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a b s t r a c t 

Myocardial blood flow can be quantified from dynamic contrast-enhanced magnetic resonance (MR) 

images through the fitting of tracer-kinetic models to the observed imaging data. The use of multi- 

compartment exchange models is desirable as they are physiologically motivated and resolve directly for 

both blood flow and microvascular function. However, the parameter estimates obtained with such mod- 

els can be unreliable. This is due to the complexity of the models relative to the observed data which is 

limited by the low signal-to-noise ratio, the temporal resolution, the length of the acquisitions and other 

complex imaging artefacts. 

In this work, a Bayesian inference scheme is proposed which allows the reliable estimation of the param- 

eters of the two-compartment exchange model from myocardial perfusion MR data. The Bayesian scheme 

allows the incorporation of prior knowledge on the physiological ranges of the model parameters and 

facilitates the use of the additional information that neighbouring voxels are likely to have similar kinetic 

parameter values. Hierarchical priors are used to avoid making a priori assumptions on the health of the 

patients. We provide both a theoretical introduction to Bayesian inference for tracer-kinetic modelling 

and specific implementation details for this application. 

This approach is validated in both in silico and in vivo settings. In silico , there was a significant reduction 

in mean-squared error with the ground-truth parameters using Bayesian inference as compared to using 

the standard non-linear least squares fitting. When applied to patient data the Bayesian inference scheme 

returns parameter values that are in-line with those previously reported in the literature, as well as giving 

parameter maps that match the independant clinical diagnosis of those patients. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Dynamic contrast-enhanced magnetic resonance imaging (DCE- 

RI) can be used for the non-invasive assessment of myocardial

erfusion ( Chiribiri et al., 2009 ; Jaarsma et al., 2012 ; Nagel et al.,

003 ). According to recent clinical guidelines, it is indicated for

he assessment of patients at risk of coronary artery disease (CAD)

 Montalescot et al., 2013 ; Windecker et al., 2014 ) and has been ex-

ensively validated against the reference standard, fractional flow

eserve ( Li et al., 2014 ; Nagel et al., 2019 ). Currently, the clini-

al evaluation of such images is performed visually. The spatial
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nd temporal distribution of contrast agent in the myocardium can

dentify myocardial ischaemia and provide insight into the pres-

nce and severity of stenoses. Some of the main limitations of

his visual assessment are the difficulty of interpreting the im-

ges ( Villa et al., 2018 ) and the underestimation of the ischaemic

urden in patients with multivessel CAD ( Patel et al., 2010 ). This

as led to myocardial perfusion examinations only being routinely

erformed in highly experienced centres. Quantitative perfusion

nalysis has been proposed as a more reproducible and user-

ndependant alternative to the visual assessment and has been

hown to have a good diagnostic accuracy and prognostic value

 Hsu et al., 2018 ; Knott et al., 2019 ; Sammut et al., 2017 ). 

The quantification of myocardial perfusion from DCE-MRI data

s achieved by applying tracer-kinetic models to track the pas-

age of the contrast agent from the left ventricle (LV) to the my-

cardium to allow the inference of the kinetic model parame-

ers, such as myocardial blood flow (MBF) ( Broadbent et al., 2013 ;
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Hsu et al., 2018 ; Jerosch-Herold et al., 1998 ; Kellman et al., 2017 ;

Wilke et al., 1997 ). However, there have been questions raised on

the reliability of the quantitative parameters values that are es-

timated from DCE-MRI data due to the complexity of the mod-

els relative to the observed data ( Buckley, 2002 ). This had led to

the use of simplified models, such as the Fermi function ( Jerosch-

Herold et al., 1998 ; Wilke et al., 1997 ) or concentration curves that

have been averaged over a region of the myocardium in order to

boost the signal-to-noise ratio (SNR). To this end, a recent edito-

rial by Axel ( Axel, 2018 ) calls for improved quantitative methods,

in particular more robust quantitative values in order to allow the

clinical translation of the technique. 

Larsson et al. ( 1996 ) showed that they could not reliably fit the

five parameters needed for the tracer-kinetic modelling to the ob-

served data, using least-squares fitting. As shown in the compara-

tive study of Schwab et al. ( 2015 ), they were able to achieve reli-

able quantification with relatively simpler models, such as a Fermi-

constrained deconvolution, but not with the multi-compartment

exchange models. Broadbent et al. ( 2013 ) report failed fitting in

10% of cases (despite using concentration curves that have been av-

eraged over a segment of the myocardium) and Likhite et al. ( 2017 )

also reported failed fittings to simulated data even though this is

simplistic with respect to the patient data. 

Some of the reasons behind the reported difficulties in the

model fitting include that such parameter estimation, or non-

linear regression, problems are known to get stuck in local op-

tima ( Dikaios et al., 2017 ; Kelm et al., 2009 ). As a result, even

though the model-based concentration curves may well match the

observed data, the reported parameters may be far from the true

values. It has further been shown that the model parameters are

correlated ( Romain et al., 2017 ) and thus there are multiple dis-

tinct combinations of parameters that give outputs that are indis-

tinguishable at the observed noise level. Also, as is typical with

non-linear optimisations, the parameter estimates are highly sen-

sitive to the initial conditions of the optimisation and the specific

noise present in the data. A further limitation is that this non-

linear least-squares fitting does not explicitly deal with the uncer-

tainty in the estimated kinetic parameters. 

In conclusion, there is need for an improved methodology to

allow robust and reproducible estimation of the kinetic model pa-

rameters including, but not limited to, MBF. In this work, we de-

velop and evaluate a framework to robustly infer the kinetic model

parameters from the observed imaging data based on hierarchi-

cal Bayesian probabilistic modelling. This approach has been suc-

cessfully employed in many similar applications, such as popula-

tion dynamics in ecology ( Rosenbaum et al., 2019 ). The proposed

method is validated using simulation phantoms where gold stan-

dard kinetic parameters are known and subsequently further test-

ing on clinical data is reported. 

2. Background 

2.1. Tracer-kinetic models 

The tracer-kinetic models as presented in the literature

( Ingrisch and Sourbron, 2013 ; Sourbron and Buckley, 2013 ) model

the perfusion unit (a single voxel or segment) as a system with

two interacting compartments - the plasma and the intersti-

tium. These models give a pair of coupled differential equations

which describe the evolution of the contrast agent as a non-

linear function of physiological parameters, such as MBF. In this

work, the tracer-kinetic model analysis was performed by fitting a

two-compartment exchange model (2CXM) ( Jerosch-herold, 2010 ;

Sourbron and Buckley, 2013 ) to the observed concentration curves
v p 
d C p ( t ) 

dt 
= 

F b 
1 − Hct 

( C AIF ( t ) − C p ( t ) ) + P S ( C e ( t ) − C p ( t ) ) (1)

v e 
d C e ( t ) 

dt 
= P S ( C p ( t ) − C e ( t ) ) . (2)

In (1) and (2) , C p ( t ) and C e ( t ) are the concentration of contrast

gent in the plasma and interstitial space at time t , respectively

in units of M). C AIF ( t ), the arterial input function (AIF), is the as-

umed input to the system that is being modelled (also in units of

). In myocardial perfusion quantification this is sampled from the

V. F b is the MBF (mL/min/mL), v p is the fractional plasma volume

dimensionless), v e is the fractional interstitial volume (dimension-

ess) and PS is the permeability-surface area product (mL/min/mL).

ct is the haematocrit value (dimensionless). 

This model has the benefit over other simpler models in that it

esolves directly for MBF. The simpler models, such as those pre-

ented by Tofts and Kermode (1991) , only allow the estimation of

he K 

trans parameter which can be influenced by either MBF or the

xtraction fraction. The Fermi function ( Jerosch-Herold et al., 1998 ;

ilke et al., 1997 ) does resolve for MBF but not other kinetic pa-

ameters and the model is not physiologically motivated. 

The solution to this system is then given as: 

C �( t ) = R F ( t, �) ∗ C AIF ( t − τ0 ) (3)

ith the analytic form of the residue function R F presented in

he appendix. � = ( F p , v p , v e , PS ) T and τ 0 is the time delay term

hich accounts for the fact that the contrast agent does not move

nstantaneously from the left ventricle to the myocardial tissue.

his is an unknown parameter that must also be estimated. The

oncentration that is observed in the MRI experiment is the contri-

ution from both compartments and is given as: C(t) = v p · C p (t) +
 e · C e (t) . 

.2. Non-linear regression 

The standard technique to estimate the model parameters uses

 least-squares method. Given the observed contrast agent concen-

rations y = ( y ( t 0 ) , y ( t 1 ) , . . . , y ( t N−1 ) ) 
T , it is assumed that: y ( t j ) =

 �( t j ) + ε j where ε j are the error terms and comprise of both

oise and other sources of error, such as motion. The estimation

f the parameters is then to find the � which minimises the sum

f squared errors cost function χ2 : 

ˆ � = argmi n �χ2 ( �) = argmi n �
1 

N 

N−1 ∑ 

j=0 

(
C �

(
t j 
)

− y 
(
t j 
))2 

(4)

Under the assumption that the error terms come from indepen-

ant and identically distributed Gaussian distribution this is equiv-

lent to the maximum likelihood estimate as it maximises the like-

ihood function p ( y | �). 

As previously discussed, this technique can break down in the

ase where the cost function has multiple local minima. That is,

here are multiple values of � that produce similar model output.

f this is the case, the values of the parameters estimated may de-

end strongly on the initial conditions of the optimisation and be

ar from the true values. Furthermore, in vivo , the time delay pa-

ameter τ 0 can introduce further local minima. 

An example of such a cost function is shown in Fig. 1 . It is

een that when noise is added, two local optima emerge, neither

f which corresponds to the true parameter values. The optimisa-

ion will converge to one of these depending on its initial condi-

ions. In other cases it is possible for the cost functions to possess

ong flat valleys where optimisation may stop due to the update

eing less than the required tolerance leading to unreliable param-
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Fig. 1. An example of a cost function created using simulated data, on the left in the noise-free case and on the right with a SNR of 15. This image is constructed by taking 

the minimum intensity projection over the three parameters v p , v e and PS to allow the visualisation of the 5-dimensional surface as a function of F b and τ 0 . The true 

parameter values used in the forward simulation are F b = 1 . 0 , v p = 0 . 08 , v e = 0 . 16 , PS = 0 . 4 , τ0 = 0 . 1 . In the noise-free (left) case the cost function has a global minimum 

which corresponds to the true parameter values (yellow dot). In the presence of noise (right) it is seen that there are two local optima, neither of which corresponds to the 

true parameter values. The optimisation will converge to one of these depending on its initial conditions. The yellow circle is the position of the true minimum of the cost 

function and the two cross symbols are the positions of the two local minima. 

Fig. 2. For the same arterial input function AIF (red curves) and the same ground-truth parameters ( F b = 3 . 6 , v p = 0 . 08 , v e = 0 . 16 , PS = 0 . 5 ) the two blue curves are simulated. 

Their only difference being the Rician noise realisation. A comparison of the two fits shows a difference of a factor of two in the computed MBF. This could vastly change 

the patients’ diagnosis. 
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ter estimates. This cost function was constructed using simulated

ata and can possess further local optima due to the complex er-

ors and physiology seen in patient data. Additionally, as shown

y Sommer and Schmid ( 2014 ), the analytic form of the residue

unction R F , which is the sum of two exponentially decaying com-

onents, can lead to an identifiability problem when the two ex-

onents are too similar or when the contribution of one compart-

ent vanishes which can further reduce the reliability of the pa-

ameter estimates. 

Fig. 2 shows two myocardial tissue curves that have been sim-

lated using the same parameters, with the only difference be-

ng the realisation of the Rician noise that is added. This could

e interpreted as being two curves from neighbouring voxels with

he same underlying physiology. In this example it is seen how

he traditional non-linear regression algorithms can yield vastly

ifferent fits, with the two fitted MBF values ( F b ) being different

y a factor of two despite being simulated with the same kinetic

arameters. 
.3. Bayesian parameter estimation 

The aforementioned maximum-likelihood approach assumes 

hat there is one true value of the parameter and computes a point

stimate of this. Conversely, Bayesian estimation treats the param-

ters as random variables and approximates their posterior distri-

ution. This hence allows computation of the expected value of the

arameter. The variance of the distribution also allows an expres-

ion of confidence in the value of the parameter estimate. 

It is assumed that the observed data y ( t j ) at each time point

 j , j = 0 , . . . , N − 1 comes from the model with some Gaussian er-

or with variance σ 2 
j 

such that: y ( t j ) ∼ N ( C �( t j ) , σ
2 
j 
) . To then

xamine the model parameters given observed data, the posterior

istribution p ( �| y ) is required. The posterior distribution can be

btained through the application of Bayes’ theorem 

p ( �| y ) = 

p ( y | �) · p ( �) ∫ 
p ( y | �) · p ( �) d�

∝ p ( y | �) · p ( �) . (5)

�
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The term p ( �) is the prior probability of the parameters. It is

common to assume that the parameters θ i are independant and so

p ( �) is the product of the prior distributions over the individual

parameters, θ i . 

In general, the posterior distribution is not analytically tractable

and must be approximated using Markov chain Monte Carlo

(MCMC) sampling. Through (5) , it is possible to compute samples

which are proportional to the posterior distribution and MCMC

sampling utilises these samples to construct a Markov chain with

a stationary distribution equal to the posterior distribution. It does

this using a proposal distribution which is used to propose, ran-

domly, how to move in parameter space and an acceptance rule

which is used to decide whether to accept the proposed move or

not, based on the information from the likelihood and the prior

information. An introduction to the use of Bayesian modelling for

non-linear regression problems is given in the book of Seber and

Wild (1989) . 

2.3.1. Hierarchical Bayesian modelling 

Quantitative myocardial perfusion MRI is a natural application

for the use of hierarchical Bayesian modelling. In this modelling

approach, the prior probability distribution is not governed by

fixed hyperparameters but rather hyperparameters α which are de-

scribed by a further probability distribution, i.e. a hyperprior p ( α).

Hence, � in (5) is now dependant on these hyperparameters and

(5) becomes: 

p ( �, α| y ) ∝ p ( y | �, α) · p ( �| α) · p ( α) . (6)

This approach is useful when the data is structured into dis-

tinct but not entirely unrelated groups. This is referred to as par-

tial pooling, as opposed to complete pooling (use of one fixed prior

distribution) or no pooling (use of different priors for each group).

For example, in a stress perfusion MRI, these distinct groups could

be healthy and diseased tissue. If the same prior knowledge was

used for both groups, then it would lead to an averaging effect over

these regions. Hierarchical modelling is thus an attractive compro-

mise between treating the groups equivalently and having com-

pletely independant models. 

2.3.2. Generalised Gaussian Markov random field prior 

In addition to prior distributions on the kinetic parameters, it

is possible to incorporate spatial prior knowledge. This enforces

smoothness in the spatial domain and it motivated by the idea

that neighbouring voxels should exhibit similar kinetic properties.

In particular, in this application, a generalised Gaussian Markov

random field prior is suitable. Mathematically, this is equivalent to

putting prior distributions on the differences between parameters

in neighbouring voxels that have zero mean: 

p ( �i | � j , νi, j ) ∝ exp 

(
−νi, j 

2 

‖ W ( �i − � j ) ‖ 

p 
p 

)
, if j ∼ i (7)

where j ~ i if j and i are neighbouring voxels and 1 ≤ p ≤ 2. Here,

ν i, j is the rate parameter (inverse of the scale parameter) of the

distribution and W is the weighting coefficients. The use of p = 1

corresponds to the Laplace distribution and is known to have edge-

preserving properties ( Bardsley, 2012 ). 

3. Methods 

3.1. Simulation experiments 

The proposed method was first tested using simulated image

series as the parameter estimates can be compared to ground-truth

values. The 6 by 6 voxel image series was created using ground

truth tracer-kinetic parameter maps with values as expected in

the myocardium under three different realistic conditions mim-

icking a healthy patient at rest, a healthy patient at stress and a
atient with stress-inducible ischaemia ( Broadbent et al., 2013 ).

he parameter maps were used to forward simulate the model

ith a gamma-variate function used to generate a realistic AIF.

he kinetic parameter values used in the simulation were F b =
 . 5 , v p = 0 . 08 , v e = 0 . 16 , P S = 1 . 0 in healthy voxels at stress and

 b = 1 . 0 , v p = 0 . 08 , v e = 0 . 16 , P S = 1 . 0 in healthy voxels at rest.

he simulation phantom mimicking a patient with stress-inducible

schaemia was created using F b = 3 . 5 , v p = 0 . 08 , v e = 0 . 16 , P S = 1 . 0

ith two disconnected regions with reduced MBF ( F b = 1 . 0) added

o mimic regions of stress-inducible myocardial ischaemia. Rician

oise was added to the image, with the level chosen to achieve

 realistic SNR of 15 ( Broadbent et al., 2016 ; Cheng et al., 2007 ).

he SNR here was defined to be the ratio of the standard devia-

ion of the noise realisation to the maximum of the tissue curves.

he data curves were simulated with a realistic temporal resolu-

ion of �t = 0 . 012 min, corresponding to a heart rate of roughly

3 beats per minute at stress and �t = 0 . 017 min at rest, for a to-

al time T = 3 min. The proposed parameter estimation method is

ompared in a Monte-Carlo study for n = 20 distinct noise reali-

ations, for each simulation phantom, with a traditional, gradient-

ased optimisation scheme in order to assess the accuracy and the

eproducibility of the parameter estimates. The normalised mean

quare error (NMSE) between the true and estimated kinetic pa-

ameters is reported and a Mann-Whitney U test is used to com-

are the distribution of the NMSE values from the Monte-Carlo

tudy. A further assessment is conducted (also using the NMSE val-

es) to compare the proposed hierarchical model to an equivalent

on-hierarchical approach. 

.2. In vivo experiments 

The technique was tested in eight patients suspected of having

AD referred for stress perfusion cardiac MRI at King’s College Lon-

on. Image acquisition was performed on a 3.0T scanner (Philips

chieva-TX, Philips Medical Systems) using standard acquisition

rotocols ( Kramer et al., 2013 ) . The typical acquisition parameters,

R/TE/flip angle/saturation prepulse delay were 2.5 ms/1.25 ms/15 ◦

100 ms with a typical spatial resolution of 1.34 × 1.34 × 10 mm.

he dynamic image series were acquired during first-pass injec-

ion of 0.075 mmol/kg Gadobutrol (Gadovist, Schering, Germany)

t 4 ml/s followed by a 20 ml saline flush. A dual bolus contrast

gent scheme was used to correct for signal saturation of the AIF,

s previously described ( Ishida et al., 2011 ). Images were acquired

nder adenosine-induced stress. The images were acquired with a

reath-hold during the passage of the main bolus, as is done clin-

cally, and also retrospectively motion corrected using a previously

alidated scheme ( Scannell et al., 2019 ). 

As aforementioned, a dual-bolus acquisition is performed in or-

er to mitigate the difficulties caused by the non-linear relation-

hip between the concentration of contrast agent and the MRI sig-

al intensities. It is hence assumed there is a linear relationship

etween the concentration of contrast agent and the signal in-

ensity. The concentration of gadolinium (C(t)) was approximated

rom the signal intensities (S(t)) using an application specific ver-

ion of the relative signal enhancement ( Biglands et al., 2015 ;

ngrisch and Sourbron, 2013 ): 

C ( t ) = 

1 

r 1 · T 1 b 

(
S ( t ) − S ( 0 ) 

S LV ( 0 ) 

)
(8)

ith the T 1 b of blood taken as 1736 ms and r 1 the contrast agent

s 4.5 s −1 mmol/ L − 1 ( Broadbent et al., 2016 ). S(0) is the average

f the first five acquired images before the injection of contrast

gent. Similarly, S LV (0) is the pre-contrast signal in the left ventric-

lar blood pool. 

In the case of this patient data, there are no ground-truth

arameter values to compare to. Therefore, the purpose of this
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tudy is to test whether the kinetic parameter values that are es-

imated can identify perfusion defects that match the independant

isual assessment found in the clinical reports. This provides in-

ight into the reliability of the fittings and the ability of the pro-

osed method to deal with the more complex curves and error

erms that are present in patient data. The number of failed fittings

nd outlier kinetic parameter estimates are further compared be-

ween implementations. All scans were reported blindly by expe-

ienced operators with level III CMR accreditation according to the

uidelines of the Society for Cardiovascular Magnetic Resonance

SCMR). As per the expert assessment, four patients were classified

s being positive for ischaemia and four were classified as not hav-

ng obstructive coronary artery disease. In this work, stress scans

nly are considered as rest scans have been shown to not increase

iagnostic accuracy ( Biglands et al., 2018 ; Villa et al., 2018 ). The

yocardium was contoured using the cvi 42 software (Circle Car-

iovascular Imaging Inc., Calgary, Alberta, Canada) by an experi-

nced operator with level III CMR accreditation (SCMR) and the

egmentations were exported using the open-source code of Bai

t al. ( 2018 ). 

.3. Non-linear regression implementation 

All steps are implemented in Python, using the SciPy mod-

le for the optimisation ( Jones et al., 2001 ). The nonlinear re-

ression approach uses the L-BFGS ( Zhu et al., 1997 ) nonlinear

ptimisation scheme with box constraints. Each parameter was

onstrained to be within conservative physiological limits and

o conform with what has been previously found with tracer-

inetic models ( Broadbent et al., 2013 ). The parameters are con-

trained such that: 0.001 ≤ F b ≤ 6.0, 0.001 ≤ v p ≤ 0.3, 0.001 ≤ v e ≤ 0.4

nd 0.001 ≤ PS ≤ 4.0. This fitting is repeated several times with dif-

erent initial conditions randomly chosen from a uniform distribu-

ion on each of these ranges. One initialisation and 100 initialisa-

ions are used for comparison on the simulated data with 100 ini-

ialisations used on the patient data. The reported parameter es-

imates are then the successful fit which has achieved the lowest

ost function value. This is done to reduce the effect of the choice

f the initial conditions on the parameter estimate and to min-

mise the risk of converging to local optima ( Dikaios et al., 2017 ;

omain et al., 2017 ). A fit is defined as successful if it achieves

 tolerance of less than 10 −8 within 10 0 0 iterations and none of

he resulting parameters achieve their upper or lower bounds. The

IF ( C AIF ( t )) is extracted using independant component analysis

 Jacobs et al., 2016 ) and the bolus arrival time is estimated using

he method of Cheong et al. ( 2003 ). 

.4. Bayesian parameter estimation implementation 

The Bayesian parameter estimate was implemented using an in-

ouse software developed in Python. The posterior distribution for

he parameters in voxel i is given through the application of Bayes’

heorem as: 

p 
(
�i , αi | y i ) ∝ p 

(
y i | �i , αi 

)
· p 

(
�i | αi 

)
· p 

(
αi 

)
(9)

It is assumed that the observed data in voxel i at time t j is

aussian distributed, i.e. that y i ( t j ) ∼ N ( C �i ( t j ) , σ
2 
i 
) . This gives

ise to the likelihood function: 

p 
(
y i | �i , αi 

)
= 

(
2 πσ 2 

i 

)− N 
2 exp 

( 

− 1 

2 σ 2 
i 

N−1 ∑ 

j=0 

(
y i 
(
t j 
)

− C �i 

(
t j 
))2 

) 

(10) 

In this work, F b (mL/min/mL) is selected to be Gaussian dis-

ributed with mean αb and a fixed variance 0.2. PS (mL/min/mL) is

aussian distributed with mean αS and variance 0.1. αb is taken to

e uniformly distributed on [0,7] and α is taken to be uniformly
S 
istributed on [0,5]. v p (%/100) is assumed to be uniformly dis-

ributed on [0,0.4] and v e (%/100) is assumed to be uniformly dis-

ributed on [0,0.5]. These were chosen to be in line with previously

eported literature values ( Broadbent et al., 2013 ) and physiological

ntuition. The priors are chosen to be weakly informative in that

hey encompass a much larger range of values than the values that

ave been found previously in the literature. Rather than express-

ng confidence about the parameters being close to a certain value,

t acts as regularisation and restricts the parameter estimates to

hese ranges. The prior distribution on the observed error (in M)

or voxel i ( σ 2 
i 

) is taken to be a flat Inverse-Gamma distribution,

ith shape parameter c = 0 . 001 and scale parameter d = 0 . 001 , as

s conventional. 

A Laplace prior with location 0 and scale 0.1 is chosen on the

bsolute value of the distance between the kinetic parameter es-

imates of neighbouring voxels. The Laplace distribution is chosen

ue to its edge preserving properties. This gives rise to the prior

istribution: 

p 
(
�i | αi 

)
= p 

(
F i b | αi 

b 

)
· p 

(
v i p 

)
· p 

(
v i e 

)
· p 

(
P S i | αi 

PS 

)
· p 

(
σ 2 

i 

)
× p( �i | �n ( i ) , αi , νi, j ) 

∝ exp 

(
− 1 

2 · 0 . 1 

(
F i b − αi 

b 

)2 
)

× I 

(
v i p ∈ ( 0 , 0 . 3 ] 

)
× I 

(
v i e ∈ ( 0 , 0 . 4 ] 

)
× exp 

(
− 1 

2 · 0 . 1 

(
P S i − αi 

PS 

)2 
)

×
(

1 

σ 2 
i 

)c−1 

exp 

(
− d 

σ 2 
i 

)

× exp 

( 

− 1 

0 . 2 

∑ 

j∈ n ( i ) 

4 ∑ 

k =1 

(
W k ·

∣∣�i 
k − �j 

k 

∣∣)) 

(11) 

I (X ) is the indicator function on the set X which takes the value

 on X and 0 otherwise. n ( i ) is the set of neighbouring voxels of

oxel i . A voxel’s neighbours are those voxels in its surrounding 4-

eighbourhood, above, below, to the left and to the right of it. Due

o the shape of the myocardium, it is possible that a voxels neigh-

ours are not in the myocardial segmentation. In such a case, a

oxel diagonally above or below is taken or failing that, the closest

oxel that is in the myocardium. 

The difference between the parameter estimates in neighbour-

ng voxels i and j is computed using a weighted sum. The weights,

 k are used to account for the different scales of the parameters,

ince otherwise, differences in the higher magnitude parameter

alues ( F b and PS ) would have a dominating effect com pared to

he lower magnitude parameter values ( v p and v e ). The value of

he weight for a given parameter W k on a given iteration of the

CMC sampling is the inverse of the previous sample of the pa-

ameter. For the non-hierarchical model it is taken that F b ∼ N ( X ,

.2) and P S ∼ N (1.0, 0.2), where two values of X (3.5 and 1) have

een used for comparison. 

The hyperprior distribution is given as: 

p 
(
αi 

)
= I 

(
αi 

b ∈ [ 0 . 001 , 7 ] 
)

× I 

(
αi 

PS ∈ [ 0 . 001 , 5 ] 
)

(12) 

In this work, the Metropolis-Hasting algorithm with random

alk proposals is used to sample from the posterior distribution. In

hort, the Metropolis-Hasting algorithm moves randomly through

arameter space using a proposal distribution. The proposal distri-

ution proposes a move in parameter space that is then accepted

ith a probability that is related to the change in posterior proba-

ility associated with the new sample. This leads to the construc-

ion of a Markov chain with a stationary distribution that approxi-

ates the posterior distribution. 

In the work, the choice of the above distributions and their re-

pective variances was made, empirically, to optimise the trade-off
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Table 1 

NMSE and Mann-Whitney U test results for the hierarchical Bayesian and non-linear least squares kinetic parameter estimates. The Mann-Whitney U test 

compares the estimates from the Bayesian inference to those achieved with non-linear least squares (100 initialisations). 

Parameter Bayesian Non-linear least squares (1 initialisation) Non-linear least squares (100 initialisations) p-value (Mann-Whitney U test) 

All 0.13 (0.2) 0.72 (0.74) 0.32 (0.55) p < 0.0001 

F b 0.05 (0.09) 0.46 (0.44) 0.1 (0.09) p = 0.002 

v p 0.22 (0.27) 0.27 (0.21) 0.35 (0.31) p = 0.02 

v e 0.12 (0.16) 0.31 (0.19) 0.20 (0.17) p = 0.01 

PS 0.11 (0.21) 1.83 (0.5) 0.63 (0.96) p < 0.0001 
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between thoroughly exploring parameter space and sticking to ar-

eas with high posterior probability. They were chosen in order to

achieve a rate of acceptance of proposals close to 0.234 which has

previously been shown to be optimal ( Roberts et al., 1997 ). Markov

chains of 40 0 0 steps were constructed. In order to assess the sta-

tionary distribution of the chain, the initial 10 0 0 steps were dis-

carded, referred to as the burn-in phase. The number of steps was

chosen to be far in excess of the number needed for convergence

according to the ˆ R statistic ( Gelman and Rubin, 1992 ). In order to

create parameter maps, the median value of the posterior distribu-

tion are reported and to examine the uncertainty associated with

such a parameter estimate, the coefficient of variation of the pos-

terior distribution, the ratio of the standard deviation of the distri-

bution to its mean value, is reported. 

4. Results 

4.1. Simulations 

Table 1 shows the mean (standard deviation) NMSE between

the estimated and true kinetic parameters values for both the hi-

erarchical Bayesian and non-linear least squares implementations,
Fig. 3. The ground-truth F b parameter values (left) are compared to values that are estim

initialisations (middle right), and the proposed Bayesian inference method (right) for two

(top and middle) and one random noise realisation of the rest simulations (bottom). The 
ith the results of the Mann-Whitney U test . The NMSE is signifi-

antly lower for the Bayesian method compared to the non-linear

east squares. The NMSE is also significantly lower for the non-

inear least squares with 100 initialisations as compared to one ini-

ialisation ( p < 0.0 0 01). Example parameter maps from both meth-

ds are compared to the true parameter maps in Fig. 3 . A signif-

cantly higher NMSE was found in the stress simulations with a

erfusion defect using the non-hierarchical approach (0.24 (0.15),

 < 0.001). A comparison of the computed MBF parameter maps

or an example noise realisation shown in Fig. 4 . 

.2. Patient data 

The median computed MBF value (25th percentile, 75th per-

entile) was 2.35 (1.9, 2.68) mL/min/mL under stress conditions

sing the proposed Bayesian inference scheme. The equivalent re-

ults were 2.37 (1.12, 3.01) mL/min/mL using the non-linear least

quares fitting. However, with the least squares fitting approach

here is a number of voxels for which the fitting fails completely,

hich are represented as holes in the parameter maps, as seen in

ig. 5 . The proposed Bayesian inference technique has zero vox-

ls with estimates converging to upper or lower bounds or outside
ated using non-linear least-squares fitting with one initialisation (middle left), 100 

 random noise realisations of the simulations mimicking stress-inducible ischaemia 

Bayesian inference is significantly closer to the ground-truth with fewer outliers. 
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Fig. 4. The comparison between the hierarchical and non-hierarchical approach for an example noise realisation with the same ground-truth MBF maps at stress with a 

simulated perfusion defect as shown in Fig. 3 . For the non-hierarchical approach, two different values for F b prior have been applied. This shows the effect of using prior 

distributions with fixed means which influence the information from the data to drive the parameter estimate towards the prior value. 

Fig. 5. A comparison of Bayesian inference versus least-squares fitting with 100 random initialisations for the three acquired slices for a patient with an overt perfusion 

defect (as indicated by the arrows in the first row). While both techniques identify the area of ischaemia the least-squares fittings have severe speckle-like noise and even 

gaps where the fitting has failed. This makes it more difficult to accurately delineate the boundaries of the ischaemic area and can lead to areas where the ischaemia is 

missed. 

p  

(  

a  

o  

n  

v  

p  

6  

0  
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b  
hysiological ranges. The least-squares fitting fails for an average

standard deviation) of 12.9% (12.4%) of voxels per slice. Addition-

lly, a MBF value of greater than 5 mL/min/mL (considered to be

utliers) was found in 7.5% of voxels using least-squares fitting but

ever observed with the Bayesian inference. All kinetic parameter

alues are quoted in Table 2 . The median (25th percentile, 75th
ercentile) coefficient of variation of the Bayesian posterior was

.6% (3.3%, 11.7%). A maximum value of 87.7% was achieved with

.8% of voxels having a parameter with a coefficient of variation

reater than 50%. 

The assessment of the presence of coronary artery disease

ased purely on the quantitative flow maps obtained using
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Fig. 6. An example slice where the Bayesian fitting (right) has correctly identified ischaemia but the noisy least squares fitting (middle) makes it difficult to identify the 

ischaemia, particularly in the infero-septal wall. The identified areas of ischaemia are indicated on the original MR image (left). 

Table 2 

Median (25th percentile, 75th percentile) kinetic parameter esti- 

mates, on the patient data, using the Bayesian inference and non- 

linear least squares fitting approaches. 

Parameter Bayesian Non-linear least squares 

F b (mL/min/mL) 2.35 (1.9, 2.68) 2.37 (1.12, 3.01) 

v p (%/100) 0.09 (0.05, 0.13) 0.07 (0.03, 0.13) 

v e (%/100) 0.21 (0.13.0.31) 0.19 (0.12, 0.29) 

PS (mL/min/mL) 0.88 (0.59,1.45) 3.3 (0.61, 4.74) 
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Bayesian inference matches the visual assessment in all 24 slices.

When using the maps obtained by the least-squares fitting, a cor-

responding assessment is achieved in 16/24 slices. The computed

flow parameter maps under stress conditions for an example pa-

tient with a perfusion defect are shown in Fig. 5 . The identified ar-

eas of ischaemia are indicated with a blue arrow in the original MR

images. An example of a slice where the least-squares fitting fails

to correspond to the visual assessment is shown in Fig. 6 . The vi-

sual assessment concluded that there is reduced uptake of contrast

agent in both the inferior and infero-septal segments. This clearly

corresponds with the Bayesian inference. The least-squares fitting

is extremely noisy and the ischaemic area is under-estimated in

the inferior segment and almost completely missed in the infero-

septum. Fig. 7 . shows all four kinetic parameters (left column) with

the coefficient of variation of the MCMC sample of the parameter

posterior distribution (right column). 

5. Discussion 

In this work, the use of Bayesian inference to estimate tracer-

kinetic parameters from myocardial perfusion MRI data is investi-

gated. This approach incorporates both spatial prior knowledge and

prior knowledge on the kinetic parameter values. It also enables

the computation of posterior distributions over the model param-

eters. It is compared to the more traditional method of parameter

estimation, non-linear least squares fitting. This comparison first

assesses the accuracy and reproducibility of the parameter estima-

tions in a simulated, but realistic, setting. The two methods are

also compared using patient data to assess the success of disease

detection using the quantitative flow maps. 

As discussed, a possible alternative approach is to use a

simpler model for the quantitative modelling such as using

a Fermi-constrained deconvolution ( Jerosch-Herold et al., 1998 ;

Zarinabad et al., 2012 ). The model to be fit to the data is simpler

and has fewer parameters and thus can be fit more reliably, with
ess frequent failed fittings. However, such an approach only allows

he resolution of MBF and the other parameters have no physio-

ogical interpretation. It is hypothesised that the extra physiolog-

cal parameters that can be resolved using the two-compartment

xchange model may allow a more informative assessment of the

issue. Tracer-kinetic models can also be fit more reliably on a

egment-wise level due to the reduced noise after the signal av-

raging. However, it has been shown that the reduction of spa-

ial resolution leads to a loss of diagnostic information ( Villa et al.,

016 ; Zarinabad et al., 2015 ). It is also likely that increasing the

umber of time points that are sampled may increase the relia-

ility of the estimates but this may not be possible in a clinical

etting. 

Lehnert et al. have also recently proposed the use of spatial

egularisation ( Lehnert et al., 2018 ). In this work, a Tikhonov (L2-

orm) regularisation term is added to the cost function to be used

n a gradient-based optimisation process. However, this is known,

nd seen in this work, to introduce smoothing over physiological

orders where a large difference in kinetic parameters occurs. In

act, in Kelm et al. ( 2009 ) it was shown that a L1-norm regularisa-

ion is more suitable in applications that possess sharp edges be-

ween kinetic parameters, such as myocardial perfusion MRI. This

otivates the use of a Laplace prior in our work which is equiv-

lent to L1-norm regularisation. The benefits of the Bayesian ap-

roach also include the use of the MCMC exploration of parameter

pace which is less susceptible to local optima than gradient-based

ptimisations. Bayesian inference also yields an approximation of

he posterior distribution of the parameters rather than a point-

stimate with no indication of uncertainty. 

Bayesian inference of tracer-kinetic parameters using DCE-MRI

as been proposed previously ( Dikaios et al., 2017 ; Orton et al.,

007 ; Schmid et al., 2006 ) and has in general been shown to be

ore reliable than non-linear least squares fitting. This work is

owever the first application to myocardial perfusion data, to our

nowledge. The main innovation of this work is the utilisation of

ierarchical priors. As discussed, hierarchical models allow model

arameters to vary by group. The effect of using fixed priors is

hown in Fig. 4 . where the parameter estimates cannot adapt to

reas that are largely different from the prior information (for ex-

mple a perfusion defect). In this application, this is desirable in

rder to avoid the averaging effects between areas of ischaemia

nd healthy myocardium without having to distinguish between

he two groups a priori . Hierarchical modelling has been applied

o DCE-MRI data by Schmid et al. ( 2009 ) in the setting of a clinical

rial where two scans were acquired per patient, before and after
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Fig. 7. Parameter maps for the four kinetic parameters of the 2CXM. The coefficient of variation represents the uncertainty about the parameter estimate and could be 

incorporated into the clinical decision making process. Black arrows are used to compare areas of high uncertainty to the respective parameter estimates. 
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treatment, leading to a temporal change in the kinetic parameters

and thus two distinct groups of patients. This is different to our

work which instead treats individual voxels in the spatial context

as being from distinct groups, healthy or diseased. As such, in their

study it is known a priori whether a scan was pre- or post-therapy,

unlike in the current study where it is impossible to know whether

a voxel is diseased. 

Using the simulations, it was shown that the use of multiple

different initial conditions improves the results of the non-linear

least squares fitting as it helps the optimisation avoid local optima.

However, it is still found in this work that the Bayesian inference

technique presented is significantly more accurate than the stan-

dard least-squares fitting as evidenced by the NMSE between the

estimated and true parameter values. Furthermore, the variability

of the estimates is reduced, as shown by the lower standard de-

viation and the estimates are more reproducible across different

noise realisations. The benefit of using a hierarchical model is also

demonstrated. It is seen that in the presence of areas of reduced

MBF, the prior knowledge of stress MBF values does not apply and

the non-hierarchical model cannot account for the differences in

groups of voxels (ischaemic and healthy). This leads to an averag-

ing of the information from the data and the prior information and

thus an over-estimation of MBF in these areas. 

Naturally, there are no ground-truth values for comparison with

the patient data estimates. However, the Bayesian parameter esti-

mation leads to reduced numbers of outliers and failed fittings as

compared to the least-squares fitting. The effect of this is shown in

the parameter maps in Fig. 5 . In this example, the perfusion defect

in the inferior segment of the myocardium is clearly identified us-

ing both the Bayesian inference and least-squares fitting. However,

there is still some speckle-like noise present in the least-squares

estimates, even after 100 repeated fittings. The noisy estimates can

make it difficult to delineate the boundaries of the ischaemia and

in this case lead to the underestimation of the extent of the is-

chaemia. It is clear from that the Bayesian inference is identifying

correctly the area of reduced contrast uptake in the inferior seg-

ment, which is visible in the original MR image at the correct win-

dowing level and is easily picked up when assessing the quantita-

tive flow maps. 

Recent work, as presented by Kellman et al. ( 2017 ) has shown

reproducible global MBF values, using similar tracer-kinetic mod-

els, in a consistent population of healthy volunteers ( Brown et al.,

2018 ) and a good correlation with the MBF values derived from

positron emission tomography (PET) ( Engblom et al., 2017 ) using

a least-squares fitting approach. However, this work still shows

a high within-subject variance between repeated studies. Further-

more, as shown in this study there is a high level of coupling be-

tween the model parameters and thus it is not possible to judge

the reliability of the model fitting by evaluating a single parame-

ter. 

The unreliability of the tracer-kinetic parameter estimates has

also been widely reported in the literature, Broadbent et al. ( 2013 )

reported failed fittings in 10% of cases on a segment-wise level.

This is despite the fact they considered curves which have been

averaged over a segment of the myocardium to boost SNR. Likhite

et al. ( 2017 ) also showed incorrect model fits in a simulated setting

as a result of the parameter coupling. Schwab et al. ( 2015 ) reports

a median flow value (25th percentile, 75th percentile) of 3.055

(1.197,1168.4) mL/min/mL using the 2CXM model with the conven-

tional least-squares fitting approach. The 75th percentile value re-

ported is well in excess of 100 times of the range of values that

are physiologically feasible. Both the mean and 75th percentile are

lower in the results we have presented, due to the bounds used

in the optimiser in our implementation but we also found a num-

ber of failed fittings and outliers. Furthermore, in this work the PS

values are extremely variable which could be due to the short ac-
uisition period. Capillary permeability is known to affect the later

art of the curves and this process may not be fully observed. This

ndicates the unreliability of conventional perfusion estimates and

ence the difficulty of the clinical translation of quantitative perfu-

ion analysis is apparent. 

The difficulty associated with the least-squares fitting is due

o the ill-posedness of the parameter estimation problem and the

omplex nature of the cost function which can contain many lo-

al optima. The gradient-based optimisation schemes are thus sen-

itive to noise and susceptible to converging to the local minima

nd thus returning inaccurate parameter estimates ( Dikaios et al.,

017 ; Kelm et al., 2009 ). This problem is exacerbated by the rela-

ive complexity of the 2CXM relative to the observed data and the

omplex errors introduced by the imaging process. The result of

his is the noisy and often inaccurate estimates seen in this study. 

Further well known issues with the standard least-squares fit-

ing technique are that it is difficult to assess the uncertainty of the

stimates and that these estimates are strongly dependant on the

nitial conditions of the optimisation process. The latter of these

ssues can be mitigated by using many randomly chosen initial po-

itions but there is no structured or robust approach to doing this.

hese issues combine to limit the applicability of quantitative per-

usion analysis in a clinical setting. Indeed, the patient data exper-

ments show that the successful clinical classification of patients

s worse with the least-squares fitting while perfect results are

chieved with the Bayesian inference, albeit with a small sample

ize. The Bayesian inference does not depend on the initialisation

f the optimisation as a burn-in period is used and these sample

alues are discarded. Furthermore, it provides a natural framework

or quantifying the uncertainty of the estimates through the com-

utation of the a posteriori probability distribution of the parame-

ers. 

In this work, using Bayesian inference, a median flow value

25th percentile, 75th percentile) of 2.35 (1.9, 2.68) mL/min/mL is

omputed. The 25th and 75th percentile values are well within the

ange of what is physiologically feasible, showing the increased re-

iability of the parameter estimates obtained using Bayesian infer-

nce. Despite the fact that these studies have been conducted with

ifferent cohort of patients it still serves to show the significant

mprovement that is gained by employing a Bayesian inference ap-

roach to the parameter estimation. 

The coefficient of variation of the posterior distribution is used

s a measure of uncertainty in the parameter estimate. The re-

orted values indicate a reasonable level of confidence in the pa-

ameter estimates with the median coefficient of variation being

.6%. However, higher coefficients of variation are also found, in-

icating high uncertainty in some regions. In Fig. 7 ., in the MBF

arameter map ( F b ), it is seen that there is a high level of uncer-

ainty at the border between the ischaemic and healthy regions

indicated by arrows). It makes sense that there more uncertainty

n these border regions and it could possibly be as a result of con-

icting information from its neighbouring voxels which could be

ither ischaemic or healthy. In the PS parameter map, there is also

n isolated area of reduced permeability. However, it is seen to be

ssociated with a high level of uncertainty. This uncertainty can

e incorporated into an assessment of whether or not there is re-

uced capillary permeability here. Thus, this uncertainty measure

ay prove to be useful in the clinical decision-making process but

urther work on this topic is warranted. 

. Limitations 

One of the main criticisms of MCMC algorithms is the large

omputational cost involved in accurately approximating the poste-

ior distribution, though the use of multiple random initialisations

n the least-squares fitting is similarly computationally expensive.
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n this work, the Bayesian takes approximately 30 min per imag-

ng slice, as opposed to 3 min for the non-linear least squares fit-

ing. However, the implementation of the Bayesian approach was

ot optimised and the computational cost could potentially be ad-

ressed using an efficient GPU-based implementation. 

A limitation of tracer-kinetic modelling, in general, is that the

odels used are simplified versions of the underlying processes.

he aim of this work was to examine whether Bayesian inference

an yield more reliable parameter estimates that non-linear least

quares fitting with the 2CXM. In the current work no effort was

ade to investigate whether this is the most suitable model for

he application. 

There are no ground-truth parameter values for patient data

nd as such there is no way to comment directly on the accu-

acy of the parameter estimates. The absolute quantitative accuracy

eeds validation in comparison to a gold standard technique such

s microspheres. Further work is also required on the clinical util-

ty of the findings. In this work, diagnostic accuracy is only com-

ared with the expert clinical assessment, however future work

ill involve comparisons with the gold standard examinations, in-

asive coronary angiography and fractional flow reserve, in a larger

atient cohort. 

. Conclusion 

Tracer-kinetic parameters can be accurately and robustly in-

erred from myocardial perfusion MRI using hierarchical Bayesian

nference. The use of a MCMC fitting scheme and the inclusion of

patial prior knowledge improves the reliability of the parameter

stimation as compared with least-squares fitting. As a result of

he improved model fitting, the diagnostic capabilities of the tech-

ique is increased. 
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ppendix 

.1. Residue function 

The pair of coupled differential Eqs. (1) and (2) can be solved

nalytically using the Laplace transform to yield a solution in the

orm: 

 �( t ) = R F ( t , �) ∗C AIF ( t − τ0 ) 
The residue function R F is given as: R F ( t , �) = A exp ( αt ) +
( 1 − A ) exp( βt), where: 

, β = 
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±
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− 4 
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