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Abstract 

Development of retinotopy is an area of longstanding investigation, and it is clear that 

this development is influenced by both molecular and activity-based cues. The 

interaction between these different cues, however, is unclear: conventionally molecular 

guidance cues set the basic topography, which is then refined by activity-based 

mechanisms. A number of computational models have investigated this interaction. 

However, due to the limited availability of quantitative data it has not been possible to 

test whether the models can account for the precise developmental sequence of 

retinotopic map formation. This thesis provides such quantitative anatomical data about 

the spatiotemporal sequence of development of precision in the retinocollicular 

projection in the mouse. This characterisation has been done by utilising retrograde 

transport of fluorescent microspheres administered by discrete injections into the SC 

and recovered from retinal flat-mounts. To enable quantification of topographic 

precision, retinae are standardised using an algorithm that permits retinal outlines to be 

stitched back together into a sphere and cell locations plotted in spherical coordinates, 

which enables mapping across multiple animals and facilitates comparison between 

different age-points, genotypes and potentially different species. 

 

The anatomical description reveals the precise dynamics of retinocollicular projection 

refinement, as projection refines from having almost no precision along the SC AP axis 

at birth to having topographically accurate, albeit imprecise, but symmetrical precision 

by the end of the first postnatal week. The data, moreover, reveals that the period of 

refinement extends significant beyond the first postnatal week and refinement is even 

seen after the third postnatal week. It is also found that the early refinement is crucially 

dependent on specific patterns of spontaneous retinal activity, since altering the activity-

patterns by removing the nAChR-β2 subunit completely disrupts the refinement 

normally seen in the first postnatal week. Furthermore, it is found that refinement does 

occur in these animals after the first postnatal week, but it does not rescue the 

phenotype.  
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NT Nasal-Temporal 

AP Anterior-Posterior 

DV Dorsal-Ventral 

ML Medial-Lateral 

E0 Embryonic day 0 

P0 Postnatal day 0 
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Chapter 1 Introduction 

The vertebrate visual system is a highly organised structure that allows the 

spatiotemporal changes of light intensities on the photoreceptors to be perceived as 

moving interacting three-dimensional images. Underlying this processing is the 

retinotopic projections to sub-cortical and cortical structures. But how do the retinotopic 

mappings interact to form connectivity with multiple levels of parallel connectivity, 

such as ocularity, multiple retinal ganglion cell classes and cortical orientation maps? 

These are big questions that all assume we understand the basic rules governing 

retinotopic map formation. 

 

The development of this system long perplexed science and experiments of rotating the 

frog eye and studying the altered behaviour suggested that there may be intrinsic 

mechanisms involved in the formation of such circuits (Sperry, 1943). With the advent 

of tracing techniques, Sperry could finally show in 1963 that the axons projected to the 

appropriate location in the tectum even when the eye was rotated (Sperry, 1963). Sperry 

proposed that intrinsic guidance cues are essential for the guidance of retinal axons to 

their correct targets to form topographic maps (Sperry, 1963). This was accompanied by 

the discovery that in the cat dLGN, extrinsic visual experience could play a role in 

developing the different pathways of visual processing in cortex (Wiesel and Hubel, 

1963). Combined with the hypothesis that neighbouring retinal cells will be more co-

active (Willshaw and Malsburg, 1976) and therefore be more likely to connect to the 

same target (Hebb, 1949). Interestingly, it was later shown that transplanted axolotl 

RGCs that were silenced by endogenous tetrodotoxin in the newt could still form 

appropriate projections, even in the presence of competing active endogenous axons 

(Harris, 1980). However, when tetrodotoxin was used to silence activity in one eye of 

the cat, it prevented the formation of cortical ocular dominance columns (Stryker and 

Harris, 1986) and prevented the refinement of inputs in the hamster SC (Thompson and 

Holt, 1989). Taken together, these studies suggested that the initial guidance was 

dependent on intrinsic molecular cues, whereas the subsequent refinement was activity-
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dependent. These observations and models have formed the basis for much of our 

understanding of the development of neural circuits.  

 

Topography has been studied using a variety of techniques, but the majority of early 

studies mapping the inputs from the retina to its central targets were done by inserting 

electrodes into the structures and mapping the responses to visual stimuli, usually bars 

of varying size and orientation or spots of light in different positions of visual space. 

These studies were looking at postsynaptic responses in cortex (Hubel and Wiesel, 

1963; Dräger, 1975), dLGN (Wiesel and Hubel, 1963) and SC (Dräger and Hubel, 

1976). In addition to the physiological studies of the adult, the development of the 

retinal projection was also characterised anatomically by looking initially at the entire 

projection by filling the eye or target with tracer (Bunt et al., 1983; Thompson and Holt, 

1989). Later studies looked at the topographic organisation of the projection by doing 

focal injections of tracer into the retina (Nakamura and O'Leary, 1989; Simon and 

O'Leary, 1992). Only a handful of studies have used focal retrograde tracing as the main 

method for investigating the development of the retinocollicular projection (Upton et 

al., 2007).  

 

This section of the introduction focuses on the organisation and development of the 

mammalian retinofugal projection, especially that of the rodent. It starts by describing 

the mature visual system, focussing on the retinal projections to the image-forming 

circuits and in particular the role of the superior colliculus. Next it discusses methods 

for studying topography and precision in these projections, before moving on to 

introduce some of the mechanisms involved in the development of topographic 

precision in subcortical visual projections, namely the interplay of molecular guidance 

and activity. The intention is to follow a similar path as the results and thereby set the 

scene for the results. 
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1.1 Mature visual system 

The mammalian visual system handles a profusion of tasks that are key to the behaving 

animal. Besides the image-forming circuits in the visual cortex and Superior Colliculus, 

the visual system also incorporates circuits that regulate circadian rhythms and reflexes.  

1.1.1  Retinorecipient areas 

The main primary retinal targets traditionally each have distinct functionality and are 

responsible for interpreting different aspects of visual stimuli. For this reason, many of 

them receive input from distinct populations of RGCs (Rodieck, 1979). The targets of 

the RGCs are largely conserved across most species. These targets comprise: 1) the 

dorsal Lateral Geniculate Nucleus of the thalamus (dLGN); 2) the Optic Tectum (OT) 

or Superior Colliculus (SC); 3) the Accessory Optic Nuclei (AON); 4) the ventral 

Lateral Geniculate Nucleus of the thalamus (vLGN); 5) the pretectum; 6) the 

Suprachiasmatic Nucleus of the hypothalamus (SCN); (Rodieck, 1979) 

 

 The dLGN (1) transmits information to primary visual cortex for processing of visual 

input and communication with higher cortical areas for conscious perception of visual 

stimuli. (Van Essen, 1979; Nicol et al., 2007). The SC (2) is key for coordinating 

motion in response to visual stimuli, while maintaining eye-gaze (Gandhi and Katnani, 

2011). The AON (3) prefers slow movement and is involved in coordinating head and 

eye-movements to maintain gaze. The vLGN (4) is involved in circadian rhythms. The 

pretectum (5) controls optokinetic nystagmus and pupil dilation in response to light-

changes (Rodieck, 1979). The SN (6) is involved in entrainment of circadian rhythms. 

As a result of their roles in regulating light-sensitive aspects of behaviour, the latter 3 all 

receive projections from intrinsically light-sensitive melanopsin-expressing RGCs 

(Ecker et al., 2010).  
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The projections can be divided roughly into image-forming (1-3) and non-image-

forming areas (4-6). The projections from the retina to the image-forming areas in the 

mouse are illustrated in Figure 1-1. In rodents the vast majority of RGCs project to the 

superior colliculus with a proportion of them also branching into the dLGN (Perry et al., 

1983). From the dLGN, the projection to primary visual cortex to convey information 

for further cortical processing. Additionally, there is also a projection from V1 to the SC 

(Thong and Dreher, 1986). These interconnections of the image-forming circuits are 

illustrated in Figure 1-1. 
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Figure 1-1: Selected Visual Connections  in the mouse 

Schematic of central image-forming connections, showing two contralaterally 
projecting retinal ganglion cell axon projections from nasal-dorsal retina (red) and 
temporal-ventral retina (green), respectively. These axons project across the midline, 
past the dorsal lateral Geniculate Nucleus (dLGN) and into the Superior Colliculus (SC) 
(thick solid lines), where they terminate in a topographically appropriate location and 
lamina. On the way, a significant number of RGC axons branch into the dLGN, where 
they synapse onto geniculo-cortically projecting cells (pink and light-green, 
respectively). These cells project to the Primary Visual Cortex (V1) (thick dashed 
lines). Another loop providing feedback from V1 to SC is also present. These cells 
project to the topographical location of their input origin (thin dashed lines). Also 
shown is an ipsilaterally projecting RGC (blue), which projects. Inset of mouse head 
shows the anatomical locations of the areas and projections in schematic (inset adapted 
from Levelt and Hübener, 2012) 
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1.1.2  Retinal circuits 

The adult retina is organised into distinct laminae (fig 1B), with outer nuclear layer 

(ONL) containing the photoreceptors: rods for low luminance, black & white, vision 

and cones for colour vision. The next layer, the inner nuclear layer (INL) contains the 

cell bodies of first the horizontal cells, which integrate the signals from surrounding 

photoreceptors to enhance the contrast, next are the bipolar cells, which convey the 

signals from mainly photoreceptors onto the retinal ganglion cells and the amacrine 

cells. In the innermost part of the INL are the amacrine cells, which synapse onto the 

retinal ganglion cells.  

 

The bipolar and amacrine cells of the INL project into the inner plexiform layer (IPL), 

where they synapse with the ganglion cells. Within the IPL the signal is further refined 

by segregating input from ON and OFF bipolar cells and is therefore further laminated 

into the inner IPL, where ON bipolar cells synapse, and the outer IPL, where OFF 

bipolar cells synapse. The RGCs can also chiefly be subdivided into ON, OFF subtypes 

corresponding to which layer their dendrites project to. As an additional complication, 

the arbours of some RGCs are bistratified and therefore project to both laminas in the 

IPL; these are ON-OFF RGCs and respond both when light is switched on and off. The 

RGC cell bodies lie in the ganglion cell layer and project their axons into the nerve fibre 

layer, where they turn and grow towards the optic disc and into the optic nerve. 

Retinal Ganglion Cell subtypes 

Although there is some disagreement about exactly how many retinal ganglion cell 

types there are in the mouse, it is clear that it is a highly diverse group of cells, with 

both morphology and central projections varying widely. The number of subtypes 

ranges from 15 to 21, depending on the method used for classification (Badea and 

Nathans, 2004; Coombs et al., 2006; Völgyi et al., 2009; Yoo et al., 2011). The 

dendritic arbours range in size from diameters of 55µm to 440µm. The largest RGCs 

being the intrinsically light-sensitive melanopsin cells (Ecker et al., 2010; Wilks et al., 

2010). 
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Of these RGCs 12 subtypes have been shown to project to the SC (Marquardt et al., 

2005; Hong et al., 2011). It is, however, likely that many more do so. The great 

variability in dendritic arbour sizes is also reflected in this group of RGC subtypes. As 

the largest RGCs projecting to the SC have dendritic arbours spanning up to 400µm 

whereas the smallest RCGs span just 55µm. However, while the dendritic arbours vary 

greatly, the axonal arbours seem to be less variable and with no apparent correlation 

between the retinal dendritic arbour size and the size of the collicular axonal arbour. 

The smallest RGC axonal arbours have a diameter of around 100 µm and the largest 

around 200 µm with a mean size of 135 µm (Carvalho et al., 2006; Hong et al., 2011). It 

is, however, possible that these do not reflect the full range of arbours, as they only 

sample a subset of RGC axons. Interestingly, in addition to the presumed tiling within 

retinal ganglion cell subtypes, some types have also been shown to project in a 

columnar pattern (Huberman et al., 2009) and project to specific laminae of the SC SGS 

(Huberman et al., 2009; Kim et al., 2010; Hong et al., 2011) 

 

It has, moreover, been demonstrated that RGCs are connected via gap-junctions to other 

RGC of the same subtype (Völgyi et al., 2005; Lim et al., 2008b; Völgyi et al., 2009) 

and that this is dependent on light-exposure, at least for α-ganglion cells (Hu et al., 

2010). It is hypothesised that such inter-connectivity aids in effective transmission 

along the optic nerve by synchronising the base-level of activity within RGC subtypes 

(Völgyi et al., 2009). 

1.1.3  SC circuits and connections 

For the purposes of this thesis, the SC is considered primarily as a visual area. It is, 

however, a truly multi-modal area as it receives visual input as well as input from 

auditory and somatosensory systems (Edwards et al., 1979).   

The superior layers of the SC receive visual input and mainly project to the deeper 

layers, but also send a projection to the lateralis posterior and several thalamic nuclei, 

including the vLGN(Dean et al., 1989). Along with the input from the retinorecipient 

layers, the deep layers also receive input from the auditory and somatosensory systems, 

the contralateral SC and non-visual areas of the cortex. Consequently, the SC has been 
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shown to be involved in many systems-level functions, such as multi-modal sensory 

processing (Dräger and Hubel, 1975), motor preparation of saccades (Dorris et al., 

1997), and emergent properties such as covert visual spatial attention (Müller et al., 

2005; Lovejoy and Krauzlis, 2010; Zénon and Krauzlis, 2012), reward-related 

modulation (Ikeda and Hikosaka, 2003) and flight responses (Dean et al., 1989).  
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1.2 Studying maps 

The majority of studies of topography in the visual system employ either physiological 

measures, such as electrode-based multi-unit receptive fields (MURF) or local field 

potential (LFP) recordings (Dräger and Hubel, 1976; Cang et al., 2008a; e.g. Wang et 

al., 2010b); intrinsic optical imaging (Mrsic-Flogel et al., 2005; Cang et al., 2008a; e.g. 

2008b) and recently, confocal or 2-photon calcium imaging (for review see Scanziani 

and Häusser, 2009; Smith and Häusser, 2010; e.g. Hofer et al., 2011) or anatomical 

anterograde tracing methods (Simon and O'Leary, 1992) and retrograde tracing methods 

(Upton et al., 2007). While there is a solid body of literature regarding the physiological 

topography and organisation of the SC, the precision and topographic organisation of 

the anatomical projection is not as well documented. Apart from a few studies 

quantifying single axon arbour projections (Dhande et al., 2011), most anatomical 

studies rely on bulk anterograde transport and the label is therefore hard to quantify. An 

additional problem with this approach is that it is largely restricted to examining 

peripheral retina. 

 

A further complication is how to compare detailed positional information from 

physiological experiments with the anatomical data. The problem arises from the fact 

that the stimuli in physiological experiments is mostly presented on a flat screen that is 

tangential to the visual field of the mouse and when transformed into visual field 

coordinates of the mouse is expressed in degrees of azimuth and elevation. In contrast to 

this, the anatomical studies rely on physical features and markers on the retina and in 

the targets to convey positional information, which is expressed in terms of distances 

relative to these markers. Additionally, even between anatomical studies no consistent 

markers exist to enable comparison of data between studies. These divergent coordinate 

systems make it hard to directly compare datasets.  

1.2.1  Types of neural maps 

Arising from the problems of the nervous system having to handle many different types 

of information, several different methods of segregating information is employed 
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throughout the nervous system. In the visual system, there are three main types of maps. 

1) Continuous maps (Figure 1-2A) convey positional information by maintaining 

neighbour relationships, so that neighbouring cells in the source (e.g. the retina) also 

connect to neighbouring cells in the target (e.g. the SC). This type of map is found 

throughout the sensory and motor systems. 2) Discrete maps (Figure 1-2B) are key for 

segregating divergent inputs from separate types of cells into functional units, thereby 

enabling processing of different types of input irrespective of neighbour relationships. 

Discrete maps are particularly prominent in the olfactory system, where spatial 

information is not as important. Consequently, the example of lamination in Figure 1-

2B is arguably not a true discrete map, but serves to illustrate the complexity that can be 

conveyed by having several maps on top of each other. 3) The last type of map, 

exemplified by the ocular dominance columns in the binocular primary visual cortex of 

e.g. primates (Figure 1-2C) is actually a pseudo-discrete map, where inputs from the 

separate eyes is arranged in columns to create functional units representing each of the 

eyes and thereby enabling binocular vision. Key to understanding the complexities of 

neuronal maps is that all of these maps are present in the same areas and thereby 

enables simultaneous complex parallel processing of multiple aspects of a signal 

(Dräger and Hubel, 1976; Cang et al., 2008a; e.g. Wang et al., 2010b). It is important to 

note that although such anatomical maps are present throughout the nervous system, 

some spatial relationships are also represented by functional maps that arise through 

local inhibitory circuits that enable neural coding of information from a subset of 

specialised neurons, e.g. the emergence of direction-selective cortical cells getting input 

from specialised intrinsically direction selective retinal ganglion cells (Elstrott and 

Feller, 2009) 
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Figure 1-2 Neural mapping strategies  

A, A continuous map conveys spatial information and is thus characterised by two 
neighbouring points in the source are also next to each other in the target. A good 
example of a continuous map is the topographic mapping of the retina onto the SC. 
Although only one axis is represented, continuous maps of course represent both axes. 
B, Discrete maps is where cells that are functionally similar, but not necessarily 
spatially close, project to the same areas. Although it may be arguable whether the 
example with SC lamination represents a true discrete map, it does show many 
characteristics of discrete maps. C, Columnar maps are common where input from 
distinct sources needs to be separated spatially. A good example of this is in visual 
cortex where each eye is represented in separate columns. 
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1.2.2  Methods used to study maps 

In order to study such divergent and complex projections, a multitude of different 

techniques have been employed. As mentioned previously, there are a several well-

established techniques for studying both anatomy and physiology. 

Studying Topography using Electrophysiology 

Electrophysiological recordings have been used extensively to map out topography in 

visual structures. Since the electrodes used record changes in electrical potentials of the 

cells in the targeted area, the data is essentially about the output of the system and 

arguably local processing may affect the excitation of the cells being recorded from. It 

is therefore possible that the information gleaned from such recordings is not always 

directly representative of the actual inputs.  Another major factor is that these 

techniques also rely on using the optimal stimuli to drive the system and may therefore 

be biased towards certain cell-types depending on the stimuli used, although this can be 

overcome by using a variety of stimuli, patterned noise or even deconvolved natural 

scenes. For these reasons, electrophysiological methods cannot be used to investigate 

precision but are better suited for examining topography (Dräger and Hubel, 1976; Cang 

et al., 2008a; e.g. Wang et al., 2010b) 

Studying Function using Electrophysiology 

Another use for such electrophysiological methods relies precisely on different stimuli 

driving distinct classes of RGCs separately, which causes biases in the topographic 

population studies. By selecting the stimuli that optimally drives particular cell types, it 

is possible to investigate the distribution of individual classes of cells and start to tease 

apart the effects of that type of cell on the target circuit. The stimuli used are generally 

in the form of: drifting gratings of varying speeds, orientations and sizes; moving bars 

of different orientations; or moving spots of varying sizes and intensities.  
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Studying topography using Intrinsic Optical Imaging 
Intrinsic optical imaging uses the changes in refraction by oxygenated and de-

oxygenated blood to gage the amount of oxygen used by the tissue, which can be used 

as a proxy for activity and thereby it is possible to functionally map neuronal networks, 

such as visual cortex (Grinvald et al., 1986). Although more useful than electrode 

recordings at giving information about the activity of a whole structure, intrinsic optical 

imaging is still restricted by the stimuli used. More recently, intrinsic optical imaging 

using a vertical and horizontal moving bar (Kalatsky and Stryker, 2003) has been used 

to look at topography of the visual cortex and the SC  (Mrsic-Flogel et al., 2005; Cang 

et al., 2008a; e.g. 2008b).  

 

Studying networks using 2-photon imaging 
The ability to label cells genetically and the appearance of more reliable activity 

markers has enabled the study of both inputs to and outputs of circuits, thereby 

overcoming a lot of the caveats of both electrical recordings and intrinsic optical 

imaging. Since these techniques enable the labelling of individual identified cells using 

multiple markers, it can give insights into the processing and resultant functions of 

neural networks. However, due to the optical nature of these techniques they are, as yet 

just like intrinsic optical imaging, restricted to studying superficial structures, such as 

cortex (Kerr et al., 2005; Kerr and Denk, 2008; Scanziani and Häusser, 2009). 

Studying Precision using anatomical techniques 

Anatomical anterograde tracing methods (e.g. Simon and O'Leary, 1992) have been 

used extensively to study precision. However, due to the limitations of reliably making 

small discrete injections of label, the absolute quantitative information of precision 

gained from such experiments is limited. Moreover, in the visual system, due to 

difficulties with injecting the central retina, the use of anterograde tracing to investigate 

topography is limited. For these reasons, while there is a solid body of literature 

regarding the physiological topography and organisation of the SC, the precision of the 

anatomical projection is not as well documented. This apart from a few recent studies 
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that have started quantifying single axon arbour projections and thereby looking at the 

precision of individual cells (Dhande et al., 2011; Hong et al., 2011). Retrograde tracing 

methods overcome the problem of not being able to access the central visual field and 

can sample the entire projection. Moreover, using tracers that have limited diffusion 

(e.g. Katz et al., 1984; Katz and Iarovici, 1990), it is also possible to examine precision 

(Upton et al., 2007). Recently, with the advent of genetically modified mice it is now 

possible to label specific cell-types and thereby study the projections of a single sub-

type of cells, e.g. the labelling of a specific ON-OFF DS-RGCs (Huberman et al., 

2009). Moreover, by using advanced genetic labelling techniques combined with viral 

vectors that can label specific connected neurons (e.g. Lo and Anderson, 2011) it would 

be possible to not only trace the projections of specific ganglion cell projections, but 

also map their post-synaptic connections. 
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1.3 The Developing Rodent Visual System 

During development, the sequence of neurogenesis and synaptogenesis provides a clue 

about what mechanisms enable the formation of this intricate circuitry, since the 

temporal overlap of events, as summarised in table 2.1, could indicate that they may be 

linked. In the retina, RGCs are the first cells to be born and they are born in a circular 

fashion, where the first RGCs are born in central retina at around embryonic day (E)11 

and the most lateral RGCs are born around E19 (Dräger, 1985). The RGCs immediately 

send their projections out of the retina through the optic disc around E10-11, after 

which, contralaterally projecting retinal efferent axons are found by the optic chiasm at 

E12 and in the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) by 

E16 (Sernagor et al., 2001). The ipsilaterally projecting RGCs from the ventral-

temporal crescent are delayed, reaching the optic chiasm at E16 and only innervating 

the dLGN and SC between E18 and birth (at E20) (Godement et al., 1984).  

 

In the meantime, the components of the retinal machinery are formed. Coincident with 

the RGCs, the amacrine cells are born around between E11 and E17 (Cepko et al., 

1996) in the outer INL from where they migrate to the INL/IPL border and extend 

horizontal dendritic branches into the IPL around E17. At the same time RGCs also 

extend branches into the IPL and synapse with the amacrine cells. Since this is 

coincident with the onset of early gap-junction mediated correlated bursting between 

amacrine cells (Cook and Becker, 2009), it is likely that this is one of the mechanisms 

mediating synaptogenesis between RGCs and amacrine cells. The branches, however, 

remain highly dynamic and span most of the IPL (Morgan et al., 2008).  

 

Coincident with amacrine neurogenesis, cone photoreceptor precursors and horizontal 

cells are born in the ONL just before birth. Genesis of rod photoreceptor precursors 

peaks around the time of birth, followed by the formation of Müller glial cells. 

Interestingly, the bipolar cells, which convey most of the signals from the outer layers 

to the inner layers of the retina are mainly born after birth, with peak neurogenesis 

around postnatal day  (P) 3-4 (Cepko et al., 1996). Moreover, the bipolar cells only 



Chapter 1 - General Introduction 

 

 

26 

synapse onto the RGCs in the IPL several days after birth, indicating that the initial 

activity-dependent topographical organisation of RGC projections must be due to 

interactions with amacrine cells. Moreover, since photoreceptors are unable to respond 

to light until shortly before eye opening (Wong et al., 1995; Wong and Ghosh, 2002), it 

indicates a crucial role for molecular and intrinsic cues in forming the retinal circuitry 

 

Event Age 

RGC Genesis E11-19 

RGC axons first entering SC E15 

RGC dendrites forming IPL E17 

Amacrine correlated bursting (Stage I) E17-19/20 

Birth E19-20/P0 

Cholinergic activity waves (Stage II) P0-8 

Peak RGC cell death P2-5 

Glutamatergic activity waves (Stage III) P7-17 

Eye opening P12-15 

 

Table 1-1: Key timings of mouse visual system development 

During retinal development, the timings of events are crucial to the proper development 

of circuitry and projections. The table represents dates from the literature (Sernagor et 

al., 2001)
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Figure 1-3 Timescale for development of selected mouse retinal projections 

A, Schematic summarising phases in the development of the SC, dLGN and V1 during 
the first 4 postnatal weeks. B, The different mechanisms that have been shown to be 
involved in establishing the visual circuits during the developmental phases in A 
(Figure adapted from: Huberman et al., 2008a) 
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1.3.1  Development of the Retino-Collicular projection 

Immediately after leaving the retina, RGC axons are organised according to their retinal 

position (Chan & Guillery, 1994; Jeffery, 2001). As axons grow further along the optic 

nerve, this sorting seems to disappear and just before the chiasm, at least in rodents, the 

distribution of axons appears random. After the chiasm, in the optic tract, some 

measures of order reappear and the axons are segregated along the ML axis of the optic 

tract according to their approximate dorsal-ventral (DV) retinal position (Chan & 

Guillery, 1994). The DV segregation just after the chiasm is maintained up to the 

brachium of the SC (Plas et al., 2005) and is roughly representative of the eventual ML 

position of the termination zone in the SC (Hindges et al., 2002). It is, therefore 

possible that this DV segregation plays a role in the initial rough development ML 

topographic mapping. 

 

It is well established that the formation of the nasal-temporal (NT) retinotopic map 

consists of two distinct phases of growth. First the axons grow rapidly, with about 

2mm/day, through the entire length of the SC until stopping at the border of the 

Superior Colliculus and the Inferior Colliculus while extending only sparse, simple, 

branches (Frisen et al., 1998). Then after reaching border the axons start forming more 

elaborate arbours (Jhaveri et al., 1991), which will eventually constitute their terminal 

zone. However, since some ML order exists from the tracts (Plas et al., 2005), a level of 

ML topography develops prior to Anteroposterior (AP) topography (Hindges et al., 

2002; Upton et al., 2007), which is dependent on branching (Hindges et al., 2002(Yates 

et al., 2001)) and pruning of the axon overshoot (Nakamura and O'Leary, 1989). 

 

It is well understood that it is a combination of molecular guidance, mainly facilitated 

by the Eph/ephrin system and different activity-dependent mechanisms (as detailed in 

Figure 1-4) that enable the development of collicular retinotopy. The subsequent 

sections first describes the mechanisms involved in the Eph/ephrin system and then 

proceeds to describe some of the patterns of spontaneous and evoked activity and how 

these influence the targeting and refinement of RGC axonal projections.  
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Figure 1-4 Early development of the mouse retinocollicular projection 

The diagram illustrates the projections of four RGC axons around the time of birth. 
Axons grow out of the retina, and apart from a population of ipsilaterally projecting 
cells in the ventral-temporal crescent (blue axon), project to the contralateral SC. These 
axons then grow to the posterior edge of the SC, branching all along. During the first 
week after birth, the overshoot is pruned back and branches are stabilised and 
elaborated preferentially in the topographically appropriate location (grey circles). 
Axons grow to the posterior SC due to the repulsive gradient of EphA (dark green) and 
the ephrin-A counter-gradient (light green) stops the axons at the posterior edge of the 
SC and allows the axons to branch in the appropriate location while the structured 
retinal activity and competition in the SC enables the refinement of the axonal branches 
to form a defined focus. The order in the brachium is thought to be due to the axon-axon 
interactions in the bundle and causes the axons to enter the SC in the approximately 
correct ML location with some correction due to branching facilitated by the ephrin-B1 
gradient (light blue). For the purposes of clarity, only one eye is represented and the any 
laminations have been ignored. 
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1.3.2  The role of molecular guidance  

Based on findings that nasal RGC axons exhibited different recognising capabilities 

from temporal ones and that nasal RGC axon growth cones could not grow on retinal 

tissue, Bonhoeffer and Huf (1982) initially proposed that a graded repulsive guidance 

signal in the SC was responsible for guiding temporal RGC axon growth cones directly 

to their termination zone along the AP axis in chick. It was, however, later shown that 

although this is the case in zebrafish (Stuermer, 1988) and xenopus (Holt and Harris, 

1983), it is not the case in rodents(O'Leary et al., 1986; Jhaveri et al., 1991) or chick 

(Nakamura and O'Leary, 1989), where axons overshoot their termination zone and later 

refine their projections. It is possible that this difference arises as a result of the relative 

size of the tectum/SC in these species. The zebrafish tectum at 5dpf measures around 

200µm (Martin Meyer, personal communication), whereas the mouse SC at birth at 

around 2000µm (see Table 2-4) is 10 times the size.  

 

The retinotopic mapping along the AP axis of the SC has been shown to be largely due 

to the repulsive nature of Eph receptors and the branch-suppressing properties of ephrin 

ligands (Drescher et al., 1995). The Eph family is subdivided into nine EphAs (1-8 & 

10) and five EphBs (1-4 & 6). The ligands to the Eph receptors are the ephrins, of which 

there are 5 ephrin As (1-5), which are glycosylphosphatidylinositol-linked proteins, and 

3 Ephrin Bs (1-3), which have a transmembrane domain with a short cytoplasmic 

region. EphAs will generally bind to ephrin-A and EphBs bind to ephrin-Bs, with the 

exception of EphA4, which can bind both ephrin-As and ephrin-Bs (Klein, 2009). 

 

The expression-pattern of Eph and ephrin is shown in Figure 1-4. In the mouse visual 

system EphA5, EphA6 & EphB1 receptors are expressed in a graded manner, high 

temporal to low nasal, across the retina, whereas ephrin-A5 is expressed in a high nasal 

to low temporal gradient (Cheng et al., 1995; Drescher et al., 1995). These retinal 

gradients are complemented by gradients in the SC, where EphA4, EphA5 & EphA7 are 

expressed in a high anterior to low posterior gradient. Ephrin-A2 is expressed in a high-
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low posterior-anterior gradient, and ephrin-A5 has a similar graded expression but is 

restricted to the posterior half of the SC(Carvalho et al., 2006).  

 

These opposing gradients are necessary for the formation of accurate maps, because 

axon branching then only occurs in the zone with optimal conditions for branching 

according to the concentrations of Eph & ephrin in the particular RGC (Yates et al., 

2001). Observations that have been confirmed by observations that EphA7 at high 

levels suppress branching anterior to the termination zone (Rashid et al., 2005), while 

the high levels of ephrin-A5 posterior to the termination zone restricts branching in this 

region (Frisen et al., 1998; Sakurai et al., 2002), thus confining the branching to the 

correct area  

 

Along the ML axis of the SC and the DV axis of the retina, a similar gradient to that of 

EphA/ephrin A is found of EphB/ephrin B. In the retina, EphB1, EphB2, EphB3, 

EphB4 & EphA6 are expressed in a low to high DV gradient (Holash et al., 1997; 

Birgbauer et al., 2000; 2001), while ephrin-B1 & ephrin-B2 are expressed in the 

opposite gradient (Nakagawa et al., 2000; Mann et al., 2002). In the SC, EphB2 & 

EphB3 are expressed in a low to high ML gradient and ephrin-B1 is expressed in a 

complementary high to low ML gradient (Marcus et al., 1996) 

The mechanisms of molecular guidance cues. 

Classically, Eph/ephrin-mediated axon guidance relies on repulsion along a gradient to 

reach the approximately correct location and competition is then responsible for refining 

the axon arbour to restrict it spatially. However, it was later found that this was 

insufficient for forming an accurate map and the mechanisms involved were more 

complex. Key to the mechanisms involved in the Eph/ephrin-mediated map formation is 

that the binding of Ephs to ephrins and vice-versa can cause attraction or repulsion and 

mediate branch promotion or inhibition depending on concentration (Brown et al., 

2000) and cis-/trans-conformation of the proteins, which influences the binding 

properties and  sensitivity of the growth cones (Hornberger et al., 1999; Carvalho et al., 

2006; Kao and Kania, 2011; Dudanova et al., 2012). The reasons for this is that both 
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Ephs and ephrins are capable of bidirectional signalling which influences the 

cytoskeletal response of the growth cone to repulsive or attractive cues. As a result, 

ephrin-A expressing RGCs are capable of reverse signalling to limit the repulsive 

interactions with EphA7 in the anterior SC, thus enabling the navigation through the 

high concentrations in anterior SC (Rashid et al., 2005). 

 

The co-expression and consequent interactions between EphA and ephrin-A within the 

axons are essential to the axon-guidance mechanisms of EphA & ephrin-A, as ephrin-

As when co-expressed with EphA in RGC axons in vitro causes phosphorylation of the 

EphA receptors thus changing their conformation and consequently decreasing their 

sensitivity to ephrin-A (Hornberger et al., 1999). Another study by Marquardt et al. 

(2005) demonstrated that EphA and ephrin-A have opposing effects on growth-cone 

guidance. EphA causes growth cone collapse and consequently is involved in repulsion, 

whereas ephrin-A mediates attraction. They, furthermore, demonstrated that EphA and 

ephrin-A are localised in separate membrane domains and have opposing effects on 

growth-cone guidance, thereby enabling an individual axon growth cone to discriminate 

between cis- and trans-conformation of the target proteins and facilitating guidance 

using cues from both EphA and ephrin-A. The apparent discrepancy between direct cis-

interactions of Ephs and ephrins influencing the sensitivity and them needing to be in 

separate compartments to interpret information by both Ephs and ephrins was recently 

addressed by Kao et al. (2011). They performed experiments on motor neurons, which 

demonstrated that at low levels of ephrin-A, EphA and ephrin-A are localised in 

separate cellular domains, whereas at high ephrin-A concentrations, ephrin-A and EphA 

colocalised within the same domain (Kao and Kania, 2011), thereby decreasing the 

sensitivity to ephrin-A. Assuming that the same is the case for RGC axons in the SC, 

then it would explain how nasal axons (with high ephrin-A5 concentration) navigate to 

the posterior SC and temporal axons (with low ephrin-A5 concentration) branch 

preferentially in anterior SC. Intriguingly, such compartment localisation could also be 

changed by other factors influencing the membrane composition and structure, such as 

activity. 
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It is well established that Eph receptors are transmembrane proteins with a kinase 

domain and a PDZ domain, enabling them to bind to intracellular scaffolding proteins 

and signal back to the soma. Ephrin-Bs are transmembrane proteins with just a PDZ 

domain, but since they do not have a kinase domain, they signal through intracellular 

kinases and phosphatases. When EphB receptors and ephrin-Bs bind, the mutual 

signalling capabilities enable a bidirectional signalling that is important in mediating the 

shift from attraction to repulsion to ephrin-Bs in axons expressing EphB (Kullander and 

Klein, 2002; McLaughlin et al., 2003a). 

 

Ephrin-As, in contrast, are GPI-linked and don’t have intracellular domains. Ephrin-As 

have, however, been shown to be localised to lipid rafts (Davy et al., 1999) where they 

form complexes with the two neurotrophic receptors p75 (Lim et al., 2008b) and TrkB 

(Marler et al., 2008). Both of which enable ephrin-As to influence the cell in a number 

of ways. It has been demonstrated that pro-BDNF causes binding of ephrin-A to P75, 

which causes branch-suppression by initiating reverse signalling (Lim et al., 2008b) and 

thereby facilitating endocytosis of the EphA/ephrin-A complex (Yoo et al., 2011). In 

contrast, when TrkB is activated by BDNF, it causes a shift from branch-suppression to 

branch-promotion by ephrin-A5 (Marler et al., 2008). Thereby indicating that local 

shifts of the properties of ephrin-A5 may be contributing to increased branching in the 

area around the termination zone, where the levels of the reverse gradient of EphA 

allows for it.   

 

Additionally to enabling the formation of correct retinocollicular projections, the 

Eph/ephrin system also enables the alignment of convergent retinotopic maps, such as 

the cortico-collicular projection (Wilks et al., 2010). This was demonstrated by showing 

that removal of ephrin-A5 causes misalignment of the cortico-collicular projection to 

the retino-collicular projection. Importantly, this alignment of maps is not restricted to 

the visual system, but has also been shown to be essential for the alignment of 

multimodal input to the deep layers of the SC (Triplett et al., 2012) 
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Similar to the EphA/ephrin A system, Ephrin Bs can act as both chemo attractant (Mann 

et al., 2002) and chemo repellent (Birgbauer et al., 2001), dependent on low or high 

concentrations respectively, thus promoting axon branching in the ML direction of their 

correct termination zone (Hindges et al., 2002; McLaughlin et al., 2003a). Ephrin-Bs 

have, moreover, also been shown to be involved in stabilising synapses after mediating 

contact. 

Roles of Eph/ephrin in synaptogenesis 

The transmembrane structure and the bidirectional signalling capabilities of Eph 

receptors and the ephrins allow for the complex mechanisms of guidance by enabling 

shifts from chemorepulsion to chemoattraction dependent on concentration and activity 

(McLaughlin et al., 2003a; Hanson and Landmesser, 2004). But not only do the ephrins 

play an important role in development of large-scale topography by axon guidance and 

branching, Ephs and ephrins have also been shown to be implicated in forming the 

synaptic micro-topography (Klein, 2009).  

 

The direct role of Ephs and ephrins in synaptogenesis in the visual system has not yet 

been fully elucidated, but it is likely that they play a role in regulating these events, 

since evidence looking at the function of EphB2 forward signalling in hippocampus 

suggest that they play a role in spine formation through their cell adhesion properties 

(Henkemeyer et al., 2003); and in the regulation of subsequent stabilisation and 

synaptogenesis (Kayser et al., 2008) of Glutamatergic synapses through causing 

decreased motility and a higher rate of postsynaptically induced synaptogenesis during 

critical period. EphBs have, moreover, also been shown to directly interact with NMDA 

receptors and stabilise synapses, as perturbed EphB activity causes a reduction of 

specialised synapses in hippocampal cultures (Dalva et al., 2000). Moreover, EphB has 

been shown to be directly implicated in synaptic plasticity of the xenopus tectum (Lim 

et al., 2008a)through Wnt-dependent signalling (Lim et al., 2010). 

 

Another aspect that remains to be fully established is the role of ephrin-A5 in 

synaptogenesis. As already mentioned, ephrin-A5 has been shown to bind to and 
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activate TrkB and cause increased branching (Marler et al., 2008). So since both TrkB 

and Ephrin As are in lipid rafts together and can bind PSD-95 through their PDZ 

domain (Davy et al., 1999), and since TrkB activation directly affects synaptogenesis 

and NMDA clustering (Suzuki et al., 2004; Yoshii and Constantine-Paton, 2007), this 

may provide another mechanism of action for ephrin-A5 in SC synaptogenesis. 

 

Another role of activity is that the function of the Eph/ephrin system may be activity-

dependent, as demonstrated by Nicol et al. (2007) for Ephrin A5. They found the 

repulsive actions of EphAs on ephrin-As to be activity-dependent, as changes in activity 

in the form of cAMP oscillations are required for branch-retraction in vitro (Nicol et al., 

2007). 

1.3.3  The role of Activity 

Information about position is key to enabling a reliable transmission of topographic 

signals from source to target. This is the case, not only in the visual system, but 

wherever positional information needs to be conveyed. The key to the process is 

maintaining neighbour relationships, so that neighbouring RGCs project to adjacent 

areas in the target. This information can be conveyed by structured neural activity, 

whereby neighbouring neurons exhibit correlated firing and therefore neighbours will 

be more coactive (Willshaw and Malsburg, 1976), which facilitates Hebbian plasticity 

and results in strengthening of connections from neighbouring RGC axons onto the 

same post-synaptic collicular cells (Hebb, 1949).  

 

Early experiments showed that activity was important in eye segregation and the 

maintenance of ocular dominance columns in cortex since depriving one eye caused the 

ocular dominance columns representing that eye to be smaller than the open eye (Shatz 

and Stryker, 1978). Later experiments confirmed the requirement of activity in 

development of eye segregation by demonstrating that blocking retinal activity using 

tetrodotoxin (TTX), a potent Na+ channel blocker, prevented the formation of ocular 

dominance columns in cortex (Stryker and Harris, 1986), disrupted the segregation of 

eye-specific inputs in the dLGN (Shatz and Stryker, 1988); and caused the ipsilateral 
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projection, which in the SC is normally confined to the anterior-medial SC, to be more 

diffuse and no longer segregated from the contralateral projection (Thompson and Holt, 

1989)  

 

In parallel to these observations of eye segregation, it was demonstrated using TTX that 

activity also was essential for forming appropriately sized axonal arbours (Sretavan et 

al., 1988), thus also implicating activity in the formation of retinotopic organisation. 

Around the same time, it was established that retinal ganglion cells are spontaneously 

active already during the initial guidance (Galli and Maffei, 1988). It was subsequently 

showed by the same group that the activity of neighbouring RGCs is correlated (Maffei 

and Galli-Resta, 1990). The feasibility of this was later confirmed by the demonstration 

that correlated activity in neighbouring RGCs caused a strengthening of connections 

onto tectal neurons (Zhang et al., 1998), thus providing a mechanism for formation of 

retinotopic maps according to Hebbian principles (Song et al., 2000). 

 

It has subsequently been shown that such spontaneous intrinsic activity is present in 

many different forms throughout development of the visual system. The retinal circuitry 

that enables such spontaneous synchronised [Ca2+]-dependent activity in the mouse 

retina is developed over three main periods. E16-P0 (Stage I), P0-P9 (Stage II) and P9-

P14 (Stage II) (Bansal et al., 2000). It is believed that since the various stages of activity 

are mediated by different mechanisms they provide a variety of activity-patterns that are 

involved in all aspects of axon guidance and refinement: Stage I activity relies on non-

nicotinic gap-junction mediated transmission; Stage II is dependent on nicotinic 

acetylcholine transmission; and Stage III is mediated by ionotropic glutamate receptors 

(Huberman et al., 2008a). 

Stage I waves are gap-junction dependent 

The first signs of correlated activity appear in retinal amacrine cells around E16 and last 

until the time of birth (Bansal et al., 2000). Since this activity starts before the main 

stages of synapse formation it is initially mediated by gap-junctions, as the activity-

patterns can be blocked by gap-junction blockers and adenosine receptor blockade, but 
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crucially are unaffected by nicotinic antagonists (Syed et al., 2004). This initial activity 

is chiefly characterised by small clusters of cells having correlated activity mediated by 

gap-junctions (Syed et al., 2004), which is believed to convey information to segregate 

eye-specific inputs. The second, smaller component are of large propagating waves 

mediated by nicotinic Acetylcholine Receptors (nAChR), but since these waves are too 

large to convey any spatiotemporal information, it is unlikely that they are involved in 

refinement and they are probably just a manifestation of the immature system for stage 

II waves (Bansal et al., 2000). 

 Stage II waves are Acetylcholine dependent 

Around the time of birth, the early spontaneous activity in amacrine cells start being 

propagated across the retina in a more structured and tighter wavelike manner in both 

amacrine cells and RGCs (Wong et al., 1995). The waves spread across the retina with a 

speed of about 100µm/s and wave fronts of several hundred micrometres (Stafford et 

al., 2009). Properties that are appropriate to convey spatial and temporal information 

about RGCs to enable the sorting and refinement of axon arbour terminals in target 

zones (Meister et al., 1991). These waves persist throughout the first week after birth 

and have been shown to be dependent on nAChRs, as conditional knock-out of nAChRs 

in the retina completely abolishes the structured activity waves (Stacy et al., 2005) and 

even subtle changes, such as the lack of the β2 subunit of the nAChRs were initially 

thought to abolish the waves (Bansal et al., 2000). It has, however since been shown 

that structured waves, albeit with altered spatiotemporal properties, are present in 

animals lacking the nAChR-β2 subunit (Sun et al., 2008b; Stafford et al., 2009).  

 

The significance of those waves, however, remain an open question, since the altered 

waves cause large-scale anatomical, but only small functional changes in dLGN (Grubb 

et al., 2003), along with grossly altered anatomical topography in the SC (McLaughlin 

et al., 2003b; Chandrasekaran et al., 2005), where the functional map of visual space 

also appears to be expanded in the anterior SC and compressed in the posterior SC 

(Mrsic-Flogel et al., 2005).  
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Additionally to their role in formation of retinotopy, the nAChR-β2-dependent waves 

are also thought to be implicated in the segregation of eye-specific inputs to the dLGN, 

as RGC axon arbours from the ipsilateral eye project to a larger area in the nAChR-β2 

knockout than in the wild type (Sun et al., 2008b). Moreover, modelling has shown that 

the short period of the waves combined with the long inter-wave interval is ideal for 

desynchronising the outputs from the eyes and therefore support a Hebbian mechanism 

of refinement (Butts et al., 2007),  

 

If the changes in wave-characteristics by Sun et al. (2008b) and Stafford et al. (2009) 

are taken into account it is then plausible that it is the precise structure and pattern of the 

waves that is important for the retinotopic mapping, which then opens the question of 

the role of the other nAChR subunits in generating the waves, since removing the α3-

subunit also has been shown to alter the spatiotemporal properties of the waves (Bansal 

et al., 2000). However, retinotopic maps have not been studied in this mutant.  

 

Moreover, some gap junction-mediated spontaneous activity persists in the amacrine 

cells of animals without any cholinergic activity due to the removal of choline 

acetyltransferase, which is solely responsible for synthesising Acetylcholine. The 

activity in these cells is, however, random, unstructured and of different amplitude and 

speed to wild type animals (Stacy et al., 2005). These findings have, furthermore, been 

corroborated by evidence that removal of Connexin 36 & 45, which are involved in gap-

junction signalling in neonatal animals, affects the firing patterns of individual RGCs 

(Blankenship et al., 2011). 

 

Interestingly, nAChR-β2 knockout animals have also been shown to exhibit altered 

expression of genes involved in cell adhesion and Ca2+ signalling along with increases 

in genes associated with degeneration using a gene-chip approach (Rubin et al., 2011). 

Considering the defects of axon guidance in the dLGN in the nAChR-β2 knockout mice 

(Grubb et al., 2003; Sun et al., 2008b), it may be of particular interest that the mutant 

shows decreased expression at P4 of mRNA coding for cell adhesion molecule 

Cadherin-1, along with SPP1 and LYPD2, all of which have been shown to be involved 
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in axon guidance (Rubin et al., 2011). Overall, it suggests that correlated activity may 

play as yet unknown roles by regulating expression of genes that are involved in axon 

guidance. It is probable that the mechanism of this effect acts through changes in Ca2+ 

concentration (Rubin et al., 2011). Finally, it is also worth noting that no changes were 

seen in Eph/ephrin expression. 

Stage III waves are Glutamate dependent 

Stage III waves start around P8-10 and persist for about 10 days, although this occurs 

earlier in the animals lacking the nAChR β2 subunit (Bansal et al., 2000), possibly as a 

compensatory mechanism. Since Stage III waves span the time of eye opening it is 

difficult to discern which aspects of development are attributable to the Glutamatergic 

waves and which are attributable to eye opening and resultant increase in visual 

stimulation. The waves are caused by release of glutamate from bipolar cells onto RGC 

dendrites in the IPL (Bansal et al., 2000; Wong et al., 2000). The waves have been 

shown to play a role in the lamination of the retinal inner plexiform layer (IPL) and the 

segregation of the RGC dendrites into ON (inner two-thirds of the IPL) and OFF (outer 

two-thirds of the IPL) (Morgan et al., 2008). The effects of the waves are, however, 

probably not restricted to the retina, but may also play a part in the ON/OFF segregation 

in the dLGN and SC. The reason being that since the frequencies of the waves differ 

significantly between the ON and OFF bipolar cells, OFF cells firing at a higher 

frequency than ON (Huberman et al., 2008b), and ON cells fire just before OFF cells 

(Kerschensteiner and Wong, 2008), it may enable segregation in targets, in accordance 

with Hebbian mechanisms (Willshaw and Malsburg, 1976).  

 

It is, moreover, very likely that the Glutamatergic waves are responsible, not only for 

segregating ON and OFF RGCs, but also play a key instructive role in the 

differentiation of α-RGCs, β-RGCs & γ-RGCs and subsequent segregation of these in 

targets since these all exhibit specific firing patterns (Liets et al., 2003). This would also 

mean that they possibly play a role in determining which lamina in the SC the RGCs 

eventually project to, since the SC lamination appears to be sub-type specific (Hofbauer 
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and Dräger, 1985; Huberman et al., 2008b; Kim et al., 2010) although the mechanisms 

of this lamination remains unresolved. 

 

As for the roles of synaptic transmission in development of collicular retinotopy during 

the period of the GluR-dependent waves, it has been demonstrated that the refinement 

during this period is dependent on synapse strengthening and elimination, both of which 

have been shown to be dependent on NMDAR activation, as NMDAR-blockade 

prevents refinement of ectopic arbours in the contralateral (Colonnese and Constantine-

Paton, 2006), but not ipsilateral (Colonnese and Constantine-Paton, 2001), projection. 

These effects on synapse plasticity may also suggest a role for GluR-dependent waves 

in fine-scale refinements of projections. 

 

Stage III waves have been reported to end around P15-20 in mouse, and since waves of 

spontaneous activity might affect the transmission, it has been hypothesised that visual 

experience following eye-opening might be linked to the disappearance of the waves. It 

has, however, been shown by Demas et al. (2003) that the waves end around P15 even 

when animals are reared in the dark. 

Eye opening 

Although most of the retinotopic refinement is mediated by intrinsic cues with some 

sensory input just prior to eye opening (Akerman et al., 2002; Colonnese et al., 2010), it 

has been shown that eye-opening at around P13 in mouse, causes a rapid, refinement 

and increased synaptogenesis in visual cortex (Hooks and Chen, 2008) along with 

maturation of local GABAergic cortical networks (Hensch et al., 1998). Such changes 

which would indicate that the increased visual input spurs an increase in activity, 

followed by increased plasticity in the visual targets (Lu and Constantine-Paton, 2004), 

higher levels of PSD-95 in dendritic spines (Yoshii et al., 2003). In these studies, it was 

observed that eye opening caused an initial increase in silent synapses featuring mostly 

NMDA receptors, followed by a slow activation, caused by the transition to AMPA 

receptor currents over the first 24 hours after eye opening. The results indicate a 

classical LTP mechanism in response to increased sensory input (Wu et al., 1996). 
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The consequences of such changes in synaptogenic dynamics are also thought to be 

involved in establishing the balance of ocular dominance in the binocular region of 

visual cortex during this critical period through Hebbian and homeostatic mechanisms 

(Mrsic-Flogel et al., 2007). The ocular dominance balance is further facilitated by a 

delayed shift in inhibitory GABAergic innervation, which potentiates the strengthening 

of excitatory inputs following monocular deprivation (Fagiolini and Hensch, 2000; 

Gandhi et al., 2008). Not only is input from each eye segregated during this period, but 

functionally cells are also matched up, e.g. according to preferred orientation (Wang et 

al., 2010a) during this same period. Together these mechanisms are believed to enable 

the improvement in visual acuity, which is observed from around P20 to P30 (Cancedda 

et al., 2004). 

 

Concurrent with the critical period, eye opening, and the subsequent visual input has, 

moreover, been demonstrated to facilitate the alignment of the sensory maps between 

primary visual cortex (V1) and the SC by synchronising spatial information and thereby 

enabling the topographical order in the cortico-collicular projection (Phillips et al., 

2011). 

1.3.4  Cell death 

The development of the nervous system includes a distinct phase of neuronal 

degeneration during which a substantial proportion of the neurons initially generated die 

in programmed cell death. Programmed cell death is a key mechanism in development 

and refinement of structures. In the visual system around 50% of RGCs die during the 

first postnatal week (see table 2.1). Using retrograde transport of fluorescent fast blue 

dye, it was initially demonstrated that a significant proportion of aberrantly projecting 

RGCs were removed between P2 and P12 (Cowan et al., 1984; O'Leary et al., 1986).  

The experiments, however, were rather crude, but were later substantiated by evidence 

from retrograde transport of fluorescent latex microspheres, where it was also shown 

that a higher proportion of ectopically projecting cells die. (Upton et al., 2007). Another 

finding of this study was, however, that the contribution of selective cell death has a 

very limited role in topographic refinement. 
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The mechanism of refinement by cell death is thought to be mainly competition-

dependent, as cells require target derived neurotrophic factors, such as BDNF, to 

survive and since there is only a limited amount of neurotrophic factors, the cells that 

fail to make appropriate connections undergo programmed cell death. The specificity in 

the system comes from the formation of synapses being regulated by molecular 

guidance cues and structured activity, as reviewed earlier. In the SC, it is very likely 

that most of the programmed cell death is governed by the availability of BDNF, since 

this is present throughout the SC and it has been shown that RGCs express both TrkB 

and p75, which are the main receptors for BDNF. This is, moreover, substantiated by 

evidence that BDNF injection into the SC reduces cell death (Ma et al., 1998) 
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1.4 Aims  

Both molecular and activity-based cues have been clearly shown to influence and direct 

the development of anatomical and functional retinotopic maps. Nevertheless, it has 

remained controversial whether activity is required for the read-out of molecular 

gradients. Recently, however, there is emerging evidence for the requirement of activity 

in retinotopic mapping. What remains to be established is what the roles of specific 

patterns of activity are in segregating the input into the SC and what role this structured 

activity plays in forming precise anatomical and functional topographically correct 

connections.  

 

This thesis will focus on investigating anatomical precision in the projection from the 

retina to the superior colliculus. Initially (in Chapter 3), the focus is on establishing and 

verifying a model of standardised retinal space and thereby touching on points 

regarding the comparison of physiological and anatomical data and the importance of 

knowing the orientation of the head and eyes of the mouse. Following on from these 

observations, a description of anatomical precision is provided for two different mouse-

strains (albino, CD-1; and black, C57BL6/J). Having established a standardised retinal 

space for comparing retinae of varying shapes and sizes, chapter 4 focuses on the post-

natal development of precision in the retino-collicular projection. The main aim of this 

chapter is to provide a thorough quantitative description of the spatiotemporal dynamics 

of the postnatal development of precision by focusing on the first three postnatal weeks. 

Finally, in chapter 5, the emphasis shifts to answering questions about the role of 

spontaneous Acetylcholinergic activity in the first week after birth by examining the 

nAChR-β2 knockout mice. An investigation that is made possible by the standard 

retinal space established in chapter 3 and facilitated by comparison to the framework 

established in chapter 4.  



Chapter 2 - Material and Methods 

 

 

44 

Chapter 2 Materials and Methods 

2.1 Animals 

Wild type C57BL/6JOlaHsd (Harlan, UK) and C57BL/6J (Charles River, UK) mice 

(mus musculus) were used, as indicated. All mutants used are on the C57BL/6J 

background and controls for experiments with mutants were either heterozygous 

littermates or wild-type C57BL/6J. Albino mice used are CD-1 (Charles River, UK). 

 

Most neonatal animals were bred in-house from above strains; a small number of 

animals came from pregnant females purchased from Harlan or Charles River. Animals 

were housed on 12-hour light/dark cycle and used at ages from postnatal day (P) 0 to 

P30 and adult (8-52 weeks).  

   

All procedures were performed in accordance with the European Communities Council 

Directive of 24 November 1986 (86/609/EEC) under the Animals (Scientific 

Procedures) Act 1986. 

2.1.1  nAChR-β2 mutant mice 

The nAChR-β2-/- mice carry a null-mutation for the CHRNB2 gene (Picciotto et al., 

1995).  

 

Genotyping was done using primers for CHRNB2(Picciotto et al., 1995; Bansal et al., 

2000): 

forward: 5’-GCTTCGCCTCCGGGGCGGAGAC-3’ 

reverse: 5’-CCAAAGCTGAACAGCAGCGCCAT-3’  

and primers for β-Gal: 

forward: 5’-CGGGCAAATAATATCGGTGGCCGTGG-3’ 

reverse: 5’-CACTACGTCTGAACGTCGAAAACCCG-3’  
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The wild-type nAChR-β2 generates a product at 300bp and the β-Gal generates a 

product at 600bp. nAChR-β2-/- only has a band at 600bp; nAChR-β2+/- has bands at 

300bp and 600bp; and  nAChR-β2+/+ only has a band at 300bp.  

2.1.2  Anaesthetic Regimes: 

Animals were anaesthetised either by intraperitoneal injection with a mixture of  

Ketamine Hydrochloride (100mg/ml; Vetalar V, Pfizer, UK) / Xylazine (2% w/v; 

Rompun, Bayer Healthcare, UK) using a dose appropriate for the age (see table 2.1) or 

by inhalation of Isoflurane-Vet (100% w/w; Merial Animal Health, UK) with medical 

oxygen at an appropriate concentration and flow-rate for the age (see Table 2-1).  

 

Animals older than P4 were maintained at 37˚C for the duration of the experiment. 

Animals younger than P4 were maintained at 20˚C for the duration of the experiment to 

aid neuro-protection. All animals were allowed to recover fully at 37˚C before being 

returned to their original cage. 

 

 

Table 2-1: Anaesthetic regimes 

Ketamine/Xylazine was always used as anaesthetic for neonatal animals and was also 
used in some older animals, but for most animals older than P4, the most commonly 
used anaesthetic was Isoflurane  
 

 

Age (days) Anaesthetic Dose 
0-3 1:30 Ketamine (100mg/ml),  

1:60 Xylazine (2% w/v) 
0.025 ml/g 
(ket:170 / xyl:17 mg/kg) 

4-22 1:15 Ketamine (100mg/ml),  
1:30 Xylazine (2% w/v) 

0.015ml/g 

60+ 1:1.5 Ketamine (100mg/ml),  
1:3.0 Xylazine (2% w/v) 

0.003ml/g 

4-7 Isoflurane 2-2.5%; 0.7 litres/sec  
8-19 Isoflurane  1.5-2%; 0.6 litres/sec 
20-60+ Isoflurane 1.5-2%; 0.4 litres/sec 
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2.1.3  Perfusion Fixation 

After a recovery period of 24 hours for neonatal animals and 48 hours for adults, the 

animals were terminally anaesthetised by intraperitoneal injection of 300mg/kg of 

pentobarbital sodium (200mg/ml; Euthatal, Merial Animal Health, UK). Animals were 

perfused with a transcardial injection of phosphate buffered saline (PBS; Dulbecco A) 

at 4˚C using a peristaltic pump until all blood was displaced. At this point the PBS was 

replaced by 4% paraformaldehyde (PFA; TAAB Laboratory Supplies, UK) in PBS at 

4˚C and heart was perfused until limbs went stiff. 

2.1.4  Retinal Dissections. 

Initially a marker cut was aligned with the dorsal side of the forming eyelids and the 

eyes removed. However, due to variation in the eye-rotation and head shape between 

ages, this was changed to a cut that is aligned with the nictitating membrane, which was 

verified as being consistently nasal in the adult by the attachments of the eye muscles.  

During the flat mounting, typically 3 or 4 minor cuts were made at approximately 120˚ 

or 90˚ to enable flattening (see Error! Reference source not found.A for example). 

The retinae were subsequently dissected out in 1% PFA and flat mounted on Poly-l-

lysine slides in Fluoromount (Sigma, UK) for retinae containing Retrobeads 

(Lumafluor, USA), as beads are dissolved by Glycerol, or Fluoromount-G (Cambridge 

Bioscience, UK) for other retinae and coverslipped using #0 coverslips.  

2.1.5  Retinal Immunohistochemistry  

Retinae were washed with PBS-Tx (PBS + 1% TritonX-100) followed by blocking in 

Normal Goat Serum (1:10; Cambridge Bioscience) in PBS-Tx for 2 hours. Retinae were 

then incubated in primary antibody (See Table 2-1 below for details of antibodies) 

diluted in NGS+PBS-Tx over night at 4˚C. Subsequently, retinae were washed with 

PBS and incubated with secondary antibody for 2 hours. After which the retinae were 

washed with PBS and mounted on Poly-l-lysine slides with Fluoromount-G (Cambridge 

Bioscience) and coverslipped with #0 coverslips. 
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Table 2-2 List of Antibodies  

 

 

Primary Antibodies 

Clone  Host Reactivity Isotype Conc. Supplier Part no. 

SMI-32 Mouse Mouse IgG1 1:1000 Cambridge 
Bioscience 

SMI-32R 

S-opsin Rabbit Mouse IgG 1:200 Millipore AB5407 

Secondary Antibodies 

Conjugate Host Reactivity Isotype Conc. Supplier Part no. 

AlexaFluor 
488 

Goat Mouse IgG1 1:1000 Invitrogen A-21121 

Fluorescein Goat Rabbit IgG 1:1000 Millipore AP132F 
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2.2 Reconstructing retinae 

2.2.1  Retinal reconstruction 

To compensate for the variance in retinal dissections we have developed software in 

collaboration with David Sterratt (University of Edinburgh) to reconstruct the dissected 

retinae. The software joins up the edges of the cuts in the retina using Delaunay 

triangulation (Figure 2-1A) and plots retinal outline and retinal label locations onto a 

curtailed sphere (Figure 2-1B) of rim angle corresponding to the shape of the eye at a 

given age (see Table 2-3) and then using the following energy function to optimise the 

projection by adjusting the lengths of the sides of the triangles to be the same on the 

spherical and flattened retinae (See Figure 2-1C-D). 

 

𝐸! =
1

2 𝐶 𝐿
𝑙! − 𝐿! !

𝐿!!∈!

+ 𝛽
𝐴!
𝐴

!

𝑓
𝑎!
𝐴!!∈!

 
Equation 2-1 

Length-energy 

function 

Where 𝐿! and 𝑙!   are lengths of corresponding connections 𝑖 ∈ 𝐶 in flattened and 

spherical retina, respectively. 𝐿 is the mean of 𝐿!.  

 

 

The penalty term in Equation 2-1 prevents triangles from flipping over. The lengths of 

𝑙! on the sphere are calculated by using the central angle formula for each of the vertices 

of 𝑙!, as given by: 

 

𝑙(𝜑!, 𝜆!,𝜑!, 𝜆!) = 

𝑅   arccos cos𝜑! cos𝜑! cos 𝜆! − 𝜆! + sin𝜑! sin𝜑! . 

Equation 2-2 

Central angle 

formula 
 

The penalty term in Equation 2-1 is controlled by the parameter 𝛽, which controls the 

relative contribution of the area penalty and 𝑣, which determines how much more large 

triangles are penalised. 𝐴! and 𝑎! are signed areas of corresponding triangles 𝑖 ∈ 𝜏 in 

flattened and spherical retina, respectively. Signed area is positive for triangles in 
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correct orientation, but negative for flipped triangles, thereby preventing flipping of 

triangles.  

 

𝑓 is a piecewise smooth function that increases with negative arguments. However, 

since 𝑥! = 0.5, triangles are only penalised if size is halved when reconstructed, 

according to: 

𝑓 𝑥 =
−(𝑥 − 𝑥!)/2 𝑥 < 0
!
!!!
(𝑥 − 𝑥!)! −< 𝑥 < 𝑥!
0 𝑥 > 𝑥!
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Figure 2-1 Legend: Reconstruction of Retinae (Next page) 

A, Flat-mounted retina of adult animal stained for SMI-32 to label soma and axons of a 
subset of RGCs. Image consists of 12 images acquired at 5x and stitched together. Blue 
lines connect points that have been matched along rim. Nasal is on left. B, Diagram 
illustrating how the retinal outline in A is projected onto a sphere with rim-latitude of 
111.6˚ (See Table 2-2). C, Initial distortions introduced by projecting the flat-mount 
onto the sphere without optimisation. Red lines are longer on sphere than on flat-mount 
and blue lines are shorter. Note that periphery is expanded, whereas centre is 
compressed. D, Distortions following 13 iterations of optimisation, reducing √EL from 
0.027 to 0.0021.E, Distortions in D plotted onto the sphere in A, but viewed from front. 
F, Length of individual gridlines on sphere plotted against length on flat-mount. Red 
line indicates 25% expansion and blue line is 25% compression. G, Azimuthal 
equilateral polar projection of flat-mount in A. Note how axons now line up with grid 
lines.  
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2.2.2  Evaluation of the reconstruction algorithm 

The deformations associated with a reconstructed retina can be estimated as the square 

root of the length energy function (Equation 2-1), as given by: 

 

𝐸! =
1

2 𝐶 𝐿
𝑙! − 𝐿! !

𝐿!!∈!

 
Equation 2-3 

Distortion 

measure 

 

The deformation of individual lines can thereby be visualised by plotting 𝐿! against 𝑙!, 

as in Figure 2-1F, or by colour-coding the flat-mount grid, so that compression (𝐿! > 𝑙!) 

is blue, expansion (𝐿! < 𝑙!) is red and equal length is green, as seen in Figure 2-1C-D to 

give a quick overview of the distortions involved in the reconstruction. The algorithm 

runs several iterations; first without the penalty term (in Equation 2-1) and then with the 

penalty term until 𝐸! is constant for 3 iterations. The effect of the optimisation by the 

energy function can be visualised by comparing Figure 2-1C (distortions before 

optimisation) to Figure 2-1D (after optimisation). Generally deformations of 𝐸! > 0.1 

were considered bad reconstructions and since these mostly reflect the bad nature of the 

dissection, the retinae in question were not used for further analysis. Although there is 

some scatter in the deformation measure across the entire dataset, the mean deformation 

is 0.07 and only 27 out of 288 retinae exceeded 0.1 (Figure 2-1E). Since neonatal tissue 

is more fragile, and thus harder to dissect cleanly, we found that the deformation 

decreases as a function of age (Figure 2-1D). 

 

Another measure of the goodness of the reconstruction can be found from the 

displacement of the OD from the retinal pole inferred by the reconstruction. When 

doing a composite plot of OD locations from all the adult retinae in this study, we found 

that there was scatter in the location (see Figure 2-1A-B). Moreover, we found that 

there is a correlation between the OD displacement and 𝐸! (see Figure 2-1C). The 

average OD location was found to be at 3.7˚ latitude and 95.4˚ longitude. 
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Figure 2-1: Evaluation of Retistruct algorithm 

A, Azimuthal equilateral plot of ODs from 72 adult retinae. B, enlarged central region 
of plot in A to show the distribution of the ODs. Most are in the dorsal half. Diamond 
represents the Karcher mean (at 3.7˚ colatitude, 95.4˚ longitude). C, OD displacement 
from mean plotted against deformation of reconstruction (R2 = 0.35, p < 0.01). D, 
Deformation of reconstruction as a function of age. Note the trend for higher 
deformation measures in young animals. E, Frequency histogram of deformation 
measure of 288 reconstructed retinae of various ages. F, Schematic illustrating 
measurements of retinal rim angle. 𝑑! is distance from OD (*) to rim. 𝑑! is diameter of 
eye ball.  𝜙! is the angle of the rim (values for all ages are in Table 2-2). G, Rim angle 
inferred from optimising for lowest deformation measure (𝜙!) relative to rim angle 
measured experimentally (𝜙!). Inferred angle tends to be smaller than experimental 
value. H, Minimum deformation from optimised rim angle (𝑒!) relative to deformation 
from experimentally determined rim angle (𝑒!). The analysis for this figure was done by 
David Sterratt and figures have been adapted from Sterratt, Lyngholm et al. (n.d.) 
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2.2.3  Measuring the shape of the retina 

The shape and size of the retina varies significantly with age (Schmucker and Schaeffel, 

2004), we therefore decided to measure the extent of the retina. I did this by measuring 

the distance from the retinal pole by the optic nerve head to the edge of the retina (see 

Figure 2-1F above for schematic and Table 2-3 below for values). Along with the 

diameter of the retina, this enables us to determine the rim-angle (𝜑!) by calculating 

𝜑! = arccos 1− 2𝑑!/𝑑! . An alternative to measuring the rim-angle is to calculate the 

optimal rim-angle by varying the rim-angle and using the value for 𝜑! that has the 

lowest value for 𝐸!. This was done using the Retistruct software (Sterratt et al., n.d.) 

and when plotting the optimal values against the measured values (Figure 2-1G), we see 

that on average, the optimal value is slightly lower than the measured value. However, 

since the difference is small and consistent across ages, it is verifying that the measured 

value is reliable. Moreover, when the 𝐸! from the optimal 𝜑!  is compared to the 

𝐸!  from the measured 𝜑! (Figure 2-1H), we found that the mean improvement in 𝐸! 

by using the optimal 𝜑! was 7.2%, with the biggest improvement being 19.1%. 

 

Table 2-3 Measurements of eye diameters at different ages. 

The distance from the back of the eye to the front edge of the cornea (𝑑!), the distance 
from the back of the eye to the rim of the retina (𝑑!) and the angle (𝜑!) inferred from 
these measurements (see schematic in Figure 2-1F for clarification). n = 4 for each age 
(2 animals). A is calculated using Equation 2-11  
 

Age 𝒅𝒆   (µm) 𝒅𝒓  (µm) 𝝋𝟎   (deg) A (deg2) 
P0 1632 ± 17 1308 ± 17 127.1 ± 1.9 33,069 
P2 2146 ± 13 1780 ± 29 131.2 ± 2.2 34,213 
P4 2250 ± 9 1857 ± 20 130.6 ± 1.4 34,050 
P6 2450 ± 41 1963 ± 25 127.0 ± 2.4 33,040 
P8 2646 ± 1 2088 ± 34 125.3 ± 1.8 32,546 
P12 2786 ± 15 2212 ± 65 126.0 ± 3.4 32,750 
P16 2808 ± 17 2043 ± 16 117.1 ± 1.0 30,023 
P22 2958 ± 35 2117 ± 44 115.6 ± 2.2 29,539 
Adult 3160 ± 56 2161 ± 30 111.6 ± 1.9 28,220 
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2.2.4  Projection of retinal spherical coordinates to polar plots 

Having reconstructed retinae into spherical coordinates, the next problem is how best to 

represent these. We have chosen to use three different methods of projecting the 

spherical retina to polar plots. Labelled cells in reconstructed retinae were plotted either 

in Azimuthal equidistant (Figure 2-2A) or area-preserving (Figure 2-2B) polar 

projections, depending on the measurements done. 

 

The Azimuthal equidistant projection preserves distances, but not areas and is therefore 

useful in representing distances between objects on the retina, e.g. to measure distances 

between two foci of label. The transformations to an Azimuthal equidistant projection 

with 𝜑!  and 𝜆!  as the pole is given by (Yang et al., 1999; Weisstein, 2012a): 

 

                 𝑥 = 𝑘′ cos𝜑 sin 𝜆 − 𝜆!  

                 𝑦 = 𝑘![cos𝜑! sin𝜑 − sin𝜑! cos𝜑 cos 𝜆 − 𝜆! ] 

where       𝑘! = !
!"# !

 

and           cos 𝑐 = sin𝜑! sin𝜑 + cos𝜑! cos𝜑 cos 𝜆 − 𝜆!  

Equation 2-4 

Azimuthal 

equidistant 

transformation 

Where c is the angular distance from the centre. 

 

 

The Azimuthal (Lambert) equal-area projection is useful where relative areas are more 

important than the absolute distances, e.g. when representing isodensity contours on the 

retina. The transformation to an Azimuthal equal area projection with 𝜑!  and 𝜆!  as the 

pole is given by (Yang et al., 1999; Weisstein, 2012b): 

 

                 𝑥 = 𝑘′ cos𝜑 sin 𝜆 − 𝜆!  

                 𝑦 = 𝑘![cos𝜑! sin𝜑 − sin𝜑! cos𝜑 cos 𝜆 − 𝜆! ] 

where         𝑘! = !
!"#!! !"#!!!"#!! !"#! !"# !!!!

 

Equation 2-5 

Azimuthal 

equal-area 

transformation 
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2.2.5  Projection to visual space 

In order to project the spherical retinal coordinates to visuotopic space, or vice versa, it 

is necessary to have a good understanding of the shape and optics of the eye, 

specifically how light is refracted through the lens. Although there are several models of 

the mouse eye available (Remtulla and Hallett, 1985; Schmucker and Schaeffel, 2004), 

none of them account for the refraction of the full spectrum of light through the lens. 

We therefore approximated the path of the ray, such that a ray aligned with the optic 

axis will pass straight through the lens without being refracted, whereas a ray that has a 

90˚ incidence angle with the lens will be refracted to the edge of the retina for any shape 

of retina in such manner that an angle 𝜑 on the retina is equivalent to the angle 𝛾 in 

visual space, independent of 𝜑! (See Figure 2-2E). Using these approximations, the 

locations of the points on the retina at the optic axis are first projected to equivalent 

points through the centre of the eye and then the rest of the retina is projected onto a 

notional large concentric sphere about the eye representing visual space. Following 

these coordinate transformations, points on this “celestial” sphere are measured in terms 

of elevation, the angle above the horizontal and azimuth, the angle made between the 

point’s meridian plane and the zero meridian plane, i.e. the vertical plane containing the 

long axis of the mouse. By convention, projections of visual space are presented as 

though the mouse is sitting facing the observer, so that the azimuth angle is positive in 

the left visual field (Dräger, 1978; Dräger and Olsen, 1980; Coleman et al., 2009).  

 

In order to represent this “celestial” hemisphere in front of the mouse, we chose to use 

an Orthographic projection, as this is useful for representing a hemisphere (Figure 

2-2C).  
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The Orthographic projection preserves distances quite well. Areas, however, are not 

preserved. The transformation from spherical coordinates is given by (Yang et al., 1999; 

Weisstein, 2012c): 

 

                 𝑥 = cos𝜑 sin 𝜆 − 𝜆!  

                 𝑦 = cos𝜑! sin𝜑 − sin𝜑! cos𝜑 cos 𝜆 − 𝜆!  

Equation 2-6 

Orthographic 

projection 

transformation 

Where 𝜑 is latitude and 𝜆 is the longitude. 𝜑!&  𝜆! are the reference latitude and 

longitude for the centre of the projection. 

 

 

The sinusoidal projection is an equal-area projection of an entire globe, which means 

that the areal distortions are minimised. However, this is at the compromise of angular 

accuracy and increased distortions in distance measurements away from the equator and 

central meridian, as can also be seen in Figure 2-2D. The transformations of this 

projection are given by (Yang et al., 1999; Weisstein, 2012d):  

 

 

                 𝑥 = 𝜆 − 𝜆! cos𝜑 

                 𝑦 = φ 

Equation 2-7 

Sinusoidal 

projection 

transformation 

Where 𝜑 is latitude, 𝜆 is the longitude and  𝜆! is the central meridian. 
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Figure 2-2: Map projections for retinotopic and visuotopic coordinates 

A-B, Azimuthal (polar) plots are used to represent the reconstructed retina on a flat 
surface, as these facilitate the projection of a more than a hemisphere. Plots here have a 
𝜑! of 22˚ (equivalent to an adult retina). However, using this projection method, it is 
only possible to preserve either distance, by using an equidistant plot (A), or area, by 
using an equal-area plot (B), but not both. As can be seen by the size of the orange 
circles, which are of identical shape and size on the sphere. C, For representing a 
hemisphere of visual space, the plot with the least distortions is the orthographic plot, 
which here is rotated to show the area above the pole. The downside of this projection 
method is that it cannot be used to represent more than a hemisphere, and can therefore 
not be used for retinal plots. D, The sinusoidal projection is useful for representing a 
full sphere, such as that of the entire visual field, but does introduce some distortions 
around the periphery. This example is plotted for the 310˚ of mouse vision (notice that 
New Zealand is missing as it’s behind the mouse). E, Schematic of a standard adult eye, 
illustrating how the lens refracts rays reaching the retina, so that the angle 𝜙 on the 
retina represents the angle γ in visuotopic coordinates. 𝜙! in this example represents the 
colatitude of the retinal rim. I.e. for an adult retina this means that it is possible to 
project a visual field of 180˚ to the 224˚ of the retina.  
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2.3 Analysing the Retina 

Although the transformations above are essential for representing the retina in print, all 

of the analysis was done using the original spherical coordinates and the distortions 

involved in the transformations will therefore not impact on the analysis, but merely 

influence the appearance of the examples. The mean location of the data points on the 

retina was established by using the Karcher mean, which finds the point with latitude 𝜑 

and longitude 𝜆 that has the lowest sum of squared distances to a group of points 

𝜑! , 𝜆!  on the surface of a sphere as given by: 

 

𝜑, 𝜆 = argmin
!,!

𝑙! 𝜑, 𝜆,𝜑! , 𝜆!

!

!!!

 
Equation 2-8 

Karcher mean 

 

2.3.1  Isodensity Contour analysis 

To plot isodensity contours to different levels of the density distribution, we must first 

find the densest area of label. For the retinae that are completely sampled, the density 

was found by using Kernel density estimation (KDE) for data points on a sphere by 

using the following kernel function: 

 

𝐹 !,!,!!,!!;  ! = 
𝜅

4𝜋 cosh 𝜅 exp 𝜅 cos 𝑙 𝜑, 𝜆,𝜑!, 𝜆! =
𝜅

4𝜋 cosh 𝜅 exp 𝜅𝑟 ∙ 𝑟!  

 

And                𝑓(!,!;!) =
!
!

𝐹((𝜑, 𝜆,𝜑! , 𝜆!; 𝜅)!
!!!  

Equation 2-9 

Kernel Density 

Estimate  

where 𝜅 is the density parameter with 𝑟 and 𝑟! representing the Cartesian coordinates 

of the spherical coordinates 𝜑, 𝜆   and  (𝜑!, 𝜆!) on the sphere. The density at the point 

𝜑, 𝜆  is found by using the function 𝑓(!,!;!) 
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To calculate the density measures for plotting contours on partially sampled retinae (see 

section 2.5.3), we have had to use a Kernel Regression Estimation (KRE) method that 

interpolates the missing data points from unsampled areas by using a modified 

Nadaraya-Watson estimator, according to: 

 

𝑦(!,!;!) =
!((!,!,!!,!!;!)

!
!!! !!

!((!,!,!!,!!;!)!
!!!

  

Equation 2-10 

Kernel 

Regression 

Estimate  

𝜅 is set as the minimal summed squared error 𝑦! − 𝑦! 𝜑! , 𝜆!; 𝜅
!!

!!! ,  

where 𝑦! !!,!!;!  is the KRE of  𝑦! 

 

 

Having density estimates for the entire retina, we can plot isodensity contours by 

excluding 5%, 15%, 25%, 50%, 75% & 95% of the least dense cells, which enables us 

to calculate the size of the isodensity contours in degrees squared. However, as the size 

of the retina changes with age, the area contained within each contour is then 

normalised to the size of the retina, which is calculated by using:  

 

𝐴 = 2𝜋(1− cos𝜑!𝜋/180))×(180/𝜋)! 
Equation 2-11 

Retinal area  
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Figure 2-3: Comparison of contouring methods 

To verify that there is no difference between the partial and complete sampling 
strategies and no discernible difference between the contouring methods, 10 retinae 
were sampled using both strategies and the respective contouring algorithm was used to 
plot isodensity contours. Next the size of the partially sampled KRE contours was 
normalised to the fully sampled KDE contours and plotted. Bar represents the mean and 
the boxes show Standard Deviation. The Error bars represent the spread of the data. As 
can be seen from the plot, no bias is present in either direction. 
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2.4 Orienting the Retina 

2.4.1  Injection of Dextrans into the dLGN 

To orient the retina we needed a way of labeling the entire ipsilateral projection in the 

ventral-temporal crescent (See Figure 3-3) and thereby establishing the location of the 

vertical meridian by aligning the binocular zone in visual space (Figure 3-4). 

Animals were anaesthetized using Ketamine/Xylazine (for doses, see Table 2-1). For 

injections into the dLGN, a skull flap was drilled and cortex was aspirated using suction 

to reveal the thalamus either unilateral or bilaterally. Once the thalamus was revealed, 

Fluorescein-conjugated dextran (Fluoro-Emerald) or tetramethylrhodamine-conjugated 

dextran (Fluoro-Ruby) (5% w/v; 10,000MW; D1820, D1817; Invitrogen) was pressure-

injected into right and left thalamus, respectively (for schematic see Figure 3-3A). Glass 

pipettes used for injection had a 120 µm internal diameter and tip diameters of 30-100 

µm. Multiple injections were made into the thalamus with total volumes injected into 

one thalamus ranging between 50 nl and 250 nl. Following surgery, the cavity from 

aspiration was filled with absorbable gelatine sponge, the skull-flap replaced and the 

skin sutured. Animals were allowed to recover and left for 24-48 hours before perfusion 

fixation 

2.4.2  Marking of muscle insertions onto the eye 

To investigate the orientation of the eye, the insertions of the superior, inferior and 

lateral rectus muscles were marked onto the retina (Figure 3-1) by passing a needle 

coated with Fluoro-Emerald or Fluoro-Ruby (5% w/v) through the sclera into the retina 

at the centre of the muscle-insertion prior to dissecting the retina, as described above in 

section 2.1.5 
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2.5 Investigating topography using retrograde tracing from the SC 

 

2.5.1  Injection of Fluorescent Microspheres. 

 

5-10nl of red or green fluorescent latex microspheres (RetroBeads; Lumafluor, USA), 

diluted 1 in 2 with saline solution, was injected using a glass pipette with an inner 

diameter of 120 µm and an outer diameter of 800 µm (Plowden & Thompson, UK) with 

a 10-20µm diameter tip size, pulled on a Flaming/Brown micropipette puller (Sutter 

Instruments, USA).  The red and green beads were pressure-injected into the left 

superior colliculus at varying ML and AP positions with reference to medial and 

posterior edge of the superior colliculus and were of varying AP or ML separations of 

between 50µm and 2000µm. All injections were made using pressure and performed 

through an epifluorescent microscope (Leica Microsystems, Germany) to visualise the 

injection sites. In P0 and P2 animals, injections were made transcranially. In animals 

between P4 and P22, a craniotomy was performed and injections were made through the 

dura into the superior colliculus. For adult animals and for anterior injections in older 

neonatal animals (P8-P22), a craniotomy was performed and the cortex was aspirated to 

reveal the surface of the superior colliculus. All injections were placed with reference to 

the vasculature at the midline and posterior border of the SC and injections were angled 

to be perpendicular to the surface of the SC. One assumption of the bead injection 

analysis is that the beads are taken up equally by all cell types and without spatial bias. 

Procedures may have been performed with a variation of ±8 hours.  
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The fluorescent microspheres are taken up by the axon terminals and transported to the 

cell soma in the retina, where the microspheres fill up the soma, which can therefore be 

visualised using epifluorescence microscopy (Katz et al., 1984; Katz and Iarovici, 

1990). The weakness of this method is that there is a possibility of the microspheres 

being taken up by axons passing through the area (Katz et al., 1984). To prevent this 

injections were limited the superficial layers of the SC as not to penetrate into the 

stratum opticum (SO), where there is a possibility that the beads might be taken up by 

fibres damaged by the injection. Injections that extended through the SO were not used 

in the analysis. The label in the superficial layers should therefore only be taken up by 

axons with branches into the area of the injection site. 
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Figure 2-4: SC bead injections 

A, Schematic of injection procedure and resulting label. Red and green retrobeads are 
injected sequentially into the superficial layers of the SC with varying mediolateral or 
anteroposterior separations. B, Image of 150µm thick parasagittal section through the 
SC of an adult animal showing the paired injection sites through the depth of the SC 
SGS. Scale bar is 100µm. C, Image of resulting label in retina from injections in B. 
Scale bar is 100µm. D-F, Measurements of injection sites from sections as in B, 
showing depth (D) and diameter (E) of injections and the angle relative to the surface 
(F). Line is mean and error bars are SEM.    
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2.5.2  Collicular Analysis. 

After having removed the eyes, the skull was cut open, the whole brain was carefully 

removed and the superior colliculus exposed by cutting away cortex or removing 

gelatine sponge if cortex was aspirated during surgery. 

 

Brains were imaged at 4.6x using a Leica epifluorescence photomicroscope. The AP 

position of the injection site was determined by measuring the distance from the back of 

the SC and the ML position by measuring distance from the midline using ImageJ. 

Subsequently, a vector connecting the paired injections was drawn pointing toward the 

more posterior injection in animals with AP separations. Animals where there was a ML 

offset of more than 500µm were not used in the analysis of paired injections, but treated 

as single injections. Subsequent to being imaged, the brains were embedded in 2% 

gelatine; post fixed in 4% paraformaldehyde and sectioned in 150µm slices 

parasagittally for injections separated along the AP axis and coronally for injections 

separated along the ML axis. The slices were mounted in Fluoromount and imaged at 

10x magnification using filters for TRITC and FITC to assess the angle, diameter and 

depth of the injections and to verify that the injections did not extend into the stratum 

opticum. This analysis was done for all the adult animals and for a subset of each age. 

For this purpose, some brains were also imaged whole using a 2-photon microscope 

(Prairie Technologies, USA). However, due to the depth and brightness of the injection 

sites, the most reliable way of determining the depth, diameter and angle of the injection 

was from sectioned material.  
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Age AP size ± SD ML size ± SD 
0 1910 104 1800 140 
2 1920 92 1860 105 
4 2000 61 1800 93 
6 1980 89 1850 160 
8 1890 98 1840 91 
12 1920 64 1890 109 
16 1970 31 1880 70 
22 1970 54 1860 71 
60+ 2072 42 1908 60 

Table 2-4 Measurements of the size of the SC through development 

Measurements were done from images of whole mount brains with the cortex removed. 
Because of the medial and posterior curvature of the SC, these measurements are 
probably a slight underestimate. The measurements represent the size at the widest 
(central) and longest (medial) part of the SC.  
 

2.5.3  Retinal Analysis. 

Retinae were examined using a Zeiss epifluorescence microscope with excitation filters 

for red (580nm) and green (510nm) wavelengths in a Camera Lucida setup using in-

house software. To prevent emission of red in the green channel, a band-pass filter of 

545nm was used to plot green label. For the sampling, a 200x200µm grid was 

superimposed onto the retina, which was used for aligning the high-power views across 

the retina. The outlines of red and green fluorescent cells were either traced using a 1 in 

4 sampling strategy using a 200x200 µm sampling box, or sampling every grid point. 

The retinal outline was traced at low magnification (2.5x) and the cells were traced at 

high magnification (25x) using neofluor lenses.  

 

The presence of double-labelled cells was defined as cells marked in both channels 

independently that are separated by no more than 10 pixels (~5µm). Once picked out by 

the software, the cells were visually verified to have similar cell morphologies. The 

retinae were initially analysed using Systat (Systat Software, USA) and Matlab 

(Mathworks, USA) to find the extent of label and the 10% and 20% isodensity contour 

lines using kernel density estimates. In sparsely sampled retinae, this was done by 
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interpolation between sampled grid points to simulate a fully analysed retina. Following 

the isodensity contour analysis, the centre of the 20% contour was found and used to 

plot the position of the label. The relative separation of the centres of gravity of the red 

and green label was also measured, for comparison with the corresponding separations 

in the SC. However, due to the variability in dissections this proved to not be the 

optimal way of determining the correct locations on the retina. As a result of this, we 

developed the Retistruct algorithm, as described in section 2.2.1 . One consequence of 

this was that all the analysis described above had to be done in spherical coordinates. 

The resulting analysis methods are described above in section 2.3. 

 

2.5.4  Nearest-Neighbour Analysis. 

The Nearest Neighbour analysis was performed using Matlab to determine the 

percentage probability that any two adjacent cells have the same colour. This 

probability is a good measure for order in the topographic projection, since in a fully 

ordered topographic map two adjacent cells in the retina would also be adjacent in the 

SC.  

 

The distances from a cell to its neighbours are calculated using the great angle distance 

𝑙! (Equation 2-2) and its nearest one is found. 𝑙!"# = argmin(𝑙!). Next the proportion of 

cells that have the same and opposite colour as their nearest neighbour is calculated for 

each colour (𝑁𝑁!"#$   and  NNopposite, respectively) and the nearest neighbour measure is 

the mean of the values for both colours, as given by: 

 

𝑁𝑁 =
𝑁𝑁! + 𝑁𝑁!

2                       where                                𝑁𝑁 = 1−
𝑁𝑁!""!#$%&
𝑁𝑁!"#$

 

Equation 2-12 

Nearest 

Neighbour 

function 

 

A nearest-neighbour (NN) value of 1 therefore signifies a fully ordered projection, 

whereas a value of 0.5 signifies an unordered projection. The measure, however, can be 

skewed if there are more labelled cells of one colour than the other, giving values of 
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<0.4 To solve this, data simulations of varying ratios of label were done to show that if 

the ratio of label from the two injections is less than 7 then the mean NN of the two 

injections is representative of the overall NN value of the retina. Therefore, retinae with 

a label ratio of  >7 were not used for this analysis.  

Curve fitting of Nearest Neighbour data  
To quantify NN, data points were plotted as a function of the separation of the paired 

injection sites in the respective SC and fitted with the following logistic function, which 

was initially used to describe population growth (Weisstein, 2012e) and has since been 

widely used for description of both psychometric data and pharmacological dose-

response curves. 

 

𝑦 = 1+
−0.5

1+ 𝑥
𝜏!

 
Equation 2-13 

logistic curve 

Where x is the injection site separation,  𝑥!!!.! is the value at which the label is 90% 

separate, 𝜏 is the inflection point and 𝜅 is the steepness of the function 

 

This function will yield an S-shaped logistic curve that generally has an initial period 

with no increase (the minimum asymptote), which is followed by an exponential 

increase to an inflection point, from where the curve turns to start saturating before 

eventually stabilising at saturation (the maximum asymptote). In order to describe the 

data from the nearest neighbour analysis, the classical 4-parameter logistic curve has 

been modified to a 2-parameter function (Equation 2-13) by constraining the asymptotes 

so that the minimum asymptote is at 0.5 (complete overlap of label) and the maximum 

asymptote is at 1 (complete segregation of label). This also means that the inflection 

point is always at at the midpoint between the base level and saturation (y=0.75). A 

nearest neighbour (NN) value of 0.9 is defined as being two separate foci of label, as 

this value represents the saturation point of the fitted function (Equation 2-13) and thus 

signifying a precise projection.  



Chapter 2 - Material and Methods 

 

 

69 

2.6 Software Used for Analysis 

Retinae were reconstructed and projected using custom-made software Retistruct 

(Sterratt et al., n.d.), which has been implemented in R (R-Project, available at 

http://www.R-project.org/). This software was developed by David Sterratt (the 

University of Edinburgh). The isodensity contour analysis described above was also 

performed using this software.  

 

Retinal flat-mount images were acquired using a Zeiss AxioPhot2 microscope and 

initially processed using the associated AxioVision software (Zeiss). Collicular whole-

mount images were acquired using a Leica stereoscope and initially processed using 

Volocity software (Perkin-Elmer). Following acquisition, images were further 

processed using the Fiji release of ImageJ (NIH, USA). Specifically, the stitching of 

high-power retinal images into retinal whole-mounts was performed using the MosaicJ 

plugin. Thresholding and detection of label was done using built-in functions for image 

adjustment and processing. ImageJ was also used for marking up the edges of the retina 

in images of flat-mounted retinae before parsing the images in png format and 

associated ImageJ ROI files to Retistruct. 

 

Statistical analysis and graphs were mainly generated using Prism (v.5.0a; Graphpad 

Software) and Matlab (r2012a; Statistics Toolbox, Mathworks) 

 

The Nearest Neighbour values were calculated using custom-made routines for finding 

nearest neighbours in spherical coordinates, which have been implemented in Matlab. 

These routines were partially based on code from the Mathworks repository (URL). 

Specifically code for finding nearest neighbours on a sphere (URL). The curve fitting 

and statistical analysis of the Nearest Neighbour data was also done using Matlab 

(r2012a; Curve Fitting Toolbox, Mathworks) with the equations in section 2.5.4.  

 

Diagrams and figures were generated by using Illustrator and Photoshop (CS5; Adobe 

Systems). 
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2.7 Statistical Analysis 

2.7.1  Comparing datasets 

The data from isodensity contours was firstly tested for normality using a Kolmogorov-

Smirnoff (KS) test and if the Dallal-Wilkinson-Lilliefor (DWL) p-value was larger than 

0.05, then the dataset was deemed as being normally distributed around the mean. For 

normally distributed datasets the datasets were compared using One-way ANOVA with 

a Bonferroni post-hoc test with α=0.05. If p <0.05, then the datasets were deemed as 

being significantly different. Throughout this thesis, the levels of significance are 

defined as follows: p<0.05 = *; p<0.01 = **; p<0.001 = *** 

 

In cases where datasets were not deemed as being normally distributed around the mean 

(KS-DWL p<0.05), then a non-parametric test is needed to be able to correctly compare 

the datasets. In these cases a Kruskal-Wallis (KW) test with a Dunn’s post-hoc test was 

used to compare the datasets, as this test assume neither normal distribution of label nor 

assume equal variances. 

2.7.2  Analysing NN Curve fits  

Establishing the optimal function for describing a dataset is not straightforward. There 

are, however, several methods for evaluating the goodness of fit for any given function. 

 

To evaluate the fits to the nearest neighbour data when plotted as a function of injection 

site separation using the logistic function described above (Equation 2-13). 

Fits were generated using a bootstrap method (Foster and Bischof, 1987; 1997) 

implemented in Matlab (r2012a; Matlab Curve Fitting Toolbox, Mathworks). 

 

The conventional way is to report the coefficient of determination (R2). If R2 is close to 

1.0, then the fit is good and gives a reasonable description of the data that can be used to 

make predictions. If the fit is <0.5, then another fit should be considered. However, due 

to the constraints of this method not giving accurate values for functions with a slope 

close to 0, I have also opted for reporting the sum of squared errors (SSE) of the 
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residuals, which describes the spread of data around the fitted curve. Since the SSE 

represents the mean distance from any point to the fitted function, a perfect fit will have 

an SSE value of zero. In general, a reasonable fit, which can be used to make confident 

predictions from the function is one where SSE<0.1. One potential problem with both 

R2 and SSE as measures of goodness of fit is that neither of them account for any 

asymmetries in the residuals of the fitted function. For this reason, the residuals are 

always showed next to any fits, so that the data can be assessed visually as well (For an 

example of these plots, see Figure 3-6J).  

 

In order to compare the fits of different datasets, to establish whether there are any 

significant differences between the fits, I have used a two-tailed analysis of the slope 

using the 95% confidence intervals.  
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Chapter 3 Anatomy of the Adult Retinocollicular Projection  

3.1 Introduction 

The mature visual system features complex circuitry to convey and compute visual 

inputs. At the simplest level, the primary projections from the retina are essentially 

topographic in nature. Since the nature of this topography is so crucial for 

understanding vision, this chapter looks at the precision in the mature retinocollicular 

projection and how topography can be examined by using anatomical techniques.  

 

In studying the visual system, there are inherent disparities between the coordinate 

systems used in physiological and anatomical studies. This disparity arises as 

physiological studies mostly rely on presenting stimuli on a flat screen that is tangential 

to the visual space of the mouse, whereas anatomical studies rely on anatomical markers 

and features.  The ability to compare experimental data from physiological and 

anatomical studies is crucial in being able to determine the relation between the two and 

ultimately their relation to actual visual space. For these reasons we have developed 

algorithms for translating these anatomical coordinates onto visuotopic coordinates by 

reconstructing dissected and flat-mounted retinae into their original spherical shape. Not 

only does reconstructing retinae enable the translation into visuotopic coordinates, it 

also controls for changes in the shape of the retina with age and minimises variability of 

retinal dissections, thereby making it possible to standardise retinal space (Sterratt et al., 

n.d.).  

 

In this chapter, I show data that verifies several aspects of the algorithms by relating 

them to previous studies and then proceed to use this software to firstly solve several 

problems relating to the orientation of the eye in visual space and secondly to create a 

standard retinal space. This standard retinal space is then used for mapping the 

topography of the retinocollicular projection in adult black C57BL6/J and white CD-1 

mice. In this study we have used retrograde transport of fluorescent beads from discrete 

injections into the SC to study precision and topography in the retinocollicular 
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projection. This approach firstly enables thorough quantification of the projection and 

makes it possible to examine even the projections from across the whole retina. 

3.2 Results: Orienting the retina 

 

The mouse retina is remarkably uniform and, apart from the optic disc, lacking in 

distinguishing features. For this reason there is no obvious way of verifying the 

orientation of the retina. In the past, several ways of determining the orientation of the 

retina have been used. In adult animals, a good way of defining dorsal is to make a cut 

into the cornea orthogonal to the angle of the head, however, since the angle of the head 

changes significantly during development, this method is not reliable for developmental 

studies. Another method is to use the insertions of the extraocular rectus muscles into 

the globe of the eye (e.g. Plas et al., 2005), however, as I will demonstrate, this is 

neither an easy nor very reliable method. A further method is to assume that the 

orientation of the whisker-rows is nasal (Hindges et al., 2002), the problem here being 

that as the animals grows, this changes considerably. Moreover, since mice have their 

nose pointing down, this may represent anatomical nasal, but is not a reliable marker for 

establishing the visual axes of the mouse. Considering all the alternative methods, the 

method we chose is to make an orienting cut into the cornea at the centre of the 

nictitating membrane and define this as the nasal retina. The location is easy to identify 

at all postnatal ages and approximates the angle of the eyelids. Since all the measures 

vary slightly, the questions that remain to be answered are how this fiducial mark relates 

to the insertion of the eye muscles and to the visuotopic projection of the retina.  
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3.2.1  Muscle insertions 

To examine the orientation of the eye and to verify the reliability of the nictitating 

membrane cut, we labelled the locations of the insertions of superior, lateral and inferior 

rectus into the globe of the eye onto the retina (Figure 3-1A; see Methods for 

procedure). The retinae were oriented by enlarging the initial nasal cut through the 

nictitating membrane towards the optic disc. Since the size and direction of this 

subsequent cut was variable, the initial peripheral incision was used as the nasal 

reference point. The retinae were then reconstructed and plotted in an azimuthal 

equidistant polar projection and the vectors connecting the insertion points and the optic 

disc were plotted (Figure 3-1B). Once in a standard space, the muscle insertion points 

(n=33) from all the retinae (n=17) were plotted in the same plot and the vectors 

connecting the Karcher mean of each muscle insertion and the Karcher mean for the 

optic disc location were plotted (Figure 3-1C) with the result that the mean angle of the 

lateral rectus vector, at 178˚, is directly opposite the nasal cut. The superior rectus is at 

91˚ and the inferior rectus is at 277˚ (where nasal is at 0˚). The variability in muscle 

insertion locations is due to difficulties in determining the middle of the insertion, and 

as a result the longitudinal distribution of the label approximately reflects the width of 

the muscle (Shah and Crair, 2008a). 
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Figure 3-1: Muscle insertions 

A, Retinal flat-mount with muscle-insertions for superior (red), lateral (green) and 
inferior (blue) rectus muscles labelled. Blue lines indicate the stitching of the cuts. N 
denotes nasal cut. Scale bar is 1 mm. Superior right plot is of the distortions introduced 
by stitching the retina and the inferior plot represents the expansion and contraction of 
all segments. (See methods Figure 2-1 for explanation)  B, Azimuthal equilateral polar 
projection of flat-mount in A with vectors connecting muscle insertions to the optic 
disc. C, Composite polar plot of 12 retinae, reconstructed using same method as in B. 
Dashed lines are vectors for individual retinae and solid lines connect the Karcher mean 
insertion to the mean OD. D, Distribution of angles of muscle-insertion vectors for 
superior rectus (SR), lateral rectus (LR) and inferior rectus (IR). Line represents the 
mean and error bars are SD. E, Mean vectors in C represented on the surface of the 
retinal hemisphere. 
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3.2.2  S-Opsin expression 

Another method of examining the orientation of the retina is to look at the distribution 

of different cell types. The different photoreceptor cones have been reported to have 

quite distinct distributions. For example, cones expressing only medium wavelength 

opsin have been reported to be located mainly in dorsal retina, whereas cones 

expressing short wavelength opsin (S-opsin) are more frequent in ventral retina (Szél et 

al., 1992; Applebury et al., 2000; Haverkamp et al., 2005). Therefore, in order to verify 

the orientation of our retinal dissection, retinae were stained with a polyclonal antibody 

against shortwave opsin (S-Opsin), and as can be seen from Figure 3-2E, S-opsin cones 

have a very distinct distribution pattern in the retina, with high density ventral, low 

density dorsal and an abrupt transition. The images in Figure 3-2A-B highlight some of 

the difficulties in obtaining consistent staining of large tissues, such as the retina. 

Especially when penetrance differs between peripheral and central retina (cf. the 

staining for heavy neurofilament (SMI-32) in Figure 2-1). However, when images are 

thresholded individually prior to stitching it is possible to consistently detect and 

quantify the label irrespective of bleaching and differences in staining intensity. 

Examples of this are shown in Figure 3-2C-D, where individual cone locations are 

plotted in blue. This method reasonably reliably detects individual cones based on 

thresholding. Although there are some slight inaccuracies, I find that using this method 

is consistent with measuring the density from individual high-power images, such as 

those in Figure 3-2E. Moreover, I find that the density is in the order of 10,000 

cells/mm2 in ventral retina and between 500-600 cells/mm2 in dorsal retina, which is 

consistent with results from Haverkamp et al. (2005). 
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The S-opsin density transition has previously been shown to be at an angle to the retinal 

nasotemporal axis (Szél et al., 1992), which would make it a potential marker for 

orienting the retina, if this angle can be determined. When retinae are stained with this 

antibody and reconstructed, the transition from high to low density lies at an angle of 

15.1±7.2˚ (n=11) to the nasotemporal axis with the transition being ventral to the level 

of the optic disc at the nasal pole and dorsal at the temporal pole. The transition is 

generally dorsal to the optic disc, but within the uncertainty involved in reconstructing 

the retina, it is coincident with the optic pole (offset: 4.3±2.2˚) (Figure 3-2 C-D), which 

is consistent with earlier reports by Szél et al. (1992) that this angle may correspond to 

the horizontal meridian (see Discussion). 
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Figure 3-2 S-opsin distribution 

A-B, Stitched images of retinal flat-mount and reconstructed azimuthal equidistant plots 
of left and right retina from the same animal stained with antibody against short 
wavelength opsin. C-D, Detection of label in A-B, to clearly show the transition from 
high ventral density to low dorsal density. Scale bars in A-D are 1 mm. E, High-power 
images of label from dorsal, central and ventral retina in A, to show the different 
distributions of staining. Dashed line is the line of the transition. Scale bar is 100µm. 
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3.2.3  Measurement of ipsi- and contralateral retinal projections  

Reconstructing the retinae of individual animals that have had bulk unilateral injection 

of retrograde tracer injected into primary subcortical visual areas enables comparisons 

of decussation patterns across animals. The use of standard retinal space allows both the 

assessment of individually incomplete bulk injections and also the population averaging 

of such injections. The reconstruction method has been used to assess the crossed and 

uncrossed projection from the retina to the dLGN across multiple animals. To label the 

projection, the dLGN was filled with dextran-tetramethylrhodamine (Fluoro-Ruby) or 

dextran-fluorescein (Fluoro-Emerald), as illustrated in Figure 3-3A (see Methods for 

details). While most injections were unilateral, several bilateral injections were also 

made (e.g. Figure 3-3B). The retinae were dissected as described and the Retistruct 

program was used to reconstruct the retinae. Retinae were analysed either through the 

Camera Lucida based Scope program at 20x (e.g. Figure 3-3E) or following imaging at 

10x using ImageJ (e.g. Figure 3-3B). 

  

To quantify the distribution of label in the retinae, kernel density estimates (KDE) of the 

underlying probability of data points appearing at any point in the retina was calculated 

(Equation 2-9). These KDE measures are then represented by plotting isodensity 

contours excluding 5% of the points with the lowest density (Figure 3-3C-D; Methods). 

In cases where cells were only counted within defined boxes on the flattened retina, a 

different contouring approach, kernel regression (KR) (Equation 2-10) was used as the 

source for the contouring algorithm, but with the same isodensity contours plotted as for 

the KDE contours. As expected, this analysis shows that the label from the ipsilateral 

projection is restricted to the ventrotemporal crescent, whereas label from the 

contralateral projection is distributed across most of the retina. 

 

To measure the extent of the ipsilateral projection, composite plots of data from 12 

different animals were made, which shows that the average ipsilateral projection 

occupies a crescent, where the central edge of the 5% isodensity is 64.1±1.6 degrees of 

arc from the optic pole and spans 134.1±1.5˚ of the rim extending from 22.1±1.3˚ above 
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the temporal pole to 22.0±1.5˚ past the dorsal pole (Figure 3-3F). When a composite 

plot of the contralateral label was made, this picture is not as clear, but when measuring 

the peripheral edges of the 5% isodensity contour, and thereby examining the area with 

the least label in each retina there is a trend towards the ventrotemporal retina having a 

lower density of contralaterally projecting cells (Figure 3-3G). This less dense area is 

further from the retinal pole (81.0±2.5˚) and OD (81.5±3.9˚) (Figure 3-3H) and tends to 

span a larger fraction of the rim of 144.7±9.3˚. As can be seen from the scatter in the 

measurements in Figure 3-3I, the distribution is not as consistent as the ipsilateral 

projection and any inferences made from plots such as this are therefore highly 

speculative. With these considerations in mind, it still appears that the extent of the 

contralateral crescent extending above the temporal pole, at 18.9±6.6˚, is equivalent to 

that of the ipsilateral crescent, whereas the extent of the contralateral crescent beyond 

the ventral pole at 35.8±9.4˚ is larger than that of the ipsilateral crescent (p = 0.0035, 

unpaired t-test).  
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Figure 3-3: Measurements of the ipsilateral and contralateral projections 

A, Schematic of the bilateral injections into the dLGN, which label both contralateral 
and ipsilateral projections in both eyes. B, Thresholded images of the ipsi- and 
contralateral label in one eye resulting from the injections illustrated in A. C-D, 
Azimuthal equidistant plots of the ipsilateral and contralateral label in B. Yellow 
diamonds represent the Karcher mean of all the label and the yellow squares are the 
peak density of the Kernel. Isodensity contours were plotted using kernel density 
estimates (KDE). Yellow circle is the OD. E, Flat-mount of left retina with both 
contralateral (green) and ipsilateral (red) label. The contralateral label was only partially 
sampled using a one-in-nine sampling strategy in a 150µm grid. The ipsilateral label 
was sampled fully. Scale bar is 1 mm. F-G, Composite of ipsilateral label (F) and 
contralateral label (G) (n=12). The angles plotted (dashed lines) represent the mean 
extent of the label, defined by the 5% KDE or KRE isodensity contour for fully or 
partially sampled retinae, respectively. H, Distance to the central edge of the ipsilateral 
crescent to the optic axis and the OD. I, Total extent of crescent and amount beyond 
temporal pole and dorsal pole for ipsilateral label (blue) and contralateral label (orange) 
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3.2.4  Transformation to visuotopic coordinates 

Since the central edge of the region in the retina labelled by the projection to the 

ipsilateral dLGN is expected to correspond to the vertical meridian in the mouse’s 

visual field (Dräger and Olsen, 1980; Coleman et al., 2009), we have mapped the retina 

onto visual space to test whether this holds true the observed orientations of the retina. 

The mapping of visual space onto the retina is determined by the orientation of the optic 

axis and since light is refracted as it passes through the lens, the optics of the eye are 

important as well. The shape of the eye and the lens have been described (Remtulla and 

Hallett, 1985; Schmucker and Schaeffel, 2004). However, since there are considerable 

complications associated with the calculations of refraction for the full spectrum of 

wavelengths of light, we have used the approximation that the visual field for each eye 

is 180˚. Therefore for the projections, we have set the optic axis as 0˚ and then projected 

the 112˚ of retinal space from there to the 90˚ of visual space in concentric circles (see 

Methods section 2.2.5 and Figure 2-2 for details).  

 

The optic axis is close to but not coincident with the projection of the optic disc (See 

Figure 2-2A). Opthalmologically, the location of the optic disc in anaesthetised mice 

has been estimated to be projected to a point 60° lateral to the vertical and 35° above the 

horizontal meridian (Dräger, 1978). Alternatively, the optic axis has been reported to be 

64˚ lateral to the vertical and 22˚ above the horizontal meridian in awake behaving mice 

(Oommen and Stahl, 2008). To evaluate these two projections, we have transformed 

retinal space into visuotopic space (Figure 3-4B; See Methods section 2.2.5 for details). 

In particular, we focus on how the retinal position of the ipsilateral decussation line  

(Figure 3-3F) maps onto the vertical meridian of visuotopic space (Bishop et al., 1962).  

An approximate diagram of this projection through the horizontal plane of the mouse’s 

head is shown in Figure 3-4B. This diagram describes how the rays from the 

ventrotemporal crescent are refracted through the lens and due to the orientation of the 

optic axis of the eye (solid grey line), these rays are projected across the visual midline 

and thereby enable binocular vision. It is worth noting that this diagram is an 

approximation and varying the eye orientation and the distance of the “visual space” 



 Chapter 3 - Results: Anatomy of the Mature Retinocollicular Projection 

  

 

83 

circle will change the amount of overlap. This is also why the rays in the diagram are 

not evenly spaced on the “visual space” circle.  

 

When plotting the decussation line to visuotopic space using the optic axis coordinates 

of 64˚ azimuth and 22˚ elevation (Oommen and Stahl, 2008), the decussation line lines 

up with the vertical meridian with only limited overlap in upper visual field (Figure 3-

4C). If, in contrast, the decussation line is projected using the OD coordinates of 60˚ 

azimuth and 35˚ elevation (Dräger, 1978), there is a gap in the central visual field 

(Figure 3-4D). The decussation line can also be seen in the lower visual field if the 

contralateral label is projected with the optic axis at 64˚ azimuth and 22˚ elevation 

(Figure 3-4E), although there is a larger overlap of red and green label, as would be 

expected from the further distance of the contralateral crescent from the optic pole 

(Figure 3-3G). 
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Figure 3-4: Binocularity of ipsi and contralateral label 

A, Azimuthal equidistant projection of left and right retinae with ipsilateral (top) and 
contralateral (bottom) label from injections of red and green dextran into left and right 
SC respectively. B, Schematic illustrating how the label of the retinae in A is projected 
to visuotopic coordinates using an approximation of the optics of the eye and of the 
estimated projection of visual space onto the retina (see Figure 2-2E). The thick lines 
represent rays that are incident with the ventrotemporal crescent. Note that the binocular 
zone in this diagram is expanded slightly for emphasise and the “visual field” sphere 
has been shrunk for convenience (in reality the eyes are both closer to the centre of the 
sphere and smaller.  C-D, Orthographic projections rotated to 50˚ elevation of the 
ipsilateral label in A. Projection in C is plotted with the optic axis (*) at 64˚ azimuth and 
22˚ elevation, whereas projection in D is plotted with the optic disc at 60˚ azimuth and 
35˚ elevation. E, Sinusoidal projection of contralateral label in A, with optic axis like 
that in C. In C-E, N T D V represent where the retinal poles are projected in visual 
space.  
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3.2.5  Orienting visuotopic space 

Having verified the orientation of the optic axis, we wanted to examine the orientation 

of the eye in visual space. The mean muscle insertion vectors (Figure 3-1F) were 

therefore projected to visuotopic coordinates and plotted in an orthographic plot with 

the optic axis at 64˚ azimuth and 22˚ elevation (Oommen and Stahl, 2008) in Figure 

3-5A. In this plot, the lateral rectus vector runs along the horizontal meridian, the 

superior rectus vector is projected along the vertical meridian in the lower visual field 

and the inferior rectus in the upper visual field is offset from the vertical meridian by 

14˚ of longitude. When plotted as one hemisphere in the sinusoidal plot, it is more 

apparent where in visual space the muscle insertions are and in turn in which direction 

they are responsible for rotating the eye  (Figure 3-5B). 

 

When projecting the distribution of S-opsin from Figure 3-2 to visual space in a similar 

manner, we would expect the transition from high to low density to correspond to the 

horizontal meridian (Szél et al., 1992). Label was projected to visuotopic space and 

plotted in orthographic plots (Figure 3-5C) to measure the angle of the label relative to 

the horizontal meridian inferred from the optic axis position at 64˚ azimuth and 22˚ 

elevation. The transition is on average 6±1.6˚ above the horizontal meridian in central 

visual field and 7.8±2˚ below the horizontal meridian in peripheral visual field (Figure 

3-5F). To establish whether the level of the transition was coincident with the horizontal 

meridian across the entire visual field, the label from both left and right retinae was also 

plotted in a sinusoidal projection (Figure 3-5E). In this plot it is clear that there is a 

symmetry across the two retinae, where the transition from both retinae are at the same 

level in central visual field and roughly the same level in peripheral visual field as well. 

The implications of this will be discussed later. 
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Figure 3-5 Orientation of visuotopic space 

A-B, Orthographic plot (A) and sinusoidal plot (B) of the mean muscle insertion vectors 
from Figure 3-1C projected to visuotopic coordinates. D-E, Orthographic plot of S-
opsin distribution in left and right retinae from Figure 3-2. Showing that the transition is 
almost coincident with the horizontal meridian at the level of the optic axis. E, 
Sinusoidal plot of visuotopic S-opsin distribution, showing the symmetry across the 
entire visual field, with the transition lower in peripheral visual field and higher in 
central visual field. All plots are centred on optic axis (*) at 64˚ azimuth and 22˚ 
elevation. F, Quantification of observations in C-D (n=9). Dashed line at 0˚ represents 
the horizontal meridian. Line is mean and error bars are SEM.  
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3.3  Results: Adult Retinocollicular topographic precision 

In this section we move from discussing the reconstruction and orientation of the eye to 

applying these reconstructions of standard retinae to tackling the problem of quantifying 

the primary projection to the Superior Colliculus (SC).  In order to proceed with 

examining the developmental system, it is necessary to have a handle on the anatomy of 

the mature system. To this means, we examined the topographic precision of the adult 

mouse (from 60 days to a year of age) in two different strains, both commonly used in 

visual research and as a background for many genetic modifications. Firstly we 

examined the topography in C57BL6/J mice. By using paired small (<10nl) discrete 

injections of red and green fluorescent latex beads, we could consistently get an almost 

complete (90%) segregation of label in the retina with injection sites that are separated 

by 98 µm or more (Figure 3-6E). We, moreover, found that a single injection in most of 

the SC resulted in a tight focus in the retina of 2.3±0.3% of the retina, as illustrated in 

Figure 3-6.  We then compare these results to the precision in the CD-1 albino strain. 

3.3.1  Measurement of precision in the retinocollicular projection 

For quantifying the precision in the projection, we have firstly treated the data from 

each of the paired injections, mentioned above, independently to examine how much of 

the retina converges on a point in the SC. To do this, it is assumed that the injections 

can be treated as points on the surface of the SC. This is a reasonable assumption, since 

the injections span the entire depth of the retinorecipient Stratum Griseum Superficiale 

(SGS) of the SC (Figure 2-4D, see Figure 3-6B for example); and they are of relatively 

consistent and small size the mean injection diameter is 57±17µm (Figure 2-4E), which 

is 2.8% of either axis at the centre of the SC). Once the retinae have been dissected, flat-

mounted, analysed and reconstructed, isodensity contours are plotted to exclude 5%, 

25%, 50%, 75% & 95% of the least dense cells using a kernel density estimate (KDE; 

see Methods section 2.3.1 for details).  This analysis reveals that for the mature 

projection, a mean injection covering 2.8% of the axes of the SC results in symmetric 

focus of label with a diameter of 19˚, which is 8.5% of the retina axes (using a value of 

𝜑! = 111.6˚ (Table 2-3), which means that in terms of diameter, there is a 1:3 ratio 

from SC to retina. The relative sizes of the other isodensity contours show that the mean 



 Chapter 3 - Results: Anatomy of the Mature Retinocollicular Projection 

  

 

88 

distribution of label is Gaussian in nature (Figure 3-6H), since the means for contours 5-

75% form a straight line when plotted on a log10-scale (Figure 3-6I). Moreover, just 

looking qualitatively at the examples in Figure 3-6C-D, it is clear that the contours are 

mostly Gaussian and symmetric in all axes, which was confirmed by testing for 

normality using a Kolmogorov-Smirnoff normality test of the coordinates along the 

principal NT and DV axis with the result that p > 0.1 for all the retinae and the label can 

therefore be considered as normally distributed. 

 

An example of typical paired injection sites can be seen as a dorsal view (Figure 3-6A) 

and in a 100µm thick parasagittal section (Figure 3-6B). From the parasagittal section, it 

is apparent that these injections span the entire depth of the SC SGS and since the 

average injection site is 291.4±49.5 µm deep (Figure 2-4D), these are typical injections. 

The diameter of the injection sites also reflects the average size, as the average injection 

has a diameter of 57.6±17.4 µm (Figure 2-4E). The retinal label resulting from the 

injections in Figure 3-6 A&B can be seen in Figure 3-6 C&D. Another factor that may 

influence the measurements is the angle of the injection site, because of this injections 

were done orthogonally to the surface and the average angle is 87.4µm (Figure 2-4F).  It 

is worth noting that even though the injection sites are non-overlapping, there is still a 

band of double-labelled cells (yellow cells in Figure 3-6E) where the two foci of label 

overlap, indicating that there are several RGC axons that branch into both injection 

sites. Moreover, since the double-labelled cells are only present at the overlap of the red 

and green label, and as the distance between the edges of the two injection sites at 46µm 

approximates to the width of the injection sites, this must be the minimum span of the 

axonal arbour for these axons. Because the majority of axons are either red or green, it 

indicates that the average axon arbour spans in the order of 100µm, which is also 

consistent with previous measurements, measuring the average axonal arbour size for 

several different types of RGCs to 100µm (Hong et al., 2011).  

 

In order to examine the order in the projection, we have used the data from paired 

injections in the same animal to calculate the probability of any cell having a neighbour 

of the same colour. If all cells in a retina have a neighbour of the same colour, then this 
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pair of injections has a nearest neighbour (N) value of 1, whereas if the distribution of 

label is random and the two foci of label are completely coincident, this will give an N 

value of 0.5 (See Methods section 2.5.4 for details). If there is significantly less of one 

kind of cells, it is possible to get values of less than 0.5 for that colour. However, since 

the quoted NN value is for a pair of injections the mean of the two colours will reflect 

the overall order of the projection at least for ratios of less than 1:5. These NN values 

are then plotted as a function of the separation of the centre of the SC injection sites.  

 

The best-fit curve for this data is a 2-parameter logistic fit (Figure 3-6J), which is 

defined in the methods (Equation 2-13). Briefly, this function gives two principal 

measures of a curve, the inflection point (𝜅) and the slope of the tangent at this point 

(𝜏). Further measurements that are of interest is the point where the curve saturates, 

indicating that the label is completely segregated. Here I have used the value of NN=0.9 

as this point. This curve offers an accurate fit for the mature dataset (Figure 3-6J) with 

an R2 of 0.89 and the sum of squared errors of the residuals (SSE) of 0.066, which since 

R2 is close to 1 and SSE < 0.1 and the residuals are symmetrical around the zero-line, 

constitutes a reasonable fit. Using this fit, to describe the data, we find that to get two 

foci that are 90% separate (NN=0.9), we need to separate the SC injection sites by at 

least 92.3±22µm, whereas any separation of less than 50µm will result in >90% overlap 

of the resulting label, often with double-labeled cells in the interface between green and 

red label (Figure 3-6E).  
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Figure 3-6: Retrograde tracing from SC 
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Figure 3-6 Legend: Retrograde Tracing from the SC (previous page) 
 
A, Dorsal view of SC showing the paired injection sites of red and green retrobeads. 
Dashed line is the outline of the SC. Scale bar is 1 mm. B, Parasagittal section at the 
level of the injection sites in A. Injection sites span the entire SGS, the edges of which 
are shown by blue outline. Magenta outline is the edge of the SO. Scale bar is 200µm. 
C, Azimuthal equal-area projection of reconstructed retina with label resulting from 
injections in A-B. Top plots represent the entire retina with isodensity contour lines 
plotted to 5%, 25%, 50%, 75% & 95% of peak density (indicated by diamond). OD 
displacement in the reconstruction is 4.3˚ and D, Enlarged view of the central 45˚ of 
retina in C. Also note the band of double-labelled (yellow) cells between the red and 
green foci. E, Original flat-mount of retina in C & D. Grid is colour-coded to show 
compression (blue) and expansion (red). G, Plot of expansion/compression. 𝐸! =
0.044 H, Histogram of the mean amount of retina covered by each of the isodensity 
contours in C. Error bars are SD. I, Scatterplot of the data in H plotted on a log10 scale 
to illustrate the scatter of contour sizes for different injections. J, Overlap of the label by 
nearest neighbour segregation measure plotted against separation of injection sites along 
the AP axis of the SC. Line fits are logistic curves defined by Equation 2-13. The right 
hand plot represents the residuals associated with the fit, which as can be are 
symmetrical around the zero-line. Red dashed line indicates the 95% confidence 
interval for the fitted curves. For this fit the slope is 5.2±2.1; the inflection point is at 
74.9±8.6µm and 90% segregation (y=0.9) is at 98±24µm; with R2=0.89 & SSE=0.066, 
it is a reasonable fit. 



 Chapter 3 - Results: Anatomy of the Mature Retinocollicular Projection 

  

 

92 

 

3.3.2  Quantifying topography  

One aim of reconstructing the retinae is to create a standard space, which would enable 

consistent comparison of data between animals, while not crucial for most of the 

analysis of the projection in Figure 3-6, it is crucial for examining the topography 

within the projection. Figure 3-7 shows a preliminary examination of topography. In 

this figure, the coordinates of the Karcher mean of the label (as indicated in Figure 3-

6E) for each injection was plotted onto a standard spherical retina and projected in an 

Azimuthal equidistant plot. These points are then colour-coded according to the location 

of the injection site in the SC. The anterior-posterior topography is examined in Figure 

3-7A, where anterior injection sites are red and posterior injection sites are blue. 

Likewise, in Figure 3-7B, where medial injection sites are blue and lateral injection sites 

are red. Figure 3-7A clearly shows a progression from red through green to blue when 

looking from temporal to nasal, which is consistent with the nasal retina projecting to 

the posterior SC and the temporal retina projecting to the posterior SC. In Figure 3-7B, 

the transition is less marked, as most of the medial and posterior SC is under sampled. 

There is also considerable scatter in the colours in the ventral-temporal retina, while 

some of this scatter is due to variance in determining the location of the injection site 

and the distortions associated with dissecting and reconstructing the retina, it could also 

reflect the compression of the map in the anterior-medial SC, as suggested by Dräger & 

Hubel (1976). From examining both axes, it is apparent that the map appears to be at a 

15-20˚ angle to the axes of the retina, as defined here by the eyelids and the nictitating 

membrane. Which again is similar to the physiological orientation suggested by Dräger 

& Hubel (1976). 
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Figure 3-7: Retinocollicular topography 

A-B, Composite plots of Karcher mean location of label from retrograde label in adult 
retinae (n = 32 animals). Locations are colour-coded according to the AP (A) or ML (B) 
position of the corresponding injection site, distances are in µm. Blue represents 
posterior (A) or medial (B) SC and red represents anterior (A) or lateral (B) SC. Under 
sampling in ventral-nasal retina is due to sinuses over medial and posterior SC making 
injections in this area difficult. 
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3.3.3  Precision in the Albino Mouse 

Having a description of the wild-type, the next step was then to verify this technique in 

a different strain, so we decided to examine the commonly used outbred albino CD-1 

strain, since some topographic defects have been reported in this strain (Dräger & 

Olsen, 1980). Repeating the same experiments as for the C57BL6/J (Figure 3-6) in this 

strain provided fairly similar results with the main difference being that there is a trend 

towards the projection being less precise.  

 

For the contour analysis, we have quantified the area enclosed by the 5%, 25%, 50%, 

75% and 95% kernel density isodensity contours, and there are no significant 

differences between the two strains (Figure 3-8C). A discrete injection of <10nl 

Retrobeads in an adult CD-1 mouse will result in 2.4±0.4% of the retina containing 

labelled cells (as defined by the 5% isodensity contour), against 2.3±0.2% in an adult 

C57BL6/J mouse. It is a similar story for the other contour levels, and no significant 

differences are found for any contours (see Table 3-1 for values).   

 

Although similarly sized injections label approximately the same area of the retina, 

when measuring the order in the projection using the nearest neighbour measure, there 

appears to be a trend towards the projection in the CD-1 strain being less ordered. When 

plotting the nearest neighbour probability against separation of the collicular injection 

sites and fitting them with a logistic curve (Equation 2-13). It is apparent that although 

there is overlap of label, the differences in the optimal curve fits to the two populations 

indicate that they are subtly different. As can be seen in Figure 3-8F, the curve for the 

CD-1 data is not as steep as the curve for the C57BL6/J data. With slopes of 2.1±1.0 for 

CD-1 and 5.2±1.9 for C57BL6/J, according to the 95% confidence interval of the fits 

the slopes are different. However, due to the overlap of the label distributions, there is 

considerable overlap of the 95% confidence intervals at the inflection points of the 

curve, it being at 92.3±22 µm for CD-1 and at 74.9±8.6 µm for C57BL6/J mice. 

Although the inflection points are comparable, due to the differences in the slope, the 

distance at which we get 90% segregated label, and thus can say that the foci are 
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separate, is amplified to be at 178.5±63 µm for CD-1 and at 98±22 µm for C57BL6/J 

mice. Although the 95% CIs still overlap, largely due to the increased scatter in the CD-

1 data, there is a trend towards the CD-1 strain having a less precise projection.  

 

 

Strain n Contour 
Mean size 

(%) 
SEM SD 

Median size 

(%) 

C57Bl6/J 61 

5% 2.3 0.2 1.4 1.9 

25% 1.1 0.09 0.7 0.87 

50% 0.56 0.04 0.3 0.48 

75% 0.23 0.02 0.1 0.18 

95% 0.039 0.004 0.02 0.032 

CD-1 36 

5% 2.4 0.4 2.3 1.8 

25% 1.1 0.2 1.1 0.79 

50% 0.55 0.09 0.5 0.37 

75% 0.23 0.04 0.2 0.17 

95% 0.044 0.008 0.05 0.033 

Table 3-1 Isodensity contour analysis of the mature projection 

Data of the sizes of the isodensity contours of label in Figure 3-8 from individual 
injections in adult (P60+) C57BL6/J and CD-1 mice. 
 

 

Table 3-2 Nearest neighbour analysis of the mature projection 

Data regarding the fitting of the 2-parameter logistic function to nearest neighbour data 
from paired injections in adult C57BL6/J and CD-1 mice. SSE is the Sum of Squared 
Error, which reflects the mean distance of the residuals from the zero line. R2 is the 
coefficient of determination and reflects the variability of the data that can be accounted 
for by the model (1 represents a perfect fit). Taken together, these two measures gives a 
good indication of the goodness of fit of the function. 

  Logistic fit (eqn. 2-13) 
Strain n slope (  𝜿) inflection (  𝝉) x (y=0.9) SSE R2 

C57Bl6/J 16 5.17 74.9 98.0 0.066 0.89 
CD-1 14 2.13 92.4 178.5 0.047 0.89 
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Figure 3-8: Comparing C57BL6/J and CD-1 mouse strains 

A-B, Examples of label from paired injections in adult CD-1 (A) and C57Bl6/J (B) 
mice plotted in an equidistant azimuthal projection. Injections are of similar size and 
location in both examples. Isodensity contours a plotted to 5%, 25%, 50%, 75% & 95% 
of the KDE. Bottom plots from left to right show the location of the injections in the 
SC; the original flat-mount colour-coded for expansion (red) and compression (blue); 
and scatterplot of this expansion/compression. C, Histogram of the mean size of 
isodensity contours for C57BL6/J (green) (n=56 injections) and CD-1 (blue) (n=35 
injections), showing no significant difference between the two strains in the size of the 
labelled projection. Error bars are SEM. D-E, Overlap of the label by nearest neighbour 
segregation measure plotted against separation of injection sites in SC with C57BL6/J 
in green (D) and CD-1 in blue (E). Line fits are logistic curves defined by Equation 2-
13. The right hand plot represents the residuals associated with each fit, which as can be 
are symmetrical around the zero-line. Dashed line indicates the 95% confidence interval 
for the fitted curves. Arrow indicates the NN value of the examples shown in A & B. 
For the fit to C57BL/6J (D), the slope is 5.2±2.1; the inflection point is at 74.9±8.6 µm 
and 90% segregation (y=0.9) is at 98±22µm; with R2=0.89 & SSE=0.066, it is a 
reasonable fit. For the fit to CD-1 (E), the slope is 2.1±1.0; the inflection point is at 
92.3±22 µm and 90% segregation (y=0.9) is at 178.5±63µm; with R2=0.89 & 
SSE=0.046, it is also a reasonable fit. F, Plot of both C57BL6/J (green) and CD-1 (blue) 
fits from D&E. 
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3.4 Discussion 

3.4.1  Reconstructing and Orienting the Retina 

The techniques for flat-mounting retinae are well established (Stone, 1981; Hess, 1987) 

and have been used extensively. Since the mouse retina is devoid of any obvious 

landmarks. This is unlike the avian retina, which has a ventral streak, the rabbit retina 

with the horizontal streak and the carnivore & primate retinae, which have either an area 

centralis or a fovea. The cut through the nictitating membrane, which has been used for 

this study, is an alternative way of orienting the retina. 

 

Importantly, reconstructing retinae provides a standardised coordinate system, which 

enables the comparison of retinal features between multiple animals of different ages. 

Plotting features such as muscle-insertions, photoreceptor density and distribution of 

retinal ganglion cell subtypes in a standard framework means that more rigorous 

analyses of the variance between samples and across groups can be performed. Here we 

have provided several new insights that have been gained from the application of this 

method to the problems of understanding the orientation of the eye in relation to central 

connections and external visual space. 

 

The plotting of the ipsilateral projections in standard retinal and visuotopic coordinates 

has enabled us to validate the position of the visual axes and by extension, the location 

of the optic nerve head. By plotting the crescent in visuotopic coordinates using the 

optic disc locations inferred from physiological recordings by Dräger & Hubel (1978), 

we found that the binocular zone from each retina does not line up along the vertical 

meridian, as would be expected (Figure 6D). However, when using the coordinates for 

the optic axis calculated by Oommen and Stahl (2008), we find that the binocular zone 

lines up perfectly with the vertical meridian (Figure 6C). Using these coordinates, the 

binocular zone in central visual field is 52˚ (Figure 3-4C-D), which is larger than the 

30-40˚ estimated by Dräger & Hubel (1978), but comparable to the 50-60˚ estimated by 

Rice & Goldowitz (1995) and Coleman & Bear (2009) and significantly larger than that 

in many other lateral-eyed animals, e.g. 30˚ in rabbit (Hughes, 1971). This probably 
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reflects the very protruding eyes in the mouse and the relatively large field of view of 

each eye 

 

Moreover, by comparing the “horizon” labelled by the staining of s-opsin (Figure 8) to 

the horizontal meridian in previous studies (Dräger and Olsen, 1980; Coleman et al., 

2009), we see that our results suggest that the s-opsin “horizon” is lower in the visual 

field than the horizontal meridian suggested previously. Moreover, our data from 

antibody staining for s-opsin shows that the s-opsin “horizon” relative to the nictitating 

membrane is lower in peripheral visual field than in central visual field (Figure 8 D-E), 

which when taken together with the insertion of the lateral rectus muscle making a 

parallel vector with the horizontal meridian (Figure 3-5A) could indicate that if the s-

opsin “horizon” is indeed parallel to the horizontal meridian (Szél et al., 1992), then the 

rotation of the eye must be at an angle of 13.8±3.6˚ relative to the horizon. If this is the 

case, then it could explain why the observations from plotting the retinocollicular 

topography based on the injection site locations (Figure3-7) give a similar value. This is 

also partly supported by data from physiological experiments, which show that in the 

superior colliculus, the input axes are indeed offset from the cardinal axes by 15˚ as 

well (Dräger and Hubel, 1976). 

 

The transition of the S-opsin cones from high density to low density has been reported 

mostly as a gradient (Applebury et al., 2000; Haverkamp et al., 2005). In my hands, 

however, it not so much a gradient as a very sudden transition. Haverkamp et al. (2005) 

also report that while there is a high incidence of co-localisation of long wavelength 

opsin and S-opsin in ventral retina, "blue" bipolar cells contacted only cones with only 

S-opsin. Therefore, when just considering these cones, the difference between ventral-

dorsal is less marked, but still represents a 3-fold increase in density. The S-cone 

pathway is traditionally ON (Haverkamp et al., 2005), but two recent papers (Chen and 

Li, 2012; Sher and DeVries, 2012) suggest that S-cones affect the OFF-pathway as well. 

This mechanism is mediated by specialised inhibitory amacrine cells, which means that 

although cones that express exclusively S-Opsin are contacted by ON-bipolar cells that 

synapse in the ON-lamina of the IPL (Haverkamp et al., 2005), these inhibitory 
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amacrine cells may facilitate an OFF pathway for short wavelength (blue) cones (Chen 

and Li, 2012; Sher and DeVries, 2012). As for the biological significance of this 

distribution, Haverkamp et al. (2005) suggested that the distribution of S-Opsin may 

reflect the fact that S-Opsin is more prone to light-damage, and a higher proportion is 

therefore needed in ventral retina. This taken together with the co-expression of long 

wavelength opsin and S-opsin could suggest a role for these wide field cones in predator 

detection (detecting dark objects against a light background), which since these are 

connected to W3 cells responsible for detecting features in ventral retina (Zhang et al., 

2012), is probably the case. It also originally suggested that S-Opsin (or OS-2 positive) 

cone transition is coincident with the horizontal meridian or an (oblique) meridian (Szél 

et al., 1992). When the figures from that paper are reconstructed and plotted in 

visuotopic coordinates using Retistruct (Figure 3-9), the angle of incidence with the 

horizontal meridian is comparable with that seen with the S-Opsin staining in Figure 

3-2.  They also see that M-Opsin (COS-1 positive) is expressed exclusively in the dorsal 

retina. On an interesting sidenote, Szél et al. (1994) also looked at different mouse-like 

species (Apodemus Sylvaticus) and here they didn't see this distribution in S-opsin 

expression, so it may be specific to certain mouse-breeds. 

 

 
Figure 3-9 Comparison of S-opsin distribution with Literature 

A-B, Comparison of S-opsin distributions from a previous paper (Szél et al., 1992) (A) 
and the staining from an S-opsin antibody (B) both shown as flat-mounts and projected 
to visual space and represented by an orthographic projection centred on the optic axis 
(*) at 64˚ azimuth and 22˚ elevation.
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3.4.2  Precision in the Retinocollicular Projection 

The precision of 98±22µm found when analysing the data from the paired injections 

closely resembles the physiological precision from observations that it is possible to 

resolve single receptive fields when doing recordings using a multi-electrode with 

electrode-spacings of 120µm (Andrew Lowe, unpublished observations). Such 

coherence between physiology and anatomy could suggest that the size of functional 

units of collicular neurons approximately resembles the size of the input from the retina 

 

It is, furthermore, interesting to note that according to the isodensity contour analysis of 

individual injections in the central SC, there is a 1:3 ratio between the relative spread of 

the injections and the relative spread of the label. If we project the retinal label to 

visuotopic space, we find that the 25% isodensity contour (assuming that the least dense 

RGCs don’t contribute significantly to the receptive field) occupies 15˚ of visual space, 

which means that 2.8% of the AP collicular axis will receive input from 15˚ of visual 

space. Doing a calculation based on the results from Dräger and Hubel (1976), where 

they estimate that 15˚ of central visual space is represented by 2.5% of the AP collicular 

axis. The results are therefore relatively consistent since the mean injection site 

diameter covers 2.8% of the retina. Another complication to this kind of analysis is that 

the physiological mapping of the SC from electrical recordings indicates that the 

receptive fields in the superior colliculus are not uniform across the entire structure, but 

are compressed in the anterior-medial SC and expanded in the posterior-lateral SC 

(Dräger and Hubel, 1976). However, in analysing the data, I have not observed any 

consistent changes in size of the label with the location of the injection sites, although 

due to the relatively few injections in the posterior SC, it is not possible to say anything 

conclusive on this point.  
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Chapter 4 Development of Collicular Retinotopic Precision 

4.1 Introduction 

Topographically precise neural maps are a universal and essential feature of the nervous 

system that enables the neural networks to convey positional information across 

different neural systems for parallel processing. Such topographical organisation is 

found throughout the visual system, where retinal neighbour relationships are preserved 

in primary and secondary visual structures.  

 

The relative contribution of molecular cues and instructive spontaneous activity during 

development and whether they are mutually exclusive events or somehow interact is 

largely unknown. Further, it is not clear that our current understanding of actual 

molecular components and spontaneous or sensory modulated activity represents the 

full complement of mechanisms involved at all scales of the constructed circuit (Mrsic-

Flogel et al., 2005; Rashid et al., 2005; Cang et al., 2008b).  

 

Although numerous studies have provided an insight into the development of 

topography in the retinocollicular projection (Hindges et al., 2002; McLaughlin et al., 

2003b; Xu et al., 2011) these studies are largely qualitative and as a result there is a lack 

of quantitative data on the spatiotemporal sequence of development, which is needed for 

making predictions about which patterns of guidance cues and activity patterns are 

needed for the general development of spatially precise topographic projections. 

 

In this chapter I provide an in-depth quantitative spatiotemporal description of the post-

natal development of topographical organisation in the mouse retino-collicular 

projection by comparing point-to-point connectivity between the SC and retina. I show 

that only limited topographical precision is present at P0 and that precise topography 

only starts to appear between P6-P8 and reaches adult levels by around P16. In the 

characterisation of the wild-type development of precision along the AP axis (figure 2), 

the observations from anterograde studies are confirmed (Hindges et al., 2002; 
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McLaughlin et al., 2003b). The data in this chapter, moreover, provide a quantitative 

tool for assessing the level of precision in the retinocollicular projection.  

4.2 Development of Precision 

To investigate the development of topography, paired discrete injections of Retrobeads 

were made into the SGS of the SC. Typically injections were 5-10nl, as estimated by 

measuring the level of tracer in the pipette, and thus small enough to label a discrete 

column in the SGS, while limiting diffusion. Diffusion, continuous uptake by cells and 

passing axon fibres can be a big problem when using other tracers, e.g. DiI or Dextran-

conjugates, especially in neonatal tissue. The Retrobeads overcome this problem as the 

size of the beads limits diffusion and since the beads coagulate quickly, there is a 

limited timeframe for uptake (Katz et al., 1984). For example of injections, see Figure 

2-4 & 3-6. Injections are of similar sizes to those in the adult, and close injections in 

young animals also give an area with double-labelled cells on the overlap of the two 

foci (cf. Figure 3.6E and Figure 4-4, P6). Following a period of 18 hours or more 

(depending on age), when the Retrobeads have been transported to the RGC soma, the 

label in the retina can be quantified as described in methods, the retina reconstructed 

and the locations of labelled RGCs plotted in standard polar coordinates. Since these are 

all in standard coordinates, it is possible to compare the shape, density, spread and 

location of the label across multiple animals within an age-group, and after normalising 

for the changing shape and size of the retina, across ages.  

 

Plotting the data for individual animals for multiple ages gives a good overview of the 

qualitative sequence of development. It is equivalent to the data from anterograde 

tracing performed extensively previously (Hindges et al., 2002; McLaughlin et al., 

2003b), with the addition that it reveals projection patterns from across the whole retina. 

In Figure 4-1, are examples of label from injections into the anterior-medial quadrant of 

the SC. The examples were picked to represent injection sites that are approximately in 

the same area of the SC in all ages. Examining the P0 retina, we see that at a single 

discrete injection of Retrobeads done at P0 results in almost the entire retina containing 

labelled cells. Although the density of labelled cells is not constant. In the example 
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shown, the 5% isodensity contour encloses the whole ventral hemi-retina (the injection 

was in medial SC, but the region of highest density, as defined by the 25% KRE 

isodensity contour is more localised. However, although the label is clearly 

hemispherical along the DV axis, it is not confined to either nasal or temporal retina, 

even though it is an anterior injection and might be expected to be in the temporal 

retina. Another aspect worth noting is that the Karcher mean location of the labelled 

cells (the yellow diamond) is different from the location of the peak KRE density 

(yellow square).  

 

For an injection done at P2 it is a very similar picture, and almost the same amount of 

the retina contains labelled RGCs. If anything, in the example shown the label is more 

diffuse. By P4, however, although most of the retina still contains labelled cells and the 

5% isodensity contour is still hemi-retinal, the focus of labelled ganglion cells is more 

clearly defined. In the example shown in Figure 4-1, the 25% isodensity contour now no 

longer spans the entire length of the NT axis, but instead it covers a third of the retina. 

At this age, the Karcher mean location of the labelled cells and the KRE peak density 

also converges so that the Karcher mean now is within the 75% isodensity contour.  

 

For injections at P6 there is a clearly defined focus and although the cells outside the 

focus (50% contour) are still spread out, only a confined part of the retina contains 

labelled cells. The main difference between P6 and P8 is the removal of most of these 

“ectopic” projecting cells, which causes the difference between the 5% and 50% 

isodensity contours to be reduced and leads to a more clearly defined focus. By P12 the 

continued removal of ectopic cells causes the difference between the 5% and 50% 

contour to be further reduced, although the 5% contour is still noticeably larger than the 

50% contour. For injections done at P16, this difference in area of the 5% contour is 

reduced to the point that there is little difference between the contours and all of them 

have the same shape. Consequently, at this age the label looks qualitatively mature. 

 

An interesting observation from this period is that there appears to be three different 

stages of the refinement, with an initial refinement from P0 to P4 primarily of label 
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along AP collicular axis, represented by the decrease in the extent of the 5% isodensity 

contour along the NT retinal axis in Figure 4-1. This is then followed by removal of  

“ectopic” cells and a resulting reduction in the size of the 5% contour from P4-P8. 

Finally, there is a noticeable period of fine refinement, seen as a decrease in the size of 

the focus represented by the 25% isodensity contour from P6 to P12. 
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Figure 4-1 Examples of label through development 
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Figure 4-1 Legend – Examples of label through development (previous page) 
Label resulting from single discrete injections of a comparable size into the anterior 
superior colliculus at different stages of postnatal development. Isodensity contours are 
plotted by excluding 5% (light blue), 25% (dark blue), 50% (pink), 75% (orange) & 
95% (yellow) of the cells with the lowest density using either KR estimates where 
partial sampling is used or KD estimates where retina is fully sampled (See Section 
2.3.1 for details). All plots are Azimuthal equal-area plots using the rim-angle for the 
respective age (values for  are given in Table 2-3). Yellow circle is OD, square is the 
peak density and diamond is the Karcher mean of the label. Small plots for each retina 
represents the distortions involved in reconstructing the retina. These are the original 
flat-mounts (left) and scatterplot of reconstructed vs. original segment length (right) 
colour-coded for expansion (red) and compression (blue) 
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The representative examples in Figure 4-1 give a good overview of the development, 

but to really understand the dynamics of the refinement of the projection, it is necessary 

to thoroughly quantify the distribution of label within an age group to be able to 

compare the sizes and shapes of the label distribution across ages. Although the 

examples in Figure 4-1 are picked to be representative there is variability in the label, 

which reflects both experimental and real biological variation between animals. For this 

reason, the projections have been characterised by plotting isodensity contours by 

excluding 5%, 25%, 50%, 75% and 95% of the densest label, as found by kernel density 

(KD) or kernel regression (KR) estimates (See Methods for details). To enable 

comparison across ages, the sizes of the contours have been normalised to the size of 

the retina in degrees squared at the respective age. The data is shown in Table 4-1 and 

represented in Figure 4-2 (P0 to P8) and Figure 4-3 (P8 to adult). These two figures 

show the proportion of the retina containing labelled cells (Figure 4-2A) and the sizes of 

the isodensity contour levels for all injections of all the ages sampled to give an 

impression of the scatter in the data (Figure 4-2B-F) and also give the mean and 

standard deviation for each age and contour level. Note that to better represent the 

scatter in the sizes of the contour-levels, the scales are vastly different for each contour-

level. The differences between ages for a given contour level were established by using 

a two-tailed one-way ANOVA with a Bonferroni post-hoc test. To illustrate the relative 

changes in the sizes of the isodensity contour levels across all ages, the mean sizes are 

summarised in Figure 4-3. Also reflecting the vast differences in sizes of the contours, 

this plot is on a log-scale.  

 

At P0 the entire retina (96.4±2.9%) contains labelled cells (Figure 4-2A). However, 

since the 5% Isodensity contour covers 45.1±9.8% of the retina (Figure 4-2B), it 

indicates that the 5% of cells with the lowest density (the difference between the two 

measures above) are spread out over a large area, covering half the retina, and can 

therefore be considered as ectopic cells.  The 50% isodensity contour covers 10% of the 

retina, and as can be seen from the P0 example in Figure 4-1, it is mostly possible to 

identify an area of higher density in the correct half of the retina.   
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At P2, the ectopic cells are still spread out and occupy 90.3±9.3% of the retina and the 

size of the 5% isodensity contour also remains constant at P2 (42.7±12.5%). The higher 

contour-levels similarly remain constant from P0 to P2, reflecting that little changes in 

the precision of the projection immediately after birth.  

 

By P4, although some animals still have labelled cells throughout the retina, there are 

also several cases where this is significantly reduced with the result that the average 

proportion of the retina containing labelled cells is reduced to 76.6±12.4%. Also 

reflecting the removal of many ectopically projecting cells, is the reduction in the 5% 

isodensity contour to 35.4±2.5% of the retina. The sizes of the higher contour-levels are 

also reduced significantly. After P4, there is a further significant decrease (p<0.0001) to 

P6 when 42.8±9.2% of the retina contains labelled cells. This refinement of ectopic 

cells is also reflected in the reduction from 35.4±2.5% at P5 to 11.1±9.6% of the retina 

covered by the 5% isodensity contour at P6. These significant differences are seen 

across all the contours and could therefore also reflect the removal of a significant 

number of cells across the entire projection. Interestingly, although there is a reduction 

in the proportion of the retina containing labelled cells from P6 to P8 (from 42.8±9.2% 

to 25.6±9.4%), the sizes of all the isodensity contours remain constant, indicating that 

although the shape of the distribution of label is the same, vastly ectopically projecting 

cells appear to be removed preferentially at this stage.  

 

From P8 to P12 (Figure 4-3), there is a further significant reduction (p<0.001) in the 

amount of retina containing labelled cells to 3.1±1.2%. This is accompanied by a 

significant decrease in the size of the 5% isodensity contour (p<0.001) to 3.2±2.1% of 

the retina, showing that since these two measures are the same, there are effectively no 

more ectopic cells from this stage onwards. Also reflecting the mature nature of the 

precision at P12 is the fact that from this stage there are no more significant refinements 

across any of the contour-levels to adulthood. There is, however, still a gradual decrease 

in the size of the 5% contour-level to 1.8±0.92% at P16 and 2.5±1.1% at P22 to the final 

mature level at 2.2±1.1% of the total retinal area.  
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Figure 4-2 Isodensity contour analysis of early (P0-8) development 

A, Proportion of retina containing any labelled cells from Systat analysis (see methods), 
hence why the n is lower. B-F, Scatterplots with the sizes of the isodensity contours for 
5% (A), 25% (B), 50% (C), 75% (D) & 95% (E). Areas have been normalised to the 
size of the retina in deg2 (Equation 2-10). Line is the mean and error bars are standard 
deviation. Significance determined using a one-way ANOVA with a Bonferroni post-
hoc test.  
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Figure 4-3 Isodensity contour analysis of late (P8-60+) development 

A, Proportion of retina containing any labelled cells from Systat analysis (see methods), 
hence why the n is lower. B -F, Scatterplots with the sizes of the isodensity contours for 
5% (A), 25% (B), 50% (C), 75% (D) & 95% (E). Areas have been normalised to the 
size of the retina in deg2 (Equation 2-10). Line is the mean and error bars are SD. 
Significance determined using a one-way ANOVA with a Bonferroni post-test.  
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To summarise the isodensity contour analysis, the mean sizes of all the isodensity 

contours are plotted for all ages in Figure 4-4. This plot shows that the relative changes 

of any given contour-level with age is similar for all the contour-levels. The only 

difference is in the amount of retina containing any label, as this measure does not show 

as large a reduction in size from P4 to P6 as the isodensity contours. This measure 

instead shows a reduction in size from P4 to P8. The amount of retina containing any 

labelled cells, moreover, also show a larger decrease in size from P8 to P12 than the 

isodensity contours. As a result of that difference, this measure is the same as the 5% 

isodensity contour from P12. The reason why all the label appears to occupy a smaller 

area than the 5% contour-level in adult animals is that the data are from different 

datasets. Another aspect of the development that is apparent when plotting the 

isodensity contours for all ages together is that there are two main periods of refinement 

of the “broad” projection (5% - 50% contour levels) from P4 to P6 and from P8 to P12 

that are not as apparent in the contour-levels describing the focus of label (75% & 

95%).  

 

 
Figure 4-4 Summary of developmental isodensity contour analysis 

Mean data from Figures 4-2 and 4-3 plotted on a log scale to illustrate the relative sizes 
and changes of all the different contours across all ages.  Error bars are standard error of 
the mean. 
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Age n (KRE/KDE) Contour Median size Mean size SEM SD 

P0 35 (30/5) 

5% 0.445 0.451 0.0166 0.0982 
25% 0.211 0.216 0.0103 0.0607 
50% 0.0966 0.0979 0.00539 0.0319 
75% 0.0341 0.0350 0.00228 0.0135 
95% 0.00458 0.00483 0.000389 0.00230 

P2 76 (66/10) 

5% 0.413 0.427 0.0143 0.125 
25% 0.185 0.192 0.00753 0.0657 
50% 0.0821 0.0851 0.00361 0.0315 
75% 0.0278 0.0295 0.00142 0.0124 
95% 0.00340 0.00394 0.000241 0.00210 

P4 38 (30/8) 

5% 0.363 0.354 0.0252 0.155 
25% 0.132 0.138 0.0107 0.0657 
50% 0.0489 0.0521 0.00404 0.0249 
75% 0.0165 0.0177 0.00140 0.00863 
95% 0.00221 0.00253 0.000219 0.00135 

P6 33 (10/23) 

5% 0.0792 0.111 0.0165 0.0959 
25% 0.0350 0.0439 0.00666 0.0382 
50% 0.0160 0.0177 0.00254 0.0148 
75% 0.00582 0.00678 0.000857 0.00493 
95% 0.00102 0.00106 0.000117 0.000673 

P8 35 (6/29) 

5% 0.0825 0.111 0.0148 0.0912 
25% 0.0290 0.0430 0.00666 0.0410 
50% 0.0127 0.0166 0.00248 0.0153 
75% 0.00489 0.00545 0.000683 0.00426 
95% 0.000777 0.000751 0.000065

9 
0.000390 

P12 49 (4/45) 

5% 0.0285 0.0320 0.00301 0.0209 
25% 0.0120 0.0130 0.00114 0.00791 
50% 0.00557 0.00623 0.000539 0.00373 
75% 0.00207 0.00238 0.000223 0.00159 
95% 0.000388 0.000442 0.000036

8 
0.000258 

P16 19 (0/19) 

5% 0.0136 0.0164 0.00224 0.00923 
25% 0.00580 0.00717 0.000952 0.00392 
50% 0.00292 0.00355 0.000473 0.00195 
75% 0.00127 0.00155 0.000214 0.000880 
95% 0.000237 0.000279 0.000047

6 
0.000207 

P22 24 (0/24) 

5% 0.0253 0.0260 0.00220 0.0108 
25% 0.0120 0.0114 0.000845 0.00414 
50% 0.00546 0.00541 0.000356 0.00175 
75% 0.00211 0.00220 0.000162 0.000795 
95% 0.000344 0.000379 0.000033

7 
0.000165 

Table 4-1 Isodensity contour analysis of the developing projection 

Data of the sizes of the isodensity contours in Figure 4-4 from individual injections at 
various ages from P0 to P22. n reflects the number of injections, not the number of 
animals. Numbers in bracket represent the ratio of KRE vs. KDE contouring used. 
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4.3 Development of Order 

To look at the development of order in the projection, we performed paired injections 

into the superior colliculus and with varying separations along either the AP or ML 

axes. Using this data, we then computed the average probability that any cell within the 

two populations of labelled RGCs had a nearest neighbour of the same colour. (See 

methods section 2.5.4 for details). As shown for the adult (Figure 3-6J), plotting this 

nearest neighbour data as a function of the injection site separation for different ages 

gives the separation needed to obtain separated foci of label in the retina, which has 

been used here as a measure for the order of the projection. Thinking about this in 

visuotopic terms, it corresponds to the collicular separation required to obtain non-

overlapping receptive fields, although of course at many of the ages investigated, the 

retina is not visually responsive and the eyelids are still closed.  

4.3.1  Development of anterior-posterior order 

The preferred fits were found by using a sum of squares F-test with the null-hypothesis 

being a straight line with y (x=0) = 0.5. Having evaluated several naturally-inspired 

sigmoid, exponential and logistic functions, the result was that the logistic fit used for 

the adult and described in the Methods is the better fit (P0: p=0.05; P2: p=0.07; P4: 

p=0.09; P6: p=0.08; P8: p=0.08; P12: p=0.5; P16: p=0.4; P22: p=0.7). These fits can be 

seen in Figure 4-5 (P0-6) and Figure 4-6 (P8-22). Although the fits for P6 & P8 are not 

optimal, since R2=0.655 and R2=0.552, respectively, because there is such a big scatter 

inherent in the data, no better fit could be found. However, since the residuals are 

symmetric around the fitted line and the sum of squared errors is small (SSE(P6)=0.110 

& SSE(P8)=0.177) , the fits still offer reasonable descriptions of the data. The values for 

these fits are summarised in Table 4-2. 

 

Using this logistic function to describe the nearest neighbor data, we find that in P0 

mouse pups, the projection along the AP axis is still very scattered, probably reflecting 

that the axons have grown along this axis to the posterior edge of the SC and therefore 

span the entire AP axis (Hindges et al., 2002; McLaughlin et al., 2003b). This means 

that injections can be separated by the full length of the SC and still have complete 
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overlap of label. E.g. one pair of injections in a P0 animal were separated by 1720µm 

and still resulted in an NN value of 0.52 (Figure 4-5). As a result of this, it is not 

possible to achieve 90% segregation of label at this age, even if injections are at the 

very anterior and posterior edges of the SC. The SC is approximately at its mature size 

at birth (AP: 1910±104 µm; ML: 1800±204 µm; See Table 2-4).   

 

As can be seen in Figure 4-5 (P2), the projection is slightly more ordered at P2. At this 

age the logistic function takes on its characteristic shape with an initially constant 

section before starting to increase exponentially (here this point is at 700 µm) until the 

inflection point (which in this case is at 1438µm; Table 4-1) from which point it starts 

to saturate and finally reaches saturation (y=0.9) at 1831µm. With the result that at 

separations above 1831 µm, in contrast to injections done in P0 animals, injections at P2 

that are at the very anterior and posterior edges of the SC should give completely 

segregated label in the retina. However, since there is a lot of scatter at this age this is 

not certain and more injections with separations above 1500 µm would be needed to be 

confident about this. To exemplify this scatter, we see that a pair of injections separated 

by 1300µm resulted in an NN value of 0.5, whereas another animal with injections 

separated by 1384µm resulted in an NN value of 0.72 (arrow). The label from the latter 

pair of injections is shown in Figure 4-5(P2).  

 

By P4, this scatter is reduced and injections separated by more than 1688 µm can now 

confidently be predicted to result in completely segregated label. However, considering 

the 95% confidence intervals, this could be as little as 900 µm. For example, an animal 

with injections separated by 1572µm resulted in an NN value of 0.91, whereas the 

example shown had injections separated by 1212 µm and resulted in an NN value of 

0.84 (arrow). However, looking at this example, it is clear that the label is segregated, 

but the NN value is decreased due to the large number of ectopically projecting RGCs at 

this age (see also the P4 example in Figure 4-1). This function, moreover, can be 

distinguished from the P2 function, as it starts rising at 100 µm. The reason for the high 

value of the saturation point is that the slope of the function is less than that of the P2. 
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For injections done at P6, some real order is present and now injections separated by 

850µm result in 90% segregation of label. This is also reflected in the limited size of the 

label e.g. the 5% isodensity contour for individual injections at P6 covers 11% of the 

retina, versus 35% at P4 (See Figure 4-2). The example shown in Figure 4-5(P6) 

illustrates that some order is present even in relatively closely separated injections with 

low NN values. Although the example retina had injections separated by 105 µm and a 

resulting NN value of 0.72, the pattern of red-yellow-green (yellow representing 

double-labeled RGCs) suggests some sub-order is present at P6 already and this age in 

that respect is already similar to the adult represented in Figure 3-6E. This sub-order is 

also the reason why the function rises immediately, indicating that even closely spaced 

injections reveal some order. 
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Figure 4-5 Early development of AP order in the projection  



Chapter 4 – Results: Development of Collicular Retinotopic Precision  

  

 

117 

Figure 4-5 Legend: Early development of AP order in the projection (previous 
page) 
Overlap of the label measured by nearest neighbour analysis for P0-P6 plotted against 
separation of injection sites along the AP axis of the SC. The fits are logistic curves 
defined by Equation 2-13. The black dashed line shows the separation at which label is 
90% separate. The right hand plot represents the residuals associated with the fit, which 
as can be are symmetrical around the zero-line. Dashed line indicates the 95% 
confidence interval for the fitted curves. The arrow indicates the nearest neighbour 
value of the associated example retina. Values for the slope, inflection, x(y=0.9) and 
goodness of fits are in Table 4-2 
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The order at P8 is very similar to that of P6, as at P8, injections need to be separated by 

more than 730 µm to get separated foci (Figure 4-6). Although this is slightly lower 

than the figure for P6, due to the nature of the fits for both) P6 & P8, these curves are 

almost identical. This is moreover, supported by the slopes being almost the same 

(𝜅 !! = 0.99  &  𝜅 !! =   1.11) and the inflection points being even more similar x(y=0.9) 

(𝜏 !! = 203  𝜇𝑚  &  𝜏 !! = 211  𝜇𝑚)(Figure 4-7B). The similarity of the curves is also 

apparent in Figure 4-7A. Although curves are very similar, since there are a couple of 

examples of injections in P8 animals with separations in the order of 500-550µm 

resulting in nearest neighbor values >0.9, the actual separation needed for segregated 

label at P8 may be smaller than the value from the fits. 

 

From P8, there is a significant increase to P12 in the slope of the fitted function (two-

tailed F-test; p<0.05) from 1.11 at P8 to 2.88 at P12. As a result of this increase in slope 

and a decrease in the inflection point to 136 µm, the injection separation needed to 

achieve 90% segregated label is now 222 µm, which is significantly less than at P8. It 

is, moreover, now possible to achieve a 100% segregation of label at just 280 µm (see 

P12 example in Figure 4-6). There is little difference in the order of the projection 

between P12 and P16. The slopes vary only minimally from P12 to P16 at 2.88 and 

2.79, respectively. As a result, the inflection points are very similar with 136 at P12 and 

128 at P16. The separations needed for 90% segregation are also similar with 222 µm at 

P12 and 212 µm at P16. The function fitted at P22 is subtly different. It has a shallower 

slope at 2.19, but since the curve rises earlier, the inflection point is smaller at only 112 

µm. However, because of the shallower slope, the threshold for obtaining segregated 

label at 212 µm is the same as at P16.  
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Figure 4-6 late development of AP order in the projection  
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Figure 4-6 Legend: Late development of AP order in the projection (previous 
page) 
Overlap of the label measured by nearest neighbour analysis for P8-P22 plotted against 
separation of injection sites along the AP axis of the SC. Line fits are logistic curves 
defined by Equation 2-13. The black dashed line shows the separation at which label is 
90% separate. The right hand plot represents the residuals associated with the fit, which 
as can be are symmetrical around the zero-line. Dashed line indicates the 95% 
confidence interval for the fitted curves. The arrow indicates the nearest neighbour 
value of the associated example retina. Values for the slope, inflection, x(y=0.9) and 
goodness of fits are in Table 4-1. 
 
 
 
 
 
 
 

Table 4-2 Fitting curves to AP nearest neighbour data 

Values for fitting of Logistic curve (Equation 2-14) to nearest neighbour data for 
injections separated along the anterior-posterior axis of the SC. (*) No value is given as 
it is far beyond the length of the SC, and any value would therefore be meaningless. 
 

 

 

  Logistic fit (eqn. 2-13) 
Age n slope (  𝜿) inflection (  𝝉) x (y=0.9) SSE R2 

0 12 1.04 4129 * 0.0458 0.141 
2 16 1.10 1438 1831 0.146 0.590 
4 14 0.87 727 1688 0.0210 0.942 
6 16 0.97 203 850 0.110 0.655 
8 28 1.12 211 730 0.148 0.552 
12 17 2.88 136 222 0.0414 0.928 
16 12 2.79 128 210 0.0390 0.883 
22 11 2.19 112 212 0.0199 0.940 
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Figure 4-7A summarizes the functions fitted to all the different ages in Figure 4-5 and 

Figure 4-6. Figure 4-7B shows the changes in the inflection point with age. From this 

plot, it is apparent that there is an initial rapid decrease between P0 to P6 (the inflection 

point for P0 is not plotted as it is at 4129 µm and thus way beyond the SC) followed by 

a small decrease from P12 to P16. Notice that there is also a significant decrease P22 to 

P60+. The plot of the threshold for achieving segregated label (Figure 4-7C) has a 

similar trend as the inflection point, here there is also no data for P0. Again there are 

two significant changes in separation between P4 to P6 and P8 to P12. It is also worth 

noting that although the value for segregation threshold are similar for P2 and P4, these 

curves are very different as the P2 curve is flat until >700 µm and then rises sharply, 

whereas the P4 curve rises gradually from  >100µm. Again for this measure there is a 

significant difference between P22 to P60+. Although not significant, there is also a big 

change from P4 to P6.  

 

An interesting observation from this dataset is that there still appears to be a significant 

difference between the fits of the P22 and adult (P60+) datasets. For both the inflection 

point, which is 74.9±8.6 µm for the adult and 112±18 µm for P22 (Figure 4-7B). This 

difference also reaches significance at y=0.9, where the 95% confidence intervals are 

non-overlapping (Figure 4-7D, arrow)., which indicates that the separations needed to 

get 90% segregated label, at 212 µm for P22 mice and 98 µm for adult mice, are also 

significantly different. (Figure 4-7C; p=0.04; two-tailed test). 
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Figure 4-7 Development of AP order in the projection 

A, Plot of NN value of retinal label as a function of the SC injection separation along 
the medial-lateral axis for injections separated along this axis. Curves are from the fits 
detailed in Figures 4-7 and 4-8. The horizontal dashed lines represent aspects of the 
curve measured in B & C. B, Slope of straight part of logistic curve fit (𝜅 in Equation 2-
13) for ages P4-22 plotted as a function of age. C, The SC injection separation needed 
to get 90% segregated foci in the retina according to the fits in A. Error-bars in B-C are 
represent the 95% CI for the fitted function. D, Comparison of fits for P22 and adult 
(P60). Dashed lines are the 95% confidence intervals for the fits. Arrow indicates the 
non-overlapping confidence intervals at y=0.9.  
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4.3.2  Development of medial-lateral order 

The development of order along the medial-lateral (ML) is initially quite different from 

the AP axis described above. The main difference, as can be seen in Figure 4-10 is in 

the early postnatal projection. In contrast to the AP axis, at P0, there is already a level of 

order comparable to the P6 AP axis, since injections in a P0 mouse pup separated along 

the ML axis only need to be separated by 922 µm to result in segregated label. As can 

also be seen from the P0 example retina in Figure 4-8, a pair of SC injections at P0 

separated by 782 µm result in a nearest neighbour value of 0.82. These observations 

also support previous evidence that axons in the optic tract are bundled according to 

their approximate DV position in the retina (Chan and Guillery, 1994; Plas et al., 2005). 

As a result of already being ordered at birth, the ML axis of the projection does not 

undergo as drastic a development as is the case for the AP axis. In fact, the datasets for 

P0 and P2 are largely overlapping and consequently, the function describing the P2 data 

is very similar to the P0 function. The slope for the function fitted to the P2 dataset, at 

2.7, is higher than the slope of 1.7 at P0 and the inflection points are also slightly 

different (P0: 550 µm & P2: 662 µm). However, since the P0 function rises earlier, the 

threshold for getting segregated retinal label at 922 µm for P0 and 888 µm at P2 are not 

significantly different.  

 

Paired injections done at P4, need injections to be separated by 615 µm to get 

segregated label, which although less than that for P0 & P2, due to the spread of the 

95% confidence intervals still is not significant. Because of the lower scatter of the 

residuals in the P4 data, there is, however, still a trend towards it being more refined. In 

addition, the fitted function at P4 describes the data better than for P0 & P2 (see values 

for goodness of fit in Table 4-2), which indicates a smaller variability of the data, and 

could indicate a more ordered projection, or at least a more consistent developmental 

stage across animals.  

 

At P8, although the slope at 1.4 is similar to P0, since the slope of the function increases 

from 50 µm, the inflection point is decreased to 229 µm, and the threshold for getting 

segregated label is similarly decreased to 603 µm. From P8 to P22, the fitted curves all 
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start rising at the same point, as can be seen in Figure 4-9A, which is also reflected in 

the slopes gradually increasing from this point (Figure 4-9B), while the inflection point 

and the threshold for segregated label decreases steadily (Figure 4-9C). At P12, the 

slope is 1.7, the inflection is at 166 µm and the segregation threshold is at 372 µm. At 

P22, the slope is 2.0, the inflection point is at 120 µm and the threshold for segregation 

of label is at 239 µm, which is also illustrated in the example for P22 shown in Figure 

4-8, where injections separated by 215 µm results in a nearest neighbour value of 0.92.  

 

Figure 4-10 summarises the development of order along the ML axis. Comparing the 

fitted curves in Figure 4-10A to the curves fitted to the AP data in Figure 4-7A, it is 

clear that the ML axis differs significantly from the AP axis, in that the projection along 

the ML axis starts out more ordered and therefore less refinement is needed to achieve 

mature precision, as is also seen in anterograde tracing experiments (Hindges et al., 

2002; McLaughlin et al., 2003a; Plas et al., 2005). For this reason, the only significant 

difference seen is in the inflection point for the functions fitted to P4 and P8 data 

(Figure 4-10B). As a consequence of the slopes being different, however, there are no 

significant differences for the threshold for achieving segregated label (Figure 4-10C).  

 

Figure 4-10D and 4-10E compare the order in the AP (green) and ML (blue) axes. In 

these plots it is clear that at birth the ML axis is more refined in both measures and as 

consequently, we can say that the projection starts out by being asymmetrical. By P6-8, 

however, both these measures are similar, reflecting that at this age, the projection is 

symmetrical and the orientation of the paired injections is not as important for 

determining the order of the projection. From P6 onwards, both the measures remain the 

same, thus showing that the mature projection is symmetrical. 
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Figure 4-8 Early development of ML order in the projection  

Overlap of the label measured by nearest neighbour analysis for P0-P4 plotted against 
separation of injection sites along the ML axis of the SC. Line fits are logistic curves 
defined by Equation 2-13. The black dashed line shows the separation at which label is 
90% separate. The right hand plot represents the residuals associated with the fit, which 
as can be are symmetrical around the zero-line. Dashed line indicates the 95% 
confidence interval for the fitted curves. The arrow indicates the nearest neighbour 
value of the associated example retina. Values for the slope, inflection, x(y=0.9) and 
goodness of fits are in Table 4-1 
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Figure 4-9 Late development of ML order in the projection  

Overlap of the label measured by nearest neighbour analysis for P0-P4 plotted against 
separation of injection sites along the ML axis of the SC. Line fits are logistic curves 
defined by Equation 2-13. The black dashed line shows the separation at which label is 
90% separate. The right hand plot represents the residuals associated with the fit, which 
as can be are symmetrical around the zero-line. Dashed line indicates the 95% 
confidence interval for the fitted curves. The arrow indicates the nearest neighbour 
value of the associated example retina. Values for the slope, inflection, x(y=0.9) and 
goodness of fits are in Table 4-1 
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Figure 4-10 Development of ML order in the projection  

A, Plot of NN value of retinal label as a function of the SC injection separation along 
the medial-lateral axis for injections separated along this axis. Curves are from the fits 
detailed in Figures 4-7 and 4-8 B, Slope of straight part of logistic curve fit (𝜅 in 
Equation 2-13) plotted as a function of age. C, The SC injection separation needed to 
get 90% segregated foci in the retina (Y=0.9) according to the fits in A. D-E, 
Comparisons of slope (D) and 90% segregation threshold for fits (E) to AP (green) and 
ML (blue) SC axes. Error measurements in B-E are based on the 95% confidence 
intervals for the fits to each age. 
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Table 4-3 Fitting curves to ML nearest neighbour data 

Values for fitting of Sigmoid (Equation 2-14) to nearest neighbour data.  
 
 

 

  Logistic fit (eqn. 2-13) 
Age n slope (  𝜿) inflection (  𝝉) x (y=0.9) SSE R2 

0 8 1.689 550 922 0.0436 0.830 
2 17 2.695 662 888 0.0518 0.882 
4 7 2.936 464 615 0.00861 0.973 
8 12 1.431 229 603 0.0592 0.751 
12 12 1.718 166 372 0.0249 0.927 
22 10 1.995 120 239 0.0131 0.948 
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4.4 Development of Topography 

Topography can be examined in several ways; an example of this is to plot the location 

of the label according to their respective injection location, such as the plot for adult 

topography in Figure 3-7. However, since the projection in the neonatal animals is so 

diffuse, this approach wouldn’t work as well. Moreover, because it is not possible to get 

completely segregated label at P0, we need another way to determine whether any 

topography is present at birth. For this reason, I have done the vector plots in Figure 4-

10 to try and examine the immature topography. The plots are done by connecting the 

Karcher means or peak densities of the label from paired injections in the same animal 

with an arrow pointing toward the most anterior of the two injection sites (See examples 

in Figure 4-11). In this manner, it is possible to investigate whether we can predict the 

orientation of the label based purely from the orientation of the injection sites. As can 

be seen for P0 in Figure 4-10, it is indeed possible to predict the orientation of the label 

from the orientation of the injection sites. Even for relatively closely spaced injections.  

 

It is worth noting that using these plots, it is also possible to estimate the relative 

distance of the peak densities, but not necessarily the Karcher means, based on the 

injection site separation.  By examining the length of large (brown) and small (orange) 

separations, we see that the large injection separations result in longer vectors than the 

small injection separations for the peak densities, but not always for the Karcher means. 

Generally, for both P0 and P2 this holds true for injection pairs with a difference of 

more than 400 µm. It is interesting that this is not necessarily the case if using the 

Karcher mean, which indicates that the peak density is the better way of determining the 

mature topography from diffuse immature projections. 
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Figure 4-11 Vector analysis of P0-P4 

Vectors connecting the Karcher means or Peak kernel density (KDE) of the label from 
two paired injections in the same animal for P0, & P2. The arrow is pointing towards 
the more anterior injection site. Plots are Azimuthal equidistant polar plots. The black 
arrow in the composite plots is the one in the example. The brown arrow is the one 
representing the largest separations (1720 µm at P0 and 1384 µm at P2) and the orange 
arrow represents the smallest separations (380 µm at P0 and 300 µm at P2) plotted. In 
the example plots, the vector connecting the Karcher means is blue and the vector 
connecting the KR peak densities is magenta. The locations of the respective SC 
injection sites are plotted underneath 
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4.5 Discussion 

An interesting observation from the neonatal development is that there appears to be 

different phases of the refinement, with an initial reduction of label chiefly along the NT 

retinal axis, represented by the decrease in the extent of the 5% isodensity contour along 

the NT retinal axis for P0 to P6 (Figure 4-1). The functions describing the nearest 

neighbour measurements for the same neonatal animals also corroborate these 

observations, as initially there is no real order in the AP axis (Figure 4-6A), while the 

ML axis is significantly more ordered (Figure 4-9E), but by P6 the two axes are 

symmetrical. This initial refinement of the AP axis is then followed by a symmetric 

decrease in the size of the focus represented by the 50% isodensity contour between P4 

to P12, as can be seen in Figure 4-1.  

 

This anisotropy is most pronounced at birth, when the projection is much less precise 

along the AP axis than the ML axis, as injections separated along the ML axis only need 

to be separated by at least 922 µm to result in segregated label (Figure 4-8), which is not 

possible along the AP axis. This difference reflects the overshoot of axons along the 

entire AP length of the SC (Nakamura and O'Leary, 1989) combined with the ML order 

present in the brachium of the tectum at birth (Plas et al., 2005) due to the bundling of 

axons in the optic tract according to their approximate DV retinal position (Chan and 

Guillery, 1994).  

 

As a consequence of this difference, the majority of early refinement occurs along the 

AP axis to establish the symmetric projection seen from P6 (Figure 4-10 D&E). 

Preferential refinement along one axis would suggest that different mechanisms could 

be in play to facilitate the extra AP refinement. These observations are supported by 

evidence that the characteristics of the nAChR-dependent waves during the first 

postnatal week are such that they would cause preferential refinement of projections 

spreading over 800-1000µm along this axis (Stafford et al., 2009).  
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It is worth keeping in mind that even though the projection at birth covers the entire AP 

axis, it is still possible to predict the orientation of the retinal label purely from the 

orientation of the injection sites (Figure 4-10). Increased branching in a discrete area 

would cause there to be more branches with terminals in this region (Yates et al., 2001) 

and therefore cause the higher uptake of label in a specific area that we see at P0 and P2 

already. This dataset therefore supports the theory that there is preferential branching in 

approximately the correct target area, which could be caused by axons reaching a 

threshold for branch promotion regulated by the interaction of P75 and TrkB with 

ephrin-A5, which at the appropriately low concentration of ephrin-A5 will promote 

branching (Marler et al., 2008; Lim et al., 2008b; Marler et al., 2010). 

 

Although it is certainly possible to get completely segregated label from paired 

injections separated along the AP axis at P4 (Figure 4-4). Whether it is possible at P2 is 

not as certain. Although the fitted function indicates that it is possible, since there is a 

lot of scatter at this age, i.e. injections separated by 1300µm resulted in an NN value of 

0.5, this is not certain. It is possible that this variability is due to inherent variability in 

the development between animals, and the fact that there is some variation in the actual 

age of the animals (which may vary by up to 12 hours). 

 

The second phase of the refinement involves the establishment of a clear focus in the 

topographically appropriate location, represented by the isodensity contour levels of 

50% or higher. This phase of development is most apparent between P4 and P8 (Figure 

4-1), as is also apparent from anterograde tracing (McLaughlin et al., 2003b) and 

probably involves further local branch-extension, which would increase the uptake of 

label in a defined area, as we see in Figure 4-1. The extension and retraction of branches 

involved in this process has been shown to be mainly activity-dependent (Debski and 

Cline, 2002; McLaughlin et al., 2003b; Fredj et al., 2010). Similarly for the ML axis, 

since axons have been reported to extend and stabilise long branches along the ML axis 

of the SC (Hindges et al., 2002), it is likely that the refinement seen during this period 

in the nearest neighbour data for the ML axis (Figure 4-10) reflect branching and not 

redirected growth. 
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The later development involving the removal of residual ectopic cells is most obvious 

between P6 to P8, where most of the ectopically projecting cells are removed. In most 

likelihood, this is a process that takes place throughout the first post-natal week, but just 

reaches a threshold that makes it more apparent at this more mature stage. The 

mechanisms behind the removal of these projections is likely to involve a combination 

of extensive axon branching (Hindges et al., 2002) and cell death; since almost half of 

RGCs born die during this period (Farah and Easter, 2005). It is possible that apoptosis 

plays a direct active role in refining the projection by way of removing cells that do not 

make topographically appropriate projections. Such cells may have a higher probability 

of activating an apoptotic pathway as a consequence of being outcompeted for sources 

of neurotrophins or due to direct interactions between receptors in the apoptotic 

pathway (Lim et al., 2008b; Marler et al., 2010; Vanderhaeghen and Cheng, 2010). It 

has, however, also been argued that cell-death simply causes the baseline “noise” to be 

removed, thus causing the area with highest density of appropriately connected cells to 

remain (Upton et al., 2007). It is possible that these are simply two sides of the same 

issue and it is just a matter of probability. While there probably are RGCs with 

topographically appropriate connections that still die due to competition etc., it seems 

probable that RGCs that have made guidance errors are more likely to be actively 

removed, especially since spontaneous activity has been shown to promote survival in 

the SC (Galli-Resta et al., 1993). 

 

Interestingly, even after these initial phases of development have refined the focus to 

resemble adult sizes, there is still a significant difference in the separation of paired 

injections needed to get segregated label between P22 and adult mice, that was not 

picked out by using qualitative nor isodensity contour analysis. Since the post-eye 

opening critical period is associated with increased synaptogenesis in the cortical 

projection (Hooks and Chen, 2008), it could suggest a further role for increased 

synaptogenesis in refining the precision of the collicular retinotopic map. It is, 

furthermore, possible that the establishment of feedback from the cortico-collicular 
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projection, which establishes connectivity during this period (Phillips et al., 2011), also 

influences the precision of the retino-collicular projection enabling further refinement. 
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Chapter 5 Spontaneous Activity in Retinocollicular 

Development 

5.1 Introduction 

 

The relative contribution of molecular cues and instructive spontaneous activity during 

development and whether they are mutually exclusive events or somehow interact is 

largely unknown. Further, it is not clear that our current understanding of actual 

molecular components and spontaneous or sensory modulated activity represents the 

full complement of mechanisms involved at all scales of the constructed circuit (Mrsic-

Flogel et al., 2005; Rashid et al., 2005; Cang et al., 2008b). 

 

To examine the role of patterned activity in the early development of topography we 

have utilised a global knockout of the β2 subunit of the nicotinic acetylcholine receptor 

(nAChR-β2). This mutant has altered spontaneous activity patterns in the retina and the 

β2-subunit is therefore believed to be crucial for generating the specific pattern of 

correlated activity waves seen in the retina from P0-P8 (Bansal et al., 2000; Sun et al., 

2008b). Moreover, this mutant has also been shown to have mapping defects in the 

visual system (McLaughlin et al., 2003b; Grubb and Thompson, 2004; Mrsic-Flogel et 

al., 2005; Shah and Crair, 2008a), as discussed in the introduction.  

 

Importantly, the spatiotemporal characteristics of the nAChR-dependent wave-form 

activity in wild-type and the gap-junctional wave-form activity in the nAChR-β2 -/- are 

both well-characterised although there is some disagreement about the details of spiking 

rates (Sun et al., 2008a; 2008b; Stafford et al., 2009). However, since the general 

characteristics of the waves are consistent between studies and the differences can be 

largely accounted for by variations in the in vitro experimental setup (Stafford et al., 

2009), the data can therefore be used in modelling to make predictions about the 

patterns of activity needed for the instructive roles of the waves. However, again 

although the projection patterns to the SC in this mutant have been demonstrated 

already, previous descriptions are based on anterograde tracing and provide largely 
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qualitative descriptions. The main reason for undertaking this quantitative analysis of 

the nAChR-β2-knockout strain is therefore to provide a more detailed quantitative 

description to inform further modelling studies, which will be discussed in Chapter 6. 

 



Chapter 5 – Results: Spontaneous Activity in Retinocollicular Development 

  

 

137 

5.2 Results 

5.2.1  Development of precision in nAChR-β2 knock out animals 

Examples of retinae following single discrete injection of Retrobeads into the anterior 

SC of nAChR-β2 knockout animals at different stages of postnatal development are 

shown in Figure 5-1. An injection at P0 will result in the entire retina containing 

labelled cells. The 5% isodensity contour spans most of the retina, with the 25% 

contour-level covering the entire NT axis and approximately half of the DV axis (Figure 

5-1, P0). The distribution of label that is similar to the one in the P0 C57BL6/J wild-

type example in Figure 4-1. As in the wild type, the Karcher mean of the label is 

displaced nasally to the peak density.  

 

When doing a similar injection at P2, the general picture is much the same and is also 

mostly the same as the wild type. The 25% isodensity contour still spans the entire NT 

axis and covers approximately 50% of the DV axis. However, there is no longer a single 

focus enclosed by the higher (50% and above) isodensity contours, but two. Separate 

areas with higher density is seen in approximately half of anterior injections in nAChR-

β2 knockout animals between P0 and P4, but has not been observed in wild-type 

animals of the same ages. For injections done at P4, the 5% isodensity contour still 

spans the entire NT axis and the label is generally indistinguishable from injections 

done at P2.  

 

The example of labelling after an injection at P8, which marks the end of cholinergic 

spontaneous correlated activity, shows a pattern that might be described as having a 

focus, although it is still very much larger than the one in wild-type animals. The 

examples shown of injections made at later ages show a large degree of anisotropy. 

Although the orientation is not uniform, the general trend is for the label to be wider 

along the NT axis, suggesting that the projection is elongated along the SC AP axis. 

However, further analysis is necessary to establish this. As can be seen for the P22 

example retina, although the knockout animals often have a somewhat symmetric focus 
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(represented by the 50% contour-level), the 5% is generally asymmetric and spans a 

considerably larger area than the 25% isodensity contour, suggesting a differently 

shaped distribution to the wild-type. 

 

In the knockout the 25% contour covers around 20% of the retina (Figure 5-2B), 

whereas in the wild type it typically covers less than 5% (See Figure 4-2B). 

Qualitatively, the label in the P8 nAChR-β2 knock-out animals is more reminiscent of 

the label at P4 in wild-type animals. There appears to be a steady refinement from P8 to 

P22 with the focus getting gradually more defined and smaller, although still noticeably 

larger than age-matched wild-type animals.  Not only do the contours remain noticeably 

larger, but even at P22 the 5% isodensity contour covers a much larger area than the 

25% contour, which is in stark contrast to the wild-type animals, where the 5% and 25% 

isodensity contours converge at P12, after which there is a defined focus.  Interestingly, 

the difference between the 5% and 25% isodensity contour persists into adulthood. In 

contrast to adult wild-type animals, the 5% isodensity contour in nAChR-β2 knockout 

animals typically still covers twice the area of the 25% contour. 
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Figure 5-1 Examples of label in the nAChR-β2 -/- during development 
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Figure 5-1 Legend: Examples of label in the nAChR-β2 -/- during development 

(previous page) 

Label resulting from single discrete injections of a comparable size into the anterior 
superior colliculus at different stages of postnatal development. Isodensity contours are 
plotted by excluding 5% (light blue), 25% (dark blue), 50% (pink), 75% (orange) & 
95% (yellow) of the cells with the lowest density using either KR estimates where 
partial sampling is used or KD estimates where retina is fully sampled (See Section 
2.3.1 for details). All plots are Azimuthal equal-area plots using the rim-angle for the 
respective age (values for  are given in Table 2-3). Yellow circle is OD, square is the 
peak density and diamond is the Karcher mean of the label. Small plots for each retina 
represents the distortions involved in reconstructing the retina. These are the original 
flat-mounts (left) and scatterplot of reconstructed vs. original segment length (right) 
colour-coded for expansion (red) and compression (blue) 
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5.2.2  Measuring isodensity contours in nAChR-β2 knockout animals 

Individual examples, such as those in Figure 5-1 are good for gaining an overview of 

the immediate effects of a mutant. However, to properly understand the effects of any 

subtle alterations to dynamics of the system, such as the changes in activity patterns 

evoked by removing the β2 subunit from nicotinic acetylcholine receptors, as is the case 

in Figure 5-1, it is necessary to quantify as many aspects of the development as 

possible. To that effect, we have initially plotted isodensity contours as described 

earlier. The quantification of the projection enabled by these contours enables the 

comparison of data from multiple animals and by extension the comparison of different 

groups of animals, such as animals of different ages and with varying genotypes.  

 

In the case of the nAChR-β2 knockout animals, the quantitative contour analysis in 

Figure 5-2 reveals that a single discrete injection of retrobeads into the SC just after 

birth (P0) results in almost all the retina containing labelled RGCs (85.0±10.1%) and 

the 5% isodensity contour covers 61.3±16.5% of the retina (Figure 5-2A). As mentioned 

in relation to Figure 5-1, it is difficult to pick out a focus of denser label at this age, 

which is also reflected in the 50% isodensity contour covering 18.3±7.2% of the retina.  

 

The distribution of label is very similar to P0 at both P2 and P4. At P2 89.7±4.1% of the 

retina contains labelled cells, the 5% contour covers 67.1±11.5% and the 50% contour 

21.0±8.1% of the retina. Similarly at P4, 86.1±16.7% of the retina contains labelled 

cells. Also the 5% and 50% contours, covering 72.1±20.6% and 19.7±9.7% of the 

retina, respectively. After P4, the amount of retina containing labelled cells is reduced 

significantly (p<0.001) to 63.3±13.4% at P8. There is, moreover, also a significant 

reduction in the size of the 5% contour level to it covering just 35.9±11.1% of the retina 

(p=0.0015). Additionally, all the higher-level contours are refined at a similar rate, so 

that the distribution of the label at P8 is still similar to that of P4, albeit covering a 

smaller proportion of the retina. 
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Between P8 and P12, there is a significant reduction in the amount of retina containing 

labelled cells (p<0.0001) to 35.2±9.0%. There are, however, no significant reductions in 

the sizes of any of the contours between P8 and P12. Although there are no reductions 

in the isodensity contours between P8 and P12, there is, however a significant reduction 

in the sizes of the 5% (p=0.0025) and 25% (p=0.0035) isodensity contours from P8 to 

P22, which indicates that the refinement continues at a slower rate. Furthermore, since 

there are no significant differences in the higher-level contours, it could indicate that 

there is a significant refinement purely of the ectopic cells during this period.  
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Figure 5-2 nAChR-β2 knock-out isodensity contour analysis. 

A, Proportion of retina containing any labelled cells from Systat analysis (see methods), 
hence why the n is lower. B-F, Scatterplots with the sizes of the isodensity contours for 
5% (A), 25% (B), 50% (C), 75% (D) & 95% (E). Areas have been normalised to the 
size of the retina in deg2 (Equation 2-10). Line is the mean and error bars are SD. 
Significance determined using a one-way ANOVA with a Bonferroni post-hoc test. F, 
Mean data from A-E plotted on a log scale to illustrate that the curves for all contours 
are of similar shape.  
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The isodensity contours are summarised in Figure 5-3. When plotting all the contours in 

one plot, it is apparent that overall the pattern of refinement with age for all the contour-

levels is similar, since there is a period of refinement between P4-8 in all the contours. 

However, although the pattern of refinement appears similar in this plot, for the contour 

levels above 50%, there are no longer any significant differences in the later 

development. In Figure 5-3, it is possible to compare the relative sizes of the contour-

levels at different ages. The difference between the 5% and the 25% contour levels also 

remains relatively constant throughout development, as the 5% contour is 2.1 times the 

size of the 25% contour at P0 and 2.4 times at P22. Interestingly, there are no 

significant differences between the amount of the retina containing any labelled cells 

and the 5% isodensity contour. This is different from wild type (Figure 4-4), where 

there is a difference until P12. 

 

 
Figure 5-3 nAChR-β2 knock-out isodensity contour analysis. 

Mean data from Figure 5-2 plotted on a log scale to illustrate that the curves for all 
contours are of similar shape.  
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Age n 
(KRE/KDE) 

Contour 
level 

Mean size 
(normalised) 

Median size 
(normalised) SEM SD 

0 10 (2/8) 

5% 0.6127 
 

0.6412 0.05227 
 

0.1653 
 25% 0.3506 

 
0.3341 

 
0.03423 

 
0.1083 

 50% 0.1825 
 

0.1629 
 

0.02281 
 

0.07214 
 75% 0.07102 

 
0.06494 

 
0.008782 

 
0.02777 

 95% 0.01013 
 

0.01040 
 

0.001663 
 

0.005515 
 

2 10 (3/7) 

5% 0.6707 
 

0.6716 
 

0.03627 
 

0.1147 
 25% 0.3969 

 
0.4322 

 
0.03998 

 
0.1264 

 50% 0.2104 
 

0.2257 
 

0.02546 
 

0.08051 
 75% 0.08409 

 
0.09133 

 
0.01123 

 
0.03550 

 95% 0.01323 
 

0.01415 
 

0.002100 
 

0.006642 
 

4 8 (6/2) 

5% 0.7211 
 

0.7355 
 

0.07265 
 

0.2055 
 25% 0.3809 

 
0.3331 

 
0.05333 

 
0.1508 

 50% 0.1965 
 

0.1595 
 

0.03417 
 

0.09665 
 75% 0.08135 

 
0.05663 

 
0.01795 

 
0.05077 

 95% 0.01358 
 

0.009191 
 

0.003536 
 

0.01000 
 

8 20 (16/4) 

5% 0.3594 
 

0.3681 
 

0.02475 
 

0.1107 
 25% 0.1650 

 
0.1593 

 
0.01475 

 
0.06596 

 50% 0.07620 
 

0.06656 
 

0.008820 
 

0.03944 
 75% 0.02746 

 
0.02239 

 
0.004083 

 
0.01826 

 95% 0.003942 
 

0.002733 
 

0.000796
1 
 

0.003560 
 

12 12 (0/12) 

5% 0.2852 
 

0.2738 
 

0.02942 
 

0.1019 
 25% 0.1308 

 
0.1276 

 
0.01447 

 
0.05014 

 50% 0.06230 
 

0.06233 
 

0.006549 
 

0.02269 
 75% 0.02389 

 
0.02406 

 
0.002423 

 
0.008394 

 95% 0.003899 
 

0.003890 
 

0.000443
6 
 

0.001537 
 

22 7 (0/7) 

5% 0.1744 
 

0.1785 
 

0.01015 
 

0.02685 
 25% 0.08440 

 
0.07968 

 
0.007782 

 
0.02059 

 50% 0.04086 
 

0.03909 
 

0.004377 
 

0.01158 
 75% 0.01626 

 
0.01625 

 
0.001813 

 
0.004796 

 95% 0.002557 
 

0.002429 
 

0.000256
5 
 

0.000678
6 
 

60 29 (0/29) 

5% 0.1741 
 

0.1548 
 

0.01578 
 

0.08495 
 25% 0.08713 

 
0.07641 

 
0.008217 

 
0.04425 

 50% 0.04346 
 

0.03743 
 

0.004428 
 

0.02385 
 75% 0.01766 

 
0.01552 

 
0.001960 

 
0.01055 

 95% 0.002969 
 

0.002650 
 

0.000327
8 
 

0.001765 
 Table 5-1 Isodensity contour analysis of the projection in nAChR-β2 -/- animals 

Data of the sizes of the isodensity contours in Figure 5-3 from individual injections at 
various ages from P0 to P22. n reflects the number of injection and numbers in brackets 
represent the ratio of KRE versus KDE contouring. 
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To establish the effects of removing the beta2 subunit of the Nicotinic Acetylcholine 

Receptor (nAChR-β2), the whole developmental dataset has been compared to the wild-

type data detailed in Chapter 4. An interesting and somewhat surprising aspect of the 

contour-analysis in Figure 5-3 is that the amount of retina containing labelled cells is 

smaller in the knockout than the wild type at birth (p=0.02). This is confounded by the 

fact that the 5% isodensity contours are larger in the nAChR-β2 knockout animals even 

at birth. From P2 to P4 the same amount of retina contains labelled cells in knockout 

and wild type, but the 5% isodensity contour remains larger. By P8, more of the retina 

contains labelled cells in the knockout than the wild type. 

 

A useful measure of the shape of the label is the differences in size between the 

different contour-levels for each given age. When looking at the relative sizes of the 

contour-levels at different ages (Figure 5-2), the difference between the 5% and the 

25% contour levels remains relatively constant throughout development, as the 5% 

contour is 2.1 times the size of the 25% contour at P0 and 2.4 times at P22. This is 

slightly different from the wild type, where the 5% contour is 1.4 times the size of the 

25% contour at P0, but 2.1 times at P22. A similar pattern is seen when comparing the 

higher contour-levels.  

 

Furthermore, comparing the 5% contour-level, signifying the ectopic cells, to the 50% 

contour-level, representing the size of the focus; it is apparent that the nAChR-β2 

knockout animals have a more diffuse projection throughout development than the 

wild-type animals, as the mean contour size ratio in nAChR-β2 knockout animals for 

P0-4 is 5.8±0.6 (SD) compared to 3.0±0.3 in wild-type animals; and for older animals 

(P8 to P22) the ratio for nAChR-β2 -/- animals is 6.4±0.5 compared to 4.4±0.3 in wild 

type animals. Another aspect that is noticeably different between knockout and wild 

type animals is the variability of the label. For the knockout animals, there is greater 

variability in the young animals (P0 to P4) than in the older animals, but the even in 

older animals, the variability is greater than the wild type. On average, the standard 

deviation of the knockout animals is 3 times that of the wild type, which may be due to 

the correlated information in the wild type reducing noise in the system. 
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Figure 5-4 Comparison of isodensity contours for nAChR-β2 -/- and +/+ 

Plots of the proportion of the retina containing labelled cells (all) and the normalised 
mean retinal area enclosed by each of the 5%, 25%, 50%, 75% & 95% isodensity 
contours in Figure 5-2. nAChR-β2 knockout animals are in orange and age-matched 
wild-type animals are in green (Figures 4-2 & 4-3). Error bars represent the standard 
error of the mean. Significance is determined with a two-tailed one-way ANOVA with a 
Bonferroni post-hoc test (*** p<0.0001; ** p<0.001; * p<0.05)  
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5.2.3  Measuring order in nAChR-β2 knockout animals 

Although the isodensity contours have proven to be a good method for observing 

phenotypes in the precision of the projection, the nearest neighbour analysis provides an 

additional insight into the topographic order in the projection.  

 

In Figure 4-7, we saw that for the wild type animals, the required separation between 

two injections to ensure non-overlapping retinal label varied with age (Figure 4-7). 

Figures 5-5 (P0-P4) and 5-6 (P8-P60+) illustrate the results of this analysis in the 

nAChR-β2-knockout line. The study was confined to anterior-posterior axis, as this is 

where the greatest phenotype might be expected considering previous reports 

(McLaughlin et al., 2003b). The individual animals (Figure 5-1) and population data 

shown in Figure 5-3 show that, in contrast to wild type animals, in this line there is no 

difference between the spread of labelled cells following injections at P0, P2 and P4. 

 

The nearest neighbour analysis in Figure 5-5 confirms that the observed similarities 

between the early ages in the contour analysis are also reflected in this analysis. At P0, a 

pair of injections separated by 1500µm resulted in a nearest neighbour value of 0.55. As 

can be seen in the P0 example in Figure 5-5, both the red and green label covers the 

entire retina and therefore this example where injections are separated by 642µm results 

in a similar nearest neighbour value of 0.52. This is similar for the P2 example, where 

injections at 1480µm also result in a nearest neighbour value of 0.55 and the entire 

retina still contains labelled cells, although in this case dorsal retina is less heavily 

labelled which is consistent with the medial location of the injections. Unlike the wild 

type example, the pattern in the P4 case is indistinguishable from that at P2: injection 

separations of 1536µm here resulted in a nearest neighbour value of 0.50 (Figure 5-5). 

Moreover, at this age the entire retina also still contains labelled cells (Figure 5-5). As a 

result of the scattered projection patterns at these early ages, the logistic functions fitted 

to the data do not show the classical S-shape within the bounds of the SC and the given 

NN value predicted from these fits is less than 0.6 for the whole of the SC.  
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Figure 5-5 Lack of order in the early projection in the absence of nAChR-β2  

Segregation of the label measured by nearest neighbour analysis for P0-P4 plotted 
against separation of injection sites along the AP axis of the SC. The fits are logistic 
curves defined by Equation 2-13. The black dashed line shows the separation at which 
label is 90% separate. The right hand plot represents the residuals associated with the 
fit, which as can be are symmetrical around the zero-line. Dashed line indicates the 95% 
confidence interval for the fitted curves. The arrow indicates the nearest neighbour 
value of the associated example retina. Values for the slope, inflection, x(y=0.9) and 
goodness of fits are in Table 5-2 
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Not surprisingly given the data shown in Figure 5-2, the projection becomes more 

ordered with age in older nAChR-β2 -/- animals (Figure 5-6). At P8, towards the end of 

the stage II nAChR-dependent waves, we find, as mentioned previously that 

63.3±13.4% of the retina contains labelled cells, which can also be seen in the P8 

example in Figure 5-6. The result of this is that the logistic function fitted to the nearest 

neighbour data shows that it might just be possible to achieve segregated label (y=0.9), 

albeit only at separations of 1989 µm, which approximately corresponds to the length of 

the SC. However, due to the lack of data for separations above 800µm, it is uncertain 

whether this is actually the case. It could be both that it is not possible to achieve 

segregated label and that it is possible to get segregated label from injections separated 

by 1000µm. More injections would be needed to determine this, however, even if it 

would be possible to get segregated label with injections of 1000µm, this is still 

significantly more than P12 nAChR-β2 -/- animals where injection separations of 

640±126 µm are sufficient to get segregated label.  

 

Although it is possible to get segregated label at P12, as can also be gleaned from the 

example in Figure 5-6, where 35.2±9.0% of the retina still contains labelled cells, it is 

still not a very precise projection. From P12 to P22, there are no significant changes in 

any of the aspects describing the fitted functions, as the functions for P12 and P22 

animals have similar inflection points (409 and 453µm, respectively; Table 5-2) and 

slopes (3.1 and 3.7, respectively) and as a result, injections done at P22 still need to be 

separated by 662±265 µm to get segregated label. For adult animals, although the 

examples in Figure 5-6 look very similar to P22, the fitted function has a steeper slope 

(5.47) and as a result, in adult animals, injection separations of 518±122µm are needed 

in adult animals to get segregated label.  
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Figure 5-6 Order in the late projection in the absence of nAChR-β2  
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Figure 5-6 Legend: Order in the late projection in the absence of nAChR-β2 

(previous page) 

Segregation of the label measured by nearest neighbour analysis for P8-60+ plotted 
against separation of injection sites along the AP axis of the SC. The fits are logistic 
curves defined by Equation 2-13. The black dashed line shows the separation at which 
label is 90% separate. The right hand plot represents the residuals associated with the 
fit, which as can be are symmetrical around the zero-line. Dashed line indicates the 95% 
confidence interval for the fitted curves. The arrow indicates the nearest neighbour 
value of the associated example retina. Values for the slope, inflection, x(y=0.9) and 
goodness of fits are in Table 5-2
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As can be seen from the plot of the nearest neighbour contours for all the sampled ages 

in Figure 5-7A, there is no order in the projection along the AP axis before P8. It is 

possible that order appears by P6, but this dataset has not yet been obtained. The 

logistic functions fitted to the data for P0, P2 and P4 all show an almost flat line at less 

than 0.6 for the entire length of the SC. It is only by P8 that some order emerges, as is 

also apparent from the fact that less than half of the retina contains labelled cells (Figure 

5-1). Since the function now increases steadily it is more similar to wild type P2 or P4 

than wild type P8. With the inflection points at 915±376 µm for P8 nAChR-β2 -/- and 

726±92.5 for P4 wild type (Figure 5-7B); and the threshold for saturation of the 

function at 1989 µm and 1685, respectively (Figure 5-7C), the 95% confidence intervals 

for the functions fitted to the P8 nAChR-β2 -/- and wild type P4 data are nearly 

completely overlapping. Moreover, since the slopes of the two curves at 1.78 and 1.87 

are also similar, we can say that the distribution is also similar, at least for the AP axis. 

 

Although it is possible to get segregated label in the nAChR-β2 -/- animals at P12, it is 

still not a very precise projection and is more equivalent to P6 or P8 wild type animals. 

The main difference between the knockout and wild type animals, however, is that from 

P12 onwards, there is no significant refinement and as a result, injections done at P22 

still need to be separated by 662±265 µm to get segregated label. The order is not even 

rescued in adult animals, since injection separations of at least 518±122µm are still 

needed in adult animals to get segregated label.  

 

Interestingly, some of the differences between P22 and adult (P60+) animals that were 

observed for the wild type (Figure 4-7D) are also seen in the nAChR-β2 knockout data. 

At P22 the threshold for ordered label is at 662 µm, whereas it is at 518 in the adult 

population. However, since this difference is caused by an increase in the slope of the 

function from 3.67 to 5.47, the inflection points are more similar at 453 for P22 and 404 

for adult. Although there may be an increase in the order of the projection from P22 to 

adult in the nAChR-β2 -/- animals, more data would be needed to establish this. Despite 

the smaller difference between P22 and adult, the adult projection is still significantly 
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less ordered in the knockout than in wild type. In adult wild type animals, SC injection 

separations of just 98 µm are sufficient to give separate foci of label in the retina, 

whereas in in the nAChR-β2 knockout animals separation of 518 µm are needed.  

 

 

 

 

 

Table 5-2 Fitting curves to nAChR-β2 -/- nearest neighbour data. 

Values for fitting of Logistic curve (Equation 2-14) to nearest neighbour data for 
injections separated along the anterior-posterior axis of the SC. (*) No value is given as 
it is far beyond the length of the SC, and any value would therefore be meaningless. 
 

  Logistic fit (eqn. 2-13) 

Age n slope (  𝜿) inflection (  𝝉) x (y=0.9) SSE R2 

0 11 1.81 4193 - 0.0273 0.00350 

2 10 1.62 3287 - 0.0407 0.123 

4 8 1.92 3599 - 0.0151 0.0221 

8 12 1.78 915 1989 0.0345 0.788 

12 8 3.10 409 641 0.00345 0.981 

22 8 3.67 453 662 0.0123 0.951 

60 15 5.47 404 518 0.0803 0.828 
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Figure 5-7 Summary of nAChR-β2 -/- order and comparison to wild type 

A, Plot of NN value of retinal label as a function of the SC injection separation along 
the anterior-posterior axis. Curves are from the fits detailed in Figures 5-4 and 5-5. 
Dashed lines represent the data shown in B & C. B, Inflection point of the fitted curves 
in A plotted as a function of age for nAChR-β2 -/- (orange) and +/+ (green). C, The SC 
injection separation needed to get 90% segregated foci in the retina according to the fits 
in A. Error-bars in B-C are represent the 95% CI for the fitted function. 
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5.2.4  Comparing the nAChR-β2 genotypes 

Throughout this chapter, I have compared the nAChR-β2 knockout animals to wild type 

animals on the same C57BL6/J background. However, to determine whether this is a 

reasonable comparison, the nAChR-β2 knockout animals have also been compared to 

heterozygous and wild type littermates (Figure 5-7). In Figure 5-7A, the sizes of the 

various isodensity contour levels have been plotted in histograms to show that there are 

no significant differences between the heterozygous (-/+) and wild type (+/+) littermates 

for P12, P22 and adult across all the contour levels. These two groups are, however, 

very significantly different (p<0.0001) from the homozygous (-/-) animals at all three 

ages and across all the contour levels. This can also be seen in the examples in Figure 5-

7B, where the homozygous (-/-) retina has a significantly larger area with labelled cells 

than the heterozygous (-/+) and wild type (+/+) littermates.  
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Figure 5-8 Comparing nAChR-β2 genotypes 

The mean proportion of the retina covered by the 5%, 25%, 50%, 75% & 95% 
isodensity contours for injections done at P12, P22 and adult (P60+) for animals that are 
nAChR-β2 homozygotes (orange), heterozygotes (red) and wild-type (green). . 
Significance is determined with a two-tailed one-way ANOVA with a Bonferroni post-
hoc test (*** p<0.0001; ** p<0.001; * p<0.05; ns= not significant)  
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Even though the nAChR-β2 strain has been back-crossed to a C57BL6/J background, I 

still wanted to check whether using wild type animals as a framework for comparison 

was reasonable. For this reason, the nearest neighbour plot for C57BL6/J mice (Figure 

3-6J) was compared to the plots of nAChR-β2 -/- (Figure 5-6) and nAChR-β2 +/- & +/+  

 

In Figure 5-9B it can clearly be seen from the plot that the function fitted to nAChR-β2 

heterozygote and wild type littermates are the same as the C57BL6/J strain. This is both 

due to the almost complete overlap of the 95% confidence interval of the fit and the 

similar shape of the two curves. In contrast, the function fitted to nAChR-β2 

homozygotes is significantly different from both of the above (p<0.0001, two-tailed F-

test). This indicates that using the C57BL6/J strain as a framework for establishing the 

phenotype of the nAChR-β2 knockout strain is reasonable. 
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Figure 5-9 Comparing nAChR-β2 and C57BL6/J strains 

A, Label resulting from single discrete injections of a comparable size into the anterior 
superior colliculus in adult (P60+) animals for C57BL6/J (green), nAChR-β2 +/- 
(brown) and -/- (orange). Isodensity contours are plotted by excluding 5% (light blue), 
25% (dark blue), 50% (pink), 75% (orange) & 95% (yellow) of the cells with the lowest 
density using KD estimates. Plots are Azimuthal equal-area plots using a rim-angle of 
𝜑! = 111.6˚. Square is the peak density and diamond is the Karcher mean of the label. 
B, Segregation of the label measured by nearest neighbour analysis for C57BL6/J 
(green), nAChR-β2 +/- & +/+ (brown) and nAChR-β2 -/- (orange). NN value is plotted 
against separation of injection sites along the AP axis of the SC. The fits are logistic 
curves defined by Equation 2-13. The shaded area is the 95% confidence interval of the 
fits. The right-hand plot represents the residuals of the fits.  
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5.2.5  Neonatal topography in nAChR-β2 knockout animals 

Since no apparent order is present in the neonatal (P0-4) animals, as measured by the 

nearest neighbour plots in Figure 5-7, the vector plots used to analyse the wild-type 

neonatal animals in Figure 4-11 have been repeated for the nAChR-β2 knockout 

animals to investigate whether there is any order observable in these animals. The plots 

are done by connecting the Karcher means or peak densities of the label from paired 

injections in the same animal with an arrow pointing toward the most anterior of the 

two injection sites. Using this method, it is possible to investigate whether we can 

predict the orientation of the label based purely from the orientation of the injection 

sites. 

 

As can seen from the P0 vectors in Figure 5-10, it is generally possible to predict the 

orientations of both the Karcher means and the peak density locations from the 

orientation of the injection sites for injection pairs with large separations. However, it is 

no longer possible to confidently predict the length of the vectors from the separations 

of the injection sites, as can also be seen from the large difference in length between the 

Karcher mean and the peak density vectors for both P0 and P2. For close separations, it 

is not consistently possible to predict the orientation, as indicated by the shortest vector 

in the P0 plots pointing the correct way in the plots of the Karcher mean, but the wrong 

way in the plots of the peak densities. Incidentally, the injection sites resulting in this 

vector are separated by 516µm and therefore might be expected to be further apart. For 

P2, the length of the vectors still cannot be consistently predicted and it also appears 

that there is more scatter in the orientation of the vectors. However, to be able to 

conclude whether there are any differences between P0 and P2, more data would be 

needed. 
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Figure 5-10 Vector analysis of neonatal nAChR-β2 -/- animals 

Vectors connecting the Karcher means or Peak kernel density (KDE) of the label from 
two paired injections in the same animal for P0, & P2. The arrow is pointing towards 
the more anterior injection site. Plots are Azimuthal equidistant polar plots. The black 
arrow in the composite plots is the one in the example. In the example plots, the vector 
connecting the Karcher means is blue and the vector connecting the KDE peak densities 
is magenta. The locations of the respective SC injection sites are plotted underneath. 
The small n in these plots is due to not all the data having been analysed in this manner. 
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5.3 Discussion 

To summarise the results, the experiments have revealed that discrete injections of 

tracer in nAChR-β2 knockout animals results in a significantly larger area of the retina 

containing labelled cells than in age-matched wild type animals from P8. However, with 

different distribution of label from birth, indicating a less precise projection from birth. 

Moreover, as a consequence of the less precise projections, less order was also observed 

along the AP axis for all ages. Moreover, in contrast to the wild type there is no 

refinement at all before P4. However, although the projection is less precise it is still 

possible to predict the location of the label from the injection sites at P0. Although the 

projection is less precise, a normal rate of refinement was observed from P8 to P22, 

indicating that the most severe effects of the knockout is in the first 8 days after birth. 

 

Interestingly, nAChR-β2 -/- animals also exhibited an altered distribution of label, 

indicative of a less precise projection than wild type animals at P0. This difference 

probably reflects that the nAChR-dependent waves actually starts just before birth 

(Syed et al., 2004). The results therefore indicate that the waves may already have had 

an effect on the refinement of the projection at the time of birth.   

 

After P4, there is a significant reduction in the size of the 5% contour level to 

35.9±11.1% of the retina, indicating that there is a significant amount of refinement 

during this period. An interesting parallel to this timescale of the early refinement seen 

in this study is the varying patterns of stage 2 Acetylcholinergic spontaneous retinal 

activity at these time points. Between P0 and P3, the majority of the spontaneous events 

are isolated and waves are therefore infrequent and do not travel far (Hennig et al., 

2009). Around P4, however, these spontaneous events start to become more correlated 

and bigger waves start propagating across the whole retina, persisting until around P8 

(Bansal et al., 2000; Hennig et al., 2009) . It is therefore possible that the different 

modes of activity influence the different temporal patterns of refinement we see in the 

wild-type development in figure 4-2 and that this could account for the lack of 

refinement before P4 in the nAChR-β2 knockout animals. It is, moreover, likely that the 
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observed changes in the patterns of activity (Hennig et al., 2009) are due to homeostatic 

mechanisms that have been described as causing a restoration of gap-junction mediated 

activity by P4 when Acetylcholinergic activity is disrupted by removing choline 

acetyltransferase (ChAT), which is the sole enzyme synthesising Acetylcholine (Stacy 

et al., 2005). 

 

The nAChR-β2 knock out animals clearly have a severe phenotype that is not recovered 

even in adulthood. It is therefore possible that there is a defined developmental time-

window where specific patterns of activity are needed for forming a precise connection, 

and if these activity-patterns are disrupted, the projection never fully refines. The reason 

why such inferences can be made from the nAChR-β2 knock out is that it has been 

shown to only affect a defined period, which in the mouse is during the first postnatal 

week (from P0 to P7/8) (Bansal et al., 2000) after which normal activity is resumed 

since this is mediated by Glutamatergic activity in the bipolar cells (Wong et al., 2000). 

As a result of this normal activity not being able to rescue the phenotype, but merely 

resume the normal rate of refinement, it also offers up the possibility that the patterns of 

the Stage III Glutamatergic waves (Kerschensteiner and Wong, 2008) has different 

effects than that of the Stage II Cholinergic waves. This is also supported by the results 

in Figure 5-2, showing that after P8, there is only a significant refinement in the size of 

the 5% and 25% isodensity contours, but in the higher contour levels, above 50% 

density, there is no longer any significant differences in the later development. This is 

probably because these contour levels describe the focus of label, which is not 

recovered with the resumption of normal activity, due to the different spatiotemporal 

characteristics of Glutamatergic activity (Kerschensteiner and Wong, 2008). The later 

refinement of the broader projection of the wild type is also supported by data from 

individual RGC axonal arbours by Dhande et al. (2011), as they show that in the wild 

type, there is a significant increase in both length and complexity of the axonal arbours 

from P8 to P14, but no change in the area covered by the arbour. Interestingly, for the 

nAChR-β2 knockout animals, they report a significant increase in arbour length and 

size for individual axons accompanied by a decrease in the complexity, which appears 
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to be contradictory to our data showing that there is a decrease in the size of the 5% 

isodensity contour, but not in the 50% isodensity contour.   

 

The refinement between P8 and P12 in the nAChR-β2 -/- mice is probably be due to the 

onset of stage 3 Glutamatergic activity and a restoration of normal activity (Bansal et 

al., 2000; Sernagor et al., 2000; Zhou and Zhao, 2000). Although it would be interesting 

if the transition in waves could compensate for the developmental defects and rescue 

them, dependent on whether the absolute or the ratio of refinement between P8 and P12 

was compared, it could be argued that it is either rescue or that it is merely resumption 

of normal development. A way to get a handle on this question would be to manipulate 

the Glutamatergic waves, e.g. by removing the vesicular Glutamate transporter-1 

(vGlut-1), which is necessary for the Glutamatergic waves (Blankenship et al., 2009). 

However, this manipulation also causes the period of Cholinergic waves to be extended 

(Blankenship et al., 2009), which may cause other phenotypes. 

 

Another factor in the debate of the later refinement of the projection is whether visual 

experience plays a role in further sculpting the projection, or whether such evoked 

activity merely aids in maintaining the projection (Carrasco et al., 2005). It is likely that 

the activity has some effects on the alignment of the cortical input to the SC as changes 

in this connectivity are occurring around the time of eye opening at P13 (Phillips et al., 

2011; Triplett et al., 2012). Whether it has any direct effects on the retinocollicular 

projection, however, remains to be established. A way of addressing this question 

would be to inhibit or remove visual cortex and thereby eliminate this activity and see 

whether it has any effects on the refinement. 

 

One potentially confounding factor on the nAChR-β2 -/- is that it is a global knockout, 

and therefore could potentially have local effects in the SC. However, since it has been 

possible to rescue the phenotype in the contralateral projection by a retinal-specific 

knock-in of the nAChR-β2 subunit (Xu et al., 2011), which restores the same spatial, 

but not temporal properties of the waves. This caused a rescue of the monocular, but not 
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binocular projection, suggesting that the specific spatial patterns of activity are very 

important for achieving correct wiring within the contralateral projection. 

 

Regarding the anisotropy of the label in the nAChR-β2 knockout animals that can be 

seen in Figure 5-1, such differences in the distribution of label for the axes has been 

reported along the AP axis of the SC (Chandrasekaran et al., 2005; Mrsic-Flogel et al., 

2005), as well as in dLGN (Grubb et al., 2003) and V1 (Cang et al., 2005). It has, 

moreover, been demonstrated that one of the major effects on the wave-characteristics 

when removing nAChR-β2 is that the waves no longer have a preference for NT axis 

(Stafford et al., 2009), which could explain this phenotype. For this reason, it would be 

interesting to do this analysis for the present dataset. An additional factor related to the 

anisotropy, which would be interesting to investigate in more depth is whether the 

expansion in anterior SC and compression in posterior SC is also reflected in the 

anatomy. The problem with this is the difficulty of making injections in the posterior 

medial SC, as discussed earlier, which is also why nothing can be concluded about this 

from the present dataset. When looking at the injections, which are mostly in the 

anterior half of the SC, there is, however, a trend towards the more anterior injections 

being slightly larger in adult animals.  

  

Both molecular and activity-based cues have been clearly shown to influence and direct 

the development of anatomical and functional retinotopic maps. Nevertheless, it has 

remained controversial whether activity is required for the read-out of molecular 

gradients. Recently, however, there is emerging evidence for the requirement of activity 

in topographic mapping (Hanson and Landmesser, 2004; Nicol et al., 2007). To support 

this, our data from the nAChR-β2-/- mice show that the structured activity is crucial for 

the large-scale refinement. It may also be that the structured activity is involved in the 

read-out and maintenance of the ephrin gradients and Eph counter gradients 

(Kastanenka and Landmesser, 2010) that are established around E15 and persist 

throughout development in wild-type mice (Rashid et al., 2005; Marler et al., 2008).  
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Chapter 6 General Discussion 

This thesis deals with the development of anatomical precision in the retinocollicular 

projection, a topic that has been the subject of study for the past 50 years since the 

mechanisms of chemoaffinity for guidance of axons from the frog retina to the optic 

tectum was first proposed by Sperry (1963). However, although numerous studies have 

addressed the question, as described in the introduction, few have provided detailed 

quantitative data on the development of the contralateral retinocollicular projection.  

 

Here we have provided a framework in the form of a thorough quantitative description 

of the developmental sequence (Chapter 4), and in doing so have confirmed and 

quantified many of the previous observations of different phases of development while 

using new metrics of order to provide some new preliminary evidence pointing toward a 

role for plasticity concurrent with later developmental critical periods of cortical 

plasticity. Moreover, by providing a thorough examination of the changes in this 

framework associated with changes in activity (Chapter 5), we hope to better understand 

the relation between activity-based and molecular guidance cues in map formation by 

providing quantitative data for computational models.  
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6.1 Development of retinocollicular precision and the role of activity: 

wild type 

It is interesting to speculate about what causes the different phases of development 

observed in Chapter 4. The refinement starts with an initial slow decrease in the size of 

the spread of the label (Figure 4-2) caused mainly by restriction of label along the NT 

axis from P0 to P4 (Figure 4-1). This is then followed by a rapid change in the spread of 

the projection between P4-6 and a change in the size of the focus from P6 to P8 (Figure 

4-2). 

Interestingly, these timings correspond to the timings of changes in the frequency of the 

waves reported by Sun et al (2008a). They found that the wave frequency at P1-3 was 

between 1.5-2 waves per minute, whereas they found that the frequency at P5-8 was 

between 0.4-0.7 waves per minute with the shift occurring around P4. It has, moreover, 

earlier been suggested that the early (P0-P4) spontaneous activity may be influenced by 

gap junction-mediated activity and as a result may exhibit different characteristics than 

the later waves after P4 (Stacy et al., 2005). Similar changes in wave frequency have 

also been observed in the turtle (Sernagor et al., 2003; Hennig et al., 2011) and was 

ascribed to the shift from excitatory to inhibitory GABAA signalling. It is, however, 

worth noting that the results by Sun et al. (2008a) have been questioned in Stafford et 

al. (2009) due to the medium used previously having been shown to affect spiking rates. 

Stafford et al. found that the wave frequency in P6 wild type retinae at 37˚C was 1.6 

waves per minute. However, although the spiking rates may have had an effect on the 

absolute value, it is probable at the difference in wave frequency between P0-3 and P5-8 

found by Sun et al (2008a) is real.  

 

Consequently, we can say that the frequent waves are coincident with the slow early 

refinement observed in the retrograde labelling experiments therefore might be involved 

in the refinement of large projection errors. In contrast, since the later less frequent 

waves are coincident with the tightening of the focus, we can therefore speculate that 

they may be involved in stabilising branches. 
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6.2 Development of retinocollicular precision and the role of activity: 

nAChR-β2 

The experiments in Chapter 5 have revealed that discrete injections of tracer in nAChR-

β2 knockout animals result in a significantly different distribution of retinal label from 

birth, indicating a less precise projection from birth. Moreover, due the a lack of 

refinement in the first 4 postnatal days, injections done at P8 in nAChR-β2 knockout 

animals result in a larger area of the retina containing labelled cells than in age-matched 

wild type animals from P8. However, although the projection is less precise it is still 

possible to predict the location of the label from the injection sites at P0, indicating that 

topographically appropriate branching may still be present. Although the projection is 

less precise in early development, a normal rate of refinement was observed from P4 to 

P8, indicating that the most severe effects of the knockout is in the first 4 days after 

birth. 

 

An interesting observation is that in the nAChR-β2 knockout animals at birth, the 5% 

isodensity contour is larger than the wild type, indicating that the projection is less 

defined, which one might speculate is due to more non-specific branching. However, 

the amount of retina containing labelled cells is smaller in the knockout and the 5% of 

cells with the lowest density therefore occupy a smaller area. Such a distribution could 

indicate that although the changes in activity pattern causes there to be more non-

specific branching, these branches might be shorter than the wild type. However, 

whether the changes in activity associated with the lack of cholinergic activity could 

cause such a phenotype is unclear and this therefore remains speculative. 

 

If we consider the data from the retrograde transport in the nAChR-β2 knockout 

animals, where we see that before P4, there is no refinement in the isodensity contours 

(Figure 5-3) or in the nearest neighbour analysis (Figure 5-5). It is apparent that the 

most severe effects of the knockout is in disrupting the early waves before P4, as it 

appears from both the isodensity contour analysis and the nearest neighbour analysis 

like normal levels of refinement is resumed after P4.  
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Looking at the nAChR-β2 knockout mice, there is a similar discrepancy as in the wild 

type data between recordings of waves from different research groups. The frequency of 

the waves have been reported as 2.7 waves/min at P4 by Sun et al (2008b) and 0.8 

waves/min at P6 by Stafford et al. (2009). This discrepancy (increase of wave frequency 

by Sun et al. and decrease in waves by Stafford et al.) could be down to the difference 

in age of the animals, but since Sun et al. only looked at P4, while Stafford et al. only 

looked at P6, this remains to be resolved. It is, however, a distinct possibility that such a 

change in waves could account for some of the phenotype observed in the retrograde 

tracing experiments. 

 

The elongated retinocollicular receptive fields along the AP axis that have been reported 

in the nAChR-β2 knockout (Chandrasekaran et al., 2005) and the elongation of RGC 

axonal arbours along this axis (Dhande et al., 2011), suggest that the effect of activity-

dependent refinement could be stronger along the AP axis, a theory also supported by 

the preference of the waves for the NT retinal axis (Stafford et al., 2009). An 

observation that is supported by evidence showing that specific oscillations in RGC 

cAMP levels is permissive for ephrinA5-mediated repulsion along the SC AP axis 

(Nicol et al., 2007). Moreover, since the levels of cAMP has been shown to be involved 

in establishing and strengthening synapses (Munno et al., 2003), it is possible that such 

changes in cAMP levels could further affect the stability of synapses, which 

consequently may affect the refinement of the projection.  

 

One theory regarding the activity-dependent refinement argues that the refinement of 

topography is facilitated by mechanisms that are LTP-like in nature, which implies that 

RGCs initially contact and form synapses on all target cells, and then the active 

synapses are selectively strengthened through the recruitment of further synaptic 

machinery and enlargement of the active dense zone, whereas inactive synapses are 

weakened and eventually disappear (Willshaw and Malsburg, 1976; Cline, 2001; 

Chandrasekaran et al., 2007; Hooks and Chen, 2007; Shah and Crair, 2008b). The 

implications of these LTP-like mechanisms is that the axonal arbour is reduced in size 
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to form only the most relevant connections, resulting in a more refined map than had 

been obtainable with the exclusive involvement of molecular gradients. Moreover, the 

characteristics of the cholinergic waves fit the paradigms needed for these mechanisms 

(Butts, 2002).  

 

When used in combination with axon-axon competition (Gosse et al., 2008; Triplett et 

al., 2011) such roles of activity provides a strong model for retinotopic map refinement. 

For these reasons, it would be interesting to examine the relative differences in synapse-

density on RGC axons between anterior and posterior SC in wild type and nAChR-β2 

knockout animals to see whether the changes observed in the projection as a 

consequence of altered activity patterns may be caused by changes in synapse density.  

 

If it is the case that the axes are offset from the midline throughout development, it may 

explain some of the increased scatter in the nearest neighbour data for large separations 

(See Figures 4-4 and 4-5). An increase in scatter is what would be expected if 

projections were offset from the midline while injections are aligned with the midline 

since there is a distinct AP anisotropy in early development in both wild type and 

nAChR-β2 -/- animals. 

 

A final surprising element of the wild type data revealed by the nearest neighbour data 

is the difference between P22 and adult in the wild type animals for the AP axis (Figure 

4-7D). This subtle difference might be caused by synaptic remodelling as is the case in 

dLGN during this period (Hooks and Chen, 2008). It is noticeable that this effect spans 

the critical period for ocular dominance plasticity around P28 (Gordon and Stryker, 

1996) which is also reflected in large-scale changes in the anatomical connectivity 

(Antonini et al., 1999). Interestingly, this phenotype is less pronounced in the nAChR-

β2 knockout strain, which could reflect that the changes in fine topography are masked 

by the gross imprecisions in this strain along the AP axis. For this reason it may be 

interesting to see if there is a difference in the nearest neighbour order between P22 and 

adult animals along the ML axis in the nAChR-β2 strain. 
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6.3 Modelling development 

One of the initial aims of this thesis was to provide a quantitative description of the 

spatiotemporal development of the retinocollicular projection to enable the creation of a 

modelling environment that was informed and constrained by data. This resulted in a 

collaboration with Johannes Hjorth, Stephen Eglen (both University of Cambridge) 

David Sterratt and David Willshaw (University of Edinburgh) to create a model capable 

of simulating the developing wild type dataset incorporating all the known aspects of 

molecular and activity-dependent guidance and refinement.  

 

The idea is to create a model that predicts the wild type data, in which we could then 

manipulate the factors influencing the formation of the map and thereby start to tease 

apart the mechanisms. The resultant model will be based on an existing model by 

Triplett et al. (2011), the basic premises of which are illustrated in Figure 6-1 (A & B). 

Briefly, a random RGC and a random unconnected SC neuron are selected, then for 

every iteration of the model the probability of making a new connection is calculated 

and the connection is either made or not. This probability is determined by the matching 

of the molecular cues of the cells, how correlated their activity is and by adding in a 

factor controlling the competition between RGC axons (Figure 6-1A). Likewise, for 

strengthening or weakening (and possible removal) of connections the probability is 

calculated for all existing connections with each iteration of the model and the 

connections are strengthened or weakened accordingly (Figure 6-1B). The model is 

based on the probabilistic sorting principles according to Eph/ephrin gradients and 

counter gradients (Tsigankov and Koulakov, 2006), but rather than treating connections 

as binary, it employs weakening and strengthening of connections by addition of 

synapses akin to Willshaw et al. (2006). The model, moreover, also uses more recent 

data from in vitro multi-electrode array recordings of the characteristics of the 

spontaneous waves in the first week from Stafford et al. (2009) to define the activity-

correlation between RGCs for both wild-type and nAChR-beta2 knockout animals.  

 

The aim is that modifying this model to incorporate the latest knowledge of Eph/ephrin 

interactions and activity-patterns through development, will eventually enable us to 
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simulate the retrobeads injections throughout development. An example of such a 

simulated experiment using the existing model is shown in Figure 6-1C, where the label 

resulting from a pair of injections is simulated. Iterations shown represent stages where 

the distribution of label resembles the label that would be obtained experimentally, such 

that the label at 100 iterations might resemble P0, 500 iterations might resemble P2, 

1000 iterations resembles P4 and 2000 iterations resembles P8. This, however, is 

merely an estimate and will need more analysis to determine and verify how the 

iterations of the model relate temporally to the actual development. 

 

As can be seen in Figure 6-1D, although the label from the simulations qualitatively 

resembles the experimental label at defined stages, quantitatively, this is not the case. 

The model therefore still needs fine-tuning to match the timings of the experimental 

data. However, even if the timings were matched, the shape of the curve still does not 

quite reflect the shape of the curve for the observed data indicating that the model 

doesn’t account for the different phases of refinement observed experimentally (in 

Chapter 4). The model shows a rapid refinement early in development, which is not 

reflected in the experimental P0 and P2 data. This might suggests that the mechanisms 

in the model more closely resemble that of the refinement from P4 onwards, as the 

initial refinement is more similar to the observed refinement after P4.  

 

The reason for this apparent disparity could arise from the fact that the correlation data 

for the RGCs used in the model is from recordings in P6 retinae from Stafford et al 

(2009). Considering the earlier discussion about the differences in frequency between 

the early and later waves, this would explain why the model has an initial rapid 

refinement in the simulations that is not seen in experimental data. It is therefore 

possible that the model actually only simulates the later stages of the nAChR-dependent 

refinement after P6 

 

The other obvious discrepancy between the data from the simulations which is 

especially apparent if comparing the simulated data to the experimental data from the 

spread of all the label in the experiments, as this shows an initial spread covering 98% 
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of the retina, whereas the label in the model starts out covering just 52% of the retina. 

The main reason for this is that in the model the ML extent of axon arbours are limited 

to 25% of the extent of the SC and therefore will never label the entire retina. This 

constraint was implemented to maintain the initial ML order from Plas et al. (2005) and 

to replicate the order in the nearest neighbour analysis of the ML data (Figure 4-10). 

However, considering the ability of axons to extend and stabilise branches across half 

the ML extent of the SC (Hindges et al., 2002), this may need to be revisited. It just so 

happens that the initial spread of the projection in the model is approximately the same 

as the P6 experimental data (Figure 6-1D). These observations could suggest that a two-

component model would be better for describing development. 

 

Interestingly, the model as is accurately predicts the wild-type order in the adult using 

the nearest neighbour analysis for the AP axis (Figure 6-1E).  
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Figure 6-1 Comparison of Data to Theoretical Model 
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Figure 6-1 Legend: Comparison of Data to Theoretical Model (previous page) 

A, Framework of model. If a random SC neuron is paired with a random RGC, the 
probability of a new connection being made is determined by the differences in 
chemical guidance cues and activity correlations between the two neurons. B, Similarly, 
for existing connections a balance of guidance molecules and correlated activity 
determines the probability of strengthening, weakening or ultimately removing a 
connection by addition or removal of synapses onto the same neuron. C, Examples of 
retinal label resulting from simulated injections into the SC at four different stages of 
the simulation. The smoothness of the blue-green gradient in the SC represents the order 
in the map. D, Nearest neighbour analysis of data from end-point of model simulation 
(blue) and P60+ data from Figure 3-6J (red). E, Spread of label of simulations of model 
(blue) and data from the 5% isodensity contour sizes (red). Lines represent the median 
and error is the interquartile range. 
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Taking the modelling one step further, we find that by purely changing the correlation 

index of the cells in the retina according to the observations by Stafford et al. (2009) 

(Figure 6-2A), there is a phenotype of reduced precision in the more mature animals  for 

the spread of the termination zone (Figure 6-2B), which analogous to the isodensity 

contour analysis, and less order in the projection for the nearest neighbour data 

throughout development (Figure 6-2C). Having said that, the model still does not 

emulate the distribution of label in the experimental data, neither for the isodensity 

contour analysis (cf. Figure 5-3) nor for the nearest neighbour data (cf. Figure 5-7).  

 

This could again be due to the correlation indices used not accurately representing the 

early waves due to the discrepancies between the observations of Sun et al. (2008a) and 

Stafford et al. (2009), causing the phenotype in the model to be less severe than the one 

observed in the data (cf. Figure 5-4).  

 

To summarise, the creation of a realistic modelling environment of precision in 

collicular retinotopic development would require a better handle on the effects of 

specific activity-patterns in axon guidance and refinement. Such information could 

come either from a consistent examination of the changes in nAChR-dependent 

spontaneous activity during the first postnatal week and the precise effects of the 

nAChR-β2 mutant during this week as well. Moreover, the examination of how 

different patterns of activity affects the development either by examining different 

mutants, e.g. the nAChR-α3 knockout (Bansal et al., 2000), or by manipulating activity, 

e.g. by using Channelrhodopsin-2 to manipulate activity in the retina and subsequently 

examine the effects on mapping (Zhang et al., 2011). Additionally, it is apparent that it 

is crucial to establish a better understanding of the role of Eph/ephrin reverse signalling 

on the branching and refinement of axonal arbours and the role of patterned activity in 

these mechanisms. However, in the lack of such a mechanistic understanding, detailed 

frameworks of normal and altered development, such as the one presented here, provide 

a powerful method for attempting to elucidate these mechanisms. 
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Figure 6-2 Modelling the effects of the nAChR-β2 knockout 

A, the correlation of the spontaneous activity in wild type (black) and nAChR-β2 
knockout (red) from Stafford et al. (2009) and those used by Koulakov (Tsigankov and 
Koulakov, 2006) (blue, dashed curve) plotted as a function of distance. B, the size of the 
termination zone as a function of time (iterations of the model) for wild type (black) and 
nAChR-β2 -/- animals (red) using the model detailed in Figure 4-11 and with the 
correlation indices in A. Shaded grey area is the 95% confidence interval for the wild 
type and dashed red line is the same for the nAChR-β2 knockout. Note that the function 
fitted here is not the same as the one used in the analysis of the data. This is a sigmoid 
function of the form: 
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6.4 Future Directions 

What has been lacking in the field are ways of reliably and systematically manipulating 

both the levels and spatiotemporal properties of activity in the early developing visual 

system. If followed up by careful examination both anatomically and physiologically, 

such methodology could provide vital in improving our understanding of the underlying 

mechanisms of in vivo axon guidance and refinement  

 

One approach for elucidating the relative contributions of activity in development is the 

use of optogenetic methods to manipulate activity in neurons (Boyden et al., 2005). 

Combined with the ability to image activity in specific cell types (Borghuis et al., 2011) 

or even cell compartments (Mao et al., 2008), this offers the possibility to start mapping 

the development of neural connectivity in projections such as the retinocollicular 

projection. Although such techniques have been used extensively in studying the fish 

and frog tectum, they have hardly been employed in studying the development of the 

mouse retinocollicular projection. One of the few studies starting to address questions 

regarding the activity-dependent formation of retinocollicular projection is looking at 

the development of eye segregation in the SC by using Channelrhodopsin-2 in RGCs to 

manipulate activity and thereby elucidate the effects on the projection by imaging 

activity in the SC (Zhang et al., 2011). Moreover, the ability to label cells genetically 

and the appearance of more reliable activity markers in many different colours (Zhao et 

al., 2011) will enable the study of both inputs to and outputs of circuits.  

 

An outstanding issue is the precise mechanisms by which the spontaneous correlated 

activity facilitates refinement in the SC and other retino-recipient areas. Initial steps into 

investigating this question in the rodent has been made by Ackman et al. (2012). By 

labelling RGCs with Calcium-sensitive dye, they determined the nature of the 

waveform activity patterns in the axon arbours and compared these to separate movies 

of this activity in collicular cells. By doing this they show that the activity in vivo are in 

agreement with previous data measured in retinal in vitro preparations (Stafford et al., 

2009). A further elaboration to this line of investigation could be to label both the RGC 

axon arbours and the Collicular cells with Calcium dyes of different wavelengths (e.g. 
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R-GECO and G-GECO) (Zhao et al., 2011). Such data could give an indication of the 

exact nature of the waves and would enable us to address another key unanswered 

question of understanding the role of Hebbian plasticity in the establishment of precise 

connectivity and whether this changes with age.  

 

A separate question is precisely which patterns of activity facilitate the development of 

map formation and consequently, whether it is possible to disrupt the wild-type map or 

rescue e.g. the nAChR-β2 -/- map phenotype by synchronising separate cell-types or 

retinal areas, respectively. Using such a paradigm it would, moreover, also be possible 

to address the question of the role of competition by selectively silencing or activating 

subsets of RGCs to see if this gives them respectively a competitive disadvantage or 

advantage. 
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