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Abstract 
Microglia of the developing brain have unique functional properties but how their activation 

states are regulated is poorly understood. Inflammatory activation of microglia in the still-

developing brain of preterm born infants is associated with permanent neurological sequelae in 

9 million infants every year. Investigating the regulators of microglial activation in the 

developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and 

primary human and mouse microglia we found using analysis of genes and proteins that a 

reduction in Wnt/β-catenin signalling is necessary and sufficient to drive a microglial 

phenotype causing hypomyelination. We validated in a cohort of preterm born infants that 

genomic variation in the WNT pathway is associated with the levels of connectivity found in 

their brains. Using a Wnt agonist delivered by a BBB penetrant microglia-specific targeting 

nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, 

white matter injury and behavioural deficits. Collectively, these data validate that the Wnt 

pathway regulates microglial activation, is critical in the evolution of an important form of 

human brain injury and is a viable therapeutic target.  
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Introduction 
 Neuroinflammation is a key pathological mechanism in almost all acute and 

degenerative diseases in both the adult and in the developing brain(Perry et al., 2010; Hagberg 

et al., 2012; Hickman et al., 2018). Microglia (MG) and infiltrating macrophages (Mφ) are 

major contributors to neuroinflammation(Perry et al., 2010). These cells are capable of 

acquiring numerous complex functional states dependent on the specific nature of an insult or 

injury, including cytotoxic responses, immune regulation, or injury resolution(Michell-

Robinson et al., 2015; Wolf et al., 2017). Limiting the cytotoxic activation of MG/Mφ while 

promoting injury resolution represents a rational neuroprotective strategy(Rivest, 2009; Miron 

et al., 2013), that requires an in-depth understanding of the molecular mechanisms controlling 

their phenotypes across forms of injury. Understanding of these regulatory mechanisms is 

increasing at an extraordinary rate for adult disorders. However, MG do not reach maturity until 

around the time of birth in humans, or the equivalent developmental time point of 

approximately postnatal day 14 in rodents(Butovsky et al., 2014; Bennett et al., 2016; 

Miyamoto et al., 2016; Krasemann et al., 2017). These MG, termed pre-microglia(Matcovitch-

Natan et al., 2016), have specialised functions in brain development(Thion et al., 2018), but 

there is a striking paucity of knowledge on the regulators of MG phenotype that is relevant to 

injury/insult to the developing brain.  

Preterm birth is the commonest cause of death and disability in children under 5 years 

of age, exceeding deaths from malaria or pneumonia(Lim et al., 2012). Preterm birth, birth 

before 37 of 40 weeks’ gestation, occurs in fifteen million infants yearly, rates are increasing 

in developed countries (e.g. 7% of all births in the UK; 13% in the US) and we are limited in 

our predictive and therapeutic options for these vulnerable infants. Up to 60% of infants born 

preterm will be left with persistent cognitive and neuropsychiatric deficits including autism-

spectrum, attention-deficit disorders and epilepsy(Wood et al., 2000; Delobel-Ayoub et al., 

2009). Insights into the previously poorly understood pathophysiology of preterm birth(Back 

et al., 2005; Billiards et al., 2008; Delobel-Ayoub et al., 2009; Moore et al., 2012; Verney et 

al., 2012) have enabled us to design animal models of improved relevance to the constellation 

of injuries seen in contemporary cohort of infants, collectively called encephalopathy of the 

premature infant. Encephalopathy of the premature infant involves cerebral white matter injury 

due to oligodendrocyte maturation blockade and the most severe of injuries widespread 

neuronal/axonal disease, both of which are linked to the activation of MG/Mφ(Volpe, 2009b). 

The strongest predictor for outcomes we currently have in encephalopathy of the premature 
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infant is the severity of white matter / connectivity changes(Woodward et al., 2006; Nosarti et 

al., 2008; Spittle et al., 2009; Nosarti et al., 2014). MG/Mφ activation driving 

neuroinflammation in preterm born infants is often caused by exposure to maternal fetal 

infections or inflammation, such as chorioamnionitis, or post-natal sepsis(Hagberg and 

Mallard, 2005; Hagberg et al., 2015). Endemic but often clinically silent maternal inflammatory 

events are considered the chief cause of preterm birth(Wu et al., 2009). As such, exposure to 

inflammation is both a driver of preterm birth and of brain injury, and further highlighting its 

importance, increased indices of exposure to inflammation are the strongest predictor of poor 

neurological outcome(Hillier et al., 1993; Dammann and Leviton, 2004; Wu et al., 2009).  

The Wnt (wingless-type MMTV [mouse mammary tumour virus] integration site) 

pathways are divided into the canonical Wnt/β-catenin, the non-canonical Wnt/planar cell 

polarity (PCP) pathways and the Wnt/calcium pathway. The Wnt pathways have well studied 

critical roles in the early developmental events of body axis patterning, and brain cell fate 

specification, proliferation and migration(Sokol, 2015). Aberrant regulation of canonical 

WNT/β-catenin signalling is strongly implicated in the onset and progression of numerous 

cancers(Zhan et al., 2017). In development, the canonical Wnt pathway has been described as 

playing a repressive role in the maturation of oligodendrocytes(Shimizu et al., 2005; Feigenson 

et al., 2009; Feigenson et al., 2011; Yuen et al., 2014). However our knowledge has increased 

and we appreciate that elaborate spatial and temporal regulation of Wnt signalling nudges 

oligodendrocytes through multiple stage of maturation(Zhao et al., 2016) and reviewed in (Guo 

et al., 2015). Interestingly, Wnt signalling in endothelial cells has also been shown to have 

important roles in the transmigration of immune cells in the context of multiple sclerosis 

(Shimizu et al., 2016; Lengfeld et al., 2017). As such, it is clear that the effects of Wnt pathway 

activation are highly cell and context specific. However, a key regulatory role of the Wnt 

pathways in the response of MG/Mφ to injury or insult has not been demonstrated, especially 

in the developing brain. Although, activation of the Frizzled receptors (a family of G protein-

coupled receptors) with Wnt ligands has complex effects on some facets of MG activity in 

vitro(Halleskog et al., 2012; Halleskog and Schulte, 2013). Experimental evidence in other cell 

types also supports that the Wnt/ β-catenin pathway is involved in aspects of inflammatory 

signalling, namely there are links between expression of the inflammatory mediator COX2 

(cyclooxygenase-2) and Wnt/β-catenin in cancer(Buchanan and DuBois, 2006), and evidence 

that β-catenin regulates at numerous levels the cytokine/pathogen induced activation of NF-

κB(Ma and Hottiger, 2016). As such, in the hunt for a regulator of immature MG activation 

state with a view to therapy design the Wnt pathway is an interesting and rationale candidate. 
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In the present study, we used our mouse model of encephalopathy of prematurity in 

which we clearly demonstrate a causal link between MG/Mφ activation and a myelin deficit. 

This mouse model of encephalopathy of prematurity recapitulates the key neuropathological 

findings from preterm born infants, including a myelination deficit which is the focus of this 

study(Haynes et al., 2008; Volpe, 2009a; Verney et al., 2012). Using a combination of 

approaches across species, including human, we reveal for the first time that inhibition of the 

Wnt/β-catenin pathway is necessary and sufficient to drive this MG/Mφ pro-inflammatory 

phenotypic transformation. We also verified the clinical relevance of the Wnt pathway to 

anatomical white matter structure in a cohort of human preterm born infant brain using an 

integrated imaging genomics analysis. Finally, we employed a novel 3DNA nanocarrier that 

carries cargo across the blood brain barrier (BBB) following non-invasive intraperitoneal (i.p.) 

administration and that then delivers cargo specifically to MG/Mφ. Using this 3DNA 

nanocarrier we show that preventing Wnt pathway down-regulation specifically in MG/Mφ 

reduces the pro-inflammatory MG/Mφ phenotype, white matter damage and long-term memory 

deficit in our model of encephalopathy of prematurity.  

Altogether, these findings identify the Wnt/β-catenin pathway as a key regulator of 

MG/Mφ activation state across species and a potential target for the treatment of 

encephalopathy of prematurity and other neuroinflammatory conditions.   
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Materials and Methods 
Study approval 

Experimental protocols were approved by the institutional guidelines of the Institut National de 

la Santé et de la Recherché Scientifique (Inserm, France) (Approval 2012-15/676-0079) and 

then the Ethic committee and the services of the French ministry in charge of higher education 

and research according the directive 2010/63/EU of the European Parliament (Approval #9285-

2016090611282348 and #9286-2016090617132750), and met the guidelines for the United 

States Public Health Service’s Policy on Humane Care and Use of Laboratory Animals (NIH, 

Bethesda, Maryland, USA).  

The EPRIME study was reviewed and approved by the National Research Ethics Service, and 

all infants were studied following written consent from their parents. 

For human MG cell culture, all procedures had ethical approval from Agence de Biomédicine 

(Approval PFS12-0011). Written informed consent was received from the tissue donor. 

 

Study design 

A summary of the independent and total replicates for all experiments, described relative to the 

figures, is available in Supp Table 1.  

 

Nomenclature of MG phenotype  

We have adopted nomenclature consistent with our previous work in primary MG(Chhor et al., 

2013) and the work of others (Michell-Robinson et al., 2015) acknowledging that this is a 

simplification necessary to facilitate description of the data. To simplify, we distinguished three 

phenotypes according to the mRNA expression levels of markers listed in brackets: Pro-

inflammatory (Nos2, Ptgs2, Cd32, Cd86 and Tnfα), anti-inflammatory (Arg1, Cd206, Lgals3, 

Igf1, Il4 and Il10) and immunoregulatory (Il1rn, Il4ra, Socs3 and Sphk1). 

 

Mice 

Experiments were performed with male OF1 strain mice pups from adult females purchased 

from Charles River (L’Arbresle, France) or Transgenic (Tg) male mice born in our animal 

facility. See the justification below in animal model section regarding use of male mice only. 

Tg mice B6.129P-Cx3cr1tm1Litt/J (CX3CR1-GFP) mice, B6.129-Ctnnb1tm2Kem/KnwJ (β-

cateninlfox) mice and B6.129P2-Lyz2tm1(cre)Ifo/J (LysMCre) mice were purchased from The 

Jackson Laboratory (ME, USA). CX3CR1-GFP mice express EGFP in monocytes, dendritic 
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cells, NK cells, and brain MG under control of the endogenous Cx3cr1 locus. Only 

heterozygous (Cx3cr1GFP/+ and β-cateninΔ/+) mice were used in this study. Cx3cr1GFP/+ are 

obtained by crossing Cx3cr1GFP/GFP with C57bl6J (WT) mice. LysMCre mice are useful for Cre-

lox studies of the myeloid cell lineage. Here, we used it to analyse β-catenin deficit in the brain 

MG by crossing β-cateninflox with LysMCre mice. Control mice were obtained by crossing β-

cateninflox with C57bl6J (WT) mice. 

 

Transgenic fish lines and fish maintenance 

Tg (pu1::Gal4-UAS-TagRFP)(Sieger et al., 2012) fish were kept at 26.5 °C in a 14 hour 

light/10 hour dark cycle. Embryos were raised at 28.5 °C in E3-solution until 120 hpf for 

analyses.  

 

Drugs 

Mouse cytokines (IL-1β, IL-4) were purchased from R&D systems (France). LPS-EB Ultrapure 

was purchased from InvivoGen (France). To inhibit the Wnt/β-catenin pathway, we used 

XAV939 (Sigma-Aldrich, France). To activate it, we used CT99021 (Selleckchem, TX, USA), 

Lithium Chloride (Sigma-Aldrich, France) and L803mts (Tocris, UK). Chelerythrine was 

purchased from Sigma-Aldrich. To decide on the choice of modulators of Wnt, including 

considerations for doses and consideration of off target effects we referred to reviews on the 

subject and previously published works(Fancy et al., 2011; Fancy et al., 2014; Keats et al., 

2014; Tran and Zheng, 2017). The L803mts peptide and a scrambled peptide (SCR) were 

purchased conjugated to short oligonucleotide with disulphide bond linker from BioSynthesis 

(TX, USA) then hybridized to Cy3-labelled 3DNA at Genisphere (PA, USA). L803mts was 

chosen due to its structural properties allowing it to be conjugated to 3DNA and high tolerability 

have been demonstrated in mice(Kaidanovich-Beilin and Eldar-Finkelman, 2006).  

 

Model of encephalopathy of prematurity induced by systemically driven neuroinflammation 

Mice were housed under a 12-hour light-dark cycle, had access to food and water ad libitum 

and were weaned into same sex groups at P21. Our animal facility has no known pathogens. 

On P1 pups were sexed and where necessary litters were culled to 6-8 (Tg mice) or 12 (OF1 

mice) pups. Assessments of injury and outcomes were made only in male animals and all pups 

within a litter received identical treatment to reduce any effects of differing maternal care. All 

experiments include pups from at least three separate litters. Allocation to PBS or IL-1β 

exposure was made in an cage by cage alternating manner. Systemic inflammation was induced 
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via intraperitoneal (i.p.) IL-1β exposure as previously described(Favrais et al., 2011). Male 

mice only are used, as only male pups display a myelin deficit following the induction of 

systemic inflammation to drive neuroinflammation in this paradigm. Specifically, female mice 

do not have a significant loss of the MBP protein or APC positive cell number in adulthood like 

the male mice (P Gressens, unpublished data). This higher severity of injury in male animals is 

in accordance with observations of a greater burden of neurological injury in male infants 

following perinatal insult (Johnston and Hagberg, 2007; Twilhaar et al., 2018). In brief, a 5 µl 

volume of phosphate-buffered saline (PBS) containing 10 µg/kg/injection of recombinant 

mouse IL-1β (R&D Systems, MN, USA) or of PBS alone (control) was injected i.p. in male 

pups twice a day (morning and evening) on days P1 to P4 and once in the morning at P5. Animal 

health was monitored via weight and general visual health assessment and there were no 

adverse events. 

 

Morphological analysis of MG  

P1 and P3 brain from Cx3Cr1-GFP mice administered PBS or IL-1β were fixed for 24 hours in 

4% buffered formalin (QPath, Labonord SAS, France). Cerebral tissue was sliced along a 

sagittal plane on a calibrated vibratome (VT1000 S, Leica, Germany) into 100 µm thick free-

floating slices. Morphological analysis of MG was assessed as previously described(Verdonk 

et al., 2016), using spinning disk confocal system (Cell Voyager - CV1000, Japan) with a 

UPLSAPO 40x/NA 0.9 objective and the use of a 488-nm laser. A mosaic of more than one 

hundred pictures covering approximately 3.17 mm² of tissue (cortex and white matter) per 

brain. An automatic image analysis using a custom designed script developed with the 

Acapella™ image analysis software (version 2.7 - Perkin Elmer Technologies) was realize to 

obtain density, cell body area, number of primary, secondary and tertiary processes and the area 

covered by the MG processes in 2D. A complexity index was calculated to analyse the 

morphological modifications induced by IL-1β. 

 

Neural tissue dissociation and CD11B+ MG or O4+ oligodendrocyte magnetic-activated cell 

sorting  

At P1, P2, P3, P5 and P10, brains were collected for cell dissociation and CD11B+ cell 

separation using a magnetic coupled antibody anti-CD11B (MACS Technology), according to 

the manufacturer’s protocol (Miltenyi Biotec, Germany) and as previously described(Schang 

et al., 2014). In brief, mice were intracardially perfused with NaCl 0,9%. After removing the 

cerebellum and olfactory bulbs, the brains until were pooled (n=2-3 per sample except at at 
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P10, n=1) and dissociated using the Neural Tissue Dissociation Kit containing papain and the 

gentleMACS Octo Dissociator with Heaters. MG were enriched using the anti-CD11B (MG) 

MicroBeads, pelleted and conserved at -80 °C. The purity of the eluted CD11B+ fraction was 

verified as previously described (15). At P5 and P10, brains were collected for, O4+ 

oligodendrocytes cell separation using a magnetic coupled antibody anti-O4 (MACS 

Technology), according to the manufacturer’s protocol (Miltenyi Biotec, Germany) and as 

previously described (Schang et al., 2014). 

 

RNA extraction and quantification of gene expression by real-time qPCR 

Total RNA was extracted with the RNeasy mini kit according to the manufacturer’s instructions 

(Qiagen, France). RNA quality and concentration were assessed by spectrophotometry with the 

NanodropTM apparatus (Thermofisher Scientific, MA, USA). Total RNA (500ng) was 

subjected to reverse transcription using the iScriptTM cDNA synthesis kit (Bio-Rad, France). 

RT-qPCR was performed in triplicate for each sample using SYBR Green Super- mix (Bio-

Rad) for 40 cycles with a 2-step program (5 s of denaturation at 95°C and 10 s of annealing at 

60°C). Amplification specificity was assessed with a melting curve analysis. Primers were 

designed using Primer3 plus software (See sequences in Supp Table 2). Specific mRNA levels 

were calculated after normalization of the results for each sample with those for Rpl13a mRNA 

(reference gene). The data are presented as relative mRNA units with respect to control group 

(expressed as fold over control value). 

 

Immunohistofluorescence 

For frozen sections, P1 or P5 mice were intracardially perfused with 4% paraformaldehyde in 

0.12M phosphate buffer solution under isoflurane anaesthesia. Brains were then post-fixed in 

4% paraformaldehyde (Sigma-Aldrich, France) overnight at 4°C After 2 days in 30% sucrose 

0.12M phosphate buffer solution, brains were frozen at -45°C in isopentane (Sigma-Aldrich, 

France) before storage at -80°C until sectioning on a cryostat (thickness14µM). 

Immunohistofluorescence was performed as previously described(Miron et al., 2013). Slides 

were permeabilized and blocked for 1 hour and primary antibody was applied overnight at 4 °C 

in a humid chamber. To detect MG, rabbit antibody to IBA1 (Wako, 1: 500) was used. To detect 

proinflammatory MG we used mouse antibody to iNOS (BD Biosciences, 610329, 1:100), rat 

antibody to CD16/CD32 (BD Pharmingen, 553141, 1:500), rabbit antibody to COX2 (Abcam, 

Ab15191, 1:500). To detect anti-inflammatory MG, we used goat antibody to Arginase-1 

(ARG1) (Santa Cruz Biotechnology, sc-18355, 1:50), rabbit antibody to mannose receptor 
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(MR) (Abcam, ab64693, 1:600). To detect MG and Mφ rat antibody to CD68 (Abcam, 

ab53444, 1:100) was used. Fluorescently conjugated secondary antibody to goat IgG (A21432), 

antibodies to rabbit IgG (A11034, A10042), antibodies to rat IgG (A21434, A11006, A21247) 

and antibody to mouse IgG (A21042), were applied for 2 hours at 20–25 °C in a humid chamber 

(1:500, Invitrogen). Following counterstaining with Hoechst, slides were coverslipped with 

Fluoromount-G (Southern Biotech, Cliniscience, France). Antibody isotype controls (Sigma-

Aldrich) added to sections at the same final concentration as the respective primary antibodies 

showed little or no nonspecific staining. All manual cell counts were performed by an 

investigator who had been blinded to the group allocation of the sample. 

 

In vivo treatments with XAV939, 3DNA L803mts Cy3, and Gadolinium 

XAV939 (250µM, 0.5nmol/injection) or PBS/DMSO (vehicle) and 3DNA L803mts Cy3 

(200ng/injection) or 3DNA SCR Cy3 (200ng/injection) (control peptide) were injected into the 

right ventricle of mice pups at P1 using 26-G needle linked to a 10µL Hamilton syringe mounted 

on a micromanipulator and coupled to a micro-injector (Harvard Apparatus, MA, USA; outflow 

2 µL/min), 3DNA SCR or L803 mts Cy3 were injected 1 hour before i.p. injection of PBS or 

IL-1β. Three hours after PBS or IL-1β injection or 4 hours after XAV939 or vehicle injection, 

pups were sacrificed for CD11B-postive cell sorting. Chronic treatment with 3DNA L803mts 

Cy3 were performed by i.p. co-injections of PBS or IL-1β with 3DNA L803mts Cy3 

(500ng/injection) or 3DNA L803mts Cy3 (500ng/injection) twice a day between P1 and P3 and 

once a day at P4 and P5. Effect of this treatment on myelination was analysed at P10 and 

behavioural tests were realized in adulthood (2-3months). To analyse uptake of 3DNA in liver 

and spleen, one i.p. injection of 3DNA Cy3 (500ng/injection) with PBS or IL-1β was performed 

and animals sacrificed 4 hours later. To analyse uptake of 3DNA in brain, animals was 

sacrificed 4 hours after i.c.v. injection at P1, and at the end of the i.p. treatment at P5. 

 

Selective depletion of pro-inflammatory MG in white matter injury was performed using 

gadolinium chloride (GdCl3) as previously described(Miron et al., 2013) with slight 

modifications. Briefly, PBS or Gadolinium (200nmol/injection, Sigma, France) was injected 

into the corpus callosum of mice pups at P1, 1 hour before i.p. injections of PBS or IL-1 β using 

26-G needle linked to a 10µL Hamilton syringe mounted on a micromanipulator and coupled 

to a micro-injector (Harvard apparatus, outflow 2 µL/min). Effect of pro-inflammatory MG 

depletion on MG cell phenotype and myelination was analysed at P10. 
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Western Blotting 

Frozen right anterior cortex from P15 mice was homogenized in RIPA Buffer (Sigma-Aldrich) 

containing protease inhibitors (cOmplete Tablets, Roche) in gentleMACS M tubes using a 

gentleMACS dissociator (Miltenyi Biotec) as per the manufacturer’s instructions. Samples 

were centrifuged (10,000 g, 10 min, 4°C) and the pellets were stored for later use. Equal 

amounts of protein (25µg) as determined by BCA protein assays (Sigma-Aldrich), were diluted 

with Lamemli sample buffer (Biorad) containing 2-mercaptoethanol (Sigma-Aldrich) and then 

separated in Mini-protean TGX gels (Any kD, Biorad, 80 V for 1 h 50 min). Proteins were then 

electrotransferred (Trans-blot Turbi, Biorad) onto a 0.2µ nitrocellulose membrane (Trans-Blot 

Turbo Transfer Pack, mini, Biorad). The membrane was cut into an upper and lower portion 

and both were incubated in blocking solution (5% bovine serum albumin, 0.1% Tween 20 in 

TBS) for 1 h. The upper and lower parts were incubated respectively with mouse anti-b-actin 

(Sigma-Aldrich AC-74, 1:20,000) and rat anti-MBP (Millipore MAB386 1:500) overnight at 

4°C in blocking solution. Blots were rinsed with 0.1% Tween 20 in TBS and incubated for 1 h 

with a HRP-conjugate goat anti-mouse IgG (1:2,000; sigma-Aldrich) or HRP-conjugate goat 

anti-rat IgG (1:10,000; Invitrogen) in blocking solution. The blots were washed three times with 

0.1% Tween 20 in TBS for 5 min. Membranes were processed with the Clarity Western ECL 

substrate (Biorad), and the proteins of interest were investigated with Syngene PXi (Syngene) 

coupled to acquisition software. The immunoreactivity of four isoforms of MBP was compared 

with that of actin controls using NIH image J soft- ware (http://rsb.info.nih.gov/ij/).  

 

Electron Microscopy 

At P30 mice were transaortically perfused with 20 ml saline followed by 100 ml of ice-cold 2% 

paraformaldehyde with 2% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4 (PB). Brains were 

post-fixed overnight in 2% paraformaldehyde at 4°C. Sagittal sections were cut on a vibratome 

at 70 µm thickness, post-fixed in 1% glutaraldehyde for 10 min, treated with 1% osmium for 

10 min, dehydrated in an ascending series of ethanol, which included 1% uranyl-acetate in 70% 

ethanol. Sections were then treated with propylene oxide, equilibrated overnight in Durcupan 

ACM (Fluka, Buchs, Switzerland), and flat-embedded on glass slides for 48 h at 60°C. Blocks 

of the trunk of the corpus callosum (+0.1 mm to -0.1 mm from bregma) close to the midline 

were cut out from the sections and glued to blank cylinders of resin. Ultrathin sections were cut 

on a Reichert Ultracut S microtome and collected on pioloform-coated single-slot grids. 

Sections were stained with lead citrate and examined with a Hitachi HT7700 electron 
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microscope (Hitachi High-Technologies, Tokyo, Japan) equipped with an AMT XR-41B 4 

Megapixel camera (Advanced Microscopy Techniques, Woburn, MA, USA). 

The myelinated axon diameter was measured on cross-sectional axons. For each animal, images 

were acquired at three dorsoventral positions of three rostrocaudal levels. The thickness of the 

myelin sheath was assessed by determining the G ratio (axon diameter/total fiber diameter). An 

average of 1600 measurements of myelinated axons per animal were performed, using the Fiji 

version of ImageJ(Schindelin et al., 2012). The axons were pooled by size according to their 

small (0.2–0.4 µm), medium (0.4–0.8 µm) or large (>0.8 µm) diameter. Results were compared 

by one-way ANOVA followed by Bonferroni's multiple comparison test, using GraphPad Prism 

5.0 (Graph-Pad Software, San Diego, CA, USA). The value of P < 0.05 was considered 

statistically significant. 

 

Behaviours - Actimetry 

The horizontal (spontaneous locomotion) and vertical (rearing) activities were individually 

assessed in transparent activity cages (20x10x12cm) with automatic monitoring of photocell 

beam breaks (Imetronic, Bordeaux, France). Actimetry test was performed at ≈ 2 months (day 

65), with recording every 30 minutes over 23 hours, in order to evaluate the effect of IL-1β and 

3DNA treatments i.p. injections on spontaneous locomotor activity, as modified locomotor 

activity could lead to biased results from other behavioural tests requiring locomotion. 

 

Behaviours - Open-field 

The open-field test was performed at ≈ 2.5 months (day 80) using a square white open-field 

apparatus (100x100x50cm) made of plastic permeable to infrared light. Distance travelled and 

time spent in inactivity were recorded by a videotrack system (Viewpoint®) during the 9 

minutes’ test. 

 

Behaviours - Barnes maze test 

The Barnes maze test was performed at 3 months (day 90 to 105). The maze is a wet, white and 

circular platform (80cm diameter), brightly illuminated (400lux), raised 50cm above the floor, 

with 18 holes (4.5cm) equally spaced around the perimeter. A white hidden escape box 

(4x13x7cm), representing the target, was located under one of the holes. Prior to the test, each 

mouse was subjected to a habituation trial where the mouse was directly put in the escape box 

for 30 seconds. 

Learning: the mouse was placed in the centre of the circular maze and was allowed to explore 
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the platform and holes for 3 minutes’ maximum. The distance travelled was recorded using a 

Videotrack system (Viewpoint®). Latency to reach the escape box, and number of errors 

(number of empty holes visited) were manually noted. When the mouse found, and entered the 

escape box, the Videotrack recording was stopped, and the mouse remained in the escape box 

for an additional 10 seconds before returning to its home cage. If the mouse did not enter 

spontaneously, it is gently put toward the escape box, before returning to its home cage. On the 

first day of training, mice underwent 2 trials after the habituation trial; thereafter, 3 trials were 

given per day, with a 2 hours’ interval. 

Probe trial: on the 5th day of learning, the probe trial, with the escape box removed and lasting 

90 seconds, is used to assess spatial memory performances. Time spent and distance travelled 

in each sextant (defined by one of the 6 parts of the maze, that includes 3 holes) were recorded. 

The target zone is defined as the part, which contains the target hole and two adjacent holes. 

Long term trial: 15 days after learning, a new trial, with the escape box, is used to assess long-

term retention memory. Escape latency and distance travelled to reach the target were recorded. 

 

Immunohistochemistry 

Brains were collected at P15 or P30 and immersed immediately after sacrifice in 4% 

formaldehyde for 4 days at room temperature, prior to dehydration and paraffin embedding. 

Section was realized using a microtome. Immunostaining was performed as previously 

described(Favrais et al., 2011) using mouse antibody to Myelin Basic Protein (MAB382, 

Millipore, France 1: 500) or rabbit antibody to OLIG2 (JP18953 IBL 1:200). The intensity of 

the MBP immunostaining in the anterior corpus callosum and the number of OLIG2+ cells were 

assessed by a densitometry analysis through NIH ImageJ Software (http://imagej.nih.gov/ij/). 

Optical density was deduced from grey scale standardized to the photomicrograph background. 

Corpus callosum and/or cingulum were defined as region of interest. One measurement per 

section (on 40000µm2 area) and 4 sections were analysed in each brain. 

 

Primary mouse MG culture  

Primary mixed glial cell cultures were prepared from the cortices of postnatal day 1 OF1 mice, 

as previously described(Chhor et al., 2013). After 14 days, MG were purified and pelleted via 

centrifugation and re-suspended in DMEM/PS/10% FBS at a concentration of 4x105 cells/mL. 

One or two mL/well of cell suspension was plated in 12-well (for qRT-PCR) or 6-well (for 

ELISA) culture plates respectively. For immunofluorescence, 250 µL of cell suspension was 

plated in µ-Slide 8 Well Glass Bottom (Ibidi, Biovalley, France). Post-plating, media was 
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replaced after 1 hour. Based on previous work from our lab(Chhor et al., 2013), the day after 

plating, MG were exposed for 4 hours to DMEM (control) or IL-1β at 50 ng/mL, IL-4 at 20 

ng/mL, diluted in DMEM. For RT-qPCR or ELISA analysis, media were removed and plates 

frozen at -80°C. For immunofluorescence experiments, cells were fixed at room temperature 

with 4% paraformaldehyde for 20 minutes.  

 

Mixed mouse glial and OPC cultures 

Cortical mixed glial cultures and purified OPC were obtained from the cortices of postnatal day 

1 OF1 mice as previously described with slight modification (40). Mixed glial cells were 

resuspended in MEM-C, which consists of Minimal Essential Medium (MEM) supplemented 

with 10% FBS (Gibco), Glutamax (Gibco), and 1% PS, and plated at 2x105 cells/cm2 onto T75 

flasks for subsequent OPC purification or Ibidi 8-well chamber slides (Biovalley, France) for 

mixed glial culture treatment. For this purpose, mixed glial cultures were maintained in 

proliferation in MEM-C for 7 days, then maintained during 10-12 days in differentiation 

medium which consists of Dulbecco's Modified Eagle Medium (DMEM-F12) with glutamine 

(Gibco), N2 (Gibco) and 1% PS. Half of the wells were exposed to IL-1β (50 ng/ml) and 

medium was changed every 2-3 days. Alternatively, mixed glial cultures plated onto T75 flasks 

were maintained for 9-12 days in MEM-C and purified OPC cultures were prepared by a 

differential shake(McCarthy and de Vellis, 1980). OPCs were seeded onto Ibidi 8-well chamber 

slides at a density of 3 x 104 cells/cm2 in proliferation medium which consists of MACS Neuro 

Medium with Neurobrew 21 (Miltenyi Biotec), Glutamax, 1% PS, FGFb and PDGFa (10 ng/ml 

each, Sigma-Aldrich). After 72h, differentiation was induced by FGFb and PDGFa withdrawal 

and by adding T3 (40 ng/ml, Sigma). Half of the wells were exposed to IL-1β (50 ng/ml). After 

10-12 days (for mixed glial cultures) or 72h (for OPCs) of IL-1β, cells were fixed 20 min with 

4% paraformaldehyde.  

 

Primary human MG culture  

Within 1 hour of scheduled termination (age 19 and 21 weeks of amenorrhea) brain tissues were 

collected from two human foetuses without any neuropathological alterations. Brain tissue (4 

g) was minced and further mechanically dissociated using 1ml micropipettor in HBSS with 

Ca2+ and Mg2+. Using a 70µM strainer a single cell suspension was obtained. MG/Mφ isolation 

were obtained using anti-CD11B (MG) microbeads (MACS Technology), according to the 

manufacturer’s protocol (Miltenyi Biotec, Germany), as above. CD11B+ MG/Mφ were pelleted 

via centrifugation and re-suspended in DMEM/PS/10% FBS at a concentration of 5x106 
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cells/mL. Cells were plated in 12-well plates (1ml/well) for qRT-PCR analysis. For 

immunofluorescence analysis, cells were plated in µ-Slide 8 Well Glass Bottom (Ibidi, 

Biovalley, France). 48 hours after plating, MG were exposed for 4 hours to DMEM (control) 

or LPS 10 ng/mL diluted in DMEM. For RT-qPCR media were removed and plates frozen at -

80°C. For immunofluorescence experiments, cells were fixed at room temperature with 4% 

paraformaldehyde for 20 minutes. 

 

Immunocytofluorescence 

Immunofluorescence staining was performed as previously described(Favrais et al., 2011), 

using mouse antibody to MBP (MAB382, 1: 500; Millipore), rabbit antibody to OLIG2 (18953, 

1:500 IBL-America, MN, USA), rabbit antibody to beta-catenin (E247, 1:100; Millipore), 

rabbit antibody to COX2 (Ab15191, 1: 400; Abcam, MA, USA) goat antibody to ARG1 (sc 

18354, 1:400; Santa-Cruz, CA , USA) and IL1RA (sc 8482, 1:200, Santa-Cruz). Fluorescently 

conjugated secondary antibody (all Thermofisher Scientific) to mouse IgG (A21236), to rabbit 

IgG (A21206) and to goat IgG (A11055), were applied for 2 hours at 20–25 °C in a humid 

chamber (1:500, Invitrogen). Slides were coverslipped with Fluoromount-G (Southern Biotech, 

AL, USA). To analyse MBP labelling, MBP area was assessed as the percentage of total area 

above threshold using NIH ImageJ software (http://imagej.nih.gov/ij/) and was normalized to 

the number of Olig2-positive cells. Means were expressed as fold change over control 

condition. 

 

Microarrays and data pre-processing 

Gene expression quantification, including RNA extraction and quality assurance, was 

performed by Miltenyi Biotec on a total of 24 samples of CD11B+ cells and 20 samples of O4+ 

cells from the brains of mice exposed to IL-1β or PBS between P1 and P5, and sacrificed at P5 

or P10. RNA was extracted and hybridised to Agilent Whole Mouse Genome Oligo 

Microarrays (8x60K).  

 

Bioinformatics’ gene co-expression network reconstruction 

Expression data Each cell type and experimental condition was analysed separately, to 

investigate changes in gene expression over time in response to exposure to IL-1β or PBS. 

Expression values for MG (CD11B+) and oligodendrocytes (O4+) at P5 and P10 were quantile 

normalized. 

Differential expression Probes showing high variability across time points within each cell type 
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were retained for further analysis (coefficient of variation above 50th centile). Probes showing 

differential expression between time points were identified using unpaired t-tests with 

Benjamini-Hochberg correction for multiple testing in the Bioconductor multitest 

package(Gentleman et al., 2004; Schafer and Strimmer, 2005; Opgen-Rhein and Strimmer, 

2007), with a false discovery rate threshold (FDR) of 10%. 

Network reconstruction The co-expression network was inferred using Graphical Gaussian 

Models (GGM), implemented within the software package “GeneNet”(Schafer and Strimmer, 

2005) in R (http://www.r-project.org/). This analysis computes partial correlations, which are 

a measure of conditional independence between two genes i.e. the correlation between the 

expression profiles of two genes after the common effects of all other genes are removed. 

Correction was made for multiple comparisons by setting the local false discovery rate (FDR) 

at ≤1%. Individual networks were reconstructed for temporally differentially expressed genes 

for each cell type in each experimental condition (i.e. 2 cell types x 2 conditions). The input for 

each GGM was a matrix of differentially expressed normalised mRNA transcript levels. The 

genes in each of these four co-expression networks (Supp Figure 3E) were functionally 

annotated by calculating significant enrichment of KEGG pathways using the Broad Institute 

MSigDB database (http://software.broadinstitute.org/gsea/msigdb/index.jsp)(Subramanian et 

al., 2005) (Supp Table 3). 

Differential expression analysis was performed using the limma package (Smyth, 2004). The 

mouse datasets were annotated with human Ensembl gene ID using the biomaRt Bioconductor 

R package(Durinck et al., 2009) and selecting human genes that were ‘one-to-one’ orthologues 

with mouse genes. We multiplied the adjusted P value (the –log10 of P value) by the log-

transformed fold change to generate a gene-level score, which was used as a metric to ‘rank’ 

genes. GSEA (Subramanian et al., 2005) was applied genome-wide to the ranked list of gene 

scores (reflecting both the significance and the magnitude of expression changes in IL-1β 

exposed MG/Mφ) to test if a group of genes (MSigDB gene sets) occupy higher (or lower) 

positions in the ranked gene list than what it would be expected by chance. Gene set enrichment 

scores and significance level of the enrichment (NES, P value, FDR) and enrichment plots were 

provided in the GSEA output format developed by Broad Institute of MIT and Harvard 

(permutations = 10,000). The GSEA was carried out accounting for the direction of IL-1b 

effect, i.e. considering whether a gene is upregulated or down-regulated under IL-1b exposure 

at P5 and P10.  

 

Wnt/β-catenin pathway modulation in primary MG 
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MG transfection was realized using negative control siRNA or siRNA Axin2 (ON TARGET 

Plus Control Pool and ON TARGET Plus mouse Axin2-06, Thermoscientific, Dharmacon, 

France) at a final concentration of 30µM. Transfection was realized using the MACSfectin 

transfection reagent (Miltenyi biotec, Germany) in mixture of Opti-MEM and DMEM mediums 

for 48 hours prior to IL-1β stimulation. Axin2 mRNA knockdown was evaluated by qRT-PCR. 

XAV939 and CT99021 (1µM) or PBS/DMSO (vehicle) were added to media 30 minutes before 

DMEM (control) or IL-1β (50 ng/ml) treatments. 

 

PSer45 b-Catenin and b-Catenin quantification by ELISA 

Quantification of PSer45 b-Catenin and b-Catenin by ELISA was realized using β-catenin 

pSer45 + Total PhosphoTracer ELISA Kit (ab119656, Abcam) for primary microglia or β-

catenin ELISA Kit (ab1205704, Abcam) for MACSed cells. Briefly, cell lysates were obtained 

using lysis buffer of the kit. Total protein level was quantified using BCA method 

(Bicinchoninic Acid Solution and Copper (II) Sulfate Solution from Sigma, France). The 

ELISA was realized according to the manufacturer’s instruction. Quantification of PSer45 b-

Catenin is a ratio PSer45 b-Catenin/total b-Catenin. Total b-Catenin was normalized using total 

protein level. Total b-Catenin data are expressed as fold over control values. 

 

Wnt/β-catenin pathway modulation in Zebrafish. 

MG were visualized using pu1::Gal4-UAS::TagRFP. 72 hpf old zebrafish embryos were used 

for LPS microinjection (5ng/injection) in hindbrain. The Wnt/β-catenin pathway was 

modulated by adding LiCl (80mM), XAV939 (5µM), CT99021 (3µM) in E3-solution. 

Fluorescently labelled embryos were imaged using a microscope equipped with an ApoTome 

system (Zeiss, France) fitted with an AxioCam MRm camera (Zeiss) controlled by the 

Axiovision software. The thickness of the z stacks was always comprised between 2.5 and 3 

µm. Fluorescence intensity was quantified by NIH ImageJ software (http://imagej.nih.gov/ij/) 

on grey scale images.  

 

Preterm infant cohort  

Preterm infants were recruited as part of the EPRIME (Evaluation of Magnetic Resonance (MR) 

Imaging to Predict Neurodevelopmental Impairment in Preterm Infants) study and were imaged 

at term equivalent age over a 3-year period (2010-2013) at a single centre. The EPRIME study 

was reviewed and approved by the National Research Ethics Service, and all infants were 
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studied following written consent from their parents. A total of 290 infants (gestational age 

23.57 to 32.86 weeks, median 30 weeks) were scanned at term-equivalent age (38.29 to 58.28 

weeks) additional cohort details available in Supp Table 4. Pulse oximetry, temperature, and 

heart rate were monitored throughout the period of image acquisition; ear protection in the form 

of silicone-based putty placed in the external ear (President Putty, Coltene, UK) and Mini-muffs 

(Natus Medical Inc., CA, USA) were used for each infant. 

 

Image Acquisition  

MRI was performed on a Philips 3-Tesla system (Best, Netherlands) using an 8-channel phased 

array head coil. The 3D-MPRAGE and high-resolution T2-weighted fast spin echo images were 

obtained before diffusion tensor imaging. Single-shot EPI DTI was acquired in the transverse 

plane in 32 non-collinear directions using the following parameters: repetition time (TR): 8000 

ms; echo time (TE): 49 ms; slice thickness: 2 mm; field of view: 224 mm; matrix: 128 × 128 

(voxel size: 1.75 × 1.75 × 2 mm3); b value: 750 s/mm2. Data were acquired with a SENSE factor 

of 2. 

 

Data selection and quality control  

The T2-weighted MRI anatomical scans were reviewed in order to exclude subjects with 

extensive brain abnormalities, major focal destructive parenchymal lesions, multiple punctate 

white matter lesions or white matter cysts, since these infants represent a heterogeneous 

minority (1-3%) with different underlying biology and clinical features to the general preterm 

population (Hamrick et al., 2004; van Haastert et al., 2011). All MR-images were assessed for 

the presence of image artefacts (inferior-temporal signal dropout, aliasing, field inhomogeneity, 

etc.) and severe motion (for head-motion criteria see below). All exclusion criteria were 

designed so as not to bias the study but preserve the full spectrum of clinical heterogeneity 

typical of a preterm born population. 290 infants had images suitable for tractography and 

associated genetic information. 

DTI analysis was performed using FMRIB's Diffusion Toolbox (FDT v2.0). Images were 

registered to their non-diffusion weighted (b0) image and corrected for differences in spatial 

distortion due to eddy currents. Non-brain tissue was removed using the brain extraction tool 

(BET)(Smith, 2002). Diffusion tensors were calculated voxel-wise, using a simple least-squares 

fit of the tensor model to the diffusion data. From this, the tensor eigenvalues and FA maps 

were calculated. 
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Probabilistic tractography 

Regions of interest for seeding tracts were obtained by segmentation of the brain based on a 90-

node anatomical neonatal atlas(Shi et al., 2011), and the resulting segmentations were 

registered to the diffusion space using a custom neonatal pipeline(Ball et al., 2010). 

Tractography was performed on DTI data using a modified probabilistic tractography which 

estimates diffusive transfer between voxels(Robinson et al., 2008), using cortico-cortical 

connections only. A weighted adjacency matrix of brain regions was produced for each infant: 

self-connections along the diagonal were removed; symmetry was enforced; and the redundant 

lower triangle removed. The edges of these connectivity graphs were vectorised by 

concatenating the rows for each individual connectivity matrix, and appending them to form a 

single matrix of n individuals by p edges. Each phenotype matrix was adjusted for major 

covariates (post-menstrual age at scan and at birth) and reduced to its first principal component. 

 

Genome-wide genotyping 

Saliva samples from 290 preterm infants with imaging data were collected using Oragene DNA 

OG-250 kits (DNAGenotek Inc., Kanata, Canada) and genotyped on Illumina 

HumanOmniExpress-24 v1.1 chip (Illumina, San Diego, CA, USA). Filtering was carried out 

using PLINK (Software: https://www.cog-genomics.org/plink2). All individuals had missing 

call frequency < 0.1. SNPs with Hardy-Weinberg equilibrium exact test p≥1 × 10-6, MAF ≥ 

0.01 and genotyping rate > 0.99 were retained for analysis. After these filtering steps, 659 674 

SNPs remained. Additional details of these analyses and the STREGA details are found in the 

original description of the cohort (Boardman et al., 2014).  

 

Preterm infant imaging genomics analysis of WNT pathway  

A list of all genes in the WNT signalling pathway (entry hsa04310) in the Kyoto Encyclopaedia 

of Genes and Genomes (KEGG) was used as a gene-set-of-interest (n=141 genes). Gene-set 

analysis was carried out with the Joint Association of Genetic Variants (JAG) tool(Lips et al., 

2012; Lips et al., 2015) to test the joint effect of all SNPs located in the WNT pathway. This 

procedure consists of three parts: 1) SNP to gene annotation; 2) self-contained testing (i.e. 

association) and 3) competitive testing (i.e. enrichment). An enriched pathway can be defined 

as one whose genes are more strongly associated with the phenotype than those genes outside 

the pathway. Phenotype permutation is used to evaluate gene-set significance, implicitly 

controlling for linkage disequilibrium, sample size, gene size, number of SNPs per gene, and 
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number of genes in a gene-set. This will result in a p-value (with a traditional significance 

threshold<0.05) if there is an enrichment for variants associated with the phenotype within the 

gene-set of interest compared to random matched gene-sets.  

Following SNP-gene mapping, genes in the WNT-set were tested for association with 

the original phenotype (query data), and this was repeated with 1000 permutations of the 

phenotype (self-contained/association test). This association testing tests the null hypothesis 

that no pathway genes are associated with the phenotype and combines the individual gene 

association p-values into a single p-value for the entire pathway. The competitive/enrichment 

test was then done to test the null hypothesis that the pathway genes are no more associated 

with the phenotype than 300 randomly drawn non-pathway gene-sets, with 1000 phenotype 

permutations. The association analysis was repeated gene-by-gene within the WNT gene-set to 

investigate which members of the gene-set might be predominantly contributing to the 

collective signal.  

 

Statistical analysis. 

No statistical methods were used to predetermine sample sizes, but these were similar to those 

generally employed in the field. Data are expressed as the mean values +/- standard error of the 

mean (SEM). Data was first tested for normality using the Kolmogorov-Smirnov normality test 

for n=5-7 and D'Agostino & Pearson omnibus normality test for n>7. F-test (single 

comparisons) or Bartlett's test (multiple comparison) for analyse of variances was used. 

Multiple comparisons in the same data set were analysed by one-way ANOVA with Newman-

Keuls post hoc test, Two-way ANOVA with Bonferroni post hoc or Kruskal-Wallis test with 

Dunns post hoc. Single comparisons to control were made using two-tailed Student's t-test or 

Mann-Whitney test. P < 0.05 was considered to be statistically significant. For the Barnes maze 

probe trial, univariate t test was performed to compare the % time spent in the target sextant to 

the theoretical value 16.67 % (i.e. when the mouse spent equal time within each sextant). Data 

handling and statistical processing was performed using Microsoft Excel and GraphPad Prism 

Software. 
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Results 
MG activation drives hypomyelination in our model of encephalopathy of the premature infant 

To understand the mechanisms underpinning encephalopathy of the premature infant in 

contemporaneous cohorts we previously set up a model mimicking its neuropathological, 

behavioural and imaging phenotypes(Favrais et al., 2011; Krishnan et al., 2017). Of note, the 

neuropathological similarities between our model and clinical studies includes MG/Mφ 

activation and hypomyelination due to the maturation blockade of oligodendrocytes but limited 

cell death(Billiards et al., 2008; Verney et al., 2010; Verney et al., 2012). Specifically, 

intraperitoneal (i.p.) injections of interleukin (IL)-1β (10µg/kg) were administered to mouse 

pups twice daily on postnatal days (P) 1-4 and once at P5 (Figure 1A). P1-P5 in the mouse is 

a developmental period roughly corresponding to 22-32 weeks of human pregnancy(Marret et 

al., 1995) and this is the greatest period of vulnerability for white matter damage in preterm 

born infants. Exposure to systemic IL-1β recapitulates the systemic inflammatory insult of 

maternal/fetal infections. Specifically, i.p. IL-1β injection causes a complex systemic response 

including increased blood levels of IL-6, TNF⍺ and IL-1β(Favrais et al., 2011) that lead to 

neuroinflammatory responses including microglial activation with increased cytokines and 

chemokines(Krishnan et al., 2017; Shiow et al., 2017). The eventual outcome being an 

oligodendrocyte maturation delay, that can be observed specifically as an increase in the 

numbers of NG2+ and PDGFRa+ OPC/pre-oligodendrocyte populations, decreased expression 

of MBP, MAG and MOG and altered axonal myelination into adulthood (Favrais et al., 2011; 

Schang et al., 2014; Shiow et al., 2017) associated with cognitive dysfunction(Favrais et al., 

2011). In this study, we verified a direct causal link between MG/Mφ activation and 

neuropathology in our model by selectively killing pro-inflammatory MG/Mφ and observing a 

reduction in myelin injury. Specifically, we used an intracerebral injection of gadolinium 

chloride (GdCl3), which kills pro-inflammatory MG/Mφ via competitive inhibition of calcium 

mobilization and damage to the plasma membrane. We validated in vivo that this approach is 

effective at reducing the numbers of pro-inflammatory microglia in the developing brain, and 

it has previously been validated in vivo in adult models of injury(Fulci et al., 2007; Miron et 

al., 2013; Du et al., 2014). We chose this approach and not ablation of MG with a Tamoxifen 

driven transgenic or other pharmacologic approaches (i.e. PLX3397, ganciclovir) as our studies 

target maturing oligodendrocytes (as found in the preterm infant brain) that are present from 

P1. These conditional and pharmacologic depletion methods cannot practically be made 

effective at P1 and this window of development is key to this model. Also, embryonic depletion 
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of microglia itself alters brain development(Squarzoni et al., 2014) in ways that would alter our 

experimental paradigm. GdCl3 (200nmol) was injected into the corpus callosum of P1 mice 

prior to i.p injection of IL-1β or PBS. In the corpus callosum at P3, after 72 hours of exposure 

to systemic inflammation, immunohistological analysis revealed that the majority of MG/Mφ 

were IBA1+/COX2+ and the numbers of these cells was reduced by approximately 50% by 

GdCl3 (Figure 1B,C). This GdCl3-mediated reduction in MG/Mφ prevented the typical loss of 

myelin basic protein (MBP) in the corpus callosum at P30 (Figure 1D,E) but OLIG2 was not 

altered by exposure to systemic inflammation, as previously reported(Favrais et al., 2011) or 

GdCl3 (Figure 1F,G). A link between microglial activation and hypomyelination can also be 

recapitulated with inflammatory activation of mixed glial cultures containing oligodendrocyte 

progenitor cells (OPCs), MG and astrocytes. In these in vitro conditions, there is reduced MBP+ 

cell density, without affecting the total number of oligodendrocytes (Figure 1H). Exposure of 

pure OPC cultures (in the absence of microglia or astrocytes) to an inflammatory stimulant, IL-

1β, did not cause hypomyelination (data not shown). Altogether, these results validate in our 

model a causal link between MG/Mφ activation and the hypomyelination that is a hallmark of 

encephalopathy of prematurity. 

 

MG activation is persistent with specific temporal patterns in our model of encephalopathy of 

the preterm infant 

We comprehensively characterized the morphology, gene and protein expression of 

MG/Mφ over time in our model to assess the relationship between activation states and injury. 

Our morphological analysis of GFP+ MG/Mφ from CX3CR1GFP/+ mice revealed a moderate 

but significant reduction of complexity (arborisation) at P3 when comparing MG/Mφ from IL-

1β versus PBS injected animals but no difference in process length or density, cell body area, 

numbers of primary, secondary and tertiary processes, or the area covered by the MG processes 

in 2D (Figure 2A,B). Cell morphology was measured at 3 hours after the first inflammatory 

challenge (at P1) and at P3 when animals had been exposed to >48 hours of systemic 

inflammation driven neuroinflammation in vibratome cut sections using a custom designed 

script developed with the Acapella™ image analysis(Verdonk et al., 2016).  

We further studied MG/Mφ activation using expression analysis of sixteen genes and 

six protein markers previously associated with polarized expression states(Chhor et al., 2013; 

Miron et al., 2013) at 5 time points. Gene expression analysis was performed in CD11B+ cells 

isolated by magnetically activated cell sorting (MACS, Miltenyi Biotec) from PBS- or IL-1β-

exposed mice as per our previous studies(Chhor et al., 2017; Krishnan et al., 2017; Shiow et 
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al., 2017). Prior FACS analysis has demonstrated that the ratio of MG to other CD11B+ cells 

in this isolate is greater than 50 to 1(Krishnan et al., 2017). Nevertheless, because we cannot 

exclude the presence of Mφ completely we use MG/Mφ as the descriptor for these cell isolates. 

Also, the purity of the MACS isolation was confirmed as >95% CD11B+ MG/Mφ by FACS 

and qRT-PCR, also as previously(Schang et al., 2014; Krishnan et al., 2017). qRT-PCR based 

gene expression analysis (Figure 2C) and immunofluorescence (Supp Figure 1A-D) showed 

that systemic exposure to IL-1β induced a robust pro-inflammatory MG/Mφ activation state at 

P1, only 3 hours following the first injection of IL-1β. Specifically, 5/6 markers of a pro-

inflammatory state were significantly increased including Il6 increased by 20-fold, and a 5-fold 

increases in Ptgs2 and Nos2, all p<0.001. Of note, Ptgs2 and Nos2 remained elevated for 5 

days, but Il6 and Tnfa were returned to normal by P3. There was a similar robust increase in 

markers of immune-regulation at P1 as 4/4 markers were increased including an 8-fold increase 

in Socs3 and >10-fold increase for Sphk1 and Il1rn, all p<0.001. Expression of markers 

associated with an anti-inflammatory activation state were the most effected in animals exposed 

to systemic IL-1β exposure at P2 and P3, which is 48 or 72 hours after the start of IL-1β 

injections. These findings of a temporal change in MG/Mφ activation profiles were 

corroborated with immunohistological analysis of protein levels (Supp Figure 1A-D).  

By combining our observations of morphology, gene and protein changes in MG/Mφ 

after systemic IL-1β exposure we have characterized a persistent state of activation responsible 

for injury to the developing white matter.  

 

The Wnt pathway is comprehensively down-regulated in activated MG in vivo and in vitro 

 In mouse pups exposed to systemic IL-1β we have characterized a persistent activation 

of MG between P1 and until at least P5, which induces a partial blockade of OPC maturation 

and subsequently hypomyelination(Favrais et al., 2011). Using gene and predicted protein 

network-based analysis, we sought to identify molecular pathways regulating this MG/Mφ 

activation driving OPC injury. We hypothesized that the best time to pick-up the potential 

disrupting regulator pathways specific to developing MG was P5 when MG are activated and 

when the first effects of OPCs have been observed and P10 when MG activation is apparently 

resolved but injury to OPCs is well established. As such, we undertook genome-wide 

transcriptomics analysis of MG/Mφ (CD11B+) and OPCs (O4+) MACSed at P5 and P10 from 

the brains of mice exposed to IL-1β or PBS. The purity of the O4+ MACS isolation was verified 

with qPCR(Schang et al., 2014) as outlined for CD11B fractions above. Genes showing 

differential expression between time points, P5 and P10, were identified for each cell-type, 
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MG/Mφ (CD11B+) or OPCs (O4+), within each condition, IL-1β or PBS. Gene co-expression 

networks were inferred for each of the four sets of differentially expressed genes using 

Graphical Gaussian Models (GGMs)(Opgen-Rhein and Strimmer, 2007). GGMs use partial 

correlations to infer significant co-expression relationships. We applied a False Discovery Rate 

(FDR) of <1% between any microarray probe pair in each of the four sets of differentially 

expressed genes sets previously identified: PBS-OPC, IL-1β-OPC, PBS-MG/Mφ and IL-1β-

MG/Mφ. These four co-expression networks were found to exhibit unique topologies and 

functional annotations (Supp Figure 2A,B; Supp Tables 3 and 5). Compared to the three other 

conditions networks, the IL-1β exposed MG/Mφ co-expression network was the most highly 

interconnected and the densest indicating a strong co-regulation of gene expression under this 

condition (Supp Figure 2A,B). Biological pathway analysis using the Broad Institute MsigDB 

database(Subramanian et al., 2005) indicated enrichment for Wnt signalling pathway genes 

within the IL-1β exposed MG/Mφ network (FDR=8.5 x 10-7; Figure 3A; Supp Table 3). Due 

to the proposed importance of the Wnt pathway in OPC maturation(Fancy et al., 2009) we 

undertook a specific analysis of data from the O4+ OPCs from mice subjected to systemic 

exposure to IL-1β. Analysis of microarray data from the O4+ OPCs did not show any significant 

enrichment for Wnt signalling genes in the gene co-expression response (Supp Table 3). This 

data highlight two important facts about Wnt dysregulation, firstly, that Wnt dysregulation is 

likely not a mechanism that directly effects oligodendrocytes in this model, and second, that 

changes in Wnt are not simply ubiquitous in the developing CNS in response to inflammation. 

Returning to the analysis of MG/Mφ, to highlight the directionality of the data, we looked for 

enrichments for Wnt signalling pathway sets among the genes significantly down-regulated by 

IL-1β exposure at P5 and P10 (Supp Table 6, see Methods). The known interactions among 

the Wnt pathway genes plus predicted interactors were then retrieved from an extensive set of 

functional association data by the GeneMania tool (Warde-Farley et al., 2010) and we 

represented this sub-network (Figure 3B). We annotated this figure to highlight that the vast 

majority of targets predicted to interact in this model have down-regulated expression. Finally, 

qualitative gene profiling with qRT-PCR in CD11B+ MG/Mφ confirmed the down-regulation 

of mRNA expression for numerous Wnt pathway members including multiple Fzd receptors, 

Lef1 and Ctnnb1 in MG/Mφ from IL-1β-exposed mice (Figure 3C). The down-regulation of 

Ctnnb1 mRNA was also accompanied by a significant decrease in the expression of β-catenin 

protein in CD11B+ MG/Mφ at P3 corresponding to the time point when the greatest 

morphological changes and pro-inflammatory gene activation is observed (Figure 3D). 
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 To extend this ex vivo CD11B+ cell data and set up an in vitro model for further study, 

qRT-PCR and immunofluorescence analysis of mouse primary cultured MG was undertaken. 

The cultures are >97% pure for MG as validated with IHC and qRT-PCR, as previously 

reported(Chhor et al., 2013). Exposure of MG to IL-1β in vitro induces a similar pro-

inflammatory phenotype as is found in MG/Mφ from mice exposed to systemic IL-1β (Supp 

Figure 3A,B compared to data in Figure 2C). Furthermore, we observed a similar down-

regulation of Wnt pathway members including mRNA encoding Fzd receptors, Ctnnb1 and 

Tcf1 (Supp Figure 3C). Inducing a pro-inflammatory activation in MG in vitro also induced 

an upregulation of mRNA encoding Axin1 and Axin2, two specific inhibitors of β-catenin 

nuclear translocation (Supp Figure 3C) and reduced the protein levels for β-catenin as assessed 

with immunofluorescence (Supp Figure 3D), and ELISA (Supp Figure 3E). There was no 

significant change in the ratio of phosphorylated (Pser45) β-catenin to β-catenin also assessed 

with ELSIA (Supp Figure 3E). In contrast, IL-4, a classic anti-inflammatory stimulus, 

increased Wnt/β-catenin activation as indicated by strongly increased Lef1 mRNA and 

decreased the Pser45 β-catenin/β-catenin ratio as measured via ELISA (Supp Figure 3F,G).  

Altogether these data demonstrate that a pro-inflammatory MG/Mφ phenotype is 

associated with a robust and comprehensive down-regulation of the gene and protein expression 

of members of the Wnt/β-catenin signalling pathway in vivo and in vitro. 

 

Wnt/β-catenin pathway activity negatively correlates with pro-inflammatory MG activation in 

vitro 

 We next sought to determine if Wnt/β-catenin pathway modulation alone is sufficient 

to drive phenotypic changes in MG in vitro. Pharmacological inhibition of the Wnt/β-catenin 

pathway in vitro with XAV939, a tankyrase inhibitor that stabilizes the Wnt/β-catenin pathway 

inhibitor Axin2(Fancy et al., 2011), was sufficient to promote a pro-inflammatory phenotype, 

mimicking the effects of IL-1β (Figure 3E). Conversely, the IL-1β-induced pro-inflammatory 

MG phenotype was blocked by activating the Wnt pathway using siRNAs against Axin2 

(Figure 3F; validation of siRNA efficacy Supp Fig 3H) or a pharmacological inhibitor of 

GSK3β that phosphorylates and inactivates β-catenin, CT99021(Ring et al., 2003) (Figure 3G). 

As expected, we verified with ELISA that the Pser45 β-catenin/β-catenin ratio was increased 

with XAV939, and decreased with Axin2 siRNA and CT99021 (Figure 3H). In contrast, we 

tested in PBS and IL-1β-exposed primary MG a non-isoform specific block of PKC signalling 

with Chelerythrine. Chelerythrine targets the non-canonical Wnt pathways and exposure of 

doses from 1-3µM had no effect on MG activation via qRT-PCR(Supp Figure 4). It is worth 
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noting that all pharmacologic approaches are liable to off target effects, but altogether the 

multiple compounds, and genetic targeting create a cohesive link to the Wnt canonical pathway 

as being key to MG activation. 

Altogether, these data verify in pure cultures of primary MG that that modulating the 

Wnt/β-catenin pathway is sufficient and necessary to effect MG activation state.  

 

Wnt/β-catenin pathway activity negatively correlates with pro-inflammatory MG activation in 

vivo 

 We further tested our working hypothesis that Wnt/β-catenin signalling drives a pro-

inflammatory phenotype in MG/Mφ in vivo using non-cell specific approaches in zebrafish and 

mice and then transgenic mice with MG/Mφ specific β-catenin knock-down. In zebrafish larvae 

at 72 hours’ post-fertilization (hpf) that express RFP in MG/Mφ (Tg[pU1::Gal4-UAS-

TagRFP]) we injected into the hindbrain the prototypical pro-inflammatory agent 

lipopolysaccharide (LPS) (Figure 4A). LPS was used due to the unavailability of recombinant 

zebrafish IL-1β and prior work demonstrating the expression by zebrafish of receptors for LPS, 

the Toll-like 4 receptor (TLR4), and the requisite downstream signalling cascade(van der Sar 

et al., 2006). Although LPS and IL-1β use differing signalling pathways, the end result of 

exposure to both is a complex neuroinflammatory milieu and it is this complex ‘soup’ (not the 

IL-1β alone. We compared the nature of the IL-1β and LPS responses in primary microglia 

using qRT-PCR for 12 genes to highlight the similarities in the overall inflammatory milieu 

induced by these inflammatory agents(see Supp Figure 3A), supporting our previous data 

comparing inflammatory protocols(Chhor et al., 2013). LPS-induced neuroinflammation in the 

zebrafish was confirmed after 48 hours by a significant increase in fluorescent MG/Mφ in the 

optic tectum (Figure 4B,C). We observe a similar increase in MG/Mφ immunofluorescence in 

our mouse model with IBA1 and MAC1 immunofluorescence(Favrais et al., 2011). As 

expected, exposure of zebrafish larvae to the Wnt/β-catenin antagonist XAV939 exacerbated 

the LPS-induced MG/Mφ activation, while conversely exposure to Wnt agonists acting via the 

canonical GSK3β dependent pathway with CT99021 or LiCl prevented the LPS induced 

MG/Mφ activation (Figure 4B,C).  

Subsequently, we studied the specific relationship between Wnt/β-catenin pathway 

activity and MG/Mφ activation in mice using pharmacological and genetic approaches. Firstly, 

we inhibited the Wnt/β-catenin pathway by intracerebroventricular (i.c.v.) injection of XAV939 

in P1 pups and isolated CD11B+ MG/Mφ 3 hours later. In agreement with our hypothesis, in 

vivo Wnt inhibition with XAV939 mimicked the effects of systemic IL-1β on gene expression 
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in MG/Mφ (Figure 4D). Furthermore, to specifically target the Wnt pathway in MG/Mφ, we 

bred LysMCre/Cre with β-cateninFlox/Flox mice to generate β-Cat ∆ /+ transgenic mice. 

Recombination, and as such KO, of β-catenin occurs in ≥20% of MG/Mφ in this Cre line(Cho 

et al., 2008; Derecki et al., 2012; Degos et al., 2013) and we verified that there was 40% 

decrease in Ctnnb1mRNA encoding β-catenin (P<0.001, Figure 4E). In the absence of external 

inflammatory stimuli, β-Cat ∆ /+ mice with MG expressing reduced levels of β-catenin 

developed a myelin deficiency that mimicked the damaging effects of systemic IL-1β exposure 

in our encephalopathy of prematurity model. Specifically, these mice had reduced Mbp mRNA 

in the anterior cortex at P10 (Figure 4F) and reduced MBP immunoreactivity in the corpus 

callosum and cingulum at P30 (Figure 4G,H).  

Collectively, these data show that in fish and mice that down-regulation of the Wnt 

pathway is sufficient and necessary to drive a pro-inflammatory MG/Mφ activation state. Of 

note, even a partial MG/Mφ-specific β-catenin deletion in vivo in the absence of any external 

stimuli is sufficient to induce MG/Mφ activation leading to a myelination defect.  

 

The Wnt pathway regulates activation state in primary human MG in vitro 

We then verified a similar relationship between decreased Wnt and increased pro-

inflammatory activation in primary human MACSed CD11B+ MG/Mφ isolated from cerebral 

tissues collected from scheduled terminations at 19- and 20-weeks’ gestational age. Based on 

the low numbers of cells available we aimed to ensure we induced a robust response so we 

chose to use LPS to induce a pro-inflammatory MG response based on previous studies(Melief 

et al., 2012). Human primary MG/Mφ were activated to a pro-inflammatory state as indicated 

by modified morphology (Figure 5A) and increased COX2 gene expression (PTGS2 mRNA) 

(Figure 5B). In agreement with what we observed in our mouse and zebrafish experiments 

these pro-inflammatory activated human primary MG had a reduction in their expression of 

mRNA for the β-catenin gene, CTNNB1 (Figure 5C). 

 

Genomic variance in WNT pathway genes is relevant to human preterm infant white matter 

structure  

Our experimental data show that genetic knockdown of Wnt/β-catenin signalling is 

sufficient itself to drive brain injury in transgenic mice. In a conceptually similar manner, but 

with an expected much smaller effect size, we reasoned that that genetic variation in WNT 

pathway genes would be associated with surrogates of white matter mediated connectivity in 

preterm born infants. We hypothesize that, at least in part, any link between WNT variation and 
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connectivity would be mediated by differences in the innate response to inflammatory challenge 

in these preterm infants. Although our genetic analysis is agnostic with respect to cellular 

mechanism or type, a link between WNT variations and brain structure would support further 

research into WNTs role in injury, and using WNT variants for preterm born infant 

injury/outcome stratification. To test our prediction of a link between WNT and preterm brain 

connectivity we performed an analysis where we jointly analysed connectivity data derived 

from MRI and genomics data from 290 preterm born infants. This approach has previously 

uncovered novel genetic variants associated with brain connectivity phenotype (Krishnan et al., 

2016; Krishnan et al., 2017). The pre-term born infants included in this study are described in 

more detail in Supp Table 4 and the inclusion/exclusion criteria are outlined in the materials 

and methods. Imaging of the white matter in preterm born infants associates with 

neurodevelopmental outcomes in preterm born infants (Woodward et al., 2006; Spittle et al., 

2009; Pandit et al., 2013), making an imaging-genomics approach relevant for generating 

hypotheses about the relevance of the WNT pathway to functional outcomes for preterm born 

infants. 

In this paired imaging-genomics analysis, we assessed single nucleotide polymorphisms 

(SNPs) in our preterm cohort. SNPs are DNA sequence variations where a single nucleotide 

varies between individual members of a species that can help pinpoint contributions of specific 

genes to disease states. To define the intra-cerebral anatomical connectivity phenotype in our 

preterm cohort, we used 3-T dMRI and optimized probabilistic tractography as previously 

described(Robinson et al., 2008; Shi et al., 2011), adjusting the results for post-menstrual age 

at scan and at birth. Regions of interest for seeding tractography were obtained by segmentation 

of the brain based on a 90-node anatomical neonatal atlas(Shi et al., 2011), focusing on cortico-

cortical connections. DNA extracted from saliva was genotyped and a gene-set-of-interest 

defined using SNPs in the WNT signalling pathway (entry hsa04310) of the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) (n=141 genes).  

SNPs were mapped to all of the genes in the KEGG WNT pathway using the JAG tool 

and Genome Reference Consortium Human Build 37 (GRCh37; hg19), using 2kb 

up/downstream, in line with NCBI practices (NCBI, 2005). Following SNP-gene mapping, we 

tested the null hypothesis that variation in WNT pathway genes is not associated with the 

preterm tractography phenotype using Joint Association of Genetic Variants (JAG)(Lips et al., 

2015). Specifically, genes in the WNT-set were tested in two ways (Figure 5D). Firstly, we 

performed a “competitive/enrichment test” to determine whether the WNT pathway genes were 

no more associated with the connectivity phenotype than 300 randomly drawn non-WNT-
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pathway gene-sets. Secondly, we performed a “self-contained/association test” to determine 

whether there is a comparable association between the original connectivity phenotype and 

WNT, versus 1000 random permutations of the phenotype and WNT. The “competitive test”, in 

which we compared to randomly generated sets of genes, showed a significant enrichment of 

genetic variants associated with the phenotype in the WNT gene-set compared to random gene 

sets (empirical p=0.037, Figure 5E inset). The conservative “self-contained” test in which we 

compared to 1,000 permutated phenotypes indicated that the WNT signalling gene-set was 

associated with our phenotype; i.e., white matter probabilistic tractography features (empirical 

p=0.064; Figure 5E histogram & inset). We performed a gene-by-gene analysis of SNPs 

within the WNT signalling gene-set to investigate which genes might be predominantly 

contributing to the collective pathway enrichment signal. This test highlighted a group of 10 

genes with individual significant association with the tractography phenotype (empirical 

p≤0.05, 1,000 permutations). These ten genes included 8 associated with Wnt/β-catenin 

signalling NFATC4, CSNK1A1, MAPK10, WNT2B, SMAD3, FBXW11, NLK, CSNK1A1L, and 

2 associated with the Wnt/Ca2+ or Wnt/PCP pathways, PLCB2 and WNT5A (Figure 5F; Supp 

Table 7). Although, we cannot determine specifically how these SNP variants would alter the 

brain phenotype we found using the Genome-scale Integrated Analysis of gene Networks in 

Tissues (‘GIANT’) tool that these genes created a coherent interaction network within a human 

brain-specific gene interaction network (Figure 5G; Supp Table 8). GIANT hosts searchable 

genome-scale functional maps of human tissues, integrating an extensive collection of 

experimental data sets from publications including expression, regulatory and protein 

data(Greene et al., 2015). We also performed an exploratory investigation of function for the 

42 SNPs from the 10 genes predominantly contributing to the collective pathway enrichment 

signal to provide information related to function. We used the Gene Effect Predictor within the 

Consortium Human Build 37 (GRCh37; hg19) tool to study the 42 SNPs, whose full details are 

given in Supp Table 9. All 42 SNPs were existing in the database and they were predicted to 

have 463 consequences on the genome (Supp Table 10). Specifically, these SNPs overlapped 

with 103 separate gene transcripts, 7 of them overlapped regulatory sequences and overall 95% 

were synonymous variants and 5% were missense variants (Figure 5H). 

These linked imaging-genomic analyses demonstrate a relationship between genetic 

variation in the WNT pathway with an important clinical phenotype. They provide adjunct 

support for a causal relationship between the Wnt pathway and the brain phenotype that has 

been established with our experimental data.  
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A Wnt pathway agonist delivered specifically to MG by a nanocarrier in vivo prevents 

neuroinflammation-mediated hypomyelination and the associated cognitive impairment 

 There is a paucity of neurotherapeutic options for damage to the preterm born infant 

brain and many other neuroinflammatory-mediated neurological disorders. We have clearly 

demonstrated a link between decreased Wnt/β-catenin pathway activation and a pro-

inflammatory MG activation state. In addition, we have shown the relevance of this pathway in 

human MG and preterm infant brain structure. As such, we complete this study by 

demonstrating that the Wnt pathway is a viable therapeutic target. To achieve this, we 

specifically increased Wnt pathway activity in MG/Mφ using a peptide inhibitor of GSK3β, 

which has the effect of preventing the formation of the β-catenin degradation complex. We 

delivered this peptide to MG/Mφ in vitro and in vivo by conjugating it to a 3DNA nanocarrier 

together with a fluorescent tag (Cy3)(Genisphere, PA, USA). 3DNA nanocarriers are 

interconnected monomeric subunits of DNA of approximately 200nM in diameter that are 

intrinsically capable of endosomal escape(Muro, 2014). In brief, we validated that our 3DNA-

peptide conjugate had MG specificity and immunomodulatory efficacy in vitro, that is crosses 

the BBB, that it has cell specificity in vivo, and finally that it is neurotherapeutic in vivo in our 

systemic-inflammation (IL-1β) driven model of encephalopathy of the preterm born infant.  

First, we demonstrated in vitro that 3DNA nanocarrier Cy3 tagged conjugates are 

specifically internalized by MG in mixed glial cultures (Supp Figure 5A) and by MG in 

primary cultures after 4 hours of incubation (Supp Figure 5B). When 3DNA was conjugated 

to both Cy3 and the peptide L803mts, an agonist of canonical Wnt signalling via inhibition of 

GSK3β, it was also specifically internalized by MG in primary culture (Supp Figure 6A). We 

also used the 3DNA nanocarrier tagged with Cy3 to deliver a cargo of L803mts to MG/Mφ that 

had been activated with IL-1β in vitro. Treatment of primary MG with L803mts delivered with 

3DNA reversed the IL-1β-induced activation of the MG but had no effect on PBS-treated MG 

as assessed with gene expression analysis (Supp Figure 6B). 

Moving in vivo, we aimed to generate the proof-of-concept that the 3DNA nanocarrier 

delivering L803mts and tagged with Cy3 can be taken up by MG/Mφ and influence MG/Mφ 

phenotype. Specifically, the L803mts and Cy3 conjugated 3DNA nanocarrier or the scrambled 

(SCR) peptide control and Cy3 conjugated 3DNA nanocarrier was injected i.c.v. into P1 mice, 

1 hour prior to our standard i.p. IL-1β injection. Four hours after i.c.v. injection, we observed 

Cy3 fluorescence exclusively co-localized with IBA-1+ staining in the periventricular white 

matter (Figure 6A, Supp video 1). In the same paradigm, using qRT-PCR analysis of isolated 

CD11B+ MG/Mφ we demonstrated that i.c.v. delivered 3DNA loaded with L803mts and tagged 



 32 

with Cy3 reversed the effect of IL-1β on the MG/Mφ phenotype but that the 3DNA-L803mts-

Cy3 had no significant effect on MG/Mφ from PBS-treated mice (Figure 6B). As i.c.v. 

injections cause aggravated tissue injury we subsequently undertook a translationally orientated 

trial using i.p. delivery of Cy3-tagged 3DNA conjugated to L803mts. The 3DNA L803mts Cy3 

or 3DNA SCR Cy3 control was injected i.p. daily between P1 and P5, in parallel with PBS or 

IL-1β. At P5, immunofluorescence in the anterior periventricular white matter confirmed that 

3DNA L803 mts Cy3 was specifically taken up by IBA1+ MG/Mφ (Figure 7A). We also 

assessed uptake of our 3DNA conjugate by populations of macrophage in the body after i.p. 

delivery at P5. Using the same IHC techniques that clearly shows uptake in MG/Mφ we did not 

find Cy3 positive staining in the spleen or liver (Supp Figure 5C,D).  

To validate the in vivo neurotherapeutic efficacy of our novel nanocarrier-mediated 

WNT agonist therapy, we assessed the IL-1β-induced myelination deficit by measuring Mbp 

mRNA at P10, MBP protein via western blotting at P15 and axonal myelination via electron 

microscopy at P30. We have previously shown in this model that there is an accumulation of 

immature oligodendrocytes (NG2+ and PDGFRa+), reduced small calibre axonal myelination 

and reduced expression of myelin proteins(Favrais et al., 2011; Schang et al., 2014; Rangon et 

al., 2018).Treatment with i.p. 3DNA L803mts Cy3 significantly prevented the IL-1β-induced 

reduction in Mbp mRNA (Figure 7B) and alleviated the IL-1β-induced reduction in MBP 

proteins (Figure 7C,D, Supp Figure 7A). Finally, we observed that these effects of 3DNA 

L803mt Cy3 to improve MBP mRNA and MBP protein levels correlated with improvements 

in axonal myelination, as indicated by the decrease of G-ratio of fibres of 0.2 to 0.8µm diameter 

in the corpus collosum (Figure 7E,F).  

In order to evaluate whether this improvement in neuropathology with nanocarrier 

mediated treatment also reverses the behavioural deficits observed in adults in this paradigm, 

spatial learning and memory were assessed starting at P90. Basic behavioural parameters we 

first tested via spontaneous locomotion and rearing using actimetry and exploratory behaviour 

with an open field test. This injury model is designed to induce subtle neurobehavioral deficits 

to mimic the learning problems that become apparent in school age children born 

preterm(Lindstrom et al., 2011; Spittle et al., 2017). As expected, no changes in these basic 

parameters was observed between groups of mice., i.e. controls (PBS+3DNA SCR Cy3), 

injured (IL-1β+SRC Cy3) or the treatment group (IL-1β+3DNA L803mts Cy3) (Supp Figure 

7B,C). Spatial learning and memory were tested via the Barnes maze test, which assesses spatial 

learning over 5 days of probe trials plus short term memory retention at the end of the learning 

trials and long term memory retention 10 days later. Spatial learning (i.e., distance travelled 
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and number of errors) itself was not modified by IL-1β exposure (Figure 7G). However, mice 

exposed to IL-1β had a short-term memory deficit based on a decreased distance travelled in 

the target sextant during the first 30 seconds of the probe trial on the final day of testing (Figure 

7H). In addition, IL-1β exposure caused deficits in long term memory recall, as assessed as the 

increased distance travelled in a single probe trial at 10 days post-learning (Figure 7I). These 

short term and long term neuroinflammatory induced memory deficits were both reversed by 

i.p. treatment by delivery to MG/Mφ of the Wnt antagonist, L803 mts (3DNA L803 mts Cy3) 

by the 3DNA nanocarrier (Figure 6H,I). 

Altogether these data clearly demonstrate that a Wnt agonist therapy can reduce pro-

inflammatory MG/Mφ activation and improve neuropathological and functional outcomes in a 

model of neuroinflammation mediated white matter injury. These data also highlight a novel 

3DNA nanocarrier that has the ability to deliver therapies like this in vivo specifically to MG.   
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Discussion 
 Recent research has highlighted that microglia of the developing brain have a unique 

phenotype. The aims of this study were, the identification in MG of the developing brain of the 

molecular regulators of injury-related phenotype, and validation of these as therapeutic targets 

for preventing microglia-mediated injury in the 15 million infants born preterm every year. We 

undertook a comprehensive set of studies involving pharmacologic and genetic manipulations 

in mouse and zebrafish models, human tissue and patient data. We also introduced an 

innovative 3DNA nanocarrier that can deliver drugs specifically to microglia in vivo. Initially, 

we characterised the complex MG/Mφ phenotype in our mouse model of encephalopathy of 

prematurity(Favrais et al., 2011; Schang et al., 2014; Krishnan et al., 2017) and demonstrated 

that MG/Mφ activation is directly responsible in this model for the clinically relevant 

myelination defect. Next, using a genome-wide transcriptomic analysis of these activated 

MG/Mφ we associated the Wnt pathway with MG/Mφ activation. We specifically determined 

that the expression of Wnt/β-catenin pathway receptors, ligands and intracellular signalling 

components were robustly down-regulated in MG/Mφ isolated from our animal model. A 

combination of approaches in zebrafish and mouse models in vitro and in vivo allowed us to 

determine that Wnt/β-catenin pathway inhibition specific to MG/Mφ is sufficient and necessary 

to induce in these cells a pro-inflammatory activation, and subsequent hypomyelination in vivo. 

We highlighted the relevance of the WNT pathway to the activation state of human primary 

MG, and preterm born infant brain development. Of note, we verified our prediction that genetic 

variation in the WNT pathway in preterm infants is related to indices of their cerebral structural 

connectivity. Although, it is a limitation of these types of human studies that the data is not cell 

specific and the effects of the WNT SNPs may be on earlier stages of development in other cell 

types. Finally, we selectively delivered to MG/Mφ in vivo a Wnt pathway activator using a 

3DNA nanocarrier, which we administered via non-invasive i.p. injection. This specific and 

non-invasive delivery of a Wnt agonist therapeutic prevented a pro-inflammatory MG/Mφ 

activation state and the associated white matter damage and cognitive deficit in our mouse 

model. Together, these data demonstrate that down-regulation of the canonical Wnt/β-catenin 

pathway triggers a hypomyelination-inducing MG phenotype and validate this pathway as a 

novel and clinically viable neurotherapeutic target thanks to the MG/Mφ-specificity of 3DNA 

nanocarriers.  

Our evidence supports that the Wnt pathway controlling MG/Mφ phenotype is the 

canonical Wnt/β-catenin pathway. Our supporting data include that genetic and 
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pharmacological manipulation of the β-catenin degradation complex via Axin2 robustly 

effected MG/Mφ phenotype in vitro and in vivo. In contrast, blockade of non-canonical Wnt 

signalling with a PKC inhibitor had no effect on MG activation. Although, we acknowledge 

that there may still be a role for other facets of non-canonical signalling in the complexity of 

MG/Mφ functions. However, MG/Mφ-specific β-catenin ablation in vivo in-of-itself was 

sufficient to recapitulate the systemic-inflammation-driven hypomyelination that we see in our 

animal model of encephalopathy of prematurity. We also found that the WNT genes with 

variance associated with preterm infant connectivity were predominantly (8/10) from the 

Wnt/β-catenin pathway. A key role for β-catenin would also begin to explain our observations 

of Wnt-mediated pro-inflammatory activation via TLR-4 and IL-1 receptor agonists and also 

conversely Wnt-mediated anti-inflammatory activation via a IL-4 receptor agonist. Down-

stream signalling of both the TLR/IL-1 and IL-4 receptor families includes activation of the 

transcription factor NF- κB (nuclear factor kappa-light-chain-enhancer of activated B 

cells)(Caamano and Hunter, 2002). The ability of NF-κB to mediate the opposing effects of 

these receptors on MG phenotype is conferred by interactions with other regulatory factors, 

including at multiple levels indirectly and directly by β-catenin(Ma and Hottiger, 2016).  

Ours is the first study to demonstrate a robust cell-intrinsic role of the Wnt/β-catenin 

pathway in MG activation in vitro and in vivo and validate that this pathway is a viable 

immunomodulatory neurotherapeutic. Previous work on Wnt and MG has been limited to in 

vitro ligand-receptor interactions, specifically WNT3a or WNT5a. However, the specific Wnt 

pathway activated by a Wnt ligand is dependent on the context of ligand-receptor interaction 

not only cell-intrinsic properties(van Amerongen et al., 2008). This fact likely explains the 

discordance between the data from the previous studies, where in some paradigms Wnt 

exposure is anti-inflammatory(Halleskog et al., 2012; Yu et al., 2014) or in others the exposure 

was pro-inflammatory(Halleskog et al., 2011; Hooper et al., 2012; Halleskog and Schulte, 

2013) with no relation to the predicted canonical or non-canonical pathway being activated. 

Altogether these data highlight the difficulty that would be faced in using ligand-receptor 

interactions to target the Wnt pathway to modulate MG activity, in contrast with our success of 

targeting the intracellular cascade of Wnt/β-catenin pathway specifically using our 3DNA-

mediated delivery system. We also wish to note that the Wnt pathway has well characterised 

roles in oligodendrocyte maturation(Fancy et al., 2011; Feigenson et al., 2011; Guo et al., 2015; 

Zhao et al., 2016), astrocyte activation(Cao et al., 2012) and endothelial cell function(Lengfeld 

et al., 2017). Our study builds on this understanding of the role of Wnt as a complex cell specific 

temporally and spatially regulated controller of brain development and response to injury.  
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The 3DNA nanocarrier is a powerful translational tool as is it can take agents across the 

BBB following i.p. injection, is specifically internalized by MG/Mφ in the brain and it has no 

toxicity in vitro or in vivo in our study, or in human retinal tissue in vitro(Gerhart et al., 2017) 

and in pre-clinical in vivo targeted delivery of a ovarian cancer therapy(Huang et al., 2016). 

Wnt activation in OPCs has previously been suggested to block their maturation by a member 

of our current research team(Fancy et al., 2011). As such it was important that 3DNA-

nanocarriers allowed us to target this pathway exclusively in MG/Mφ. 3DNA has a non-injury 

dependent mechanism of traversing the BBB, as it crossed in naïve and inflammation-exposed 

mice, although the specific mechanism is unknown. We have previously reported that the BBB 

in our mouse model of encephalopathy of prematurity is primarily intact(Krishnan et al., 2017). 

The chemical and physical attributes of 3DNA likely precludes it from entering the brain via 

paracellular aqueous routes or transcellular lipophilic pathways. However, investigations of 

receptor mediated transcytosis are underway, as similar aptamer-based DNA duplexes can 

interact with receptors such as nucleolin or transferrin(Reyes-Reyes et al., 2010).  

In preterm infants, it is exposure to inflammatory events that are both difficult to identify 

or prevent, such as chorioamnionitis and sepsis, that is the leading risk factor for white matter 

damage. This damage is caused by microglia-mediated neuroinflammatory processes a link that 

is supported by post-mortem human studies showing microgliosis in the developing white 

matter of preterm born infants (Verney et al., 2010; Verney et al., 2012; Supramaniam et al., 

2013) and verified by numerous experimental paradigms(see references in, Hagberg et al., 

2015). White matter damage in these infants is observed as diffuse white matter signal changes 

and reduced structural connectivity using MRI analyses(Shah et al., 2008; Spittle et al., 2009). 

In a large animal model of preterm born infant brain injury a direct link between diffuse white 

matter injury and white matter gliosis has been made(Riddle et al., 2011). This reduced 

structural connectivity in preterm born infants is in turn strongly associated with poor 

neurodevelopmental outcomes(Woodward et al., 2006; Ball et al., 2015). As such, the purpose 

of our imaging-genomics analysis was to link the pre-clinical observations of microglial 

mediated compromise of structural connectivity due to white matter injury to genetic variance 

that could alter the microglial inflammatory response in our preterm cohort and would affect 

changes in structural connectivity. Our integrated analysis of imaging and genomics 

demonstrated that common genetic variation in WNT pathway genes does indeed influence 

brain structural connectivity features within our preterm born infants. We fully acknowledge 

that the data we derived is not cell specific and could be due to effects on the white and grey 

matter. However, it supports in contemporaneous infants the relevance of the WNT pathway 
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using an imaging modality that is currently used to assess injury and predict outcome. Also, we 

wish to highlight that changes to the grey matter are also evident in preterm born infants, 

including changes in cortical microstructure(Ball et al., 2013), interneuron distribution(Stolp et 

al., 2019) and degeneration of axons(Back and Miller, 2014). However, the contribution of 

axonal injury to diffuse white matter is controversial, although it is evident in necrotic foci that 

are approximated to occur in only 5% of white matter injury cases(Riddle et al., 2011; Buser et 

al., 2012). Preterm born infants with apparent focal necrosis were excluded from our imaging-

genomics analysis removing a significant contribution of a frank axonopathy from effecting the 

connectivity phenotype in this cohort. We cannot exclude however that effects on the grey 

matter in these infants are not important determiners of outcome and effected by changes in 

SNPs in genes of the WNT pathway. In addition, we found that the WNT pathway genes 

containing SNPs associated with white matter tractography phenotype belonged to a human 

brain-specific gene interaction network. This network further builds a case for a functional 

effect of WNT SNPs in human preterm infants, with consequences for the development of white 

matter structure(Greene et al., 2015). Specific prediction of the consequences of our identified 

SNPs found the majority were intron variants. Previous studies in experimental animals has 

shown that immune cell intron variants often effect cell function by altering enhancer 

binding(Farh et al., 2015). Altogether our clinical data build a case that these WNT pathway 

SNPs may be a useful way to stratify infants who are at highest risk for white matter damage, 

and to improve on our currently limited prognostic abilities related to long term outcome. 

In conclusion, the activity of the Wnt/β-catenin pathway regulates MG/Mφ activation, 

the Wnt pathway is relevant in human brain development, and specific agonism of the Wnt/β-

catenin pathway in MG/Mφ in vivo using 3DNA nanocarrier-mediated drug-delivery has a 

beneficial effect on MG/Mφ phenotype, myelination and cognitive deficits. This is strong 

evidence that Wnt signalling modulation may be a promising therapeutic approach in 

encephalopathy of prematurity and, potentially, in other disorders involving MG/Mφ-mediated 

neuroinflammation.  
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Figure legends  

Figure 1. MG/Mφ are required to induce hypomyelination in our model of 

encephalopathy of prematurity. In (A) a schematic of the experimental paradigm for 

modelling systemic inflammation-associated encephalopathy of prematurity and the timing of 

analysis; MG/Mφ (microglia/macrophages) and oligodendrocytes (Oligo). Of note, 

experiments need to be performed between postnatal day (P1) and P5 as this is when 

oligodendrocyte maturation in the mouse matches that found in vulnerable preterm born infants, 

those born from 22-32 weeks’ gestation. (B-H) demonstration that oligodendrocyte injury in 

our model is dependent on activated MG/Mφ by inducing cell death in these cells. Specifically, 

PBS or IL-1b	 exposed mice were injected in the corpus callosum with vehicle (PBS) or 

gadolinium chloride, GdCl3; 200 nmol at P1. (B) Scatter plot showing the reduced numbers of 

pro-inflammatory (IBA1+/COX2+) and stable numbers of anti-inflammatory (IBA1+/ARG1+) 

MG/Mφ in corpus callosum at P3 (Mean±SEM, Mann-Whitney test, * p<0.05, n=3/group) as 

illustrated by representative images in (C) of IBA1-immunoreactivity (IR), COX2 -IR and Dapi 

(Scale bar: 100µm). Following GdCl3 treatment, representative images showing MBP-IR (D) 

and OLIG2- IR (E) (scale bars: 20µm) in the corpus callosum at P15, and min to max box and 

whiskers plots of the quantification of MBP-IR (F) and OLIG2-IR (G) (Mann–Whitney test, * 

p<0.05, n=5- 6/group). The requirement for the presence of MG/Mφ to illicit demyelination 

was also verified in vitro in mixed glial cultures in (H), scatter plots of MBP-IR normalized by 

OLIG2+ cell number in mixed cell culture (Mean, Mann-Whitney test ** p<0.01 and n 

=18/group).  

Figure 2. MG/Mφ have a subtly altered morphology and bi-phase alterations to phenotype 

in our model of encephalopathy of prematurity. Quantification in (A) of the complexity of 

MG/Mφ ramifications and process length in CX3CR1GFP/+ mice exposed via i.p. injection to 

PBS or IL-1b	for 3 hours (P1) or for 48 hours (P3). The proportion (%) and the scatter plots of 

the complexity index and the process length MG/Mφ (Mean, Mann-Whitney test, * p<0.05, 

n=4/group). (B) Representative images of IL-1b	induced decrease in the complexity index in 

GFP+ MG/Mφ at P3 (Scale bar: 25µm). (C) MG/Mφ phenotype over time is represented by 

min to max box and whiskers plots of pro-inflammatory, anti-inflammatory and immuno- 

regulatory markers levels by RT-qPCR in CD11B+ MG/Mφ from brain in PBS or IL-1β 

injected mice. See also Supp Figure 1, Supp Figure 2 and Supp Table 5. mRNA levels are 

presented as a fold change relative to PBS group. (Two-way ANOVA with post hoc 
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Bonferroni’s test ,* p<0.05, ** p<0.01, *** p<0.001, n/group is indicated on the figure under 

the legend).  

Figure 3. The Wnt pathway is down-regulated in pro-inflammatory MG and modulates 

MG activation in vitro. (A) Transcriptomic data reveals that the Wnt signalling pathway is 

strongly associated with MG/Mφ activation in our model and (B) builds a cohesive network of 

multi-modal interactions between Wnt pathway genes in the MG/Mφ co-expression network. 

(C) Validation of a selection of Wnt targets from the array data showing min to max box and 

whiskers plots of mRNA level presented as a fold change relative to PBS group by RT-qPCR 

in CD11B+ MG/Mφ from PBS or IL-1β-exposed mice. See also Supp Figure 3. Two-way 

ANOVA, post hoc Bonferroni’s test, * p<0.05, ** p<0.01 *** p<0.001, n/group is indicated on 

the graph). (D) Scatter plot of β-catenin protein level from ELISA in CD11B+ MG/Mφ from 

PBS or IL-1β-exposed mice at P3. Data are expressed as fold change relative to PBS group, 

(Mean±SEM, Student’s t-test, * p<0.05, n=9/group). In (E) β-catenin pathway inhibition, with 

XAV939, induced a pro-inflammatory like activation in primary microglia. Min to max box 

and whiskers plots of mRNA levels are presented as a fold change relative to vehicle group. 

(Student’s t-test, * p<0.05, ** p<0.01, n=12/group). In (F) β-catenin pathway activation 

induced by blocking Axin2 with siRNA (see also Supp Figure 3I, approx. 45% Axin2 mRNA 

decrease) and in (G) inhibition of GSK3β, a β-catenin inhibitor, with CT99021 reduced primary 

microglia activation induced by IL-1b. Min to max box and whiskers plots of mRNA levels 

presented as a fold change relative to vehicle group. (One-way ANOVA with post hoc 

Newman-Keuls’s test. Effects of IL-1β on gene expression are shown with + p<0.05, ++ 

p<0.01, +++p<0.001; effects of Axin2 siRNA or CT99021 to alter the IL-1β effects are shown 

with * p<0.05, ** p<0.01, ***p<0.001, n =6/group). In (H) Effects of modulating Wnt with 

XAV939, Axin2 siRNA and CT99021 on phosphorylation of β-catenin (PSer45 b-catenin/b- 

catenin ratio) in primary microglia. (Scatter plots, Mean±SEM, Mann-Whitney test * p<0.05, 

n=3/group).  

 

Figure 4. Wnt/β-catenin pathway regulates MG/Mφ activation and hypomyelination in 

vivo. Wnt signalling was modulated in vivo with pharmacological techniques in zebrafish (A- 

C) and mice (D) and using gene knockout in mice (E-G). In (A) location of LPS microinjection 

(5ng/injection) into the zebrafish hindbrain at 72 hpf in pu1::Gal4-UAS::TagRFP morpholinos 
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followed by analysis at 120 hpf. In (B) a scatter plot of quantification of RFP labelled MG and 

in (C) representative images of RFP MG in these zebrafish brains after LPS injection in the 

presence or not in their growth solution of Wnt/β-catenin pathway activators LiCl (80mM) and 

CT99021 (3µM) or Wnt inhibitor XAV939 (5µM). (Mean±SEM, One-way ANOVA with post 

hoc Newman-Keuls’s test, ** p<0.01, ***p<0.001). Scale bar: 40µm. In (D) analysis of the 

phenotype of CD11B+ cell isolated from P1 mice injected i.c.v. with XAV939 (0.5 nmol) alone 

(no i.p. IL-1β), demonstrating increased MG/Mφ activation with Wnt agonism. Min to max box 

and whiskers plots of quantification of Nos2, Ptgs2, Tnfα, Il1rn, Socs3 and Il4ra mRNA by RT-

qPCR. mRNA levels are presented as a fold change relative to PBS/DMSO group. (Student’s 

t-test, * p<0.05, ** p<0.01 and ***p<0.001 n=7-10/group). In (E,F) b-catenin deficit in MG 

driven by β-cateninflox/+/LysMCre/+ (β-cateninΔ/+) induces hypomyelination. Scatter plots 

of quantification by RT-qPCR of (E) Ctnnb1 mRNA deficit in CD11B+ MG/Mφ from P10 β- 

cateninΔ/+ mice (n=6-12/group) and in (F) Mbp mRNA deficit in the anterior brain at P10 in 

β- cateninΔ/+ mice. mRNA levels are presented as a fold change relative to control (Ctrl) mice 

(β- catenin+/+/LysMCre/+) (n=4/group) (Mean, Mann-Whitney test, * p<0.05, *** p<0.01). In 

(H) min to max box and whiskers plot of grey density level of MBP immunoreactivity (MBP- 

IR) in the corpus callosum and cingulum at P30 relative to Ctrl mice. (Mann-Whitney test, * 

p<0.05, n=6/group and illustrated by representative images of MBP-IR in (G). (Scale bar: 

40µm)  

 

Figure 5: Human MG activation leads to Wnt/β-catenin down-regulation and genetic 

variation in the Wnt pathway associates with preterm infant white matter phenotype  

In (A) human primary MG exposed to LPS showing immunoreactive changes with IBA1 (scale 

bar = 50µm), and (B) up-regulated mRNA expression for COX2 (PTGS2) and (C) the 

associated decrease in the expression of the gene for b-catenin (CTNNB1), (Min to max box 

and whiskers plots, Student’s t-test, **p<0.01, ***p<0.0001, n=6-9/group). In (D) a schematic 

of the analysis for any association between SNPs in the WNT pathway and the preterm infant 

white matter phenotype. Common genetic variation (SNPs) in the WNT gene-set were enriched 

for variants associated with tractography features when compared to random matched gene-

sets, i.e., competitive test, p=0.037, 1000 permutations, (E, blue inset) and is also associated 

with white matter probabilistic tractography in preterm infants, compared with the null 
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background, i.e., self-contained test, p=0.064, 1000 permutations (E, blue inset). In (F) are the 

functional descriptions of the ten genes within the WNT gene-set containing SNPs that were 

most significantly associated with the preterm infant tractography phenotype. In (G) the 

relationships between these ten genes significantly associated with the tractography phenotype 

is reconstructed in a high confidence interaction network specific to the human brain, retrieved 

from known tissue-specific expression and regulatory data (Greene et al., 2015). In (H) is the 

predicted consequences of all of the SNPs found in the top 10 ranked WNT genes shown in (F), 

a total of 42 SNPs.  

Figure 6. Nanocarrier delivery of a Wnt/β-catenin pathway activator L803mts regulates 

MG/Mφ activation in our encephalopathy of prematurity model. In (A) representative 

images of the in vivo uptake of 3DNA by IBA1+ cells in the subventricular white matter 4 hours 

after i.c.v. administration of 3DNA SCR Cy3 (control) or 3DNA L803mts Cy3 (200ng), scale 

bar: 40µm. Plus orthogonal view of white box inset showing co-localisation in detail, scale bar: 

10µm. See also Supp Figure 4A,B, Supp Figure 5, and Supp Video 1. In (B) min to max box 

and whiskers plots of Nos2, Ptgs2, Tnfα, Il1rn, Socs3 and Il4ra mRNA by qRT-PCR in 

CD11B+ MG/Mφ cells from i.c.v. injected PBS or IL-1b-treated mice with of 3DNA SCR Cy3 

or 3DNA L803mt. mRNA levels are presented as a fold change relative to vehicle group (One-

way ANOVA with post hoc Newman-Keuls’s test, ++ p<0.01, +++ p<0.001 for statistically 

significant difference between the PBS and IL-1b	groups also exposed to 3DNA SCR Cy3. * 

p<0.05, ** p<0.01 for the effects of 3DNA Wnt modulator delivery, n=5-6 for PBS groups and 

9 for IL-1b- groups).  

Figure 7. Nanocarrier delivery of a Wnt/β-catenin pathway activator L803mts in 

microglia reduces IL-1b-induced hypomyelination and memory deficit. In (A) 

representative images of in vivo uptake of 3DNA by IBA1+ cells in subventricular white matter 

at P5 after i.p. injections of 3DNA L803mts Cy3 or 3DNA SCR Cy3 (500ng/injection). Scale 

bar: 40µm. In (B) min to max box and whiskers plot of Mbp mRNA by qRT-PCR in the anterior 

brain of mice at P10. mRNA levels are presented as a fold change relative to 3DNA SCR 

Cy3/PBS group (One way-ANOVA with Newman-Keuls’s test, * p<0.05, ** p<0.01, n=9- 

12/group). See also Supp Figure 5C,D. In (C) a representative image of ACTIN and MBP 

immuno-blot and (D) the min to max box and whiskers plots of quantification of the four 

isoforms of MBP in the anterior brain of mice at P15. Protein levels were normalised to ACTIN 

and are presented as a fold change relative to 3DNA SCR Cy3/PBS group (One way-ANOVA 
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with Newman-Keuls’s test, * p<0.05, *** p<0.001, ** p<0.01, n=6-8/group). In (E) a 

representative image of electron microscope (EM) image of the corpus callosum from mice at 

P30. In (F) the violin plots of the G-ratios from the EM analysis showing improvements in the 

Wnt agonist group, 3DNA L803mts (Kruskall-Wallis test, ***p<0001 n=4-5/group). 

Microglial targeted Wnt agonism also induced functional improvements. In (G) data from trials 

of the Barnes maze for spatial learning and in (H) short-term memory retention and (I) long-

term memory retention (I) in 3-month-old mice. See also Supp Figure 6. Memory retention 

present in the 30 second trial period on day 5 of the test (probe trial, in H) was measured by 

recording of the distance travelled in the target sextant (Min to max box and whiskers plot, 

univariate t test * p<0.05 n=10/group). In (I) the long-term memory deficits was measured via 

the distance travelled to reach the target on the 15th day after the start of testing (Min to max 

box and whiskers plot, one-way ANOVA with Bonferroni post hoc was used ** p<0.01. n= 

9/group).  
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Supplementary figures 
 

Supplementary Figure 1 related to Figure 2. Expression of phenotype markers by 

MG/Mφ in IL-1β treated mice at P3. (A) Min to max box and whisker of the number of 

CD16+, CD68+/iNOS+, CD68+/COX2+, CD68+/ARG1+ and MR + (CD206) cells at P3 from 

PBS and IL-1β treated mice. Data are expressed as the number of positive cells per field (Mann-

Whitney test,* p<0.05 and **p<0.01, n=7-8/group). Representative images at P3 in the corpus 

callosum of the effect of IL-1β on the number of (B) CD68+/iNOS+ and CD68+/ARG1+ cells 

(C) CD68+/COX2+ and (D) CD16+ and MR+ cells. Scale bar: 50µm 

 

Supplementary Figure 2 related to Figure 3 and Supp Table 5. Properties of the networks 

formed from the transcriptomic analysis of MG and oligodendrocytes following exposure 

to IL-1β. In (A) the structural properties of the transcriptomic network from the microarray 

analysis performed on CD11B+ and O4+ cell fractions isolated by MACS. Reconstructed gene 

networks by cell type and condition, local FDR <1% (OG: oligodendrocytes; MG MG/Mφ; 

PBS: control). (B) Visual representation of the output of transcriptomic analysis of MG and 

oligodendrocytes following exposure to IL-1β. Under control conditions (PBS) the OG co-

expression network appears less dense, structured with interconnected clusters (34 connected 

components) where most genes are not direct neighbours of one another (characteristic path 

length 5.5). With exposure to IL-1β there is a noticeable change in the OG network structure, 

so that there are many more genes being co-expressed (an increase from 571 nodes, 1229 edges 

in PBS to 1583 nodes, 6457 edges in IL-1β) and they are more highly interconnected 

(characteristic path length 2.9). The control (PBS) MG co-expression network is also relatively 

clustered and less dense, and on exposure to IL-1β there is a dramatic increase in co-expression 

(786 nodes, 1810 edges in PBS to 3113 nodes and 48104 edges in IL-1β). This demonstrates 

that at rest MG are more transcriptionally active than OG, and both cell-types respond strikingly 

to IL-1β exposure with a global activation of gene expression that is particularly pronounced 

for MG.  

 

Supplementary Figure 3 related to Figure 4. Validation in primary MG of an inverse 

relationship between pro-inflammatory status and the Wnt/b-catenin pathway. In (A) MG 

phenotypes under 4hours of IL-1b or LPS stimulation were assessed via pro-inflammatory 

markers anti-inflammatory markers and immuno-regulator markers by RT-qPCR. mRNA 

levels are presented as a fold change relative to PBS exposed MG. Data are expressed as 
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mean±SEM, n in the brackets (Student’s t-test, * p<0.05, ** p<0.01 and ***P<0.001). (B) MG 

phenotype induced after 4 hours of exposure to IL-1b in primary MG as assessed with 

immunoreactivity (IR) for COX2 (pro-inflammatory) ARG1 (anti-inflammatory) and IL1RA 

(immuno-regulator). Scale bar: 50µm. Canonical Wnt pathway expression in primary MG as 

altered by (C) 4 hours of IL-1b exposure as assessed by RT-qPCR for Ctnnb1, Tcf1, Lef, Axin1, 

Axin2 and Wnt receptors Frizzled (Fzd) 3,4,6 mRNA, (D) 4 hours of LPS exposure as assessed 

by RT-qPCR for Ctnnb1, Tcf1, Lef, Axin1 and Axin2 mRNA, (E) 4 hours of IL-4 exposure as 

assessed by RT-qPCR for Ctnnb1, Tcf1, Lef, Axin1 and Axin2 mRNA. Min to max box and 

whisker of mRNA levels presented as a fold change relative to control (PBS treated) MG. (Min 

to max box and whisker, Student’s t-test: * p<0.05, ** p<0.01 and *** p<0.001, n on the figure). 

(F) IL-1b induces down-regulation of b-catenin immunoreactivity in primary MG after 4 hours 

of stimulation. Scale bar: 50µm. (E) IL-1b induces down-regulation of total b-catenin without 

any modification of the PSer45 b-catenin/b-catenin ratio as assessed via ELISA (normalized to 

PBS control) in primary MG after 4 hours of stimulation. (Min to max box and whisker, Student 

t-test** p<0.01, n=14/group). (G) IL-4 induces down-regulation of Pser45 β-catenin/b-catenin 

ratio without any modification of total b-catenin in primary MG as assessed with ELISA after 

4 hours of stimulation. (Min to max box and whisker Student’s t-test, * p<0.05, n=7/group). 

(H) Min to max box and whisker of Axin2 mRNA level in primary MG transfected with Axin2 

siRNA presented as a fold change relative to control (negative control siRNA) (Student’s t-test: 

*** p<0.001, n=14-15/group) 

 

Supplementary Figure 4. Non-canonical Wnt pathway blockade has no effect on the 

activation of primary MG stimulated by IL-1b. Inhibition of Protein Kinase C by 

Chelerythrine has no effect on MG activation. Min to max box and whisker of Nos2, Ptgs2, 

Il1rn and Socs3 mRNA level by RT-qPCR in control (PBS) and IL-1b treated primary MG with 

Chelerythrine (1 or 3µM) or DMSO. mRNA levels are presented as a fold change relative to 

control/DMSO group. (# p<0.05, ## p<0.01, showed significant difference between 

PBS/DMSO and IL-1b/DMSO groups. Kruskal-Wallis test with Dunns post-hoc test, 

n=3/group)  

 

Supplementary Figure 5 related to Figure 6. Cell and organ specific analysis of the uptake 

by MG of 3DNA Cy3 labelled nanoparticles. (A) 3DNA uptake by IBA-1+ cells in mixed 

primary cultures of astrocytes, OPCs and MG after incubation with 3DNA Cy3 (200ng/ml) for 
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24 hours. Scale bar: 40µm. (B) 3DNA uptake by a primary MG following incubation with 

3DNA L803mts Cy3 (200ng/ml) for 5 hours. Scale bar: 10µm. Representative images of the 

undetectable uptake of 3DNA by the (C) spleen and (D) the liver. Scale bar: 100µm 

 

Supplementary Figure 6. Nanocarrier-mediated delivery of a Wnt/β-catenin pathway 

activator L803mts regulates MG/Mφ activation in primary MG. In (A) representative 

images of the in vitro uptake of 3DNA by primary MG 4 hours after 3DNA L803mts Cy3 

exposure. In (B) effects of 3DNA L803mts Cy3 exposure to reduce the IL-1b-induced MG/Mφ 

activation as evaluated by qRT-PCR quantification of Nos2, Ptgs2, Tnfα, Il1rn, Socs3 and Il4ra 

mRNA. mRNA levels are presented as a fold change relative to 3DNA SCR Cy3/PBS group 

(Min to max box and whisker, one-way ANOVA with post hoc Newman-Keuls’s test: ++ 

p<0.01, +++p<0.001 indicate a statistically significant difference between the PBS and the IL-

1b groups also exposed to 3DNA SCR Cy3. For the effects of Wnt modulator delivery, * 

p<0.05, ** p<0.01, n=5/group).  

 

Supplementary Figure 7. Nanocarrier-mediated delivery of a Wnt/β-catenin pathway 

activator L803mts has no effect on indices of basal behaviour in our encephalopathy of 

prematurity model. (A) ACTIN and MBP immuno-blot from mice anterior cortex at P15. (B) 

Actimetry data including horizontal locomotion and rearing over a 24 hour period, mean±SEM 

n=10/group. In (C) data on distance travelled and time spent inactive in the Open Field test 

(Min to max box and whisker n=10/group) 

 

 

Supplementary tables: All available as individual tabs within one Excel spreadsheet 

 

Supp Table 1. List of the numbers of independent and total experimental replicates presented 

in each figure. 

 
Supp Table 2. List of primer sequences 
 

 

Supp Table 3. Biological pathway analysis using the Broad Institute MsigDB database for each 

of the four conditions. Of note for MG exposed to IL-1b Wnt signalling is highly significantly 

enriched.  
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Supp Table 4. Clinical variables of the cohort described in the imaging-genomics analysis 

 

Supp Table 5. Genes found within the co-expression networks for each of the four GGM 

outputs. See also, Supp Figure 1.  

 

Supp Table 6. GSEA including genes down-regulated in the array analysis, showing a 

predominance of Wnt enrichment in the down-regulated genes. 

 

Supp Table 7. Analysis of the 10 highly ranked genes showing statistical outputs in full for an 

association with the white matter connectivity phenotype. 

 

Supp Table 8. Genes creating a coherent interaction network built around the 10 WNT pathway 

genes with SNPs highly associated with the preterm white matter connectivity phenotype. 

 

Supp Table 9. Details for each of the 42 SNPs for analysis from the 10 genes most highly 

associated with the preterm white matter phenotype 

 

Supp Table 10. Consequences predicted for the 42 SNPs found in the 10 genes of high relevance 
to the preterm white matter connectivity phenotype. Summary of effects found in Figure 5h. 
 
Supplementary video  
 
Video 1: Staining in the periventricular white matter for IBA1 (green) and visible 3DNA with 
Cy3 tag (red). Tissue collected 4 hours after a single IL1b and 3DNA i.p. injection at P1.  
 


