to 15 mL falcon tubes

and red blood cells were removed using 10 mL of 1x erythrocyte lysis buffer (10x

BD-lysis-buffer, BD Bioscience, Cat#555899) diluted in ddH2O and centrifuged at

300 x g for 5 minutes. Cells were resuspended in PBS and passed through a 40

μm strainer and centrifuged at 300 x g for 10 minutes. Neutrophils were isolated

using Neutrophil Isolation Kit, mouse (MACS Miltenyi Biotec, Cat#130-097-658)

following the manufacturer’s instruction using the autoMACS® Pro Separator. The
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fraction containing the enriched neutrophils was collected and centrifuged for 5 mins

at 300 x g. Supernatant was removed and cells resuspended in 75 μL of RLT plus

buffer (Qiagen) with 1% β-mercaptoethanol. The samples were stored at -70ºC until

DNA and RNA purification.

2.3 DNA and RNA purification

DNA and RNA were simultaneously purified using AllPrep DNA/RNA Micro Kit

(Qiagen) for mouse samples and AllPrep DNA/RNA Mini Kit (Qiagen) for human

samples, following the manufacturer’s instructions. DNA was resuspended in 60 μL

of EB buffer using two rounds of 30 μL to improve recovery from the columns. RNA

was eluted with 14 μL of RNase and DNase Free water, which yields an effective

volume of 12 μL. Due to the limited number of CD34+ cells, RNA extraction was per-

formed with the PicoPure RNA isolation kit (Thermo Fisher Scientific). DNA and

RNA were quantified with Quibit using dsDNA HS Assay Kit (Thermo Scientific)

and RNA HS Assay Kit (Thermo Fisher Scientific), respectively. RNA quality was

assessed with the Agilent 4200 TapestationTM System (Agilent Technologies, BRC

Genomics Facility) using TapestationTM High sensitivity RNA ScreenTape (Agilent,

Cat#5067-5579) following the manufacturer’s instructions. The TapestationTM Sys-

tem calculates the RNA integrity number (RIN) which represents the quality of the

RNA according to an algorithm based on the electrophoretic trace of the RNA sam-

ple. This value can range between 1 and 10, 1 being poor quality RNA and 10 good

quality RNA.

2.4 RNA sequencing

The workflow of the RNA-sequencing was followed as indicated in figure 2.3.
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(pseudoalignment)
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RNAseq Metrics

Deduplication
human only

Library preparation

MiSeq (micro kit)

HiSeq 4000
Concentration, quality control 

SMARTer Stranded Total RNA seq v2 – Pico input (Takara)
Quantification, quality control (Tapestation & Qubit)

sample removal
STAR

Picard

Picard

TestTest

RNA-sequencing workflow

Figure. 2.3. RNA-sequencing workflow. Library preparation was performed using
the SMARTer® Stranded Total RNA - Seqv2 - Pico Input (Clontech), MiSeq se-
quencing was performed to assess quality and concentration. All libraries were finally
sequenced in HiSeq 4000. Raw reads were processed with FastQC. Adapters were
trimmed using BBduk and reads were aligned to the reference genome using STAR.
RNAseqMetrics were obtained using Picard. A deduplication step was performed
in the human samples which was not included in the final pipeline (light green).
After trimming, transcripts were quantified with Kallisto package and differential
transcript expression was performed with sleuth package.

2.4.1 Human samples

Gene expression was assayed in neutrophils and CD34+ cells from pre-treatment and

following nine months of treatment. RNA concentration and quality were assessed

as described previously (Section 2.3). For library preparation, equal amounts of

RNA were used for each sample pair (pre- and post-treatment).

A total of 34 samples, corresponding to nine patients, were selected for sequencing

(Table 2.1). Quality control (QC) of the samples using TapestationTM revealed that

some samples presented a low RNA integrity number (RIN), indicating degraded

RNA. RNA degradation mostly affected the CD34+ samples (Table 2.1). However,
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these samples were not discarded as the library preparation kit used (SMARTer®

Stranded Total RNA - Seqv2 - Pico Input Mammalian) was designed to work with

low concentration (250 pg-10 ng) and degraded RNA by adjusting two steps from

the standard protocol, according to the manufacturer’s instructions (see Section

2.4.3.1).

Table. 2.1. RNA integrity number and concentration of CD34+ cells and neutrophil
samples

Patient Sample CD34+ Neutrophils
ng/μL RIN Total ng ng/μL RIN Total ng

P002 S01 0.14 4.6 2.8 22.8 6.6 456
S04 0.276 2 5.52 1.36 8.4 27.2

P003 S01 0.532 8.4 10.64 0.246 7.7 4.92
S04 0.214 2 4.28 0.289 7.6 5.78

P004 S01 0.239 3.1 4.78 0.251 7 5.02
S04 0.121 2.3 2.42 0.452 8 9.04

P006 S01 0.336 8.1 6.72 6.48 8.5 129.6
S04 0.922 3.2 18.44 2.32 9 46.4

P007 S01 0.399 8.6 7.98 12.1 8.4 242
S04 0.228 7.1 4.56 1.3 8.8 26

P008 S01 4.86 8.7 97.2 1.45 8.8 29
S04 0.435 8.5 8.7 0.227 7.3 4.54

P009 S01 7.5 8.7 150 12.8 7.7 256
S04 0.741 8.8 14.82 0.604 7.1 12.08

P010 S01 0.355 8.1 7.1
S04 0.287 7.3 5.74

P011 S01 0.174 7.7 3.48 3.16 8.2 63.2
S04 0.476 9 9.52 19.4 8.8 388

RIN: RNA integrity number; red indicates low RIN

2.4.2 Mouse samples

Gene expression was assayed in neutrophils and LSK cells from each mouse treated

with HU or vehicle. RNA concentration and quality were assessed as described

previously (Section 2.3). For library preparation, 5 ng of RNA was used from LSK

cells and 1 ng of RNA from neutrophils (Appendix D.1).

A total of 34 samples were selected for sequencing. The overall concentration of

the neutrophils samples was low, and some were of poor quality as characterised by
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a low RIN (Table 2.2). However, these samples were not removed.

Table. 2.2. RNA concentration (ng/μl) and quality (RIN) from LSK cells and
neutrophils

Sample Treatment LSK Neutrophils
ng/μl RIN Total ng ng/μl RIN Total ng

MM_4964 VEH 2.37 8.7 28.4 0.197 7.8 2.4
MM_5276 HU 1.78 6.2 21.4 0.18 7.1 2.2
MM_5277 HU 3.25 9.1 39 0.15 6.3 1.8
MM_5322 HU 2.83 9.1 34 0.167 5.6 2
MM_5327 VEH 5.29 8.4 63.5 0.655 8.9 7.9
RB_427 VEH 2.06 8.5 24.7 0.235 6 2.8
RB_429 HU 1.38 8.2 16.6 0.116 3.7 1.4
RB_430 VEH 5.05 9 60.6 0.905 9.1 10.9
RB_431 HU 1.75 9.4 21 0.121 4.1 1.5
RB_438 VEH 3.44 8.4 41.3 0.133 2.4 1.6
RB_441 VEH 1.53 8.8 18.4 0.352 8.6 4.2
RB_444 HU 6.05 8 72.6 0.119 6.2 1.4
RB_447 HU 1.13 6.9 13.6 0.329 8.7 3.9
RB_458 HU 1.76 8.1 21.1 0.228 6.5 2.7
RB_460 VEH 2.44 8.2 29.3 0.215 6.7 2.6
RB_461 HU 1.89 5.5 22.7 0.398 6.9 4.8
RB_462 VEH 2.85 9.1 34.2 0.702 6.5 8.4
RB_470 VEH 3.1 9.2 37.2 0.0921 2.4 1.1
RB_481 VEH 1.28 9.3 15.4 0.648 8.2 7.8
RB_489 HU 1.95 8.8 23.4 0.183 5.7 2.2
RB_490 HU 1.96 9.2 23.5 0.566 8.3 6.8
RB_491 VEH 3.17 8.3 38 0.277 3.2 3.3
SX_581 HU 2.18 9.3 26.2 0.393 8.1 4.7
Low RIN indicated in red. VEH: vehicle; HU: hydroxyurea; RIN: RNA integrity number.

2.4.3 Library preparation

Libraries were prepared using the SMARTer® Stranded Total RNA - Seqv2 - Pico In-

put Mammalian (Clontech, cat#634411), following the manufacturer’s instructions.

Briefly, total RNA (RIN >4) was fragmented and random primers were used for the

synthesis of the first-strand cDNA. Illumina adapters and barcodes were added in a

first PCR using 3’- and 5’- primers for paired-end indexing (Table 2.3). The PCR

products were purified using AMPure XP magnetic beads (cat#BECLA63881). Ri-

bosomal cDNA, originated from rRNA (18S and 28S) and mitochondrial rRNA
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(m12S and m16S), were cleaved by Zap-R in presence of mammalian-specific R-

Probes. The libraries were further amplified by a second PCR using primers that

are universal to all libraries (PCR2 primers v2). The number of cycles used were

calculated according to the initial RNA concentration. A final purification step us-

ing AMPure XP magnetic beads was performed to finally elute the libraries with 12

μL of tris buffer.

Table. 2.3. Indexes used for library preparation. Libraries were paired-end indexed.
i5 and i7 indexes were used in different combinations to obtain libraries uniquely
indexed.

i5 Illumina
Index Name (3’)

i5 Bases for
Sample Sheet
MiSeq®,
HiSeq®

2000/2500

i7 Illumina
Index Name (5’)

i7 Bases for
Sample Sheet

D501 TATAGCCT D701 ATTACTCG
D502 ATAGAGGC D702 TCCGGAGA
D503 CCTATCCT D703 CGCTCATT
D504 GGCTCTGA D704 GAGATTCC

D705 ATTCAGAA
D706 GAATTCGT
D707 CTGAAGCT
D708 TAATGCGC
D709 CGGCTATG
D710 TCCGCGAA
D711 TCTCGCGC
D712 AGCGATAG

2.4.3.1 Steps modified for degraded RNA samples

The library preparation protocol was modified according to the concentration and

RIN of each individual sample, following the manufacturer’s instruction. One step

was the first-strand cDNA synthesis, where samples with a RIN <4 were not frag-

mented enzymatically. In those samples with a RIN >4 the enzymatic fragmentation

time was increased at higher RIN. The second step modified was the number of cy-

cles in the last PCR amplification, which was adjusted according to the amount of

input RNA. Details about the conditions used for each sample are listed in Appendix
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B.1 for human samples and in Appendix D.1 for mouse samples.

2.4.4 Library quantification and QC

Libraries were quantified with Qubit dsDNA HS Kit (Thermo Fisher Scientific,

Cat#Q32851) following the manufacturer’s instructions. According to the concen-

tration, the libraries were diluted to 1.5 ng/μl to evaluate the size distribution. Size

distribution was assessed using the High Sensitivity D1000 ScreenTape (Agilent,

Cat#5067-5584) on Agilent 2200 TapeStation (Agilent Technologies, BRC Genomics

Facility) following the manufacturer’s instructions. The libraries concentration was

obtained by converting ng/μL to nM using the following formula:

Concentration in nM =
Concentration(ng/µl)

660g/mol × average library size in bp
× 106

According to the concentration in nM the libraries were diluted to 4 nM with

Tris buffer and then each library pooled in a 0.25 mL eppendorf tube.

2.4.4.1 Human libraries

Following library preparation of all 34 human samples, concentration and the frag-

ment distribution were assessed using QubitTM and TapestationTM, respectively, as

described previously (Section 2.4.4). According to the manufacturers of the library

preparation kit, the expected size distribution of the libraries generated should range

between 200 and 1000 bp, with a peak between 300 and 400 bp. According to the

TapestaionTM results, all libraries fell within this distribution range (Appendix B.1).

Libraries with a shorter amount of product (between 150 and 200 bp) were cleaned

again following the manufacturer’s instructions. Three CD34+ samples: P04S01,

P02S04 and P06S04 and one neutrophil sample P04S01 fell into this category (Fig.

2.4A). The clean-up step was then validated by assaying the samples using the

TapestationTM (Fig. 2.4B): the P006S04 CD34+sample was the only one where
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cleaning was not successful (Fig. 2.4C). A further clean-up step was not attempted,

in order to avoid losing extra sample material. Finally, the concentration for these

libraries was re-calculated, and all libraries were then pooled in one aliquot. The

TapestationTM was used again to confirm library size, and QubitTM was used to

calculate final concentration.
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Figure. 2.4. Fragment size distribution of samples with adapter dimers. A) Frag-
ment size distribution of the sample P04S01 (neutrophils) which shows a small peak
between 100 and 200 bp. According to the manufacturer’s instruction, these frag-
ments can be removed by repeating the last clean-up step using magnetic beads.
This procedure was performed on four samples. B) Fragment size distribution after
adapter removal of the sample P04S01 (neutrophils). C) Fragment size distribution
of all four samples after clean-up step; each sample name is indicated. Only sample
P06S04 was not completely clean.
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2.4.4.2 Mouse libraries

Following library preparation of all 34 mouse samples, the concentration and the

fragment distribution was assessed using QubitTM and TapestationTM as described

previously (Section 2.4.4)

TapestationTM revealed that the distribution of fragment sizes was between the

expected ranges according to the manufacturer’s instructions (Fig. 2.5). Moreover,

no adapter dimers were observed, therefore no additional cleaning steps were carried

out.

25 50 10
0

20
0

30
0

40
0

50
0

70
0

10
00

15
00

25 50 10
0

20
0

30
0

40
0

50
0

70
0

10
00

15
00

Size 
[bp]

Size 
[bp]

500

400

0

100

Sa
m

pl
e 

In
te

ns
is

ty
 [N

or
m

al
iz

ed
 F

U
]

300

200

500

400

100

Sa
m

pl
e 

In
te

ns
is

ty
 [N

or
m

al
iz

ed
 F

U
]

300

200

0

LSK libraries Neutrophil libraries

Figure. 2.5. RNA library fragment distribution from LSK cells and neutrophils
samples . After library preparation, the libraries were analyzed with TapestationTM

to confirm their fragment size distribution and to evaluate if adapters dimers were
remaining in the libraries. The fragment size distribution observed was as expected
and no adapter dimers were identified.

2.4.5 Library normalization using low depth sequencing

The libraries were sequenced on an Illumina MiSeq (BRC Genomics Core Facility)

using the Reagent v2 Micro Kit (Illumina), which yields circa four million reads in

total. Raw reads were analyzed using FastQC (ver. 0.11.8) and the results were

summarized using MultiQC (Ewels et al., 2016). The number of sequences per

library was considered as concentration of the library and this value was used to

re-pool the libraries at the same concentration.
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2.4.5.1 Low depth sequencing QC

FastQC uses the Phred score which represents the probability of obtaining an incor-

rect base call. This value should be maintained above 30 (one error in every 1000

base calls). Another metric for quality assessment is the percentage of GC con-

tent (%GC), which reveals the presence of high levels of ribosomal RNA (rRNA),

or of microorganism contamination (Delhomme et al., 2015). In the case of RNA

libraries, the theoretical %GC distribution range is between 20- 60% when the li-

braries are PolyA enriched. Libraries with high levels of rRNA have a theoretical

%GC distribution of between 40-70% (Delhomme et al., 2015). In this case, rRNA

depletion was used, since PolyA enrichment is not recommended for degraded sam-

ples. Sequence duplication was also evaluated. Duplication can occur during the

library preparation, specifically at the PCR amplification step that over amplifies

highly expressed transcripts. In the case of RNA libraries, it is common to sequence

at high depth to get information from lowly expressed transcripts, creating more

duplication (Delhomme et al., 2015).

Human libraries: QC results All libraries had a Phred score above 30 (Fig.

2.6A). The GC content results revealed a distribution between 20 and 70% which

is close to what is normally observed in RNA libraries (Fig. 2.6B). However, some

libraries demonstrated quality issues as the distribution was skewed to the right

and this was critical in the P003S04 sample from CD34+ cells. With the MiSeq,

sequencing depth was low, and one particular sample – once again, the P003S04

sample from CD34+ cells had more duplication levels than the other samples (Fig.

2.6C).
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Figure. 2.6. FastQC results from CD34+ and neutrophil libraries summarized with
MultiQC. A) FastQC mean quality scores represents the Phred score which should
be kept >30%. B) FastQC per sequence GC content. C) Duplication levels

Although some quality issues were observed in some samples, these were not

removed from the high depth sequencing. The rationale for this was that all 34

libraries would be in the same lane for sequencing, and removing one or two samples

would not greatly affect the overall results for the rest of the libraries. Accordingly,

all libraries were normalized using the number of sequences obtained in the MiSeq

sequencing, as described in the Methods Section (Section 2.4.5) (Fig. 3.2A), and

re-pooled in one aliquot. All samples were sequenced and processed as described in

the next section 2.4.6)
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Mouse libraries: QC results All libraries had a Phred score above 30 (Fig.

2.7A). The GC content results were under the expected ranges (Fig. 2.7B). Simi-

larly, no problems of duplication levels were observed (Fig. 2.7C). All samples were

sequenced and processed as described in the next section 2.4.6)

A

B

C

Figure. 2.7. FastQC results from LSK cells and neutrophils libraries summarized
with MultiQC. A) FastQC mean quality scores represents the Phred score which
should be kept >30%. B) FastQC per sequence GC content. C) Duplication levels
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2.4.6 Hight depth sequencing and data processing

Libraries were sequenced in HiSeq4000 sequencing system (Genewiz). Read adapters

were trimmed using BSTools (ver. 38.22 Wang et al., 2015) and QC performed

with FastQC. Reads were aligned to the corresponding reference genome (Hg38 and

mm10, human and mouse respectively) using STAR (ver. 2.6.1b Dobin et al., 2013).

QC metrics were obtained using “collectRNAmetrics” from Picard (ver. 2.18.14).

Deduplication was performed with “MarkDuplicates” from Picard and it was only

applied to human samples as an alternative approach. Transcript abundance was

quantified using Kallisto (ver. 0.44.0, Bray et al., 2016) and Sleuth (ver. 0.30.0

Pimentel et al., 2017) to identify differentially expressed transcripts.

2.4.6.1 Assessment of the normalization step using MiSeq: human

After normalization of the libraries using the approach described previously (Sec-

tion 2.4.5) the libraries were sent to Genewiz for sequencing in a HiSeq4000 se-

quencing system. A total of four lanes were used to yield around 40 million reads

per library. The number of sequences from HiSeq4000 were compared to the se-

quences from MiSeq (2.8A) to assess the effectiveness of the library normalization

method employed (Fig. 2.8B). Homogeneity was observed among the sequences from

HiSeq4000.

2.4.6.2 Assessment of the normalization step using MiSeq: mouse

The normalization of the libraries using MiSeq sequences was not completely homo-

geneous, as some samples have more sequences than others (Fig. 2.9A and B)
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Figure. 2.8. Assessment of the normalization step using MiSeq . A) Total se-
quences obtained from Illumina MiSeq sequencing system in CD34+ cells and neu-
trophils used to normalize concentration of each library. B) Total sequences obtained
from Illumina HiSeq 4000 sequencing runs on CD34+ and neutrophil libraries after
using MiSeq sequencing system to normalize concentration. In general, homogeneity
was observed among the libraries.
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Figure. 2.9. Assessment of the normalization step using MiSeq: mouse libraries.
A) Total sequences obtained from Illumina MiSeq sequencing system in LSK cells
and neutrophils used to normalize concentration of each library. B) Total sequences
obtained from Illumina HiSeq 4000 sequencing runs on LSK and neutrophil libraries
after using MiSeq sequencing system to normalize concentration. Some libraries have
greater sequencing depth than others, revealing a non-homogeneous concentration.
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2.5 DNA methylation

2.5.1 Infinium MethylationEPIC BeadChip

2.5.1.1 Bisulfite conversion

Three hundred nanograms of DNA from neutrophils or up to 50 ng of DNA from

CD34+ cells were processed using the EZ DNA MethylationTM Kit (Zymo Research,

cat#D5001) following the manufacturer’s instructions for Infinium assays. Samples

were stored at -20ºC for no longer than one week before use.

The bisulfite converted DNA was sent to the BRC Genomic Core where DNA

methylation was measured using the Infinium MethylationEPICTM BeadChip Kit

(Illumina, cat#WG-317-1001). The samples were distributed across four EPIC

BeadChips (eight samples per BeadChip).

2.5.1.2 Data processing

Raw files were processed in R (ver. 3.5.1). Workflow of the analysis was completed

as indicated in figure 2.10.
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Figure. 2.10. DNA methylation workflow. Samples were analysed in R using
minfi, ENmix and RnBeads packages for QC steps. Background correction was then
applied using ENmix package. Then, four normalisation steps were carried out with
minfi, BMIQ, quantile normalization (QN) and batch correction (ComBat). Finally,
differentially methylated CpGs were obtained with limma package and differentially
methylated regions with DMRcate package.

QC QC was performed using Minfi (ver 1.28.4, Aryee et al., 2014), and RnBeads’s

Greedy cut algorithm (ver. 2.0.1, Assenov et al., 2014). Samples, and probes with

poor quality signals were removed.

Normalization The normalization steps are detailed in section 2.5.1.2. Briefly,

background correction was performed using the out-of-band model from Enmix (ver.

1.18.2, Xu et al., 2015). Subsequently, the probes were separated by type and color

to perform quantile normalization and reduce probe-design type bias between Type

I and Type II probes. After, the beta mixture quantile normalization (BMIQ) from

wateRmelon package (ver. 1.26 Pidsley et al., 2013) was used for correction of

probe-design type bias affecting Infinium II probes. Finally, to remove the batch

effect between samples, ComBat from sva package (ver. 3.30.1 Leek et al., 2012)

was used.
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Differential methylation testing Differential methylation testing was carried

out at two levels: I) differential methylation of individual CpG sites using limma

(ver. 3.38.3 Ritchie et al., 2015) and, II) differential methylation between regions,

using DMRcate (ver. 1.18, Peters et al., 2015) which agglomerates significant CpGs

within a 1 kb region and computes a q-value. The testing was performed by using

pair time point comparison (pre- versus three-, six- and nine- months of treatment)

for each patient. Technical replicates were accounted in the differential methylation

design with dupcorr from limma (Ritchie et al., 2015).

Normalization steps and results The EPIC array has two types of probe which

differ in the way that they measure DNA methylation intensity (Fig. 2.11). Type II

probes utilise one probe per CpG, which is able to measure “methylated” (M) in the

green color channel and “unmethylated” (U) in the red color channel. Type I probes,

on the other hand, are essentially two probes per CpG (pairs), one measuring M and

the other U. Type I probes can measure this either in the red or the green channel.

Consequently, scanning the array generates six sets of measurements and each set

with its own characteristic signal distribution: type II green, type II red, type I

green M, type I green U, type I red M and type I red U.

Methylation of each CpG is indicated using the β value, which is calculated

as β=M/(M+U+α) where α = 100. Another means of quantifying methylation is

through use of the M-value, M=log2(β/(1−β)), which is the logit-transformed form

of the β-value (Wang et al., 2017).

Normalization steps are performed in order to reduce technical variance between

samples, which can lead to confounding results when performing differential methy-

lation testing. In order to be able to compare different samples, these need to have

the same statistical properties. Accordingly, background correction was performed:

this normalizes the signal of the tested probes using the signal from control probes

which are integrated in the array. Multiple methods of background correction meth-
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Figure. 2.11. Design of the EPIC array probes. A) Type I probes (or Infinium
I) utilise two probes per locus, which will hybridize with the DNA according to the
methylation status of the CpG assayed. B) Type II probe (or Infinium II) utilises
one probe per locus, which will emit a different signal according to the methylation
status of the CpG assayed. Image extracted from the online documentation of the
Illumina MethylationEPIC BeadChip.
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ods have been described. In this case, the ENmix package, which claims to perform

better than previous methods, was used (Xu et al., 2015) (Fig. 2.12A and Appendix

B.1A).
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Figure. 2.12. Intensity plots of CD34+ dataset before and after quantile normal-
ization. Each graph represent a type of probe (Type I or Type II) and its channel
(Red or Green). Type II probe utilises one probe able to emit signal in Red and
Green channels. Type I probe utilises two probes that measure methylation (M) and
unmethylation (U), each emitting signal in two channels, Red or Green. A) Distri-
bution of the signal intensity before quantile normalization and after background
correction. B) Distribution of the signal intensity after quantile normalization.

The common packages used to normalize EPIC arrays do not discriminate be-

tween the types of probes, which can lead to bias, due to differences in the distri-

bution of probe intensity between probes, as observed in Fig. 2.12A. Accordingly,

a method provided by Dr Reiner Schulz, which separates each type of probe, and
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applies the quantile normalization method on each set of probes to make the dis-

tributions statistically identical, was applied to the dataset. It was observed that

the intensity of the post-normalization signal was smoother than before, as expected

(Fig. 2.12B and Appendix B.1B).

Finally, a further normalization was performed to reduce the differences between

the type I and type II probes: this can be better appreciated using the beta value

distribution, as shown in figure 2.13A. Multiple methods have been described to

normalize this type of bias. In this case, the Beta-Mixture Quantile (BMIQ) Nor-

malization from the wateRmelon package was used (Teschendorff et al., 2013). This

method yielded better similarities between the two types of probes and also helped

to reduce sample-variation, compared to other methods tested (data not shown)

(Fig. 2.13B).
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Figure. 2.13. Beta value distribution before and after BMIQ normalization. Type
I and Type II probes measure DNA methylation in different ways, which leads to
a different beta distribution (x-axis). BMIQ normalization is used to reduce the
differences between these two types of probes. It also helps to reduce differences
between patients. A) Before BMIQ normalization and B) after BMIQ normalization.

Combating the batch effect The EPIC array can assay eight samples per ar-

ray. Every array is technically different from all others. Therefore, when analyzing
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DNA methylation in more than eight samples, which requires additional arrays, the

measurements from each array will not be fully comparable. This is known as a

batch effect. In this study, differential methylation testing was performed in multi-

ple samples from the same patient. Accordingly, if all samples from one patient were

included in the same array, no batch effect correction would be needed. However,

the neutrophil samples for some patients were distributed in different arrays, which

led to undesirable technical differences.

First, to identify if batch and other known factors such as “patient” and “treat-

ment” were the source of any variation, a function from ENmix - principal component

regression (PCR) - was used. PCR performs a principal component regression anal-

ysis, using a data frame with factors (including “patient”, “treatment”, “batch”, etc)

per sample. In neutrophils, it was observed that the use of “patient” as a factor

was driving the variation in the data (Fig. 2.14A). This information reinforced the

importance of comparing patients with themselves. The “batch” factor was posi-

tioned in the second principal component, confirming that “batch” is also a factor

that drives variation in the data. Accordingly, it was decided to remove the batch

effect using the ComBat function from the sva package (Leek et al., 2012). ComBat

successfully removed the batch effect, and also increased the effect of “treatment”

and “time” (Fig. 2.14B). In the case of CD34+cells, “treatment” and “time” were the

only factors that drove variation in the data (Fig. 2.14C).

After these steps, the data was tested for differentially methylated CpGs and

regions as indicated previously 2.5.1.2.

2.5.1.3 Correlation with gene expression

The coordinates of the differentially methylated regions detected by DMRcate were

subsetted by regions that mapped to CpG islands, shores, and shelfs, using Genom-

icRanges and the RnBeads annotation file as a reference. The genes associated with

these regions were correlated with gene expression data.
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Figure. 2.14. Principal component regression analysis Principal component re-
gression (PCR) analysis was performed to identify the source of data variation. A)
PCR from neutrophils; a source of undesired variation was “batch”, which was re-
moved using the ComBat function from sva package in R. B) PCR from neutrophils
after using ComBat, where “batch” is no longer driving variation. C) PCR from
CD34+cells, where “treatment” is a source of variation.

2.5.1.4 Enrichment analysis

The coordinates of the differentially methylated regions and differentially methy-

lated CpGs were used to create a bed file and perform enrichment analysis. To

identify enrichment for transcription binding sites, the online resource i-cisTarget

(Imrichová et al., 2015) was used. The regions were divided between hypo and hy-

per methylated prior submission. The configuration used was: minimum fraction of

overlap, normalized enrichment score (NES) threshold, and AUC threshold were set

to 0.4, 3.0, and 0.005, respectively.

2.5.1.5 Online databases

Processed DNAmethylation data from a healthy donor (peripheral blood CD34+CD15-)

was downloaded and formatted in a bed file to upload to the UCSC genome browser.

The data was downloaded through the GSE106600 (Maupetit-Mehouas et al., 2018).

72



2.5. DNA METHYLATION Materials and methods

These data was used to visually compare the levels of DNA methylation with the

patients analyzed in this study.
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Chapter 3

The effect of hydroxyurea treatment

on DNA methylation and gene

expression in polycythaemia vera and

essential thrombocythaemia patients

3.1 Introduction

Myeloproliferative neoplasms (MPNs) are bone marrow disorders that give rise to

an excess of blood cells. Classic MPNs include polycythaemia vera (PV), essential

thrombocythaemia (ET) and myelofibrosis (MF). Patients with these disorders have

a higher risk of suffering cardiovascular events, such as thrombosis or bleeding,

or of developing more severe haematopoietic neoplasms, including acute myeloid

leukaemia (AML). Hydroxyurea (HU) is the first-line treatment for high-risk PV and

ET patients. The mechanism of action of HU is the inhibition of the ribonucleotide

reductase enzyme (RNR) which blocks DNA synthesis, resulting in cell cycle arrest

(Young and Hodas, 1964; Krakoff et al., 1968). HU effectively reduces cell blood

counts (CBC) and improves patients’ symptoms (Harrison et al., 2010). Another
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effect of HU is the induction of foetal haemoglobin (HbF), explaning its use in sickle

cell anaemia (SCA) patients. Several investigations have tried to understand the

mechanism of action of HU in SCA, and some have suggested that HU is able to

modulate DNA methylation (Walker et al., 2011). However, these studies have been

performed in a very site-specific manner and the mechanism is poorly understood.

DNA methylation is an important mechanism for gene regulation during devel-

opment, and has been implicated in carcinogenesis (Esteller et al., 2000). During

haematopoiesis, correct DNA methylation appears to be essential for normal cell

proliferation and differentiation (Challen et al., 2011; Trowbridge et al., 2009). In

the case of MPN, somatic mutation in genes that are involved in DNA methylation

have been identified. Moreover, the various therapeutic effects of HU have been

linked to changes in DNA methylation, but no studies have been conducted in MPN

patients to assess this effect.

Therefore, I investigated the effect of HU treatment on gene expression and DNA

methylation in PV and ET patients. I collected blood samples from patients prior

to HU treatment, and after three, six and nine months of treatment. I isolated two

clinically relevant cell populations: CD34+ cells, which are haematopoietic stem and

progenitor cells, and neutrophils, which are fully differentiated cells from the myeloid

lineage. The rationale underlying the choice of these two study populations is that

CD34+ cells in adults represent the most primitive cell type that will give rise to all

cell lineages. By identifying the effects of HU at the stem cell level, may be predicted

haematopoietic outcomes. In the case of neutrophils, these are significantly affected

by HU treatment, are involved in the inflammatory response, and have been linked

to thrombosis in MPN patients (Marin Oyarzún et al., 2016; Stone et al., 2018).

Analysing of the effect of HU treatment on neutrophils would permit the identi-

fication of pathways related to the clinical outcomes of HU. Finally, by analyzing

these two populations in parallel, it should be possible to recognize changes at the

stem cell level that are translated to more differentiated cells, such as neutrophils.
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Overall, through the work described in this thesis I sought to identify genes that are

affected by HU treatment, with the aim of achieving a better understanding of its

mechanism of action.

This chapter characterizes the patients included in the study, describes the gen-

eration of the data for gene expression and DNA methylation, and, lastly, reports

the results of these analyses in terms of their biological significance.
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3.2 Results

3.2.1 Patient sample collection and clinical response to HU

treatment

For eighteen months, I took part in weekly clinical meetings held within the Haema-

tology Department at Guy’s Hospital. In collaboration with the clinicians, we iden-

tified patients suitable for inclusion in the study. These were patients who needed

to commence HU treatment, who had not previously received any other cytoreduc-

tive treatment. Informed consent was obtained in accordance with the Declaration

of Helsinki and local ethical guidelines (NRES Committee London - City Road &

Hampstead, REC reference 15/LO/0265), and peripheral blood samples were then

collected. During this time, I collected a total of 50 samples, distributed across four

time points: prior to treatment, and after three-, six-, and nine-months of treatment.

For some of these patients it was not possible to collect samples at the stipulated

time point, and others switched to a different therapeutic pathway. A total of nine

patients were deemed suitable for inclusion in the study (Table 3.1). Among these

patients, three had been diagnosed with PV, and six with ET. Seven patients ex-

hibited the JAK2V617F mutation. The remaining two patients (P004 and P010),

did not have known mutations: these were termed “triple negative” (TN). All pa-

tients were regularly reviewed by the clinical team, and their clinical parameters

were evaluated on each occasion.

The treatment response was evaluated by monitoring of their CBC at each time

point (Fig. 3.1). Platelet, white blood cell and neutrophil counts decreased in all

patients and most of them reached normal values at nine month of treatment (Fig.

3.1). In PV patients (dashed lines) the haematocrit was maintained below 45%. In
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Table. 3.1. Clinical parameters of patients included in the study and the time
points of sample collection

Patient ID Age Sex Diagnosis Mutation Sample collection (time points)
Pre-
treatment

3 months 6 months 9 months

P002 50 F PV JAK2 Yes
No

Yes Yes

P003 55 F ET JAK2 Yes Yes Yes Yes
P004 42 F ET TN Yes Yes

No
Yes

P006 67 F ET JAK2 Yes Yes Yes Yes
P007 77 F ET JAK2 Yes Yes Yes Yes
P008 88 F ET JAK2 Yes Yes Yes Yes
P009 68 M PV JAK2 Yes Yes Yes Yes
P010 77 F ET TN Yes Yes Yes Yes
P011 52 M PV JAK2 Yes Yes Yes Yes
F: female, M: male; PV: polycythaemia vera; ET: essential thrombocythaemia
TN: triple negative; JAK2: JAK2V617F

ET patients (solid lines) platelet levels were kept below 400x109/L in most of the

patients (Fig. 3.1). These observations are in accordance with those expected when

PV and ET patients undergo HU treatment to reduce their risk of thrombotic events

(Harrison et al., 2010; McMullin et al., 2019). Haemoglobin level is considered to

be diagnostic of PV when it is higher than 160-165 g/L. In this cohort of patients,

none had elevated haemoglobin levels prior to treatment, and some of them showed

an increase in haemoglobin levels, within the normal range, following treatment

(Fig. 3.1). White blood cell and neutrophil counts above 15 x109/L and 10 x109/L,

respectively, increases the risk of thrombotic events (Harrison et al., 2010). These

values were present in one patient (P002), but HU treatment effectively reduced their

cell counts. It has been documented that the mean corpuscular volume (MCV)

normally increases when patients receive HU and such an increase was observed

in these patients (Burns et al., 1986; Spier, 1971) (Fig. 3.1). Although MCV is

associated with the HU intake, this parameter was not used to assess treatment

compliance. Overall, all patients were controlled as CBCs decreased throughout the

study period. In a single patient (P011) haematocrits increased, but the remainder

of the parameters (WBC, platelet and neutrophil counts) responded as expected.
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Figure. 3.1. CBC over the course of the study. CBC were monitored to assess
the effectiveness of the HU treatment. Haematocrit, platelet, white blood cells,
and neutrophil counts decreased in most patients. According to the aim of the
treatment for PV (haematocrit <45%) and ET (platelets <400x109/L) patients,
HU was effective in most patients. The haematocrit increased in one patient (P011)
during HU treatment, however the other parameters were well controlled by HU.
Haemoglobin levels were maintained within the normal ranges in most patients. The
mean corpuscular volume (MCV) increased in all patients. Solid lines corresponds
to ET patients and dashed lines to PV patients. Red shading corresponds with
diagnostic criteria levels (Arber et al., 2016). Grey shading represents the target
level of the pharmacological treatment (McMullin et al., 2019; Harrison et al., 2010).
Light blue shading correspond with reference values (Kambali and Taj, 2018).
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3.2.2 Data generation

The data generation for this study did not follow the standard protocols and pipelines.

These needed to be adapted to the design of the study and the quality of the sam-

ples. Some RNA samples were of poor quality and low yield. Therefore, a special

library preparation kit designed for samples with these characteristics was used. The

design of the study was also an important factor that needed to be considered when

selecting the appropriate bioinformatic tools.

All the libraries and bioinformatic analyses were self-performed. The details and

results of the library preparation steps are indicated in Methods Section 2.4. In this

section, the details about the gene expression analysis and QC steps are presented.

Similarly for DNA methylation analysis, the bioinformatic pipeline used was

designed especially for this study. Therefore, different tools were combined to en-

sure that the differentially methylated results were meaningful for the hypothesis

of this project. In the following section (3.2.2.2), the microarray used for the DNA

methylation assay is introduced and the QC steps conducted are detailed.

3.2.2.1 Gene expression analysis

Data processing Four sequencing lanes in the HiSeq4000 were used to yield

around 40 million reads per library. The raw reads were processed as described

in the Methods Section 2.4.6. The libraries were analyzed with FastQC to obtain

QC metrics (Appendix B.2) and then aligned to the reference genome (Hg38) using

the STAR package (Table 3.2). This alignment allowed further QC metrics to be

obtained using the “CollectRnaSeqMetrics” tool from Picard (Appendix B.3). The

QC results showed some libraries had high duplication levels (>85%), which were

correlated with low RNA integrity number (RIN), a measure of DNA degradation

and yield (Fig. 3.2A). These results showed that some samples with a high percent-

age of duplication also had high levels of ribosomal RNA (rRNA) (Fig. 3.2B). To
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avoid losing samples from the analysis, removal of duplicates was attempted using

the “MarkDuplicates” tool from Picard. This procedure was successfully carried out,

but the number of reads left was too low to permit any statistical assessment of these

samples (Appendix B.4). Therefore, samples with a duplication rate of >85% were

removed; these included six CD34+samples (P002S01, P002S04, P003S04, P004S01,

P004S04 and P006S04) and one neutrophil sample (P004S01) (Fig. 3.2B).

After QC, the Kallisto package (Bray et al., 2016) was used to quantify transcript

abundance. This package uses an accurate pseudo-alignment method which requires

less computational power, and the pipelines were well established in our research

group. Finally, differentially expressed genes (DEGs) were identified using Sleuth

package (Pimentel et al., 2017).

Table. 3.2. Percentages of uniquely mapped reads of CD34+ cells and neutrophils.
Raw reads were processed and aligned to the reference genome (Hg38) using the
STAR package.

ID Uniquely
mapped
reads

ID Uniquely
mapped
reads

P002S01CD34 54.24% P002S01NEU 70.47%
P002S04CD34 66.75% P002S04NEU 62.92%
P003S01CD34 58.69% P003S01NEU 57.30%
P003S04CD34 28.76% P003S04NEU 58.52%
P004S01CD34 49.56% P004S01NEU 64.07%
P004S04CD34 70.84% P004S04NEU 60.30%
P006S01CD34 60.38% P006S01NEU 62.35%
P006S04CD34 54.56% P006S04NEU 62.40%
P007S01CD34 59.91% P007S01NEU 65.40%
P007S04CD34 63.42% P007S04NEU 63.47%
P008S01CD34 61.49% P008S01NEU 68.01%
P008S04CD34 63.67% P008S04NEU 65.25%
P009S01CD34 66.52% P009S01NEU 69.71%
P009S04CD34 58.58% P009S04NEU 70.14%
P010S01CD34 55.19%
P010S04CD34 56.82%
P011S01CD34 58.27% P011S01NEU 59.45%
P011S04CD34 53.42% P011S04NEU 57.08%
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Figure. 3.2. QC results from sequencing. A) Duplication percentages and B) rRNA
percentages from RNAseqMetrics from Picard. Samples removed from differential
transcript analysis are noted with an X.

3.2.2.2 DNA methylation processing and QC results

DNA methylation was measured in CD34+ cells and neutrophils using the In-

finium MethylationEPICTM BeadChip (EPIC). The EPIC methylation array mea-

sures quantitatively the methylation of >850,000 cytosines genome-wide. DNA is

chemically treated with bisulfite to convert all unmethylated cytosines into uracil.

The bisulfite converted DNA is then hybridized to the EPIC array. The EPIC ar-

ray has two types of probes, Type I and Type II, which measure DNA methylation

(Fig. 2.11). Type I utilises two probes per locus, one probe detects a methylated

CpG, and the other an unmethylated CpG. Depending on the methylation status

of the locus and the CpG analyzed, it will hybridize with one of the two probes

(Fig. 2.11A). By contrast, Type II utilises a single probe per locus, which is able to

generate different signals according to the methylation status of the CpG assayed

(Fig. 2.11B).

For the bisulfite conversion, the manufacturer of the EPIC array recommended

using a minimum of 300 ng of DNA for this assay. In this study, due to the limited

amount of DNA obtained from CD34+ cells, only three patients were assayed prior

to treatment (S01), and nine months of HU treatment (S04) using all the DNA

available (<50 ng) (Table 3.3). In neutrophils, eight patients were assayed prior to

treatment, and at three months (S02), six months (S03) and nine months of HU
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treatment, using 300 ng of DNA (Table 3.3).

The bisulfite converted samples were submitted to the BRC Genomics Facility

for the EPIC assay. The raw files were processed in R as described in Methods

Section 2.5.1.2.

Table. 3.3. Samples included in DNA methylation analysis

Patient Pre-treatment
(S01)

3 months (S02) 6 months (S03) 9 months (S04)

P002 CD34 (removed)
& NEU

NEU NEU CD34 & NEU

P003 CD34 & NEU NEU NEU CD34 & NEU
P004 CD34 & NEU NEU NEU CD34 & NEU
P006 NEU NEU NEU NEU
P007 NEU NEU (removed) NEU NEU
P008 NEU NEU NEU NEU
P009 NEU NEU NEU NEU
P011 NEU NEU NEU NEU

NEU: neutrophils

QC of the DNA methylation assay: samples QC and probe removal The

quality of the data was evaluated by using the detection p-values, which indicate the

quality of the signal of each probe in the sample. The minfi package (Aryee et al.,

2014) was used to obtain these values, which compare the signal of each probe to

the background signal level obtained from the negative control probes. Samples

with a mean p-value >0.05 were considered to have a poor quality signal, and were

excluded from the analysis. Accordingly, P002S01 from CD34+ and P007S02 from

neutrophils were removed from the analysis (Fig. 3.3A). Probes with quality issues

(p-value ≥ 0.000001) were also removed (Lehne et al., 2015). Additionally, two

other packages, RnBeads (Assenov et al., 2014) and ENmix, (Xu et al., 2015), which

use algorithms based on the p-value detection previously calculated, were used to

identify bad probes. ENmix does not work properly on small numbers of samples,

and was not used in the CD34+ dataset. In neutrophils, ENmix overestimated the

number of probes, compared with the other methods (Fig. 3.3B). Therefore, only
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those probes identified as poor performers by RnBeads and minfi were removed

(Fig. 3.3B). Cross-reactive probes, which are probes that map to multiple sites in

the genome, and probes that are positioned in common SNPs are usually removed

when comparing samples from different patients. However, in this study design it

was intended that differential methylation testing should be performed in the same

patient and, consequently these probes were not removed.
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Figure. 3.3. QC results from DNA methylation analysis. The p-value detection
values were calculated using the minfi package. A) Mean p-value per sample. Sam-
ples with p-value >0.05 were removed from further analysis. B) Probes with quality
issues were also removed from the analysis. Three packages were used to identify
poor quality probes in neutrophils and two packages in CD34+ cells. Probes identi-
fied with RnBeads and minfi were removed.

After sample removal, normalization steps were conducted to reduce technical

variance that are inherent to microarrays. These normalization steps are described

in detail in Methods Section 2.5.1.2. Briefly, four normalization steps were applied:

I) background correction which uses the signal from control probes included in the

array to normalize the signal from the tested probes; II) quantile normalization

(QN) method designed by Dr Reiner Schulz that normalize the signal of each type

of probe per color channel; III) Beta-Mixture Quantile (BMIQ) Normalization, that

corrects the differences between Type I and Type II probes; IV) Batch correction

between arrays.

Finally, differential methylation testing was conducted with limma package (Ritchie

et al., 2015) to identify differentially methylated CpGs and DMRcate package (Pe-

ters et al., 2015) to identify differentially methylated regions (DMRs) as described
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in the Methods Section 2.5.1.2.

3.2.3 The effect of HU treatment on gene expression

Differentially expressed genes (DEGs) were identified using Sleuth to test whether

the expression levels of any given gene across patient samples were significantly bet-

ter explained by a linear model comprising patient and time point (pre-treatment

versus nine months post-treatment) factors, as opposed to a model with only the

patient factor. The expression difference of the significant DEGs (qval <0.05) be-

tween “before” and “after” treatment per patient were calculated. These values were

hierarchically clustered (Euclidean correlation distance and ward.D2 agglomeration

method), and gene set enrichment analysis was performed for each gene cluster using

Reactome.org (Fabregat et al., 2017) and enrichR (Kuleshov et al., 2016) with gene

sets defined by biological pathway or by the target of transcription factors (TFs).

A total of 18 samples from CD34+ cells were sequenced and six were removed

from the analysis for QC-related issues (Section 3.2.2.1). The removal of samples

left five patients with paired samples at different time points. Enrichment analysis

for pathways showed that downregulated genes were enriched for protein translation

terms, due to a high number of ribosomal protein genes (Fig. 3.4A). Upregulated

genes were enriched mainly for immune system related terms including cytokine sig-

nalling and neutrophil degranulation (Fig. 3.4A). TF enrichment analysis identified

SPI1 (also known as PU.1) and RUNX1 as regulators of most of the gene clusters.

The genes encoding for these TFs were also differentially expressed, SPI1 was up-

regulated and RUNX1 was downregulated (Fig. 3.4A). Interestingly, these TFs are

known to be master regulators of haematopoiesis (Imperato et al., 2015).

A similar analysis was performed on neutrophils. In this case, 16 samples were

sequenced, and one was removed (Section 3.2.2.1). Clustering of samples revealed

variability between PV and ET patients, where PV patients showed lower expres-

sion change compared to ET patients (Fig. 3.4B). As seen in CD34+ cells, gene
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clustering analysis identified that downregulated genes were enriched for protein

translation terms and upregulated genes were enriched for immune system related

terms, including interleukin signalling and neutrophil degranulation. Enrichment

for TFs identified SPI1, ZBTB7A and CEBPD as regulator of upregulated genes

and all three were also differentially expressed.

1

2

3

4

5

6

Phosphorylation of CD3 and TCR...
Translocation of ZAP−70 to Immu...
Formation of a pool of free 40S...
L13a−mediated translational sile...
Organelle biogenesis and mai...
SRP−dependent cotranslation...
Antigen Presentation: Folding, as...
Endosomal/Vacuolar pathway
Interleukin−10 signaling
Neutrophil degranulation

Pathways (Reactome)3 4 5 621

B

Pathways (Reactome)2 5 6 8

1

2

6

7

8

3

5
4

G beta:gamma signalling through...
Interleukin−10 signaling
Antigen Presentation: Folding, as...
ER−Phagosome pathway
Neutrophil degranulation
mRNA Splicing
mRNA Splicing − Major Pathway

A

−2 0 2
-log2(1+x) −2 0 2

-log2(1+x)

Mutation
JAK2
TN

Sex
M
F

Diagnosis
ET
PV

MYC_ENCODE
E2F6_ENCODE
MYC_CHEA
GATA2_CHEA
ZBTB7A_ENCODE
SPI1_ENCODE
SPI1_CHEA
UBTF_ENCODE
RELA_ENCODE
RUNX1_CHEA

0 10
-log10(qval)

T. factors (ChEA&ENCODE)
TAF1_ENCODE
YY1_ENCODE
CREB1_CHEA
ZBTB7A_ENCODE
RUNX1_CHEA
SPI1_CHEA
CEBPD_ENCODE
EGR1_CHEA

1 7

T. factors (ChEA&ENCODE)

0 10
-log10(qval)

Patient Patient

CD34+ Neutrophils Patient
P002
P003
P004
P006

P011P007
P008
P009
P010

Figure. 3.4. Gene expression analysis of human CD34+ cells and neutrophils.
Significant differentially expressed genes (DEGs) (q-value <0.05) were clustered ac-
cording to their log2-fold change expression (Euclidean correlation distance and
ward.D2 agglomeration method). Clusters were divided at the same branch heights
and numbered. Enrichment analyses for pathways and transcription factors were
performed in each cluster. The top significantly enriched results from each cluster
are represented as a heatmap plot where color scale indicates significance. A) DEGs
from CD34+ cells divided into 6 clusters; 1 and 2 represent downregulated genes
and 3 to 6 represent upregulated genes. B) DEGs from neutrophils divided into 8
clusters; 1 and 2 represent downregulated genes and 3 to 8 represent upregulated
genes. Differentially expressed genes are shown in bold type. JAK2: JAK2V617F
mutation; TN: triple negative; M: male; F: female; ET: essential thrombocythaemia;
PV: polycythaemia vera.

These enrichment results demonstrate that similar pathways are being modu-

lated by HU treatment at two differentiation stages. In line with these similari-

ties, common DEGs between CD34+ cells and neutrophils were examined. Enrich-
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ment analysis of upregulated genes confirmed the terms seen in CD34+ cells and

neutrophils. These terms were neutrophil degranulation and antigen presentation,

among others (Fig. 3.5). Genes encoding important transcription factors involved

in haematopoiesis such as RARA, SPI1, CEBPB and ZBTB7A (all upregulated)

were also identified. Significant terms of downregulated genes included pathways

related to protein translation, as seen in the previous analysis of CD34+ cells and

neutrophils.
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Figure. 3.5. Total number of common differentially expressed genes between
CD34+ cells and neutrophils and results of enrichment analysis. Differentially ex-
pressed genes from each cell type were compared and enrichment analysis was per-
formed in separately for upregulated and downregulated genes.

3.2.3.1 The effect of HU in inflammation

Chronic inflammation in MPN has been directly linked to the somatic mutations

that affect the JAK-STAT pathway. HU treatment helps to reduce inflammation,

decrease expression of endothelial adhesion molecules, and induce nitric oxide (NO)

production (Gambero et al., 2007). Neutrophils detect the endothelial adhesion

molecules allowing them to migrate to the site of injury where they release NO to

kill microorganisms. However, the enrichment analysis previously carried out in

neutrophils did not reveal any significant enrichment of pathways involved in NO

87



3.2. RESULTS The effect of HU in PV and ET patients

release or endothelial adhesion.

To further investigate the reduction of inflammation by HU, the analysis was

focused towards canonical pathways of inflammation which included cytokine sig-

nalling e.g. by interferon and interleukin signallings. According to the previous

enrichment results, most of the significantly enriched terms identified corresponded

with immune system functions (Fig. 3.4). Therefore, the entire list of up- and

downregulated was re-submitted to the pathway enrichment tool (Reactome.org) to

identify significantly enriched pathways involved in inflammation, such as cytokine

signalling.

In CD34+ cells, there was no enrichment of downregulated genes involved in

immune system responses that could lead to inflammatory pathways. Among the

interferon pathways, the upregulated genes were significantly enriched for inter-

feron gamma (INF-γ) signalling. Genes that are necessary for INF-γ responsiveness

(IFNGR1 and IFNGR2 ) were identified, together with genes involved in the phos-

phorylation and activation of INF-γ (JAK1, JAK2 and STAT1 ). DEGs regulated

by INF-γ stimulation included interferon regulatory factors (IRF1, IRF7 and IRF8

genes), promyelocytic leukemia (PML) and SP100 nuclear antigen (SP100 ), which

together play roles in cell growth, differentiation and apoptosis. Differentially ex-

pressed negative regulators of the interferon pathways included PTPN1, PTPN 2,

and PTPN11 genes which block INF-γ signalling. Although INF-γ is involved in

inflammatory responses, evidence indicates that in hematopoietic stem cells (HSCs)

it induces cell proliferation and differentiation, and can also stimulate apoptosis

when HSCs are exposed to stress stimuli. Accordingly, these findings in CD34+ cells

might not be linked directly to the inflammatory response (Morales-Mantilla and

King, 2018).

Interleukin signalling is another important pathway in inflammation. Studies

in ET and PV patients have shown elevated levels of pro-inflammatory cytokines

and deregulated anti-inflammatory cytokines (Pourcelot et al., 2014; Vaidya et al.,
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2012; Panteli et al., 2005). In upregulated genes, significant enrichment of IL-10 sig-

nalling was observed, which is part of the nuclear factor kappa-light-chain enhancer

of activated B cells (NF-κB) pathway, and is considered to be an anti-inflammatory

interleukin (Iyer and Cheng, 2012). However, IL-10 signalling in HSCs has been

proposed to increase self-renewal (Kang et al., 2007).

In neutrophils, as in CD34+ cells, downregulated genes were not enriched for

genes involved in immune system responses. In upregulated genes, INF-γ and in-

terleukin signallings were significantly enriched. Among the negative regulators of

the INF-γ pathway, SOCS3 and PTPN6 genes were identified as genes which block

INF-γ signalling. DEGs regulated by INF-γ stimulation included IRF1, IRF7, IRF9,

PML and SP100, as seen in CD34+ cells. Among interleukins, significant enrich-

ment of IL-4 and IL-13 signalling was observed. IL4R, IL13RA1, JAK3, STAT3,

TYK2 were some of the genes shown to be upregulated. IL-4 and IL-13 have been

reported to restrict neutrophil expansion and infiltration into tissues (Seki et al.,

2012; Woytschak et al., 2016).

In conclusion, HU perturbed genes involved in INF-γ and interleukin signallings

pathways in both CD34+ cells and neutrophils. In CD34+ cells, the upregulated

DEGs identified were mostly involved in positive regulation of INF-γ. In neutrophils,

conversely, two types of negative regulators of INF-γ were upregulated (the SOCS

and PTP families). In the interleukin signaling pathway, upregulated genes from

both cell types were enriched in anti-inflammatory interleukins signalling.

3.2.3.2 The effect of HU on haemoglobin synthesis

MPN patients treated with HU usually exhibit increased haemoglobin levels, hence

its therapeutic application in sickle cell anaemia (SCA). In SCA, HU increases foetal

haemoglobin (HbF), which helps to ameliorate patients’ symptoms. Exhaustive re-

search has been carried out in an attempt to elucidate the molecular mechanism of

HbF induction. Some studies have shown that TFs such as BCL11A and ZBTB7A
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repress the expression of the γ-globin gene (HBG1), which is responsible for HbF

synthesis in erythroid cells (Zhou et al., 2010; Norton et al., 2017). These findings

have led to proposals that the mechanism of action of HU involves the downregu-

lation of BCL11A and ZBTB7A (Chondrou et al., 2018). In this CD34+ dataset,

ZBTB7A gene was upregulated and BCL11A gene was downregulated following HU

treatment. It is possible that CD34+ cells do not constitute the optimal study pop-

ulation for attempts to elucidate the role of HU in HbF induction, since they are not

fully committed erythroid progenitor cell differentiation. However, it is possible that

BCL11A downregulation at the stem cell level is necessary, and that it is maintained

throughout differentiation, as seen in in vitro assays (Chang et al., 2015).

3.2.3.3 The effect of HU on the cell cycle

Inhibition of the ribonucleotide reductase enzyme (RNR), which leads to cell cycle

arrest, constitutes the main mechanism of HU action. Accordingly, HU has been

used to elucidate the mechanisms of checkpoint activation and DNA repair during

cell cycle arrest in vitro (Young and Hodas, 1964; Krakoff et al., 1968). Pathways

involved in the cell cycle were therefore searched, as a means of observing the effect

of HU on the cell cycle in vivo. In CD34+ cells, CDKN1A, ZNF385A, UBE2D1,

HIST1H4A and BACH1 genes were shown to be upregulated. These genes partici-

pate in the transcriptional activation of p21 and are activated after DNA damage in

G1/S checkpoints. However, TP53 which is responsible for DNA repair, was down-

regulated. CHECK1 and CDC25A genes, which participate in the delay of cell cycle

progression in response to double-stranded DNA breaks, were also downregulated.

High doses of HU or prolonged exposure, leads to apoptosis in vitro (Johnson et al.,

1992; Gui et al., 1997). In this case, the caspase activation pathway was found to

be enriched in upregulated genes and including TNFSF10 and CFLAR.

In the case of neutrophils, genes involved in cell cycle pathways were downreg-

ulated, specifically those involved in the mitotic phase (SMC1A, SMC3 STAG2,
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PDS5B, NIPBL). Genes involved in the apoptotic pathway, such as CASP8, BIRC2

and TNFSF10, among others were also downregulated.

The effect of HU treatment on the cell cycle was shown to be stronger in CD34+

cells, affecting genes that participate in DNA damage and check points. In the case

of neutrophils, it is difficult to assess the effect on the cell cycle since these cells do

not replicate.

These results clearly indicated that the expression of key transcription factors for

haematopoiesis were greatly affected by HU in CD34+ cells and neutrophils. These

TFs may explain the global effect of HU on the immune system, specifically those

that were upregulated. In addition to regulation via TFs, DNA methylation was

also investigated as a potential mediator of HU effect.

3.2.4 The effect of HU treatment on DNA methylation

DNA methylation was measured in CD34+ cells and neutrophils using the Illumina

MethylationEPIC BeadChip (EPIC) (Methods Section 2.5 and Chapter 3 Section

3.2.2.2). Differential methylation analysis was performed at individual CpGs and

regions (1 kb) containing CpGs with consistent methylation changes. Since CpGs

methylation states, typically, are highly correlated within short genomic distances,

the methylation data for individual CpGs were averaged, and differentially methy-

lated regions (DMRs) were identified using the DMRcate package (Peters et al.,

2015). DNA methylation level is expressed as β-values, which are computed for

each CpG and range between 0 and 1, with 0 being not methylated and 1 fully

methylated.

The DMR analysis was mainly focussed on CpG-rich regions - the so-called CpG

islands (CGIs) (Fig. 3.6A). CGIs are frequently located at gene promoters, which

are commonly unmethylated even in genes that are not expressed (Ioshikhes and

Zhang, 2000; Bird, 2002). However, DNA methylation plays an important role

during development, by silencing tissue-specific genes (Bird, 2002). This mechanism

91



3.2. RESULTS The effect of HU in PV and ET patients

also seems to be dependent on the density of CpGs in CGIs, and their locations in the

genome (Weber et al., 2007; Illingworth et al., 2008, 2010). DMRs were therefore

classified according to their genomic location (promoter, intragenic or intergenic)

and association with CGIs (3.6A). These DMRs and associated genes were correlated

with the gene expression results obtained in the previous Section 3.2.3.

3.2.4.1 DNA methylation in neutrophils is not significantly affected by

HU treatment

In neutrophils, DNA methylation was measured at four time points for eight patients

(Table 3.3). Differential methylation testing was performed using paired samples

between pre-treatment, and following three-, six-, and nine- months of treatment.

Most of the significant changes at CpG level (q-value <0.05) occurred at nine months

of treatment (37 CpGs) (Appendix C.1), but no DMRs where identified by any of the

time point comparisons. When testing all treated versus all non-treated samples,

ten regions were found to be differentially methylated (Table 3.4). However, the

average DNA methylation change was lower than 7%, and was not correlated to gene

expression, thus these regions were not subjected to further analysis. In conclusion,

DNA methylation in neutrophils was highly stable and nine months of HU treatment

was not enough time to detect any significant changes.
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Table. 3.4. Differentially methylated regions identified in neutrophils comparing
pre-treatment vs all treated.

Position of the DMR Width Nº
CpGs

Mean methylation
change

Overlapping
promotersChr Start End

chr7 84001627 84002356 730 4 -0.07 SEMA3A
chr3 153942348 153942432 85 3 -0.08 ARHGEF26
chr17 79813410 79813507 98 3 0.038 P4HB
chr5 33362853 33363045 193 2 -0.07 -
chr10 134362126 134362170 45 3 0.04 -
chr17 40714979 40715281 303 6 0.03 COASY
chr5 177870177 177870407 231 6 0.03 CTB-

26E19.1
chr17 79816504 79817271 768 7 0.04 P4HB
chr14 103415458 103416268 811 5 0.03 -
chr6 31762353 31762723 371 13 0.01 VARS
DMR: differentially methylated region

3.2.4.2 DNA methylation in CD34+ cells is greatly affected by HU after

nine months of treatment

Due to the limited amount of DNA obtained from CD34+ cells, samples from three

patients were assayed at two times points; pre-treatment and following nine months

of treatment (Table 3.3). One sample was removed due to QC issues (Section

3.2.2.2). Differential methylation testing identified 81,024 significant CpG probes

(p-value <0.05), and 690 DMRs (q-value <0.15 and containing at least 4 CpGs)

(Fig. 3.6A).

DNA methylation at gene promoters has been associated with repression of a

small subset of genes during development. However, aberrant hypermethylation

in some CGI promoters have shown to be associated with carcinogenesis (Esteller

et al., 2000). Accordingly, DMRs that overlapped CGI promoters were selected

and correlated with gene expression (Fig. 3.6A). Of these regions (188), 35 were

associated to DEGs (Table 3.5 and Fig. 3.6B). Loss of DNA methylation and in-

creased gene expression were present in 22 genes, which included kinases (FGR,

CDKN1C, MAP4K4 ) and transcription factors (SPI1, RARA, JMJD1C ). Surpris-

ingly, 13 genes presented with loss of DNA methylation and decreased gene expres-
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sion. These included the HOXB4 and HOXA5 genes, a finding which is explained

by DNA methylation changes concentrated in small areas within the CGI, not nec-

essarily whithin the promoter region (Fig. 3.7). DMRs that did not overlap CGIs

(214), and that could be considered as low CpG content promoters (Weber et al.,

2007), were also identified. Conversely, 35 DMRs did overlap with DEGs (Table 3.6

and Fig. 3.6C). Among these, 16 showed negative correlation with gene expression,

while 19 were positively correlated (Fig. 3.6C). This confirmed previous findings on

low CpG content promoters, where a negative correlation with gene expression is

not expected, but some active promoters may be unmethylated (Weber et al., 2007).
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Figure. 3.6. Workflow of the DNA methylation analysis and correlation between
differentially methylated regions and gene expression. A) Workflow of the analysis
of the differentially methylated regions (DMRs) in CD34+ cells. DMRs having more
than 4 CpGs in the region where selected and divided between DMRs overlapping
promoters and no promoters. DMRs overlapping promoter were separated between
overlapping a CpG island (CGI) or not. DMRs not overlapping promoters were
further separated between overlapping or not CGI and according to genomic region
(intragenic or intergenic). B) DMRs that overlap CGI at gene promoters of differ-
entially expressed genes (DEGs). C) DMRs that overlap gene promoters of DEGs,
but where no CGIs have been described in the promoter region. DNA methylation
of each region is expressed by the difference of the β-value prior to and following
HU treatment. Gene expression change is expressed by the log2 fold-change prior
to and following HU treatment (value obtained from Sleuth package). Color scale
represents the number of differentially methylated CpGs in the region that were
identified by limma package.

Among the DMRs negatively correlated with gene expression, SPI1 was the most

differentially expressed gene and with the highest number of differentially methy-

lated CpG probes (Fig. 3.6B). Further analysis of SPI1 revealed that its regulatory

region, located -17kb away from the promoter (Okuno et al., 2005), was also differen-
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Table. 3.5. Differentially methylated regions overlapping CpG islands in gene
promoters whose genes are differentially expressed

Symbol Gene expression details Differentially methylated region (DMR)
q-val
(tran-
script)

q-val
(gene)

b Chr Start End Width Nº CpGs DNA meth
difference

Nº sig
CpGs
(limma)

CD302 0.043 0.784 0.35 chr2 160653686 160655179 1494 11 -0.217 4
CD63 0.018 0.002 0.434 chr12 56121099 56122120 1022 7 -0.203 5
CDKN1C 0.001 0.001 0.768 chr11 2907670 2908471 802 13 -0.16 4
CLCN5 0.021 0.019 0.518 chrX 49687006 49687331 326 11 -0.174 3
CTIF 0.038 0.027 0.422 chr18 46064542 46065292 751 9 -0.142 2
CTSZ 0 0 0.898 chr20 57582006 57583709 1704 27 -0.076 11
ELF4 0.001 0.004 0.599 chrX 129244725 129244816 92 5 -0.147 2
FGR 0.002 0 1.023 chr1 27960788 27962692 1905 13 -0.267 7
G0S2 0.001 0 1.943 chr1 209848479 209849006 528 8 -0.028 1
GK 0.028 0.037 0.597 chrX 30670939 30671488 550 12 -0.09 1
GPSM3 0.003 0 0.494 chr6 32164124 32165200 1077 23 -0.047 4
IFNGR2 0.006 0.001 0.693 chr21 34774627 34775459 833 8 -0.112 4
JMJD1C 0.034 0.166 0.308 chr10 65225648 65226682 1035 9 -0.125 2
KCNE3 0.004 0.002 0.612 chr11 74178114 74179208 1095 11 -0.1 3
MAFG 0.084 0.019 0.297 chr17 79880647 79882042 1396 9 -0.35 5
MAP4K4 0.006 0.001 0.69 chr2 102313069 102313888 820 6 -0.132 3
MMP14 0.056 0.041 0.781 chr14 23305153 23305957 805 9 -0.245 2
RARA 0.002 0 0.548 chr17 38498077 38499096 1020 10 -0.124 4
RBM47 0.002 0 1.131 chr4 40632362 40633572 1211 10 -0.249 5
SORT1 0.002 0.203 0.976 chr1 109940754 109941201 448 7 -0.18 4
SPI1 0 0 0.825 chr11 47398575 47401027 2453 15 -0.284 12
ZNF641 0.106 0.029 0.323 chr12 48744457 48745694 1238 13 -0.036 3
CD34 0.001 0 -0.444 chr1 208084071 208085889 1819 18 -0.082 3
CRHBP 0.03 0.005 -0.505 chr5 76248637 76249502 866 7 -0.265 5
DAPK1 0.055 0.033 -2.245 chr9 90112086 90113998 1913 19 -0.065 5
HOXA5 0.063 0.046 -0.322 chr7 27183591 27185393 1803 34 -0.232 6
HOXB4 0.033 0.023 -0.472 chr17 46656777 46660097 3321 19 -0.201 9
ITGA6 0.004 1 -3.202 chr2 173292978 173294093 1116 9 -0.125 2
MECP2 0.234 0.035 -0.111 chrX 153362589 153363472 884 6 -0.087 3
MORC2 0.017 1 -0.558 chr22 31317914 31318373 460 8 -0.102 5
MSRB3 0.253 0.032 -0.633 chr12 65671924 65672696 773 9 -0.122 3
SLC17A9 0.032 0.029 -0.395 chr20 61583686 61584850 1165 11 -0.153 5
TRIM9 0.006 0 -2.683 chr14 51562381 51563131 751 12 -0.094 2
UCK2 0.022 0.009 -0.358 chr1 165796134 165796797 664 7 -0.136 2
ZNF577 0.033 0.035 -0.632 chr19 52390810 52391789 980 14 -0.104 7
b: log(foldchange) computed by Sleuth package
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Table. 3.6. Differentially methylated regions in gene promoters without CpG is-
lands whose genes are differentially expressed

Symbol Gene expression details Differentially methylated region (DMR)
q-val
(tran-
script)

q-val
(gene)

b Chr Start End Width Nº CpGs DNA meth
difference

Nº sig
CpGs
(limma)

AIF1 0 0 1.09 chr6 31582837 31584223 1387 6 -0.174 4
FCER1G 0.01 0 0.982 chr1 161184489 161185092 604 7 -0.156 4
GNAO1 0.048 0.084 0.785 chr16 56228511 56229180 670 5 -0.253 2
GSN 0.001 0.001 0.646 chr9 124048188 124048515 328 5 -0.243 4
ITGAM 0 0 1.129 chr16 31270808 31271240 433 5 -0.115 2
KDM2B 0.006 0.001 0.447 chr12 122018562 122021013 2452 19 -0.137 1
LST1 0.008 0 0.511 chr6 31554199 31555671 1473 10 -0.158 4
NFAM1 0.003 0.001 0.923 chr22 42828125 42828946 822 8 -0.101 3
RARA 0.002 0 0.548 chr17 38464679 38465510 832 11 -0.161 3
S100A9 0.001 0 1.192 chr1 153330310 153330776 467 5 -0.224 2
SIRPB2 0.005 0.003 0.888 chr20 1471884 1472419 536 7 -0.214 4
STAB1 0.003 0.001 1.184 chr3 52528714 52529524 811 10 -0.247 9
TNFSF13 0.073 0.015 1.053 chr17 7460690 7462249 1560 14 -0.149 7
TYROBP 0.001 0 1.587 chr19 36399185 36400049 865 7 -0.216 4
WDFY4 0.005 0.003 0.314 chr10 49892741 49893549 809 15 -0.103 8
SNORD33 0.006 0.003 -0.874 chr19 49992293 49994372 2080 19 0.125 2
CBFA2T3 0.006 0.002 -0.322 chr16 89042948 89043707 760 10 -0.155 2
IGLL1 0.052 0.03 -0.333 chr22 23922551 23923610 1060 6 -0.18 3
INPP5B 0.026 0.005 -2.486 chr1 38411997 38413334 1338 10 -0.031 1
MEIS1 0.038 0.39 -0.318 chr2 66664345 66667101 2757 16 -0.038 3
ROBO4 0.008 0.027 -0.484 chr11 124766927 124768950 2024 16 -0.182 7
ABI3 0.002 0.002 1.061 chr17 47287223 47289036 1814 15 0.223 7
BLK 0.053 0.015 0.78 chr8 11350853 11351846 994 8 0.226 4
CCL5 0.013 0.008 0.931 chr17 34207332 34207663 332 5 0.276 3
CD247 0.03 0.003 1.207 chr1 167486600 167487871 1272 8 0.427 6
CD3G 0.031 0.058 2.52 chr11 118213272 118215112 1841 11 0.425 8
IL32 0.02 0.197 2.394 chr16 3115133 3115809 677 9 0.294 3
ITGB2 0.001 0 0.981 chr21 46340351 46341918 1568 14 0.276 7
KIAA1683 0.038 0.002 0.443 chr19 18385244 18385672 429 5 0.261 4
LY9 0.013 0.24 3.389 chr1 160765225 160766535 1311 6 0.328 1
PRF1 0.004 0.002 1.306 chr10 72362292 72363272 981 11 0.225 5
RUNX3 0.001 0 0.492 chr1 25290947 25292412 1466 17 0.285 10
S100A8 0.003 0.001 1.083 chr1 153363264 153364020 757 7 0.121 2
SH2D1A 0.057 0.042 1.298 chrX 123479823 123480594 772 5 0.261 3
TMEM71 0.042 0.12 1.847 chr8 133772657 133773484 828 6 0.229 2
b: log(foldchange) computed by Sleuth package

98



3.2. RESULTS The effect of HU in PV and ET patients

tially methylated (Fig. 3.8). Comparison with healthy individual samples revealed

that these regions are aberrantly methylated in MPN patients (Fig. 3.8). Inter-

estingly, HU was able to rescue the DNA methylation state to a similar level of a

healthy individual (Fig. 3.8). These observations suggest that there is an under-

lying mechanism where HU is able to modulate DNA methylation and affect gene

expression or vice versa.
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Figure. 3.8. Locus of the promoter and regulatory region of SPI1 with DNA
methylation and gene expression levels before and after nine months of HU treat-
ment. Yellow shading indicates the DNA methylation levels from CD34+ cells from
two patients at two time points, and one healthy donor. Blue shading indicates
significantly differentially methylated regions (DMRs). Grey shading denotes gene
expression levels in CD34+ cells from one patient at two time points, and one healthy
donor.
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3.2.4.3 Analysis of intergenic and intragenic regions

A total of 288 regions that did not overlap promoters, such as intergenic and intra-

genic CGIs, were also analyzed.

Methylation of intergenic CGI regions Intergenic CGIs can represent regula-

tory regions of genes located at their proximities (Illingworth and Bird, 2009). Of

the 288 regions mentioned above, 20 were shown to be intergenic CGIs (Table 3.8),

of which three were hypermethylated, and 17 hypomethylated, following treatment.

These 20 regions were screened using the online tool i-cisTarget (Imrichová et al.,

2015), to determine whether they were associated with regulatory features. This

tool also generates a list of genes associated with the regions screened. The results

of this analysis showed that the 17 hypomethylated regions were enriched for his-

tone 3 lysine 27 tri-methylation (H3K27me3) in different tissues (Table 3.7). The

H3K27me3 has been described as a repressor mark, since it is associated with regions

of the polycomb repressive complex 2 (PRC2). Moreover, H3K27me3 co-locates with

CGIs which are mostly hypomethylated (Rose and Klose, 2014). To evaluate the

relevance of the enrichment analysis, DEGs were superimposed on the lists of genes

associated with the regions screened with i-cisTarget, and it was observed that none

of the listed genes were differentially expressed (Table 3.8). Therefore, it is possi-

ble that the 17 hypomethylated intergenic CGIs identified have no relevance to the

effects of HU treatment. However, when three of the intergenic hypermethylated

CGIs identified were analyzed in the same way (Table 3.8), it was observed that the

transcription factor RUNX3 (also differentially methylated and expressed), bound

to these regions. Moreover, one of these regions was associated with the IRF8 gene,

which was upregulated and differentially expressed (Table 3.8). RUNX3 plays a role

in haematopoiesis since its deletion leads to a myeloproliferative phenotype (Wang

et al., 2013). In the case of IRF8, this gene is expressed mainly in haematopoietic

cells, and its deletion has shown to perturb HSCs self-renewal of mice (Qiu et al.,
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2015). In conclusion, it appears, the effect of HU at intergenic CGIs is limited, with

few regions affected. However, one hypermethylated region bound by RUNX3 could

be important for the regulation of the IRF8 gene.

Table. 3.7. Top enrichment results from i-cisTarget of intergenic and intragenic
CpG islands that are differentially methylated regions. Genes associated with the
feature identified by i-cisTarget were overlapped with the list of differentially ex-
pressed genes (DEGs). The number of associated genes that were differentially
expressed is indicated.

Type of DMR Feature Nº of genes
associated

DEGs Dataset used by i-cisTargetup down
Hypo intergenic H3K27me3 6 0 0 H3K27me3 in Primary

mononuclear cells from
peripheral blood (E062, )

Hyper intergenic RUNX3 3 1 0 RUNX3 ChIP-seq protocol
v042211.1 on human GM12878

Hypo intragenic ZBTB7A 23 6 6 ZBTB7A ChIP-seq protocol
v042211.1 on human ECC-1

H3K27me3 24 1 4 H3K27me3 ChIP-seq on human
H7-hESC differentiated 14 days

Hyper intragenic Possible TFs:
TFE3

2 0 0 transfac_pro__M06957
Description: V$TFEA_01:
TFEA

Possible TFs:
FOS, FOSB,
JUNB, JUN,
JUND, FOSL1,
FOSL2

2 0 0 stark__TGANTCA
Description: activating-protein 1
(FOS-JUN heterodimer)

Bold indicates differentially expressed genes
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Table. 3.8. Differentially methylated intergenic CpG islands and associated genes
identified by i-cisTarget.

Position of the DMR Width
(bp)

Nº
CpGs FDR Mean methylation

change
Gene associated
(i-cisTarget)Chr Start End

chr4 174428790 174430614 1825 12 1.15E-41 -0.072 HAND2
chr5 139088316 139089549 1234 7 5.68E-38 -0.203
chr5 43000303 43001210 908 8 1.14E-33 -0.282
chr2 241562085 241562650 566 5 9.23E-33 -0.218
chr6 156717406 156718546 1141 6 3.94E-31 0.283 ARID1B
chr2 85640762 85641985 1224 13 4.21E-31 -0.158
chr21 45575014 45576085 1072 5 2.63E-30 0.443 C21orf33
chr16 85981336 85981947 612 5 4.49E-26 0.387 IRF8
chr11 32008659 32009163 505 5 5.34E-24 -0.081 RCN1
chr6 27647843 27648605 763 7 2.64E-23 -0.059 HIST1H2BL
chr19 57149436 57149813 378 7 1.03E-22 -0.028
chr22 36806001 36806655 655 6 2.80E-22 -0.197
chr11 47416109 47417205 1097 6 4.26E-21 -0.126
chr1 38941882 38942644 763 8 8.53E-20 -0.086
chr4 85403167 85403915 749 5 4.17E-19 -0.066
chr5 77253544 77253990 447 5 7.31E-19 -0.142 TBCA
chr2 223185049 223185848 800 11 1.10E-18 -0.125
chr6 29521499 29521803 305 16 1.59E-18 -0.032 UBD
chr8 8820844 8821258 415 5 3.81E-18 -0.129
chr11 20618001 20618651 651 6 4.39E-16 -0.028 SLC6A5
Bold indicates differentially expressed genes

Methylation of individual CpGs at intergenic regions In addition to the

DMR analysis, single CpG analysis was carried out since some TFs can be affected

by DNAmethylation at one CpG in their binding site. An example of this is CEBPB,

which is involved in inflammation and preferably binds to methylated CpGs (Rah-

man et al., 2012; Mann et al., 2013). Therefore, all the differentially methylated

CpGs (± 5 bp) at intergenic regions were selected and subjected to i-cisTarget

screening to identify enrichment for the binding of certain TFs. The CpGs were

divided into “open sea” CpGs, which are isolated from CGIs (Sandoval et al., 2011),

and in CpGs overlapping CGIs. To identify the relevance of the enriched TFs,

the genes associated with the TF binding provided by i-cisTarget were overlapped

with DEGs (Table 3.9). “Open sea” CpGs were enriched for TFs playing a role in

haematopoietic differentiation, such as GATA1, GATA2 and SPI1. Interestingly,

the TFs associated with the highest number of DEGs were also differentially ex-

pressed (Table 3.9, shown in bold). Finally, CpGs overlapping CGIs were enriched
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for two members of the PRC2 (SUZ12 and EZH2) and for CTBP2, which was dif-

ferentially expressed. In conclusion, DNA methylation analysis at intergenic CpGs

identified distal regulatory regions that explain the involvement of key TFs in the

regulation of gene expression following HU treatment. In addition, this analysis

identified CEBPB, whose binding is known to be affected by DNA methylation,

thus confirming that the regions identified here could be relevant to the regulation

of gene expression.

Table. 3.9. Enrichment results of transcription factors that bind differentially
methylated CpGs located in intergenic regions.

Type of CpG T. Factor Nº of genes
associated

DEGs Dataset used by i-cisTargetup down

Open sea hypo
(7,791 CpGs)

GATA2 233 33 15 GATA2 ChIP-seq protocol
PCR1x on human K562

GATA1 133 16 4 GATA1 ChIP-seq on human
PBDE Fetal

SPI1 439 92 13 SPI1 ChIP-seq protocol PCR1x
on human K562

Open sea hyper
(8,034 CpGs)

CEBPB 165 43 5 CEBPB ChIP-seq protocol
v042211.1 on human GM12878

TCF12 490 126 21 TCF12 ChIP-seq protocol
PCR1x on human GM12878

BCL11A 463 110 20 BCL11A ChIP-seq protocol
PCR1x on human GM12878

CGI hypo
(3,049 CpGs)

SUZ12 168 10 4 SUZ12 ChIP-seq on human
NT2-D1

EZH2 305 15 6 ChIP-seq on human H1-hESC
EZH2

CTBP2 479 49 9 CTBP2 ChIP-seq on human
H1-hESC

CGI hyper
(1,974 CpGs)

SUZ12 210 1 0 SUZ12 ChIP-seq on human
NT2-D1

EZH2 178 9 0 ChIP-seq on human H1-hESC
EZH2

CTBP2 210 20 3 CTBP2 ChIP-seq on human
H1-hESC

CGI: CpG island; T. Factor: transcription factor; hyper: hypermethylated; hypo: hypomethylated;
DEGs: differentially expressed gene; bold indicates differentially expressed genes

Methylation at intragenic CGI Analysis of intragenic CGIs was also carried

out. These regions are more prone to bmethylation than promoter CGIs, where

methylation is usually associated with transcription from the host gene. However,

intragenic CGIs can exhibit transcriptional activity as in the case of imprinted
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genes (Edwards and Ferguson-Smith, 2007). Moreover, methylation in these re-

gions has also been associated with disease (Tufarelli et al., 2003). In this study,

among the intragenic CGIs identified, 13 were hypermethylated and 70 hypomethy-

lated. These were analyzed using i-cisTarget, to identify potential regulatory fea-

tures. Hypomethylated regions were enriched for the transcription factor ZBTB7A,

which is differentially expressed and upregulated. Among the genes associated with

ZBTB7A, 12 were also differentially expressed (Table 3.7). The binding sites of

ZBTB7A from this analysis were added to the UCSC genome browser, to check

whether these were properly annotated as intragenic CGIs. Of the 12 genes ana-

lyzed, only one was a purely intragenic CGI (F2RL1, Fig. 3.9); the remainder were

CGIs in alternative promoters, that overlapped introns in the longest isoform. In

one case, F2RL1 was downregulated, and the intragenic CGI lost methylation fol-

lowing treatment (Fig. 3.9). Another regulatory feature enriched was H3K27me3,

which was associated with five DEGs. F2RL1 intragenic CGI was also identified in

these five DEGs (Fig. 3.9). Another gene, HOXB3, was shown to be downregulated

and hypomethylated after treatment. These observations confirm what has already

been described; Intragenic CGIs are usually methylated when the gene is transcribe,

following expression of the host gene where the CGI lies. In this case, hypomethy-

lation of the intragenic CGI follows the downregulation of the gene within which

it lies. On the other hand, hypermethylated intragenic CGIs were enriched for one

potential transcription factor, TFE3: this was differentially expressed, but its associ-

ated genes were not (Table 3.7). Similarly, other possible transcription factors were

the members of the Fos family: most of these were differentially expressed, but the

associated genes did not lead to any DEGs (Table 3.7 in bold). In conclusion, HU

treatment affects binding sites for ZBTB7A, which may act as a negative regulator

of F2RL1 expression.
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Figure. 3.9. Intragenic CpG island of the F2RL1 gene. Intragenic CpG islands
(CGI) were identified and compared with gene expression of the host gene. Among
the genes identified, the F2RL1 gene showed hypomethylation of its intragenic CGI
following treatment and was also downregulated. Yellow shading indicates DNA
methylation levels from patients before and after HU treatment. Light blue shading
indicates the differentially methylated CGI. Grey shading indicates gene expression
data from one patient before and after HU treatment.
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3.3 Conclusions

Gene expression and DNA methylation were assayed in samples prior to and fol-

lowing HU treatment in two human cell types: CD34+ cells and neutrophils. Gene

expression analysis revealed that the DEGs which responded to HU treatment were

mainly involved in immune system functions, and that these were regulated by key

transcription factors for haematopoiesis.

In CD34+cells, the differentially expressed TFs, SPI1 (or PU.1) and RUNX1 were

found to both upregulate and downregulate target genes. These TFs are important

regulators of haematopoiesis, specifically during myeloid differentiation. Moreover,

in the case of neutrophils, SPI1 and CEBPD were also identified as potential regu-

lators of DEGs and both were differentially expressed. Interestingly, SPI1 is crucial

for granulopoiesis and interacts with CEBPD. These observations highlight SPI1,

RUNX1 and CEBPD as potential candidate genes to understand HU mechanism of

action.

DNA methylation in neutrophils was highly stable and HU treatment did not

produced any significant changes during any of the time-points investigated. How-

ever, the effect of HU treatment in CD34+ was more pronounced. Interestingly, HU

was able to affect DNA methylation at the SPI1 promoter and its regulatory region.

Moreover, analysis in intergenic and intragenic CpG islands also led to relevant tran-

scription factors such as ZBTB7A, RUNX3 and CEBPB, which were differentially

expressed and were identified as regulators of DEGs. Although, not all the changes

in gene expression were explained by DNA methylation, this study identified rele-

vant transcription factors that regulated a large proportion of the DEGs. It is also

probable that in neutrophils other mechanisms are involved in the regulation of gene

expression.
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Chapter 4

The effect of hydroxyurea treatment

on gene expression in the Jak2V617F

- knock - in mouse

4.1 Introduction

Mouse studies have several advantages over human studies; for example, they per-

mit the evaluation of controlled drug intake, diet and environment against a single

genetic background. Mouse studies also permit the study of a greater number of

subjects, and across a wider range of samples. Overall, these features result in less

inter-individual variation, and increase the variety of analyses that can be performed.

This chapter presents a comparative study across species, mirroring the previous

clinical study in a mouse model of myeloproliferative neoplasm (MPN). Comparative

studies, by observing similarities and differences between two different species, pro-

vide additional information about features that are relevant to the research question

being investigated. This comparative study was designed to confirm my previous

findings in MPN patients, and to identify stronger candidate genes, that were con-

served in the two species, for further validation. Overall, this analysis led to the
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identification of candidate genes which explain some of the clinical outcomes follow-

ing HU treatment, which may be informative in discerning potential therapies.

The study utilised a previously described heterozygous Jak2V617F-knock-in (Jak2VF)

mouse resembling the MPN phenotype (Chen and Mullally, 2014). Briefly, these

mice were generated by crossing floxed heterozygous Jak2V617F mice (Mullally

et al., 2010) with vavCre+ transgenic mice (Georgiades et al., 2002), in order to

switch expression from Jak2 to the mutant form Jak2V617F in the haematopoi-

etic compartment alone. The generated Jak2VF mouse model shows similar clinical

features to human MPN, including extra-medullary haematopoiesis that results in

splenomegaly (Chen and Mullally, 2014).

The Jak2VF mice were treated with HU or vehicle (NaCl) for a total of six weeks.

Wild-type C57Bl/6 and vavCre mice were used as controls, and were also treated

with HU or vehicle. As for the human study, two cell types were isolated. LSK cells,

which represent the stem cell population, were isolated from bone marrow, and their

gene expression compared to that of human CD34+ cells. Neutrophils were isolated

from blood samples drawn from the retro-orbital sinus, and their gene expression

was compared to that in their counterparts isolated from human blood.

Unfortunately, in this mouse study, DNA methylation could not be assayed due

to time constraints and the low concentrations of DNA isolated, particularly from

neutrophil samples. DNA methylation analysis would have required time-consuming

optimization of the experimental protocols, which were all designed for higher con-

centrations of DNA (>100 ng). Accordingly, this mouse study focused on the gene

expression analysis of LSK cells and neutrophils.

Similarly to the previous chapter, RNA libraries were prepared and sequenced

and the same pipelines were used for data generation. This chapter presents a brief

report of these analyses. It also provides a detailed analysis of all the different

groups of mice (mutant, wild-type, treated, non-treated) and finally, a comparative

analysis of the two species.
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4.2 Results

4.2.1 HU treatment in Jak2VF and wild-type mice

This study was funded by a Junior Collaboration Award from the European Hema-

tology Association, which covered the travel and experimental costs of a three-month

attachment in the laboratory of Dr Ann Mullally (Department of Hematology, Har-

vard Medical School, Boston, USA). During this time I applied HU treatment to

a Jak2VF mouse model of MPN previously generated by Dr Mullaly’s laboratory

(Chen and Mullally, 2014).

To minimize factors which might lead to data variation, the mice were sex- and

age-matched wherever possible. However, this largely dependeded on the availability

of mice, and the time requiered to conduct the study (Table 4.1). A total of 27 mice

were treated, of which 23 were included in the final data analysis. Three mice died

before the treatment protocol was completed, and one did not develop the expected

Jak2VF mutant phenotype. The mice included in the study were distributed as

shown in Table 4.2. Wild-type C57Bl/6 and vavCre+ transgenic mice were used

as controls for the mutant genotype; both groups are referred as “WT” in the text,

without any distinction between them.
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Table. 4.1. Mice treated in the study, matching group, phenotypic details and
exclusion details.

Mouse ID Match Genotype Sex Treatment Age at starting
treatment

Included Early death

RB_431 A Jak2VF F HU 20.714 YES NO
MM_5322 B Jak2VF F HU 6.571 YES NO
RB_461 C Jak2VF M HU 6.571 YES NO
RB_490 B Jak2VF F HU 6.429 YES NO
RB_445 D Jak2VF M HU 11.857 NO YES
RB_423 A Jak2VF F HU 17.286 NO YES
RB_444 D WT M HU 10.857 YES NO
MM_5276 B WTcre F HU 6.571 YES NO
MM_5277 B WTcre F HU 6.571 YES NO
RB_429 A WTcre F HU 20.714 YES NO
RB_447 D WTcre M HU 10.857 YES NO
RB_458 C WTcre M HU 6.571 YES NO
RB_489 B WTcre F HU 6.429 YES NO
SX_581 WTcre M HU 17 YES NO
RB_430 A Jak2VF F VEH 20.714 YES NO
RB_462 C Jak2VF M VEH 6.571 YES NO
RB_491 F Jak2VF F VEH 10.857 YES NO
RB_481 B Jak2VF F VEH 5.571 YES NO
MM_5396 Jak2VF M VEH 6.571 NO NO
RB_438 F WTcre F VEH 12 YES NO
RB_460 C WTcre M VEH 6.571 YES NO
RB_441 D WT M VEH 12 YES NO
RB_427 A WT F VEH 20.714 YES NO
MM_4964 D WTcre M VEH 10.857 YES NO
MM_5327 C WTcre M VEH 6.571 YES NO
RB_470 B WTcre F VEH 5.429 YES YES
Jak2VF: Jak2V617F-knock-in mouse; F: female, M: male; HU: Hydroxyurea; VEH: vehicle

Table. 4.2. Mice included in the study by genotype and type of treatment received.

Treatment WT Jak2VF-knock-in
wild-type or vavCre+

Vehicle (NaCl) 2/6 4
HU 1/6 4

Total 3/12 8

The HU dose selection was based on previous studies (Kubovcakova et al., 2013).

The starting dose was set at 50 mg/kg/day (equivalent to 4 mg/kg/day in human)

(Reagan-Shaw et al., 2008), delivered in the form of intraperitoneal injections, 5

days a week with weekly monitoring of the CBC parameters using blood samples

drawn from the retro-orbital sinus (Fig. 4.1A). After two weeks of treatment, no
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noticeable changes in the haematocrit were observed in WT or Jak2VF mutant mice,

and therefore the dose was increased to 100 mg/kg/day for the following four weeks

of treatment. A reduction in the white blood cells (WBC) and platelet counts, and

the haematocrit, was observed after one week of the higher HU dose (Fig. 4.1A).

Interestingly, reduction of platelet counts in Jak2VF mutant mice demonstrated

a rapid reduction in platelet count compared to the other parameters, and also

compared to WT mice. Body weight was monitored at the beginning of every weekly

treatment period to determine whether toxicity was present. Toxicity is denoted by

a gradual weight loss over time, which was not the case in these mice (Fig. 4.1A).

The body weight was also used for dose adjustment (Fig. 4.1A).

Like MPN patients, Jak2VF mutant mice develop splenomegaly. Accordingly,

following completion of the treatment program, the spleens were isolated in order

to evaluate the effects of HU treatment. A significant decrease in spleen size was

observed in treated mice, compared to controls (Fig. 4.1B, C).

Finally, bone marrow was isolated and enriched for LSK cells as described in

Section 2.2.3.1. Blood from the retro-orbital sinus was collected and neutrophils

isolated as described in Section 2.2.3.2.
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Figure. 4.1. Treatment responses in Jak2VF-knock-in and wild-type mice. A)
CBC, including white blood cells (WBC), platelets and haematocrit, were measured
on the last day of each weekly treatment period. The mean of each cell count, and
mean weight, were calculated per mouse group. B) Spleen weight and length fol-
lowing six weeks of hydroxyurea (HU) or vehicle (VEH) treatment. Mann Whitney
unpaired test non-parametric. Error bars indicate mean with standard deviation. C)
Spleens were dissected after six weeks of treatment and conserved in 10% formalde-
hyde. Length given corresponds to fresh tissue.

4.2.2 RNA-sequencing processing

LSK cells and neutrophils were isolated and RNA was purified (Section 2.3). RNA-

sequencing was performed in both cell types to identify the effects of HU treatment

on gene expression. Details of the library preparation steps, and QC results, are

described in detail in Methods Section 2.4.

To avoid high levels of duplication, as was observed in the human neutrophil

samples, a low sequencing depth (15 million reads per library) was used for the

mouse neutrophil samples, also low in RNA (<5 ng). Alternatively, LSK libraries

were sequenced at a higher depth (30 million reads per library) since more RNA was

available.

The raw reads were processed as described in Method Section 2.4.6. QC was
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performed with FastQC (Appendix D.2). Reads were aligned using STAR (mm10)

(Table 4.3) and “RNAseqMetrics” was used to assess others QC parameters (Ap-

pendix D.3). In terms of duplication and rRNA percentages, libraries exhibited the

expected values and no samples were removed at this stage (Fig. 4.2A and B).

Table. 4.3. Percentages of uniquely mapped reads of LSK and neutrophil libraries.
Raw reads were processed and aligned to the reference genome (mm10) using the
STAR package.

ID Uniquely
mapped
reads

ID Uniquely
mapped
reads

MM-4964-LSK 70.27% MM-4964-NEU 73.30%
MM-5276-LSK 71.23% MM-5276-NEU 66.81%
MM-5277-LSK 65.51% MM-5277-NEU 74.72%
MM-5322-LSK 64.15% MM-5322-NEU 69.11%
MM-5327-LSK 70.09% MM-5327-NEU 71.15%
RB-427-LSK 68.74% RB-427-NEU 74.75%
RB-429-LSK 65.28% RB-429-NEU 52.48%
RB-430-LSK 67.92% RB-430-NEU 65.24%
RB-431-LSK 65.20% RB-431-NEU 69.75%
RB-438-LSK 70.92% RB-438-NEU 64.54%
RB-441-LSK 68.04% RB-441-NEU 66.87%
RB-444-LSK 66.05% RB-444-NEU 69.91%
RB-447-LSK 73.94% RB-447-NEU 71.97%
RB-458-LSK 70.00% RB-458-NEU 73.58%
RB-460-LSK 69.80% RB-460-NEU 72.98%
RB-461-LSK 65.70% RB-461-NEU 69.99%
RB-462-LSK 67.86% RB-462-NEU 70.26%
RB-470-LSK 69.48% RB-470-NEU 21.77%
RB-481-LSK 64.43% RB-481-NEU 68.25%
RB-489-LSK 64.74% RB-489-NEU 74.45%
RB-490-LSK 75.49% RB-490-NEU 68.91%
RB-491-LSK 69.87% RB-491-NEU 79.30%
SX-581-LSK 62.58% SX-581-NEU 73.14%
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Figure. 4.2. Sequencing QC. A) FastQC results of duplication percentage from
HiSeq 4000 sequencing runs. All duplication percentages fell below the expected
ranges. B) RNAseqMetrics results of ribosomal RNA (rRNA) percentage from HiSeq
4000 sequencing runs. All percentage levels were shown to be low. In light of these
parameters, no samples were removed at this point

Quantification and transcript analysis were performed using Kallisto and Sleuth,

respectively. It is expected that mice treated under the same conditions will exhibit

more homogenous gene expression levels, since less inter-variability exists. However,

it is good practice to determine whether samples are outliers, and whether known

factors are driving variance in the data. For this purpose, principal component

analysis (PCA) was used. PCAs were plotted using treatment (HU or vehicle) and

genotype (Jak2VF mutant and WT) as known factors which could drive variance.

LSK samples in PC2 showed (Fig. 4.3A, y-axis) clustering according to the

treatment. However, in PC1 (x-axis) two samples were outliers (RB-447 and RB-

490) from the two main clusters, and two samples were clustered with the HU

samples despite receiving vehicle treatment (MM-5327 and RB-430) (Fig. 4.3A). In

the case of neutrophils, a single cluster with six samples could be observed, separated

from the main cluster, and these six samples were considered outliers (Fig. 4.3A).

All outliers from both LSK cells and neutrophils were removed from the analysis,

and the PCA was re-plotted (Fig. 4.3B). Re-analysis of the LSK cells revealed two

distinct clusters in PC1 (x-axis), which reflected the type of treatment. Similarly, in

neutrophils (but not as strongly as in LSK cells), two clusters were observed in PC1

(x-axis), in accordance with the type of treatment. In both cell types, the genotype

appears to be driving PC2 (y-axis). Overall, LSK cells were more affected by the
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treatment than neutrophils: they showed a larger separation between the vehicle

cluster and the HU cluster, compared to neutrophils (Fig. 4.3B). Distribution of the

samples analyzed after removal in LSK cells and neutrophils is shown in Table 4.4.
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Figure. 4.3. Principal component analysis (PCA) of LSK cells and neutrophils.
PCA was used to identify factors capable of driving variance among the samples
sequenced. A) PCA of all samples per cell type. Samples that were considered
outliers are labeled. In LSK, cells two samples from the vehicle group clustered with
the HU-treated group, and two samples from the HU group did not cluster with any
of the other samples. In neutrophils, six samples - three from the vehicle group and
three from the HU group – were grouped separately from one main cluster. B) PCA
following removal of outliers. In LSK a clear separation between HU and vehicle
treated groups was observed. Similarly, in neutrophils, there is a separation between
the samples from each treatment.
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Table. 4.4. Total number of mice after removal per cell type, genotype and treat-
ment

Treatment
LSK Neutrophils

WT Jak2VF-knock-in WT Jak2VF-knock-in
wild-type or vavCre+ wild-type or vavCre+

Vehicle (NaCl) 2/5 3 2/4 3
HU 1/6 3 1/5 2

Total 14 6 12 5

4.2.3 Overall effect of HU treatment on gene expression in

mice

Differentially expressed genes (DEGs) were identified using Sleuth to test whether

the expression levels of any given gene across mouse samples was significantly better

explained by a linear model comprising genotype (WT or mutant) and treatment

(HU vs vehicle) factors, versus a model with only the genotype (WT or mutant)

factor. The DEGs (qval <0.05) were hierarchically clustered (Euclidean correla-

tion distance and ward.D2 agglomeration method) according to their expression.

Gene set enrichment analysis using MouseMine (Motenko et al., 2015) and enrichR

(Kuleshov et al., 2016), were performed for each gene cluster, with gene sets defined

by biological pathway or by the target of transcription factors (TFs).

In LSK cells, hierarchical clustering in columns was mainly divided by the type

of treatment. Samples from the same genotype (mutant or WT) were also grouped.

These observations suggested that DEGs affected by HU were also affected by the

genotype. The rows (DEGs) were divided into six clusters, and each gene set was

screened using the enrichment tools. Downregulated genes (cluster 1 and 2) were

enriched for gene expression pathways with a high representation of genes involved

in transcription regulation (Fig. 4.4A). MouseMine phenotype enrichment analysis

identified abnormal haematopoietic phenotypes, including morphology and develop-

ment, revealing that a large proportion of the genes from those clusters are involved

in haematopoietic functions (Fig. 4.4A). This was also demonstrated in the TF en-
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richment, where downregulated genes were controlled mainly by RUNX1, which is

an important transcription factor for haematopoiesis. The Runx1 gene was also dif-

ferentially expressed and downregulated (Fig. 4.4A). Conversely, upregulated genes

(clusters 3, 4, 5 and 6) were enriched for four main pathways, including pyruvate

metabolism, cell cycle, immune system and RNA metabolism. MYC and MAX were

identified as TFs controlling the DEGs. Among the MouseMine phenotypes, gen-

eral terms, such as abnormal survival and preweaning lethality, were identified (Fig.

4.4A).

In neutrophils, hierarchical clustering in columns was mainly divided by the

type of treatment. In the rows, two clusters that were defined by upregulated genes

(cluster 1) and downregulated genes (cluster 2) were identified, but only cluster 2 was

significantly enriched for pathways, MouseMine phenotype and transcription factors

(Fig. 4.4B). Among pathways, enrichment in interleukin signalling and neutrophil

degranulation were observed. MouseMine phenotype enrichment analysis identified

terms related to abnormal haematopoietic system physiology. Similarly, TFs that

control haematopoiesis, including RUNX1 and SPI1 (Fig. 4.4B), were enriched,

although these genes were not differentially expressed in this dataset

These results were consistent with the observations in the human study. Two

main pathways were affected by HU treatment: immune system and protein trans-

lation. However, using this mouse model of MPN, the effect of HU on the cell cycle

was more evident than in the human study (Fig. 3.4).
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Figure. 4.4. Heatmap plot of gene expression analysis. Significant differentially
expressed genes (DEGs) (q-value <0.05) were clustered according to their log2-
fold change in expression. Clusters were divided at the same branch heights, and
numbered. Enrichment analyses for pathways, mouse phenotype and transcription
factors were performed in each cluster. The top significantly enriched results from
each cluster are represented as a heatmap plot, where colour scale indicates signif-
icance. A) DEGs from LSK cells were divided into six clusters: clusters 1 and 2
represent downregulated genes and clusters 3 to 6 represent upregulated genes. B)
DEGs from neutrophils were divided into two clusters: cluster 1 represents upreg-
ulated genes and cluster 2 downregulated genes. VEH: vehicle; HU: hydroxyurea;
WT: wild-type; Jak2VF: Jak2V617F-knock-in mouse.

4.2.4 HU partially reverts deregulation of gene expression in

Jak2VF-knock-in mice

In addition to the overall effects of HU treatment assessed in the previous section, the

study also sought to determine whether HU treatment is able to rescue the genes

disturbed by the Jak2V617F mutation. Therefore, comparisons were performed

between Jak2VF mutant and WT mice, to identify genes that were affected by the

mutation. The effect of the treatment was then evaluated in the Jak2VF mutant
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genotype. Finally, to determine whether the genes disturbed by the Jak2V617F

mutation can be rescued by HU, comparisons of the two datasets were performed.

4.2.4.1 Jak2VF mutant versus wild-type mice

To identify those genes which were altered in Jak2VF mutant mice, they were com-

pared with WT mice in the vehicle group. The identified DEGs were screened using

enrichment tools to obtain an overview of the data.

A total of 461 genes were differentially expressed in LSK cells, and 394 genes were

differentially expressed in neutrophils. According to the enrichment analysis, in both

cell types the effect of the mutation was an upregulation of genes involved in the

immune system functions, which were mostly modulated by RUNX1 (Fig. 4.5 A and

B). Accordingly, Runx1, Stat3 and Cebpb, which participate in the transcriptional

regulation of granulopoiesis, were upregulated in LSK cells. Gata1, which plays an

important role during erythroid development, was also upregulated. In neutrophils,

MouseMine phenotype enrichment analysis revealed that downregulated genes were

also enriched in genes which are affected in abnormal immune cell proliferation and

physiology (Fig. 4.5 B).

In conclusion, the main effect of Jak2VF mutation is the upregulation of genes

involved in immune system pathways and which are regulated by the transcription

factor RUNX1. Interestingly, downregulated genes in neutrophils were also involved

in haematopoiesis.
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Figure. 4.5. Comparison of Jak2V617F-knock-in and wild-type mice in the vehicle
group. Differentially expressed genes (DEGs) in Jak2V617F-knock-in mutant and
wild-type mice were selected and enrichment analysis was performed for pathways,
mouse phenotypes and transcription factors in A) LSK cells and B) neutrophils.

4.2.4.2 Jak2VF mutant: HU vs vehicle

To identify the effect of HU treatment on Jak2VF mutant mice, Jak2VF treated

and untreated samples were compared, and enrichment analysis was performed.

The major effect in the two cell types was at stem cell level (1,135 DEGs in

LSK cells as opposed to 76 DEGs in neutrophils). In LSK cells, enrichment analysis

identified upregulation of pathways involved in RNA metabolism, the cell cycle,
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and pyruvate metabolism. Downregulated pathways included cytokine signalling,

where Jak3, Stat3 and Junb genes were downregulated. Another pathway involved

NOTCH1, where the Notch1 gene was differentially expressed and downregulated.

MouseMine phenotype enrichment analysis showed that downregulated genes were

enriched for phenotypes associated with reduced immune cell numbers (Fig. 4.6A).

Transcription factors enriched in downregulated genes were RUNX1 and GATA1

(Fig. 4.6A). In neutrophils, due to low number of DEGs, poor enrichment was

observed. However, downregulated genes were enriched for abnormal cell physiology

and cellular phenotype. Transcription factor enrichment identified CEBPD as the

most relevant for neutrophil functions (Fig. 4.6B).
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mice were selected, and enrichment analysis was performed for pathways, mouse
phenotypes and transcription factors in A) LSK cells and B) neutrophils.

4.2.5 HU reverses dysregulation of gene expression in Jak2VF

mutant mice

These two analyses demonstrated that HU treatment downregulated the same path-

ways that were upregulated in Jak2VF mutant mice. Therefore, the effect of HU

treatment on these genes was investigated by analysing DEGs from both sets of

comparisons (WT vs Jak2VF mutant and Jak2VF mutant untreated vs untreated).
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The mean expression of each gene was calculated per group: that is, Jak2VF treated,

Jak2VF untreated, and WT untreated. Next, the log2-fold change per comparison

was calculated using the mean expression value, and the results were plotted (Fig.

4.7). Enrichment analyses were performed, and the top significantly enriched terms

were reported. Genes with the highest-fold change, or those involved in enriched

pathways, were also selected (Fig. 4.7).

4.2.5.1 LSK cells

All the DEGs identified in the two previous analyses (WT vs Jak2VF mutant, and

Jak2VF mutant untreated vs untreated) were selected. In LSK cells, a total of 1,596

genes showed differential expression between these two comparisons. The log2-fold

change of these genes was calculated per comparison, and plotted (Fig. 4.7A). Most

of the genes that were upregulated in the Jak2VF mutant (x-axis) were downregu-

lated in the Jak2VF mutant mice treated with HU (y-axis) (Group 1) (Fig. 4.7A).

Similarly, downregulated genes in the Jak2VF mutant (x-axis) were upregulated in

the Jak2VF mutant mice treated with HU (y-axis) (Group 2). Therefore, among all

genes analyzed, the expression of 1,170 genes was negatively correlated (Fig. 4.7A).

Among the genes in Group 1, enrichment for immune system pathways, including

IL-4 and IL-13 signalling and abnormal haematological phenotypes, were identified.

Genes with the highest level of changes encoded for immunoglobin proteins (Igll1,

Ighv11-2, Igkv14-126 and Vpreb1 ) (Fig. 4.7A). Moreover, changes in genes involved

in the JAK-STAT pathway, such as Jak3, Stat3, Stat2 and Socs3, were observed.

The most significant differentially expressed gene was Serpina3g, where loss of func-

tion has been associated with a deficit of granulocyte progenitors and increased HSC

proliferation (Li et al., 2014). In the case of Myc, two isoforms were differentially

expressed in opposite directions, one in Group 1 and the other in Group 2 (Fig.

4.7A). Genes from Group 2 were enriched mostly for cell cycle, and metabolism of

RNA pathways (Fig. 4.7A). In the cell cycle enrichment, genes that participate in
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cell cycle checkpoints (Wee1, Rpa1, Rpa2 ), DNA synthesis (Pold1, Fen1 ), and G1/S

transition (Ccnd2, Cdk4 ), among others, were present (Fig. 4.7A). Metabolism of

RNA included genes involved in pre-mRNA processing and mRNA (Snrpb, Snrpd1,

Snrpd2 ) (Fig. 4.7A). Finally, the genes with the highest-fold change were Cmc2 and

Gtf2i. Transcription factor enrichment identified similar proteins, as in the Jak2VF

mutant treated versus non-treated comparison (Fig. 4.6 A).

These findings demonstrate that HU downregulates genes which were upregu-

lated in the Jak2VF mutant mice. These genes were enriched for immune system-

related pathways, which is in addition to the known impact of HU on the cell cycle.

Interestingly, some of these genes were also members of the JAK-STAT pathway,

and involved in interleukin signalling, revealing that the direct effect of HU was to

downregulate pathways which were altered in the Jak2VF mutant mice, and which

constituted their MPN phenotype. Moreover, transcription factors known to be im-

portant for haematopoiesis were shown to be regulating the genes downregulated by

HU treatment.

The effect of HU treatment on the cell cycle was also evident. Genes that were

downregulated in the Jak2VF mutant mice, and upregulated by HU treatment, cor-

responded to genes participating in the cell cycle, and were controlled by the tran-

scription factor MYC. As expected, these findings confirmed the main mechanism

of action of HU.
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4.2.5.2 Neutrophils

In neutrophils, a total of 497 genes were differentially expressed in the two pre-

vious comparisons (WT vs Jak2VF, plus Jak2VF treated vs untreated). These

genes were plotted according to the log2-fold change between each comparison (Fig.

4.7B). Most of the DEGs that were upregulated in the Jak2VF mutant mice (x-

axis) were downregulated following HU treatment (y-axis) (Group 1) (Fig. 4.7B).

Similarly, genes that were downregulated in the Jak2VF mutant mice (x-axis), were

upregulated following HU treatment (y-axis) (Group 2). Genes from Group 1 were

enriched for immune system functions. In this case, genes involved in neutrophil

degranulation (Camp, Itgam, Ltf and Olfm4 ) and IL-4 and IL-13 signalling (Lcn2 )

were significantly enriched. Aatk, which is induced during apoptosis, was the gene

which showed the most differential expression between Jak2VF mutant untreated

and treated (red dot) samples (Fig. 4.7B). Neutrophilic granule protein (Ngp) ex-

hibited the highest-fold change in Jak2VF mutants as compared to WT (blue dot).

This gene is controlled by CEBPE and SPI1, and its protein dysregulation has been

linked to metastatic tissues in myeloid-derived suppressor cells (Boutté et al., 2011;

Gombart et al., 2003). Arhgef1 (or Lsc) had the highest-fold change among down-

regulated genes by HU treatment. Studies in Arhgef1 knock-out mice have shown

that it is necessary for normal migration and adhesion in neutrophils (Francis et al.,

2006). However, a different isoform of Arhgef1 was upregulated in Jak2VF mutant

treated mice (y-axis) (Group 2). Further upregulated genes in treated Jak2VF mu-

tant mice (Group 2) were Tnip1, which has been associated with autoimmune and

inflammatory diseases when its protein (ABIN-1) levels are low (Kuriakose et al.,

2019), and Zbp1, encoding the protein DLM-1, which acts as a cytosolic DNA sensor,

and triggers the activation of the innate immune system (Wang et al., 2008). Zbp1

is also involved in programmed cell death and inflammation (Kuriakose et al., 2016).

Rasgrp2 was also differentially expressed; mutations in this gene have been associ-

ated with bleeding disorders due to decreased platelet aggregation (Sevivas et al.,
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2018). Transcription factor enrichment analysis identified RUNX1 as the principal

regulator of downregulated genes following HU treatment.

As with LSK cells, in neutrophils, HU downregulated genes involved in immune

system pathways, and, in this case, genes that are relevant for neutrophil func-

tions. Interestingly, genes upregulated by HU treatment were also of relevance

in the haematopoietic system. Both analyses, in LSK and neutrophils, identified

RUNX1 as the principal regulator of genes affected by HU treatment, confirming

the previous observations (Fig. 3.4).

4.2.6 Effect of HU treatment in human and mouse: a com-

parison

Identifying genes affected by HU in two different species is a good strategy for the

detection of candidate genes which explain the mechanism of action of HU, or the

clinical outcomes of HU treatment. Accordingly, all DEGs homologous in human

and mouse were selected (Fig. 4.8A) and compared, and those DEGS which were

changing in the same direction (i.e. up- or downregulated) were subjected to further

analysis.

At the stem cell level (CD34+ and LSK cells), 425 genes were found to be

up/downregulated in the two species, but only 21 genes in neutrophils (Fig. 4.8A).

These genes were subjected to enrichment analysis, and potential candidate genes

which might elucidate the mechanism of action of HU, or its clinical outcomes, were

reported.

Common upregulated genes from stem cells were enriched for neutrophil degran-

ulation and innate immune system pathways (Fig. 4.8B), which was in accordance

with the results previously observed in the gene expression analysis of MPN patients

and Jak2VF mutant mice. Enrichment analysis for regulating TFs revealed that

SPI1 and GATA1 act as regulators for up- and downregulated genes, respectively.

No significant pathways were identified in downregulated genes. However, enrich-
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ment for genes involved in “transcription regulation” (which included a large number

of TF encoding genes) was observed, although this was not significant (Table. 4.5).

Some of these, such as HOXB4 and BCL11A, are involved in haematopoiesis. Inter-

estingly, some of the differentially expressed TFs such as RUNX1, ZBTB7A, ETS1

and ATF3, were also enriched (Table. 4.5 in bold). Other genes classed as tran-

scriptional regulators, such as KDM5B and TET1, are known to be involved in

epigenetic mechanisms (Table 4.6).

In the previous Chapter, it was shown that DNA methylation from CD34+ cells

was affected by HU treatment. Accordingly, all genes common to human and mouse,

and annotated as epigenetic modifiers (Medvedeva et al., 2015), were retrieved in

order to identify genes which might explain the effect of HU in DNA methylation

through epigenetic mechanisms of gene modulation (Table 4.6). Interestingly, most

of the epigenetic modifiers identified have functions in histone modification rather

than in DNA methylation, with the exception of the TET1 gene, which encodes a

protein involved in the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine

and further oxidation (Table 4.6).

128



4.2. RESULTS The effect of HU in the Jak2V617F-knock-in mouse

Homologous 
genes

qval < 0.05

Stem cells

3638 1544435

Mouse Human

Upregulated: 252
Downregulated: 183

Neutrophil degranulation
Innate Immune System
Immune System
RHO GTPase Effectors
Interleukin−12 signaling

UBTF_ENCODE
SPI1_ENCODE
TAF1_ENCODE
GATA1_CHEA
SP2_ENCODE
GATA2_CHEA

0
-log10(pval)

T. factors (ChEA & ENCODE)

Pathways (Reactome)

upreg.downreg.

B

A

86 142421

Neutrophils

Mouse Human

Upregulated: 5
Downregulated: 16

P00
9
P00

6
Ja

k2
VF tre

ate
d

WT tre
ate

d

P00
3
P00

7
P00

8
P00

2
P01

1

CLIC1
ADGRE5
RARA
WIPF1
IQSEC1
ITGAL
STAT6
CAP1
NLRP12
ENTPD1
GRK6
RAPGEF1
SH2D3C
PPT1
ARPC1B
FGR
ZYX
HMHA1
PTPN6
CDC42SE1
CEBPE

−2

−1

0

1

2

C
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In neutrophils, enrichment analysis was not performed because of the low number

of shared DEGs (Fig. 4.8A). However, the log2-fold changes per patient (after HU

treatment vs before HU treatment) and per mice group comparison were plotted.

Some genes having homogenous expression between patients and mice were identified

(Fig. 4.8B). This was the case for RARA and WIPF1 among the downregulated

genes and CEBPE among the upregulated genes (Fig. 4.8B). Interestingly, the
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transcription factors RARA and CEBPE are involved in neutrophil maturation.

In conclusion, at the stem cell level, there was a greater overlap of DEGs between

human and mouse Interestingly, SPI1, which was differentially expressed in CD34+

cells was also enriched in the upregulated genes in mouse, although Spi1 was not

differentially expressed in mouse. Overall, this analysis identified important TFs,

which confirmed findings in the separate analysis of human and mouse, including

RUNX1, BCL11A and ZBTB7A. In neutrophils, poor overlap was observed, proba-

bly due to the low number of DEGs identified in mouse.

Table. 4.5. Common differentially expressed transcription factors between human
and mouse

Symbol Direction Human Mouse
b q-val trans. q-val gene b q-val trans. q-val gene

NR4A2 upregulated 0.841 0.046 0.039 0.559 0.008 0.024
MAFB upregulated 1.591 0.003 0.001 1.467 0.005 0.003
MEF2D upregulated 0.372 0.008 0 0.076 0.396 0.029
ATF3 upregulated 1.392 0.005 0 1.521 0.007 0.005
ZBTB7A upregulated 0.432 0.001 0 0.134 0.529 0
FOXJ2 upregulated 0.229 0.071 0.028 0.111 1 0.008
MAFG upregulated 0.297 0.084 0.019 0.084 0.408 0.026
ETS1 upregulated 0.486 0.013 0.001 0.08 1 0
ELK4 upregulated 0.28 0.101 0.05 0.118 0.532 0.003
FOXN3 upregulated 0.127 0.169 0.023 0.651 0.11 0
ARID5A upregulated 0.578 0.006 0.003 0.051 1 0
ID2 upregulated 1.245 0.003 0 0.591 0.01 0.014
PLAG1 downregulated -1.04 0.002 0 -1.317 0 0
HOXA5 downregulated -0.322 0.063 0.046 -0.299 0.018 0.013
RUNX1 downregulated -0.225 0.089 0.001 -0.305 0.001 0.001
BCL11A downregulated -0.516 0.018 0 -0.298 0 0
MXD1 downregulated -0.595 1 0.008 -0.434 0 0
STAT6 downregulated -1.268 0.342 0.005 -0.129 0.012 0.008
ERG downregulated -0.549 0.005 0 -0.465 0.001 0.001
ZNF652 downregulated -0.22 0.223 0.002 -0.3 0 0
HOXB4 downregulated -0.472 0.033 0.023 -0.226 0.058 0.042
IKZF2 downregulated -0.33 0.128 0.029 -0.297 0.002 0
MGA downregulated -0.226 0.144 0.023 -0.192 0.007 0.045
TFDP2 downregulated -0.588 0.003 0 -0.279 0.001 0.013
KAT6A downregulated -1.101 0.21 0.011 -0.174 0.024 0.048
KAT6B downregulated -0.56 0.057 0.029 -0.351 0.006 0.029
KDM5B downregulated -0.29 0.018 0.001 -0.495 0 0
b: log(foldchange) computed by Sleuth; trans.: transcript level. Transcription factors enriched denoted in bold
Dataset of transcription factor from Chawla et al. (2013)
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4.3. CONCLUSIONS The effect of HU in the Jak2V617F-knock-in mouse

4.3 Conclusions

A Jak2V617F-knock-in (Jak2VF) mouse model of MPN, and wild-type mice, were

successfully treated with HU, as demonstrated by the reduction of CBC and spleen

size. From these mice, two comparable counterparts in human, LSK cells and neu-

trophils, were isolated and whole gene expression was assessed. Gene expression

analysis showed that LSK cells were more affected by the treatment than neu-

trophils, due to the high number of differentially expressed genes (DEGs) identified

in LSK cells. According to the enrichment analysis of LSK cells, HU affected genes

involved in the cell cycle, the innate immune system, RNA metabolism, the citric

acid cycle, and transcription. RUNX1 was identified as the principal transcription

factor regulating the DEGs. RUNX1 was also differentially expressed and down-

regulated. Specifically, immune system pathways in Jak2VF mutant mice, were the

most de-regulated compared to WT mice in both cell types, LSK and neutrophils.

Interestingly, changes in those pathways were reversed by HU treatment. An effect

of HU on the cell cycle – mostly an up-regulation of genes involved in the checkpoint

pathways – was also observed.

The DEGs in the patient study were compared to DEGs affected by HU in

mice. At the stem cell level (CD34+ and LSK cells), transcription factors important

for haematopoiesis were shown to be differentially expressed in both species, and

some of these were also identified as regulators of DEGs using enrichment analysis.

Interestingly, several epigenetic modifiers were differentially expressed between the

two species: these were mostly involved in histone modification rather than DNA

methylation.
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Chapter 5

Discussion

HU is the first-line treatment for high-risk PV and ET patients. PV and ET are

MPNs which give rise to a high number of blood cells increasing a patient’s risk

of thrombotic events and bleeding. HU effectively reduces blood cell counts, and

improves symptoms such as headache and fatigue (Löfvenberg and Wahlin, 1988;

Martínez-Trillos et al., 2010). HU has been in use for more than 30 years but its

only well known mechanism of action involves the inhibition of the RNR that is

necessary for DNA synthesis. This mechanism leads to cell cycle arrest, which can

result in cell death. Interestingly, HU can be used to treat sickle cell anaemia patients

as it is able to induce HbF expression. This is a paradoxical effect, however, since

the main effect of HU is to reduce the number of blood cells. Several mechanisms

have been proposed to explain HbF induction, including a pathway involving nitric

oxide production by HU and the soluble guanylate cyclase in erythroid progenitors

cells (Platt et al., 1984; Cokic et al., 2006; Lou et al., 2009). Other mechanisms

propose that HU produces hypomethylation of the γ-globin promoter, facilitating

the transcription of HbF (Walker et al., 2011). Moreover, 5-azacytidine and 5-aza-

2´-deoxycytidine (decitabine), which inhibit DNA methylation, are also known to

induce HbF expression (Saunthararajah et al., 2003; Ley et al., 1983). However,

these mechanisms are still not well understood, and no studies have assessed the
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5.1. THE JAK2V617F-KNOCK-IN MOUSE: A GOOD MODEL TO TEST HU
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global effect of HU on DNA methylation in MPN patients.

Previous work suggests HU may affect gene expression, by affecting DNA methy-

lation. Accordingly, in the study described here, I assayed and analyzed the effect

of HU treatment on DNA methylation and gene expression in MPN patients, and in

a MPN mouse model. For this, two clinically relevant and differentially developed

cells (stem cells and neutrophils) were isolated from each species. Through the work

described in this thesis I sought to identify genes that are affected by HU treatment

in two species, with the aim of achieving a better understanding of its mechanism

of action.

5.1 The Jak2V617F-knock-in mouse: a good model

to test HU treatment?

Recognition of a single gain-of-function mutation in the JAK2 gene (JAK2V617F)

has been one of the most important discoveries in MPN patients, which has permit-

ted a better understanding of the pathogenesis of MPN. To investigate the impact

of the JAK2V617F mutation on the haematopoietic system, several groups have

generated MPN mouse models through induction of the same mutation.

Indeed, mouse studies have certain advantages over human studies. Mice have

the same genetic background, are inbreed and are housed in controlled environments

where food and treatment are consistent. Mouse studies also permit the study of

a large number of individuals, and provide a wider range of samples for analysis.

However, they also impose some limitations on potential studies, which is not sur-

prising since the two species diverged around 65-75 million years ago (Mestas and

Hughes, 2004). In terms of clinical trials, these differences have meant that only 8%

of the drugs tested in mouse are translated to human patients (Mak et al., 2014).

Interestingly, this has not been the case for HU, since its test in a mouse model

of leukemia led to its current use in the treatment of myeloproliferative diseases
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(Stearns et al., 1963; Thurman et al., 1963). Similarly, MPN mouse models have

been used to test the efficacy of novel drugs such as ruxolitinib, which inhibits the

JAK1/JAK2 proteins (Kubovcakova et al., 2013; Vaddi et al., 2010; Mullally et al.,

2010). However, these studies were not designed to elucidate the mechanism of

action of HU, nor determine whether gene expression is affected by drugs under

investigation. Instead, research focussed on the analysis of the modulation of the

JAK-STAT pathway by drugs at the molecular level, and the resulting effects on

the phenotype of the MPN mouse model. Therefore, in this study I have chosen to

compare a mouse model of the disease, with all the advantages that this brings, with

human MPN patients treated with HU, in an experimental design which allows for

the similarities and differences between the two species to be compared.

This study utilised a Jak2V617F-knock-in (Jak2VF) mouse which expressed the

mutation only in the haematopoietic compartment (Chen et al., 2015; Mullally

et al., 2010). Phenotypically these mice exhibited splenomegaly, with high levels

of white blood cells, erythrocytes and platelets, thus recapitulating the MPN phe-

notype (Chen et al. 2015 and this work). The knock-in mutant mice, together with

a group of wild-type C57Bl/6 and vavCre+ transgenic mice (referred as WT), were

treated with HU or vehicle for a period of six weeks. CBC were measured every

week to assess the effectiveness of the treatment. Congruent with the findings from

the human section of this study, CBCs were reduced by HU treatment in WT and

Jak2VF mutant mice. Interestingly, the number of platelets decreased more rapidly

in Jak2VF mutant mice than in WT mice treated with HU. Other studies have

shown that platelet counts in patients harboring the JAK2V617F mutation who

were treated with HU were more significantly reduced than those in JAK2V617F-

negative patients (Sirhan et al., 2008; Panova-Noeva et al., 2011). For this reason,

lower doses of HU are usually required to control the platelet count in JAK2V617F

patients than in other MPN patients (Sirhan et al., 2008). Moreover, platelet levels

in the two JAK2V617F-negative patients included in the present study remained
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higher than in the JAK2V617F patients. Accordingly, these similarities between

human and mouse at the levels of disease development and phenotypic response to

treatment, make the mouse a good model in which to study the effect of HU on

DNA methylation and gene expression.

At the end of the treatment programme in mouse, spleens, LSK cells and neu-

trophils were isolated. LSK cells are HSCs capable of giving rise to all cell lineages

(Spangrude et al., 1988; Uchida, N, and Weissman, 1992), while neutrophils repre-

sent a fully differentiated cell type from the myeloid lineage. These cells were selected

as counterparts of the cell types used in the human study, which were CD34+cells

(haematopoietic stem and progenitor cells) and neutrophils (Civin et al., 1984).

Gene expression was measured in all these cell types from human and mouse. Over-

all, enrichment analysis of differentially expressed genes (DEGs) demonstrated that

similar pathways were altered in both species. These pathways were involved in

RNA metabolism and immune system functions such as interleukin signalling and

neutrophil degranulation. However, in LSK cells a higher number of DEGs were

identified which also led to enrichment in other pathways not seen in the human

study e.g. the cell cycle and the citric acid cycle. One reason for this could be

that the mouse model carries the Jak2VF mutation in every haematopoietic cell, in

contrast with human patients, where the cellular mutation status is mosaic (Butcher

et al., 2007). This difference might have led to a more severe phenotype in mouse

than in human, thus magnifying the effects of HU treatment. Moreover, other bio-

logical differences exist between the two cell types. LSK cells are a more homogenous

population of stem cells, whereas CD34+cells are HSCs and progenitor cells. In this

sense, the purity of the cell population is important for gene expression analysis

since the transcriptomic landscape can vary between cell types. The two cell types

also exhibit technical differences in RNA sequencing. In this study, RNA quality

and concentration were better in LSK cells than in CD34+ cells, which led to the

sequencing of a wider range of RNA molecules. Unfortunately, CD34+cell isola-
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tion was performed using peripheral blood, where the CD34 marker is expressed in

around 0.1% of cells (Bender et al., 1992). However, overlap of DEGs in both species

was still observed, which led to the identification of transcription factors already de-

scribed in the previous analyses from human and mouse in isolation (Chapter 3 and

4, respectively).

Conversely, in neutrophils, the number of DEGs responding to HU treatment in

mouse displayed an opposite trend. Only 155 genes were differentially expressed in

mouse neutrophils, compared to 2,223 DEGs in human neutrophils. This also led to a

low number of common DEGs between the two species. This might be due to the low

concentration of RNA isolated from mouse neutrophils, and the lower sequencing

depth used, which meant that only highly expressed genes were identified. More

importantly, clear biological differences exist between the two species. For example,

neutrophils are rarer in mouse than in human: they account for only 10-30% of

blood cells in mouse, as opposed to 50-70% of blood cells in human (Doeing et al.,

2003; Hidalgo et al., 2019). Mouse neutrophils do not express some genes present

in human neutrophils: these include several chemokines (CXCL8 and its receptor

CXCR1) and immunoglobin receptors (FcαRI and FcγRIIA), which are involved in

important functions of the neutrophil response against pathogens (Otten et al., 2005;

Olson and Ley, 2002). These differences in immune response can be attibuted to

the pathogen-free environment where mice reside, which are obviously very different

from human environments. All of these differences made it difficult to compare

neutrophils from the two species at the gene expression level.

Overall, the MPN mouse model used in this study recapitulated the phenotype

of the patients during HU treatment. The mouse model also led to a stronger

response at the stem cell level. However, the findings observed in mouse must be

interpreted cautiously. Human patients have a much more complex disease since

they are exposed to many different stimuli that cannot be recreated in mouse, and

it is very likely that other factors also contribute to disease status in patients.
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5.2 Comparative response to HU treatment in stem

cells and neutrophils

Two cell populations, at two stages of differentiation, were analyzed to determine

whether the effects of HU treatment were maintained through differentiation, and

whether the effects of HU were of the same intensity in two differentially developed

cell types. HSCs were selected since they harbour the JAK2V617F mutation, and

identifying the effects of HU treatment at the stem cell level could allow the pre-

diction of haematopoietic outcomes. Neutrophils were selected because they also

harbour the JAK2V617F mutation, are found in high levels in MPN patients, and

are significantly affected by HU treatment, and play an important role in inflamma-

tion. Both cell types, therefore, constitute interesting models in which to assess the

effects of HU treatment.

In terms of the number of DEGs affected in HSCs and neutrophils, the effect

was slightly higher in CD34+ cells compared to human neutrophils. However, the

difference between LSK and mouse neutrophils was striking. These observations

suggest that the stem cell populations (CD34+ and LSK cells) were more sensitive

to HU treatment than neutrophils. This could be explained by the high plasticity

of stem cells comparing to differentiated cells. However, when comparing the effect

of HU treatment in the Jak2VF mutant mice, a similar response was observed in

both LSK and neutrophils. Specifically, in both cell types HU was able to rescue

the genes that were dysregulated by the Jak2V617F mutation. Moreover, the same

transcription factor (RUNX1) was shown to be involved in the regulation of those

genes. Similar enrichment pathways were identified in both CD34+ cells and neu-

trophils in human, and the same transcription factor, SPI1 (also known as PU.1),

was shown to be involved in the regulation of DEGs in both cell types. Therefore,

although the effect of HU on stem cells and neutrophils differs in intensity, it is still

comparable.
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5.3 Distinct role of HU in DNA methylation in neu-

trophils and CD34+ cells

Studies that have attempted to assess the effects of HU treatment have measured

DNA methylation both in a site-specific manner, and relative to sickle cell anaemia

patients (Walker et al., 2011; Chondrou et al., 2018). One study assayed whole-

genome DNA methylation in MPN patients using neutrophil samples, but the aim

was to discern whether DNA methylation was capable of determining clustering

according to the type of MPN, which it was (Nischal et al., 2013). Therefore, DNA

methylation has not been examined to determine the effects of HU treatment either

in a genome-wide manner, or in MPN patients.

In this study DNA methylation was assayed in CD34+ cells and neutrophils

from MPN patients, and comparisons were made prior to, and following HU treat-

ment. In neutrophils, very small changes in DNA methylation were observed. These

were more frequent in individual CpG sites than in differentially methylated regions

(DMRs), and at later time-points of treatment (six and nine months). These re-

sults suggest that DNA methylation in neutrophils is stable, and HU is not able to

affect it at the time-points analyzed in this study. Neutrophils are fully differen-

tiated cells, the final product of granulopoiesis. Therefore, it is possible that the

DNA methylation machinery is not as active here as it is in HSCs, which need to

be highly plastic in order to give rise to many different types of cell. In line with

this, studies have demonstrated that the lymphoid lineage makes more use of DNA

methylation than the myeloid lineage (Farlik et al., 2016). These observations were

based on DNA methylation assays using whole genome bisulfite sequencing in sev-

eral purified human cell lineages. These revealed that lymphoid lineages tend to

be more methylated in regulatory regions. In the myeloid lineage by contrast, re-

gions with lower DNA methylation than in the lymphoid lineage were enriched for

binding sites of transcription factors (TFs) that are key for myeloid differentiation
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(Farlik et al., 2016). These findings suggest that the lymphoid lineage requires DNA

methylation to protect it from myeloid specification (Farlik et al., 2016; Bock et al.,

2012)and is consistent with tissue-specific differences in DNA methylation patterns

during development and differentiation. This might, therefore, explain why HU

treatment at a very late differentiation stage, and in the myeloid lineage, cannot

perturb DNA methylation as seen in HSCs. However, in this study, gene expression

was still affected, indicating that other DNA methylation-independent mechanisms

are involved.

5.4 SPI1 is an important target of HU treatment

at DNA methylation and gene expression level

The effect of HU on CD34+ cells was different. Following nine months of HU treat-

ment, several CpG sites and DMRs were differentially methylated when compar-

isons were made with their pre-treatment state. Detailed analyses were performed

at DMRs overlapping promoters, intergenic and intragenic regions. These analyses

identified several binding sites for TF involved in haematopoiesis, such as RUNX3

and ZBTB7A. However, the gene most highly affected at the DNA methylation and

gene expression levels was SPI1. SPI1 was upregulated following HU treatment

and two CGIs, in its promoter and regulatory region (located -17kb from the pro-

moter), were shown to be hypomethylated. SPI1 encodes the TF SPI1 (also known

as PU.1), which has different roles during haematopoiesis. In the mouse, germline

disruption of SPI1 blocks the formation of all cell lineages, leading to embryonic

death (Scott et al., 1994). However, its major role has been described in myeloid

progenitor cells, where its conditional deletion impairs differentiation into myeloid

and monocyte cells (Iwasaki et al., 2005). Interestingly, in acute myeloid leukaemia

(AML) impaired expression of SPI1, caused by mutations in the regulatory region

of SPI1, has been observed (Bonadies et al., 2010; Mueller et al., 2002). These in-
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vestigations suggest that SPI1 is necessary for the induction of cell differentiation,

moving from the stem cell stage to myeloid specification. Interestingly, SPI1 ex-

pression is also impaired in chronic myeloid leukemia (CML), where its expression

can be recovered following drug treatment with interferon-α and imatinib (Albajar

et al., 2008). Aberrant methylation has also been identified in the SPI1 promoter

in whole blood from CML patients (Yang et al., 2012).

In the case of neutrophils, SPI1 was also upregulated, but no change was ob-

served in DNA methylation following HU treatment, suggesting that other mecha-

nisms are involved in the regulation of SPI1 expression. Indeed, SPI1 is essential for

neutrophil maturation, and its loss impairs their ability to kill pathogens (Fischer

et al., 2019). Although SPI1 is widely known as an activator transcription factor,

repressive functions have also been described. Accordingly, SPI1 is able to interact

with the histone deacetylate 1 (HDAC1) protein which results in decreased acety-

lation of histone H3 at Lys27 (H3K27ac) (Fischer et al., 2019). This mechanism is

thought to repress genes involved in positive regulation of the immune system and

cellular metabolic processes, which are known to be over-expressed during pathogen

infection in SPI1 null neutrophils (Fischer et al., 2019). These findings suggest that

SPI1 is able to modulate the epigenome of neutrophils to repress genes that could

lead to an over-reactive immune response (Fischer et al., 2019).

Taken together, these investigations support the role of SPI1 in abnormal haematopoiesis,

and, accordingly, HU could prove to be an important factor in restoring SPI1 ex-

pression. At the stem cell level, SPI1 would be inducing differentiation instead of

self-renewal, while in neutrophils, it would repress genes which might be involved

in the pro-inflammatory process. To assist in elucidating the effect of HU on SPI1

expression, and its interplay with DNA methylation at the stem cell level, a more

detailed analysis might be carried out, by performing a time-course study of HU

treatment to observe how DNA methylation and gene expression change over time,

which occurs first, and what other mechanisms are involved. In neutrophils, it
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would be interesting to correlate the DEGs that are targeted by SPI1 following HU

treatment with the dataset of Fischer et al. (2019), to determine whether the genes

affected are involved in the pro-inflammatory pathways regulated by SPI1.

5.5 Another possible mechanism involved in HU ther-

apeutic effect

Aberrant hypermethylation has been described in several cancer cells and mutations

that affect epigenetic regulators such as TET2 and IDH1/2 have also being observed

in haematological disorders. Investigations of DNA methylation in cancer cells have

also led to interesting findings, such as hypermethylation of the BRCA1 promoter

in breast cancer (Esteller et al., 2000). However, this is not always the case and

several DEGs identified in neutrophils and CD34+ cells did not correlate with DNA

methylation. As mentioned previously, this indicates that other mechanisms are

involved in the regulation of those DEGs.

Studies have demonstrated that the majority of hypermethylated CGIs located

at gene promoters identified in cancer are normally not expressed in healthy cells

from the same individual (Sproul et al., 2012; Hinoue et al., 2012). This suggests that

other factors, independent of DNA methylation, contribute to the deregulated gene

expression in disease. For instance, a mechanism involving an altered redistribu-

tion of the repressive histone mark H3K27me3, due to deregulation of the polycomb

group proteins, has been observed, which produces gene silencing irrespectively of

promoter methylation (Kondo et al., 2008; Court et al., 2019). In terms of MPN,

a non-canonical function of JAK2 has been described. JAK2 is able to localize

to the nucleus and phosphorylates the histone H3 which blocks the binding of the

heterochromatin protein 1α (HP1α) that promotes transcriptional silencing (Dawson

et al., 2009). Furthermore, JAK2V617F strongly binds and phosphorylates PRMT5,

an arginine methyltransferase, impairing PRMT5 ability to methylate histones H2A
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and H4, resulting in expansion of HSCs and erythroid differentiation (Liu et al.,

2011). Therefore, the constitutive kinase activity of JAK2V617F results in epige-

netic aberrations that contribute to the MPN phenotype. Interestingly, in this study,

upregulation of SPI1 was observed, and its protein has been shown to interact with

the H3K27ac machinery, as previously mentioned. Moreover, several genes with

roles in histone modification in human or mouse were affected by HU treatment.

One example is KDM5B, which has been shown to be downregulated following HU

treatment. KDM5B protein is able to demethylate tri-, di- and monomethylated

lysine 4 of histone H3 and its over-expression has been observed in cancer cells

(Wang et al., 2016). It is therefore proposed that histone modification may be an

interesting epigenetic mechanism worthy of further investigation in the context of

HU treatment in MPN.

5.6 Limitations and future perspectives

• It could be argued that the effects observed in this study may be driven by

the ability of HU to selectively reduce JAK2V617F mutant cells in preference

to wild-type cells. However, evidence for this is contradictory. Some studies

have demonstrated a decrease of the JAK2V617F allele burden, but others

have observed the opposite (Antonioli et al., 2010; Spanoudakis et al., 2009;

Ricksten et al., 2008). Therefore it is recommended that the JAK2V617F allele

burden in the patient samples from this study be assessed, in order to identify

confounding factors that could lead to misinterpretation of the results.

• Another important omission, when assessing the patient samples, is that they

were not screened for mutations in the TET2, IDH1/1 and DNMT3A genes.

Although the mutation rate is low in MPN patients, and most of the changes in

DNA methylation observed here involved loss of methylation, this information

could help to confirm the robustness of the findings, and that they were linked
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to HU treatment.

• DNA methylation from mouse LSK samples could also constitute another

source of important information. To bypass the problem of low DNA con-

centration, locus-specific analysis could be carried out on selected candidate

genes from the human study (Fig 5.1). This methods usually employs less in-

put material and standardization can be performed in a short period of time.

• Further validation of the genes identified here should also be performed using

a larger cohort of patients. A list of candidate genes to the response of HU

treatment and their description can be found in Table 5.1 (Fig 5.1).

• A more mechanistic analysis of the SPI1 locus would reveal how HU is able

to modulate DNA methylation and gene expression. Moreover, this would

constitute an interesting model for an understanding of the interplay between

gene expression and DNA methylation.
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Figure. 5.1. Selected candidate genes to the response of HU treatment for further
validation analyses. Heatmap plot of log2-fold change of DEGs of patients and mice
group comparison (untreated vs treated). Genes that need methylation assays are
represented with an “M”. Genes shared between human and mouse are indicated in
bold. CGI: CpG island.
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Table. 5.1. Description of the selected candidate genes to the response of HU
treatment for further validation analyses

Symbol Description

RARA Encodes transcription factor involved in neutrophils maturation. It can promote
granulopoiesis in pluripotent progenitor cells (Kastner and Chan, 2001). Promoter
hypomethylated and upregulated in CD34+cells. Differentially expressed in neutrophils.

CEBPE Encodes transcription factor that is required for the terminal differentiation of
neutrophils (Bedi et al., 2009). Gain of function mutation cause inflammatory disease
(Göös et al., 2019). Differentially expressed in neutrophils.

FGR Encodes tyrosine kinase involved in immune responses, neutrophil functions. Acts
downstream of ITGB1 and ITGB2 (Gutkind and Robbins, 1989). Promoter
hypomethylated and upregulated in CD34+cells.

SPI1 Encodes transcription factor required for neutrophil maturation and induce
differentiation into myeloid lineage at stem cell level (Fischer et al., 2019; Chen et al.,
1995; Dakic et al., 2005). Promoter hypomethylated and upregulated in CD34+cells.
Upregulated in human neutrophils.

BCL6 Encodes transcription factor that acts mainly as a repressor. Suppresses macrophage
proliferation (Yu et al., 2005). Top differentially expressed gene in human neutrophils.

ZBTB7A Encodes transcription factor involved in foetal haemoglobin synthesis (Chondrou et al.,
2018). Binds to intragenic CpG island of F2RL1 gene. Upregulated in both species in
stem cells.

KDM5B Encodes a lysine-specific histone demethylase (Zhang et al., 2014). Upregulated in both
species in stem cells.

FOS FOS proteins have been implicated as regulators of cell proliferation, differentiation, and
transformation. Downregulated in proliferative HSCs(McKinney-Freeman et al., 2012).

ITGB2 The encoded protein plays an important role in immune response and defects in this
gene cause leukocyte adhesion deficiency. Acts upstream of FGR. Promoter
hypermethylated and upregulated in CD34+cells.

MAP4K4 Encodes serine/threonine kinase. Study in T cells of type 2 diabetes patients have
shown hypomethylation of CpG island in promoter (Chuang et al., 2016). Promoter
hypomethylated and upregulated in CD34+cells.

CEBPB Encodes transcription factor involved in immune and inflammatory responses
(Screpanti et al., 1995). Transcription factor bound to differentially methylated CpG
sites in CD34+cells.

RUNX1 Encodes transcription factor essential for definitive haematopoiesis. Interacts with SPI1
(Goyal et al., 2017; Imperato et al., 2015). Downregulated in both species in stem cells.

BCL11A Encodes transcription factor involved in foetal haemoglobin synthesis (Grieco et al.,
2015). Downregulated in both species in stem cells.

CTSZ It exhibits both carboxy-monopeptidase and carboxy-dipeptidase activities. Promoter
hypomethylated and upregulated. Upregulated in both species in stem cells.

TET1 Encodes protein with demethylase activity (Tahiliani et al., 2009). Downregulated in
both species in stem cells.

IRF8 Involved in self-renewal of HSCs (Qiu et al., 2015). Involved in the macrophage versus
granulocyte differentiation with SPI1. (Kurotaki et al., 2014, 2018)

MYC Encodes transcription factor necessary for balance of self-renewal and differentiation of
haematopoietic stem ells (Wilson et al., 2004).
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Concluding remarks

• HU affects gene expression at the stem cell and neutrophil level, in both human

and mouse.

• The Jak2V617F-knock-in mouse completely recapitulated the MPN phenotype

with and without HU treatment.

• In addition to the well-documented effect of HU on cell cycle inhibition,

HU treatment in the Jak2V617F-knock-in mouse was shown to reverse over-

expressed cytokine signalling.

• HU has a distinct effect on DNA methylation in cells at different stages of

differentiation, which is much stronger at the stem cell level.

• Both PV and ET patients exhibit aberrant DNA methylation in the SPI1

gene, which can contribute to the disease state.

• The SPI1 gene is a strong candidate to study to facilitate a better under-

standing of the HU effect through DNA methylation, which may lead to its

therapeutic effect.

• Other DNA methylation-independent mechanisms are involved in the regula-

tion of gene expression following HU treatment.

• Several genes enconding transcription factors affected in human and mouse,

such as BCL11A, ZBTB7A and RUNX1, are proposed as potential targets for

the effects of HU treatment.
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Appendix B

Data generation human

B.1 RNA sequencing: library preparation and se-

quencing results

B.2 RNA sequencing: FastQC results after sequenc-

ing in HiSeq4000 (raw reads)

B.3 RNAseqMetrics results

B.4 Removal of duplicated reads

B.5 DNA methylation normalization
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B.5. DNA METHYLATION NORMALIZATION Data generation human

Table. B.1. Details of the library preparation steps for human samples. De-
tails of the steps modified according to the RNA input and quality (RIN). Library
concentration after library preparation, total nM obtained and total nM used for
sequencing.

Patient Type Sample Input
RNA (ng)

Frag.
time
(min)

PCR2
nºcycles

Library
ng/μL
Qubit

(Q) ng/μL
Diluted

(T)
Average
Size [bp]

Q+T (nM) nM (se-
quenced)

P002 CD34+ S01 1.1 2 15 34.8 1.19 407 4.43 4
P002 CD34+ S04 1.1 NA 15 1.37 1.37 467 4.44 4
P003 CD34+ S01 1.7 4 15 68.4 1.95 382 7.73 4
P003 CD34+ S04 1.7 NA 15 2.68 1.58 465 5.15 4
P004 CD34+ S01 0.95 NA 15 3.4 1.64 418 5.94 4
P004 CD34+ S04 0.95 NA 15 0.999 0.999 483 3.13 3.2
P006 CD34+ S01 2.7 4 15 112 1.48 387 5.79 4
P006 CD34+ S04 2.7 NA 15 1.35 1.35 446 4.59 4
P007 CD34+ S01 1.8 4 15 96.8 1.49 390 5.79 4
P007 CD34+ S04 1.8 4 15 69.2 1.88 389 7.32 4
P008 CD34+ S01 3.5 4 15 70.2 1.69 362 7.07 4
P008 CD34+ S04 3.5 4 15 106 2.48 398 9.44 4
P009 CD34+ S01 5 4 13 80.6 2.4 407 8.93 4
P009 CD34+ S04 5 4 13 83 2.48 393 9.56 4
P010 CD34+ S01 2.3 4 15 100 2.32 381 9.23 4
P010 CD34+ S04 2.3 4 15 78.8 2.46 374 9.97 4
P011 CD34+ S01 1.4 4 15 78.8 2.26 379 9.03 4
P011 CD34+ S04 1.4 4 15 59.8 2.18 353 9.36 4
P002 NEU S01 5 3 13 27.8 1.47 510 4.37 4
P002 NEU S04 5 4 13 91.6 1.74 416 6.34 4
P003 NEU S01 1.9 4 15 16.2 1.64 333 7.46 4
P003 NEU S04 1.9 4 15 64.4 1.45 416 5.28 4
P004 NEU S01 2 4 15 1.55 1.55 366 6.42 4
P004 NEU S04 2 4 15 85 1.33 403 5 4
P006 NEU S01 5 4 13 5.62 1.67 370 6.84 4
P006 NEU S04 5 4 13 55.4 1.74 432 6.1 4
P007 NEU S01 5 4 13 11.9 1.46 377 5.87 4
P007 NEU S04 5 4 13 67.2 1.37 423 4.91 4
P008 NEU S01 1.8 4 15 72.2 1.58 390 6.14 4
P008 NEU S04 1.8 4 15 44.2 1.54 423 5.52 4
P009 NEU S01 4.8 4 13 102 2.96 445 10.08 4
P009 NEU S04 4.8 4 13 too high 1.73 494 5.31 4
P011 NEU S01 5 4 13 91.4 2.06 392 7.96 4
P011 NEU S04 5 4 13 69.6 1.68 376 6.77 4
Q+T= library quantification using method described in 2.4.4
NA: no fragmentation step performed
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Figure. B.1. Intensity plots of neutrophils dataset before and after quantile nor-
malization. Each graph represent a type of probe (Type I or Type II) and its channel
(Red or Green). Type II probe is one probe able to emit signal in Red and Green
channels. Type I probe is two probes that measure methylation (M) and unmethy-
lation (U) and each emit signal in two channels Red or Green. A) Distribution of
the signal intensity before quantile normalization and after background correction.
B) Distribution of the signal intensity after quantile normalization.
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Table. B.2. FastQC results: duplication (Dups), GC content and million sequences
(M Seqs) from raw reads.

Sample Name Dups GC M Seqs Sample Name Dups GC M Seqs
P002S01CD34_R1_001 79.8% 54% 27.4 P002S01NEU_R1_001 80.1% 47% 43.9
P002S04CD34_R1_001 93.0% 48% 32.3 P002S04NEU_R1_001 55.7% 51% 35.7
P003S01CD34_R1_001 70.8% 54% 31.4 P003S01NEU_R1_001 81.6% 49% 34
P003S04CD34_R1_001 95.2% 52% 34.4 P003S04NEU_R1_001 73.9% 53% 32.2
P004S01CD34_R1_001 92.3% 56% 42.3 P004S01NEU_R1_001 91.5% 49% 36.2
P004S04CD34_R1_001 91.4% 47% 22.4 P004S04NEU_R1_001 72.8% 52% 35.9
P006S01CD34_R1_001 51.7% 52% 33.2 P006S01NEU_R1_001 85.8% 49% 38.5
P006S04CD34_R1_001 92.5% 54% 41.6 P006S04NEU_R1_001 61.7% 52% 35.3
P007S01CD34_R1_001 51.7% 53% 31.5 P007S01NEU_R1_001 81.4% 49% 35.9
P007S04CD34_R1_001 69.4% 52% 38.7 P007S04NEU_R1_001 63.3% 52% 36.4
P008S01CD34_R1_001 51.6% 52% 36 P008S01NEU_R1_001 82.4% 48% 53.4
P008S04CD34_R1_001 48.6% 52% 31.6 P008S04NEU_R1_001 82.5% 50% 42.6
P009S01CD34_R1_001 38.2% 49% 33.7 P009S01NEU_R1_001 75.2% 50% 82.4
P009S04CD34_R1_001 41.7% 50% 34.6 P009S04NEU_R1_001 46.1% 49% 36.3
P010S01CD34_R1_001 59.1% 52% 38.8
P010S04CD34_R1_001 64.4% 52% 35
P011S01CD34_R1_001 56.3% 49% 34.6 P011S01NEU_R1_001 56.2% 55% 33.1
P011S04CD34_R1_001 66.5% 53% 40.9 P011S04NEU_R1_001 53.3% 56% 26
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B.5. DNA METHYLATION NORMALIZATION Data generation human

Table. B.4. Number of sequences left after removal of duplicated reads using
MarkDuplicates from Picard

ID UNPAIRED
READS
EXAM-
INED

READ
PAIRS
EXAM-
INED

SECONDARY
OR SUP-
PLEMEN-
TARY
RDS

UNPAIRED
READ
DUPLI-
CATES

READ
PAIR
DUPLI-
CATES

PERCENT
DUPLI-
CATION

ESTIMATED
LIBRARY
SIZE

P002S01CD34 15927212 3306421 11721069 14911884 2142241 0.851656 1253949
P002S01NEU 29732404 7015361 9771258 27567998 4262792 0.824749 3062456
P002S04CD34 19339327 4180050 4646980 19201449 4083038 0.988018 97012
P002S04NEU 22058708 5418244 11155395 15513227 1835709 0.583205 6064117
P003S01CD34 18107272 5182861 12633607 15740650 2732334 0.744752 2968436
P003S01NEU 19647526 4800401 15403375 17917122 3675418 0.863911 1142052
P003S04CD34 8957044 1660662 2432085 8808406 1619610 0.981207 41052
P003S04NEU 18277103 5281662 11005160 16368091 3130954 0.784662 2425595
P004S01CD34 21200534 5982407 25141109 20969749 5524621 0.965435 457786
P004S01NEU 23760008 4584832 10437790 23415423 4271256 0.970491 313576
P004S04CD34 14404373 2693236 2541113 14193715 2609286 0.980872 83950
P004S04NEU 21703551 5239012 12573155 18788787 2891122 0.763512 2762557
P006S01CD34 20052812 4950647 12391257 13002051 1562447 0.538388 6087459
P006S01NEU 24593273 5210626 11580177 23531515 4199366 0.911914 1017328
P006S04CD34 23251505 5072135 15852807 23014544 4809246 0.977161 262889
P006S04NEU 21814865 5331760 12119216 17149341 2077161 0.655934 4917469
P007S01CD34 19582186 4251138 11582321 12814967 1295898 0.548587 5469010
P007S01NEU 23464790 4910665 10270910 21937752 3428355 0.865059 1547011
P007S04CD34 24414042 5705283 11795978 20886882 2802264 0.739475 3688333
P007S04NEU 23224145 5470812 13439772 18229866 2141351 0.658922 5011934
P008S01CD34 22294285 4926106 12615227 14792350 1523750 0.554955 6218360
P008S01NEU 35715594 7739471 12714314 33203529 5357824 0.857888 2493554
P008S04CD34 20838879 3864501 10376927 13005086 1005516 0.525629 6072770
P008S04NEU 28317267 4983571 11510679 26550180 3320521 0.866964 1768730
P009S01CD34 22323649 4536400 9033636 11802592 883471 0.4322 10079545
P009S01NEU 60160822 8581316 22005832 52108218 4114200 0.780315 5772566
P009S04CD34 12280388 11870969 10042024 7137368 3668303 0.401806 15004401
P009S04NEU 26507028 3321699 8011299 15246100 680228 0.500945 6960467
P010S01CD34 13704365 12441405 13259654 10032050 6682102 0.606322 6893187
P010S04CD34 13151308 10847386 11004734 10341592 6377675 0.662828 5064459
P011S01CD34 12837158 10963877 8780977 9111183 5633879 0.586193 6566565
P011S01NEU 21827077 3209142 12340978 14533751 1054904 0.589249 3739710
P011S04CD34 14155838 12752558 14918212 11263004 8229364 0.698968 4881204
P011S04NEU 16292145 2652590 10910229 10589760 795838 0.564025 3483334
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Appendix C

DNA methylation results

C.1 Differentially methylated CpG sites
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C.1. DIFFERENTIALLY METHYLATED CPG SITES DNA methylation results
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Figure. C.1. Total number of differentially methylated CpGs. Genomic loca-
tions and relative location to CpG island of the differentially methylated CpGs. A)
Neutrophils; Differentially methylated CpGs per time-point in comparison to pre-
treatment. No differentially methylated CpGs were identified at three months of HU
treatment (3 mo). Twelve and 36 CpGs were differentially methylated at six months
(6 mo) and nine months (9mo) of HU treatment, respectively. B) CD34+ cells; dif-
ferentially methylated CpG between untreated samples and nine months of HU
treatment. “All” correspond to the total number of CpGs detected in each cell type
and that passed the QC filters.
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Appendix D

Data generation mouse

D.1 RNA sequencing: library preparation

D.2 RNA sequencing: FastQC results after sequenc-

ing in HiSeq4000 (raw reads)

D.3 RNAseqMetrics results

213



D.3. RNASEQMETRICS RESULTS Data generation mouse

Table. D.1. Details of the library preparation steps for mouse samples. Details of
the steps modified according to the RNA input and quality (RIN). Library concentra-
tion after library preparation, total nM obtained and total nM used for sequencing.

ID Input
RNA (ng)

Frag.
time
(min)

PCR2
nºcycles

Library
Qubit
(ng/μL)

(Q) Qubit
ng/μL
Diluted

(T)
Average
Size [bp]

Q+T (nM) nM (se-
quenced)

MM_4964_LSK 5 4 13 26.2 1.75 367 7.22 4
MM_5276_LSK 5 3 13 70.2 1.48 405 5.54 4
MM_5277_LSK 5 4 13 68 1.28 389 4.99 4
MM_5322_LSK 5 4 13 60.8 1.21 391 4.69 4
MM_5327_LSK 5 4 13 22.6 1.15 365 4.77 4
RB_427_LSK 5 4 13 33.8 1.95 368 8.03 4
RB_429_LSK 5 4 13 57.2 1.34 397 5.11 4
RB_430_LSK 5 4 13 13 1.44 412 5.3 4
RB_431_LSK 5 4 13 46.6 1.24 399 4.71 4
RB_438_LSK 5 4 13 27 1.21 360 5.09 4
RB_441_LSK 5 4 13 35.2 1.04 370 4.26 4
RB_444_LSK 5 4 13 62.2 1.26 410 4.66 4
RB_447_LSK 5 4 13 110 1.19 507 3.56 3.56
RB_458_LSK 5 4 13 57.2 1.34 438 4.64 4
RB_460_LSK 5 4 13 35.8 1.34 366 5.55 4
RB_461_LSK 5 3 13 14.1 1.92 565 5.15 4
RB_462_LSK 5 4 13 30.8 1.73 394 6.65 4
RB_470_LSK 5 4 13 16.2 1.1 382 4.36 4
RB_481_LSK 5 4 13 21.4 1.38 377 5.55 4
RB_489_LSK 5 4 13 30.2 1.33 410 4.92 4
RB_490_LSK 5 4 13 65 1.33 403 5 4
RB_491_LSK 5 4 13 36.2 1.48 362 6.19 4
SX_581_LSK 5 4 13 21.8 1.44 375 5.82 4
MM_4964_NEU 1 4 15 48.6 1.58 364 6.58 4
MM_5276_NEU 1 4 15 38.6 1.32 357 5.6 4
MM_5277_NEU 1 3 15 37.2 1.32 384 5.21 4
MM_5322_NEU 1 3 15 26.4 1.23 405 4.6 4
MM_5327_NEU 1 4 15 56.2 0.982 365 4.08 4
RB_427_NEU 1 3 15 55 1.43 379 5.72 4
RB_429_NEU 0.93 NA 15 3.52 1.38 382 5.47 4
RB_430_NEU 1 4 15 71.4 1.3 360 5.47 4
RB_431_NEU 0.97 NA 15 25.8 1.47 538 4.14 4
RB_438_NEU 1 NA 15 9.2 1.48 471 4.76 4
RB_441_NEU 1 4 15 58.8 1.23 368 5.06 4
RB_444_NEU 0.95 3 15 45.6 1.19 386 4.67 4
RB_447_NEU 1 4 15 50.8 1.35 387 5.29 4
RB_458_NEU 1 3 15 24.2 1.56 453 5.22 4
RB_460_NEU 1 3 15 51.2 1.69 381 6.72 4
RB_461_NEU 1 3 15 40.4 1.43 411 5.27 4
RB_462_NEU 1 3 15 65 1.7 368 7 4
RB_470_NEU 0.74 NA 15 2.06 1.36 358 5.76 4
RB_481_NEU 1 4 15 59.2 1.62 366 6.71 4
RB_489_NEU 1 3 15 49.4 1.57 416 5.72 4
RB_490_NEU 1 4 15 52.2 1.64 370 6.72 4
RB_491_NEU 1 NA 15 22.4 1.47 490 4.55 4
SX_581_NEU 1 4 15 40.2 1.43 367 5.9 4
Q+T= library quantification using method described in 2.4.4
NA: no fragmentation step performed
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D.3. RNASEQMETRICS RESULTS Data generation mouse

Table. D.2. FastQC results: duplication (Dups), GC content and million sequences
(M Seqs) from raw reads.

Sample Name Dups GC M Seqs Sample Name Dups GC M Seqs
MM-4964-LSK_R2_001 48.50% 56% 39.6 MM-4964-NEU_R2_001 51.70% 58% 15.4
MM-5276-LSK_R2_001 44.60% 55% 26.1 MM-5276-NEU_R2_001 51.40% 58% 10.5
MM-5277-LSK_R2_001 52.80% 59% 33.7 MM-5277-NEU_R2_001 52.40% 55% 15.6
MM-5322-LSK_R2_001 57.00% 59% 32.9 MM-5322-NEU_R2_001 61.90% 56% 22.3
MM-5327-LSK_R2_001 42.50% 55% 22.8 MM-5327-NEU_R2_001 60.40% 60% 20.8
RB-427-LSK_R2_001 48.30% 56% 30.4 RB-427-NEU_R2_001 44.50% 56% 9.5
RB-429-LSK_R2_001 52.60% 59% 38 RB-429-NEU_R2_001 76.20% 54% 18.5
RB-430-LSK_R2_001 69.50% 58% 49.6 RB-430-NEU_R2_001 65.80% 62% 27.8
RB-431-LSK_R2_001 68.50% 60% 51.5 RB-431-NEU_R2_001 64.60% 54% 18
RB-438-LSK_R2_001 47.20% 55% 33.8 RB-438-NEU_R2_001 72.90% 55% 22.2
RB-441-LSK_R2_001 52.60% 56% 49.5 RB-441-NEU_R2_001 63.10% 61% 20.8
RB-444-LSK_R2_001 46.50% 58% 21.1 RB-444-NEU_R2_001 52.90% 57% 13.7
RB-447-LSK_R2_001 28.20% 52% 21.2 RB-447-NEU_R2_001 55.70% 58% 19.1
RB-458-LSK_R2_001 46.20% 56% 27.3 RB-458-NEU_R2_001 62.00% 56% 16.6
RB-460-LSK_R2_001 40.70% 55% 20.1 RB-460-NEU_R2_001 56.10% 58% 13.6
RB-461-LSK_R2_001 48.50% 59% 23.4 RB-461-NEU_R2_001 65.70% 58% 17.9
RB-462-LSK_R2_001 50.30% 57% 25 RB-462-NEU_R2_001 60.30% 60% 18.2
RB-470-LSK_R2_001 55.40% 57% 30.9 RB-470-NEU_R2_001 83.30% 53% 24.7
RB-481-LSK_R2_001 57.80% 58% 33.8 RB-481-NEU_R2_001 55.10% 61% 13.2
RB-489-LSK_R2_001 64.00% 58% 50.5 RB-489-NEU_R2_001 59.20% 53% 26.4
RB-490-LSK_R2_001 22.60% 49% 21.9 RB-490-NEU_R2_001 46.40% 58% 10.4
RB-491-LSK_R2_001 40.20% 56% 17.8 RB-491-NEU_R2_001 69.90% 49% 27.6
SX-581-LSK_R2_001 64.30% 58% 46.9 SX-581-NEU_R2_001 57.70% 56% 24.6
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