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Abstract 8 

The Sea and Land Surface Temperature Radiometer (SLSTR) now operates concurrently onboard the 9 

European Sentinel-3A and -3B satellites. Its observations are expected ultimately to become the 10 

main global source of active fire (AF) detections and fire radiative power (FRP) retrievals for the mid-11 

morning and evening low earth orbit timeslots – data currently supplied by the Moderate Resolution 12 

Imaging Spectroradiometer (MODIS) onboard Terra.  Here we report for the first-time the significant 13 

adjustments made to the pre-launch Sentinel-3 AF detection and fire characterisation algorithm 14 

required to optimise its performance with real SLSTR data collected from the Sentinel-3A and -3B 15 

satellites. SLSTR possesses both an S7 ‘standard’ and an F1 ‘fire’ channel that operate in the same 16 

middle infrared (MIR) waveband, but which use different detectors with differing dynamic ranges 17 

and which are located at different focal plane locations. When S7 provides saturated observations, 18 

for example over higher FRP active fire pixels, F1 must be used to provide a reliable MIR spectral 19 
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measurement. However, the two channels differing data characteristics (slightly different size, shape 20 

and spatial location of the matching pixels) means that swapping between their measurements is 21 

non-trivial. The main algorithm enhancement has therefore been the addition of a dedicated active 22 

fire pixel clustering component, required to cluster the detected AF pixels into individual fires as a 23 

solution to this issue. Focusing on night-time data due to the added complexity of daytime 24 

implementation, we compare AF information derived with this updated SLSTR algorithm to that from 25 

near-simultaneous MODIS Terra, and we find that SLSTR has a lower minimum FRP detection limit 26 

which enables more lower FRP active fire pixels to be identified than is the case with MODIS. When 27 

both sensors detect the same fire cluster at the same time, SLSTR typically measures a slightly higher 28 

FRP due to it being able to detect more of the low FRP AF pixels lying at the cluster edge (the OLS 29 

linear best fit between matched SLSTR and MODIS per-fire FRP matchups has a slope of 1.08). At the 30 

regional scale, SLSTR detects 90% of the AF pixels that the matching MODIS data contains, but also 31 

identifies an additional 44% more AF pixels – the vast majority of which have FRP < 5 MW. Regional 32 

FRP totals derived from SLSTR appear slightly higher than those from MODIS because of this, and the 33 

OLS linear best fit between these regional FRP matchup datasets has a slope of 1.10. Global fire 34 

mapping at 1° grid cell resolution for January 2019 shows very similar fire patterns and FRP totals 35 

from SLSTR onboard of Sentinel-3B and MODIS Terra, with SLSTR detecting seven times more AF 36 

pixels but very similar FRP totals. Case studies in 5° grid cell areas show the same pattern, and 37 

longer-term comparisons like these will provide the data required to mesh MODIS and SLSTR data 38 

into a single compatible time-series for long-term trend analysis. The night-time SLSTR AF product 39 

based on this algorithm has been fully operational from March 2020, available from near real-time 40 

feeds and for example through the Sentinel-3 Data Hub (https://scihub.copernicus.eu/s3). 41 

1. Introduction 42 

Landscape burning, including both ‘wildfires’ and ‘controlled burns’, perturb a greater area over a 43 

wider variety of biomes than any other natural disturbance agent (Andreae, 1991; Bowman et al., 44 

https://scihub.copernicus.eu/s3
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2009; Johnston et al., 2011; Reid et al., 2013; Zhang et al., 2018). Fires release smoke containing 45 

trace gases and aerosols that significantly impact Earth’s atmospheric composition and chemistry, 46 

radiation balance, climate and air quality (Natarajan et al., 2012; Van der Werf et al., 2004; 47 

Voulgarakis & Field, 2015). The large-scale, sporadic and highly dynamic nature of fire makes 48 

satellite Earth Observation (EO) vital for its quantification (Ichoku & Ellison, 2014; Kaiser et al., 2012; 49 

Wooster et al., 2015). This extends not only to scientific studies, but also to the need for actionable 50 

information to support real-time monitoring and decision making, both in relation to fires on the 51 

landscape and to the atmospheric impacts of the emitted smoke (Kaiser et al, 2012, Wooster et al., 52 

2015). 53 

 ‘Active fire’ (AF) products are one of the most widely used satellite EO datasets, originally recording 54 

the location and timing of fires burning at the time of the satellite observation (Justice et al., 1996; 55 

Giglio et al., 2003; 2016) and more recently often adding information on the fires radiative power 56 

(FRP) output.  This FRP metric has been shown in many studies to be well related to rates of fuel 57 

consumption and smoke emission (Wooster et al., 2005; Freeborn et al., 2008; Giglio et al., 2003; 58 

2016; Wooster et al., 2003; Roberts and Wooster 2008, Xu el al., 2010, 2017; Mota and Wooster, 59 

2018), and was first introduced in the widely used Moderate Resolution Imaging 60 

Spectroradiometer (MODIS) AF products (Kaufman et al., 1998).  61 

The Sea and Land Surface Temperature Radiometer (SLSTR) is a new spaceborne instrument carried 62 

by the European Sentinel-3 satellites sharing some similarities including a similar overpass time to 63 

the MODIS instrument operating on the Terra satellite. The AF data produced from SLSTR will be 64 

used alongside and ultimately replace those from MODIS Terra, and we report here the novel 65 

aspects of an algorithm developed to derive AF detections and FRP retrievals from Sentinel-3, and 66 

provide the first comparison between data produced by this algorithm and that from MODIS Terra. 67 
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2. Background 68 

SLSTR builds on the heritage of the Along Track Scanning Radiometer (Delderfield et al., 1986), with 69 

the first instruments launched as part of the European Union’s (EU) Copernicus Programme onboard 70 

the Sentinel-3A and Sentinel-3B satellites in 2016 and 2018 respectively. The two satellites provide 71 

SLSTR coverage once by day and once by night at most Earth locations, with the exact imaging time 72 

on any particular day dependent on the locations’ latitude and position within the instrument swath. 73 

Imaging is commonly around 10:00 am and 10:00 pm local solar time, similar to that of MODIS Terra 74 

which was the first EO instrument that routinely generated global active fire detection and FRP data 75 

as part of the MODIS Terra Active Fire and Thermal Anomaly (MOD14) products, now on Collection 6 76 

(Giglio et al., 2003; 2016).  The same MODIS AF data have also been generated at different times of 77 

day by MODIS Aqua (MYD14), at around 1:30 pm and 1:30 am local solar time. Both MODIS 78 

instruments are way beyond their design lifetimes, and at the time of writing that on Terra is more 79 

than 20 years old. To preserve fuel, Terra is expected to be placed into a lowered orbit around 2022, 80 

altering its local overpass time. The typically strong and biome-dependent fire diurnal cycle causes 81 

AF pixel count and FRP to change significantly across a day (Giglio, 2007; Roberts et al., 2009), which 82 

can make it difficult to directly combine AF data from markedly different local solar overpass times 83 

when trying to assess trends. Active fire data taken around the current MODIS Aqua overpass time 84 

are already supplemented, and ultimately will be replaced by, similar-time AF data from the Visible 85 

Infrared Imaging Radiometer Suite (VIIRS) sensor operating onboard the Suomi National Polar-86 

orbiting Partnership and subsequent NOAA Polar Orbiting Environmental (POES) satellites 87 

(Schroeder et al.,2014; Zhang et al., 2017). Similarly, AF data continuity around the MODIS Terra 88 

overpass time is planned to be provided by the four Sentinel-3 spacecraft, the two currently 89 

operating and the two further identical versions planned to be launched after 2021, each having a 90 

(nominal) 7-year lifetime.  91 
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A pre-launch Active Fire and Thermal Anomaly (FTA) algorithm was designed for use with Sentinel-3 92 

SLSTR by Wooster et al. (2012), and its performance evaluated therein using data from MODIS Terra. 93 

With both Sentinel-3A and -3B now in orbit, the Wooster et al. (2012) algorithm has now been 94 

extensively tested with real SLSTR data, adjusted and optimised as necessary, and a final version 1 95 

post-launch algorithm completed.  In the first work to detail active fire detection and FRP retrieval 96 

using this new sensor, we here report on the changes made, some of which have involved 97 

substantial algorithm enhancements, and on application of the evolved algorithm to real SLSTR data 98 

and comparison to the MOD14 MODIS Terra products.  The widely used ESA World Fire Atlas (WFA; 99 

Arino & Rosaz, 1999) was derived from data taken by the forerunner (Advanced) Along Track 100 

Scanning Radiometer instruments ((A)STSR) carried by ERS-2 and ENVISAT.  The WFA was restricted 101 

to night-time information only because of frequent daytime saturation of the (A)ATSR middle 102 

infrared (MIR) band over warm surfaces. Daytime observations by SLSTR face a similar challenge 103 

since the sensors nominal-gain MIR channel (S7) also saturates over warm ( 311 K) surfaces, 104 

therefore the AF detection algorithm details require further study. We focus here only on the night-105 

time case, which is that most compatible with the existing ESA World Fire Atlas. The operational 106 

Sentinel-3 FRP products based on a night-time processing chain algorithm almost identical to that 107 

presented herein have been publicly available in near real-time (NRT) from Eumetsat since March 108 

2020 109 

(https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Sentinel3/AtmosphericComp110 

osition/index.html) and soon after from ESA in non-time critical (NTC) mode using the most up-to 111 

date ancillary information (e.g. the atmospheric profiles used for atmospheric correction). Full 112 

daytime products will be released in 2021. 113 

3. Sentinel-3 SLSTR Details 114 

The low Earth orbiting Sentinel-3 satellites are aimed at delivering large scale, accurate and timely 115 

information on Earth’s land, ocean and atmosphere. As detailed by Coppo et al (2010), in addition to 116 

https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Sentinel3/AtmosphericComposition/index.html
https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Sentinel3/AtmosphericComposition/index.html
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SLSTR each Sentinel-3 carries the Ocean and Land Colour Instrument (OLCI), a microwave radiometer 117 

(MWR), Synthetic Aperture Radar (SAR) Altimeter and a Precise Orbit Determination package.  118 

Building on (A)ATSR heritage, SLSTR provides dual-view, highly accurate imaging radiometry in 119 

multiple channels spanning the visible to longwave infrared spectral range (Llewellyn-Jones et al., 120 

2001). Wooster et al. (2012) provide full details of the overall SLSTR instrument specification with 121 

respect to active fire observations, whilst Coppo et al. (2010) provides comprehensive detail on all 122 

instrument aspects. The Sentinel-3 AF product is derived from data collected in the SLSTR near-nadir 123 

view swath since this offers finer spatial detail and a wider swath width than the oblique view, and 124 

SLSTR offers significant advances over ATSR by extending the near-nadir view swath width to  125 

1500 km. It also improves the pixel size of the visible to shortwave infrared (VIS to SWIR) channels to 126 

0.5 km at nadir (retaining ~1 km for standard thermal infrared channels), and adds some further 127 

additional spectral channels beyond those of (A)ATSR.  The MIR channel is the most important for 128 

the active fire application (Wooster et al., 2012), and with MODIS (Giglio et al., 2003) it was found 129 

necessary for SLSTR to have two different MIR channels to provide both low-noise, highly 130 

radiometrically accurate measurements over ambient temperature targets as well as unsaturated 131 

observations over far higher temperature targets.  A low-gain ‘fire channel’ (F1) capable of 132 

measuring MIR brightness temperatures in excess of 450 K was therefore added later in the SLSTR 133 

design phase, specifically to provide unsaturated MIR observations over hot targets in the same MIR 134 

(3.74 µm) waveband as the ‘standard’ (S7) MIR channel.  Another fire-relevant SLSTR addition 135 

beyond (A)ATSR is the 0.5 km spatial resolution 2.2 µm (S6) channel, which is capable of detecting 136 

emitted radiance from hot land surface targets at night (Fisher and Wooster, 2019).  Finally, SLSTR 137 

also possesses an F2 channel operating in the LWIR and capable of measuring higher brightness 138 

temperatures than the standard S8 LWIR channel. Both operate in the same 10.8 µm waveband, 139 

though at present F2 has not been required to be used for the AF application since the SLSTR active 140 

fire detection and FRP retrieval procedure relies only on unsaturated MIR observations (Wooster et 141 

al., 2012), and in any case S8 saturation over fires is extremely rare due to there being far less 142 

https://sentinel.esa.int/web/sentinel/missions/sentinel-3/instrument-payload/altimetry


7 
 

emissive in the LWIR than in the MIR band (Robinson, 1991). Figure 1 shows that the MIR imagery 143 

from the S7 and F1 channels appear similar but not identical, with the data from F1 having a wider 144 

dynamic range but also a higher noise level. The SLSTR F1 detectors are actually far smaller than the 145 

S7 detectors, and are not co-aligned with them on the instrument focal plane (Coppo et al., 2010; 146 

2015), with some of the implications for active fire observations explained in Wooster et al. (2012). 147 

Compared to S7, the F1 data have a different ground pixel footprint shape and size, a smaller pixel 148 

area (0.9 km² near nadir compared to the 1 km² of S7), a far more limited growth in pixel area across 149 

the near-nadir view scan, as well as a small spatial offset. Together these differences mean that the 150 

signal for the same SLSTR pixel measured in the S7 and F1 channels in fact is centred on slightly 151 

different ground locations and comes from different footprint areas (Coppo et al., 2010; 2015). 152 

Furthermore, due to intricacies in the way the F1 data are calibrated from digital counts to spectral 153 

radiance, F1 records anomalously low brightness temperatures (BTs) down-scan of the type of highly 154 

radiant pixels characteristic of active fires (Figure 1f). This latter characteristic is reminiscent of a 155 

lowered BT anomaly feature seen in the MIR channel on Meteosat Spinning Enhanced Visible and 156 

Infrared Imager (SEVIRI) data collected close to active fires, though in that case the cause is digital 157 

filtering onboard Meteosat (Wooster et al., 2015).  The unsaturated F1 observations over active 158 

fires, as well as the smaller pixel area and swath-dependent pixel area growth characteristics of F1, 159 

are of significant benefit to the AF application, but the channels’ high noise levels, spatial offset and 160 

downscan BT anomalies make use of S7 still important, and make use of F1 data in combination with 161 

S7 non-trivial. Significant updates to the original pre-launch SLSTR AF detection and FRP retrieval 162 

algorithm detailed in Wooster et al. (2012) were required to deal with the joint use of S7 and F1 163 

data. 164 

4. SLSTR Nighttime AF Detection & FRP Algorithm Adjustments 165 

The initial changes to the active fire detection thresholds specified in the pre-launch algorithm of 166 

Wooster et al. (2012) were based on detailed examination of early scenes collected by Sentinel-3A 167 
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over Canada, America, Europe and Africa and detailed in Appendix A (Table A1; Fig. A1). Other 168 

relatively minor adjustments detailed in Appendix A include alteration of certain tests used in the 169 

contextual detection stage, removal of the desert boundary rejection test, addition of a dedicated 170 

cloud mask and a water and cloud edge mask, and atmospheric correction of the FRP retrievals. The 171 

majority of the algorithm remains as described in Wooster et al. (2002) and all the above updates 172 

are fully detailed in Appendix A. By far the most significant enhancement to the pre-launch 173 

algorithm however is the introduction of clustering of separate AF pixels into individual fires, which 174 

is described below and relates to the strategy used to cope with the far more frequent use of the F1 175 

data than initially envisaged for both Sential-3A and -3B due to frequent saturation of S7 caused by 176 

its dynamic range plateauing at around 311 K instead of the originally specified 325 K. 177 

Both S7 and F1 have identical MIR channel spectral response functions (Coppo et al., 2010; 2015), 178 

but are not spatially co-aligned and have different pixel sizes and shapes as explained in Section 3.  179 

S7 offers better AF detection sensitivity due to its lower noise and ability to be used in conjunction 180 

with the co-registered S8 channel, so apart from the absolute AF threshold detection test, which 181 

identifies the most radiant active fire pixels using a simple F1 channel brightness temperature 182 

threshold (see Wooster et al., 2012), all other night-time AF fire pixels are first detected using data 183 

from S7.   However, when the S7 detector is saturated the AF pixel FRP value cannot be accurately 184 

retrieved using these data – so that from the lower-gain F1 channel must be used instead. However, 185 

it is not possible to simply swap between use of the S7 and F1 channel data at the level of individual 186 

AF pixels, because the two channels are not measuring the signal from exactly the same ground area 187 

as explained in Section 3. Instead, for any AF pixel saturated in S7 - all AF pixels spatially contiguous 188 

with it (i.e. in an active fire ‘cluster’) must have their FRP retrieved using the F1 data, and this means 189 

finding the cluster of AF pixels in the F1 channel that correspond to the cluster in S7. This is 190 

performed by first grouping all the relevant S7 AF pixels into a single AF cluster, searching for the 191 

matching cluster in F1, and then deriving the per-pixel FRP from the F1 AF pixels identified to be part 192 

of that cluster.  Clustering the S7-detected AF pixels in this way minimises computational time in 193 
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detecting the matching F1 AF pixels, whilst also helping to make their detection more accurate. For 194 

example, in Figure 2a there are six AF pixels shown detected in the S7 data. If these six S7-detected 195 

AF pixels were each used as seeds for an F1 AF pixel detection scheme based on a simple search 196 

window, the search operation would need to be run six times. Each time the search would detect 197 

many of the same F1 AF pixels, which would then have to be rationalised into the single set of 198 

twelve F1 AF pixels see in Figure 2b. The clustering operation avoids this duplication of 199 

computational effort. Furthermore, since the F1 AF pixel detection tests are based on the signal in 200 

the F1 channel alone (Step iv below), they can sometimes detect candidate AF pixels in the search 201 

window that are spatially unconnected to the AF cluster. The connected component labelling 202 

approach contained within the clustering procedure allows such pixels to be removed since they are 203 

not part of the identified AF cluster. 204 

Because the F1 channel pixel area is smaller and has a lower pixel area growth rate away from nadir, 205 

there are some benefits from using the F1 data for all FRP retrievals, even at fires containing only 206 

unsaturated S7 observations (Wooster et al., 2012). This is the strategy expected to be deployed 207 

operationally, and thus the approach used here. Therefore, in the current work all S7-detected AF 208 

pixels have been subject to the clustering approach detailed above, and thus have their AF pixels re-209 

detected and their FRP measured using the F1 data.  However, the ambient background radiances 210 

required by the FRP retrieval (Wooster et al., 2003; 2005) always come from S7, because this 211 

channel has lower noise and is unaffected by the aforementioned down-scan low BT anomalies that 212 

affect F1 and which are shown in Figure 1f.  Full details of the AF clustering approach are expressed 213 

in steps (i) to (vii) below, parts of which are illustrated in Figure 2. 214 

(i) AF pixels are detected in the S7 channel using the pre-launch algorithm of Wooster el al. (2012), 215 

with minor modifications detailed in Appendix A. These AF pixels are then grouped into individual AF 216 

clusters using the connected-component labelling approach of Dillencourt et al. (1992).  The method 217 
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groups a spatially connected set of AF pixels detected in S7 into a single AF cluster, based on the 218 

steps detailed below: 219 

Step 1: The AF pixel detections are used to create a binary image “mask” that has: 220 

V={1} where a pixel is an AF pixel 221 

V={0} where a pixel is not an AF pixel. 222 

Step 2: Starting from the first pixel in the binary image mask. A current label (C) counter is 223 

set to 1.  224 

Step 3: If this pixel is an AF fire pixel [i.e. has V={1} ] and it is not already labelled with the 225 

current label value, then it is given the current label (C), added as the first element in a 226 

queue, and the algorithm then proceeds to Step 4. However, if this pixel is not an AF pixel 227 

[i.e. has V={0} ] or it is already labelled, then Step 2 is repeated for the next AF pixel in the 228 

binary mask. 229 

Step 4: An element is extracted from the queue and each of its neighbours in the binary 230 

image mask (based on any type of spatial connectivity [up, down, left, right or diagonal] are 231 

examined. Each neighbouring pixel that is itself classed as an AF pixel (and which is not 232 

already labelled) is given the current label and added to the queue. Step 4 is repeated until 233 

there are no more elements in the queue. 234 

Step 5: Step 3 is then checked for the next AF pixel in the binary image mask, and the 235 

current label (C) is incremented by 1. 236 

 (ii) The mean brightness temperature in the S7 channel ( 𝐵𝑇𝑆7 ) and the mean absolute deviation 237 

(𝜎𝐵𝑇𝑆7
) of the background window BTs surrounding each S7 AF cluster is recorded. 238 

(iii) Each individual AF pixel in the S7 AF cluster is assigned a label identifying it as belonging to the 239 

same fire cluster, and the cluster size is calculated as the number of columns and rows (Fx, Fy) that 240 
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encompass all AF pixels making up the cluster. For example, for the cluster shown in Figure 2a Fx=4 241 

and Fy=3. 242 

(iv) A search for the matching AF cluster in the F1 channel begins, using a window around the cluster 243 

identified in S7. The F1 search window corresponding to an identified S7 AF cluster is centred at the 244 

same location as the top left AF pixel in the S7 AF cluster, and has a window kernel size 10 pixels 245 

larger than the S7 fire cluster size in each dimension (i.e. a size (Fx + 10)  (Fy + 10) pixels ). We found 246 

this window size to be sufficient to account for the spatial offset between the F1 and S7 channel 247 

data at any location in the near nadir-view scan.  For example, in Figure 2a the kernel size is 14 (=4 + 248 

10)  13 (=3 + 10)). Each F1 pixel within the window is tested to determine whether or not it is a 249 

candidate AF pixel using one of the following tests, depending on its pixel signal and background 250 

variability:  251 

{If 𝜎𝐵𝑇𝑆7
   1 then 𝐵𝑇𝐹1 > 𝐵𝑇𝑆7 + 3 × 𝜎𝐵𝑇𝑆7

                                             (1) 252 

else if  𝜎𝐵𝑇𝑆7
 <1 then  𝐵𝑇𝐹1 > 𝐵𝑇𝑆7 + 𝜎𝐵𝑇𝑆7

+  2 }.                                   (2) 253 

Or 254 

{The absolute threshold Test BTF1  > 326 K is true}                                                       (3) 255 

Where 𝐵𝑇𝐹1 is the BT from F1 channel;  𝐵𝑇̅̅ ̅̅
𝑆7  is mean S7 BT of the valid background pixels; 256 

and 𝜎𝐵𝑇𝑆7
is the mean absolute deviation of the S7 brightess temperatures of the valid background 257 

pixels. 258 

(v) Also cluster the candidate F1 AF pixels into individual fire clusters, in the same way as was 259 

conducted for AF pixels in S7.  Identify the individual F1 cluster matching each S7 cluster using the 260 

same connected-component labelling method used in (i) (see Figure 2). For example, Figure 2c 261 

shows how the clustering approach is used to confirm the candidate AF pixels identified in F1 (blue) 262 

as belonging to the same cluster as the AF pixels identified in S7 (red), based on the fact that they 263 
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are spatially connected. This step removes any candidate F1 AF pixel that is not spatially connected 264 

to the others in the cluster under examination. These discounted candidate AF pixels maybe true AF 265 

pixels which are not part of the identified cluster, or may even be false alarms coming from the 266 

relatively simple F1 AF detection procedure (step iv above).    267 

 (vi) Calculate the FRP of each AF pixel in the matching F1 cluster, based on the MIR radiance 268 

approach (Wooster et al., 2005), the AF pixel spectral radiances measured in F1 and the mean 269 

background window radiances measured in S7. 270 

(vii) Report the location and FRP of each active fire pixel in the whole fire cluster in the F1 domain.  271 

 272 

Figure 1. Nighttime SLSTR Level 1b brightness temperature (BT) images of actively burning 273 

fires taken by Sentinel-3A over central Africa at 20:27 UTC on 4th January 2018. Each column 274 

represents a zoom of the prior columns’ information, with data from the ‘standard’ S7 275 

channel (top row) and the ‘low gain’ F1 fire channel (bottom row) are shown. Both channels 276 

measure incoming IR radiation in the same 3.7 µm waveband, but F1 does so across a far 277 

wider dynamic range since its gain is optimized for active fire observations (Wooster et al., 278 

2012). Pixels containing fires have elevated BT values and show as bright in this rendition. 279 
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Whilst the same fires are identified in both channels, the number of active fire pixels and 280 

the shape of each fire is a little different between the two channels of data (most easily seen 281 

in (c) and (f)), due to differences in the S7 and F1 detector shapes and signal integration 282 

times detailed in Coppo et al. (2010) and Wooster et al. (2012). Some active fire pixels are 283 

saturated in the S7 data, but the benefit of F1 is that none of them are saturated.  However, 284 

the F1 data show higher noise over the ambient temperature non-fire background, have a 285 

small spatial offset from the matching S7 pixels, and possess anomalously low BT values 286 

down-scan of the fires (dark areas to the bottom right of each fire in Figure 1f, which are not 287 

present in the S7 data of Figure 1c).   288 

 289 

Figure 2. Illustration of the workings of the active fire (AF) pixel clustering approach 290 

described in Section 3. Top row shows one example, where the background non-fire pixels 291 

are set to zero for clarity and with a zoomed focus only over the active fire location. The red 292 

colour indicates the fire pixels detected from S7 and blue denotes the corresponding fire 293 
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pixels on F1. (a) Location of AF pixels detected in the S7 channel using the contextual AF 294 

detection component of the pre-launch algorithm (detailed in Wooster et al., 2012) and the 295 

updated detection thresholds reported in Appendix A; (b) Location of AF pixels (blue) 296 

detected in the F1 channel within the kernel centered at upper left fire pixel of the S7-297 

detected AF pixel cluster locations in (a) in red and tests (i) to (v) of Section 4. (c) The 298 

detected S7 and F1 AF pixels overlain on the F1 channel data, showing their clearly different 299 

locations that result in a different AF cluster shape. Bottom row shows a separate example 300 

with the background values maintained and a wider view around a fire (where for example 301 

the down scan low-BT anomaly can be seen in the F1 data of (e) and (f), but not the S7 data 302 

of (d).  303 

5. Performance Comparison to MODIS, VIIRS and Example Outputs  304 

The updated Sentinel-3 SLSTR AF detection and FRP retrieval nighttime algorithm 305 

summarized in Section 4 and appendix A was applied to global Sentinel-3B SLSTR data 306 

collected in January 2019, as well as to the Sentinel-3A scenes list in Table A1 (Appendix A). 307 

At this time of year, fires are burning strongly across north Africa, northern SE Asia, and 308 

other sub-tropical regions (Giglio, 2007). Outputs from the enhanced SLSTR AF detection 309 

and FRP retrieval approach detailed herein were compared in detail to the Collection 6 (C6) 310 

MODIS Terra AF (MOD14 swath) products, generated using the algorithm of Giglio et al. 311 

(2016). The night-time Terra MOD14 AF products are derived from observations made at a 312 

similar overpass time to that of Sentinel-3, and thus in some instances it is even possible to 313 

directly compare views of the same active fire made at almost identical times from MODIS 314 

and SLSTR. The VIIRS sensor carried by the Suomi National Polar-orbiting Partnership 315 

(NPP) satellite has a higher spatial resolution than MODIS, and thus typically detects more  316 
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AF pixels than MODIS and records a higher FRP across landscapes (Zhang et al., 2017; Li et 317 

al., 2020).  However, Suomi NPP overpasses many hours later at night than Sentinel-3 and 318 

Terra. Since major changes in landscape fire number and intensity can occur in only a few 319 

hours (e.g. Giglio et al., 2007; Roberts et al., 2009; Xu et al., 2017) direct comparisons 320 

between fires observed by SLSTR and VIIRS are thus not attempted herein. Instead we 321 

compare the global gridded SLSTR active fire data to that from the VIIRS 375 m I-Band active 322 

fire data product (VNP14IMGTDL) as well as to MODIS Terra to gauge the degree of 323 

similarity in the recorded spatial patterns and overall levels of fire activity.  324 

5.1 SLSTR Active Fire Detection Performance Intercomparison Approach 325 

Procedures used to initially compare the Sentinel-3 and MODIS Terra AF products collected 326 

at almost the same time of day followed those of Freeborn et al., (2014a), previously used 327 

to evaluate the performance of the LSA SAF Meteosat SEVIRI FRP-PIXEL product (Roberts et 328 

al., 2015) and other geostationary AF products (e.g. Xu et al., 2010, 2017). Specifically, we 329 

used instances of near contemporaneous MODIS and SLSTR data collection, such as that 330 

shown in Figure 3.  SLSTR AF detection errors of omission and commission with respect to 331 

MODIS were calculated, as well as the degree of FRP agreement in two cases (i) when both 332 

sensors view the same individual fire cluster at the same time (within ± 6 minutes), and (ii) 333 

when both sensors view the same larger land surface region at the same time (within ± 6 334 

minutes). In these comparisons, in addition to requiring near simultaneous-views, the 335 

MODIS data were restricted to those with a MODIS scan angle maximum of ±30° to avoid 336 

geometric issues associated with the MODIS ‘bow-tie’ effect (Freeborn et al., 2011; 2014a). 337 

This limited the MODIS pixel area to a maximum of 1.7 km², and to match this the SLSTR 338 

data were also restricted to those with a S7 channel pixel area maximum of 1.7 km² (the 339 

matching F1 pixel area maximum was 1.2 km²). To facilitate the inter-comparison, MODIS AF 340 
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pixels were re-projected to the SLSTR Level 1b global Universal Transverse Mercator (UTM) 341 

projection data grid, and Sentinel-3 AF errors of omission with respect to MODIS were 342 

evaluated by considering whether an SLSTR AF detection was present within a 7 ×7 pixel 343 

window centred on each MODIS AF pixel location. This window is larger than the 3×3 344 

originally used by Freeborn et al., (2014a) because of the need to include the additional, 345 

spatially variable, spatial offset present between the SLSTR S7 and F1 channel data 346 

discussed in Section 2.  The reverse approach was used to evaluate the Sentinel-3 SLSTR AF 347 

pixel errors of commission. 348 

A matching SLSTR and MODIS example is shown in Figure 3, and in this case SLSTR identifies 349 

all AF pixels detected in the C6 MODIS product (a total of 283), plus an additional 67 AF 350 

pixels that were undetected by MODIS. These additional AF pixels are either isolated single 351 

pixel detections, or pixels lying at the edges of detected AF clusters.  As an example, the two 352 

AF clusters highlighted by blue rectangles in Figure 3d contain a total of 48 AF pixels, and all 353 

but one have an FRP  5 MW. This is below the standard minimum FRP detection limit for 354 

the MODIS AF products, but the SLSTR output is able to include them due to its lower 355 

minimum FRP detection threshold that stems from its slightly increased AF detection 356 

sensitivity (Wooster et al., 2012) and the smaller nadir pixel area of the F1 band.  Figure 3c 357 

also shows that at night many fires clearly show up in the 500 m spatial resolution S6 SWIR 358 

band, confirming that the AF detections based on the thermal channel data are the result of 359 

real fires and not false alarms. Whilst we do not use S6 for AF detection in this work, its use 360 

will be implemented in the final operational algorithms. 361 

 362 
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 363 

Figure 3. Comparison between near-simultaneous night-time Sentinel-3A SLSTR and MODIS 364 

Terra active fire (AF) pixel data of Canada, based on the methodology detailed in Section 4.1. 365 

The SLSTR image subset covers 200 km  150 km and were collected at 04:56 UTC on 6th 366 

May 2016, and the matching MODIS data at 05:00 UTC. (a) SLSTR MIR-LWIR Brightness 367 

Temperature (BT) difference image calculated using S7 and S8 channel data, and where 368 

higher BT differences are depicted as brighter pixels. (b) Same as (a) but with the SLSTR AF 369 

detections overlain with a one pixel offset for clarity. (c) SLSTR S6 channel data (SWIR 370 

waveband) matching (a), and (d) the same as (c) but with SLSTR AF detections superimposed 371 

as red ‘•’ and near-simultaneous MODIS AF detections as green ‘+’ (both with one pixel 372 

offsets for clarity). The blue rectangle highlights the AF pixels detected by SLSTR but missed 373 

by MODIS. 374 
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Beyond the comparisons of near-simultaneous SLSTR and MODIS AF data, a series of 375 

additional comparisons were made, based on all Sentinel-3B SLSTR  and MODIS Terra AF 376 

data collected in January 2019, regardless of pixel area and observation time. The analyses 377 

were of FRP frequency-magnitude distribution, total AF pixel count and total FRP on a global 378 

1° grid, and four larger (5°×5°) grid cells at a detailed time series level.  379 

5.2 SLSTR Active Fire Detection Performance Intercomparison Results 380 

Considering the global data of January 2019 overall, a total of 46 MODIS Terra AF products 381 

were identified that matched within ±6 minutes of an SLSTR granule containing at least one 382 

AF pixel detection. Within the MODIS scan angle limit of 30°, a total of 1,213 MODIS AF 383 

pixels were identified, most located in northern hemisphere Africa.  Significant numbers of 384 

AF pixels were also detected over gas flaring locations in Iraq.  90% of the MODIS AF pixel 385 

detections had a matching Sentinel-3 AF pixel detection, representing an apparent 10% 386 

MODIS product commission error compared to SLSTR. Conversely, the Sentinel-3 AF 387 

products contained 3,786 AF pixels, with only 2,123 (56%) having a matching MODIS AF 388 

pixel. Of the additional AF pixels detected by SLSTR, 79% had an FRP  5 MW and so 389 

represent AF detections below the minimum MODIS FRP detection limit. These global 390 

statistics broadly mirror those differences demonstrated for the single sub-scene matchup 391 

of Figure 3.  392 

Pre-launch testing of the original algorithm of Wooster et al. (2012) with MODIS data 393 

already indicated that it tended to identify more AF pixels than did the MODIS AF detection 394 

algorithm of Giglio et al. (2003), around 30% more in those tests when both algorithms were 395 

applied to MODIS level 1b data. Giglio et al. (2016) updated the MODIS AF detection 396 

algorithm – in part to enable detection of somewhat lower FRP AF pixels -  though some of 397 
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the tests in the SLSTR algorithm reported herein still use lower thresholds than do the 398 

matching MODIS tests, meaning that even when fed with the same data the former maybe 399 

able to detect AF pixels having slightly lower FRP values than can MODIS. For example, the 400 

SLSTR contextual detection test (Test 6c) of Wooster et al. (2012) uses a 5.6 K MIR-LWIR BT 401 

difference threshold, whilst the C6 MODIS algorithm of Giglio et al. (2016) uses a slightly 402 

higher 6 K threshold. However, beyond these relatively small threshold differences, two 403 

more significant factors contribute to SLSTR’s apparent ability to identify more AF pixels that 404 

does MODIS. The first is the AF clustering approach detailed in Section 4, and the second is 405 

use of the F1 band. For the clustering approach, after a set of AF pixels are identified and 406 

then clustered using data from the ‘S’ channels, the matching F1 AF pixels are identified and 407 

clustered using only the F1 data and the two tests detailed in Section 4. This compares to 408 

Tests 6a to 6d in Wooster et al. (2012), which are applied to brightness temperature data 409 

from S7 and S8 and their difference, and which typically do not identify as many AF pixels as 410 

does the simpler and subsequently applied F1 test that also benefits from the smaller pixel 411 

area of F1 at any point around the SLSTR scan compared to the S7 and S8 pixels. This F1 412 

pixel area is also smaller than MODIS, and grows off-nadir at a smaller rate than that of 413 

MODIS (Wooster et al., 2012), further increasing the ability of SLSTR to detect lower FRP 414 

active fire pixels than MODIS when both sensors view the same location at the same scan 415 

angle.  416 

5.3 Evaluation of FRP Retrievals 417 

Figure 4 presents results of the FRP retrieval inter-comparison between Sentinel-3 SLSTR 418 

and MODIS Terra. Figure 4a presents the per-fire analysis, based on the approach of near-419 

simultaneous views of the same fire cluster previously used by Roberts et al., (2015), 420 
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Wooster et al. (2015) and Xu et al. (2010; 2017). The near unity slope (1.08) demonstrates a 421 

good degree of agreement between the two measures, with the SLSTR-retrieval being 422 

typically higher primarily because its AF product often detects some additional low FRP 423 

pixels at the edges of fire clusters than does MODIS. The coefficient of variation (r2 =0.91) 424 

between the two datasets is high, particularly considering that Freeborn et al. (2014b) 425 

demonstrated a 1 per-pixel MODIS FRP uncertainty of 27%, based only on variability in the 426 

sub-pixel location of the fire itself. Overall, 65% of the per-fire SLSTR-to-MODIS FRP 427 

matchups show an FRP difference of less than 50%, and 38% less than 30%, comparable for 428 

example to the differences between MODIS FRP retrievals of fires and those made near 429 

simultaneously using Meteosat SEVIRI (Roberts et al., 2015). 430 

 431 

Figure 4.  Intercomparison of night-time global FRP records obtained from Sentinel-3 SLSTR and 432 

MODIS Terra. (a) per fire cluster comparison and (b) regional comparison, both performed using 433 

corresponding SLSTR and MODIS AF products collected within ± 6 minutes of one other and limited 434 

to parts of the swath having pixel areas ≤ 1.7 km2 – see Section 5.1. (c) FRP frequency distribution, 435 

based on all night-time Sentinel-3B and MODIS Terra AF data collected in January 2019 regardless of 436 

their imaging time and pixel area – see Section 5.1. 437 

Fig. 4b shows results from the regional FRP intercomparison, based on the total FRP 438 

measured within geographical areas imaged by Sentinel-3 SLSTR and by MODIS Terra within 439 
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a ±6 minute time of each other (Section 5.1). Each area used for the comparison typically 440 

contains multiple fires, in some cases hundreds. As with the per-fire comparison, the 441 

Sentinel-3-derived FRP values are typically higher than those of MODIS, again mostly due to 442 

the formers ability to detect additional lower FRP pixels. This includes additional AF pixels 443 

only detected by SLSTR, as well additional AF pixels detected at the edges of active fire pixel 444 

clusters identified by both sensors. For these reasons the slope of the linear best fit to the 445 

regional scale data is slightly higher (1.10) than that of the per-fire comparison (1.08) shown 446 

in Figure 4a.  447 

Finally, Figure 4c indicates the frequency of night-time AF pixels of different FRPs recorded 448 

by Sentinel-3B and by MODIS Terra throughout January 2019, with all SLSTR and MODIS 449 

products used regardless of time difference or scan angle.  Whilst AF pixels having FRP 450 

values between 15 and 25 MW show very similar frequencies, below 15 MW SLSTR detects 451 

many more AF pixels than does MODIS. For AF pixels having FRP > 25 MW, which both 452 

sensors have no difficulty in detecting, MODIS shows a slightly higher frequency in each FRP 453 

class. This is primarily because, more often than not, when MODIS and SLSTR both view the 454 

same region at a similar time, MODIS does so with pixels having a larger pixel area (i.e. at 455 

the swath edge the MODIS pixel size could be ~10 km2) which thus can contain “more fire” 456 

than can the matching smaller area SLSTR pixels – which may thus be more likely to split the 457 

emitted FRP across a number of pixels.  458 

5.4 Exemplar Global Data Record 459 

The complete Sentinel-3B SLSTR night-time AF dataset for January 2019 is mapped at a 1.0° 460 

grid cell resolution in Figure 5a (Active Fire Pixel Counts) and 5b (FRP Totals). Shown 461 

alongside are data from the same period extracted from the full C6 MODIS Terra 1 km AF 462 
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product (MOD14) data record (Figure 5c and 5d), and from the full Suomi NPP VIIRS I-Band 463 

375 m Active Fire product (VNP14IMGTDL) data record (Figure 5e and 5f). As detailed in 464 

Section 4.1, these comparison maps include all data from each product for January 2019, 465 

regardless of exact night-time overpass time and viewing geometry. Whilst the SLSTR and 466 

Terra MODIS data are taken at approximately the same overpass time, those of VIIRS are 467 

taken some hours later into the night.  Furthermore the data from the single Sentinel-3B 468 

satellite used here provide an SLSTR revisit time of approximately two days at the equator, 469 

whereas those of VIIRS are daily and those of MODIS Terra are almost daily due to the small 470 

orbital gaps in MODIS coverage at the equator (Freeborn et al., 2011; Li et al., 2020). 471 

The maps of Figure 5a and 5c indicate that the SLSTR AF pixel counts for many regions are 472 

significantly higher than those from MODIS Terra (see the colour bar scale of Figure 5c), 473 

even though the wider MODIS Terra swath provides many more observation opportunities 474 

than the does the single Sentinel-3B SLSTR. The spatial patterns of fire appear very similar 475 

however, and the grid-cell FRP totals (Figure 5b and 5d) are also similar as a result of the 476 

vast majority of additional AF pixels detected by SLSTR having mostly low FRP values (see 477 

Section 5.3).  Grid cells showing the highest FRP totals result from either large numbers of 478 

AF pixels, fires of particularly high FRP, or a combination. Such grid cells include those in and 479 

around the Central African Republic, where widespread agricultural, savannah and forest 480 

fires occur at this time (Freeborn et al., 2014a), parts of southeast Asia hosting a mixture of 481 

agricultural burning and forest clearance (Gaveau et al., 2013), and Australia where large 482 

and intense bush fires are relatively frequent at this time of year (Williams et al., 2008). 483 

Figure 5e and 5f show respectively the AF counts and FRP totals mapped from VIIRS 484 

(VNP14IMGTDL). Due to frequent saturation of the VIIRS 375 m I-Band (I4) MIR channel at 485 
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pixels containing active fires, FRP retrievals with VIIRS are made using radiances from the 486 

spatially matched, lower-gain and larger area 750 m M-Band (M12) data (Zhang et al., 2017; 487 

Schroeder et al., 2018).  In terms of AF pixel counts, VIIRS shows again a very similar spatial 488 

pattern as depicted by Sentinel-3B SLSTR and by MODIS Terra, though with typically far 489 

higher numbers of AF pixels being detected - especially in North America and China. Globally 490 

whilst Sentinel-3B SLSTR detects 208,284 night-time AF pixels in total in January 2019, 491 

MODIS Terra detects 27,404 and VIIRS 487,884 respectively. If we added the AF detections 492 

that would have been made by Sentinel-3A (whose orbit is  140° out of phase from that of 493 

Sentinel-3B), this would be expected to approximately double the number of SLSTR active 494 

fire pixel counts obtained over the period. 495 

There are competing reasons why the AF pixel counts from VIIRS are very different from 496 

those of SLSTR and MODIS Terra. The far smaller pixel area of the VIIRS I-Band means that 497 

active fires with a lower FRP than those identifiable with SLSTR and MODIS can be 498 

discriminated by VIIRS, and also that larger active fires will be split into a greater number of 499 

(smaller) AF pixels for VIIRS than for SLSTR or MODIS (see Zhang et al., 2017). However, 500 

Suomi NPP crosses areas at night typically at times closer to the minimum of the fire diurnal 501 

cycle than does Sentinel-3 and Terra (Giglio et al., 2007), and there are issues of 502 

overcounting of the I-Band AF pixel counts with VIIRS in some areas due to high AF 503 

detection false alarm rates, most notably in China (Schroeder et al., 2014; Zhang et al., 504 

2017). Like the AF pixel count, the FRP totals from VIIRS are much higher than those of 505 

SLSTR due to its higher spatial resolution. Globally whilst Sentinel-3B SLSTR detects a total  506 

FRP of 1,335,436 MW throughout January 2019, MODIS detects 931,032 MW and VIIRS 507 
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4,049,032 MW respectively. Again, including Sentinel-3A data would be expected to 508 

approximately double the total FRP recorded by the SLSTR dataset. 509 

 510 

Figure 5. Total active fire pixel count and total FRP of actively burning fires detected within 1° 511 

grid cells using Sentinel-3B SLSTR, MODIS Terra and Suomi NPP VIIRS data of January 2019. 512 

(a) SLSTR AF pixel count; (b) SLSTR total FRP; (c) MODIS Terra AF pixel count; (b) MODIS Terra 513 

total FRP; (e) VIIRS 375 m AF pixel count; (f) VIIRS total FRP. Note different colour bar scale 514 

for (c), and that whilst VIIRS provides observations each night, MODIS provides a slightly 515 

lower imaging frequency and Sentinel-3B around half this. These descriptions apply to 516 

equatorial regions and the imaging frequency for all sensors will increase at higher latitudes. 517 
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Some areas of clear difference do exist between the SLSTR- and MODIS-derived FRP records 518 

shown in Figure 5, even though these two datasets are based on observations made at very 519 

similar times of the night. For example, in south-eastern regions of the USA and China, in 520 

Spain and central Australia. Whilst Figure 5 uses all night-time Sentinel-3B SLSTR and MODIS 521 

Terra data regardless of scan angle or differences in their exact imaging times, in some 522 

regions the sensors image at almost the same time and in this case the causes of the 523 

differences can be further examined in the absence of significantly changed fire activity 524 

between the two views. Figure 6 shows one such example, from south-eastern USA, where 525 

Figure 5a and 5c indicate that SLSTR identifies many AF pixels which remain undetected by 526 

MODIS Terra.  These fires were identified using SLSTR data collected relatively close to the 527 

swath centre (Figure 6b; S7 pixel area ≤ 1.3 km2), whilst MODIS mostly imaged the area 528 

(Figure 6a) at scan angles in excess of 40° (Figure 6c; pixel area > 2.6 km2). This difference 529 

means that the MODIS view had a far higher minimum FRP detection limit than the SLSTR 530 

view, explaining the difference seen in this region in Figure 5. Figure 6d confirms that 531 

signatures from the AF pixels detected by SLSTR also show up in the instruments 2.2 µm 532 

shortwave infrared channel (S6), meaning they are very unlikely to be false alarms as night-533 

time signals in this channel are only found over high temperature targets (Fisher and 534 

Wooster, 2019). 535 
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 536 

Figure 6.  Detail of fires burning at night in southeast USA and Cuba on 9th January 2019, 537 

which in Figure 5 appears to have been well detected by Sentinel-3B SLSTR but far less so by 538 

MODIS Terra. The SLSTR and MODIS data happen to be collected almost simultaneously ( 539 

03:11 and 03:05 UTC respectively), meaning that the differences seen in Figure 5 are not 540 

likely due to variations in actual fire activity on the ground, but rather appear due to MODIS 541 

imaging the area with significantly larger pixels than SLSTR. (a) SLSTR MIR-LWIR (S7 – S8) BT 542 

difference image (Kelvin), where pixels containing actively burning fires typically have higher 543 

(brighter) values. Most of the fires lie relatively close to the SLSTR swath centre; (b) same as 544 

(a) but with SLSTR AF pixel detections superimposed as red dots (with a one pixel offset for 545 

clarity); (c) MODIS Terra MIR (band 21) – LWIR (band 31) BT difference (K) image of a similar 546 

area as (a), showing that the active fire regions in (a) appear to be imaged close to the MODIS 547 
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swath edge; (d) SLSTR SWIR (S6 channel) spectral radiance image of the same region. At night 548 

SWIR signals over the ambient background are close to zero, and pixels showing a signal of 549 

0.15 W·m-2·sr−1·μm−1 or higher are very likely to contain actively burning fires or other high 550 

temperature sources such as gas flares. Their presence therefore acts as confirmation that 551 

the AF detections made here are due to real high temperature events and not false alarms. 552 

Figure 7 shows the time series of regional AF pixel count and total FRP derived by SLSTR and 553 

MODIS throughout January 2019 for four fire affected 5o  5o areas over South American, 554 

Africa and Asia. Again, as described in Section 5.1 all night-time data are used regardless of 555 

exact observation time or scan angle. The location of each of the four regions is marked in 556 

yellow in Figure A1 (Appendix A), and for each the temporal patterns seen in the SLSTR- and 557 

MODIS-derived AF datasets are very similar, but SLSTR typically detects many more times 558 

the number of active fires than does MODIS, agreeing with the findings of Section 5.3 and 559 

5.4. However, since these additional AF pixel detections are mostly associated with low FRP 560 

values, being located either in smaller AF clusters or at the edges of larger fire cluster, the 561 

total FRP assessed by SLSTR is far more similar to that provided by MODIS than are the 562 

numbers of AF detections.  563 
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Figure 7. Time Series of total regional AF pixel count (left) and total FRP (right) measured in 565 

four different 5o  5o grid cells located in different geographical regions (see Figure A1 of 566 

Appendix A for exact location).  Data come from Sentinel-3B SLSTR and MODIS Terra in 567 

January 2019. Those days having no Sentinel-3B or MODIS Terra observations are reported as 568 

zeros, and the size of the dots represents the mean pixel area (F1 for SLSTR; Band 21 for 569 

MODIS) of the sensor over the region being targeted. MODIS commonly has a pixel area 570 

double that of SLSTR. Across all four regions, SLSTR typically detects on average around 5  571 

the number of AF fires and 1.5  of the FRP as does MODIS. The location of each region is 572 

marked in Figure A1 of APPENDIX A. 573 

6. Summary and Conclusion 574 

The Sea and Land Surface Temperature Radiometer (SLSTR) is collecting Earth observations 575 

from two concurrently operating low-Earth orbiting satellites, Sentinel-3A and -3B. The two 576 

SLSTR’s provide observations across the VIS-to-LWIR spectral range at an equatorial nadir 577 

local solar time of 10:00 am and 10:00 pm which can be used for active fire detection and 578 

FRP retrieval. These data are expected to continue the AF data record made over the past ~ 579 

20 years from MODIS Terra at similar local overpass time. SLSTR possesses specially 580 

designed ‘fire’ [F] channels in the MIR and LWIR, enabling global characterisation of 581 

landscape fire FRP over even strongly burning fires without detector saturation. The pre-582 

launch SLSTR active fire (AF) detection and FRP retrieval algorithm of Wooster et al. (2012) 583 

has been significantly updated now that real SLSTR data are available, with an AF pixel 584 

clustering approach being the most significant addition. We have assessed the performance 585 

of the updated algorithm using some Sentinel-3A scenes as well as global Sentinel-3B data 586 

from January 2019, and have compared these to the 1 km active fire data products available 587 
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from MODIS Terra and from VIIRS 375 m I-Band. We have focused on night-time data only, 588 

since certain of the SLSTR detector characteristics means that daytime AF detection and FRP 589 

retrieval will require further algorithm adjustments. Note that fire activity typically shows a 590 

strong diurnal cycle, and with a minima at night in term of both active fire count (Giglio et 591 

al., 2007) and FRP (Roberts et al., 2009). So, even though the diurnal fire cycle minima 592 

typically occur some hours after the local Sentinel-3 overpass time, it remains the case that 593 

the night-time AF fire counts and FRP totals provided by SLSTR at night are likely to be a 594 

small proportion of those that would be measured by day. A daytime version of the 595 

Sentinel-3 AF product is expected to be released in 2021.  596 

Our results show that near simultaneous views of the same fire made by SLSTR and by 597 

MODIS provide very similar FRP retrievals, though overall SLSTR provides slightly higher 598 

values (~ 8%;  based on a least squares linear best-fit to multiple per-fire comparison data) 599 

due to its ability to identify lower FRP pixels burning at the edges of AF pixel clusters. At the 600 

regional scale, SLSTR provides a further increase on MODIS’ FRP values (to ~ 10%) due to the 601 

same effect plus that of additionally detected low FRP active fire pixels that remain 602 

unidentified by MODIS. Overall in our matchup dataset, SLSTR detects 90% of the MODIS-603 

detected AF pixels, plus a further 44% where MODIS provides no AF detection at all. The 604 

vast majority of these additional AF pixels have FRP < 5 MW, indicating the somewhat lower 605 

minimum FRP detection limit of the SLSTR AF product than the MODIS AF product. Analysis 606 

of global night-time Sentinel-3B SLSTR and MODIS AF fire data for January 2019 shows that 607 

the former detects around 7 more AF pixels than does MODIS, though their FRP totals 608 

calculated at 1° grid cell resolution are rather similar since the additional SLSTR-detected AF 609 

pixels each generally have a low FRP.  610 
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With the orbit of MODIS Terra to be lowered in the coming years and the spacecraft and 611 

instrument being well beyond its design life, Sentinel-3 is expected to become the primary 612 

provider of mid-morning and early night-time global AF data, with near-real time production 613 

occurring within 3 hrs of data capture.  The results shown herein demonstrate the 614 

capabilities of the SLSTR night-time AF detection and FRP retrieval capability, with the near 615 

real-time (NRT) product produced within 3 hrs of data collection and available through fast-616 

delivery routes 617 

(https://www.eumetsat.int/website/home/Satellites/CurrentSatellites/Sentinel3/Atmosphe618 

ricComposition/index.html). The non time critical (NTC) data products will be available for 619 

example through the Sentinel-3 Data Hub (https://scihub.copernicus.eu/s3) which we 620 

expect to start delivering data operationally to users in the second half of 2020. The full 621 

daytime version of the product will follow in 2021. 622 
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APPENDIX A 762 

Subsequent to the availability of real SLSTR data from Sentinel-3A and -3B, key changes to the 763 

active fire detection thresholds and to a few of the other details of the pre-launch algorithm 764 

of Wooster et al. (2012) were required. These adjustments were made based on detailed 765 

examination of eight scenes processed with the night-time AF detection algorithm reported 766 

herein and collected by Sentinel-3A over Canada, America, Europe and Africa (Table A1; Fig. 767 

A1). These scenes were selected as they have enough fires at night and cover a wide set of 768 

fire regimes. Examination of the full January 2019 SLSTR AF dataset shown herein and 769 

produced with this algorithm indicated that no further adjustment of the thresholds were 770 

required. The final algorithm workflow (Figure A2) is essentially the same as in Wooster et al., 771 

(2012) with the major addition of the AF pixel clustering stage, but with details enhanced and 772 

optimised as discussed below. 773 

 774 

Figure A1. Location of the eight Sentinel-3A SLSTR data granules (red) used to optimize the 775 

contextual active fire detection thresholds of the Wooster et al. (2012) algorithm (detailed 776 

in Table A1). Also outlined in yellow are the locations of the four 5o  5o areas used to 777 
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generate the SLSTR and MODIS AF and FRP times series data shown in Figure 7 of the main 778 

paper  779 

Table A1. Date and location of the eight Sentinel-3A SLSTR data granules used to test and 780 

optimize the thresholds of the Wooster et al. (2012) SLSTR AF detection algorithm whose 781 

details and performance are enhanced herein. Figure A1 maps the locations of these 782 

granules. 783 

Granule No Day Time Mean Latitude (°) Mean Longitude (°) 

1 20160506 045622 58.46 -114.32 

2 20160513 051504 58.43 -118.98 

3 20160521 185329 56.42 -124.78 

4 20160528 184511 27.02 46.43 

5 20170618 220243 37.11 -4.75 

6 20171118 180025 46.15 -114.73 

7 20180103 205352 5.55 17.58 

8 20180104 202741 5.54 24.13 

 784 

The thresholds used in the pre-launch algorithm tests of Wooster et al. (2012) were found to 785 

works generally quite well, and relatively few changes were required. Table A2 details the 786 

changes made to the algorithm workflow outlined in Figure 5 of Wooster et al. (2012) and an 787 

update version of that flowchart is shown as Figure A2.  788 
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 789 

Figure A2. Structure of the SLSTR nighttime Fire Detection and Characterisation algorithm. 790 

Note the algorithm has been updated and enhanced from the pre-launch version presented 791 

in Wooster et al. (2012), for example introducing the AF pixel clustering approach detailed 792 

in the main paper, a cloud/water edge test similar to that in Wooster et al. (2015) to reduce 793 

the incidence of false alarms close to water bodies and clouds, and employing a gross cloud 794 

mask based on that of Giglio et al. (2003). 795 
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 796 

After the SLSTR level 1b data are read in, the ‘cosmetic fill’ pixels (see 797 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/level-1/cosmetic-fill) 798 

are masked out. Test 2c in Wooster et al. (2012) was removed as it sometimes removed true 799 

AF pixels yet provided not benefits. A new cloud/water edge test similar to that in Wooster et 800 

al. (2015) was introduced to reduce the incidence of false alarms close to water bodies and 801 

clouds, and we employed a set of very simple tests from Giglio et al. (2003) (used in the 802 

MODIS AF products) to mask out gross cloud cover.  Finally, we introduced an atmospheric 803 

correction procedure into the FRP retrieval, based on an atmospheric transmittance 804 

calculation and the approach used with the Meteosat SEVIRI FRP product (Wooster et al., 805 

2015). 806 

Table A2. Details of the SLSTR nighttime active fire detection and FRP retrieval algorithm 807 

described in Wooster et al. (2012) and updated herein, along with changes made compared 808 

to the pre-launch algorithm of Wooster et al. (2012). The Algorithm Stage is that illustrated 809 

in Figure A2, and test numbers here also refer to those described in Wooster et al. (2012). 810 

Algorithm Stage Change or Updated Threshold Detail of Any Changes 

Level 1b Data ingestion Wooster et al. (2012) used only 
MODIS data. 

Algorithm now works with SLSTR 
Level 1B data, with cosmetic fill pixels 
removed prior to AF detection. 

Cloud Masking 
𝐵𝑇𝑆8 < 273𝐾 

𝐵𝑇𝑆8  is  the pixel brightness 
temperature (BT) in the S8 channel 
(Kelvin). 

This very basic cloud mask test is 
applied to remove pixels showing 
gross cloud contamination. Test 
based on that from the MODIS fire 
products described in Giglio et al. 
(2003). 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/level-1/cosmetic-fill
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Spectral Filter Test 
𝐵𝑇𝑆7 > 𝐵𝑇𝑆7

𝑐𝑓
                                                        

𝛥𝐵𝑇𝑆7−𝑆8 >𝛥 𝐵𝑇𝑆7−𝑆8

𝑐𝑓
   

𝐵𝑇𝑆7 is the BT in the S7 channel; 

B𝑇𝑆7

𝑐𝑓
 is the mean BT in the S7 

channel at clear land background 

pixels; 

𝛥𝐵𝑇𝑆7−𝑆8 is the BT difference 

between S7 and S8; 

𝛥𝐵𝑇𝑆7−𝑆8

𝑐𝑓
 is mean BT difference 

between S7 and S8 from clear land 
background pixels. 

Test 2c in Wooster et al. (2012) has 
been removed as we found it 
prevented some active fires being 
detected at night. 

Background 
Characterisation 

BTS7, w < BTS7, pf 

∆BTS7-S8,w < ∆BTS7-S8, pf  

BTS7,w < 310 k 

∆BTS7-S8,w  < 20 K 

θg < 2 ° 

BTS7, w is the BT of the background 

pixel, BTS7, pf is the BT of the potential 

fire, ∆BTS7-S8,w is BT difference 

between S7 and S8 of the 

background pixel, ∆BTS7-S8,pf is BT 

difference between S7 and S8 of the 

potential fire pixel, θg is sun glint 

angle. 

No Change 
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Absolute Threshold Test BTF1 > 326 K 

BTF1 is the BT from F1 Band. 

The detection threshold has 
increased from 320 K to 326K, as the 
former resulted in  some flase alarms 
at night (possibly due to occasional 
instrument issues recording 
anomalously warm pixels in F1). 

Test 5b in Wooster et al. (2012) is not 
applied herein as we concentrated on 
AF detection with MIR and LWIR 
bands, not the SWIR bands. 

Contextual Test 𝛥𝐵𝑇𝑆7−𝑆8 > 𝛥𝐵𝑇̅̅ ̅̅
𝑆7−𝑆8

+ 3.2 × 𝜎𝛥𝐵𝑇𝑆7−𝑆8
 

𝛥𝐵𝑇𝑆7−𝑆8 > 𝛥𝐵𝑇̅̅ ̅̅
𝑆7−𝑆8 + 5.6 

𝐵𝑇𝑆7 > 𝐵𝑇̅̅ ̅̅
𝑆7 + 3 × 𝜎𝐵𝑇𝑆7

 

𝛥𝐵𝑇𝑆7−𝑆8 is S7 and S8 BT difference 
of the potential fire pixel; 𝛥𝐵𝑇̅̅ ̅̅

𝑆7−𝑆8 is 
the mean S7 and S8 BT difference of 
valid background pixels;𝜎𝛥𝐵𝑇𝑆7−𝑆8

 is 

the mean absolute deviation of the 
S7 and S8 BT diffirence from the valid 
background pixels; 𝐵𝑇̅̅ ̅̅

𝑆7  is mean S7 
BT of the valid background pixels; and 
𝜎𝐵𝑇𝑆7

is the mean absolute deviation 

of S7 BT of the valid background 
pixels. 

No Change 

Cloud/Water Edge Test If one or more pixels in the 3  3 pixel 
window surrounding the AF pixel are 
cloud or water, and if the nighttime 
AF pixel has an S7 BT < 310 K, then 
the AF pixel is rejected as a 
Cloud/Water edge false alarm. 

And  

𝐿𝑆7

𝐿𝑆8
< 0.05 and BTS7 < 310 K 

LS7 and LS8 is the radiance from S7 and 
S8 respectively.              

Introduced to minimize false alarms 
next to cloud and water bodies, in a 
similar way to that applied in the LSA 
SAF Meteosat SEVIRI AF product 
described in Wooster et al. (2015). 

Desert Boundary 
 

Removed as unnecessary at night. 
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Rejection Not used  

Atmosphere correction 
of FRP retrieval 

𝜏 = 𝑒𝑥𝑝 (
−𝜏

𝑐𝑜𝑠(𝐴+𝐵𝑞𝜃𝑣+𝐶(𝑞𝜃𝑣)2)
)                                     

with /180q = . Where Values of 
A,B,C have been adjusted to fit 
exactly the variations as a function of  
satellte view angle ( 𝜃𝑣 ). 𝜏  is the 
atmosphere transmittance at nadir, 
which is specificed as a function of 
total column of water vapour. 

Taken from the procedure used to 
correct the LSA SAF Meteosat SEVIRI 
AF product for the effects of non-
unitary atmospheric transmission, as 
detailed in Wooster et al. (2015). 
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