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Abstract

Returns on corporate bond portfolios are subject to both systematic and idiosyncratic default
risks. Koivu and Pennanen (2010) derived two-factor return models for corporate bonds, using one
of the risk factors to approximate effects of systematic default risk on returns. Koivu and Pennanen
(2014) similarly showed that modelling returns of index-linked bonds can be reduced to statistically
modelling of two risk factors, one of which is an underlying index and could be used to model
default losses. However it wasn’t discussed further how this can be done. Our goal is to model
stochastically default losses on returns of corporate bonds using the underlying index in Koivu and
Pennanen (2014), whilst considering effects of both systematic and idiosyncratic default risks. We
first give a more precise economic meaning to the underlying index for corporate bonds. We then
express returns of corporate bonds as a function of default losses, which in turn are a function of the
underlying index. Instead of approximating default losses using historical yield spreads like Koivu and
Pennanen (2010), we model them over time as a compound (inhomogeneous) Poisson gamma process.
Parameters of our default losses model are easily estimated using the Maximum likelihood method.
Default losses simulated using our model are reasonably close to historical default losses of the Bank
of America Merrill Lynch US High Yield index. Most importantly, using our proposed default losses
model, our two-factor return model for corporate bonds is suitable for both well-diversified and non
well-diversified bond portfolios.
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1 Introduction

Returns on corporate bonds are subject to both systematic and idiosyncratic default risks. While sys-
tematic default risk is the uncertainty inherent in the entire market or market segment, idiosyncratic
default risk is the uncertainty specific to a company or an industry. Koivu and Pennanen (2010) derived
two-factor return models for several classes of bonds, including fixed rate government bonds, inflation
linked bonds and corporate bonds. While the first risk factor is yield-to-maturity for all bond classes,
the second risk factor was used to capture effects of unique features of each bond class on returns. For
corporate bonds, the second risk factor was used to approximate effects of defaults on returns due to
systematic default risk, whilst the idiosyncratic default risk was ignored. This approximation was based
on the assumption that when portfolio becomes infinitely large, the portfolio becomes well-diversified.
Koivu and Pennanen (2010) further approximated this risk factor with yield spreads between government
bonds and corporate bonds assuming the existence of a risk neutral measure.

Koivu and Pennanen (2014) similarly showed that modelling returns of index-linked bonds can be
reduced to statistically modelling of the portfolio’s yield-to-maturity and the underlying index, for which
many statistically validated models are available. The economic meaning of the underlying index needs
to be given per bond class. For fixed rate government bonds, the underlying index was simply zero; for
inflation-linked bonds, the underlying index was used to represent the consumer price index. Though
Koivu and Pennanen (2014) mentioned that the underlying index could be used to model default losses
for corporate bonds, they didn’t discuss further how to model default losses with this underlying index
such that effects of defaults are captured.

We aim to model stochastically default losses on returns of corporate bonds using this underlying index
in Koivu and Pennanen (2014), considering effects of both systematic and idiosyncratic default risks. To
achieve this goal, we first use the underlying index in Koivu and Pennanen (2014) for corporate bonds to
represent remaining fraction of all outstanding payments due to both systematic and idiosyncratic default
risks. Then returns of corporate bonds are expressed as a function of time, yield-to-maturity and default
losses, which is expressed as a function of the underlying index. Instead of applying approximation to the
default losses like Koivu and Pennanen (2010), we model them over time as a compound (inhomogeneous)
Poisson gamma process. Parameters of this default losses model are easily estimated using the Maximum
likelihood estimation; default losses simulated using the proposed model replicates reasonably well the
historical default losses of the Bank of America Merrill Lynch US High Yield Index. Most importantly,
using our default losses model, our two-factor return model is suitable for both well-diversified and non
well-diversified corporate bond portfolios.

This thesis is organised as follows. Section 2 presents a literature review; section 3 details how we
express returns of corporate bonds as a function of yield-to-maturity and default losses; section 4 describes
the stochastic model we propose for losses in returns on corporate bond portfolios due to both systematic
and idiosyncratic default risk; section 5 illustrates how to estimate parameters of the proposed model
using the Maximum likelihood estimation; section 6 presents estimated model parameters and simulation
results; section 7 draws conclusions.

2 Literature review

There has been a vast amount of literature in default risk modelling. However literature on modelling
default risk in returns on corporate bond portfolios has been limited.

Default risk has two components, one is the arrival risk concerning time of default, the other one
is the magnitude risk concerning loss given default (LGD). There are two approaches in modelling the
default time in the literature. One is the structural approach, beginning with Merton (1974) in which
the default event occurs when the firm value falls short of debt value at debt maturity. Hull and White
(1995) and Longstaff and Schwartz (1995) allowed default to occur before debt maturity should the firm
value reaches a threshold. In this approach the evolution of the firm value is explicitly modelled. The
structural approach is not easy to use due to the firm value being in general unobservable or difficult to
obtain. The alternative approach, which is more widely used given its tractability, is the reduced-form
approach adopted by Duffie and Singleton (1999), Jarrow, Lando, and Turnbull (1997) and Madan and
Unal (1998) etc. With this approach default is an unpredictable event that is governed by a hazard-
rate process. Lando (1998) extended this approach by introducing the Cox processes in modelling the
occurrence of default events. Jarrow, Lando, and Yu (2005) introduced the concept of conditionally
diversifiable default risk using the framework of Lando (1998) and discussed empirical implications of
diversifiable default risk. Those reduced-form models mentioned earlier only allowed a single default



per credit name. In Schonbucher (1998), the reduced-form intensity approach was used whilst multiple
defaults per credit name were allowed.

On the magnitude risk of default, the default magnitude is random and has a pre-determined distri-
bution in the Merton type models. Hull and White (1995) and Longstaff and Schwartz (1995) have a
constant default magnitude. Madan and Unal (1998) models the conditional risk neutral density for the
default magnitude. Jarrow, Lando, and Turnbull (1997) used a recovery rate that is exogenously given
and depends on the seniority of the risky zero-coupon debt. Duffie and Singleton (1999) introduced the
concept of constant fractional recovery of market value (RMV) at defaults' and compared the implication
of this to alternative recovery-of-face value (RFV)2 and recovery-of-treasury (RT)3 in corporate bond val-
uation. This concept of fractional recovery of market value is subsequently used in many papers, such as
Lando (1998) and Schoénbucher (1998). In Schonbucher (1998) the default losses can be predictable and a
marked point process was used to describe the double sequence comprised of both default time and loss.

Reduced-form models have been applied to model different types of spreads: corporate-Treasury
spreads in Duffee (2005), LIBOR-swap spreads in Collin-Dufresne and Solnik (2001), swap-Treasury
spreads in Duffie and Duffie and Singleton (1997), Liu et al. (2000) and sovereign yield spreads in Duffie,
Pedersen and Singleton (2001). They have also been applied to analyse the default risk premium, or the
expected return on defaultable bonds. Jarrow, Lando, and Yu (2005) show that the default risk premia
is composed of two parts, one due to systematic default risk and the other idiosyncratic risk. Systematic
default risk is the uncertainty inherent in the entire market or entire market segment and therefore cannot
be reduced through portfolio diversification. Idiosyncratic risk is the uncertainty specific to a company or
an industry and can be reduced through portfolio diversification. Jarrow, Lando, and Yu (2005) use the
notion of “conditionally diversifiable” to capture the idea that once the systematic parts of default risk
have been isolated, the residual parts represent idiosyncratic or firm-specific shocks that are uncorrelated
across firms. Conditional diversification also implies that idiosyncratic risk is diversifiable in large loan
portfolio. Consequently there would be no risk premium for idiosyncratic default risk as shown in Jarrow,
Lando, and Yu (2005).

There has been some literature in studying expected returns of corporate bond portfolios. Jarrow
(1978) examined the relationship between the bond’s yield to maturity and the expected return; an
alternative formula for the systematic risk of a bond was also discovered. Schonbucher (2002) showed
that the expected return on defaultable bonds can be decomposed into three components, one component
is the expected return on an otherwise identical default-free bond, the second component is the difference
between the risk-neutral and the physical mean-loss rate, the third component is the systematic default
risk due to variations in the default intensity. Driessen (2005) empirically decomposed the expected
corporate bond return into interest rate, default, liquidity and tax factors.

However literature on modelling default risk in returns on corporate bonds has been limited. Ilmanen
et al. (1994) showed that duration’s ability in measuring risk in bonds decreases when it comes to
corporate bonds. For the reason that there are both interest rate and default risk present in returns of
corporate bond portfolios. Ilmanen et al. (1994) used default spreads to measure default risk in their
two-factor model to explain excess returns of corporate bonds. His analysis showed that default spreads
is statistically significant in explaining excess returns of corporate bonds and duration can accurately
capture interest rate in returns. However convexity is insignificant in explaining excess returns. Koivu and
Pennanen (2010) developed a two-factor return model for fixed-rate government bonds, inflation-linked
bonds and corporate bonds. This return model was based on Taylor approximation of the logarithmic
bond price with respect to time, yield to maturity and outstanding coupon/principle payments. For
corporate bonds, the second risk factor was used to approximate effects of systematic default risk in
returns only; this second risk factor was subsequently approximated using yield spreads between short-
maturity corporate bond government bonds. Thus their two-factor return model is only suitable for well-
diversified bond portfolios. Koivu and Pennanen (2014) developed two-factor return models for index-
linked bonds. Unlike Koivu and Pennanen (2010) , their models are based on Taylor approximation of
the logarithmic bond price with respect to time, yield to maturity and an underlying index, the economic
meaning of which needs to be defined per bond class. Though it was mentioned the underlying index
could be used to model default losses for corporate bonds, it wasn’t discussed further how to model
default losses using the underlying index such that effects of defaults on returns are captured.

L«“Recovery of market value (RMV)” means that the recovery of a defaulted asset at default is a fraction of its pre-default
market value.

2 “Recovery-of-face value” means that the recovery of a defaulted asset at default is a fraction of its notional value.

3 “Recovery-of-treasury” means that the recovery of defaulted claims is espressed in terms of the market value of equivalent
default-free assets.



3 Returns on corporate bond portfolios

Based on Koivu and Pennanen (2014), we use the underlying index to represent a remaining fraction of
outstanding payments of corporate bonds in the presence of counterparty risk. Then returns of corporate
bonds are expressed as a function of time, yield to maturity and default losses due to both systematic
and idiosyncratic default risks.

Consider a corporate bond portfolio with finite N outstanding payment dates at times t; <ty < --- <
tn. The contractual amount of its nth outstanding payment payable at time ¢, for n € {1,2,...,N}
is denoted by c¢,. In events of defaults, the realised payments are less than or equal to contractual
payments. Assuming that all future payments will be reduced by the same fraction due to defaults, the
realised amount of the nth outstanding payment at time ¢ < ¢; will be

ct,n:ItCna n€{1,2,,N} (1)

where recovery index I; € [0, 1] represents remaining fraction of portfolio’s outstanding payments due to
defaults up to time t. As there are likely more defaults at time s > t > 0, realised outstanding payments
at time s should be equal or smaller than those at time ¢, that means

I, < I.

The definition of I, leads us to interpret —In I; as the losses in outstanding payments incurred during
the period (0,¢] due to defaults. Thus we can interpret —Aln I, defined as

—Alnl;:=Inl; —Inl; >0, (2)

being the absolute value of losses incurred due to defaults during the holding period [t, s].
The portfolio’s yield to maturity Y; at time ¢ is then defined as the solution to the equation

N
Z Itcny (3)

where P; is the corporate bond portfolio’s market price at time ¢. Thus we can express the portfolio’s
market price as P, = P(t, Y}, I;) where the function P is defined by

2

P(t, Yy, I) :Z Yilln =Y.

Over a holding period [t,s] where there are no changes made to the portfolio’s composition, the
log-return on the corporate bond portfolio can be defined by

Al P, :=InP(s, Y, I;) —In P(t,Y;, It).

As derived in Koivu and Pennanen (2014), applying second order Taylor-approximation to In P(s, Yy, I;)
with respect to (s, Ys, I5) gives

1
AlnP, = Y,At — D,AY, + AlnI, + §(Ot — D})AY2. (4)
where At =s —t,AY; =Y, —Y;,Alnl; =Inl;, —InI; and
1 X
_ e Ye(tn—1)
D, = B nz:l(t t)e Le,
is the Macaulay Duration of the portfolio at time ¢, and
1N
— _ 2 _Yt(tn_t)
Ct = Pt ;(tn t) & ItCn

is the Macaulay Convexity of the portfolio at time ¢. The term Y At captures effects of time changes
1
in log-returns; the term D;AY; captures first-order effects of yield changes; the term i(ct - Df)AYt2



captures the second order effects of yield changes; and the term Aln I; is the return component arising
from changes in outstanding payments due to default risk both systematic and idiosyncratic over ¢, s].
Thus we interpret —Aln I; as losses in returns (default losses) due to both systematic and idiosyncratic
default risks.

Equation (4) has the exact form as Koivu and Pennanen (2014)’s general two-factor return models
before the underlying index I was interpreted economically for individual bond class. Removing the
second order term gives us the first order approximation of the log-return

Aln P, ~ Y,At — D;,AY; + Aln1,. (5)

Using (5), returns of corporate bonds are expressed as a function of time, yield-to-maturity and default
losses, where the first factor is yield-to-maturity Y and the second factor is default losses —AIn I;. This
two-factor return model captures effects of both interest rate risk and default risk factor in corporate
bond returns largely via Ys and —Aln I;.

We choose (5) as our two-factor return model for corporate bonds instead of (4) for several reasons:
the first reason is that sensible historical data for Macaulay Convexity isn’t available for the portfolio
we study; the second reason is that both Koivu and Pennanen (2010) and Koivu and Pennanen (2014)
showed that compared to the first order term, the second order term contributes marginally in explaining
return variation of portfolio for various bond classes.

Koivu and Pennanen (2010)’s initial two-factor return model for corporate bonds was

AlnPt%Y‘gAt*DtAi/t+Ks7 (6)

where the first risk factor is yield-to-maturity Y, and the second risk factor is K, which is also designed
to capture effects of default risk on corporate bond returns. By comparing (5) and (6), it seems as if

K,~Alnl,. (7)

This is in fact not true. That is simply because in Koivu and Pennanen (2010) the second risk factor
K is used to approximate effects of defaults in returns caused by only the systematic default risk. This
approximation was based on the assumption that the portfolio becomes well-diversified when it becomes
infinitely large. Meanwhile default losses —Alnl; in our return model considers losses in returns of
corporate bonds due to both systematic and idiosyncratic default risks. Koivu and Pennanen (2010)
further assumed that there exists a risk-neutral measure under which the market prices of traded securities
are equal to the expectations of their discounted cashflows. Under this assumption, the second risk factor
K, was approximated by a short-maturity yield spreads Ss between corporate bonds and government
bonds,

K, ~ —S,At. (8)

This approximation was validated in Koivu and Pennanen (2010) by comparing historical yield spreads
and return residuals of a Merrill-Lynch investment grade corporate bond bond portfolios. The return
residuals were computed as

Aln P, — Y, At + D;AY,. (9)

We observe that yield spreads do have similar shape and magnitude of historical return residuals for the
high yield corporate bonds in our empirical study, results of which are shown in Figure 1.

Substituting (8) into (6) gives Koivu and Pennanen (2010)’s two-factor return model for corporate
bonds,

where @ is a constant which can deviate from one since S is likely to underestimate/overestimate the
average default loss rate in returns.

Instead of applying approximation to our second risk factor —A In I; like Koivu and Pennanen (2010),
we model —Aln I; stochastically considering both systematic and idiosyncratic risk. Our approach in
modelling —A In [} is largely motivated by results of empirical study in Figure 1 and Figure 2. This Figure
shows that historical number of defaulted US issuers? has a very similar profile to the historical —Aln I,
of a Bank of America Merrill Lynch’s high yield corporate bond index. Using our default losses model,
the two-factor return model (5) is not only suitable for the well-diversified corporate bond portfolios, but
also the non well-diversified ones.

4Historical default issuers are collected from S&P’s “Annual global corporate default study and rating transitions”
studies. Please see section 5.1 for detailed explanation on data used to compute this Figure.
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4 A stochastic model for default losses

4.1 Modelling default losses using the compound (inhomogeneous) Poisson
Gamma distribution

In this section we present our stochastic model for —Aln I;. We approximate default losses —Aln [; in
returns on the corporate bond portfolio by average default losses in returns on individual issuer. This
approximation leads us to model —Alnl; over time as a compound (inhomogeneous) Poisson gamma
process.

Consider an equally weighted M-issuer corporate bond portfolio in which each issuer is subject to
default risk. Losses in returns on this bond portfolio incur when defaults happen. In an equally weighted
M-issuer corporate bond portfolio, the contractual amount of mth issuer’s nth outstanding payment

denoted by c;' is Mth of the contractual amount of the portfolio’s nth outstanding payments, that is

1
cﬂzﬂcn, ne{l,2,...,N},me{1,2,...,.M} (11)

We assume that the realised amount of mth issuer’s nth outstanding payment at time ¢ denoted by c;",
is reduced to I{"c," given its own defaults, that is

o, = Ier (12)

n

where I" € [0,1] is the recovery index representing remaining fraction of issuers m’s outstanding pay-
ments due to its own defaults up to time ¢. Then using (1), (11) and (12), the amount of the portfolio’s
nth outstanding payment at time ¢ can be expressed as

M M 1
— mo m, m __ m o
Ctp = E = E Lt = i E L"cp, = Licy,
m=1 m

m=1 =1

which gives

1—i§:1m (13)
t_Mmzl .

The arithmetic mean of individual issuers’ recovery indices can be approximated by their geometric
mean using the first order Taylor-approximation,

1 M 1 M 1 M M N
Mmz;l.f{” —1= M;(It’” — 1)~ Mmz;lln_rtm — 1HTE1(I¢)1/M ~ 71—7[1([?1)1/1\4 .y
that is
1 . ™~ o m\1/M

Substituting the above approximation into equation (13) gives

M
L~ [ am™. (14)
m=1
Taking the log of both sides gives
M
~Inly~ o > —Inpm. (15)
m=1
and their increments over [t, s] are
M
~Alnl~ — > (~AlnI]") (16)
m=1



If we assume that (—InI;");>0 is a compound Poisson gamma process and independent for each m €
{1,..., M}, then (—Inl;);>0 is a compound Poisson gamma process. Thus increments —Aln I, in (15)
has a compound Poisson gamma distribution. Similar to Koivu and Pennanen (2010), the assumption
that (—In I;™);>¢ is a compound Poisson gamma process can be justified by the multiple defaults approach
in Schonbucher (1998) and Schonbucher (2003). Using this approach, each issuer is allowed to default
multiple times. If we assume the number of defaults follow a Poisson process, and each loss given default
is i.i.d with a gamma distribution, then losses on returns of each issuer (—InI}");>¢ is a compound
Poisson gamma process.

Proposition 4.1. If we assume the following

(i) Conditional on A, the processes (—InI™,m = 1,..., M) are independent and each (—1InIj");>¢ is
a compound Poisson gamma process;

(ii) Conditional on A, for any s > ¢t > 0, increments ((—AlnI;"),m = 1,..., M) are i.i.d with com-
pound (inhomogeneous) Poisson gamma distribution CPG(As(s — t), as, Bs) where a; is the shape
parameter and [, is the inverse scale parameter of the gamma distribution.

Then according to (16), increments —Aln I; are independent and have a compound (inhomogeneous)
Poisson gamma distribution CPG(MAs(s — t), a5, MBs); and according to (15), conditional on A, the
process (—In1;, ¢t > 0) is a compound (inhomogeneous) Poisson process.

1
Proof. Due to the scaling properties of the gamma distribution, _MAIH I for m € (1,..., M) has a

compound (inhomogeneous) Poisson gamma distribution CPG(As(s — t), as, M B5). Because sum of i.i.d
random variables with a compound (inhomogeneous) Poisson gamma distribution also has a compound
(inhomogeneous) Poisson gamma distribution, the increment —AlIn I; as given by (16) has a compound
(inhomogeneous) Poisson gamma distribution CPG(M (s — t),as, M35). Similarly, because sum of
independent compound (inhomogeneous) Poisson gamma process is also a compound (inhomogeneous)
Poisson gamma process, then according to (15), we have that (—1Inl;);>¢ is also a compound (inhomo-
geneous) Poisson gamma process. O

Corollary 4.1. Conditional on A, default losses —A In I; converges in mean square to its mean E[—A In I;]
when M approaches infinity,

Proof. Conditional on A\, we have that

E[(-AlnI; — E[-AIn[])?] = E[(-=AInI})?] — E[-Aln I,

Because —AlnT; has a compound Poisson gamma distribution CPG(MAs(s — t), as, M Bs), it can be
expressed as

Ns
—Alnl; = Z Tk (17)

k>N,

where N; denotes number of defaults happen up to time ¢ and has a Poisson distribution Pois(M As(s—t)),
and (xp, k € (Ng, Ng]) are i.i.d random variables with a gamma distribution G(as, M f3,); furthermore
(zk, k € (N¢, Ng]) are independent of N;. Then we have

E(-AIn1,)%| =Y E[(x1 + 22 + - + 2%)*| Ny — Ny = k|P(N, — N; = k)
k=0
= [FE[2?] + k(k — DE?[2]] P(N, — N, = k)
k=0
where random variables (z;,7 € 1,...,k) are i.i.d with gamma distribution g(«s, MfSs). Using properties

of both Poisson distribution and gamma distribution gives

as(as + 1)
Mp3

A(s— )+ [gws - tﬂ 2 (18)

S

E[(-AInL)? =

10



Similary, we have

[~AInl,] = Z [21 + 22 + - - + 21| Ny — Ny = k|P(N, — N; = k)
=0
s(s— 19
As( )55 (19)
Thus
E(-AInl; — E[-AInL])* = M)\s(s —t),

Mp2

from which we see that when M — oo, the variance E(—=AlnI; — E[-AIn[;])*> = 0. That is —Aln I,
converges in mean square to E[—Aln I]. O

4.2 Model parameter specification

We parametrise A and 8 in CPG(MAs(s —t), as, M ) with historical short-term credit spreads s; which
are defined as differences between yield to maturity of high yield corporate bonds and government bonds.
While A represents default frequency and 8 controls sizes of losses, credit spreads are good indicators for
both. Because when credit spreads increase, it is more likely to have more defaults and larger default
losses. Furthermore it’s shown in Koivu and Pennanen (2010)’s empirical study of investment grade
bonds and our empirical study of high yield bonds (shown in Figure 1) that S;At captures evolution of
—Aln I; very well.
We use the following two functional forms for A\; and S,

Specifications B
Specifications A Spec. 1 Br=d
Spec. 1 A =aS; +b Spec. 2 Bi=rc/\/Si+d
Spec. 2 At = exp(aln S; + b) Spec. 3 Be=c/S +d
Spec. 4 By =1¢/(S;°)+d

(a) A functional forms
(b) B functional forms

Table 1: Functional forms for both A and S

Then for CPG(MAs(s —t), as, MBs), there will be in total eight model specifications using combina-
tions in table 1la and table 1b. Conditional on A, the mean of —Aln I, is approximately SsAt using any
of those combinations, for example using combination of \; = aS; + b and §; = d

E[-AIlnL] =Y Elzy +z2+ - + 2x|No = Ny = k|P(N, — Ny = k)

k=0
:Ze“s p As(s = 1) kay
k! Bs
= As(s—1)=— 20
( )Bs (20)
= (aS, + b)%At (21)
~ aSsAt,

where @ is a constant and allowed to deviate from one.This recovers the approximation (8) in Koivu
and Pennanen (2010). Specifically E[—Aln I] is closest to SsAt using this combination, therefore it is
not surprisingly to see later that simulated —A In I; using combination of A\; = aS; + b and B; = d best
replicates historical —AIn I; as shown in section 6.
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5 Parameter estimation

We discuss our approaches in estimating parameters of our default losses models in this section. We first
show that estimating parameters of the compound Poisson gamma distribution CPM (M \s(s—t), a, M B5)
is equivalent to separately estimating parameters of a Poisson distribution Pois(MAs(s—t)) and a gamma
distribution G(kia, M 35) where ki denotes all defaults happen in the portfolio during period [t, s]. We
then discuss historical data required for parameter estimations of both Pois(M As(s—t)) and G(kia, M Ss).
Lastly we provide procedures for parameter estimations using the Maximum Likelihood method.

When monthly number of names M in the portfolio are known and denoted by M;; the number of
defaults (N, Ns) in (17) are known quantities denoted by (n¢,ns), the equation (17) becomes

k+
—Aln It = Z Tk
k=1
where k; = ng — n;. Given that (xp,k = 1,..., k) is a sequence of i.i.d gamma random variables with

gamma distribution G(a, MyS3s), then —AlnI; has a gamma distribution G(k;«, M;Ss) because sum of
i.i.d gamma random variables also has a gamma distribution. Thus when historical number of defaults
are known, estimating parameters of CPM (M As(s —t),a, M Bs) for —Aln I; is equivalent to separately
estimating parameters of Pois(M\;(s —t)) for Ny and G(kia, My 35) for —Aln I;.

5.1 Historical Data

We discuss historical data for parameter estimations of both Pois(MAs(s —t)) and G(kia, Mifs). The
portfolio we study is the Bank of America Merrill Lynch US High Yield corporate bond portfolio (HOAOQ).
This index contains high yield rated bonds issued by US corporates and satisfying certain selection criteria.
The Bank of America Merrill Lynch published an extensive amount of data associated with this index,
such as monthly number of names in the index M;, Macaulay Duration D; and yield to maturity Y;. The
availability of those historical data facilitates our computation of historical default losses —Aln I;. We
choose portfolios of high yield bonds, because they are more susceptible to default risk and their losses
in returns due to defaults are more likely to be higher than investment grade bonds.

To estimate parameters of the Poisson distribution and the gamma distribution, we need historical
monthly number of names m;, historical short-maturity credit spreads s; and historical number of defaults
k. We list sources below for all historical data required:

e For my, we use historical monthly number of names of the Bank of America Merrill Lynch US High
Yield corporate bond portfolio (HOAO).

e For s;, we use historical monthly short-maturity yields spreads between historical yield to maturity
of the Bank of America Merrill Lynch 1-3 Year Single-B US High Yield Index (H1BU) and the
yield to maturity of the most recently issued 2 year US treasury bond; historical s;At are plotted
in Figure 1.

e For k;, we collect historical monthly defaulted US high yield issuers from S&P’s “Annual global
corporate default study and rating transitions”. These studies publishes annually defaulted issuers
both investment grade and high yield around the global. The historical number of defaults k; we
use for parameter estimation are plotted in Figure 2.

e The last piece of historical data required to estimate parameters of the gamma distribution is the
historical default losses —Aln I;. We compute historical —Aln I; according to (9) using historical
yield-to-maturity and duration published by the Bank of America Merrill Lynch US High Yield
corporate bond portfolio (HOAQ). The computed historical —Aln I; is displayed in both Figure 1
and Figure 2.

All historical data used for parameter estimation is from 31/01/2007 and 31/05/2014, for the reason
that this is the period during which both historical credit spreads and historical number of defaults are
available.

We study the above historical data. We observe that there exists a five months difference between
peaks of the historical S&P number of defaults and the historical default losses —AlIn I, as shown in
Figure 2. When the historical S&P number of defaults is shifted five months backward in time, its peak
coincides with that of —AlIn I, as shown in Figure 3. Thus in estimating parameters of both Ay and S,

12



we use historical number of defaults reported at time ¢+, where [ > 0 denotes the reporting lag in months
between the historical number of defaults and the historical default losses —AIn I;. Using the reporting
lag [ is justified by the fact that defaults usually happens before they are recorded®. Differences between
actual default dates and recorded default dates are also observed in an empirical study by Guo, Jarrow,
and Lin (2008). The bond sample set they used covered virtually the entire U.S. and international bond
market from 1984 to 2007. Their study showed that estimated actual default dates of chosen sample
bonds are ahead of recorded default dates. More specifically, biggest difference in time between both
dates was 180 days. This is similar to the five months gaps observed in our empirical study, as shown in
Figure 2.

0.04 . . . . — 40

@ 0.03 30
ke
3
3 0.02 20
I
S
@]
»
T 0.01 10

[ Y|
I\

S&P Number of Defaulted US HY Issuers

0
2008/04 2009/08 201012 2012/05 2013/09

Dates

— Historical default loss of the Bank of America Merrill Lynch US High Yield Index (HOAO)
— — — — Shfited S&P Number of Defaulted US NY Issuers

Figure 3: The peak of historical S&P number of US HY defaults data reported in five months coincides
with the peak of the historical default losses of return —AIn I; of the Bank of America Merrill Lynch US
High Yield Index (HOAO) from 31/01/2007 to 31/05/2014.

5.2 Maximum likelihood estimate for the Inhomogeneous Poisson distribu-
tion

To estimate parameters of an inhomogeneous Poisson distribution Pois(MAs(s —t)) with the Maximum
Likelihood method, firstly we partition the observation period of the given set of historical data denoted
by [0,7T] into n equally spaced subintervals. Each endpoint 0 = ¢ty < t; < to < --- < t,, = T denotes
the beginning of a month. A month is thus defined by the subinterval starting at ¢,,_; and ending at t,,
during which there is no change to the portfolio composition.

Let (N¢)¢>0 denote the inhomogeneous Poisson Process whose increments ANy, := Ny, — Ny, ...,

AN, := Ny — N ,. are independent random variables with inhomogeneous Poisson distributions

5By S&P’s definition, defaults are assumed to take place on the earliest of: the date S&P’s revised the rating to 'D’; the
date a debt payment was missed; the date a distressed exchange offer was announced or the date the debtor filed for, or
was forced into, bankruptcy. By S&P’s definition, Distressed exchanges are considered defaults whenever the debt holders
are coerced into accepting substitute instruments with lower coupons, longer maturities, or any other diminished financial
terms.
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Pois(My, A, (t1 — to)), - - Pois(Mt At, (tn —tn—1)), where M; denotes the monthly number of issuers
in the index HOAO over [t,_1,t,]. The probability density p(ANt = k;) that monthly number of defaults
AN; equals to k; is defined by

D(AN, = ky) = e~ Mirs(s=0 (MiAs(s = D)

k!
Thus conditional on A, the log-likelihood function is
ZIHP(AN@ = ktz) = _ZMti/\ti+1(ti+1 —|—Zkt 111 Mtz/\terl i+1 — Zh’l ktl
i=1 i=1 i=1
in which A, , is parametrised using functional forms in Table la. Parameters of those functional forms

are found by maximising the log-likelihood function (or minimising the negative of the log-likelihood
function) using function fmincon in MATLAB. The function fmincon is used to find minimum of
constrained nonlinear multivariate function. The Matlab code used for this purpose is included in the
Appendix A.

5.2.1 Standard Errors

In order to assess parameter robustness, we compute standard errors of parameters estimated using the
maximum likelihood method for all A functional forms. We first derive standard errors of parameters for
each A functional form in this section, then we present corresponding numerical results in section 6.1.1.

e )\, =aS; + 0.

The log-likelihood function now becomes

InL=— ZMt (aSt, , +b)(tis1 —t:) +Zkt In[My, (aS, ., +b)(tip1 — t:)] Zlnkt,
=1 i=1

we have the following second order partial derivatives

9?InL " S? 02In L " ki
= — ki$ d — _ I N—
Ba? 2 @S, +02 ¢ Top ; (@S;,., +b)2

i=1 it+1 it+1

o )\ =exp(alnS; + ).

The log-likelihood function now becomes

InL=—Y" M, explalnS,, +b)(tis1 —t:) + Z kt, In[M,, exp(aln Sy, , +b)(tit1 — Zln k),

i=1 i=1

we have the following second order partial derivatives

L _
50 ZM exp(alnS;,,, +0)(tiy1 —t;)(In St7+1) )
i=1
0? lnL
0 ZM exp(aln Sy, +0)(tip1 —t;).

So the standard error of a denoted by S, and the standard error of b denoted by S; are respectively

defined as
9?2InL 9?InL
— —1 — ./ —1
Sa—\/ E[ 52 ]71/n and S, \/E[ 57 ]=1/n.
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5.3 Maximum likelihood estimate for the gamma distribution

Parameters of a gamma distribution G(ki«r, M) are similarly estimated using the Maximum Likelihood
method. We use the same observation period defined in the previous subsection 5.2.

When historical number of defaults are known, historical default losses —Aln [; has a gamma dis-
tribution G(kicr, Myf35). The probability density p(—AlnI; = I;) that —Aln I; takes historical monthly
default losses denoted by [; at time ¢ is defined by

(MiBs)*™ ka1 g

~Alnl =1;) = 25 thalt

p( N1y t) F(k;ta) t €

Then the log-likelihood function over the observation period given « and B, ..., B, is

Zlnp ~Alnl, =1) —aZkt In(My, B, ,) +Z ky.oo —1)Inly, —ZMt Brrials, ZlnI‘ Ky ox

i=1 i=1 i=1 i=1

in which parameter 3;,,, are parametrised using functional forms in section 4. Parameters of functional
forms used to describe f;,,, are found by maximising the log-likelihood function (or minimising the
negative of the log-likelihood function) using function fmincon in MATLAB. The Matlab code used for
this purpose is included in the Appendix A.

5.3.1 Standard Errors

Similarly we derive standard errors of the maximum likelihood estimates of « and parameters used in
all 8 functional forms in this section; subsequently we present corresponding numerical results in section
6.1.1.

o [ =d.

The log-likelihood function now becomes

lnL:azn:ktiln(Mt —|—Zkta—1lnlt ZMtltd Zlnl“kta

i=1 =1

we have the following second order partial derivatives

82InL 8%In L " T (k.
Tnb_ dzzkt and 2L _Z(M)q

d? Oa? (k)
e (i =c¢/S; +d, where a = 0.5,1, 1.5.
The log-likelihood function now becomes
InL=a zn: ke, In(My, (c/SE |+ d)) + zn:(k:ti 1)nl;, — Z Myly, (/S8 +d) — zn: InT (ke ),
i=1 i=1 i=1 i
we have the following second order partial derivatives
agalTnzL -3 Fr((:ttS)) " 3281;2L - _aé (d +k; oo

7,+1

62 InL " kti
ac __O‘Z( dSe  + o2

i=1 tit1

So the standard error of @ denoted by S, the standard error of ¢ denoted by S. and the standard error
of d denoted by S, are respectively defined as

2 2 2
Saz\/—E[aalnL] Yn, SdZ\/—E[aaldI;L}_l/n and Sc:\/—E[a lnL] 1/n.
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6 Numerical results

In this section, we present the compound Poisson gamma model specification which produces reasonable
small values of information criteria and simulated —AlInI; most resembling historical —Alnl;. We
also display the simulated —AIn I; with the chosen compound Poisson gamma model specification; the
simulated number of defaults IV; using the Poisson distribution with the same A functional form; and the
simulated —A In I; using the gamma distribution with the same  functional form.

The information criteria we chose for model selection is AICc/AICc difference. Information criteria
AIC stands for Akaike’s Information Criterion and is defined by (Burnham and Anderson (2002))

AIC = —2In(L) + 2k,

where L denotes the maximum value of the likelihood function and k denotes the total number of estimated
parameters. AICc is AIC with a correction for small sample sizes and defined by

2k? + 2k

AICe = Al —_—
Cc C+n—k—1’

where n denotes the sample size. The model with the smallest value of AICc is the one that is estimated to
be “closest” to the unknown reality that generated the data from among the candidate models considered.
Information criteria AICc is recommended over AIC for model selection when the sample size is small
relative to the number of parameters. In general, it was advised in Burnham and Anderson (2002) to
use AICc when the ratio n/k is small (say < 40). Given the sample size of our dataset is 86 and the
number of parameters for estimations is bigger or equivalent to 3, we thus choose AICc over AIC as the
information criteria for our model selection.

However it is also noted in Burnham and Anderson (2002) that it is not that absolute size of the AICc¢
value matters but AICc difference in model selection. Information criteria AIC'c difference, denoted by
AAICc, is computed as

AAICc= AICc— min AlCc;,
ie{l,...,m}
assuming that there are in total m candidate models. When AAICc is between 0 to 2, it indicates that
the level of empirical support for this candidate model is substantial; when AAICc¢ is between 4 to 7, it
indicates that there is considerable less level of empirical support for this candidate model; when AAIC¢
is bigger than 10, it indicates that there is essentially no empirical support for this candidate model.

We don’t use information criteria AICc/AAIC¢c as the single criteria for model selection, because the
model with the smallest AICc is not necessarily the best as discussed in Burnham and Anderson (2002).
Details of the simulation algorithms and corresponding Matlab code is included in Appendix B.

6.1 Estimated parameters of the compound (inhomogeneous) Poisson gamma
model

We compute A g7¢. and simulate —A In I; using all combinations of the A function forms in table 1a, the
B functional forms in table 10 and reporting lags from one to twelve months.

Among all computed A ;¢ and simulated —Aln Iy, we find that the compound Poisson gamma
model specification using combination of the A functional form \; = aS; + b, the 8 functional form 8; = 8
and two months reporting lag produces a reasonably small value of A4;c. as shown in table 2. This
combination also producess simulated —A In I; which replicates well the historical default losses and will
be displayed in section 6.2.

Lags Parameters By =B Lags Parameters By =
Lag=2 M =aS;+b -248.55804 Lag=2 XM =aS;+b 5.80952
(a) Value of AICc (b) Value of Aarce

Table 2: AICc and AAICc of the compound (inhomogeneous) Poisson gamma distribution
CPG(MXs(s — t), o, Myf3s) using estimated parameters of functional form Ay = aS; +b and 8 = S
with lag=2 as shown in Table 4.
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We then inspect AICc and A4jc. of the Poisson distribution Pois(MiAs(s — t)) using functional
form Ay = aS; + b and the gamma distribution G(k;«, M;8s) using functional 8; = 5. We see in table
4a that A ajce of the Poisson distribution is large, which indicates that functional form A\; = aS; + b
is not a good candidate model for the inhomogeneous Poisson distribution Pois(M:As(s — t)). Despite
this large A arce, later in the next section we show that simulated number of defaults using the Poisson
distribution with this A\; = a.S; + b turns out to have a similar shape as the historical number of defaults
well. We also see from table 4b that the A g;¢c of the gamma distribution is reasonably small, which
indicates that functional form S; = [ is a suitable choice for the gamma distribution.

Lag Sample Size Parameters A\s =aSs+b Lags  Parameters Bs =P

a 0.48779 « 0.36871

- b -0.00043 c (or B) 0.18956

Lag=2 56 AlCe 409.61443 Lag=2 " “plce” 65837715

Aarce 28.42571 Aarce 3.917591
(a) Parameters of functional form A\; = aS:+b (b) Parameters a and S using functional form
with lag=2 and corresponding AICc/AAICc Bs = [ with lag=2, as well as correspond-
of the inhomogeneous Poisson distribution ing AICc/AAICc of the gamma distribution

Pois(MiAs(s —t)). G(kea, M f3s)

Table 4: Estimated parameters of A\s and ;.

6.1.1 Standard errors

We numerically compute standard errors of estimated parameters of the compound (inhomogeneous)
Poisson Gamma model, for combinations of all reporting lags, A functional forms and g functional forms.

Table 5 shows standard errors of parameters in all A functional forms, while table 6 shows standard
errors of a and parameters in all 8 functional forms. From both tables, we see that standard errors
of maximum likelihood estimates for each parameter, across all functional forms (either for A or for )
and all reporting lags, are small and do not differ significantly. These results indicate that precisions of
maximum likelihood estimates for parameters of all 96 models are similarly good; they also show that
the estimated parameters of compound (inhomogeneous) Poisson Gamma models are robust.

As =aSs+b As=alnSs+0b

Lags(days) a b a b

0 0.00207 0.00001 0.00350 0.01721
1 0.00206 0.00001 0.00355 0.01725
2 0.00209 0.00001 0.00359 0.01734
3 0.00213 0.00001 0.00361 0.01748
4 0.00215 0.00001 0.00365 0.01762
5 0.00216  0.00001 0.00371 0.01778
6 0.00220 0.00001 0.00373 0.01788
7 0.00223 0.00001 0.00373 0.01800
8 0.00225 0.00001 0.00372 0.01812
9 0.00227 0.00001 0.00373 0.01825
10 0.00228 0.00001 0.00372 0.01839
11 0.00228 0.00002 0.00372 0.01851

12 0.00228 0.00002 0.00373 0.01867

Table 5: Standard errors of parameters of A functional forms in table la
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Bs=d Bs =c/\/Ss+d Bs=c/Ss+d fs=c/SE? +d

Lags(days) « d a c d « c d « c d

0 0.84362 0.00021 | 0.85967 0.00001 0.00019 | 0.86051 6.48565E-07 0.00019 | 0.85641 3.38995E-08 0.00020
1 0.91416 0.00024 | 0.94276 0.00001 0.00021 | 0.93995 6.20927E-07  0.00020 | 0.93311 2.99405E-08 0.00021
2 0.94863 0.00025 | 0.98759 0.00001 0.00022 | 0.98124 7.07824E-07 0.00022 | 0.97106 3.71891E-08 0.00023
3 0.84033  0.00023 | 0.86272 0.00001 0.00020 | 0.85998 6.50667E-07 0.00020 | 0.85410 3.41030E-08 0.00021
4
5
6
7
8

0.91662 0.00024 | 0.94893 0.00001 0.00021 | 0.94397 6.85962E-07 0.00021 | 0.93658 3.56920E-08 0.00022
0.84809 0.00023 | 0.87891 0.00001 0.00019 | 0.87440 4.90791E-07 0.00018 | 0.86812 2.24369E-08 0.00018
0.91468 0.00024 | 0.95226 0.00052 0.00648 | 0.94576 6.13709E-07 0.00020 | 0.93775 3.11747E-08 0.00021
0.81123  0.00021 | 0.82496 0.00001 0.00019 | 0.82285 6.52987E-07 0.00019 | 0.82011 3.34438E-08 0.00020
0.78489 0.00021 | 0.78944 0.00001 0.00020 | 0.78864 7.73897E-07 0.00020 | 0.71279 4.43219E-08 0.00040

9 0.70817 0.00019 | 0.70900 0.00001 0.00019 | 0.70871 7.95178E-07 0.00019 | 0.70898 4.58009E-08 0.00019
10 0.67717 0.00018 | 0.67735 0.00001 0.00018 | 0.67800 8.45633E-07 0.00018 | 0.67827 5.02138E-08 0.00019
11 0.70601  0.00019 | 0.70896 0.00001 0.00019 | 0.70934 9.46087E-07 0.00019 | 0.84715 1.19952E-07 0.00109

12 0.70302  0.00019 | 0.70904 0.00002 0.00020 | 0.70775 9.93381E-07 0.00020 | 0.70852 6.07420E-08 0.00019

Table 6: Standard errors of o« and parameters of 5 functional forms in table 1b

6.2 Analysis of simulated —Aln [; VS. historical —Aln [;

We simulate number of defaults with a Poisson distribution Pois(M;As(s — t)) using combinations of A
functional forms in table la and reporting lags ranging from one to twelve months; default losses with
a gamma distribution G(k:«, M:f;) using combinations of 5 functional forms in table 1b and report-
ing lags from one to twelve months; and default losses with a compound Poisson gamma distribution
CPG(MiXs(s — t), ar, My 85) using all combination of A functional forms, and § functional forms as well
as all reporting lags.

To simulate both Poisson and gamma distributions, historical monthly number of names, historical
spreads and number of defaults are required. We use historical data from 31/01/2007 to 31/05/2014,
because both historical dataset are available in this period. In addition, historical data of this period has
been used for parameter estimations of both the Poisson and gamma distributions; using the same data
in simulation is a good way to validate how well model parameters were estimated.

To simulate default losses using the compound (inhomogeneous) Poisson gamma distribution, only
historical monthly number of names and historical spreads are required. In order to assess how well
parameters of the model are estimated and how well specified the model is, we firstly use dataset from
31/01/1997 (the inception of the BoAML HOAO index) until 31/05/2014, which covers both the period
used for parameter estimation and the period before.

Among all simulated default losses using the compound (inhomogeneous) Poisson gamma distribution
CPG(MiAs(s —t),, My f35), we find that the combination of \; = aS; + b and §; = S and two months
reporting lag produces simulated —AlIn I; that resembles historical default losses from 31/01/1997 to
31/05/2014 very closely as shown in Figure 4. We observe from this figure that

e the historical —AIn [; sits within the 90th confidence band of the simulated —AlIn I;;

e the magnitude of the 50th percentile of the simulated —A In I; is very close to that of the historical
—Aln I;; both have very similar profiles; 5.

Those observations combined with the small AAIC, discussed in the previous section suggest that the
compound Poisson gamma distribution with the combination of Ay = aS; +b and 8; = 8 and two months
reporting lag is a good candidate model for —AIn I;.

We then inspect whether the simulated Poisson distribution using A; = aS¢ + b and two months re-
porting lag, the simulated Gamma distribution using 3; = 8 and two months reporting lag are reasonable
representations of historical number of defaults and default losses respectively. From Figure 5, we see
that the simulated number of defaults have a similar shape as that of the historical number of defaults;
we also see that simulated number of defaults peaks four months ahead of the historical number of de-
faults instead of two months. That is because historical short-term credit spreads used in parametrising
intensity A; peak at the same time as the historical default losses —AlIn I; but five months earlier than
the historical number of defaults.

From Figure 6, we see that the simulated —A In I; using the Gamma distribution with 8; = 8 and two
months reporting lag is good given close resemblance between the simulated and the historical —AIn I;.
We can also see from this Figure that the simulated —A In I; peaks three months later than the historical
one but at the same time as the shifted historical number of defaults. That is because the shifted historical
number of defaults are used directly in simulating the gamma distribution as discussed in section 6.1.
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Figure 4: Simulated default losses —A In I;, produced with compound Poisson gamma distribution using
the combination of \; = aS;+b and 5; = 8 and two months reporting lag, closely resembles the historical
default losses from 31,/01/1997 to 31/05/2014.

We thus conclude that compound Poisson gamma distribution CPG(MAs(s — t), oy, My SBs) with the
combination of functional forms A\; = a.S;+b and 5; = 8 and two months reporting lag is a good candidate
model for —Aln I;.
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6.2.1 Performance of the selected default losses model

In order to assess the performance of our proposed model for default losses, we use additional historical
dataset from 31/05/2014 until 31/12/2019 to simulate default losses. We then compare simulated default
losses and historical ones to see how good the model is using parameters estimated with past data.
Figure 7 shows simulated —AlnI; using the selected default losses model and historical dataset
from 31/01/1997 to 31/05/2014, as well as from 31/05/2014 to 31/12/2019. We plot simulated results
from both periods together in one figure, such that we can see a direct comparison between model
performance using the test dataset from 31/01/1997 to 31/05/2014, and that using the validation dataset

from 31/05/2014 to 31/12/2019.
We observe in Figure 7 that simulated —A In I; resembles historical default losses from 31/05/2014 to

31/12/2019 very closely, similar to observations made in the previous section for simulated results from
31/01/1997 to 31/05/2014. We observe that during the period from 31/05/2014 to 31/12/2019

e the historical —A In I; sits within the 90th confidence band of the simulated —AIn I;;

e the magnitude of the 50th percentile of the simulated —An I is very close to that of the historical
—AlIn I;; both have very similar profiles;

This observation gives us confidence that our default loss model has reasonably good performance.
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Figure 7: Simulated default losses —AIn I, produced with compound Poisson gamma distribution using
the combination of A\; = aS;+b and §; = § and two months reporting lag, closely resembles the historical
default losses from 31,/01/1997 to 31/12/2019.
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7 Conclusion

We have come up with a stochastic model for default losses in returns on corporate bonds due to both
systematic and idiosyncratic default risks in returns on corporate bonds. Using our default losses model,
our two-factor return model for corporate bonds, based on Koivu and Pennanen (2014), is suitable for
both well-diversified and non well-diversified corporate bond portfolios.

We use the underlying index in Koivu and Pennanen (2014) for corporate bonds to represent the
remaining fraction of all outstanding payments due to both systematic and idiosyncratic default risks.
Then returns of corporate bonds are expressed in terms of time, yield-to-maturity and default losses,
which is a function of the underlying index. Effects of systematic and idiosyncratic default risks on
returns are captured by the default losses component. We model the default losses over a portfolio
holding period as a compound (inhomogeneous) Poisson gamma distribution. We choose this modelling
approach is partly motivated by our empirical study of S&P’s historical number of defaults and historical
default losses of Bank of America Merill Lynch US High Yield corporate bond index; it’s also because
default losses in returns on corporate bonds are approximated as an average of default losses in returns
on individual issuers, which in turn is assumed to have a compound (inhomogeneous) Poisson gamma
distribution based on familiar mathematical justifications.

We parametrise the compound (inhomogeneous) Poisson gamma distribution and end up with 96
model specifications. For each model specification, we estimate model parameters and subsequently
simulate —Alnl;. Among all results, we find that the compound Poisson gamma distribution with
At = aS; + b and By = B produces small enough information criteria as well as simulated —AIn I; that
closely resembles historical —Aln ;. We thus conclude that our default losses model is suitable for
modelling default risk including both systematic and idiosyncratic risks in returns of corporate bonds.

With our proposed default losses model, this two-factor return model is particularly useful for portfolio
analysis and risk management where dynamic statistical return models are required; it could potentially
be useful for factor investing and bond index construction where contributions to bond returns from
individual risk factors need to be known; finally it could also be useful for predicting future bond returns
and corresponding strategy planning.
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Appendix A Matlab code for parameter estimations

A.1 Parameter estimations for the inhomogeneous Poisson distribution

We use the following Matlab function to estimate parameters of the inhomogeneous Poisson distribution
Pois(MiAs(s —t)).

year_selected = "Master Year’;
time_period = 'monthly’;
with_cds_spread = ’“false ’;

%model configuration
with_num_names = ’“true’;

%Poisson model configuration
modelchoice="linearb ’; %linear , linearb, loglinearl , loglinear2=exp(b+alnS
), linear2=aS"2,linearb2=aS"2+b — S"2 not good

%shifting data configuration
shifted_flag = “true’;
shiftedDays = 2;

if strcmp (time_period , "monthly ”)

if strcmp(shifted_flag , ’'true’)

if shiftedDays==1

filename = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys MNDI1.xlsm’});

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MND1.xlsx ' });

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK _Data_numOfNames_truncated MND1.
xlsx 7});

elseif shiftedDays==2

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys MND2. xlsm "’ });

filenamel = strcat ({ \Data\S&P_US_HY NumDefaults_truncated MND2.xIsx ' });

filename2 = strcat ({\Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK _Data_numOfNames_truncated MND2.
xlsx ' });

elseif shiftedDays==3

filename = strcat ({ ’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenH1BUYTM—
Treasury2Y _truncated2007—Ys MND3. xlsm " }) ;

filenamel = strcat ({ \Data\S&P_US_HY NumDefaults_truncated MND3 . xlsx ' });

filename2 = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_ MND3.
xlsx 7});

elseif shiftedDays==

filename = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys.MND4.xlsm ’});

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MND4 . xlsx ' });

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_MND4.
xlsx 7});

elseif shiftedDays==5

filename = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys.MND. xlsm " });

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated_-MND . xlsx " });

filename2 = strcat ({ ’\Data\The BofA Merrill Lynch US High Yield Index’}, {
» '}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_MND .
xlsx ' });
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elseif shiftedDays==

filename = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys MNDG6. xlsm " }) ;

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MNDG. xIsx " });

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_MNDG .
xlsx 7});

elseif shiftedDays==7

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys.MND7.xlsm’});

filenamel = strcat ({ \Data\S&P_US_HY_NumDefaults_truncated MND7.xlIsx " });

filename2 = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_MND7.
xlsx ' });

elseif shiftedDays==

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys MNDS8. xlsm " }) ;

filenamel = strcat ({ \Data\S&P_US_HY NumDefaults_truncated MND8 . xlsx ' });

filename2 = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_ MNDS8.
xlsx 7});

elseif shiftedDays==

filename = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys.MND9. xlsm ' }) ;

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MNDO9 . xlsx ' });

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_MND9.
xlsx 7});

elseif shiftedDays==10

filename = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys.MNDI10.xlsm’});

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MND10.xIsx ' });

filename2 = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index’}, {
» '}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_.MND10.
xlsx 7 });

elseif shiftedDays==11

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenH1BUYTM—
Treasury2Y _truncated2007—Ys_MNDI11.xlsm’});

filenamel = strcat ({ \Data\S&P_US_HY NumDefaults_truncated MND11.xlsx’});

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK Data numOfNames_truncated MNDI1.
xlsx 7 });

elseif shiftedDays==12

filename = strcat ({ ’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys_.MND12. xlsm " }) ;

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MND12.xlsx ' });

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’}, {
» '}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_.MND12.
xlsx 7});

end

else

filename = strcat ({ ’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenH1BUYTM—
Treasury2Y _truncated2007—Ys.xlsm’});

filenamel = strcat ({ \Data\S&P_US_HY_NumDefaults_truncated.xlsx’});

filename2 = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index’}, {
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"}, year_selected , {’—monthly — MK _Data_numOfNames_truncated. xlsx ’})

;
end
elseif strcmp(time_period,’daily’)

filename = strcat (’\Data\The BofA Merrill Lynch US Corporate Index’

}, year_selected , ’.xlsm’);
%cds_spreads = xlsread (’\Data\US 1-3 ML yield Spread—daily.xlsx’);
end

[data_defaults_xls ,temps] = xlsread (filenamel{1});
dates = datenum (temps(2:end,1));
num_defaults = data_defaults_xlIs (:,1);

Y%read number of names per month
num_names_per_month_xls = xlsread (filename2{1});
num-_names_per-month = num_names_per-month_xls (:,1);

combined_matrix=zeros (size (num_defaults,1) ,2);
combined_matrix (:,1)=num_defaults;
combined_matrix (:,2)=num_names_per_month;

num=xlsread (filename {1});
%cds_spreads_2yr_1_3yr = cds_spreads(:,1) /100.0;
%cds_spreads_3yr_1_3yr = cds_spreads (:,2)/100.0;

yield_to_mty_vect_after= num(:,1)
yield_to_mty_vect_before= num(:,3
duration_vect_after = num(:,2);
duration_vect_before = num(:,4);
govt_oas = num(:,5)/120000.0;
price_.vect = num(:,6) ;

/100.0; %@+l
) /100.0;  %at

num_rows = size(yield_to_mty_vect_after, 1);
cds_spreads_time_vect = zeros(num_rows—1,1);

for i=l:num_rows—1 %optionl

%for 1=97:num_rows—1 %option2
cds_spreads_time_vect (i,1) = govt_oas(i,1);
end

% optimisation begins from here
- )

options = optimset( Algorithm’, interior —point ', Display ’, "iter ’,’
MaxFunEvals’, 1le+10, TolFun’, 1.0e—10);

if stremp(modelchoice, 'linear ”)
theta_1 = 1; % lambda_a
Y%theta_2 = 1; % lambda_b
thetas=theta_1;

Ib=Inf;

ub=Inf;

else

theta_1 = 1; % lambda_a
theta_2 = 1; % lambda_b
thetas=[theta_1 ,theta_2];
Ib=[—Inf;—1Inf];
ub=[Inf;Inf];

end

if stremp(with_.num_names, ’“true’)
[x-uncl, fval_uncl ,exitflag_uncl ,output_uncl ,lambda_uncl ,grad_uncl,

) { ’

hessian_uncl] = fmincon(@(x) poissonMLE_¢cPGM_S(x, combined_matrix,
cds_spreads_time_vect ,modelchoice) ,thetas ,[] ,[] ,[] ,[] ,1b,ub,[], options
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)

else

[x-uncl, fval_uncl ,exitflag_uncl ,output_uncl ,lambda_uncl ,grad_uncl,
hessian_uncl] = fmincon(@Q(x) poissonMLE_¢cPGM_S(x, num_defaults,

cds_spreads_time_vect ,modelchoice) ,thetas ,[] ,[] ,[] ,[] ,1b,ub,[], options

)

end

disp ('x_uncl ”);
fprintf(’\n%.12f\n’,x_uncl);

disp (' fval_uncl ’);
fprintf(’'\n%.12f\n’,fval_uncl);

disp (’grad_uncl ’);
fprintf(’\n%.12f\n’,grad_uncl);

disp ("hessian_uncl ’);
fprintf(’\n%.12f\n’ ,hessian_uncl);

function [ minusLogLikelihoodF | = poissonMLE_¢cPGM_S(theta ,
numDefaults_matrix , govtOASs, modelchoice)

YUNTITLED Summary of this function goes here

% minus log likelihood function, explainatory variables excluding

% spreads

% size of LAMBDA and K should be the same

if strcmp(modelchoice, 'linear )
lambda_a = theta(1,1);

else

lambda_a = theta(1,1);

lambda_b theta(1,2);

end

% check whether number of members per month is included

col_nums_defaults = size (numDefaults_matrix ,2);

row_nums_defaults = size (numDefaults_matrix ,1);

if( col-nums_defaults==2)

numDefaults = numDefaults_matrix (:,1);

num_names_per_month = numDefaults_matrix (:,2);

else

numDefaults = numDefaults_matrix;

num_names_per_month = ones(row_nums_defaults 1) ;

end

rows_.num = size (govtOASs,1); % the first line of defaults is to be

discarded
logLikelihoodF = 0;

for i=l:rows_num %optionl

num_default = numDefaults(i,1); % using the row number of price data
num_names = num_names_per_month(i,1);

oas_sprd = govtOASs(i,1);

if (strcmp(modelchoice, 'linearb ’))

lambda = num_names#(lambda_axoas_sprd+lambda_b);
elseif (strcmp(modelchoice, ’linearb2’))

lambda = num_namesx*(lambda_axoas_sprd " (2)+lambda_b);
elseif (strecmp(modelchoice, linear ’))

lambda = num_names*(lambda_a*xoas_sprd);

elseif (strcmp(modelchoice, 'linear2’))

lambda = num_namesx(lambda_axoas_sprd "(2));

elseif (strcmp(modelchoice, loglinearl’))

lambda = num_namesx*(lambda_b=*(oas_sprd " (lambda_a)));
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elseif (strcmp(modelchoice, loglinear2’))
lambda = num_namesxexp (lambda_b+lambda_axlog (oas_sprd));
end

if (lambda<O0)
minusLoglLikelihoodF =10000000000;
return

end

logLikelihoodF = logLikelihoodF + num_defaultxlog(lambda) — lambda — log(
factorial (num_default));

end
minusLogLikelihoodF = —logLikelihoodF ;

end

A.2 Parameter estimation of the gamma distribution

We use the following Matlab function to estimate parameters of the gamma distribution G(k;c«, M Ss).

year_selected = "Master Year’;
time_period = ’'monthly’;
with_cds_spread = ’'false ’;

Y%model configuration

with_.num_names = ’true’;

gammaBeta_modelchoice="loglineard12’; % nondependent, linear , lineard
loglinear12 ,loglinear32 ,loglineard12 ,loglineard32

gamma_modelChoice="Modell 7; %Modell=beta*number_of names (used for the
paper), Model2=gamma_alpha/number_of_names

Y%Gamma model configuration
residual_floor = 0.0;

%shifting data configuration
shifted_flag = ’true’;
shiftedDays = 2;

if stremp(time_period , "monthly ’)

if stremp(shifted_flag , 'true’)

if shiftedDays==1

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys MND1.xlsm’});

filenamel = strcat ({ \Data\S&P_US_HY NumDefaults_truncated MND1.xlIsx ' });

filename2 = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK _Data_numOfNames_truncated MND1.
xlsx " });

elseif shiftedDays==2

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenH1BUYTM—
Treasury2Y _truncated2007—Ys MND2. xlsm ' }) ;

filenamel = strcat ({ \Data\S&P_US_HY NumDefaults_truncated MND2.xlsx ' });

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’}, {
» 1}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_ MND2.
xlsx 7});

elseif shiftedDays==

filename = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys MND3. xlsm "’ }) ;

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MND3 . xlsx ' });
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filename2 = strcat ({ ’\Data\The BofA Merrill Lynch US High Yield Index’},
» '}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_ MND3.
xlsx 7});

elseif shiftedDays==

filename = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys MND4.xlsm "’ }) ;

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MND4 . xlsx ' });

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’},
» 7}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_MND4.
xlsx 7});

elseif shiftedDays==

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—YsMND. xlsm ’ }) ;

filenamel = strcat ({’\Data\S&P_US_HY _NumDefaults_truncated MND . xlsx " });

filename2 = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index’},
» '}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_MND .
xlsx ' });

elseif shiftedDays==6

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys MNDG. xlsm " }) ;

filenamel = strcat ({ \Data\S&P_US_HY NumDefaults_truncated MNDG. xlsx " });

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’},
» 7}, year_selected , {’—monthly — MK_Data_numOfNames_truncated MNDG .
xlsx 7});

elseif shiftedDays==7

filename = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys.MND7.xlsm’});

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MND7.xlsx ' });

filename2 = strcat ({ ’\Data\The BofA Merrill Lynch US High Yield Index’},
* '}, year_selected , {’—monthly — MK_Data_numOfNames_truncated MNDT .
xlsx 7});

elseif shiftedDays==8

filename = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys_MNDS8. xlsm’ }) ;

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MND8 . xlsx ' });

filename2 = strcat ({ ’\Data\The BofA Merrill Lynch US High Yield Index’},
» 7}, year_selected , {’—monthly — MK_Data_numOfNames_truncated MNDS8.
xlsx ' });

elseif shiftedDays==

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenH1BUYTM—
Treasury2Y _truncated2007—Ys MND9. xlsm " }) ;

filenamel = strcat ({ \Data\S&P_US_HY NumDefaults_truncated MNDO9 . xIsx ' });

filename2 = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index’},
» 7}, year_selected , {’—monthly — MK _Data_numOfNames_truncated MND9.
xlsx 7 });

elseif shiftedDays==10

filename = strcat ({ ’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys_-MND10. xlsm " }) ;

filenamel = strcat ({ \Data\S&P_US_HY _NumDefaults_truncated MND10.xlIsx ' });

filename2 = strcat ({ ’\Data\The BofA Merrill Lynch US High Yield Index’}, {
» '}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_.MND10.
xlsx 7});

elseif shiftedDays==11

filename = strcat ({’\Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenHIBUYTM—
Treasury2Y _truncated2007—Ys_.MNDI11.xlsm’});
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filenamel = strcat ({ \Data\S&P_US_HY NumDefaults_truncated MND11.xlsx ' });

filename2 = strcat ({ "\ Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK _Data numOfNames_truncated_MNDI1.
xlsx ' });

elseif shiftedDays==12

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenH1BUYTM—
Treasury2Y _truncated2007—Ys_.MND12. xlsm " });

filenamel = strcat ({ \Data\S&P_US_HY NumDefaults_truncated MND12.xlsx’});

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’}, {
» '}, year_selected , {’—monthly — MK_Data_numOfNames_truncated_.MND12.
xlsx 7});

end

else

filename = strcat ({ '\ Data\The BofA Merrill Lynch US High Yield Index
Master Year—monthly — MK_Data—SpreadsBetweenH1BUYTM—
Treasury2Y _truncated2007—Ys.xlsm’});

filenamel = strcat ({ \Data\S&P_US_HY_NumDefaults_truncated.xlsx’});

filename2 = strcat ({ \Data\The BofA Merrill Lynch US High Yield Index’}, {
» 7}, year_selected , {’—monthly — MK_Data_numOfNames_truncated. xlsx’})

end

elseif strcmp(time_period,’ daily’)

filename = strcat (’\Data\The BofA Merrill Lynch US Corporate Index’, {’
}, year_selected , ' .xlsm’);

end

[data_defaults_xls ,temps] = xlsread (filenamel{1});
dates = datenum (temps (2:end,1));
num_defaults = data_defaults_xlIs (:,1);

%read number of names per month
num_names_per_month_xls = xlsread (filename2{1});
num-_names_per-month = num_names_per_month_xls (:,1);

combined_matrix=zeros (size (num_defaults,1) ,2); %2012b zeros (size (
num_defaults) ,2);

combined_matrix (: ,1)=num_defaults;

combined_matrix (: ,2)=num_names_per_month ;

num=xlsread (filename {1}, Main’);

yield_to_mty_vect_after= num(:,1

) /100.0; %Qt+1
yield_to_mty_vect_before= num(:,3)

/100.0; %@t

duration_vect_after = num(:,2); Y@t
duration_vect_before = num(:,4); Y@t
govt_oas = num(:,5) /120000.0; %@t+1
price_vect = num(:,6) ;

num_rows = size (yield_to_.mty_vect_after, 1);
dur_ytm = zeros (num_rows—1,1);

ytm_vect_diff = zeros(num_rows—1,1);
ytm_vect_diff_square = zeros(num._rows—1,1);
price_vect_log_diff = zeros(num._rows—1,1);
residuals = zeros(num_rows—1,1);

residuals_final = zeros(num_rows—1,1);
floored_-minus_res_final = zeros(num_rows—1,1);
cds_spreads_time_vect = zeros(num_rows—1,1);

for i=1:num_rows—1 %optionl
%for 1=97:num_rows—1 %option2
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ytm_vect_diff(i,1) = yield_to_mty_vect_before(i+1,1)—
yield_to_mty_vect_after(i,1);

price_vect_log_diff(i,1) = log(price_vect(i+1,1)) — log(price_vect(i,1));

end

ytm_vect_diff_square = 0.5*(ytm_vect_diff."2);

for i=l:num_rows—1 %optionl

%for 1=97:num_rows—1 %option2

if stremp(time_period , "monthly’) %used for offical paper

if strecmp(with_cds_spread, ’true’)

% Method 1

residuals (i,1) = price_vect_-log_diff(i,1) — yield_-to_mty_-vect_before (i
+1,1)/12.0 + cds_spread_vect(i+1,1)/12.0;

else

% Method1

residuals (i,1) = price_vect_log_diff(i,1) — yield_-to_mty_vect_before(i
+1,1)/12.0;

end

elseif strcmp(time_period,’ daily’)

if stremp(with_cds_spread, “true’)

residuals (i,1) = price_vect_-log_diff(i,1) — yield_-to_mty_-vect_before (i
+1,1)/365.0 + cds_spread_vect(i+1,1)/365.0;

else

residuals (i,1) = price_vect_-log_diff(i,1) — yield_-to_mty_-vect_before (i
+1,1)/365.0;

end

end

cds_spreads_time_vect(i,1) = govt_oas(i,1);

%Method 2

dur_ytm(i,1) = duration_vect_before(i+1, 1)x ytm_vect_diff(i,1);
residuals_final (i,1) = residuals(i,l) + dur_ytm(i,1);

end

minus_res_final = —residuals_final;
disp ('max —residuals ’);
fprintf(’%.12f\n’ ,max(minus_res_final));

figure;

plot (minus_res_final , ’b ")

hold (’on ")

grid (’on’)

plot (cds_spreads_time_vect, 'r’)

title (strcat ( 'minus Residuals 7, {’, '}, year_selected , {’ index, '},
time_period));
legend ({ 'minus residuals’, ’cds spreadstime’}, ’Location’, ’Best’);

%for i=1:num_rows—1 %optionl

for i=1:num_rows—1 %option2

floored_-minus_res_final (i,1) = max(minus_res_final(i,1), residual_-floor);
%0.000000000001

end

%—— plotting

fig=figure;

linel=plot (dates , floored_minus_res_final , '—b’);
hold(’on")

grid(’on’)

line2=plot (dates , cds_spreads_time_vect , '—17);

hold (" off ")
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datetick ('x’, yyyy/mm’, "keeplimits’, ’keepticks’)

h_legend=legend ([linel ,line2],{char(’ Unexplained Negative Return Residuals
of the Single Factor Model’) ,char(’Spread between HIBU YIM and YIM of
On—the—Run 2Y US Treasury Note’)}, Location’,’southoutside’);

set (h_legend , "FontSize’ ,8);

xlabel (’Dates’);

ylabel (’Unexplained Negatgive Return Residuals/Spreads’);

title (’Spread Study’);

xlim ([min(dates) max(dates)])

disp (fig)

filenamel="C:\ Hong document\Academics\PhD\Homework\2017—08—-23\ Spreads
SpreadsStudy .png’;

saveas (gcf , filenamel);

figl=figure;

set (figl , ’Visible’, “on’);

[hAx,hLinel ,hLine2]=plotyy (dates , floored_minus_res_final , dates,
num-_defaults) ;

grid (’on’);

set (hAx, ’xTickLabel’, ")

datetick ('x’, yyyy/mm’, "keeplimits’, ’keepticks’)

h_legend=legend ([hLinel ,hLine2],{char(’ Unexplained Negative Return
Residuals of the Single Factor Model’) ,char(’S&P US HY Number of
Defaults ’) }, Location’, ’southoutside ”);

set (h_legend , "FontSize’ ,8);

xlabel (’Dates’);

title (’Number of Defaults Study’);
ylabel (hAx(1),’Unexplained Negative Return Residuals’);
ylabel (hAx(2),’S&P US HY Number of Defaults’);

set (hAx(1),’YColor’,’b’");

set (hAx(2), YColor’,’r7);

set (hLinel, "color’,’b’);

set (hLine2, 'color’,’r’7);

set (hLinel,  LineStyle’,’—7);

set (hLine2, LineStyle’, '—");

xlim (hAx (1) ,[min(dates) max(dates)]);
xlim (hAx(2) ,[min(dates) max(dates)]);

disp (figl);

filename2="C:\ Hong document\Academics\PhD\Homework\2018—01—21\Spreads
ShiftedDefaultStudy .png’;

saveas (gcf , filename2);

To—r

% optimisation begins from here
options = optimset( Algorithm’, interior —point ', MaxFunEvals’, 1e+100,
TolFun’, 1.0e—6);

if (strcmp(gammaBeta_modelchoice, 'lineard ’) || Tisempty(strfind (
gammaBeta_modelchoice, "loglinear ")))

theta_3 = 0.1; % gamma_alpha has to be bigger than 0
floored_minus_res_final

theta_.4 = 0.1; % gamma_beta_.c gamma_beta_.c * S_{t} + gamma_beta.d>0

theta 5 = 0.1; % gamma beta_d

thetas=[theta_3 ,theta_4 ,theta_5];
1b=[0.00000000001; — Inf;—Inf];

ub=[Inf; Inf;Inf];

else

theta_3 = 0.1; % gamma_alpha has to be bigger than 0
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floored _minus_res_final
theta_4 = 0.1; % gamma_beta has to be bigger than 0

thetas=[theta_3 ,theta_4];
1b=[0.00000000001;0.00000000001];
ub=[Inf;Inf];

end

if stremp(with.num_names, ’true’)

[x-uncl, fval_uncl ,exitflag_uncl ,output_-uncl ,lambda_uncl, grad_uncl,
hessian_uncl] = fmincon(@Q(x) gammaMLE cPGM_S(x, combined_matrix ,...

floored _minus_res_final , cds_spreads_time_vect , gamma_modelChoice,
gammaBeta_modelchoice) ,thetas ,[] ,[] ,[] ,[] ,1b,ub,[], options);

else

[x-uncl, fval_uncl ,exitflag_uncl ,output_uncl ,lambda_uncl ,grad_uncl,
hessian_uncl] = fmincon(@Q(x) gammaMLE cPGM_S(x, num_defaults,

floored _minus_res_final , cds_spreads_time_vect , gamma_modelChoice,
gammaBeta_modelchoice) ,thetas ,[] ,[] ,[],[] ,1b,ub,[], options);

end

disp ('x_uncl );
fprintf (' %14.12e\n’ ;x_uncl);

disp (' fval_uncl ’);
fprintf('\n%14.12e¢\n’ ,fval_uncl);

disp (’grad_uncl ’);
fprintf(’'\n%14.12e¢\n’ ,grad-uncl);

disp ("hessian_uncl ’);
fprintf(’\n%14.12e¢\n’ ,hessian_uncl);

function [ minusLogLikelihoodF ] = gammaMLE cPGM.S( theta, defaults_matrix
, residuals_adj, govtOASs, gamma_modelChoice, gammaBeta_modelchoice )

YUNTITLED Summary of this function goes here

% minus log likelihood function

% theta_1 = K(i,1)=*alpha—1

% theta_-2 = —beta

% alpha is the shape parameter of the gamma distribution

% beta is the scale parameter of the gamma distrubtion

% Detailed explanation goes here

if (strcmp(gammaBeta_modelchoice, "lineard’) || Tisempty (strfind (
gammaBeta_modelchoice, "loglinear 7)))

gamma_alpha = theta(1,1);

gamma_beta_c = theta (1,2);

gamma_beta.d = theta (1,3);

else

gamma_alpha = theta (1,1);

gamma_beta = theta (1,2);

end

% check whether number of members per month is included

col_.nums_defaults = size (defaults_matrix ,2);
row_nums_defaults = size (defaults_matrix ,1);

if( col-nums_defaults= 2)

defaults = defaults_matrix (:,1);
num_names_per_month = defaults_matrix (:,2);

else

defaults = defaults_matrix;

num_names_per_month = ones(row_nums_defaults 1) ;
end
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rows_.num = size (residuals_adj ,1);
logLikelihoodF = 0;

for i=1l:rows_.num %optionl

num-_default = defaults(i,1);
num_names = num_names_per_month(i,1);
oas_sprd = govtOASs(i,1);

if (strcmp(gammaBeta_modelchoice, 'linear '))

beta_adjusted = (gamma_beta/oas_sprd);

elseif (strcmp(gammaBeta_modelchoice, nondependent’))
beta_adjusted = gamma_beta;

elseif (strcmp(gammaBeta_modelchoice, 'lineard ’))

beta_adjusted = (gamma_beta_c/oas_sprd + gamma_beta_d);

elseif (strcmp(gammaBeta_modelchoice, "loglinearl2’))
beta_adjusted = gamma_beta_c/power (oas_sprd, 1/2);

elseif (strcmp(gammaBeta_modelchoice, loglinear32’))
beta_adjusted = gamma_beta_c/power(oas_sprd, 3/2);

elseif (strcmp(gammaBeta_modelchoice, loglineard12’))
beta_adjusted = gamma_beta_c/power(oas_sprd, 1/2)+gamma_beta.d;
elseif (strcmp(gammaBeta_modelchoice, 'loglineard32 7))
beta_adjusted = gamma_beta_c/power(oas_sprd, 3/2)+gamma_beta_d;
end

if (strcmp (gamma_modelChoice, "Modell "))
beta_adjusted_adj=beta_adjusted*num_names;
gamma_alpha_adj=gamma_alph

elseif (strcmp (gamma_modelChoice, "Model2 "))
beta_adjusted_adj=beta_adjusted;
gamma_alpha_adj=gamma_alpha/num_names;

end

if (beta_adjusted_adj<=0) || (gamma_alpha_adj<=0)
minusLogLikelihoodF =10000000000;

return

end

if (residuals_adj(i,1)>0)

k_alpha = num_default*gamma_alpha_adj;
if (k_alpha==0)

continue ;

end

residuals_adj-M=residuals_adj(i,1);

increment=k_alphaxlog(beta_adjusted_adj) + (k-alpha—1)xlog(residuals_adj_-M
)—beta_adjusted_adjxresiduals_adj-M —log (gamma(k_alpha));

logLikelihoodF = logLikelihoodF + increment;
disp(717);

fprintf (' \n%.12f\n’,i);

disp (’logLikelihoodF 7);
fprintf(’\n%14.6e\n’,logLikelihoodF);

end

end

minusLogLikelihoodF = —logLikelihoodF;

end
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Appendix B Algorithms and Matlab code for simulation

B.1 Inhomogeneous Poisson distribution simulation
B.1.1 Simulation algorithm

We use the following algorithm simulate the inhomogeneous Poisson distribution Pois(M;iAs(s —t)) over
time for one simulation.

Step 1 Initialize T := 1;¢t := 0; N = 0;
Step 2 Repeat following steps until ¢ > T

Step 3 Generate a random number v uniformly distributed over [0, 1].

Inu

As(s —1t)
Step 5 Set N:=N +1

Step 4 Sett:=1t—

B.1.2 Matlab code

The above simulation algorithm is written in the Matlab function below to simulate the inhomogeneous
Poisson distribution
Pois(MiAs(s —t)) for the whole observation period.

function [ pdfs, means, medians, percQs-10, percQs-90, conflI_90L ,confI_90H
] = PoissonPdf2( num_rows, number_sims, cdsSpreads

,numNamePerMonth, lambda_a, lambda_b, lambda_modelchoice,
includedNumNamesPerMonth )

% This function returns the pdf of compound Poisson Gamma distribution

% Detailed explanation goes here

Poiss_pdfs = zeros(num_rows, 1);

Poiss_means = zeros (num_rows, 1);

Poiss_medians = zeros(num_rows, 1);

Poiss_quantiles_90perc = zeros(num-rows, 1);

Poiss_quantiles_10perc = zeros(num_rows, 1);

cond_Interval_90_lower = zeros(num_rows, 1);

cond_Interval_90_higher = zeros(num_rows,1l);

% loop throught each month

% a distribution per month

for i=l:num_rows %default data option 1

govt_spread = cdsSpreads(i,1);

if (strcmp(lambda_modelchoice, ’linearb’))

lambda_ind = lambda_a * govt_spread 4 lambda_b;

elseif (strecmp(lambda_modelchoice, ’linearb2’))

lambda-ind = lambda_a * govt_spread "(2)+lambda_b;

elseif (strcmp(lambda_modelchoice, ’'linear’))

lambda_ind = lambda_a * govt_spread;

elseif (strcmp(lambda_modelchoice, ’linear2’))

lambda_ind = lambda_a % govt_spread "(2);

elseif (stremp(lambda_modelchoice, ’loglinearl ’))

lambda_ind = lambda_b * govt_spread " (lambda_a);

elseif (strcmp(lambda_modelchoice, ’loglinear2’) || strcmp (
lambda_modelchoice, ’average’))

lambda_ind = exp(lambda_b + lambda_axlog(govt_spread));

end

if (stremp (includedNumNamesPerMonth, ’true’))
num-names = numNamePerMonth(i,1) ;
lambda = num_names * lambda_ind;
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37 elseif (stremp (includedNumNamesPerMonth, ’false ’))

38 lambda = lambda_ind;

39 end

40

a1 if ( lambda <0 )

42 disp ( ’lambda smaller than 07);

43 lambda=0;

44 end

45

16 % simulating Poisson.

47

48 num_sims = number_sims;

149 T = 1; % 1 month

50

51 sampled N = zeros (num_sims,1) ;

52 sl= RandStream.create ( 'mrg32k3a’,’NumStreams’ ,num_rows, ’StreamlIndices’
,’Seed’, ’'shuffle’);

53 RandStream . setGlobalStream (sl);

54

55 for j_sim=1:num_sims

56 count_t = 0;

57 count_events = 0;

58 while count_-t < T

59 rand_num = rand(sl, 1, 1);

60 count_t = count_-t + (—(1/lambda)*log(rand_num));

61 if( count_-t > T )

62 break;

63 else

64 count_events = count_events + 1;

65 end

66 end

67 sampled N (j.sim ,1) = count_events;

68 end

69

70 sampled_size=sampled_N;

71 sorted_sampled_size = sort(sampled_size, descend’);

72 Poiss_means(i,1l) = mean(sorted_sampled_size ,1);

73

74 if (num_sims>1)

75 num_90th = floor (0.9%num-_sims); % pick the 10th biggest number

76 num_10th = floor (0.1*num_sims); % pick the 90th biggest number

77 middle_num_floor = floor (0.5*num_sims);

78 middle_num_ceil = ceil (0.5%*num_sims) ;

79 median = 0.5x(sorted_sampled_size (middle_.num_floor ,1) +
sorted_sampled_size (middle_num_ceil ,1));

80 Poiss_-medians (i,1) = median;

81 Poiss_quantiles_90perc(i,1) = sorted_sampled_size (num_-90th, 1);

82 Poiss_quantiles_10perc(i,1) = sorted_sampled_size (num_10th, 1);

83 sigma=sqrt (var(sorted_sampled_size ,1));

84 cond_Interval_90_lower (i,1)=Poiss_means(i,1)—sigmax1.645;

85 cond_Interval_90_higher (i,1)=Poiss_means(i,1)+sigma*1.645;

86 end

87 end

88

89 pdfs = Poiss_pdfs;

90 means = Poiss_means;

91 medians = Poiss_medians;

92 percQs_10 = Poiss_quantiles_10perc;

93 percQs_90 = Poiss_quantiles_90perc;

94 confl_90L = cond_Interval_90_lower;

95 confl_ 90H = cond_Interval_90_higher;

96

o7 end
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B.2 Gamma distribution simulation

We use Matlab function gamrnd to generate the gamma random numbers. The following Matlab function
is used to simulate the gamma distribution G(k:«, M; ) for the whole observation period.

1 function [ pdfs, means, medians, percQs_-10, percQs-90, confI_90L ,
confl_ 90H] = gammaPdf( num_rows, number_sims, cdsSpreads,

2 numNamePerMonth, gamma_alpha, gamma_betas, gammaBeta_modelchoice,
gammaModelChoice, includedNumNamesPerMonth, numDefaults)

3 % This function returns the pdf of compound Poisson Gamma distribution

4 % Detailed explanation goes here

6 gamma_pdfs = zeros (num_rows, 1);

7 gamma_means = zeros (num-rows, 1);

8 gamma_medians = zeros (num_rows, 1);

9 gamma_quantiles_90perc = zeros (num_rows, 1);

10 gamma_quantiles_10perc = zeros (num_rows, 1);

11 cond_Interval_90_lower = zeros(num.rows, 1);

12 cond_Interval_90_higher = zeros(num_rows,1);

13

14 num_sims = number_sims;

15

16 % loop throught each month

17 % a distribution per month

18 for i_months=1:num_rows

19 govt_spread = cdsSpreads(i-months,1);

20 numDefault=numDefaults (i_-months 1) ;

21 gamma_alpha_adj=gamma_alpha*xnumDefault;

22

23 if (strcmp(gammaBeta_modelchoice, ’'nondependent’))

24 gamma_beta = gamma_betas(1,1);

25 gamma_beta_adj = gamma_beta;

26 elseif (strcmp(gammaBeta_modelchoice, ’'linear’))

27 gamma_beta = gamma_betas(1,1);

28 gamma_beta_adj = gamma_beta/govt_spread;

29 elseif (strcmp(gammaBeta_modelchoice, ’'lineard’))

30 gamma_beta_c = gamma_betas(1,1);

31 gamma_beta.d = gamma_betas(1,2);

32 gamma_beta_adj = gamma_beta_c/govt_spread + gamma_beta_d;

33 elseif (strcmp(gammaBeta_modelchoice, ’'loglinearl12’) || stremp(
gammaBeta_modelchoice, ’loglineardl12’) || strcmp(gammaBeta_modelchoice
, 'average’))

34 gamma_beta_c = gamma_betas(1,1);

35 gamma_beta.d = gamma_betas(1,2);

36 gamma_beta_adj = gamma_beta_c/power(govt_spread, 1/2) + gamma_beta_d;

37 elseif (strcmp(gammaBeta_modelchoice, ’'loglinear32’) || strcmp(
gammaBeta_modelchoice, ’'loglineard32’))

38 gamma_beta_c = gamma_betas(1,1);

39 gamma_beta_d = gamma_betas(1,2);

10 gamma_beta_adj = gamma_beta_c/power(govt_spread , 3/2) 4+ gamma_beta_d;

41 end

42

43 if (stremp (includedNumNamesPerMonth, ’true’))

44 num_names = numNamePerMonth (i_months 1) ;

45 if (stremp (gammaModelChoice, "Modell 7))

46 beta_adjusted = num_names * gamma_beta_adj;

a7 alpha_adjusted=gamma_alpha_adj;

48 elseif (strcmp (gammaModelChoice, "Model2 "))

49 beta_adjusted=gamma_beta_adj;

50 alpha_adjusted = gamma_alpha_adj/num_names;

51 end

52 elseif (strcmp (includedNumNamesPerMonth, ’false ’))

53 beta_adjusted = gamma_beta_adj;

54 alpha_adjusted = gamma_alpha_adj;
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55 end

56

57 % alpha_adjusted = num_names * gamma_alpha; %gamma_alpha * k; %not
for simulating

58

59 s1l= RandStream.create ( 'mrg32k3a’,’NumStreams’ ,num_rows, ’StreamlIndices’,
i_months, ’Seed’, ’shuffle’); % shuffle’

60 RandStream . setGlobalStream (sl);

61

62 sampled_size = zeros(num-sims, 1);

63

64 for j_sim=1:num_sims

65 sampled_size (j_sim ,1) = gamrnd(alpha_adjusted, 1/beta_adjusted);

66 if (sampled_size(j-sim ,1) <0)

67 disp ( ’wrong gamma random varialbes!!!”)

63 end

69 end

70

71 sorted_sampled_size = sort(sampled_size, descend’);

72 gamma_means (i-months ;1) = mean(sorted_sampled_size ,1);

73

74 if (num_sims>1)

75 num_90th = floor (0.9*num_sims); % pick the 5th biggest number

76 num_10th = floor (0.1*num_sims); % pick the 95th biggest number

77 middle_num_floor = floor (0.5%num_sims) ;

78 middle_num_ceil = ceil (0.5%num_sims) ;

79 median = 0.5x(sorted_sampled_size (middle_.num_floor ,1) +
sorted_sampled_size (middle_.num_ceil ,1));

80 gamma_medians (i_months ,1) = median;

81 gamma_quantiles_90perc(i_months ,1) = sorted_sampled_size (num_90th, 1);

82 gamma_quantiles_10perc(i-months,1) = sorted_-sampled_size (num_10th, 1);

83 sigma=sqrt (var(sorted_sampled_size ,1));

84 cond_Interval_90_lower (i_months ,1)=gamma_means(i_months ,1)—sigmax1.645;

85 cond_Interval_90_higher (i_months ,1)=gamma_means(i-months ,1)+sigmax1.645;

36 end

87 end

88

89 pdfs = gamma_pdfs;

90 means = gamma_means ;

91 medians = gamma_medians;

92 percQs_10 = gamma_quantiles_10perc;

93 percQs_90 = gamma_quantiles_90perc;

94 confl_90L = cond_Interval_90_lower;

95 confl_ 90H = cond_Interval_90_higher;

96 end

B.3 Compound (inhomogeneous) Poisson gamma distribution simulation
B.3.1 Simulation algorithm

To simulate the compound (inhomogeneous) Poisson gamma distribution, both the inhomogeneous Pois-
son and the gamma distributions must be simulated. We use the following algorithm to simulate the
compound (inhomogeneous) Poisson gamma distribution CPG(MAs(s —t), o, My 35) for one simulation
(Cont and Tankov (2004).).

Step 1 Initialize T :=1;t:=0; N := 0; L := 0;
Step 2 Repeat following steps until ¢t > T'

Step 3 Generate a random number u uniformly distributed over [0, 1].

Inu

t 4 =t— ———
Step 4 Set t =1t NG 1)
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1
Step 5 Set L := L+ gamrnd(ay, B—)

Step 6 Set N:=N +1

The function gamrnd is the Matlab function used to generate gamma random variables.

B.3.2 Matlab code

The above simulation algorithm is written in the Matlab function below to simulate the compound
(inhomogeneous) Poisson gamma distribution CPG(MAs(s — t), e, MyBs) for the whole observation

period.

function [ pdfs, means, medians, percQs_10, percQs_90,confI_90L, confl_90H

| = compoundPoissonPdf( num_rows, number_sims, cdsSpreads,
numNamePerMonth, lambda_a, lambda_b, gamma_alpha, gamma_betas,

lambda_modelchoice, gammaBeta_modelchoice, gammaModelChoice, ...
includedNumNamesPerMonth , includedNumNamesPerMonth_Poisson)

% This function returns the pdf of compound Poisson Gamma distribution

% Detailed explanation goes here

Y%num_rows = size (num_rows,1);

compoundPoiss_pdfs = zeros(num-rows, 1);
compoundPoiss_means = zeros (num_rows, 1);
compoundPoiss_medians = zeros (num_rows, 1);
compoundPoiss_quantiles_95perc = zeros(num_rows, 1);
compoundPoiss_quantiles_10perc = zeros (num_rows, 1);
cond_Interval_90_lower = zeros(num_rows, 1);
cond_Interval_90_higher = zeros(num_rows,1l);

% loop throught each month

% a distribution per month

for i=1l:num_rows %default data option 1

if (strcmp(lambda_-modelchoice, ’linearb ’))
lambda_ind = lambda_a % govt_spread 4 lambda_b;

elseif (strcmp(lambda_modelchoice, ’linearb2’))

lambda-ind = lambda_a * govt_spread "(2) + lambda_b;

elseif (strcmp(lambda_modelchoice, ’'linear’))

lambda_ind = lambda_a * govt_spread;

elseif (strcmp(lambda_modelchoice, ’linear2’))

lambda_ind = lambda_a % govt_spread "(2);

elseif (strcmp(lambda_modelchoice, ’loglinear2’) || stremp(
lambda_modelchoice, ’average’))

lambda_ind = exp (lambda_b+lambda_axlog (govt_spread));

elseif (strcmp(lambda_modelchoice, ’'loglinearl ’))

lambda_ind = lambda_bx*(govt_spread "(lambda_a));

end

if (strcmp(gammaBeta_modelchoice, ’nondependent’))

gamma_beta = gamma_betas(1,1);

gamma_beta_adj = gamma_beta;

elseif (strcmp(gammaBeta_modelchoice, ’'linecar’))

gamma_beta = gamma_betas(1,1);

gamma_beta_adj = gamma_beta/govt_spread;

elseif (strcmp(gammaBeta_modelchoice, ’'lineard’))

gamma_beta_c = gamma_betas(1,1);

gamma_beta_d = gamma_betas(1,2);

gamma_beta_adj = gamma_beta_c/govt_spread + gamma_beta_d;

elseif (strcmp(gammaBeta_modelchoice, ’'loglinear32’) || strcmp(
gammaBeta_modelchoice, ’loglineard32’))

gamma_beta_.c = gamma_betas(1,1);

gamma_beta_d = gamma_betas(1,2);

gamma_beta_adj = gamma_beta_c/power(govt_spread ,3/2) + gamma_beta_d;
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elseif (strcmp(gammaBeta_modelchoice, ’'loglinearl2’) || stremp (

gammaBeta_modelchoice, ’'loglineard12’) || strcmp(gammaBeta_modelchoice
, average’))

gamma_beta_.c = gamma_betas(1,1);

gamma_beta.d = gamma_betas(1,2);

gamma_beta_adj = gamma_beta_c/power(govt_spread ,1/2) + gamma_beta.d;
end

if (strcmp (includedNumNamesPerMonth, ’'true’))
num_names = numNamePerMonth (i ,1) ;

if (strcmp (includedNumNamesPerMonth_Poisson, "true ’))
lambda = num_names * lambda_ind;

else

lambda = lambda_ind;

end

if (strcmp (gammaModelChoice, "Modell 7))
beta_adjusted = num_names * gamma_beta_adj;
alpha_adjusted=gamma_alpha;

elseif (strcmp (gammaModelChoice, "Model2 "))
beta_adjusted=gamma_beta_adj;

alpha_adjusted = gamma_alpha/num_names;

end

elseif (strcmp (includedNumNamesPerMonth, ’false ’))
lambda = lambda_ind;

beta_adjusted = gamma_beta_adj;

alpha_adjusted= gamma_alpha;

end

if ( lambda <0 )
disp (’lambda smaller than 07);
break

end
% simulating Compound Poisson.

num_sims = number_sims;
T = 1; % 1 month

sampled N = zeros (num_sims,1) ;
sampled_size = zeros(num-_sims, 1);

sl= RandStream.create ( 'mrg32k3a’,’NumStreams’ ,num_rows, ’StreamlIndices’

,’Seed’, ’'shuffle’);
RandStream.setGlobalStream (sl);

for j_sim=1:num_sims

count_t = 0;

count_events = 0;

sum_size = 0;

while count_t < T

rand_num = rand(sl, 1, 1);

count_t = count_-t + (—(1/lambda)*log(rand_num));

if( count_t > T )

break;

else

if (strcmp (includedNumNamesPerMonth, ’false ’))
gamma_rand num = gamrnd(alpha_adjusted, 1/beta_adjusted);
elseif (strcmp (includedNumNamesPerMonth, ’true’))
gamma._rand_num = gamrnd(alpha_adjusted, 1/beta_adjusted);
end

count_events = count_events + 1;
sum_size = sum_size + gamma._rand_num;
end
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end

sampled_N (j_sim ,1) = count_events;

sampled_size (j_sim ,1) = sum_size;

end

sorted_sampled_size = sort(sampled_size , descend’);
compoundPoiss_.means(i,1) = mean(sorted_sampled_size ,1);

if (num_sims>1)
num-95th = floor (0.95%num_sims); % pick the 10th biggest number
num_05th = floor (0.05*num_sims); % pick the 90th biggest number

Y%middle_num_floor = floor (0.5%num_sims) ;

%middle_num_ceil = ceil (0.5*%num_sims) ;

num_50th=floor (0.5*num_sims) ;

Y%median = 0.5x%(sorted_sampled_size (middle_.num_floor ,1) +
sorted_sampled_size (middle_num_ceil ,1));

compoundPoiss_medians(i,1) = sorted_sampled_size (num_50th, 1);

compoundPoiss_quantiles_95perc(i,1) = sorted_sampled_size (num_95th,

compoundPoiss_quantiles_10perc(i,1) = sorted_-sampled_size (num_05th,

end

end

pdfs = compoundPoiss_pdfs;

means = compoundPoiss_means;

medians = compoundPoiss_medians;

percQs_-10 = compoundPoiss_quantiles_10perc;
percQs_90 = compoundPoiss_quantiles_95perc;
confl_90L = cond_Interval_90_lower;

confl_ 90H = cond_Interval_90_higher;

end

1);
1)
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