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Database Saliency for Fast Image Retrieval
Yuan Gao, Miaojing Shi, Dacheng Tao, Fellow, IEEE, and Chao Xu, Member, IEEE

Abstract—The bag-of-visual-words (BoW) model is effective
for representing images and videos in many computer vision
problems, and achieves promising performance in image retrieval.
Nevertheless, the level of retrieval efficiency in a large-scale
database is not acceptable for practical usage. Considering that
the relevant images in the database of a given query are more
likely to be distinctive than ambiguous, this paper defines “data-
base saliency” as the distinctiveness score calculated for every
image to measure its overall “saliency” in the database. By taking
advantage of database saliency, we propose a saliency-inspired fast
image retrieval scheme, S-sim, which significantly improves
efficiency while retains state-of-the-art accuracy in image retrieval.
There are two stages in S-sim: the bottom-up saliency mechanism
computes the database saliency value of each image by hierarchi-
cally decomposing a posterior probability into local patches and
visual words, the concurrent information of visual words is then
bottom-up propagated to estimate the distinctiveness, and the
top-down saliency mechanism discriminatively expands the query
via a very low-dimensional linear SVM trained on the top-ranked
images after initial search, ranking images are then sorted on
their distances to the decision boundary as well as the database
saliency values. We comprehensively evaluate S-sim on common
retrieval benchmarks, e.g., Oxford and Paris datasets. Thorough
experiments suggest that, because of the offline database saliency
computation and online low-dimensional SVM, our approach
significantly speeds up online retrieval and outperforms the
state-of-the-art BoW-based image retrieval schemes.

Index Terms—Bag-of-visual-words (BoW), bottom-up saliency,
database saliency, image retrieval, top-down saliency.

I. INTRODUCTION

B AG-OF-VISUAL-WORDS (BoW) representation has
been effectively adopted in a number of computer vision

problems, e.g., image retrieval [1]. Visual images are ranked
using term frequency inverse document frequency (TFIDF) of
visual words computed efficiently via an inverted index [2].
The advantage of the algorithm is the high efficiency, while
the disadvantage is the low effectiveness for lack of spatial
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information among the visual words. For example, similar to
a word identification, when we receive three letters, “a, e, r,”
how to decide it is the word “are” or “ear”, even just a part
of “hear”? Therefore, many re-ranking methods are proposed
to improve retrieval performance. Representative schemes in-
clude spatial re-ranking [1], [3], query expansion (QE) [4], [5],
and relevance feedback [6], [7]. Geometric structure [8], [9]
and text/meta features [10]–[12] are also taken into account to
improve precision, and significant improvements are achieved
in state-of-the-art BoW-based retrieval schemes.
Despite the promising performance after re-ranking, how-

ever, the level of retrieval efficiency in a large-scale database
is not acceptable for practical usage. The existing re-ranking
schemes either come at the cost of manual intervention [6], [7]
or are time-consuming [10]–[12] for online search. Candidate
visual images from a short ranked list have to be spatially ver-
ified before queries can be expanded or the list re-ranked [1],
[4], [5]. To improve re-ranking efficiency, we propose a novel
concept in this paper: database saliency.
In large-scale image retrieval, the number of relevant images

in the database for a given query, regardless of its identity, is
extremely small compared to the entire image collection. That
is to say, queries are always discriminative to the entire data-
base. One of the main challenges, in the retrieval for a query
image, is thus to distinguish relevant images from images that
are similar (in TFIDF scoring) to query as well but are irrelevant
actually. Building upon this observation, we claim that query’s
relevant images in the database are more likely to be distinctive
images than ambiguous images. In this paper, we define data-
base saliency as the distinctiveness score calculated for every
image to measure its overall saliency in the database. Less dis-
tinctive images that are associated with smaller weights are re-
garded as less relevant.
The distinctiveness of visual images is computed offline, in-

dependently of the query. As a new strategy of exploiting the
saliency in a database, database saliency can be integrated with
any standard image retrieval architecture, and is always benefi-
cial to retrieval performance. In this paper, we plug it into the
discriminative query expansion [5] and propose a saliency-in-
spired fast image retrieval scheme, S-sim. We demonstrate that
S-sim significantly improves efficiency and at least retains state-
of-the-art accuracy in image re-ranking by simply evaluating a
very low dimensional linear SVM.
There are two stages in the proposed method: the bottom-up

saliency mechanism computes the database saliency value of
each image by hierarchically propagating a posterior probability
in it, while the top-down saliency mechanism discriminatively
expands the query from top-ranked images after the initial
search. It is similar in spirit to [13], in which saliency is mod-
eled using both top-down visual cue (color) and bottom-up

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Overview of the proposed saliency-inspired fast image retrieval scheme. In the offline stage, image saliency detection is carried out first in database images
(yellow frames); database saliency values for , and are computed by formulating posterior probabilities , and hierarchically in each
salient window; every image is thus associated with a distinctiveness score, i.e., , and , which is illustrated by the brightness of the square in the grey
bar. In the online stage, given a query image, we first obtain its initial search results using TFIDF scoring; positive (green “+”) and negative (red “-”) samples are
selected from the top and bottom of the ranked list, respectively; every sample is represented by a 1024-dimensional BoW vector describing the salient window
(yellow frame) in it; an SVM is learnt on the positive and negative samples to compute the distance from decision boundary. Initial search results are re-ranked
by either (D-sim) or both and (S-sim). False alarms are marked with red boxes.

visual cue (shape), but is different in detail given that the
bottom-up saliency is not true saliency; we only employ the
concept of saliency in the database rather than the visual cues
conventionally used in image saliency.
Fig. 1 explains the proposed approach: the bottom-up

saliency mechanism is carried out offline, while the top-down
saliency mechanism is evaluated at the query time. In the
offline stage (green block), we make use of image saliency,
which is different from the proposed database saliency, to
detect the salient window in each database image as its rep-
resentative [14]. We compute the database saliency value of
each salient window (e.g., window ) using the visual word
co-occurrence matrix [15], [29]: a posterior probability (e.g.,

, denotes the visual word set inside .) is calculated
in a hierarchical model, namely salient window, local patch,
and visual word (feature). Visual word concurrent information
is (e.g., ) is propagated bottom-up to local patches
by multiplying them together (e.g., ), while the con-
ditional probabilities on the patch level are further aggregated
to produce an estimation of window distinctiveness, .
Every salient window is thus associated with a distinctiveness
weight in the database, which is illustrated by the brightness
of the square, the larger is, the brighter it is located in the
grey bar. At query time (red block), we evaluate a top-down
discriminative query expansion by first conducting TFIDF
scoring. False alarms are marked with red boxes. Salient win-
dows from top-ranked images of initial returned list are used as
positive samples, while negative samples are selected from the
bottom of the ranked list. A weight vector is discriminatively
learnt via a very low-dimensional linear SVM. Each candidate
in the searched list is thus associated with an online weight

that depends on the distance from the decision boundary.

The initial search results are accordingly re-ranked (denoted
by S-sim) by the learnt weight in SVM together with the
distinctiveness weights in the database saliency.

II. RELATED WORK

This section first reviews the literature in image retrieval in
two aspects: 1) visual ranking by exploiting distinctiveness of
images, and 2) query expansion from initial returned list; after-
wards, it details the comparison with one of the closest work to
this paper, discriminative query expansion [5].
Visual Ranking. Exploiting the distinctiveness of visual

images in the database is an actively researched topic [9],
[16]–[20]. In [16], [17], only the query’s discrimination was
measured, and the performance was limited; in [18]–[20],
[9], specific similarity measures were learnt and significant
improvements were obtained by taking into account the neigh-
borhood of the image space, e.g., k-nearest neighbors (k-NN).
The only unsatisfactory aspect of these works is the ranking
time: the whole database has to be ranked several times for
each query as a result of its k-NN [9], [19], [20].
To tackle this computational concern, we exploit the visual

image’s distinctiveness from a different perspective: each image
is represented by its most salient window inside [14]. A pos-
terior probability of the salient window is calculated to stand
for the database saliency value of the area. We derive a for-
mula to approximate the posterior probability. It is based on
a hierarchical model, which separates a salient window into
several small patches [21], and then into local features [22].
The hierarchical model includes the spatial information implic-
itly, and is widely exploited in [23]–[26]. The basic element in
the model is the co-occurring conditional probability of visual
words [15], [27]–[29], it is propagated partially similar to the
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Dirichlet process in [24]. In Section III the discussion, we show
that the proposed database saliency indeed shares the same intu-
ition with [18], [9] by querying every image with the rest of the
database. Except that in this work, we do not really query each
image, but propose an offline unsupervised manner, it saves un-
necessary computation in the online stage.
Query Expansion. Cosine similarity based visual ranking is

not accurate, retrieval performance can be further boosted by
expanding the query from the initial returned list. Typical query
expansion schemes include average query expansion (AQE)
[30], [4], discriminative query expansion (DQE) [5], and visual
query suggestion [31], [32]. This paper follows the architecture
of [5] by learning an SVM from the top-ranked images of the
initial returned list. It is not a novel idea, and many works have
re-ranked images by either their classified labels [11], [7], [10]
or their distances to the decision boundary [5].
It has been observed that [4], if the top-ranked images con-

tain enough true positives, the re-ranking results of the learnt
SVM are significantly better than the initial search results; con-
versely, if no correctly retrieved images are in the top-ranked
list, or very few, the learnt SVM does not help. To enhance
the learning performance, active learning [33], relevance feed-
back [6], [7], spatial verification [1], [4], or text/meta features
[10], [11] are added to refine the positive samples. Despite the
encouraging improvements they achieve, these techniques are
time-consuming for online search.
Comparison With DQE. DQE [5] learns the weight vector

discriminatively from the spatially verified BoW vectors. Spa-
tial verification is performed to refine the positive samples from
the top-ranked images, and -dimensional BoW vectors ( is
the number of feature dimensions of BoW vectors, it can be re-
duced less than 10k in the end) are utilized to represent images
and input to a linear SVM. Accordingly, the overhead of gath-
ering negative training data and training the linear SVM is
on average on a 3 GHz single core machine. Notwithstanding,
considering the time of gathering positive training data, which
is indeed the spatial verification time, the entire overhead is still
not efficient for online search.
By embedding database saliency into this architecture, it

is computed offline to re-weight the discriminative learning,
spatial verification is consequently no longer indispensable
in SVM. Instead, the detection results of image saliency are
used to estimate the location (ROI) of the queried objects
in the retrieved images. Compared to spatial verification in
DQE, image saliency detection is not accurate, however, is
carried out offline and further advantageously utilized in a very
low-dimensional (1k) linear SVM, which allows us to achieve
significant increase in speed with at least comparable accuracy
to state-of-the-art BoW-based image retrieval schemes.

III. DATABASE SALIENCY

Image Saliency. Generally, each image is specifically repre-
sented by the window area with the highest saliency in it, which
is the most distinctive part of an image and can be taken to cal-
culate its distinctiveness in the database. For image of multiple
landmarks, we could use the entire image to calculate the on-
line weight and distinctiveness weight for re-ranking. In
spite of this, in most standard retrieval benchmarks, e.g, Oxford

and Paris datasets, each image is mainly composed of one land-
mark, and single salient window detection works best in image
retrieval and is adopted by default in the following section. We
use an effective saliency detection method [14] to detect the
salient area of an image. A sliding window-based paradigm is
used in [14] and window saliency is optimized according to a
specifically defined window composition cost function which
encodes different visual cues such as appearance, position, and
size in the window.
Image saliency is arranged in re-ranking instead of ranking

because its detection is not precise enough to locate the queried
object in each image, several objects or parts of objects might
be included in the salient area that can lower the recall due to
ignoring some target objects in the initial ranking. However, in
re-ranking, the ignored objects are just moved down on the re-
trieval list rather than removed from the list. In general, it is
observed that, retrieving a specific salient region rather than
the whole image effectively helps to prevent negative visual
words being brought into SVM in query expansion and there-
fore avoids a mismatch with the background object in a natural
image; SVM generalizes better on the top-ranked salient win-
dows than on the top-ranked images.
Bottom-Up Database Saliency. This section computes the

database saliency value of each image. Rather than using visual
cues, such as appearance, position, and size in image saliency,
we are more concerned with the statistical distinctiveness of an
image, as we claim that query-relevant images in the database
are more likely to be distinctive than ambiguous. To measure
the distinctiveness, we make use of visual word co-occurrence
matrix [15], [29], and propagate the visual word concurrent
information by simply formulating a posterior probability in
each salient window.
What property of the posterior probability can be used for

image retrieval? Given all features in the salient window area,
we wish that these features denote the area completely and
uniquely, that is, the posterior probability of the window ,
given all features , should be, . Similar to the word
“and”, when we get three letters “a, d, n”, we can definitely
determine that they denote unique “and”. So the larger
is, the better the completeness and uniqueness of is, and we
gain more confidence from the group of features , and can
rank the salient window higher.
The computation of is not easy. First, features have

to be quantized into visual words . Thus, needs to be
changed to . Then, the key point is the representation
of , is just a group of visual words in a region. We pro-
pose a hierarchical model, is separated into a group of affine
invariant patches , and is partitioned into a group of vi-

sual words . is decomposed along
the hierarchical model, while image’s distinctiveness is thus cal-
culated in a bottom-up fashion. Supposing each visual word is
approximately independent of other visual words in a window,
we have [34]

(1)

Since each visual object is perceptually decomposed into a set
of generic components, likewise, is mathematically
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decomposed into amplified scale-invariant local patches .
Each visual word can occur in a small number of patches,
and all the other are zeros

(2)

we drop the joint term in (2) for better performance in prac-
tical implementation. Each is composed of the visual words

lying in patch and belonging to window

(3)

Without considering the mutual dependencies between

in the patch, similar to (1), we have

(4)

Substituting (2)(3)(4) into (1), we approximate to

(5)

where (superscript omitted in ) is a special con-
ditional probability, and must appear in the same affine
invariant patch, named the co-occurring conditional probability
of visual words [15], [29]. can be obtained from the

statistics of the database. Usually, , it is diffi-
cult to calculate (5), we take a logarithm to the right hand side
of it and define a visual object’s distinctiveness weight as

(6)

is independent of the query and related to . We take
obtained for the salient window as the saliency of that image

in the database. For images with multiple landmarks or smaller
objects, is directly calculated in the entire image.
Variant. Several assumptions and simplifications are made in

(1) (6). In the Appendix, we present a full formulation of
database saliency, denoted by database saliency variant ( - ).
We show that the difference between and - is simply
a matter of window or patch prior simplification. Both the data-
base saliency value and its variant keep the essence of the pos-
terior probability : indicating the uniqueness and com-
pleteness of the salient window and its features, to help re-rank
corresponding images.
Discussion. Through (6), we analyze the proposed distinc-

tiveness measurement. Imagine every visual image (supposing
it is represented by one salient window) in the database is taken
as a query: the candidate relevant images of each query are thus
retrieved via the inverted file index in the BoWmodel. Every vi-
sual word in the query has an entry in the inverted file followed
by a list of all the visual images in the database in which the
word occurs. To simplify this, we assume the same list length

of candidate images for each visual word. Suppose is
normalized to over the entire database. To calculate ,

we assign a very small value to when it is zero.
1. If any two visual words occur independently in different

images, all the in (6) are zeros, and . Each
retrieved image shares only one common word with the query,

Fig. 2. Illustration of the top-ranked retrieval results for two queries on Oxford
dataset. The two rows of search results correspond to the initial TFIDF scoring
and D-sim re-ranking results. Each grey square beneath the image represents
its distinctiveness weight in the context of brightness. False alarms are marked
with red boxes.

and the number of whole candidates is , where is the
visual word number in the query. The query is ambiguous and
retrieves many candidates in the database which are not really
relevant.
2. If there two visual words and that always occur to-

gether and all the other words independently occur, the condi-

tional probability (or ) is 1, while all

the other are zeros. is thereby larger than ,
and the candidate lists of and are the same in the inverted
file because of their co-occurrence. The number of all candi-
dates retrieved by the query is , of them
share two common words , with query.
3. If any of the two visual words occur together, their co-oc-

curring probability is 1: , is therefore the
largest, . The number of candidates is , and they
all share common words with the query. The query is very
distinctive, and retrieves a small number of candidates from the
database which are very likely to be relevant.
The observations apply to more generalized case as well:

when and the list length of candidates
for each visual word is not the same in the inverted file,
therefore belongs to ( ) and database saliency endeavors to
relate images’s distinctiveness with the number of its retrieved
images and the common words of those images shared with the
query. Larger distinctiveness weights are supposed to be asso-
ciated with those images, when we query them in the database,
which have fewer candidates yet share more common words
with the retrieved candidates.
We represent each image’s distinctiveness weight with a

grey square, as illustrated in Fig. 2, each grey square beneath
the image represents the distinctiveness weight of its salient
window, the larger is, the brighter the square is. We choose
two query landmarks, All_souls and Bodleian, in Oxford dataset
and obtain their top-ranked results using TFIDF scoring. False
alarms are marked with red boxes, and their distinctiveness
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weights are of smaller values and darker squares, while rele-
vant images have brighter squares and larger distinctiveness
weights. If we re-rank the initial search results using to
weight the cosine similarity, the performance (D-sim) is im-
proved as shown in Fig. 1 and Fig. 2. The result is consistent
with our assumption that a query’s relevant images are more
likely to be distinctive than ambiguous in the database.

IV. ONLINE QUERY EXPANSION

Query Expansion.We follow the architecture of DQE [5]: an
SVM weight vector is discriminatively learnt from a shortlist
(the initial search results). Top-ranked images are usually uti-
lized as positive samples , while negative samples are
collected from the bottom of a ranked list, because the proba-
bility of finding relevant images in the bottom of ranked list is
very low.
Each salient window is described by the frequency histogram

of visual words obtained by assigning each SIFT descriptor to
its closest visual word. The visual word vocabulary size is 1024
for fast online query expansion, because it is able to describe the
salient window appropriately without incurring much computa-
tional complexity [24]. Every salient window is thus represented
by a BoW descriptor vector with the entries ( )
being the visual word frequency histograms. Note that, except
for the small vocabulary used for learning SVM, the vocabulary
size used for visual word co-occurrence matrix construction and
TFIDF scoring is usually large and reaches 1M.
Given an image described by its salient window ( ), is

the window descriptor vector and is its label. for the
positive sample, otherwise . The same as that in DQE,
we train a linear SVM using these positive and negative BoW
vectors to obtain a weight vector . The learnt weight vector
is used to calculate image distance from the decision boundary

. We denote by the result of .
We name the sum of and as the saliency-inspired

weighting score, , of which is a measurement of the de-
tected salient window’s relevance to the query while is a
measurement of the salient window’s distinctiveness in the data-
base. The larger is, the more relevant the salient window is
to the query; the smaller is, the more irrelevant the salient
window is to the query window; despite that is calculated
independently of the query, the larger it is, the more relevant
to the query the salient window is regarded as being. There-
fore, relies on both online and offline contri-
butions, can be either positive or negative. For database images
contain a number of scene types rather than single landmark,

and are computed over the entire image instead of a
single salient window, we have tried to utilize multiple salient
windows and sum their weights together in one image, unfortu-
nately, we couldn’t find sufficient benefits.
Ranking images are sorted on the value as well as the cosine

similarity value in TFIDF scoring.We therefore summarize
our saliency-inspired ranking function S-sim as

(7)

where the parameter is introduced to adjust the contribution of
in S-sim. We slightly modify (7): is weighted by when

Fig. 3. mAP results for visual object re-ranking in multiple schemes on Oxford
dataset. Sim denotes the original cosine similarity measure, C-sim, D-sim, and
S-sim denote that Sim is respectively weighted by , , and . RF means
adding user feedback. HA and SA denote hard- and soft-assigned vocabularies.

it is negative, otherwise we set to zero. We find an interesting
phenomenon in the real implementation: we are more inclined
to remove irrelevant images by subtracting a large value in the
similarity measure [9]; by contrast, adding a positive term to
up-weight the relevant images usually does not work, or the
improvement is negligible. It suggests that removing irrelevant
images is much easier, since the majority images in the database
are irrelevant to certain query.
Discussion. Though neither nor is accurate enough,

the corresponding distinctiveness weight and the online query
expansion weight have complementary effect as illustrated in
Fig. 3, the combination of and guarantees a reliable es-
timation of an image’s relevance to a query.
We interpret this from a probabilistic view: in [35], Platt pro-

posed to approximate the posterior by a sigmoid
function via the SVM output

(8)

The parameters ( ) are found by minimizing the negative
log likelihood of training samples referring to [35]. The SVM
prior is proved to be simply a Gaussian process (GP) over
[36], is determined by the distribution of trainings. Thus,
indeed discloses the likelihood value that an image is drawn

from the distribution of either positive or negative samples. On
the other hand, is related to , which describes the
distinctiveness of an image drawn from the entire database.
can also be interpreted as a probability in language model [37],
if we multiply the three probabilities together (it is not as good
as the sum in (7) in practice), it is indeed a joint probability of
the three different manners of relevance estimation.
Regarding and , they are both some manner of

measurements underlying the visual distribution inside certain
image, and in two aspects they complement, 1) computes
the probability from the object view, while
decomposes into local patches; 2) measures a sim-
ilarity score between certain image and images from top-ranked
list, while measures a dissimilarity score between an image
and images over the entire database. Recall the claim we make,
the number of relevant objects in the database for a given
query, regardless of its identity, is extremely small compared
to the entire image collection. In complement of and ,
we select a small group of images distinctive to the entire
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database and refine the selection in consistent with distribution
generalized from the top-ranked images in TFIDF scoring.
Computation Cost. The proposed S-sim is similar to DQE,

but much faster. The time complexity of DQE is

(9)

where the first term corresponds to the time complexity of spa-
tial verification before expanding the query. Candidate images
in the initial returned list are verified via RANSAC

(10)

denotes the length of the verified list. For each can-
didate image in the list, is the time complexity
of RANSAC, where is the time cost of computing a single
model, is the time cost of fitting one point, is the number of
feature points, and is the iteration. The second term
is the computational complexity for training an SVM [38]

(11)

where is the number of support vectors, is the number
of feature dimensions of BoW vectors, and is the size
of the training set. The third term , the computational
complexity for query expansion, is the computational cost of
testing SVM

(12)

and denote a multiplication and addition of two real values,
respectively [39].
Compared to DQE, the time complexity of S-sim is

(13)

where and
. Instead of using spatial verifica-

tion, we adopt offline image saliency detection to roughly locate
the salient window in an image, and a saving in computation
is achieved. In addition, a very low dimensional BoW vector is
used in this paper, . The dimensionality is 1k compared
to around 10k used in DQE after truncating the BoW vectors [5];
in other words, , our method runs much faster
than DQE.

V. EXPERIMENTAL RESULTS

A. Dataset and Evaluation Protocol

Oxford5k [1]. This dataset of 5062 images is a standard image
retrieval test set, which we call Ox for short. 55 images of 11
Oxford landmarks are selected as the query images, and their
ground truth retrieval results are provided.
Paris6k [9] contains 6390 images by querying the associated

text tags for famous Paris landmarks, such as “Paris Eiffel
Tower” or “Paris Arc de Triomphe”. Similar to Oxford5k, 55
query images are selected from Paris landmarks, and their
ground truth are provided as well.
INRIA Holidays [40]. This dataset is a set of images which

mainly contains holidays photos. We name it Ho for short. It in-

cludes a large variety of scene types (natural, man-made, water
and fire effects, etc.).
UKB. The University of Kentucky Benchmark dataset [41]

consists of 10200 images grouped into 2550 subsets of corre-
sponding images. Each subset contains four images. For a given
query, the system is expected to return the four relevant images
in the first four positions.
ImageNet [42]. Approximately 100k and 500k images are

randomly sampled from 10M images in ImageNet, which we
respectively call I1 and I2 for short. We use I1 and I2 as distrac-
tors to implement the test on a large-scale.
Evaluation Protocol. Evaluation of impact of parameters is

first conducted on Oxford dataset. SIFT files and visual word
vocabularies were downloaded from the Oxford VGG website.1

Single salient object is extracted in each image, the training
ratio and BoW vector’s dimension in SVM are respective

and 1024 by default, whilst vocabulary size
for TFIDF scoring is 1M. To evaluate the performance on
large-scale, we add and images from ImageNet
dataset as distractors. In this case, the evaluation is performed
on the 55 Oxford queries, since the images from ImageNet are
not relevant to queries. Performances on Paris, Holidays and
UKB are presented in the end, of which Holidays and UKB
are used to discuss two critical issues in this paper, which are
the failure of image saliency detection and database saliency
computation.
Overall comparisons are carried out with other representative

approaches such as [3], [15], [16], [19], [9], [8], [21], [18], [43],
[5], [20], [2]. The baseline follows the architecture of [1]. The
performance for Oxford, Paris and Holidays datasets is mea-
sured in terms of the average precision (AP), which is defined
as the area under the precision-recall curve for each query. The
AP score is computed for each query ad averaged to obtain a
mean average precision (mAP). For the UKB dataset, the score
is standardly computed as the average number of correct images
in the top-4 positions (4-recall@4), the best score is 4. Notice
that, to make a quick test on UKB, we train a vocabulary from
Holidays.

B. Impact of Parameters

Parameter . Fig. 4(a) shows the mAPs with variation of pa-
rameter . The optimal performances occur when is smaller
than . When , the ranking result is de-
termined by the original cosine similarity in (7); when

, the ranking result is determined by the weighting term
. This shows that the initial TFIDF scoring output is necessary
as an anchor, so that we re-rank the visual images in the returned
list. Note that the selection of is generally related to the dataset
size: for datasets like Oxford and Paris that have the same scale,
we can roughly choose the optimal around .
Training Ratio. We evaluate different combinations of

training samples. We select positive samples from the
top-ranked list, and negative samples from the bottom
of the ranked list. Results are given in Table I for various
choices of and . For each choice, we use 10-fold cross
validation during the training stage. The improvement achieved

1[Online] Available: http://www.robots.ox.ac.uk/vgg/data/
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Fig. 4. (a) mAPs for Oxford dataset with different values of parameter
. (b) Left: mAP values correspond to different hard-assigned vocab-

ulary sizes in SVM. Right: Comparisons of baseline and S-sim with different
hard-assigned vocabulary sizes in TFIDF scoring. (a) Parameter variation.
(b) Effect of vocabulary size.

TABLE I
MAP VALUES FOR DIFFERENT TRAINING RATIOS ON THE OXFORD
DATASET; HA [1] AND SA [3] DENOTE HARD- AND SOFT-ASSIGNED

VOCABULARIES, RESPECTIVELY

by the proposed S-sim over the baseline [1] is clear in Table I.
Increasing tends to include more irrelevant samples into
positive samples in SVM, which biases the online learning.
Generally, we consider that top 10 is a reliable choice. The
choice of hardly affects mAP in a range of . By
default, we choose the training ratio as for all the
queries.
Effect of Vocabulary Size. We evaluate the effectiveness of

S-sim in the Oxford dataset for different hard-assigned vocab-
ularies, as shown in Fig. 4(b). The mAPs of baselines and the
corresponding improvements obtained by S-sim are shown by
the blue line and red line, respectively.
The left figure shows that when we fix the vocabulary size

for co-occurrence matrix construction and TFIDF scoring to
1M, and change the vocabulary size for learning SVM from
128 to 8k, the mAP value does not change significantly. Due
to the polysemy in all the small visual vocabularies [21], the
vocabulary does not effectively outperform the 512 vocabu-

lary. In real implementation, we choose the vocabulary size as

TABLE II
LARGE-SCALE EVALUATION. MAP AND AVERAGE TIME OVERHEAD PER

QUERY. VOCABULARY SIZE IS 1M USING HARD ASSIGNMENT

1024 for SVM. The same mAP can also be obtained by using
high-dimensional SVM and spatial verification as in DQE [5],
despite the good performance, it is very time-consuming for on-
line search.
The right figure shows corresponding mAP values when we

fix the vocabulary size for SVM to 1024 and change the TFIDF
scoring vocabulary size from to 1M. For the large vocabu-
lary, significant improvement has been achieved at every point
compared to the baseline. However, for the small vocabularies,
mAP increments are very trivial, most initial search results are
irrelevant (mAPs are lower than 0.5), and the online weight
learnt from the top-ranked salient images is not reliable, neither
is the distinctiveness weight computed from the co-occurrence
matrix. To overcome this dilemma and guarantee efficiency, we
suggest adding user feedback and show our results in the fol-
lowing section.

C. Results for Visual Object Re-Ranking

Experiments are carried out on both hard- and soft-assigned
(HA [1] and SA [3]) and 1M Oxford vocabularies. mAP
values are reported accordingly using different weighting
techniques.
Fig. 3 provides the re-ranking results (C-sim and D-sim) de-

pending on whether we utilize the query expansion score
or the distinctiveness score to weight . We can see that,
even though is computed offline independently of the query,
we can still achieve an improvement by embedding it into the
TFIDF scoring scheme. It supports our motivation that a query
object’s relevant objects are more likely to be distinctive rather
than ambiguous. On the other hand, compared with C-sim and
D-sim, their combination S-sim apparently yields superior re-
sults. It increases mAPs to 0.65 and 0.681 on HA and SA
vocabularies with 26.5% and 28.7% increments, and to 0.787
and 0.835 on the 1M HA and SA vocabularies with 28.3% and
30.5% increments, by comparing with baselines.
By adding user relevance feedback (RF) to refine the top-

ranked salient samples in the discriminative query expansion,
the mAP can be further enhanced. The highest mAPs can reach
0.697 and 0.850 on the 100k and 1M soft-assigned vocabularies.
Since adding RF is laborious work, we only ask the user to label
the relevant salient objects from the top 10 ranked images.

D. Large-Scale Evaluation

To implement the proposed method on a large-scale database,
we carry out the experiment by adding the ImageNet (100k and
500k images denoted by I1 and I2) dataset to the Oxford (Ox)
datasets. The results are provided in Table II, the mAP improve-
ments are impressive. It also shows the average query time over-
head for each query (Note that we don’t really rank the entire
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TABLE III
MAPS FOR DIFFERENT DATASETS COMPARED TO THE STATE-OF-THE-ARTS. WE PRESENT S-SIM

RESULTS BY USING SOFT-ASSIGNMENT VOCABULARIES IN OXFORD AND PARIS DATASETS

Note: The mAP 0.847 is reported from Table I in [5] without using RootSIFT and SPAUG, which is with the same setting of S-sim. The mAP 0.818 is obtained
from our own implementation.

TABLE IV
TIME ELAPSED IN THE SVM IN DQE AND S-SIM ON OXFORD AND

PARIS DATASETS. SP DENOTES SPATIAL VERIFICATION

dataset, instead, for those images with very small ranking values
we ignore them directly.). Since the database saliency is com-
puted offline, the time overhead of S-sim is in the same order of
magnitude as that for TFIDF scoring. Additional time is mainly
required for SVM training and test, which does not necessarily
grow up with the database size, because we choose the same
number of training samples for SVM.
The additional memory overhead is simply to record the

database saliency value for each image. They are 821KB and
3946KB for and , respectively. Regarding
the offline process of database saliency computation, we need
to load the visual word co-occurrence matrix into the memory,
as suggested in [15], by setting a limit of the length of the
co-occurrence list, we could keep the storage overhead around
500 MB regardless of the database size.

E. Comparisons

Table III shows the comparison of our method with other
state-of-the-art approaches [15], [16], [19], [9], [8], [21], [18],
[43], [5], [2], [20] in Oxford, Paris and Holidays datasets. Most
of these methods employ additional techniques such as soft
(multiple) assignment [15], [43], [21], geometric verification
[21], [43], [5], [8] and k-NN2 re-ranking [20], [19], our results
(S-sim) are competitive among them.
Specifically, we compare our work with one of the closest

works, DQE [5], in Table IV. Time of gathering negative
training data and training the linear SVM reported in [5] is

on Oxford dataset on a 3 GHz single core machine.
To make a fair comparison, we implement it on a 2.4 GHz
dual-core machine as the same with S-sim. Time elapsed
includes SVM training and test. We also report the spatial
verification time in DQE which is not counted in [5]. Although
the mAP of S-sim is slightly lower than DQE, its speedup of
time efficiency over DQE is impressive.
More importantly, we propose a new concept database

saliency, it could be either adopted independently (Fig. 1,
D-sim) or plugged into standard retrieval architecture (Fig. 1,
S-sim). Unlike other representative approaches, i.e., [19], [20],

2k-NN re-ranking is very time-consuming. Accordingly, the mAPs of [19],
[20]without k-NN re-ranking are respective 0.752 and 0.780 on Oxford dataset,
0.741 and 0.736 on Paris dataset, which are inferior to S-sim.

TABLE V
S-SIM RESULTS ARE REPORTED IN TERMS OF MAP AND 4-RECALL@4 FOR
OXFORD, PARIS, HOLIDAYS, AND UKB, ACCORDINGLY. “ “ REFERS TO

THE USAGE OF SALIENT WINDOW (SW FOR SHORT), WHILE “ ”
INDICATES USING THE ENTIRE IMAGE FOR SVM TRAINING
AND DATABASE SALIENCY COMPUTATION, “ “ MEANS NO
VALUE. 1M HARD-ASSIGNED VOCABULARIES ARE USED

TABLE VI
LARGE-SCALE EVALUATION ON HO + I1 AND UKB + I1 USING 1M
HA VOCABULARY. HO + I1 AND UKB + I1 SIGNIFY HOLIDAYS AND
UKB DATASETS PLUS 100K IMAGES FROM IMAGENET. MAP AND

4-RECALL@4 ARE REPORTED, RESPECTIVELY

we re-rank the whole dataset at most once, which is much more
efficient.

F. Discussion

In this section, we discuss two critical issues in this paper:
1) image saliency detection fails to detect the queried object
in database image, and 2) database saliency fails to distinguish
relevant images as there exist no noisy images in the database.
We add two datasets, Holidays and UKB, in the test.
In Holidays dataset, images include a number of scene types

rather than simply the building landmarks, image saliency de-
tection could possibly detect very smooth or flat area with the
highest salience, i.e., sky, water and fire effects. Few features
can be extracted in this area to represent the image and for sure
the queried object is not in this salient window. We can not
train an SVM or compute database saliency from such a salient
window. To tackle this problem, we propose to use the entire
image to compute the database saliency and re-rank. Table V re-
ports the corresponding results. It is worth of remarking that,
1) we conduct the same test by using multiple salient windows
in one image, we find that increasing the number of salient win-
dows does not clearly affect or improve the mAP, and 2) in Ox-
ford, Paris and UKB, single salient window is capable of de-
tecting the queried object and works best.
Observing that the mAP (4-recall@4) improvement over

baseline on Holidays and UKB is not as impressive as that on
Oxford and Paris. This is because, given any image in Holidays
and UKB, it is relevant to certain query in the benchmark test
and should be treated as distinctive, the proposed database
saliency is thereby no longer rational. To address this issue,
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we augment the database by adding distractors from 100k
ImageNet dataset. Table VI shows that S-sim is much more
effective in this context.

VI. CONCLUSION

In this paper, we have demonstrated that a significant im-
provement in visual image re-ranking can be achieved by ex-
ploiting saliency in the database.Wemeasure the distinctiveness
of each visual image in the database. The distinctiveness score
is calculated in a hierarchical manner in the salient window of
each image. By taking advantage of this database saliency, we
propose a saliency-inspired fast image retrieval scheme: salient
windows from top-ranked images are taken as positive samples
after the initial search, a very low-dimensional linear SVM is
discriminatively learnt for online query expansion. The initial
returned list is re-ranked according to the distinctiveness weight
and online weight, and experimental results on several standard
benchmarks prove the efficiency and effectiveness of the pro-
posed scheme.
The image salience utilized in this paper is only a rough de-

tection of the queried object in each image. In future work, we
could run some structure-from-motion tools, i.e.,[44], [45], to
discover semantic-level objects and precisely identify important
visual words and their concurrent combinations associated with
each semantic objects.

APPENDIX

Database Saliency Variant. This appendix details the variant
mentioned in Section III. It provides a full formulation of (1)–(6)
without simplifications

(14)

Similar to (2) and (3), each visual word can occur in a small
number of patches , while each is composed of a group
of visual words ,

(15)

(16)

Similar to (14), we can write (16) as

(17)

Substituting (17) and (16) into (15) and (14), we have

(18)

(19)

Comparing (19) with (5), the difference simply lies on the esti-
mation of the window and patch priors, and . Basi-
cally, we have no prior idea of the distinctiveness of any window
or patch in the database, we assume them to be the same over
the database, , , and similar to
(6), we take a logarithm to the right hand side of (19) and define
the database saliency variant - as

-

(20)

where . Referring to (6), can be regarded as
a simplification of (20) without considering the second term,
which only varies with the number of visual words in
window .
We make a toy test of (20): given that we know the number

of noise images in a database is , the number of distinctive
images is then given by , where is the image
collection size, we propose to approximate by

, and by , by supposing that each

image is only represented by one salient window, each window
is composed of patches, and each patch is associated with
exactly one visual feature. We conduct the experiment on the
Oxford and Paris datasets using 1M HA vocabulary, the mAPs
are 0.656 and 0.704, respectively. Although it is less effective
than S-sim, we still obtain benefits in this toy example.
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