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Abstract 

 

Background: Amongst patients with angina and non-obstructive coronary artery disease 

(NOCAD), those with coronary microvascular dysfunction (CMD) have a poor outcome. CMD 

is usually diagnosed by assessing flow reserve with an endothelium-independent vasodilator 

like adenosine but the optimal diagnostic threshold is unclear. Furthermore, the incremental 

value of testing endothelial function has never been assessed before. We sought to determine 

what pharmacological thresholds correspond to exercise pathophysiology and myocardial 

ischemia in patients with CMD. 

 

Methods: Patients with angina and NOCAD underwent simultaneous acquisition of coronary 

pressure and flow during rest, supine bicycle exercise and pharmacological vasodilatation with 

adenosine and acetylcholine. Adenosine and acetylcholine coronary flow reserve were 

calculated as vasodilator / resting coronary blood flow (CFR and AchFR respectively). 

Coronary wave intensity analysis was used to quantify the proportion of accelerating wave 

energy; a normal exercise response was defined as an increase in accelerating wave energy 

from rest to peak exercise. Ischemia was assessed by quantitative 3-Tesla stress perfusion 

cardiac magnetic resonance imaging and dichotomously defined by a hyperemic endo-

epicardial gradient <1.0.  

 

Results: 90 patients were enrolled (58±10 years, 77% female). Area under the curve using 

receiver-operating characteristic analysis demonstrated optimal CFR and AchFR thresholds for 

identifying exercise pathophysiology and ischemia as 2.6 and 1.5, with positive and negative 

predictive values of 91% and 86% respectively. 58% had an abnormal CFR (of which 96% 
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also had an abnormal AchFR). Of those with a normal CFR, 53% had an abnormal AchFR, 

and 47% had a normal AchFR; ischemia rates were 83%, 63% and 14% respectively.  

 

Conclusions: The optimal CFR and AchFR diagnostic thresholds are 2.6 and 1.5, with high 

positive and negative predictive values respectively. A normal CFR value should prompt the 

measurement of AchFR. A stepwise algorithm incorporating both vasodilators can accurately 

identify an ischemic aetiology in patients with NOCAD.  

 

Keywords: angina, non-obstructive coronary artery disease, coronary microvascular 

dysfunction, endothelial dysfunction, exercise physiology.  

 

Abbreviations 

 

AchFR = Acetylcholine flow reserve 

CBF = Coronary blood flow 

CFR = Coronary Flow Reserve to adenosine 

CMD = Coronary microvascular dysfunction 

CMR = Cardiac magnetic resonance 

MBF = Myocardial blood flow 

MPR = Myocardial perfusion reserve 

NOCAD = Non-obstructive coronary artery disease 

WIA = Wave-intensity analysis 
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Clinical Perspective 

 

What is known.  

• Nearly half of all patients with angina are found to have unobstructed coronary arteries. 

• Those with coronary microvascular dysfunction have poorer clinical outcomes, 

however it is unclear how to accurately diagnose this condition in routine clinical 

practice.  

 

What the study adds.  

• Our study has revealed that contemporary diagnostic algorithms for angina may fail to 

identify patients with symptoms due to coronary microvascular dysfunction.  

• We propose a stepwise algorithm, with clear diagnostic thresholds incorporating tiered 

use of adenosine and acetylcholine pharmacological vasodilatation, validated using 

novel physiological tools.  

• Future therapeutic studies should enrol characterized cohorts of patients with 

demonstrable vasodilator flow impairment assigned to medical and placebo therapies, 

to demonstrate the prognostic utility of these mechanistically determined thresholds. 
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Introduction 

Approximately half of all patients with angina have non-obstructive coronary artery disease 

(NOCAD), the majority will have occult coronary abnormalities, including coronary 

microvascular dysfunction (CMD), endothelial dysfunction or coronary spasm with 

pharmacological vasodilators used to diagnose these entities in clinical practice [1-2]. The most 

studied of these, CMD, is usually diagnosed by demonstrating impaired augmentation of 

coronary blood flow, or reduced coronary flow reserve (CFR), in response to adenosine. Like 

all biological measurements, CFR is a continuous variable but, for practical reasons, clinical 

algorithms and trial protocols dichotomously classify physiological indices. The Coronary 

Vasomotion Disorders International Study Group (COVADIS) acknowledges a grey-zone, 

stating that CMD can be diagnosed at a CFR of below 2.0 or 2.5, a view shared by experts 

within the field [3-4]. Indeed, many clinicians will only diagnose CMD and initiate therapy if 

the CFR is below 2.0, this dichotomy being centred around the reported incidence of death and 

major adverse cardiovascular events (MACE) [5-8]. Additionally, CFR only interrogates the 

endothelial-independent component of the coronary vasculature, as adenosine acts largely 

independently of endothelium. Acetylcholine interrogates the health of the endothelium, which 

acts as a transducer of mechanical forces (or shear-stress) and has a paracrine effect on the 

smooth muscle layer in the healthy heart.  Acetylcholine testing in catheter laboratories is 

mainly confined to the diagnosis of epicardial artery vasospasm, however graded infusion with 

flow assessment can characterize microvascular endothelial function and prognosticate patients 

with NOCAD [9]. Coronary vasodilator testing in the catheter laboratory acts as a surrogate 

for abnormal coronary perfusion during physical exercise and global myocardial ischemia, but 

the optimal threshold of adenosine and acetylcholine mediated flow reserve for detecting each 

pathophysiological state is still to be defined [10-11]. Recent European Society of Cardiology 
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guidelines on the managements of Chronic Coronary Syndrome have strengthened the 

indication for coronary reactivity testing in NOCAD from IIb to IIa and thus CMD diagnostic 

thresholds warrants reappraisal [12]. The primary aim of this study was to determine the 

optimal CMD diagnostic threshold using adenosine mediated CFR in patients with NOCAD 

and the secondary aim was to assess the incremental value of measuring acetylcholine mediated 

flow reserve (AchFR) in this cohort. 

 

Methods 

The data that support the findings of this study are available from the corresponding author on 

reasonable request. 

Study Population 

Consecutive patients undergoing diagnostic angiography for investigation of exertional chest 

pain were screened from elective waiting lists. All patients underwent adenosine based CFR 

assessment and a subset of patients also underwent testing with a graded intracoronary 

acetylcholine infusion at the discretion of the catheter laboratory operator. High resolution 

perfusion CMR was performed within 6 weeks of the index angiography procedure. Inclusion 

criteria were preserved left ventricular (LV) systolic function (ejection fraction >50%) and 

unobstructed coronary arteries (no stenosis >30% in diameter, with fractional flow reserve > 

0.80). Exclusion criteria were intolerance to adenosine, chronic kidney disease (estimated 

glomerular filtration rate < 30 mL/min/m2), concomitant valve disease (greater than mild on 

echocardiography), recent acute coronary syndrome or cardiomyopathy. Antianginal 

medications were stopped and patients abstained from caffeine 24 hours before all study visits. 

The study protocol was approved by the UK National Research Ethics Service (17/LO/0203) 

and all participants gave written informed consent. The study was registered with the National 
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Institute for Health Research UK Clinical Research Network portfolio database (Central 

Portfolio Management System identifier: 33170). 

 

Catheterization Protocol 

Catheterization was performed via the right radial artery using standard coronary catheters. All 

patients received 1 mg intravenous midazolam, 1mg isosorbide dinitrate via the radial sheath 

and intra-arterial unfractionated heparin (70 U/kg) before intracoronary physiological 

measurements. A dual pressure and Doppler sensor-tipped 0.014-inch intracoronary wire 

(Combowire, Volcano Philips, California) was used to measure coronary pressure and flow 

velocity in the left anterior descending artery, as previously described [10]. Hemodynamic 

measurements were recorded under resting conditions and following intravenous adenosine-

mediated hyperemia (140mcg/kg/min) and continuously during bicycle exercise, using a 

specially adapted supine ergometer (Ergosana, Bitz, Germany) attached to the catheter 

laboratory table. Exercise began at a workload of 30W and increased every 2 min by 20W and 

continued until exhaustion [10-11]. After full recovery from exercise resting hemodynamic 

data was acquired before graded intra-coronary acetylcholine administration for the 

acetylcholine study. Graded intra-coronary acetylcholine concentrations of 0.182 and 18.2 

µg/ml were infused (2 ml over 3 min), through the coronary guide catheter with cine images 

obtained before and after for quantitative coronary angiography [13]. Severe coronary artery 

vasospasm was prespecified as >90% diameter reduction in target vessel caliber and these 

patients would be excluded from subsequent analysis of coronary physiology [14].  

 

Analysis of coronary physiological data 

Signals were sampled at 200 Hz, with data exported into a custom-made study manager 

program (Academic Medical Center, University of Amsterdam, Netherlands). Pan-cardiac 
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cycle analysis and wave intensity analysis (WIA) were performed on custom-made software, 

Cardiac Waves (Kings College London, U.K.) as previously described [10]. Coronary Flow 

Reserve (CFR) was calculated as average peak velocity (APV) during adenosine-mediated 

hyperemia divided by APV during rest.  

For measurement of acetylcholine flow reserve (AchFR), cross-sectional area (CSA) was 

calculated from the coronary diameter measured 5 mm distal to the tip of the guidewire. 

Coronary blood flow (CBF) was calculated using the equation CBF = CSA x APV x 0.5 at rest 

(CBFrest) and following 18.2 µg/ml intra-coronary acetylcholine administration (CBFach) and 

AchFR was calculated as: (CBFach – CBFrest / CBFrest). We did not proceed to higher doses 

of provocation testing for coronary spasm in this protocol. 

 

Wave Intensity Analysis 

WIA is a technique which provides directional, quantitative, and temporal information on the 

waves that govern coronary flow, as previously described [10]. Perfusion efficiency is a 

simplified metric to indicate energy expenditure in augmentation of coronary blood flow during 

different physiological states and is calculated as the percentage of accelerating wave intensity 

in relation total wave intensity, using areas under the respective curves. In this study, change 

in perfusion efficiency was measured from resting condition to peak exercise; in the healthy 

heart perfusion efficiency has been shown to increase from rest to peak exercise, therefore a 

reduction signified exercise pathophysiology [10-11]. 

 

3-Tesla Perfusion Cardiac Magnetic Resonance (CMR) Imaging protocol 

All scans were performed on a dedicated 3-Tesla CMR scanner (Achieva TX, Phillips 

Healthcare, Netherlands). Contiguous short-axis slices were acquired from the base to the apex 

for calculation of LV function and mass (CVI42, v5.1.1, Circle Cardiovascular Imaging, 
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Calgary, Ontario, Canada). Following 3 minutes of intravenous adenosine (140µg/kg/min) 

stress perfusion data were acquired in 3 short-axis slices with a saturation-recovery k-t 

sensitivity encoding accelerated gradient-echo method, followed by rest perfusion 15 minutes 

later, using a dual-bolus gadobutrol (Gadovist, Bayer, Berlin, Germany) contrast agent scheme 

to correct for signal saturation of the arterial input function as previously described [11].  

Quantitative analysis was performed as previously described by Fermi-constrained 

deconvolution [15]. Myocardial blood flow estimates (MBF) were quantified in ml/min/g 

during rest and hyperemic stress; myocardial perfusion reserve (MPR) was defined as the ratio 

between stress and rest perfusion. An MPR < 2.0 is widely accepted to signify “global 

myocardial ischemia” following vasodilator stress and was a parameter used to identify to 

optimal coronary vasodilator thresholds in this study [16]. Endocardial-to-epicardial perfusion 

(endo/epi) ratios were calculated during hyperemic stress and rest, by comparing the inner and 

outer layers of myocardium averaged across the basal, mid- and apical LV segments. The 

reversal of subendocardial hyperperfusion during vasodilator hyperemia is considered a marker 

of ischemia in patients with NOCAD [17]. A hyperemic endo/epi ratio < 1.0, signified the 

presence of “inducible ischemia” during stress and indeed forms the basis upon which visual 

appraisal for the presence of ischemic heart disease is performed [18]. CMR analysis was 

performed by observers blinded to the catheter laboratory results.  

 

Statistical Analyses 

The primary aim of this study was to determine the optimal CFR threshold for identifying 

myocardial ischemia and abnormal exercise physiology. We have adopted stress perfusion 

CMR as this is considered one of the most sensitive tests of ischemia that assesses the early 

part of the ischaemic cascade and powered the study accordingly. Assuming a 50% prevalence 

of inducible ischemia amongst NOCAD patients, a sample of 75 patients gives 95% confidence 
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intervals of 70-95% for sensitivity and 63-92% for specificity using a CFR measurement [19-

20]. To allow for potentially unequal distribution between groups and data censoring due to 

quality issues and incomplete datasets, we sought to enroll 90 patients. Continuous normally 

distributed data are expressed as mean±SD and compared using unpaired Student t tests or 

analysis of variance (ANOVA) testing as appropriate, whilst categorical variables were 

compared with chi-square tests. Receiver-operating characteristic (ROC) analysis was used to 

determine the optimal adenosine (CFR) and acetylcholine (AchFR) threshold for detecting 

ischemia and exercise maladaptation and likelihood ratios were used to determine optimal cut-

off values.  In the acetylcholine group, patients were subsequently classified based on these 

optimal dichotomous thresholds as concordant abnormal CFR (CFR-/AchFR-), discordant 

normal CFR (CFR+/AchFR-) and concordant normal CFR (CFR+/AchFR+). Correlations 

were assessed using Pearson correlation coefficient with correlation coefficients displayed as 

rho values. Baseline variables found to correlate with exercise perfusion efficiency or inducible 

ischemia on univariate analysis (p<0.05) were assessed by a multiple linear regression model. 

For all analyses, a p-value of 0.05 was considered significant and all p-values were two-sided. 

Statistical analyses were performed using Prism GraphPad 8.0.  

As the two most widely used CFR thresholds in clinical practice are 2.0 and 2.5, an exploratory 

analysis was also planned to compare patients with definite CMD (CFR<2.0), grey-zone (CFR 

2.0 – 2.5) or normal CFR (CFR>2.5) in relation to their invasive exercise physiology and CMR 

perfusion characteristics. 

 

 

 

 



 

11	

Results 

 

90 patients were enrolled into the study, 74 underwent catheter laboratory exercise and 77 

completed the CMR protocol, whilst 40 patients additionally completed the acetylcholine study 

protocol. Patient characteristics are shown in Table 1. LV ejection fraction was 66±6%, LV 

indexed mass was 44±13g/m2 and none of the subjects had scar or fibrosis identified during 

LGE imaging. Univariate regression analysis demonstrated no effect of risk factors upon 

primary outcome measures of exercise coronary physiology and myocardial perfusion.  

 

Optimal Vasodilator Thresholds 

The optimum dichotomous CFR threshold for predicting global myocardial ischemia was 2.5 

(sensitivity 95%, specificity 65%; AUC = 0.80, p<0.001) and for predicting subendocardial 

hypoperfusion (endo/epi < 1.0) the optimal CFR value was 2.6 (sensitivity 76%, specificity 

82%; AUC = 0.80, p < 0.001). The optimum dichotomous CFR threshold for predicting an 

improvement in exercise perfusion efficiency was 2.6 (sensitivity 83%, specificity 100%; AUC 

= 0.91, p < 0.001). A dichotomous CFR threshold of 2.6 had a positive predictive value of 

91%, a negative predictive value of 68% and 95% confidence interval [CI] of 83-98%. 

No patients had severe coronary artery vasospasm during graded infusion of acetylcholine and 

thus all were included in the subsequent analysis. The optimum dichotomous AchFR value for 

predicting inducible ischemia was 1.5 (sensitivity 96%, specificity 54%; AUC = 0.75, p = 0.01) 

and for predicting an improvement in perfusion efficiency was also 1.5 (sensitivity 92%, 

specificity 50%; AUC = 0.78, p = 0.02). A dichotomous AchFR threshold of 1.5 had a positive 

predictive value of 81% and negative predictive value of 86% and 95% CI of 59-96%.  
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Combined Vasodilator Analysis 

Applying the optimal vasodilator thresholds above, 24 patients were classified as concordant 

abnormal (CFR-/AchFR-), 8 as discordant normal CFR (CFR+/AchFR-) and 7 as concordant 

normal (CFR+/AchFR+) (Figure 1). Only one patient had normal acetylcholine flow reserve 

despite an abnormal adenosine flow reserve. CFR-/AchFR- patients had the highest rate of 

inducible ischemia, followed by CFR+/AchFR- patients, whilst ischemia was the least common 

in CFR+/AchFR+ patients (83% vs. 63% vs. 14%). A similar pattern observed for change in 

perfusion efficiency during exercise (-19% vs. -7% vs. +6%). 96% (24/25) of patients with 

endothelial-independent dysfunction had reduced AchFR, whilst 53% (8/15) of patients with 

normal endothelial-independent function had reduced AchFR. Patients with CFR+/AchFR- had 

a higher rate of inducible ischemia than those with normal AchFR (63% vs. 14%; p<0.001).  

 

CFR Grey-Zone Analysis 

A CFR threshold of <2.0 was 59% accurate at predicting global myocardial ischemia 

(sensitivity 41% specificity 86%) compared to a CFR < 2.5 threshold, which was 78% accurate 

(sensitivity 80% specificity 76%). For predicting an improvement in perfusion efficiency on 

exercise, the accuracy of a CFR < 2.0 threshold was 67% (sensitivity 50% specificity 100%) 

compared to an accuracy of 87% for a CFR < 2.5 threshold (sensitivity 81% specificity 100%). 

Myocardial perfusion and exercise physiology parameters of grey-zone patients resembled 

those with CMD (Table 2). The likelihood of inducible ischemia in grey-zone was 83% 

compared to 83% in CMD patients (p=0.98) and 27% in the normal CFR group (p<0.001). 

With adenosine-mediated hyperemia, MPR was 2.66±0.42 in the normal CFR group compared 

to 2.00±0.36 in grey-zone and 2.01±0.48 in CMD patients (p<0.001 and p=0.92), whilst the 

endo/epi ratio was 1.04±12 in the normal CFR group compared to 0.93±0.08 in grey-zone and 

0.95±0.09 in CMD (p<0.001 and p=0.65). With exercise, coronary flow increased by 1.90±0.62 
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in the normal CFR group compared to 1.43±0.21 in grey-zone and 1.43±0.32 in CMD patients 

(p=0.003 and p=0.96 compared to grey-zone, respectively). Perfusion efficiency during 

exercise was 65±14% in the normal CFR group compared to 45±8% in grey-zone and 43±12% 

in CMD (p<0.001 and p=0.47 respectively).  

 

Discussion  

 

Combined use of vasodilator testing to stratify an NOCAD diagnosis offers the optimal 

accuracy for identifying abnormal exercise physiology or global myocardial ischemia and 

hence an ischemic substrate for chest pain. An adenosine CFR threshold of 2.6 offers excellent 

specificity with a high positive-predictive value for ruling in ischemic chest pain whilst an 

AChFR of 1.5 has excellent sensitivity with a high negative-predictive value for ruling this out. 

NOCAD should therefore first be investigated by measuring adenosine-mediated 

vasodilatation and if normal, acetylcholine-mediated vasodilatation; wider access to coronary 

flow assessment and pharmacological testing would allow improved risk stratification amongst 

this common group of patients.     

 

Defining the Optimal CFR 

Adenosine is the most widely used vasodilator in both the invasive and non-invasive setting 

for characterizing patients with NOCAD. The COVADIS group acknowledge a CFR grey-zone 

between 2.0–2.5 and within our unselected NOCAD cohort this encompassed nearly 30% of 

the study population. We have demonstrated that a dichotomous CFR threshold of 2.5 can 

diagnose CMD with greater accuracy than adopting a 2.0 cut-off. Previous thresholds have 

been defined based upon the prediction of MACE, however the onset of ischemia and therefore 

the likelihood that a diminished CFR is better aligned with the clinical syndrome of CMD and 
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might occur earlier in the natural history of disease than the onset of death or myocardial 

infarctions [5-9, 21-24]. Indeed, there is a known continuous risk associated with worsening 

CFR and likelihood of MACE and when harder endpoints such as cardiovascular death are 

monitored, the best discriminatory CFR threshold is lower compared to prediction of angina 

recurrence [25]. The continuum of risk predicted by CFR, demonstrates that ischemia detection 

occurs prior to the onset of cardiovascular events, the latter perhaps too crude an endpoint for 

determining whether a patient with NOCAD has symptoms due to CMD (Figure 2). Our study 

has demonstrated that the onset of exercise and myocardial ischemia occurs at higher values of 

CFR closer to 2.6, the remaining question will be to determine whether outcome can be altered 

in response to earlier initiation of therapy.  

 

Endothelial Function Testing 

As diminished endothelium-independent function is almost invariably associated with 

endothelial dysfunction, there would be little added benefit in measuring acetylcholine 

response within this group in routine clinical practice. Conversely approximately half of all 

patients with normal endothelial-independent function have endothelial dysfunction, 

associated with a higher burden of inducible ischemia and exercise pathophysiology. Currently, 

the main use of acetylcholine in the catheter laboratory is for the diagnosis of coronary 

vasospasm. In high bolus doses, acetylcholine acts directly on muscarinic receptors in smooth 

muscle, producing vasoconstriction, an effect that occurs at lower doses in patients with 

pathological vasospastic angina [26]. At graded infusions, in the presence of healthy 

endothelium, acetylcholine produces vasodilatation when administered in vivo. Hasdai et al. 

demonstrated that patients with flow reduction to acetylcholine (endothelial dysfunction), had 

a greater incidence of major adverse cardiovascular events [9]. Our study demonstrates that an 

increment in CBF of more than 50% in response to acetylcholine rules out the presence of 
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inducible ischemia, and also predicts normal exercise coronary physiology. Despite the 

prognostic utility of this index, acetylcholine flow reserve does not feature within international 

guideline criteria for the diagnosis of microvascular angina, which largely centre around 

adenosine flow reserve measurements [3]. Combining the high sensitivity of intra-coronary 

acetylcholine vasodilator testing with the high specificity of adenosine testing would serve an 

accurate method for directly ruling out ischemic chest pain upon discovering NOCAD.  

	

Future Applications of Combined Vasodilator Testing 

Undifferentiated NOCAD yields poor outcomes with patients often undergoing repeat invasive 

testing, whilst less sensitive non-invasive tests may fail to identify diminished CFR [27-28]. 

The prevalence of microvascular dysfunction is recognized to be high amongst patients with 

NOCAD [29]. With an increasing recommendation to treat CMD now supported by 

randomised-trial data, defining this condition has become increasingly paramount; whilst 

comprehensive, the COVADIS guidelines do not specify a diagnostic CFR threshold nor the 

role of acetylcholine vasodilator testing [30]. Future placebo-drug trials should consider 

enrolling patients based upon a CFR < 2.6, followed by those with AchFR < 1.5, rather than 

adopting the historical, undifferentiated Cardiac Syndrome X definition. Use of disease-

modifying therapies such as statins and ACE-inhibitors may have greater benefit if initiated 

earlier in the disease course and should be studied in adequately powered trials enrolling well 

characterized patients [31].  

The current study would promote the assessment of acetylcholine flow reserve, following the 

discovery of normal adenosine flow reserve to increase the diagnostic accuracy for ruling out 

an ischemic source of chest pain symptoms (Figure 3). Subsequent high dose acetylcholine 

provocation testing could be performed in the same sitting, to also diagnose or exclude 

vasospastic angina although this would be contingent on the wider availability of this agent 
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within cardiac catheter laboratories. Until such time, our results indicate that use of a single 

vasodilator (adenosine) would yield acceptable diagnostic accuracy and should certainly be 

considered above a strategy of empirical management based on angiography alone.  

 

Study Limitations 

This was a mechanistic single-center study with relatively small numbers of patients, although 

this is the largest invasive exercise dataset in a cohort of patients with angina and no obstructive 

coronary artery disease. Subendocardial hypoperfusion during hyperemia represents a very 

early stage of the ischemic cascade and so its presence may not correlate perfectly with later 

stages such as wall motion abnormalities. Whilst this is a widely-adopted index for identifying 

the presence of inducible ischemia in several clinical trials, we have also used the increasingly 

recognized index of myocardial perfusion reserve [18]. Additionally, we aimed to use an 

invasive exercise endpoint in addition to help corroborate the presence of ischemia during non-

invasive testing. These are surrogate markers and therapy stratified according to the onset of 

these changes, may not necessarily reduce the risk of major adverse cardiovascular events and 

would need to be validated in adequately powered prospective studies. Our control group were 

not healthy volunteers but had symptoms that had led to angiography and indeed patients within 

this group may have abnormalities such as coronary vasospasm that could be unmasked during 

provocation testing. Our primary aim was to define the exercise physiology and myocardial 

perfusion of adenosine-mediated hyperemia (CFR assessment) as this is the most widely used 

method of characterizing CMD. Due to the demanding nature of the protocol, a smaller 

subgroup completed the acetylcholine study, however this remains the largest invasive protocol 

with paired high resolution perfusion imaging to date. Pre-medication using radial nitrates were 

necessary to enable bike exercise via this protocol and whilst the same dose was administered 

to each study participant, this may have attenuated the response to intra-coronary acetylcholine. 
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However, with angiography being increasingly performed via the transradial approach, this 

method is more representative of contemporary practice.  

 

 

Conclusion 

CFR is a readily available metric following the discovery of NOCAD, capable of characterizing 

pathology during physical exercise and global myocardial ischemia in addition to predicting 

MACE. A dichotomous CFR threshold of 2.6 has an excellent positive-predictive value for 

ruling-in the presence of ischemia, however a normal CFR does not rule out ischemia. 

Subsequent measurement of AchFR using acetylcholine will have an excellent negative 

predictive value for ruling-out the presence of ischemia; normal response to both vasodilators 

would suggest a non-ischemic cause of chest pain. As better characterized cohorts are enrolled 

into therapeutic studies, stratified management can be further refined to improve 

personalization of healthcare and better resource utilization.   
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 Study Cohort 
n = 90 

Acetylcholine 
Subgroup 

n = 40 

p-Value 

Demographics and Clinical Characteristics 

Female 69 (77) 30 (75) 0.82 

Age, years 58 ± 10 55 ± 10 0.22 

Hypertension 53 (59) 18 (45) 0.17 

Diabetes mellitus 23 (26) 9 (23) 0.64 

Dyslipidemia 49 (54) 16 (40) 0.15 

Smoker 24 (27) 9 (23) 0.56 

Angina CCS Class 2.0 (1.0-3.0) 2.0 (1.0-3.0) 0.99 

Medication prior to angiography 

Statin 38 (42) 15 (38) 0.49 

ACE-inhibitor / ARB 26 (29) 10 (25) 0.93 

Beta blocker 22 (24) 6 (15) 0.38 

CCB 26 (29) 9 (23) 0.78 

Values are n (%), median (IQR) or mean ± SD 

 

Table 1. Patient characteristics. ACE, angiotensin converting enzyme; ARB, angiotensin 

receptor blocker; CCB, calcium channel blocker; CCS, Canadian Cardiovascular Society 

Angina Class; IQR, interquartile range; SD, standard deviation.   
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 Normal 
CFR 

(n = 40) 

Grey-Zone 
(n = 26) 

CMD 
(n = 24) 

p Value 
(Normal 

CFR vs GZ) 

p Value 
(CMD vs 

GZ) 
Inducible 
Ischemia 

8/30 (27%) 20/24 (83%) 19/23 (83%) <0.001* 0.98 

MPR 2.66 ± 0.42 2.00 ± 0.36 2.01 ± 0.48 <0.001* 0.92 
Rest MBF 
(ml/min/g) 

1.13 ± 0.21 1.35 ± 0.43 1.37 ± 0.30 0.03 0.83 

Stress MBF 
(ml/min/g) 

3.00 ± 0.54 2.66 ± 0.77 2.69 ± 0.63 0.10 0.93 

Endo/Epi 1.04 ± 0.12 0.93 ± 0.08 0.95 ± 0.09 <0.001* 0.65 
Exercise 
Flow 
Reserve 

1.90 ± 0.62 1.43 ± 0.21 1.43 ± 0.32 0.003* 0.96 

Exercise PE 
(%) 

65 ± 14 45 ± 8 43 ± 12 <0.001* 0.47 

Change in 
PE from 
Rest (%) 

+5 ± 12 -21 ± 10 -16 ± 11 <0.001* 0.15 

 

Table 2. Grey-zone analysis of Coronary Flow Reserve. Change in PE from rest, change in 

perfusion efficiency from rest to peak exercise; Endo/Epi, hyperemic ratio of subendocardial 

to subepicardial myocardial blood flow; Exercise Flow Reserve, coronary blood flow during 

peak exercise / coronary blood flow during rest; Exercise PE, perfusion efficiency (proportion 

of accelerating wave energy) during peak exercise; CMD, coronary microvascular 

dysfunction; GZ, Grey-Zone; Inducible Ischemia, hyperemic endo/epi < 1.0; MBF, myocardial 

blood flow; MPR, myocardial perfusion reserve.*p<0.05. 

 

 

 

 

 

 

 

 



 

26	

Figures  

 

 

Figure 1. The identification of ischemic chest pain by measurement of acetylcholine flow 

reserve. Red points signify the presence of inducible ischemia (assessed using 3-Tesla 

perfusion cardiac magnetic resonance imaging), whilst green points signify the absence of 

ischemia. 
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Figure 2. Coronary Flow Reserve and a continuum of risk. The figure summarizes the 

relationship between CFR thresholds and the prognostic spectrum of cardiovascular outcomes, 

based on event rates from previously published studies.  

3T CMR, 3-Tesla perfusion cardiac magnetic resonance imaging; CAD, coronary artery 

disease; CVA, cerebrovascular accident; HF, heart failure hospitalization; IC Doppler, intra-

coronary Doppler studies, MI, myocardial infarction; PET, position emission tomography; 

TLR, target-lesion revascularization; TTDE, transthoracic dipyridamole echocardiography. 

[5-9, 21-24]. 

1.50 1.75 2.00 2.25 2.50 2.75 3.0

Coronary Flow Reserve

No IschemiaIschemia

Endothelial 
Dysfunction and 

Exercise 
Ischemia

Chest pain and Heart 
Failure Hospitalization

Death Myocardial Infarction

Murthy, 2011 (PET)

Taqueti, 2015 (PET)

van de Hoff, 2013 (IC 
Doppler)

Cortigiani, 2010 (TTDE)

Fukushimi, 2011 (PET)

Pepine, 2010 (IC 
Doppler)

Serruys, 1997 (IC 
Doppler)

Suwaidi, 2000 (IC 
Doppler)

Current Study, (IC 
Doppler + 3T CMR)

AlBadri, 2019 (IC 
Doppler)



 

28	

 

Figure 3. Coronary vasodilator testing in the catheter laboratory for identifying ischemic 

cause of chest pain. Likelihood of ischemia represents how progressive “normal” tests reduce 

the proportion of patients with ischemia on high resolution cardiac magnetic resonance 

imaging. AchFR, acetylcholine flow reserve; CFR, adenosine coronary flow reserve; NOCAD, 

non-obstructive coronary artery disease. 
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Visual	Overview.	

Incremental	Value	of	Invasive	Physiology	Assessment	 in	ruling	out	Ischemic	Chest	 Pain
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