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Key Points 

• FasL mediated apoptosis play an important role in Treg depletion and subpopulation 

imbalance in AA, leading to immune dysregulation. 

• Remaining AA Tregs become FasL resistant in response to high concentration of IL-2 and 

are functional in an inflammatory environment.  

Abstract 

Idiopathic aplastic anemia (AA) has two key characteristics: an autoimmune response against 

hematopoietic stem/progenitor cells and regulatory T cells (Tregs) deficiency. We have 

previously demonstrated reduction in a specific subpopulation of Treg in AA, which predict 

response to immunosuppression. The aims of the present study were to define mechanisms of 

Treg subpopulation imbalance and identify potential for therapeutic intervention. We have 

identified two mechanisms that lead to skewed Treg composition in AA.  Firstly, FasL 

mediated apoptosis on ligand interaction and, secondly, relative IL-2 deprivation. We have 

shown that IL-2 augmentation can overcome these mechanisms. Interestingly, when high 

concentrations of IL-2 were used for in vitro Treg expansion cultures, AA Tregs were able to 

expand. The expanded populations expressed high level of p-BCL-2, which makes them 

resistant to apoptosis. Using a xenograft mouse model, the function and stability of expanded 

AA Tregs were tested. We have shown that these Tregs were able to suppress the 

macroscopic clinical features and tissue manifestations of T cell-mediated graft-versus-host 

disease. These Tregs maintained their suppressive properties as well as their phenotype in a 

highly inflammatory environment. Our findings provide an insight into the mechanisms of 

Treg reduction in AA. We have identified novel targets with potential for therapeutic 

interventions.  Supplementation of ex vivo expansion cultures of Tregs with high 

concentrations of IL-2 or delivery of IL-2 directly to patients could improve clinical 

outcomes in addition to standard immunosuppressive therapy.  
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Introduction 

Severe aplastic anemia (AA) is a rare and potentially fatal form of bone marrow (BM) failure 

syndrome, characterized by peripheral blood cytopenia and hypocellular BM. Most cases of 

acquired AA are associated with autoimmunity.1-3 In AA, the expansion of T effector cells 

(CD4+ and CD8+ T cells), along with the increased levels of pro-inflammatory cytokines such 

as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) results in the 

depletion of hematopoietic stem/progenitor cells (HSPCs).4,5 Immune destruction of HSPCs 

is also associated with Fas/FasL-dependent apoptotic pathway.6,7  

Current first-line treatment options for AA patients include hematopoietic stem cell 

transplantation (HSCT) for younger patients with HLA-matched sibling donors, as well as 

immunosuppressive therapy (IST) for older patients and patients without a matched sibling 

donor.8,9 In HSCT, acute and chronic graft-versus-host diseases (GvHD) remain an issue, 

although occur less frequently using alemtuzumab-based conditioning.10 Standard IST 

regimen using antithymocyte globulin (ATG) and cyclosporine A (CsA) has shown a 

response rate of 60-70% in AA patients. Nevertheless, 35% of patients relapse after 

responding and up to 15% of patients undergo clonal evolution to MDS and AML following 

IST.3,8,9,11-13 More recently, the addition of thrombopoietin receptor agonist (Eltrombopag) to 

the standard IST has shown a high rate of complete response among patients with severe AA, 

but the relapse rate and clonal evolution were comparable to standard IST therapy.14  

Regulatory T cells (Tregs), are an integral part of a balance immune response in human15 and 

the insufficient number or function of Tregs is the major finding in most autoimmune 

conditions.16 Our group and others have previously demonstrated that in AA, the number of 

Tregs are reduced and their function is compromised.4,17-19 We have described two 

subpopulations of human Tregs with distinct immunological phenotypes, known as Treg-A 

(naïve phenotype with low proliferation index) and B (memory phenotype with 
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moderate/high proliferation index) and shown that the reduced number of Treg B correlates 

with inferior response to IST 20. 

In the present study, we investigated the mechanisms behind the Treg reduction in AA and 

potential interventions which could overcome this mechanism. We found that Treg-A from 

AA patients were resistant to FasL-induced apoptosis and do not respond to low 

concentration of IL-2. However, Treg-A and B isolated from AA patients were able to 

expand in vitro and these expanded Tregs were not only functional and stable, but also 

expressed high level of p-BCL-2 and resistant to FasL-induced apoptosis. These findings 

represent potential targets to overcome AA immune dysregulation in a more targeted way and 

improve clinical outcome in addition to standard immunosuppressive therapy.  
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Methods 

Study approval 

King's College Hospital Local Research Ethics Committee approved this study for sample 

collection, and informed written consent was obtained from patients. 

Patient samples 

A total of 19 AA patients were involved in this study (Table 1). Peripheral blood 

mononuclear cells (PBMCs) from 19 AA patient samples collected at diagnosis and post IST 

(5 patients) and 25 healthy donors were used for various in vitro functional assays and in vivo 

experiments.  

In vitro Treg expansion 

Treg expansion in vitro was performed as previously described.20,21 Total Tregs, Treg-A and 

Treg-B were cultured in Prime XV T cell expansion XSFM (Irvine Scientific, Santa Ana, 

CA), supplemented with 5% human AB serum (Sigma Aldrich, St. Louis, MO) in the 

presence of 2 µM all-trans-retinoic acid (ATRA; Sigma Aldrich) and 100 nM rapamycin (LC 

Laboratories, Woburn, MA) for 4 to 6 weeks. Tregs were stimulated with Dynabeads human 

T-activator CD3/CD28 (cell:bead ratio = 1:1) (Thermo Fisher Scientific, Waltham, MA) and 

1000 IU/mL of human IL-2 (Proleukin; Novartis, Basel, Switzerland). The culture was 

replenished every 2 days with human IL-2 and every week with culture media and 

Dynabeads human T-activator CD3/CD28.  

Suppression assay 

Suppression assay was performed as previously described.20 Tcon cells were stained with a 

fluorescent proliferation dye, CFSE (BioLegend, San Diego, CA) and co-cultured with 

autologous Tregs at different Tcon:Treg ratios (8:1, 4:1, 2:1 and 1:1) for 5 days in the presence 

of anti-CD3/CD28 beads (Tcon:beads ratio = 20:1). Cells were harvested after 5 days and 

stained with Fixable Viability Dye eFluor 780 (Thermo Fisher Scientific), anti-human CD3 
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VioGreen (clone BW264/56; Miltenyi Biotec, Bergish Gladbach, Germany), and anti-human 

CD4 PerCp Cy5.5 (clone RPA-T4; BioLegend). Stained cells were analyzed on a BD 

FACSCanto II (BD Biosciences, San Jose, CA). FlowJo Version 7.6.5 software (Tree Star, 

Ashland, OR) was used to perform data analysis. 

FasL-induced apoptosis assay 

Treg-A and B were stimulated with 5 µg/mL of anti-Fas (clone CH11; Millipore, Burlington, 

MA) for 5 hours, and stained with Fixable Viability Dye eFluor 780 (Thermo Fisher 

Scientific) followed by Annexin V APC (BioLegend) in binding buffer (BioLegend). Stained 

cells were analyzed on a BD LSR Fortessa (BD Biosciences). Percentages of early (Viability 

Dye eFluor 780- AnnexinV+) and late (Viability Dye eFluor 780+ AnnexinV+) apoptotic 

cells were calculated. For rescue experiment, Treg-A and B were treated with 5 µg/mL of 

anti-Fas (clone CH11; Millipore) and 20 IU/mL human IL-2 (Proleukin; Novartis). 

Treg sensitivity to IL-2 

Treg-A and B were treated with 1, 40, 60 or 80 IU/mL of human IL-2 (Proleukin; Novartis) 

for 15 or 30 minutes. Protein expression level of pSTAT5, a marker for IL-2 response, was 

measured using western blot.    

DNA methylation analysis by deep amplicon bisulphite sequencing 

FoxP3 Treg-specific demethylation region (TSDR) methylation analysis using deep amplicon 

bisulphite sequencing was performed as previously described.20,22 Details of the method and 

data analysis are included in Supplementary Methods. 

RNA sequencing 

Total RNA was extracted using RNeasy Mini Kit (Qiagen, Hilden, Germany) and sent to 

Genewiz for RNA sequencing. Details of the data analysis is included in Supplementary 

Methods.  

Xenotransplantation 
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NOD/SCID/IL2rγ−/−/IL-3/GM/SF (NSG-SGM3) mice were obtained from Dr Leonard Shultz 

(The Jackson Laboratory) and bred at the Francis Crick Institute biological resources facility. 

All animal experiments were performed in accordance to UK Home Office and Francis Crick 

guidelines. PBMCs and Tregs were either co-injected or injected alone into the recipient mice 

via the intravenous route. PBMCs and Tregs from healthy donors (HD) were co-injected in 

1:1 ratio (10×106 cells). Due to limited number of cells available from AA patients, the 

number of PBMCs injected into recipient mice ranged from 1.75×106 to 4.5×106 and equal 

number of Tregs were co-injected together. Mice were euthanized either when animals lost 

20% of body weight or at week 12. Following on, mouse tissues were recovered and analysed 

(see Supplementary Methods for more details).  

Multi-parameter mass cytometry (CyTOF) 

Cytometry by Time of Flight (CyTOF) was performed as previously described.20 Details of 

the method and data analysis are included in Supplementary methods.  

Statistical analysis 

Statistical analysis was performed using Prism Version 7 software (GraphPad Software, La 

Jolla, CA). Statistical significance was calculated by P value using unpaired t-test. P 

value<0.05 was considered statistically significant.  

Data sharing 
 
RNA sequencing data are available at GEO (accession number is GSE140844). 
  



 8 

Results 

Treg-B are sensitive to FasL-induced apoptosis 

Treg-B are characterized by high expression of CD95 (Fas), therefore we hypothesized that 

these Tregs are more sensitive to FasL and will undergo increased apoptosis following FasL 

exposure compared to Treg-A. To investigate this, we first performed RNA sequencing on 

Treg-A and B isolated from both HD and AA patients to explore whether Treg-B show 

activation of FasL-mediated apoptosis pathway. By comparing gene expression profiles of 

AA Treg-B to HD Treg-B using Ingenuity Pathway Analysis (IPA), the top significant 

upregulated pathway in AA Treg-B was apoptosis related pathways (-log P value=4.69; z-

score=1.414) (Figure 1A, Figure S1, Table S1). In addition, one of the markedly upregulated 

pathways in AA Treg-B compared to AA Treg-A was death receptor signaling (-log P 

value=6.67; z-score=2.646) which includes apoptosis inducing genes and therefore, suggests 

previous exposure of AA Treg-B to pro-apoptotic ligands (Figure 1B and C, Figure S2, Table 

S2). Expression of homing receptors, including CCR4, CCR5, CCR6 and CXCR6 were also 

significantly increased in AA Treg-B as compared to AA Treg-A (Figure 1C). Notably, 

expression of Fas was significantly increased in 3 out of top 10 upregulated pathways in AA 

Treg-B (Figure 1B). Therefore, we next assessed whether Treg-B cells are more susceptible 

to FasL mediated apoptosis in vitro. We found that both early and late apoptotic rates were 

markedly increased in Treg-A (P value=0.0042) and B (P value=0.0001) (Figure 1D, Figure 

S3). However, there was a significantly higher percentage of apoptotic cells in Treg-B 

compared to Treg-A (P value=0.0041), therefore confirming that Treg-B are more sensitive 

to FasL-induced apoptosis than Treg-A. Interestingly, Treg-B from AA patients remain 

sensitive to FasL even after response to IST (Figure S4).  

IL-2 responsiveness and in vitro expandability of Treg-A and B  
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While FasL sensitivity explains Treg-B reduction in AA, it is not clear why Treg-A, which 

are more resistant to FasL, cannot expand. To address this, we tested the “IL-2 

responsiveness” of Treg-A in vitro. When Treg-A and B were treated with low concentration 

of IL-2 (1 IU/mL) for 15 and 30 minutes, lower pSTAT5 protein expression was observed in 

Treg-A compared to Treg-B (Figure 2A). However, when IL-2 concentration was increased 

to 40, 60 and 80 IU/mL, protein expression of pSTAT5 in Treg-A increased and was 

comparable to Treg-B after 30 minutes of IL-2 exposure (Figure 2B). These data suggest that 

Treg-A do not respond to low concentration of IL-2 but respond to higher concentration of 

IL-2.  

When we tested the in vitro expandability of Tregs in a Treg-promoting culture condition21 

with high concentration of IL-2, both Treg-A and B isolated from HD and AA patients were 

able to expand up to 4 weeks. Expansion rates of Treg-A and B from HD were comparable (P 

value=0.6429) where Treg-A was expanded with an average of 45-fold increase 

(range,10.47-113.27) while Treg-B increased by 33-fold (range, 4.56-129.03) (Figure 2C). 

Surprisingly, for AA patients, Treg-A expanded at a significantly higher rate compared to 

Treg-B (P value=0.0198), with an average increase of 4708-fold (range, 3388.7-6027.4) 

compared to 185-fold increase (range, 32.39-374) (Figure 2C). Interestingly, gene set 

enrichment analysis (GSEA) showed that expanded AA Treg-A were significantly enriched 

(FDR q-value=0.0377) for cell proliferation related genes as compared to pre-expansion 

Treg-A (Figure 2D), which was not the case for HD Treg-A. 

The next question was to understand how the in vitro expansion changes the Treg 

subpopulations. We performed Principal Component Analysis (PCA) on RNA sequencing 

data to study differences of transcriptional profiles of Tregs before and after in vitro 

expansion. PCA analysis showed that prior to expansion, Treg-A and B isolated from AA 

patients had distinct gene expression signatures with 127 significantly differential expressed 
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genes (FDR q-value<0.05) between them (Figure 2E, Table S3). Nevertheless, following in 

vitro expansion, although there were genes differentially expressed between the two groups, 

the differences were not statistically significant (Figure 2E, Table S4), suggesting that 

expanded Treg-A and B showed similar transcriptional profile. Using mass cytometry, we 

next investigated the expression of commonly expressed markers following in vitro 

expansion. Both Treg-A and B had similar expression of immune signatures where there 

were no significant differential markers observed between the two (Figure 2F). Interestingly, 

both expanded Treg-A and B were characterized by low expression of CD45RA, but high 

expression of CD45RO, CD95 and CCR4 (Figure 2G, Figure S5 and S6A), therefore 

demonstrating that they take on the immune phenotype of Treg-B.20 Similarly, expanded total 

Tregs isolated from HD and AA patients showed Treg-B phenotype (Figure S6).  

Stability, phenotypic plasticity and functionality of in vitro expanded Treg-A and B 

To investigate the stability of in vitro expanded Tregs, we examined the methylation status of 

15 cytosine guanine dinucleotide sites within the FoxP3 TSDR.22 TSDR cytosine guanine 

dinucleotide sites in the expanded Treg-A and B from both HD as well as AA patients were 

highly unmethylated compared to the non-Treg (CD4+CD25loCD127hi) population (Figure 

3A and B). Average methylation percentages were 7.9% for HD expanded Treg-A, 3.6% for 

HD expanded Treg-B, 7.4% for AA expanded Treg-A, and 12.6% for AA expanded Treg-B, 

compared to 89.1% for non-Treg population (Figure 3B), suggesting that expanded Tregs 

have stable FoxP3 expression.   

Treg possess some degree of plasticity in which they are able to adapt their phenotypes and 

functions to changes in the environment and extracellular signals.23-27 Hence, we studied the 

plasticity of expanded Tregs by culturing them in the presence of IL-1β and IL-6 that 

promote the secretion of IL-17A.28,29 There were no or negligible increase in IL-17A 

expression in the expanded Treg-A (P value=0.6624) and B (P value=0.5528) as compared to 
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positive control (CD4+CD25+ cells) where a significant increase in IL-17A level (P 

value=0.0346) was observed (Figure 3C and D), suggesting that expanded Tregs have a 

stable phenotype. 

To assess the functionality of expanded Tregs, fluorescent proliferation dye (CFSE)-stained 

conventional T cells (Tcon) were co-cultured with autologous expanded Tregs. Both HD and 

AA expanded total Tregs were able to suppress the proliferation of Tcon cells significantly at 

Tcon:Treg ratios of 8:1, 4:1, 2:1 and 1:1, with no significant different in the suppressive 

activity between HD and AA (Figure 3E). Similarly, both expanded Treg-A and B from AA 

patients were able to suppress the proliferation of Tcon cells significantly and the suppressive 

activity were comparable between Treg-A and B (Figure 3F and G).  

High dose IL-2 induces survival of Treg-A and B by upregulating phosphorylated BCL-2  

To study the mechanisms that lead to the survival of Tregs following in vitro expansion, we 

performed RNA sequencing to compare Tregs before and after expansion. IPA analysis 

showed that IL-2 signalling was significantly upregulated in expanded AA Treg-B in 

comparison to pre-expansion AA Treg-B (Figure S7). Thus, we next investigated whether IL-

2 was able to rescue FasL-induced apoptosis by adding IL-2 to FasL-treated Tregs. In Treg-

B, FasL-induced early and late apoptosis were rescued (P value=0.0022) while the FasL-

mediated apoptosis of Treg-A remained low in the presence or absence of IL-2 (Figure 4A, 

Figure S8A). Interestingly, GSEA analysis showed that expanded Treg-A were significantly 

enriched (FDR q-value=0.0317) for genes associated with negative regulation of extrinsic 

apoptotic signalling pathway compared to Treg-A before expansion (Figure 4B). Intriguingly, 

Bcl2 was significantly upregulated in 6 out of 10 enriched biological processes in expanded 

AA Treg-A compared to pre-expansion Treg-A (Figure S8B). Furthermore, multiplex protein 

assay quantifying the expression levels of various apoptotic-related proteins showed that the 

expression of two pro-survival proteins, p-BCL-2 and p-AKT were increased in expanded 
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Treg-A and B as compared to pre-expansion total Treg (Figure S8C and D). Similarly, 

western blot results showed that the protein level of p-BCL-2 was significantly increased (P 

value<0.05) in expanded Treg-A and B as compared to total Treg before expansion, with 

higher p-BCL-2 expression in AA expanded Tregs when compared to HD (Figure 4C and D). 

Taken together, our data suggest that when Treg-A and B are exposed to high concentration 

of IL-2 in in vitro expansion culture, elevated p-BCL-2 protein expression promotes their 

survival and therefore prevents FasL-derived cell apoptosis. 

In vitro expanded Tregs are able to prevent GvHD in a xenograft mouse model 

In order to evaluate the suppressive ability of the expanded Tregs in in vivo, we used our 

NOD/SCID/IL2rγ−/−/IL-3/GM/SF (NSG-SGM3) humanized mice (Figure 5A). NSG-SGM3 

mouse model has been previously shown to efficiently support the development and 

maintenance of human Tregs.30 Firstly, to study the kinetics of human Tregs in in vivo, HD 

Tregs were transduced with a bi-cistronic vector co-expressing GFP and luciferase, and then 

co-injected with or without human HD CD3+ cells in NSG-SGM3 mice (Figure S9A, B and 

C). Using whole body bioluminescence imaging, we detected Tregs for up to 5 weeks in mice 

that were co-injected with CD3+ T cells (Figure S9C).  

Next, human HD PBMC were injected into NSG-SGM3 mice with or without expanded 

Tregs (1:1 ratio; 10×106). Following on, mice that were injected with PBMC+Tregs also 

received additional doses of Tregs every two weeks post-injection (Figure 5A). These 2 

weekly Treg injection doses were chosen based on our earlier experiment showing 

exhaustion of Tregs after 5 weeks (Figure S8C) in mice. Tregs or PBMC+Tregs recipient 

mice showed no or little clinical disease symptoms associated with xeno-GvHD. Tregs or 

PBMC+Tregs recipient mice had less body weight lost as compared to mice injected with 

PBMC alone (Figure 5B). Notably, mice injected with either Tregs or PBMC+Tregs had a 

significantly better overall survival compared to mice injected with PBMCs alone (Figure 
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5C). Following xenotransplantation, male recipient mice had a better survival than female 

counterparts (data not shown). Histological assessment of mouse femurs and spleen at the 

time of death illustrated that tissue from PBMC recipient mice had acellular bone marrow 

and severe disruption of tissue architecture in the BM as well as spleen (Figure 5D, Figure 

S10A, Figure S11). Morphological assessment of BM sections demonstrates atypical 

hematopoiesis with prominent fibrotic tissue in mice injected with PBMC alone. However, 

mice injected with Tregs with or without PBMC had normocellular marrow with no or little 

evidence of marrow fibrosis and Tregs were present in BM (Figure 5D, Figure S12). We next 

tested expanded Tregs from AA patients in NSG-SGM3 mice. Similar to HD Tregs, AA 

expanded Tregs (1:1 ratio; up to 4.5×106 cells) provided the protective effect from xeno-

GvHD symptoms, and mice with either Tregs or PBMC+Tregs survived significantly longer 

compared to mice injected with PBMC alone (Figure 5E, Figure S10B). It is noteworthy that 

the GvHD suppressive ability of HD Tregs was better compared to AA Tregs., even though 

recipient mice with HD cells received higher doses of PBMCs (AA:1.75 - 4.5×106 vs 

HD:10×106).  

Immune signatures and TCR clonality of the expanded Tregs pre- and post-transplanted 

into NSG-SGM3 mice 

To study the possible changes in Tregs’ immune signatures before and after 

xenotransplantation, we performed multi-parameter mass cytometry on expanded Tregs pre-

injection and Tregs isolated from PBMC+Tregs recipient mice BM. In vitro expanded Tregs 

isolated from HD and AA patients had similar immune profiles prior to injection into mice 

(Figure 6A). Although we observed a significant upregulation of PD-1, Helios, Tbet and 

downregulation of CD62L, CD38, GATA3, CCR4, CXCR4, CD177 after 

xenotransplantation of HD expanded Tregs (Figure S13A), Pearson correlation analysis on 

median expression of 29 parameters showed that the immunological phenotypes of HD 
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expanded Tregs before and after xenotransplantation were similar (range of r=0.45-0.64) 

(Figure 6B). Similarly, there was significant downregulation of CXCR4, CCR4, CD45RO, 

GATA3, FoxP3, CD38, CD7 and CD161 after xenotransplantation of AA expanded Tregs 

(Figure S13B), however Pearson correlation analysis on median expression of 29 parameters 

showed similar immunological phenotypes of AA expanded Tregs before and after 

xenotransplantation (range of r=0.04-0.47) (Figure 6C). Interestingly, when we compared 

Treg B-specific markers between pre- and post-transplanted expanded Tregs, CCR4 

expression was markedly reduced after xenotransplantation of both HD (P value=0.00017) 

and AA (P value<0.0001) expanded Tregs (Figure 6D and E, Figure S14 and S15). In 

addition to CCR4 expression, CD45RO (P value<0.0001) expression was also significantly 

downregulated after AA expanded Tregs were injected into mice (Figure 6E, Figure S15). 

Overall, despite some phenotypic changes following xenotransplantation, expanded Tregs 

from HD and AA were able to protect mice against GvHD.  

To investigate the TCR clonality of the expanded Tregs before and after xenotransplantation, 

we performed TCR Vβ chain CDR3 high-throughput sequencing on expanded Tregs pre-

injection and Tregs isolated from PBMC+Tregs recipient mice BM. The average productive 

clonality of the AA expanded Treg before and after xenotransplantation were 0.093 and 0.209 

respectively, indicating that TCR repertoires of Treg cells are less diverse following 

xenotransplantation after in-vivo exposure to inflammatory environment (Figure 6F and G). 

Similarly, for HD expanded Tregs, the average productive clonality before and after 

xenotransplantation were 0.071 and 0.231 respectively (Figure S16).  
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Discussion 

The reduction in the number and function of Tregs is a well-known phenomenon in AA4,17-19, 

although the exact mechanism is less clear. The expansion of activated T cells as well as an 

increase in pro-inflammatory cytokines such as IFN-γ and TNF-α4,5 could play an important 

role in preventing immunoregulatory function of Tregs and create a vicious circle of immune-

dysregulation. In addition, expansion of auto-reactive T cells in AA results in destruction of 

HSPC, partly through the Fas/FasL cytotoxic pathway where Fas expression is enhanced on 

CD34+ cells and FasL is upregulated in the T lymphocytes.7,31-35 Specific subpopulation of 

suppressive and proliferative Tregs (Treg-B), expresses higher level of CD95 (Fas) than other 

less proliferative subpopulation, known as Treg-A.20 In this study, we have demonstrated that 

FasL induces higher degree of apoptosis in Treg-B and these Tregs remain FasL sensitive 

even after response to IST. Considering the suggested role of FasL-induced progenitor cells’ 

apoptosis in AA, it could similarly be the reason for the skewed composition of Tregs in AA 

patients. Although Treg-A is less sensitive to FasL, Treg-A do not expand in AA patients in 

the presence of low concentration of IL-2. IL-2 is a key cytokine for the Treg differentiation, 

functional competence and stability,36-38 thus we hypothesized that Treg-A do not respond to 

physiological level of IL-2 and cannot expand in AA to compensate for overall reduction in 

Tregs due to FasL-induced apoptosis. Here we show that indeed Treg-A do not respond to 

low concentration of IL-2 and thus do not compensate for the decrease in Treg-B observed in 

AA.  

We were able to expand Treg-A and B using high concentration of IL-2 and anti-CD3/CD28 

activation beads with rapamycin and all-trans-retinoic acid (ATRA) in vitro. Surprisingly, we 

observed a markedly higher in-vitro expansion of Treg-A isolated from AA patients 

compared to Treg-B, which could be due to the removal of inhibitory effects of in-vivo 

inflammatory environment in AA that prevents Tregs function and expansion. 
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Following in vitro expansion, expanded Tregs show similarities with Treg-B both 

phenotypically and at gene expression level. One of the main characteristics of Treg-B is high 

expression of Fas and their sensitivity to FasL-mediated apoptosis. Therefore, it raises the 

question whether the expanded Tregs, which also express high level of Fas, remain FasL 

sensitive and go through apoptosis if exposed to FasL. Nevertheless, we showed that IL-2 

was able to rescue FasL-induced apoptosis in expanded Tregs, indicating less sensitivity to 

FasL. Following expansion, Tregs express high level of pro-survival protein p-BCL-2, 

suggesting that expanded Tregs are able to survive in an inflammatory environment. 

Furthermore, there was a higher p-BCL-2 protein expression in AA expanded Tregs when 

compared to HD expanded Tregs, in line with the finding of higher expansion and 

proliferation rates in AA Tregs compared to the HD.  

Adoptive Treg therapy has shown promising outcomes in several clinical settings including 

GvHD,39,40 solid organ transplant rejection,41,42 type 1 diabetes,43-45 as well as autoimmune 

diseases such as systemic lupus erythematosus (SLE)46,47 and Crohn’s disease.48 Although the 

subtypes of AA patients involved in this study were heterogenous, we hereby demonstrated 

that in vitro expanded Tregs from AA are functional and stable with minimal plasticity, 

giving the potential of using these expanded Tregs as an additional strategy to restore the 

Treg reduction in AA patients which may improve the clinical outcome of the standard 

treatment using IST. Indeed, by using NSG-SGM3 mouse model we have shown the efficacy 

of in vitro expanded Tregs in protecting mice against GvHD. While AA and HD Tregs were 

able to similarly suppress the proliferation of Tcon cells in vitro, the efficacy of AA expanded 

Tregs in suppressing GvHD in vivo was found slightly lower than the HD expanded Tregs. 

This differences in the in vivo immunosuppressive ability of AA and HD Tregs might be due 

to the pre-activation of T effector cells from AA patients which were co-injected with Tregs 

and was not the case in HD T effector cells.4,5 In other word, AA expanded Tregs were 
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inhibiting less “suppressible” T effector cells compared to HD counterparts. This could be a 

less problematic issue in a clinical setting where AA patients would receive IST first (i.e. 

ATG) that will eliminate the activated T effector cells. 

This study, for the first time, delineates the mechanisms behind the skewed Tregs 

composition in AA which could be targeted for therapy. In addition, these findings suggest a 

potential role for therapy with low dose and/or low affinity IL-2 in AA as well as the 

potential clinical use of expanded autologous Tregs to improve patient clinical outcome in 

addition to the standard IST.  
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Table 

Table 1: Patients’ Characteristics at Diagnosis 

Characteristics Value 
Number of patients 19 
Sex  
     Male 11 
     Female 8 
Disease severity at diagnosis  
     VSAA 5 
     SAA 8 
     NSAA 6 
PNH clone   
     Yes 11 
     No 7 
     Unknown 1 
Size of PNH clone, % (range)  
     Red cells 0.02-0.15 
     Granulocytes 0.003-29.3 
     Monocytes 0.4-25.7 
Etiology  
     Idiopathic 19 
Treatment  
     IST 12 
     Eltrombopag 2 
     IST + Eltrombopag 1  
     Allogeneic stem cell transplantation 1 
     No treatment 3 
Response to IST treatment  
     CR 2 
     PR 6 
     NR 4 
CR, complete response; IST, immunosuppressive therapy; NR, non-response; NSAA, non-severe aplastic 
anaemia; PNH, paroxysmal nocturnal haemoglobinuria; PR, partial response; SAA, severe aplastic anaemia; 
VSAA, very severe aplastic anaemia. 
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Figure Legends 
 
Figure 1: Treg-B are sensitive to FasL-induced apoptosis. (A) Ingenuity pathway analysis 

comparing Treg B isolated from AA patients (n=3) to Treg B isolated from HD (n=2) shows 

the ranking of top 10 significant upregulated canonical pathways by -log (P value). Red 

indicates positive z-score, grey indicates zero z-score and blue indicates negative z-score. (B) 

Ingenuity pathway analysis on the RNA sequencing data shows the ranking of top 10 

canonical pathways by -log (P value) in AA Treg-B (n=3) compared to AA Treg-A (n=3). 

Significant upregulation of Fas in 3 out of 10 pathways is indicated. (C) Volcano plot shows 

the significant differential expressed genes in death receptor signalling (red) and the 

upregulation of homing receptors (yellow) in Treg-B isolated from AA patients (n=3) as 

compared to Treg-A (n=3). (D) The percentage of early (Viability Dye eFluor 780- 

AnnexinV+) and late (Viability Dye eFluor 780+ AnnexinV+) apoptotic cells in Treg-A and 

B before, and after treatment with 5µg/ml of anti-Fas. Error bars represent mean ± SD. * P ≤ 

.05; ** P ≤ .01.  

Figure 2: IL-2 responsiveness and in vitro expandability of Treg-A and B. (A and B) 

Western blot analysis of STAT5 and pSTAT5 protein expression in Treg-A and B after 

treatment with 1, 40, 60 or 80 IU/ml of human IL-2 for 15 or 30 minutes. β-ACTIN protein 

level is used as a loading control and numbers represent the densitometric quantification of 

STAT5 and pSTAT5 protein expression levels normalized to β-ACTIN. (C) The expansion 

rate of Treg-A and B from HD (n=6) and AA patients (n=3). Treg-A and B were stimulated 

with anti-CD3/CD28 beads (1 cell:1 bead ratio) and 1000 IU/mL IL-2 for 4 weeks with 2µM 

ATRA and 100nM rapamycin in Prime XV T cell expansion XSFM medium. Error bars 

represent mean ± SD. * P ≤ .05; ns P= not significant. (D) GSEA enrichment plot shows the 

significant enrichment of gene set for cell proliferation in AA expanded Treg-A compared to 

Treg-A before expansion. However, gene set of cell proliferation was not enriched in 
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expanded HD Treg-A as compared to pre-expansion Treg-A. This finding suggests the higher 

“expansion potential” of AA Treg-A compared to HD Treg A.  ES, enrichment score; NES, 

normalized enrichment score. (E) PCA analysis on transcriptional profiles in AA Treg-A as 

well as B before and after expansion. (F) Chart shows the median expression of 29 markers 

measured by CyTOF analysis in HD expanded Treg-A (n=3) and B (n=3). Error bars 

represent mean ± SD. (G) Heatmap shows the median expression of Treg-B-specific markers 

(CD45RA, CD45RO, CD95 and CCR4) in HD Treg-A (n=3) and B (n=3) before and after 

expansion.  

Figure 3: Stability, plasticity and functionality of in vitro expanded Treg-A and B. (A) 

Representative methylation status of TSDR in HD expanded Treg-A, HD expanded Treg-B, 

AA expanded Treg-A and AA expanded Treg-B compared to non-Treg. (B) Bar chart shows 

the percentage of methylation in HD expanded Treg-A (n=2), HD expanded Treg-B (n=2), 

AA expanded Treg-A (n=3), AA expanded Treg-B (n=3) and non-Treg (n=2). (C) 

Representative plots show the percentage of IL-17A+ population in expanded Treg-A and B 

cultured with anti-CD3/CD28 beads (Treg:bead ratio = 6.25:1), 10 ng/ml IL-1b, 25 ng/ml IL-

6 and 10 IU/ml IL-2 for 5 days and stimulated with Leukocyte Activation Cocktail, with BD 

GolgiPlug. The X-axis indicates log fluorescence intensity of IL-17A APC. (D) Chart shows 

the mean fluorescence intensity (MFI) quantification of IL-17A staining. Error bars represent 

mean ± SD. * P ≤ .05; ns P= not significant. (E) The percentage of proliferation of CFSE-

stained Tcon cells when co-cultured with autologous HD and AA expanded total Tregs in 8:1, 

4:1, 2:1 and 1:1 Tcon: Treg ratios for 5 days in the presence of anti-CD3/CD28 beads (Treg: 

beads= 20:1). (F) The proliferation index of CFSE stained Tcon cells when co-cultured with 

autologous AA expanded Treg-A or B in 8:1, 4:1, 2:1 and 1:1 Tcon: Treg ratios for 5 days in 

the presence of anti-CD3/CD28 beads (Treg: beads= 20:1). Error bars represent mean ± SD. 

** P ≤ .01; *** P ≤ .001. (G) Representative proliferation plots of CFSE stained Tcon cells 
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when co-cultured with autologous AA expanded Treg-A and B in different Tcon: Treg ratios 

(8:1, 4:1, 2:1 and 1:1).  

Figure 4: Upregulation of phosphorylated BCL-2 in in vitro expanded Treg-A and B. 

(A) The percentage of early (Viability Dye eFluor 780- AnnexinV+) and late (Viability Dye 

eFluor 780+ AnnexinV+) apoptotic cells in FasL-induced Treg-A and B before and after 

treatment with 20 IU/mL of human IL-2. Error bars represent mean ± SD. * P ≤ .05; ns P= 

not significant. (B) GSEA enrichment plot shows the significant enrichment of gene set for 

negative regulation of extrinsic apoptotic signalling pathway in AA expanded Treg-A as 

compared to Treg-A before expansion. ES, enrichment score; NES, normalized enrichment 

score. (C) Western blots show the BCL-2 and p-BCL-2 (Ser70) protein expression levels in 

HD and AA expanded Treg A and B in comparison to HD total Treg pre-expansion. β-

ACTIN protein level is used as a loading control. (D) Densitometric quantification of p-BCL-

2 (Ser70) protein expression level normalized to β-ACTIN. Error bars represent mean ± SD. 

* P ≤ .05. 

Figure 5: In vitro expanded Tregs suppress GvHD in NSG-SGM3 mice. (A) Schematic 

representation of isolation of Tregs, followed by xenotransplantation and downstream 

analysis. (B) Measurement of body weight loss (representing GvHD disease clinical feature) 

in recipient mice that were injected with HD derived PBMCs without (n=14) or with Tregs 

(autologous or allogenic) (n=9) or Tregs alone (n=3). (C) Overall survival of mice that were 

injected with HD derived PBMCs without (n=14) or with Tregs (autologous or allogenic) 

(n=9) or Tregs alone (n=3). (D) Representative histology tissue sections of the mouse femur 

bone and spleen. (E) Overall survival of mice that were injected with AA patient derived 

PBMCs without (n=5) or with AA Tregs (autologous or allogenic) (n=8) or AA Tregs alone 

(n=2). 
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Figure 6: Immune signatures and TCR clonality of the expanded Tregs before and after 

xenotransplantation into NSG-SGM3 mice. (A) CyTOF analysis shows the relative median 

expression of the 29 markers in HD (n=3) and AA (n=4) expanded total Tregs. (B) Heatmap 

of similarity matrix between pre- (n=4) and post-injection (n=4) of HD expanded Tregs based 

on 29 parameters, computed as Pearson correlation coefficient. (C) Heatmap of similarity 

matrix between pre- (n=3) and post-transplantation (n=3) of AA expanded Tregs into NSG-

SGM3 mice based on 29 parameters, computed as Pearson correlation coefficient. (D) 

Heatmap of CyTOF analysis shows the comparison of the median expression of markers that 

defined Treg-B (CD45RA, CD45RO, CD95 and CCR4) between pre- (n=4) and post-

transplanted (n=4) HD expanded Tregs. *** P ≤ .001. (E) Heatmap shows the comparison of 

the median expression of Treg-B-specific markers (CD45RA, CD45RO, CD95 and CCR4) 

between pre- (n=3) and post-transplanted (n=3) AA expanded Tregs. *** P ≤ .001. (F) 

Productive clonality of the TCR repertoires of AA expanded Tregs before (n=3) and after 

(n=3) xenotransplantation into NSG-SGM3 mice. Values near 1 represent samples with one 

or a few predominant rearrangements (monoclonal or oligoclonal samples) dominating the 

observed repertoire. Clonality values near 0 represent more polyclonal samples. (G) 

Representative pie charts show the diversity of TCR Vβ CDR3 in AA expanded Tregs before 

and after xenotransplantation into NSG-SGM3 mice. 
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C

A

Non
-Tr

eg

HD E
xp

an
de

d T
reg

 A

HD E
xp

an
de

d T
reg

 B

AA E
xp

an
de

d T
reg

 A

AA E
xp

an
de

d T
reg

 B
0

20
40
60
80

100

Pe
rc

en
ta

ge
 o

f 
M

et
hy

la
tio

n 
(%

)

Pre-Th17
polarization

Post-Th17
polarization

Expanded Treg A Expanded Treg BPositive Control

G

B

Expanded 
Treg A

Expanded 
Treg B

8:1 4:1 2:1 1:1No Treg

E

No T
re

g 8:1 4:1 2:1 1:1
0.8

1.0

1.2

1.4

1.6 Expanded Treg A
Expanded Treg B

Tcon:Treg Ratio

**
**

**
***

P
ro

lif
er

at
io

n 
In

de
x

F

Non-Treg
HD Expanded Treg A
HD Expanded Treg B
AA Expanded Treg A
AA Expanded Treg B

0% 100%

Percentage of Methylation (%)

1    2     3    4     5    6    7     8    9   10   11  12  13  14  15   

0.00 100.000.00

1.
00

2.
00

3.
00

4.
00

5.
00

6.
00

7.
00

8.
00

9.
00

10
.0

0
11

.0
0

12
.0

0
13

.0
0

14
.0

0
15

.0
0

id
Non-Treg
HD Expanded Treg A
HD Expanded Treg B
AA Expanded Treg A
AA Expanded Treg B

id

D

Pre-Th17 polarization Post-Th17 polarization
0

2000

4000

6000

8000

IL
-1

7A
 M

FI

Positive Control 
Expanded Treg A
Expanded Treg B

ns

ns

*

Pre-Th17
polarization

Post-Th17
polarization

No T
reg 8:1 4:1 2:1 1:1

0

20

40

60

80 HD Expanded Treg 
AA Expanded Treg

Tcon:Treg Ratio

Pe
rc

en
ta

ge
 o

f 
Pr

ol
ife

ra
tin

g 
C

el
ls **

**
**

***



 33 

 
 
  
 

Figure 4
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Figure 6
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