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ABSTRACT 30 

 31 

AIMS: Despite their low levels of ectopic fat accumulation, populations of African ancestry 32 

exhibit hyperinsulinaemia and increased metabolic risk.  We aimed to investigate relationships 33 

between insulin clearance, insulin secretion, hepatic fat accumulation and insulin sensitivity in 34 

black African (BA) and white European (WE) men. 35 

METHODS: 23 BA and 23 WE men with normal glucose tolerance, matched for age and body 36 

mass index, underwent a hyperglycaemic clamp to measure insulin secretion and clearance; 37 

hyperinsulinaemic-euglycaemic clamp with stable glucose isotope infusion to measure whole-38 

body and hepatic-specific insulin sensitivity; and magnetic resonance imaging to quantify 39 

intrahepatic lipid (IHL). 40 

RESULTS: BA men had higher glucose-stimulated peripheral insulin levels (48.1 (35.5, 65.2) 41 

x 103 vs 29.9 (23.3, 38.4) x103 pmol L-1 x min, p=0.017) and lower endogeneous insulin 42 

clearance (771.6 (227.8) vs 1381 (534.3) mL m-2 BSA min -1, p<0.001) compared with WE 43 

men.  There were no ethnic differences in beta cell insulin secretion or beta cell responsivity 44 

to glucose, even after adjustment for prevailing insulin sensitivity.  In WE men, endogenous 45 

insulin clearance was correlated with whole-body insulin sensitivity (r=0.691, p=0.001) and 46 

inversely correlated with IHL (r= -0.674, p=0.001). These associations were not found in BA 47 

men.   48 

CONCLUSIONS: While normally glucose tolerant BA men have similar insulin secretory 49 

responses to their WE counterparts, they have markedly lower insulin clearance, which does 50 

not appear to be explained by either insulin resistance or hepatic fat accumulation.   Low insulin 51 

clearance may be the primary mechanism of hyperinsulinaemia in populations of African 52 

origin.    53 
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ABBREVIATIONS 56 

BA: Black African 57 

HFF: Hepatic Fat Fraction 58 

EGP: Endogenous glucose production 59 

FFM: Fat-free mass 60 

iAUC: Incremental area under the curve 61 

IHL: Intrahepatic lipid 62 

ISR: Insulin secretion rate 63 

MCRI: Metabolic clearance rate of insulin 64 

NEFA: Non-esterified fatty acids 65 

OGTT: Oral glucose tolerance test 66 

WE: White European  67 
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INTRODUCTION 68 

 69 

The multifaceted pathophysiology of type 2 diabetes (T2D) includes peripheral and hepatic 70 

insulin resistance, reduced insulin clearance and beta-cell dysfunction. Insulin secreted by the 71 

pancreatic beta cell is delivered directly via the portal vein to the liver, where the majority of 72 

endogenous insulin clearance occurs [1]. The predominant mechanism of hepatic insulin 73 

clearance involves insulin binding to its receptor on the hepatocyte surface, with endocytosis 74 

and internalisation of the insulin-receptor complex and subsequent degradation [2]. Therefore, 75 

hepatic insulin clearance is an integral part of insulin’s action on the liver, with greater hepatic 76 

insulin sensitivity associated with greater clearance [3].  Intrahepatic lipid (IHL) plays a key 77 

role in glucose/insulin dysregulation; while the mechanisms are not fully understood, the 78 

accumulation of lipotoxic mediators has been found to inhibit insulin receptor activation [4].  79 

In this way, accumulation of IHL is believed to drive impairments in both insulin clearance 80 

and hepatic insulin sensitivity  [5-8].  81 

 82 

Populations of black African (BA) ethnicity suffer a disproportionately elevated risk of T2D 83 

[9, 10], yet they are relatively protected from ectopic fat deposition and exhibit lower IHL 84 

relative to other ethnicities (the so-called “African paradox”) [11]. Distinctive features of 85 

insulin dynamics are well-documented in populations of African ethnicity [12], with an 86 

exaggerated insulin response to glucose in BA subjects demonstrated across a spectrum of 87 

glucose tolerance [13-17].  An important contributor to this phenomenon is the relatively low 88 

insulin clearance of BA populations, which has been consistently recognised [18-22]. 89 

Reductions in insulin clearance appear to be a predictor of T2D in this ethnic group [23] and 90 

may be associated with increased markers of inflammation [24].   91 
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We have previously shown that fasting hepatic insulin resistance in BA men with early T2D 92 

appears to be independent of IHL [25] and that there are ethnic differences in the relationship 93 

between ectopic fat accumulation and insulin sensitivity [26].  This has led us to hypothesise 94 

that the role of IHL in insulin clearance may differ by ethnicity. To our knowledge, this is the 95 

first study to examine the impact of BA ethnicity on relationships between insulin clearance, 96 

insulin sensitivity and hepatic fat in adult men of normal glucose tolerance.   97 
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METHODS 98 

Study Design 99 

The data were collected as part of “Soul-Deep II”, a cross-sectional study of the development 100 

of type 2 diabetes in men resident in South London from two ethnic groups, white European 101 

(WE) and black (West) African (BA).  Metabolic assessments were performed at the Clinical 102 

Research Facility, King’s College Hospital, London, UK, while MRI imaging took place at 103 

Guy’s Hospital, London, UK.  The study was approved by the London Bridge National 104 

Research Ethics Committee (15/LO/1121). Recruitment of subjects and data collection took 105 

place between April 2016 and May 2018.  Recruitment was carried out through advertising in 106 

the local press and via South London primary care practices. All subjects provided written 107 

informed consent prior to the study. 108 

 109 

Subjects 110 

Eligible subjects were male, aged 18-65 years, of either white European (WE) or black (West) 111 

African (BA) ethnicity.  Ethnicity was self-declared and confirmed by grandparental 112 

birthplace.  Eligible WE subjects had 4 WE grandparents with at least two of these from North 113 

West European countries as defined by the United Nations Statistics Division (UNSD) [27]. 114 

Eligible BA subjects had 4 BA grandparents from West African countries as defined by UNSD.  115 

 116 

Subjects were invited to a screening assessment at the Clinical Research Facility at King’s 117 

College Hospital, following a 10 hour fast, in order to undertake a screening questionnaire, 118 

anthropometric measurements and a 2 hour, 75g oral glucose tolerance test (OGTT).  Eligible 119 

subjects were normal glucose tolerant according to World Health Organisation criteria [28].   120 

 121 
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Exclusion criteria were: a diagnosis of diabetes; treatment with oral hypoglycaemic agents, 122 

insulin, systemic steroids or beta blockers; any condition or medication considered by the 123 

investigators to have substantial impact on the study protocol or outcomes; serum creatinine of 124 

>150 µmol/l; serum alanine transaminase level >2.5 fold above the upper limit of the reference 125 

range; sickle cell disease (trait permitted).  Participants were instructed to refrain from 1) 126 

strenuous physical activity for 48-hours 2) alcohol consumption for 24-hours and 3) food and 127 

drink (other than water) for at least 10 hours prior to the study visits.  128 

 129 
Hyperglycaemic clamp assessment of first- and second- phase insulin secretory function 130 

and insulin clearance 131 

Following an overnight fast, participants were admitted to the Clinical Research Facility and 132 

weighed in light clothing.  A cannula was inserted into the antecubital fossa vein of the non-133 

dominant arm for administration of the glucose infusion and a second cannula inserted 134 

retrogradely into the dorsum of the contralateral hand for blood sampling.  The sampling hand 135 

was placed in a hand-warming unit at 55 ⁰C in order to achieve arterialised venous blood.  A 136 

primed, variable rate intravenous infusion of 20% (wt/vol) dextrose was administered for 120 137 

minutes to achieve square-wave hyperglycaemia with a plasma glucose concentration of 6.9 138 

mmol/L above baseline, according to the protocol of DeFronzo et al [29].  Glucose, insulin, 139 

and C-peptide concentrations were measured at fasting (-20, -10, 0 minutes) and at 2, 4, 6, 8, 140 

10, 15, 20, 30, 40, 50, 60, 75, 90, 105, and 120 minutes.  141 

 142 

Hyperinsulinaemic-euglycaemic clamp assessment of insulin sensitivity 143 

The full methodology has been described [26].  In brief, a two-step hyperinsulinaemic–144 

euglycaemic clamp with a stable glucose isotope infusion was used to assess whole-body and 145 

hepatic-specific insulin sensitivity. Participants were admitted to the Clinical Research Facility 146 

following an overnight fast and weighed in light clothing. During the basal phase, a primed 147 
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(2.0 mg/kg), continuous infusion (0.02 mg kg−1 min−1) of [6,6 2H2]-glucose (CK Gases, 148 

Cambridgeshire, UK) was initiated at -120 minutes. Blood samples were taken at -30, -20, -10 149 

and 0 minutes for basal assessments. The clamp began at 0 minutes with a primed continuous 150 

insulin infusion (Actrapid, Novo Nordisk, Bagsvaerd, Denmark) bound to albumin at a rate of 151 

10 mU m−2 BSA min−1 for 2 hours (low dose insulin phase) for assessment of hepatic insulin 152 

sensitivity. For the final 2 hours, the insulin infusion rate was re-primed and increased to 40 153 

mU m−2 BSA min−1 (high dose insulin phase) for assessment of whole-body insulin sensitivity.  154 

Euglycaemia (5.0 mmol/l) was achieved using variable rate 20% (wt/vol) dextrose enriched 155 

with [6,6 2H2]-glucose (8 mg/g glucose) to maintain a constant tracer-to-tracee ratio. Blood 156 

was drawn at 30, 60, 90, 100, 110, 120, 150, 180, 210, 220, 230 and 240 minutes for the 157 

assessment of plasma glucose concentration, isotopic enrichment and insulin concentration.  158 

 159 

Magnetic Resonance Imaging assessment of IHL  160 

The full imaging protocol has been reported [30]. In brief, a Dixon-based MRI sequence was 161 

used on a 1.5 Tesla Siemens scanner to obtain images from the neck to the knee (excluding 162 

arms).  384 contiguous, axial T1-weighted gradient-echo images with a slice thickness of 3mm 163 

were acquired, from which fat and water images were produced as part of the Dixon sequence. 164 

MRI data were analysed using the open source image analysis software HOROS V 1.1.7 165 

(www.horosproject.org; accessed 21/10/2017) by a single, blinded analyst (OH).   166 

In each participant, two abdominal MRI images approximately 30mm apart were selected, 167 

representing the superior and inferior sections of the liver. In each pair of water and fat MRI 168 

images, 4 circular regions of interest (ROIs) in identical positions were placed within the liver 169 

tissue. The hepatic fat fraction (HFF) was quantified in each ROI by using the formula %HFF 170 

= (F/(F+W)) *100 where F is the pixel signal intensity of the fat image and W is the pixel signal 171 

intensity of the water image. Intrahepatic lipid (IHL) was calculated as the mean of all 8 ROIs. 172 
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Biochemical analyses 173 

Plasma glucose concentrations were determined at the bedside using an automated glucose 174 

analyser (Yellow Spring Instruments, 2300 STAT Glucose Analyzer, Ohio, USA). Plasma 175 

insulin concentrations were determined by immunoassay using chemiluminescent technology 176 

(ADVIA Centaur System, Siemens Healthcare Ltd. Camberly, UK). Plasma C-peptide 177 

concentrations were determined by radioimmunoassay (Millipore Ltd, Hertfordshire, UK). 178 

Plasma glucose isotope enrichments were measured by gas chromatography-mass 179 

spectrometry on an Agilent GCMS 5975C MSD (Agilent Technologies, Wokingham, UK).  180 

 181 

Calculations 182 

Whole-body insulin sensitivity was quantified using the M value (mg/kg FFM min−1) measured 183 

during the final 30 min of the high-dose insulin phase of the clamp, calculated as total glucose 184 

disposal corrected for deviations in plasma glucose concentration [26]. Whole-body insulin 185 

sensitivity was also expressed as M/I, the M value corrected for the steady state insulin 186 

concentration during the last 30 minutes of the clamp (mg kg -1 FFM min−1)/ (pmol L-1). 187 

 188 

Steele’s non-steady-state equations, modified for stable isotopes, were used to determine total 189 

glucose rate of appearance, Ra (μmol kg -1 FFM min-1) [31].  Endogenous glucose production 190 

(EGP) was calculated by subtracting exogenous glucose infusion rate from total glucose Ra.  191 

Hepatic insulin sensitivity was expressed as the percentage suppression of EGP from basal to 192 

the final 30 minutes of the clamp (% suppression of EGP).  193 

 194 

The clearance rate of the exogenously administered insulin infusion during the 195 

hyperinsulinaemic-euglycaemic clamp (metabolic clearance rate of insulin, or MCRI) was 196 
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calculated as the insulin infusion rate divided by the insulin concentration during the steady 197 

state period in the final 30 minutes of the clamp (mL m-2 BSA min -1). 198 

 199 

The incremental areas under the curve (iAUC) were calculated using the trapezoid rule for C-200 

peptide, insulin and glucose.  Classical indices of first- and second-phase insulin secretion 201 

during the hyperglycaemic clamp were determined by calculating the iAUC for C-peptide for 202 

0 to 10 minutes and 10 to 120 minutes respectively.    203 

 204 

Parameters of beta cell function were obtained by modelling the glucose and C-peptide curves 205 

during the hyperglycaemic clamp using published methods [32, 33]. Model assessments were 206 

carried out using SAAM-II 1.2 software (SAAM Institute, Seattle, Washington). The main 207 

outputs of the model are: pre-hepatic endogenous insulin secretion (expressed as area under 208 

the curve of insulin secretion rate over 120 minutes, AUCISR); beta cell glucose sensitivity of 209 

first-phase secretion (σ1), expressed as the amount of insulin secreted in response to a rate of 210 

increase in glucose of 1 mmol/L between time 0 and 1 minute of the study, in (pmol m-2 211 

BSA)/(mmol L-1 min-1), beta cell glucose sensitivity of second-phase secretion (σ2), expressed 212 

as the steady-state insulin secretion rate in response to a step increase in glucose of 1 mmol/L 213 

above baseline, in (pmol min-1  m2)/(mmol L-1).  214 

 215 

During the hyperglycaemic clamp, average (endogenous) insulin clearance was calculated 216 

according to the following formula [33]: 217 

 218 

where AUCISR is the area under the curve of insulin secretion rate, AUCI is the area under the 219 

curve of insulin concentration, IFinal is insulin concentration at the end of the study, IBasal is 220 
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insulin concentration at the beginning of the study, and MRTIns is the mean residence time of 221 

insulin, which was assumed to be 18 minutes as reported in Navalesi et al [34]. 222 

 223 

Statistical analysis 224 

Log-transformation was used on skewed variables that showed a significant deviation from 225 

normality to achieve a normal distribution prior to the use of parametric tests. Data are 226 

expressed as means (SD) for non-transformed data and geometric mean (95% confidence 227 

intervals) for log-transformed data.  Significance of differences in variables between the two 228 

ethnic groups were made using independent sample Student’s t test. The strength of 229 

associations between variables of interest was assessed using Pearson’s correlation. The ethnic 230 

differences in relationships between endogenous insulin clearance and whole-body insulin 231 

sensitivity, hepatic insulin sensitivity, intrahepatic lipid and MCRI, were examined by fitting 232 

a regression model between the pairs of variables with an interaction term for ethnicity. Prior 233 

to running the regression models, collinearity diagnostics were performed for the whole cohort 234 

for insulin clearance with ethnicity, hepatic fat (IHL), insulin sensitivity (M value) and insulin 235 

secretion (AUC_ISR).  The VIFs for these factors were used to exclude multicollinearity. An 236 

ANCOVA was used, with insulin secretion (AUCISR), intrahepatic lipid (IHL), hepatic insulin 237 

sensitivity (% suppression of EGP) and whole-body insulin sensitivity (M value) as co-variates, 238 

to investigate ethnic differences in average endogenous insulin clearance.  An ANCOVA was 239 

used with whole-body insulin sensitivity (M value) as a co-variate, to investigate ethnic 240 

differences in endogenous insulin secretion.  Missing data were excluded pairwise for all 241 

analyses; in the case of the correlation analysis between IHL and insulin clearance, this led to 242 

skewing of the IHL data which was therefore log-transformed for this analysis. All analyses 243 

were conducted with SPSS version 25.0 and p values< 0.05 were considered statistically 244 

significant. 245 
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RESULTS 246 

 247 

Participant characteristics 248 

The characteristics of the 23 BA and 23 WE men are presented in Table 1. The two ethnic 249 

groups were well-matched for age, weight and BMI and showed no difference in HbA1c, blood 250 

pressure or fasting glucose (Table 1). The BA men had significantly lower fasting triglyceride 251 

levels (Table 1). 252 

 253 

Beta cell insulin secretory function 254 

There were no ethnic differences in fasting C-peptide or fasting insulin (Table 2).  By design, 255 

there was no difference in “clamped” glucose during the hyperglycaemic clamp (BA= 12.1 256 

(0.65) vs WE = 12.0 (0.63) mmol/L, p= 0.635).  257 

 258 

Mean peripheral insulin levels were approximately 1.5-fold higher during both first and second 259 

phase of the hyperglycaemic clamp in BA compared with WE men (Figure 1a), while there 260 

were no ethnic differences in C-peptide response (Table 2, Figure 1b), endogenous beta cell 261 

insulin secretion (AUCISR) (Table 2) or sensitivity of the beta cell to glucose during first or 262 

second phase insulin secretion, σ1 and σ2 (Table 2). This remained the case after measures of 263 

beta cell insulin secretion were adjusted for whole-body insulin sensitivity (p = 0.512). 264 

 265 

Intrahepatic lipid and insulin sensitivity 266 

Data on IHL, whole body and hepatic insulin sensitivity, as previously reported by our group 267 

[26, 30] showed IHL was lower in BA men, while there were no ethnic differences in hepatic 268 

insulin sensitivity or whole-body insulin sensitivity by either M value or M/I (included in Table 269 

2 for reference). 270 
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 271 

Insulin clearance 272 
 273 
Average endogenous insulin clearance was almost 50% lower in BA compared with WE men 274 

during the hyperglycaemic clamp (Table 2).  The ethnic difference remained significant after 275 

adjusting for whole-body insulin sensitivity (M value), endogenous insulin secretion (AUCISR), 276 

intrahepatic lipid (IHL) and hepatic insulin sensitivity (% suppression of EGP) (p < 0.001). 277 

Clearance of exogenous insulin as determined by MCRI was also lower in BA compared with 278 

WE men (Table 2). 279 

 280 

Relationships between endogenous insulin clearance and intrahepatic lipid, insulin 281 

sensitivity and insulin secretion  282 

 283 

In WE men, endogenous insulin clearance was correlated with whole-body (Figure 2a & 2b) 284 

and hepatic insulin sensitivity (Figure 2c) and with MCRI (Figure 2d), while it was inversely 285 

correlated with IHL (Figure 2e).  These relationships were not found in the BA men (figure 2 286 

a-e).   287 

 288 

In multiple regression analysis, an ethnicity interaction was found in the relationship between 289 

endogenous insulin clearance and whole-body insulin sensitivity (Figure 2a; p-interaction = 290 

0.022). An ethnicity interaction was also found in the relationship between the measurements 291 

of endogenous insulin clearance and MCRI (Figure 2d; p-interaction = 0.021).  A trend was found 292 

for an ethnicity interaction between endogenous insulin clearance and hepatic insulin 293 

sensitivity (Figure 2c; p-interaction=0.057). No ethnicity interaction was found between insulin 294 

clearance and IHL.   295 

  296 
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DISCUSSION 297 

This study comprises a comprehensive investigation of insulin clearance and its relationships 298 

with hepatic fat and insulin sensitivity in white European and black African men with normal 299 

glucose tolerance.  To our knowledge, it is the first to demonstrate that the markedly low insulin 300 

clearance of an African origin population may occur in the absence of insulin resistance.  While 301 

the classical paradigm suggests that increased insulin resistance drives the excess diabetes risk 302 

in BA populations, these findings contribute to a newly emerging (and as yet, controversial) 303 

paradigm, which proposes that impairments in insulin clearance are the primary aetiological 304 

mechanism of glucose intolerance in this ethnic group [35, 36].  305 

 306 

In this study, the response to intravenous glucose in the BA men was characterised by a 307 

pronounced hyperinsulinaemia compared with that of the WE men (Figure 1). While this is 308 

well-documented in the literature, it has previously been described as a compensatory response 309 

by the beta cell to increased insulin resistance and/or a consequence of “upregulated” beta cell 310 

function [14, 18, 37-39].  By contrast, in our study population we found that there were no 311 

ethnic differences in total beta cell insulin secretion, corroborating the findings of the Federal 312 

Women’s Study [22] and developing an evidence base which disputes the argument that people 313 

of African ancestry typically exhibit insulin hypersecretion.     314 

 315 

We acknowledge that much of the literature, including the Federal Women’s study [22], report 316 

greater first phase beta cell responsivity in African-ancestry groups [38] whereas we found no 317 

ethnic differences in either first or second phase beta cell responsivity to glucose.  Our results 318 

may differ as this is one of the few studies to comprise exclusively of adult men, rather than 319 

children/adolescents [18, 19, 37, 38, 40] or all-female cohorts [39, 41-45]. Two other adult 320 

non-diabetic all-male studies have examined ethnic differences in insulin responses [46, 47]; 321 
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neither found increased insulin secretion in the African-ancestry subjects compared with white 322 

subjects, consistent with our findings.  It is worth considering that the paucity of male 323 

participants in this area of the literature may have led to an overestimation of ethnic differences 324 

in insulin secretory response [48].   325 

 326 

We found that the peripheral hyperinsulinaemia of our BA population was due to the ethnic 327 

difference in insulin clearance; furthermore, this difference persisted after adjustment for 328 

insulin sensitivity, hepatic fat content and insulin secretion rate.  Whilst insulin clearance was 329 

associated with IHL and whole body and hepatic insulin sensitivity in WE men, these 330 

associations were absent in the BA men. Insulin clearance is a highly variable process which 331 

operates under the influence of multiple physiological factors.  The predominant cellular 332 

mechanism is receptor-mediated uptake and therefore a correlation is typically seen between 333 

insulin sensitivity and insulin clearance [49, 50].  Our data in the WE men are in keeping with 334 

these expected relationships.  In the BA men, where such relationships are not observed, we 335 

may postulate that such mechanisms operate differently between the ethnic groups, or with 336 

different dose-responses.   337 

 338 

This leads us to propose that endogenous insulin clearance in BA may be determined by 339 

additional factors which are independent of insulin sensitivity, e.g. in the pathways involved in 340 

post-receptor insulin metabolism. This assertion is supported by recent evidence from a study 341 

investigating ethnic differences in the expression and activity of hepatic insulin-degrading 342 

enzyme (IDE) and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1) 343 

between African-Americans and non-Hispanic White Americans, which reported lower IDE 344 

activity in African-Americans [51]. While reduced insulin clearance is widely regarded as an 345 

early response to insulin resistance [52, 53], it is also possible that changes in insulin clearance 346 
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are not only a compensatory mechanism but also a primary determinant of peripheral insulin 347 

levels [36, 54] in BA populations. 348 

 349 

Low insulin clearance has been demonstrated in African American women [22], in pre-pubertal 350 

African-American children [18, 21, 55], in indigenous adult Ghanaians [56] and, with this 351 

study, in black West African men living in the UK.  The finding of this distinctive physiological 352 

characteristic in diverse populations of African ancestry is suggestive of a genetic rather than 353 

environmentally mediated mechanism.  The strong heritability of insulin clearance has been 354 

demonstrated in a Hispanic population [57] and this may also be the case in other ethnic groups.  355 

Molecular mechanisms that warrant further exploration include potential ethnic differences in 356 

inflammatory activity [24], the expression and activity of insulin-degrading enzyme [51], the 357 

liver-adiponectin pathway [58], or in liver CEACAM-1 expression/activity [2].  358 

 359 

We note that clearance of exogenously administered insulin (as determined by the MCRI) is 360 

also lower in BA compared to WE, although the difference is not as marked as for endogenous 361 

insulin clearance.  This may be expected, because while only endogenously secreted insulin 362 

undergoes first pass hepatic metabolism, exogenously administered insulin also undergoes both 363 

hepatic and extra-hepatic clearance (with around 60% of peripherally administered insulin 364 

thought to be cleared by the liver [59]). 365 

 366 

Importantly, while MCRI is closely correlated with endogenous insulin clearance in WE, this 367 

is not the case in BA and ethnicity has a significant impact on the relationship between the two 368 

measures.  We note that models have shown that while hepatic insulin clearance is lower in 369 

black ethnic groups compared with whites, extra-hepatic clearance is similar [20, 21] and that 370 

hepatic and extra-hepatic insulin clearance are differentially regulated [60].  As hepatic insulin 371 
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clearance contributes in greater proportion to endogenous compared with exogenous insulin 372 

clearance, this may explain why the MCRI does not reflect endogenous insulin clearance in the 373 

black African men.  These finding have implications for the use of MCRI as a measure of 374 

insulin clearance in black ethnic groups.  375 

 376 

The strengths of this study include the well-matched ethnic groups and the use of rigorous, 377 

gold-standard methods of metabolic analysis.  Unlike some previous ethnic comparison studies 378 

[48], the subject groups were tightly characterised; of single sex with metabolic status 379 

confirmed by OGTT. 380 

 381 

In terms of limitations, the study is cross-sectional and is only able to recognise the presence 382 

or absence of associations, between hepatic fat, insulin sensitivity and insulin clearance.  Only 383 

longitudinal measures would be able to determine the true dynamics of these mechanisms and 384 

determine causality. The measure of average endogenous insulin clearance does not enable 385 

differentiation between hepatic and extra-hepatic insulin clearance, although it has been shown 386 

that approximately 80% of endogenous insulin is cleared by the liver [1]. Furthermore, the 387 

influence of gut-modulated insulin secretion and clearance was not assessed. There is evidence 388 

that the incretin hormones reduce post-prandial insulin clearance [61-63] and ethnic differences 389 

in incretin hormones have been recognised [33, 64, 65], albeit the data are inconsistent.  390 

However, it is not clear whether incretins contribute to ethnic differences in insulin clearance, 391 

which would be an important line of enquiry for future investigations. We also acknowledge 392 

that the failure to find an association between IHL and insulin clearance in the BA men does 393 

not mean that an association does not exist. Our sample size is comparable with other studies 394 

in the literature, but we may not be powered to reliably detect such associations. While the 395 

narrow range in IHL among our black participants also may have hindered our ability to detect 396 
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a linear correlation between IHL and insulin clearance, the range in IHL that we observed is 397 

reflective of IHL in black populations, as reported in a large epidemiological study [66] . In 398 

data we have previously reported from an obese diabetic population [25], we did find a trend 399 

to an inverse relationship between insulin clearance and intrahepatic lipid in the BA 400 

participants, suggesting that there may be a threshold mechanism at play and that IHL may not 401 

have a significant role in the determination of insulin clearance until higher levels of 402 

accumulation have occurred.   403 

 404 

The study comprises male subjects only and therefore may not be generalisable to women; 405 

however, as the majority of the work in this area has been carried out in African ancestry 406 

females [48], this cohort offers a valuable addition to the field.   407 

 408 

In conclusion, this study demonstrates low insulin clearance in black African men despite lower 409 

hepatic fat and similar whole-body and hepatic insulin sensitivity to their white European 410 

counterparts. It is increasingly recognised that type 2 diabetes is a heterogenous disease, where 411 

different aetiological components may have an impact on progression rates and choice of 412 

therapeutic strategy [67].  Ethnic disparities in treatment response have already been 413 

recognised [68] and may be explained, at least in part, by inherent physiological variations.  In 414 

healthy black African men, the lack of association of endogenous insulin clearance with either 415 

intrahepatic lipid or insulin sensitivity supports the hypothesis that low insulin clearance is a 416 

primary phenomenon in this ethnic group. Such a phenomenon warrants further exploration, 417 

as it may offer novel therapeutic targets for the treatment and prevention of diabetes.  Both the 418 

determinants of low insulin clearance and its role in the high risk of metabolic dysfunction in 419 

African ethnic populations remain to be elucidated.   420 
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Figure 1 

a: Plasma insulin response by ethnic group during the hyperglycaemic clamp.  

b: Plasma C-peptide response by ethnic group during the hyperglycaemic clamp.   

 

 

Figure 2 

a: Associations between endogenous insulin clearance and whole-body insulin sensitivity (M 

value). 

b: Associations between endogenous insulin clearance and whole-body insulin sensitivity 

(M/I). 

c: Associations between endogenous insulin clearance and hepatic insulin sensitivity (% 

suppression EGP) 

d: Associations between average endogenous insulin clearance and MCRI 

e. Associations between endogenous insulin clearance and intrahepatic lipid (IHL)  
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Table 1: Clinical characteristics of study participants.   422 
 423 
 BA (n=23) WE (n=23) p value 

Age (years) 30.7 (12.0) 35.9 (13.9) 0.18 

Weight (kg) 84.1 (14.6) 86.5 (16.5) 0.60 

BMI (kg m-2) 26.7 (3.6) 26.5 (4.6) 0.86 

Waist circumference (cm) 87.5 (9.3) 93.8 (14.6) 0.09 

Fasting glucose (mmol L-1) 5.25 (0.4) 5.20 (0.4) 0.51 

HbA1c IFCC (mmol/mol) 37.0 (5.3) 35.9 (2.9) 0.37 

HbA1c DCCT (%) 5.54 (0.48) 5.44 (0.24) 0.38 

Systolic blood pressure (mmHg) 123.1 (12.3) 121.9 (9.1) 0.70 

Diastolic blood pressure (mmHg) 70.7 (11.5) 71.1 (8.2) 0.88 

LDL-cholesterol (mmol L-1) 2.66 (0.87) 2.99 (0.82) 0.19 

HDL-cholesterol (mmol L-1) 1.30 (0.42) 1.27 (0.31) 0.75 

Total cholesterol (mmol L-1) 4.27 (1.06) 4.76 (1.05) 0.13 

Triglycerides (mmol L-1) 0.68 (0.25) 1.10 (0.56) 0.003 

Data presented as mean (SD).  Differences between the two ethnic groups determined using independent sample 424 
Student’s t test.  Fasting glucose values taken at screening visit. Abbreviations: BA black African; DCCT 425 
Diabetes Control and Complications Trial; HbA1c glycated haemoglobin; HDL high density lipoprotein; IFCC 426 
International Federation of Clinical Chemistry; LDL low density lipoprotein; WE white European. 427 
 428 
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Table 2:  Metabolic parameters of insulin secretion and insulin clearance  

 
BA (n=23) WE (n=23) Mean difference or 

ratio of geometric 

mean (95% CI)  

p value 

Fasting plasma glucose 

(mmol L-1) 
5.26 (0.35) 5.19 (0.32) -0.07 (-0.28, 0.13) 0.460 

Fasting plasma C-peptide 

(nmol L-1) 
†
 

0.54 (0.47, 0.62) 0.61 (0.50, 0.76) 1.14 (0.89, 1.47) 0.281 

Fasting plasma insulin 

(pmol L-1)
 †
 

46.2 (38.6, 55.3) 39.4 (30.2, 51.6) 0.85 (0.62, 1.17) 0.314 

iAUCc-pep 0-10 mins 
†
 

(nmol L-1 x min) 
8.45 (6.17, 11.6) 6.88 (5.83, 8.3) 0.81 (0.58, 1.15) 0.240 

iAUCc-pep 10-120 mins 

(nmol L-1 x min) 

242.1 (109.9) 213.2 (60.4) -28.9 (-82.0, 24.3) 0.277 

iAUCins 0-10 mins 
†
 

(pmol L-1 x min) 

2.46 (1.85, 3.28) x103 1.75 (1.5, 2.1) x103 0.71 (0.51, 0.98) 0.040 

iAUCins 10-120 mins 
†
 

(pmol L-1 x min) 

48.1 (35.5, 65.2) x103  29.9 (23.3, 38.4) 

x103 

0.62 (0.42, 0.91) 0.017 

AUCISR over 120 mins  
(pmol m-2 BSA x min)   

58.9 (24.0) x103 54.4 (16.9) x103  -4.50 (-17.1, 8.14) 0.477 

σ
1 †

 

(pmol m-2 BSA)/ (mmol L-1 
min-1) 

692.9 (505.9, 948.9) 550.5 (464.9, 651.8) 0.80 (0.56, 1.13) 0.190 

σ
2

  

(pmol min-1 m2 BSA)/ 

(mmol L-1) 

49.8 (20.1)  47.1 (18.8) -2.67 (-14.4, 9.07) 0.649 

Average (endogenous) 

insulin clearance  

(mL m-2 BSA min-1) 

771.6 (227.8) 1381 (534.3) 609.5 (349.5, 869.6) <0.001 

MCRI 

(mL m-2 BSA min -1) 

482.8 (70.6) 530.7 (78.7)  47.9 (1.6, 94.3) 0.043 

Basal EGP 

(μmol kg -1 FFM min-1) 

4.69 (2.39) 4.04 (2.29) -0.65 (-2.13,0.83) 0.377 

% suppression EGP ‡ 

 

65.7 (16.1)  69.8 (17.7) 4.15 (-6.5, 14.8) 0.437 

% IHL 
§
 

 
3.78 (1.13)  6.08 (5.04) 2.29 (0.06, 4.52) 0.044 

M value ‡ 

mg kg-1 FFM min−1 

9.65 (2.32) 9.51 (3.86) -0.14 (-2.08, 1.81) 0.89 

M/I ‡ 

(mg kg-1 FFM min−1)/ 

(pmol L-1) 

0.0171 (0.0059) 0.0189 (0.0094) 0.00184 (-0.0030, 

0.0066)  

0.44 

Data presented as mean (SD) or geometric mean (95% CI) for log transformed data (†). Differences between the 

two ethnic groups were determined using independent samples t-tests. Fating plasma glucose levels from 

hyperglycaemic clamp visit. ‡ Previously reported data [26] § Previously reported data [30] 

Abbreviations: BA, black African; BSA: Body surface area; EGP, Endogenous glucose production; FFM, Fat free 
mass. IHL, Intrahepatic lipid; WE, white European; iAUC, incremental area under the curve; AUC(ISR), area 

under the curve of insulin secretion rate over 120 minutes; MCRI, metabolic clearance rate of insulin. 
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Figure 1a: Plasma insulin response by ethnic group during the hyperglycaemic clamp. BA = black 

African, WE = white European. Data shown are mean and SD. 
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Figure 1b: Plasma C-peptide response by ethnic group during the hyperglycaemic clamp.  BA 

= black African, WE = white European.  Data shown are mean and SD. 
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Figure 2a: Associations between average insulin clearance and whole-body insulin 

sensitivity (M value) in white European (WE) and black African (BA) men. Data presented 

using the Pearson correlation coefficient: BA: r= 0.051, p=0.837; WE: r=0.691, p=0.001. 

Interaction by ethnicity was assessed using linear multiple regression. FFM, fat free mass. 

 

 

 

Figure 2b: Associations between average insulin clearance and whole-body insulin 

sensitivity (M/I) in white European (WE) and black African (BA) men. Data presented using 

the Pearson correlation coefficient: BA: r= 0.179, p=0.464; WE: r=0.697, p<0.001. 

Interaction by ethnicity was assessed using linear multiple regression. 

 

 

 

 

 

P interaction = 0.022 

P interaction = 0.032 
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Figure 2c: Associations between average insulin clearance and hepatic insulin sensitivity (% 

suppression EGP) in white European (WE) and black African (BA) men. Data presented 

using the Pearson correlation coefficient: BA: r= -0.169, p=0.488; WE: r=0.417, p=0.068. 

Interaction by ethnicity was assessed using linear multiple regression. 

 

 

 

 
 

Figure 2d:  Associations between average endogenous insulin clearance (measured during 

hyperglycaemic clamp) and metabolic clearance rate of (exogenous) insulin (MCRI, 

measured during hyperinsulinaemic-euglycaemic clamp) in white European (WE) and black 

African (BA) men.  Data presented using the Pearson correlation coefficient: r=0.298, 

p=0.215 ; WE: r=0.661, p=0.001. Interaction by ethnicity was assessed using linear multiple 

regression. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P interaction = 0.057 

P interaction = 0.021 
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Figure 2e: Associations between average insulin clearance and intrahepatic lipid (IHL) in 

white European (WE) and black African (BA) men. Data presented using the Pearson 

correlation coefficient: BA: r= -0.134, p =0.584; WE: r= -0.674, p= 0.001. Interaction by 

ethnicity was assessed using linear multiple regression. 

 

 

 

  

P interaction = 0.837 
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