
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1109/LRA.2020.2974649

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Yu, C., Lindenroth, L., Hu, J., Back, J., Abrahams, G., & Liu, H. (2020). A vision-based soft somatosensory
system for distributed pressure and temperature sensing. IEEE Robotics and Automation Letters, 5(2), 3323-
3329. Article 9001267. https://doi.org/10.1109/LRA.2020.2974649

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 26. Dec. 2024

https://doi.org/10.1109/LRA.2020.2974649
https://kclpure.kcl.ac.uk/portal/en/publications/0ece9b31-d930-47fc-9a37-c7c8a8008c89
https://doi.org/10.1109/LRA.2020.2974649


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2020 1 1 

 

Abstract— Emulating a human-like somatosensory system in 

instruments such as robotic hands and surgical grippers has the 

potential to revolutionize these domains. Using a combination of 

different sensing modalities is problematic due to the limited space 

and incompatibility of these sensing principles. Therefore, in 

contrast to the natural world, it is currently difficult to 

concurrently measure the force, geometry, and temperature of 

contact in conventional tactile sensing. To this end, here we 

present a soft multifunctional tactile sensing principle. The 

temperature is estimated using a thermochromic liquid crystal ink 

layer which exhibits colour variation under temperature change. 

The shape and force of contact is estimated through the 3D 

reconstruction of a deformed soft silicone surface. Our 

experiments have demonstrated high accuracy in all three 

modalities, which can be measured at the same time. The 

resolution of the distributed force and temperature sensing was 

found to be 0.7N and 0.4℃ respectively.  

Index Terms – Tactile sensing, Temperature sensing, Soft material. 

I. INTRODUCTION 

The somatosensory system of human provides sensation 

such as pressure and temperature which can occur anywhere in 

the body, in contrast to localized sensation such as sight, 

hearing. Human heavily rely on the somatosensory system to 

physically interact with unstructured environments and 

recognise objects. To date, numerous research efforts have been 

carried out to recreate the artificial tactile sensing system and 

achieved significantly progress. To mimic human skills, 

softness is one of the requirements for tactile sensing due to 
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various benefits it can introduce. A large number of soft tactile 

sensors have been developed in recent years. Here, based on 

different principles of sensing, existing soft tactile sensors are 

divided into electrical-based type, magnetic field-based type 

and vision-based type. Electrical-based soft tactile sensors 

mainly utilize piezoelectric and piezo-resistive effects [1]. The 

underlying mechanism is that material deformation will 

introduce resistance change, from which contact force can be 

inferred [2]. In some research, piezo-resistive material is 

arranged into soft arrays so that distributed force sensing can be 

achieved [3]. Due to the softness of piezo-resistive material, the 

tactile sensing array can be made into various shapes then be 

embedded in wearable instruments [4]. Capacitive tactile 

sensors use a soft dielectric to introduce capacitance variation 

that is proportional to potential changes [5] [6].  However, due 

to the distribution of conductive cables, the size and sensing 

area of electrical-based tactile sensing is limited. Magnetic 

tactile sensors use magnetic field intensity and direction to 

estimate contact force [7] and contact shape [8]. Magnets are 

often embedded in soft silicon tips. Once the soft tips move, the 

magnetic sensing points can estimate contact force and shape by 

analyzing magnetic field variation [9] [10]. To improve the 

softness, some of the rigid magnets is replaced by magnetic soft 

elastomer [11]. However, magnetic-based tactile sensing is 

susceptible to interference, which limits the range of 

applications. Furthermore, there is a significant technological 

challenge in increasing the density or spatial resolution of tactile 

sensing for the above-mentioned sensing methods.  

A promising approach to obtaining high spatial resolution in 

soft tactile sensing is based on internal visual measurements and 

the subsequent conversion from deformation of an elastic 

component to distributed pressure information [12]. To enhance 

the deformation characteristics, existing methods either apply 

photometric stereo algorithms to a soft layer such as the 

Gelsight technology [13][14], or employ dot-cloud structures on 

soft elastomer as exemplified by the Tactip [15][16]. 

Distributed contact information is estimated by marker tracking 

algorithms [17]. These methods successfully enable distributed 

tactile sensing while retaining the required softness of the 

sensor. However how to integrate distributed tactile sensing and 
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temperature sensing ability together to mimic the full human 

level somatosensory system is still an open question and no 

result has been reported to this challenge. In this paper, we 

introduce a novel vision-based sensing principle which can 

simultaneously measure densely distributed tactile and 

temperature information on a soft material. We created a soft 

layer consisting of thermochromic liquid crystals (TLC) link to 

measure temperature changes. To enhance the temperature 

sensitivity and in the same time without reducing the spatial 

resolution of tactile sensing, we implemented the TLC material 

to form line grating patterns and applied an image-based 3D 

reconstruction algorithm which is used to estimate pressure 

distribution, and then interpolate contact force and contact 

shape. The temperature distribution is measured by the hue 

value of individual pixel colours from the image. To prove the 

principle, we develop a soft fingertip and carried out 

experiments to validate the performance of tactile and 

temperature sensing. The results of the experiments conducted 

in this work indicate that fingertip  

 

(a) 

  

(b) 

 

(c) 

Fig. 1 (a) Cross section of grating layer. (b) Pressed elastic grating silicon rubber 

layer and the corresponding image-based 3D reconstruction results by FTP 

method. (c) Principle of TLC ink for temperature sensing. 

can measure distributed force and temperature with high 

accuracy. The force sensing resolution is around 0.7N, which is 

about 4.6% of the sensing range (from 0N to 15N). The 

temperature sensing resolution is around 0.4 ℃, which is about 

6.7% of the sensing range (from 25℃ to 31℃). 

II. SENSING PRINCIPLE AND MANUFACTURE 

A. Objective 

The main objective of this sensing method is to imitate the 

somatosensory system as found in human skin, which can sense 

contact force, contact shape and surface temperature 

simultaneously with the contact surface being self-adaptive over 

a small area. In order to achieve the artificial human-like haptic 

sensing, the new sensing principle needs to comprise of an 

elastic and deformable surface, high sensing density and is the 

capability to measure distributed pressure and temperature 

information. In addition, the pressure and temperature sensing 

need to be independent of each other.  

B. Image-based 3D reconstruction for haptic sensing 

In this paper, a method based on Fourier Transform Profilometry 

(FTP) is used to detect and digitalize the Physical deformation. 

As a mature 3D shape detection method, the mathematical and 

algorithmic background of this widely adopted approach is 

shown in [18]. In this method, a projector is used to create light 

fringe patterns on an object’s surface and a camera is used to 

collect the deformed grating images. In this tactile sensor, 

instead of projecting light fringes on a surface, a black and white 

grated silicon layer is created. Once deformed, the grates on the 

rubber layer, considered as a Fourier series expansion in this 

method, will exhibit a phase shift. By using FTP, the phase shift 

of the pattern can be converted into height variation, which can 

be integrated into contact shape change. 

 As shown in Fig 1 (a), the cured grating black silicon base 

is filled with liquid form white silicon rubber and then be cured 

again. This procedure ensures elasticity of the silicon layer. The 

width of grate is 0.5mm. In Fig 1(b), one grated silicon layer 

which has been pressed and captured using the attached camera 

is presented. By using the FTP algorithm, the phase differences 

among the deformed grates have been calculated and the 3D 

phase unwrapping method based on phase differences has been 

applied [19]. Then, the deformation of the soft silicone layer, 

which equals to the relative height of the corresponding location, 

is 3D reconstructed using the FTP algorithm. According to the 

FTP algorithm, there is a positive correlation between density of 

grates and resolution of the shape, thus the performance of 3D 

reconstruction can be improved by increasing the density of 

grates on the silicone layer. Moreover, the accuracy of the 3D 

reconstruction, which determines the resolution of the tactile 

sensing, can be influenced by the image resolution [20]. 

Therefore, the resolution of the sensing method can be improved 

by using the high-resolution image acquisition instruments.  
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C. Thermochromic liquid crystal (TLC) ink 

Liquid crystal is widely used in electronic displays such as 

pocket calculator, electronic watch and LCD Televisions. Liquid 

crystals have the properties of liquid in some respects and 

properties of solid in others. The functional liquid crystal has the 

special forms named nematic, smectic and cholestic [21]. For 

common liquid crystal, under certain environment conditions, 

liquid crystal molecules are lined up and ensure special 

properties of liquid crystal layer. Once the environment, such as 

electrical field, temperature, light intensity and light wavelength, 

has changed, the liquid crystal layer will have variation on the 

macro level due to the molecular orientation transformation and 

distance change on molecular level.  

TLC ink is sensitive to temperature which due to the liquid 

crystals can form into a number of different phases. When 

temperature is lower or higher than a certain range, the 

molecules are formed in smectic phase or isotropic state and the 

layer will be transparent. Once the temperature varies in the 

working range, the distance between molecules will change, 

which makes the wavelength of reflected light vary [22].  

            

                        (a) 

 

(b) 

Fig. 2 (a) Tactile/temperature senor. (b) Cross-section view and zoom-in view 

of sensor 

 

As shown in Fig.1 (c), within the operating temperature 

range, the molecular property of the TLC is related to the 

temperature, which is shown as colour on the macro level. When 

the temperature of the TLC layer is out of the operating 

temperature range, the layer is transparent and does not exhibit 

any colour. Within the operating temperature range, once the 

temperature of the TLC layer increases, the wavelength of the 

reflected light decreases and the colour of TLC layer appears. 

The colour of the TLC layer changes from red to purple to 

thespectrum of visible light when its temperature increases from 

the lower limit to the higher limit of the temperature range. 

Although the TLC layer exhibits colour variation when the 
temperature is within operating temperature range, the 
deformation of the grates is still visible in the image. When the 
sensing layer is used to detect distributed pressure, the original 
deformed grating images are converted to grayscale images to 
minimize the influence of colour variation. Although the colour 
variation can change the grayscale value of pixels in the images, 
after applying the FTP algorithm, the corresponding error caused 
by colour variation in the 3D reconstruction outcome is 
negligible. At the same time, the same original images will be 
used to detect the temperature distribution by analyzing the 
distribution of colour. Therefore, the method of pressure sensing 
and the method of surface temperature sensing can work 
independently. As a liquid crystal material, the fully functional 
TLC layer can be extremely thin, which ensures fast heat 
conduction. Also, the flexibility of TLC layer ensures that the 
temperature sensing unit will not be damaged by deformation. In 
this case, the TLC ink can be used as the temperature sensing 
unit. 

D. Integration of sensing principle 

To integrate the tactile and temperature sensing principle, a 
novel multifunction sensor has been developed. This sensor can 
be divided into two parts: the sensing part and the data 
acquisition part. The sensing part is made of soft silicone rubber 
as shown in Fig 2. It consists of three soft parts: a sensing layer, 
transparent silicone filler and TLC coating between the two. 
The sensing layer is a curved surface silicone layer, which is 
made of highly elastic silicone rubber (Dragon Skin 20, 
Smooth-on) mixed with black and white silicone dye. The 
sensing layer is fingertip-shaped so that it has larger contact and 
sensing area. The transparent elastic silicone rubber (Solaris, 
Smooth-on) filler is directly cured inside the sensing layer so 
that the air-gap and trapped air can be eliminated. The 
transparency of the silicone rubber filler ensures the accuracy of 
image transmission. Between the sensing layer and filler, there 
is a transparent coating layer made of TLC material, which 
allows for temperature sensing in the tactile sensor. Before 
injecting the liquid transparent silicon, TLC ink is evenly 
applied to the inside surface of the sensing layer and cured at 
room temperature. Then after injecting and curing the liquid 
transparent silicone filler, the TLC coating layer can be tightly 
bonded between two elastomers so that it cannot be damaged 
when the soft part is compressed. The thickness of the sensing 
layer influences speed of heat conduction, and therefore the 
fingertip-shaped sensing layer is fabricated at a thickness of 
1mm to ensure the speed of heat conduction. 
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Inside the structure, a piece of clear acrylic sheet is used to 
support the soft sensing part. Underneath the clear acrylic sheet, 
a piece of mirror is attached to the sensor body, by which the 
tactile and temperature information can be transferred to the 
camera in the aperture of the structure for data processing. 

E.  Data processing algorithm 

The FTP algorithm for 3D reconstructing the deformation is 
written in MATLAB. In the FTP algorithm, the deformed 

grating images are firstly converted to grayscale image, I g (dim 

n×m). 2D fast Fourier transform algorithm (2D FFT) was 

applied to I g , convert it to a matrix A1 (dim n×m), which 

contains frequency domain information. The matrix A1 is 

rearranged by shifting the zero-frequency component to the 
center. The “fftshift” command is used in this procedure. Then, 

in matrix A1 , desired frequency components are maintained 

while the other frequency components are set to 0. Therefore, 

the new matrix A2 (dim n×m) are created to extract the 

deformation of grating image from matrix A1 . Then, the 2D 

inverse fast Fourier transform algorithm (2D IFFT) is applied to 

A2  to create A3 (dim n×m). According to the FTP algorithm, 

the elements in A3  are complex numbers.  The absolute phase 

value of each complex number represents the height of the 

deformation and is subsequently used to create the matrix A4

(dim n×m). After filtering high frequency noise, the matrix 

A4  is used to represent the 3D reconstruction of the 

deformation. 

III. EXPERIMENTS AND RESULTS 

An overview of the experimental setup is shown in Fig 3. 

The sensor is fixed to a connector which is attached to the end of 

linear guide. A camera with cylindrical housing is fixed to the 

end of the sensor to capture the desired image. A 6-axis 

force/torque sensor (ATI Mini 40) is fixed on the mobile part of 

linear guide, on the surface of which interchangeable contact 

indenters with different shapes and sizes can be attached. There 

are five types of indenters which have an annulus, a spherical, a 

round, a square and a triangular surface, as shown in table 1. 

The indentation distance is controlled by the linear guide with a 

stepper motor and the real time reference force values are 

recorded. 

A. Contact shape sensing 

To investigate the contact shape sensing ability of the 

sensor, the round, square and annulus indenters listed in table 1 

were used to indent the soft layer from 3mm to 6mm depth. 

Each test was carried out once. The figures shown in Fig. 4 

show the depth map of the 3D reconstructed layer deformations. 

Based on experimental observations, a threshold value of 80 

percent of the maximum height of the deformation is used to 

determine the contour of the indenter shape. As shown in Fig. 4, 

the red solid lines indicate the estimated contact shapes and the 

red dotted lines indicate the actual contact shapes. In each figure, 

the maximum error between actual and estimated shape has 

been analyzed and marked in the figures. From the 3D 

reconstructed indentations, we observe that the contact area 

accuracy is about 1mm based on the current sensor design.  

 

 
Fig. 3 Contact shape and force experimental setup 

TABLE. 1 THE DESIGN OF DIFFERENT INDENTERS  

The shape of 

indenter 

The contact area of 

indenter [cm 2 ] Picture of indenter 

Round 0.1932  

Square 0.25  

Annulus 0.3063  

Triangle 0.1951  

 

The spatial resolution of this sensing principle is linked to 
the imaging resolution. It also depends on the elastic material 
properties of the layer. A more in-depth theoretical analysis of 
the area resolution of the force sensing will be carried out in 
future work. 

B. Contact force sensing 

To investigate the contact force sensing ability of the sensor, 
the 4 indenters listed in table 1 are used to conduct surface 
indentation tests. For each indenter, the indentation depth  
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Fig. 4 3D reconstructed indentation with different shapes (The red solid lines 

indicate the estimated contact shapes and the red dotted lines indicate the actual 

contact area of the indenters).  

ranges from 0.5mm to 12mm, with a 0.5mm increment. The 
force value and the surface deformation were recorded for each 
indentation increment. For each indenter, the above-described 
test protocol was repeated twice. By comparing the 3D 
reconstructed indentation depth, contact area and true force 
value, a force estimation formulation has been derived. 

To quantify the relationship between the indentation depth 
and the contact force, the 3D reconstructed indentation depth is 
firstly calculated. The estimated indentation depth of one image 
is determined by the averaging the top 5% deformation depths 
obtained from the 3D reconstruction algorithm. A comparison 
between estimated indentation depth and real indentation depth 
is shown in Fig. 5(b). According to generalized Hooke’s Law, 
within the linear elastic range of the material, the unidirectional 
compression deformation of a solid is proportional to the 
external force applied. To be specific, the mathematical 
relationship can be described as: 

𝜀𝑥 =
1

𝐸
[𝜎𝑥 − 𝑣(𝜎𝑦 + 𝜎𝑧)]                             (1) 

𝜀𝑦 =
1

𝐸
[𝜎𝑦 − 𝑣(𝜎𝑥 + 𝜎𝑧)]                             (2) 

𝜀𝑧 =
1

𝐸
[𝜎𝑧 − 𝑣(𝜎𝑥 + 𝜎𝑦)]                             (3) 

Where the 𝜀𝑖(i = x, y, z) stands for normal strain from 3 

directions and 𝜎𝑖(𝑖 = 𝑥, 𝑦, 𝑧) represents corresponding normal 

stress. E is the Young’s modulus of elastomer and v is Poisson’s 

ratio of the elastomer. In these experiments, because the 

indentation is generated perpendicular to contact surface, the 

shear stress and shear strain is ignored. As shown in Fig.2(a), 

due to the constraint around the soft part, the normal strain from 

x axis and y axis can be ignored. Therefore, the relationship 

between normal stain and normal stress along z axis can be 

simplified as: 

𝜀𝑧 =
1

𝐸
𝜎𝑧                                     (4) 

Where, 

𝜀𝑧 = ∆𝑣/𝑣 

𝜎𝑧 = 𝐹𝑧/𝑠 

As the contact shape is constant during one experiment,  is 
equivalent to . Therefore, formula (4) can be further 
simplified to: 

𝐹𝑧 = 𝐴 ∙ 𝐸 ∙
∆𝑙

𝑙
                               (5) 

In this equation, the young’s modular (𝐸) and height (l) of soft 
part in this tactile sensor is fixed therefore can be considered as 
a coefficient(𝑘). Then it is clearly shown that the contact force 
is proportional to the product of contact area (A) and indentation 

depth (∆𝑙)，  which is known as indentation volume (∆𝑉) .  

Therefore, the relationship between estimated contact force and 
estimated indentation volume can be described as: 

𝐹𝑧 = 𝑘 ∙ ∆𝑉                                 (6) 

According to the design specifications, the contact area of 
each contact indenter is shown in Table.1. By multiplying 
estimated indentation depth and the corresponding contact area, 
the estimated indentation volume can be acquired. For 3D 
reconstruction experiments, the true force values have been 
collected from the 6-axis force/torque sensor (ATI mini40), as 
shown in Fig. 3. The corresponding estimated indentation 
volumes have been calculated from 3D reconstruction. Then the 
contact force can be estimated by the corresponding indentation 
volume as described in Eq (6). 

Fig. 5(c), the indentation volume with corresponding contact 
force is shown in the same graph. The data indicate a linear 
relationship between the two variables. Therefore, by linear 
fitting different data points, the estimated linear relationship can 
be derived, where coefficient(𝑘) equals to 82.3 (N/cm3). The 
result of the linear fitting between the indentation volume and 
estimated contact force shows that its SSE (sum of squared 
errors) is 46.52 among 40 different data samples and the MAE 
(mean absolute error) is 0.7072N.  Subsequently, the estimated 
contact force for each experiment is acquired based on Eq (6).  
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Fig. 5 (a) Indentation estimation with different shapes and depths. (b) True force 

value of different indentation volume. (c) Comparisons between true and 

estimated contact force. 

Fig. 5(c) illustrates the relationship between indentation 
volume and the contact force from experiments with all the 
indenters. The figures indicate that the force correlates linearly 
with the volume change. Because the elastomer has equation (6), 
the area resolution and the displacement resolution. The current 
sensor grating design and algorithm has indentation resolution 

(Is) of 0.5mm and contact area resolution (Cs) of 1mm. The 
theoretical force resolution Fs = kCsIs ~ 0.002N. based on the 
contact area of the indenters used the volume resolution is ~ 
0.009cm3, the force sensing resolution is ~ 0.7N in this study. 
Based on the current sensor design, the force sensing range is 
from 0N to 16N and the force sensing resolution is about 4.6% 
of the sensing range. 

C.  Temperature sensing  

To calibrate the temperature sensitivity, the sensor is put 
into an oven and heated from 25o C to 31o C, while a reference 
thermometer (Carel NTC Temperature indenter) is placed inside 
the oven to verify the true temperature value. For each 
experiment, the colour variation of the TLC layer is recorded by 
the camera. Two experiments were conducted. Average hue 
values of the pixels from the image with respect to the 
temperature values are analyzed to identify the mathematical 
relationship between hue value and temperature. At last, an 
annulus-shaped indenter is heated in the oven and contacted to 
the sensor to test the distributed temperature estimation ability 
of the sensing principle. 

To investigate the temperature estimation ability of the 
sensor, the experiment setup has been placed in an oven and 
heated from 25℃ to 31℃. Images of the colour variation during 
the heating procedure as well as the corresponding real-time 
temperature data have been recorded. According to the principle 
of TLC ink, the spacing of crystal increases with the increase of 
temperature, which makes the wavelength reflected light 
decrease within visible spectrum. As shown in Fig. 6 (a), the 
TLC ink appear different colours under different temperatures. 
When the temperature increases, the colour of reflected light 
varies from red to purple. To avoid lighting interference when 
measuring the TLC colour, the images have been transferred 
from RGB to HSV colour space, in which the H stands for hue 
value of the pixels. When the lighting environment has been 
settled, the saturation and value of the images captured is 
determined. The hue value of the reflected light increases while 
its wavelength decreases. Therefore, the mathematical 
relationship between hue value of the pixels and estimated 
temperature value can be established. By averaging the hue 
value of each frame and comparing the hue value with the true 
temperature value, a linear relationship can be derived. 

 In Fig. 6 (b), one dot represents the average hue value of 
pixels on one image, at a certain temperature level. The red dots 
and blue dots represent the results from two repeated 
experiments and the data from two experiments are combined to 
derive the temperature-hue relationship. The results from two 
experiments are fitted to one linear equation.Upon linearizing 
the temperature-hue relationship, it can be described as: 

T = 24.19 ∙ H + 19.08                           (7) 

Where T is the estimated temperature and H is hue value of 

pixel. In this linear fitting result, the SSE is 115 and the MAE 

(mean absolute error) is 0.4217℃. According to the data, the 

minimal hue value variation that can be recognized by the 

sensor is about 0.02. Therefore, it can be concluded that the  

(a) 

(b) 

(c) 
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(a) 

 
(b) 

  

(c) 

Fig. 6 (a) From left to right: images of Sensing layer in 25℃, 27℃ and 30℃. (b) 

Linear fitting of average hue value and temperature from experiments. (c) Local 

temperature estimation of the heated annulus indenter. 

temperature sensing range of this sensor is from 25℃ to 31℃ 

and the temperature estimation resolution of it is about 0.4℃, 

which is about 6.7% of the sensing range.  

The outcome of the distributed temperature sensing 

experiment is shown in Fig. 6 (c). The dotted red circles indicate 

the boundary of different temperature area, which is caused by 

the contact of heated annulus indenter. Moreover, the 

geometrical shapes of the indenters can be easily indicated. 

Therefore, the distributed temperature sensing ability of this 

sensing principle can be proved. 

IV. CONCLUSION AND DISCUSSION 

The experimental results presented in this work indicate that 

the proposed sensing principle has the capability of determining 

contact shapes. From the contact force estimation experiment, 

the mathematical relationship between estimated indentation 

volume and estimated force is derived. The experimental results 

between estimated and true force indicate good accuracy of the 

equations and reliability of the image-based force estimation 

principle. In the temperature estimation experiment, the 

mathematical relationship between hue value and local 

temperature is described. These experiments designed for the 

multifunctional sensor indicate the feasibility of achieving 

artificial somatosensory system in a vast number of various 

aspects by using this sensing principle. Overall, the objectives 

of this sensing principle, including distributed pressure sensing 

and temperature sensing while maintaining a flexible sensing 

structure are achieved.  

Compared with the existing soft tactile sensing principles 

based on electric components [1][5], magnetic components 

[9][11] and vision [13-17], the principle presented in this paper 

provide the extra dimension of distributed temperature sensing 

in addition to the tactile sensing capability offered by existing 

methods. The temperature sensing range and resolution can be 

customized by using different TLC ink. Furthermore, compared 

to electrical-based (resistive, capacitive sensing) and magnetic 

field-based sensing tactile sensing technologies [23, 24], the 

proposed method offers advantage of higher spatial resolutions 

and is resilient to electromagnetic field disturbance. Besides the 

temperature sensing ability, our design simplifies the lighting 

condition for deformation 3D reconstruction compared to 

Gelsight [14], and does not requires the micro pins on the 

underside of soft membrane as used in the Tactip sensor family 

[15], facilitating the fabrications and miniaturization. The 

sensing principle can be used in medical instruments such as 

surgical grippers and endoscopes. Moreover, the sensing 

principle presented in this paper provides the feasibility of 

achieving human-skin like tactile sensing in robotic hands. 

However, there are a number of technical hurdles need to be 

addressed in the future. Similar to the other vision-based tactile 

sensing principles, the sampling frequencies and resolutions of 

sensors are limited by the quality of cameras. Higher frame rate 

and high image resolution increases the cost and the size of 

camera. Thus, how to achieve sensor miniaturization while keep 

high performance and low cost is still an open question. In 

addition, the TLC layer used in the sensor is fragile when 

undertaking high frequency compression force. To improve the 

robustness of temperature sensing principle, new TLC material 

with higher elasticity need to be explored. Moreover, to 

thoroughly eliminate the interference between temperature and 
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pressure sensing, one possible solution is converting original 

image into binary image. Therefore, a suitable threshold that 

used to convert the grayscale image to binary image will be 

selected in the future. More experiments will be implemented to 

ensure that the threshold will not influence the contact force 

resolution.  
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