
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1007/978-3-030-80960-7_9

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Kohan Marzagão, D., Huynh, T. D., & Moreau, L. (2021). Incremental Inference of Provenance Types. In
Provenance and Annotation of Data and Processes: 8th and 9th International Provenance and Annotation
Workshop, IPAW 2020 + IPAW 2021, Virtual Event, July 19–22, 2021, Proceedings (pp. 145-162). Springer,
Cham. https://doi.org/10.1007/978-3-030-80960-7_9

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 26. Dec. 2024

https://doi.org/10.1007/978-3-030-80960-7_9
https://kclpure.kcl.ac.uk/portal/en/publications/f07886e0-595c-46e2-a36f-079b5afb5c6b
https://doi.org/10.1007/978-3-030-80960-7_9


Incremental Inference of Provenance Types?
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Abstract. Long-running applications nowadays are increasingly instru-
mented to continuously log provenance. In that context, we observe an
emerging need for processing fragments of provenance continuously pro-
duced by applications. Thus, there is an increasing requirement for a
mode of incremental processing of provenance, while the application
is still running, to replace batch processing of a complete provenance
dataset available only after the application has completed. A process of
particular interest is summarising provenance graphs, which has been
proposed as an effective way of extracting key features of provenance
and storing them in an efficient manner. To that goal, summarisation
makes use of provenance types, which, in loose terms, are an encoding
of the neighbourhood of nodes.
This paper shows that the process of creating provenance summaries of
continuously provided data can benefit from a mode of incremental pro-
cessing of provenance types. We also introduce the concept of a library of
types to reduce the need for storing copies of the same string representa-
tions for types multiple times. Further, we show that the computational
complexity associated with the task of inferring types is, in most com-
mon cases, the best possible: only new nodes have to be processed. We
also identify and analyse the exception scenarios. Finally, although our
library of types, in theory, can be exponentially large, we present empir-
ical results that show it is very small in practice.

Keywords: Provenance Summaries · Provenance Types · Incremental
Processing of Provenance.

1 Introduction

Let us imagine an application continuously monitoring a system that records
all sorts of hospital data. Tracking patient flows, chains of procedures, and staff
rotation are examples of such data. The application monitoring this system aims
to help identify issues, such as bottlenecks, helping hospital administration to
channel resources where needed the most. For that, however, this application
needs to process and present the data in a meaningful way, given its potentially
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very large size and complexity. That is a domain in which provenance can offer
analysing tools and techniques, thanks to its widespread use in recording what
influenced the generation of data or information. In particular, summarisation
of provenance graphs can be of use to extract information from large quantities
of data.

More specifically, the World Wide Web Consortium (W3C) has defined prove-
nance as “the record about entities, activities, and people involved in producing
a piece of data or thing, which can be used to form assessments about its quality,
reliability or trustworthiness” [7]. It has been widely used in different domains,
including climate science [10], computational reproducibility [1], and emergency
responses [15].

Like in our hospital data example, increasingly, applications are generating
provenance information continuously [8], and there is an emerging need for pro-
cessing incoming data in a similar fashion, i.e., without having to wait for the
application to terminate for data to be processed altogether. The need for repro-
cessing data is costly, as well as the need to store large quantities of provenance
information [12].

A process of particular interest is summarising provenance graphs [13]. It has
been proposed as a way to extract features of the original graphs and store them
efficiently. Summaries can be easily compared to one another, and be used to
identify common patterns or find outliers. In order to create provenance sum-
maries, we make use of provenance types, which can be described as an abstrac-
tion of the shapes of the neighbourhood of nodes. The idea is that nodes that
have similar neighbourhoods will be given the same type and thus will be treated
similarly when a summary is created.

Provenance summaries, therefore, could be an important tool to analyse data
from a domain such as the hospital scenario described above. For example, we
might want to investigate ‘how do patient flows compare week after week?’, or
’what are the differences and similarities of hospital procedures day after day?’.
For these particular examples, we need to compare summaries over dynamic
sliding windows over time. The standard summarisation techniques (e.g. [13]),
however, are currently not designed to process data incrementally. In this paper,
we will propose an efficient way to infer provenance types, which consist of the
main ingredients for the creation of provenance summaries. We are interested in
addressing the following questions:

Q1 Considering our goal of inferring provenance types over continuously pro-
vided provenance, is it necessary to store all provenance information from
the beginning of our application?

Q2 Is there need to reprocess provenance types of any previously seen prove-
nance expressions with the addition of more provenance data?

Q3 How can we optimise the need for storage space in case multiple copies of
the same provenance types appear as the application runs?

With regards to Questions Q1 and Q2, we show that in the most common
cases, there is no need to store all provenance information, nor to reprocess



Incremental Inference of Provenance Types 3

previously seen nodes. We then identify the exception conditions and provide an
algorithm to address these scenarios. Regarding Question Q3, we propose the
creation of a library of types that enumerate all provenance types encountered
from the start and that can be updated, if needed, with the incoming of new
data. Finally, we will provide empirical results that support the claim that the
use of such a library can indeed optimise storage space.

The structure of this paper is as follows. Section 2 provides the technical
background and sets the underlying definitions used in the remaining of the
paper. Section 3 introduces the variant of provenance types considered in this
paper, as well as presenting an algorithm to infer them. Subsequently, in Section 4
we present the theoretical results with respect to inferring provenance types
incrementally at the same time as maintaining libraries of types that we later
show, in Section 5, are very limited in size compared the set of all provenance
documents from which the library was created. The related work is discussed in
Section 6, followed by conclusions and future work (Section 7).

2 Background and Definitions

We will consider G = (V,E, T, L) a provenance graph in which G(V ), or
simply V , corresponds to the set of nodes of G, E(G), or E, its set of its edges,
and T and L correspond, respectively, to the sets of labels of nodes and edges
in G. An edge e ∈ E is a triplet e = (v, u, l), where v ∈ V is its starting
point, u ∈ V is its ending point, and l ∈ L, also denoted lab(e), is the edge’s
label. Each node v ∈ V can have more than one label, and thus lab(v) ∈ P(S),
where P(S) denotes the power-set of S, i.e., the set of subsets of S.1 Note that
provenance graphs are finite, directed, and multi-graphs (as there might
exist more than one edge between the same pair of nodes). We do not make the
assumption that provenance graphs are acyclic.

In provenance, we typically have T = {ag, act, ent, . . . }, where ‘ag’ denotes
an agent, ‘act’ denotes an activity, and ‘ent’ denotes an entity. There are also
application specific labels (e.g. ‘hospital:Nurse’ to denote a specific label for
agents in our hospital example) that also belong to set T . On the other hand,
typically L = {abo, used, waw,wro, . . . }, where the edge (v, u, abo), for example,
indicates that agent v acted on behalf of agent u. We assume sets T and L are
totally ordered, which implies that for any two elements l1, l2 ∈ L, either l1 < l2,
l2 < l1, or l1 = l2 (analogously for T ). In this paper, we will choose the alpha-
betical ordering for node and edge labels. Finally, we denote G = (V, E ,S,L)
as a (finite) family of graphs, where V, E , T , and L, are the union of the sets
of, respectively, nodes, edges, node labels, and edge labels of graphs in G. For a
node v ∈ V, we will refer to the forward-neighbourhood of v as v+, where
v+ = {u | (v, u, l) ∈ E}. Analogously, the backward-neighbourhood of v is de-
note by v− = {u | (u, v, l) ∈ E}. We say a node u is distant from v by x if there

1 Note that when there is the use of application types, a provenance expression may
have more than one label, for e.g. lab(v) = {ag,Prov:Operator}. When lab(v) is a
singleton set, we will abuse notation and omit the set-brackets.
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Fig. 1: An abstract graph (left) processed before window slides (right). Formally,
µV = {1, 2}, µE = {e1, e2, e3, e5}, δV = {6, 7}, δE = {e6, e7, e8, e9}, λV = {3, 4}.

is a sequence of x concatenated edges starting at v and ending at u. Finally, we
extend the notion of forward-neighbourhood (resp. backward-neighbourhood)
for sets of nodes W ⊂ V, i.e., W+ = {u | u ∈ v+ for some v ∈ W} (resp.
W− = {u | u ∈ v− for some v ∈W}).

When there is the addition of unprocessed (new) data to a database of al-
ready processed provenance information, we define δV as the set of new nodes,
i.e., that have not been processed yet, and δE the set of new edges. We now
introduce the notation for removal of provenance information. This will be par-
ticularly necessary to study provenance types over dynamic sliding windows over
time. When there is removal of already processed provenance, we define µV as the
set of removed nodes, µE as the set of removed edges.2 Finally, we define λV
as the set of previously processed (and non removed) nodes v that either
received a new edge starting at v or had an edge starting at v removed,
i.e., λV = {v | v /∈ µV ∪ δV and ∃e ∈ µE ∪ δE s.t. e = (v, u, l) for some u and l}.
Figure 1 shows an abstract example with λV highlighted in red and δV in blue.

3 Provenance Types

In this section, we will first present a similar definition of provenance types
to the one introduced in [13]. Subsequently, we will provide an algorithm that
infers provenance types for nodes in a family of graphs. As we will demonstrate,
this alternative definition allows us to improve the computational complexity
of inferring nodes’ types from an exponential to a polynomial function on the
number of edges in our family of graphs. Lastly, we define the notion of a library
of types, that records all different provenance types seen up to a given point in
time, as well as allowing a more efficient way to store types of all nodes in a
family of graphs.

As a motivation for the main definition presented in this section, consider
the provenance graph in Figure 2 extracted from [3]. It depicts a scenario in
which a blogger is analysing the provenance of an online newspaper article,
including a chart produced from a government agency dataset. The blogger, the
newspaper, the chart generator company, and the government agency are the
different sources from which the provenance information was obtained.

Consider nodes composer1 and illustrate1. We can say that they share some
similarity as both represent activities in this provenance graph. Further, we can

2 Note that removing a node automatically removes all edges connected to it
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Fig. 2: Example of Provenance Graph from [3]

say that they share even more similarities as they related to entities (via the used
relation) to some agent (via the waw edge label). Note that here we are ignoring
the number of times a given pattern appears, since composer1 used two entity
nodes, whereas illustrate1, only one. Going one step further, however, these
nodes do not present the same ‘history’: illustrate1 used an entity that was
generated by some other activity, whereas composer1 did not. Later, we will
formally define these patterns that we denote the provenance types of a node.

We will be looking into a variant of the provenance types defined in [13]. In
loose terms, a provenance type of depth k describes the neighbourhood of a node
v up to distance k from v. Another way of viewing such structures is to think of
a subtree rooted at v, in which all branches have exactly depth k and no branch
is repeated. A more precise (recursive) definition of k-types is given as follows.

Definition 1 (Provenance k-type of a node). Let G be a provenance graph
and v ∈ V a node. Firstly we define, according to definition in Section 2,

0-type(v) = lab(v) (1)

Further, we define k-type(v) recursively. Consider v+, the forward-neighbourhood
of v. We will make use of pairs that combine the label of an edge e starting at v
with the (k − 1)-type of the destination node of e. We define

k-type(v) = {(l, (k-1)-type(u)) | e = (v, u, l) ∈ E and (k-1)-type(u) 6= ∅} (2)

Example 1. We will now formally present what we discussed at the begining of
this section. Consider nodes composer1 and illustrate1 in Figure 2 and note
that they have the same k-type: for k = 0 and k = 1:

0-type(composer1) = 0-type(illustrate1) = {act}
1-type(composer1) = 1-type(illustrate1) = {(used, {ent}), (waw, {ag})}

However, they differ with regards to their 2-type:

2-type(composer1) = {(waw, {(abo, {ag})})}
2-type(illustrate1) = {(used, {(wgb, {act})}), (waw, {(abo, {ag})})}
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Algorithm 1.1: Non Incremental Inferring of types(V, E , k)

1 i n i t i a l i s e for a l l v ∈ V and for a l l i ≤ k
2 i-type(v)← ∅
3 for v ∈ V
4 0-type(v)← lab(v)
5 for 1 ≤ i ≤ k
6 for each edge e = (v, u, l) ∈ E such that (i− 1)-type(u) 6= ∅
7 add (l, (i− 1)-type(u)) to s e t i-type(v)
8 return i-type(v) for a l l v ∈ V and 0 ≤ i ≤ k

In this case, this difference is a result of the fact that the nodes regionlist and
dataSet1, part of of the out-neighbourhood of composer1, have an empty 1-type.

Note that if v is a leaf node in a provenance graph, then k-type(v) = ∅ for
all k ≥ 1. Also, note that nodes might coincide with regards to i-types but differ
with regards to j-types, for some j < i. Clearly, they can also differ for some
j > i. The parameter k may be referred to as the depth of a provenance type.

The choice of looking into edge labels comes from the fact that, in the context
of provenance, a sequence of edges culminating at a given node provides a good
description of the transformation that occurred to this particular node, or the
information that it contained. And thus the k-type of a node v provides the set
of transformations acting on different provenance elements of the graph leading
to the existence of v.

Note that in the definition of a k-type, repetitions of pairs (l, (k-1)-type(u))
are discarded. For example, both composer1 and illustrate1, in Figure 2, have
the same 1-type, regardless of the fact that composer1 is related to two activities
(in the same way). The intuition behind that is that the nature of the transfor-
mations that generated v are more important than the number of occurrences
of a particular transformation.

Algorithm 1.1 infers types according to Definition 1. It takes as input a set of
nodes V, a set of edges E , and a parameter k. It infers all i-type(v), for all v ∈ V
and 0 ≤ i ≤ k. This is a non-incremental algorithm, as it is batch-processing all
nodes in V. We first initialise our sets i-type(v) = ∅ for all nodes. Lines 3-4 infer
the 0-types according to Definition 1. The loop in starting in line 5, for each i,
visits all the edges (v, u, l) that terminate at a node u which has been assigned
a non-empty (i-1)-type(u) and add the pair (l, (i-1)-type(u)) to i-type(v). Note
that this is a sequential loop, and thus cannot be run in parallel. This restriction
comes from the recursive definition of types. It is, however, possible to run this
loop (or the entire algorithm) in parallel for different graphs G of G.

3.1 Library of Types

In the previous section, we have shown how to infer k-types of nodes in a graph or
family of graphs. Note, however, that for large sizes of G, we expect a significant
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T0 T1 T2 T3
10 → (ag) 11 → ((used, 30), (waw, 10)) 12 → ((wgb, 11)) 13 → ((wgb, 32))

20 → (act) 21 → ((wgb, 20)) 22 → ((used, 21), (waw, 51)) 23 → ((used, 12))

30 → (ent) 31 → ((wat, 10), (wgb, 20)) 32 → ((waw, 51)) 33 → ((wgb, 22))

41 → ((wro, 30)) 42 → ((wro, 31)) 43 → ((wro, 52))

51 → ((abo, 10)) 52 → ((wat, 51), (wgb, 11))

Table 1: Libraries of Types Generated From Graph in Figure 2

recurrence rate with respect to nodes’ types. With that in mind, we propose the
creation of library that records all types seen up to a given point, as well as a
function that maps each node to the library index of its type.

Example 2. Consider once more graph G in Figure 2. Table 1 presents four
library of types of nodes in G. Note that elements from list Tk will make reference
to elements in map T(k−1).3 Also, although libraries may not be sorted in any
particular way, each entry is. The reason is that we need to be able to uniquely
identify each type. In this particular example, the ordering of edge-labels is the
alphabetical one. As before, if more than one pair has the same edge label, the
second coordinate is compared.

Note for example that none of the 3-types have two branches. That is a result
of node derek having an empty 2-type.

Like in Example 2, libraries make use of the recursive definition of types to
further simplify their representation. A key characteristic is that entries in our
libraries in Table 1 are not exactly provenance k-types, but a compact represen-
tation of them. For example, entry 22 → ((used, 21), (waw, 51)) corresponds to
the k-type defined by {(used, {(wgb, {act})}), (waw, {(abo, {ag})})}. The defini-
tions of library of types and compact types are somehow intertwined. We now
formally define a library of types that would give us the table above.

Definition 2 (Library of Types and Compact Types). Given a family
of graphs G = (V, E ,S,L), and given k ≥ 0, we create k + 1 libraries Ti, 0 ≤
i ≤ k, which are one-to-one mappings from integers to compact type expressions
encountered in nodes of G. We provide the definition recursively.

Regarding the compact representation of 0-types, note that there is nothing
to further simplify, so the set of compact 0-types is defined by C0 = P(S), i.e.,
set of possible values for lab(v).4 For i = 0, T0 : N0 → C0 is a mapping from
integers (N0 ⊂ N) to compact 0-types.

For 1 ≤ i ≤ k, Ti : Ni → Ci, where Ci is the set of compact type-expressions
of depth i, i.e. ti ∈ Ci if ti is an ordered sequence of the form

ti =
((

l1, T −1i−1(t1i−1)
)
, . . . ,

(
lx, T −1i−1(txi−1)

))
(3)

3 For readability, we index elements of map Tk with k
4 Recall that nodes may have more than one label.
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where l1 ≤ · · · ≤ lx ∈ L, and t1i−1, . . . , t
x
i−1 ∈ Ci−1. Also, T −1 denotes the inverse

mapping that takes a compact type to its index. If lj = lj′ for two different pairs
in ti, their order is defined by their respective library index.

Remark 1. Note that in order to transform a compact k-type into its full form, a
serialiser would need to make use of libraries T0, . . . , Tk−1. The total number of
calls to libraries is bounded by O(∆k), where ∆ is the maximum forward-degree
of nodes in V.

Note that, although a library is created from actual data (as opposed to including
all possible theoretical k-types), its definition does not include any mapping from
nodes to their types. It is useful, therefore, to create and maintain such a mapping
from nodes to the indexes of their types in Ti.
Definition 3. Let G be a family of graphs and Tk a library of types that cover
types in G. For each v ∈ V, tk(v) ∈ Ck the compact representation of its k-type.
We define θk : V → N the function that takes a node v and outputs the library
index associated with its k-type, i.e., for all v ∈ V,

Tk(θk(v)) = tk(v) (4)

When considering node increments δV , we denote θV,k as the function associated
with the set of previously processed nodes only, whereas θδV ,k is the function
related to new nodes only.

Example 3. Consider once more the provenance graph in Figure 2 and the li-
brary in Example 2. We have t2(illustrate1) = ((used, 21), (waw, 51)), we have
θ2(illustrate1) = 22, and, finally,

T2(θ2(illustrate1)) = T2(22) = ((used, 21), (waw, 51)) = t2(illustrate1) (5)

The definition of a library partially addresses Question Q3. In the the following
section we will show how to construct such a library, and in Section 4 how to
maintain it in the context of an incremental mode of processing provenance
types.

3.2 Creating a Provenance Types Library

In this section we will present an efficient algorithm for creating libraries of types
as defined Section 3.1, as well as maintaining functions θk that map nodes to
the library index associated with their (compact) k-type. We use an auxiliary
Algorithm 1.2 receiving a set of nodes V and edges E as input, as well as the
depth i. This algorithm first infers the compact representations of v, ti(v), for
v ∈ V, and then check if this type is already part of the current library Ti. If
yes, mapping θi is updated for v. If not, a new entry is added to the library and
θi is also updated accordingly.

With that, we are able to present Algorithm 1.3, that creates all libraries of
types up to k from V and E . It calls our auxiliary Algorithm 1.2 k + 1 times,
creating overall libraries T0, . . . , Tk and functions that assign a node’s (compact)
type-index θ0, . . . , θk.
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Algorithm 1.2: Type Library (V, E , i, θi−1, Ti, θi)
1 i f i == 0
2 for a l l v ∈ V
3 t0(v)← lab(v)
4 else
5 for each edge e = (v, u, l) ∈ E such that θi−1(u) 6= 0
6 add (l, θi−1(u)) to ordered sequence ti(v)
7 for a l l v ∈ V
8 i f ti(v) == Ti(x) for some x
9 add (v → x) to θi

10 else
11 add (y → ti(v)) to Ti for new index y
12 add (v → y) to θi
13 return Ti, θi

Algorithm 1.3: Creating Libraries and Mappings(V, E , k)

1 i n i t i a l i s e for a l l v ∈ V and for a l l i ≤ k
2 ti(v)← ∅
3 Ti ← ∅
4 θi ← ∅
5 for 0 ≤ i ≤ k
6 Type Library (V, E , i, θi−1, Ti, θi)
7 return T0, . . . , Tk, θ0, . . . , θk

Running Time of Algorithm 1.3 We are now showing that we need O(k |E|)
operations (amortised time) to create all k+ 1 libraries and functions θ0, . . . , θk,
i.e., to infer all (compact) i-types for all v ∈ V, and all 0 ≤ i ≤ k. This proof
is similar to the one for Weisfeiler-Lehman graph kernels [16]. Note that we can
infer the i-types on each graph in parallel.

The first iteration (i = 0) of auxiliary Algorithm 1.2 can be run in O(|V|)
amortised time. Lines 2-3 take O(|V|). In loop starting at line 7, for each node, we
can check whether its type has been recorded in the library (line 8) in amortised
constant time using a suitable hash map. Lines 9-12 run in constant time, so
overall complexity is amortised (V) as we enter the loop |V| times. The other k
iterations (1 ≤ i ≤ k) of auxiliary Algorithm 1.2 takes (amortised) O(|E|) time.
It visits each edge at most once (line 5). To order each set ti(v) for all v ∈ V,
we execute bucket sorting twice (i.e., a version of radix sort) in all lists at the
same time, recording from which vertex each pair (l, θi−1(u)) came from. We
perform the first bucket sort in which buckets represent values θi−1(u) for some
u ∈ V (takes O(|E|)). Note that the size of each library, and therefore the image
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of θi−1 is bounded by the number of nodes |V|. The second iteration of this
sort orders the partially ordered set into buckets representing the edge-labels
l ∈ L (again takes O(|E|)). Recall that we record the vertex from which each
pair comes from. Then, as in its first iteration, looking up whether a compact
type is already part of the library (line 8) takes amortised constant time. Then,
iterations for 1 ≤ i ≤ k, Algorithm 1.2 runs on average in O(|E|).

Finally, assuming V = O(|E|), Algorithm 1.3 can then be run in amortised
O(k |E|), because auxiliary Algorithm 1.2 is called k times for i > 0.

4 Incremental Inference of Provenance Types

In this section, we look into the main motivation of this paper: how to process
provenance types incrementally. We have proposed three research avenues: The
need for storing all provenance data from the beginning (Q1), the need for
reprocessing previously seen nodes (Q2), and how to efficiently deal with the
possibly multiple occurrence of provenance types among all nodes (Q3).

At this point, we need to clarify what we define as increments of provenance
data. We can have either a stream of provenance graphs, or a stream of nodes and
edges of a provenance graph. We will show that the main difference, however, is
whether previously seen nodes have any deleted edges or added edges that start
at v (recall definition of λV from Section 2). We thus propose the study of the
following cases:

Monotonically Increasing Stream (case λV = ∅)): As there is new prove-
nance being received, there are no new edges starting at a previously pro-
cessed node. There is also no deletion of previously seen edges.

Non-monotonically Increasing Stream (case λV 6= ∅): As new provenance
is received, there is at least one new edge starting at a previously processed
node, or at least one edge removed that started at a previously processed
node.

In the next sections, we will show that the answer to Question Q1 is negative
for monotonically increasing streams. For, non-monotonically increasing ones,
however, we might need to revisit all previously processed provenance. Similarly,
we will show that Question Q2 is negative for monotonically increasing streams,
as there no need to reprocess previously seen nodes. However, when λV 6= ∅,
there might be the need to reprocess nodes.

4.1 Monotonically Increasing Streams

In this section, we are studying the cases in which we have monotonically in-
creasing streams of provenance data. This includes the introduction of entirely
new provenance graphs, but also the addition of new nodes to existing graphs as
long as λV = ∅. This definition is broad and includes situations in which a single
node (or edge) is added, or situations in which entire new graphs together with
nodes in previously seen graphs are added. We first show that, when λV = ∅,
there is no need to reprocess previously seen nodes.
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Algorithm 1.4: Incremental Inference Under Monot. Case(V, E , δV , δE , k)

1 i n i t i a l i s e for a l l v ∈ δV and for a l l i ≤ k
2 ti(v)← ∅
3 for 0 ≤ i ≤ k
4 d e f i n e Ti = Ti(V) and θi = θ(V,i)
5 Type Library (δV , δE , i, θi−1, Ti, θi)
6 return T0, . . . , Tk, θ0, . . . , θk

Lemma 1 (Addressing Q2). No previously processed node will have their
k-types altered in a monotonically increasing increment. Thus, they do not need
to be reprocessed.

Proof. We prove by induction on k. For k = 0, the result follows since all nodes’
provenance types remain the same. Assume the result holds for k = i, we shall
prove it also holds for i + 1. From the recursiveness of the definition of k-types
(Definition 1), for any v, (i + 1)-type(v) rely only on (1) the label on edges
starting at v, and (2) the i-type(u), for u ∈ v+. Since there is no new edge
starting on v, all u ∈ v+ have all previously processed. That fact, together with
the induction hypothesis (i-type(u) unchanged) we conclude that (i+ 1)-type(u)
will not been altered. The result follows by induction. ut

Lemma 1 suggests that not much information needs to be stored to deal with in-
cremental processing of monotonically increasing streams. The following lemma
formalises this idea.

Lemma 2 (Addressing Q1). In order to infer i-types, 0 ≤ i ≤ k, of newly
added nodes (equivalent to constructing θδV ,i) there is no need to store previously
seen edges, but only the set of maps θV,i, 0 ≤ i ≤ k.

Proof. From Lemma 1, no previously processed node needs reprocessing, there-
fore no edge starting at them will be visited. Therefore there is no need to store
previously seen edges. ut

Algorithm for Incremental Inference of Types and Libraries Given the
results of the lemmas above, the algorithm for incrementally referring types of
monotonically increasing streams is simple if we have maintained libraries of
types (and mapping functions) from the already processed data.

Consider Algorithm 1.4. It takes as input the set of already processed nodes
V and edges E , as well as the new ones (δV and δE). It also takes depth k as input.
We consider Ti(V), library over nodes in V, and θ(V,i), mapping from nodes of
V to library indexes, as global variables, for all 0 ≤ i ≤ k. The algorithm calls
auxiliary Algorithm 1.2 only with the new sets of nodes and edges as inputs. Note
that the algorithm deals with the introduction of new node labels by updating
T0 and θ0 accordingly.
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Complexity of Algorithm 1.4 As expected from the lemmas above, the com-
plexity of inferring types of incoming data (and updating libraries and mappings,
when needed) is given by O(k |δE |) amortised time.

Remark 2. Note that the only entries of θi that will be accessed in Algorithm
1.4 are the ones for nodes in set δ+V . Therefore, further storage optimisations can
be achieved when there is previous knowledge with regards to δV .

4.2 Non-monotonically Increasing Streams

In this section, we analyse the case of non-monotonically increasing increments,
i.e., λV 6= ∅. A particular example of such a scenario is the consideration of
dynamic sliding windows of time, in which ‘old’ provenance is deleted as new
provenance is added. We will then show that the answer for Question Q2, in
this case, is positive: we might need to revisit (in the worst case, all) provenance
expressions and possibly update their types. This implies that, because previ-
ously seen nodes may need reprocessing, it is required that all provenance data,
including edges, is kept accessible (Question Q1).

Under non-monotonically increasing streams, Algorithm 1.5 infers the prove-
nance types of new nodes as well as reprocess previously seen provenance ex-
pressions that may have had their types altered. In line 4, it infers all 0-types of
newly added nodes. Line 5 flags such nodes since all nodes in their backward-
neighbourhood will need their 1-type to be (re)processed. The loop in line 6
start by marking all nodes in the backward-neighbourhood of previously marked
nodes, making sure to add all provenance expressions from set λV . That last part
is needed because such nodes need reprocessing regardless of the types of their
forward-neighbours. Notation in line 11 refers to whether the updated value θ′i(v)
has changed or not compared to its value before the auxiliary function in line 9.
It is has not changed, then it will not contribute for a change in (i + 1)-types
of nodes in its backwards neighbourhood. Although nothing prevents the same
node v to be added back to M in line 7 of the next iteration of the loop.

Correctness of Algorithm 1.5 We show that the algorithm will correctly
reprocess the k-types of all nodes that were directly or indirectly affected by
the addition or removal of edges. The bottom line of the algorithm is to take in
account that not only nodes that were immediately affected will need to have
their k-types updated, but that the effect may cascade down along the graph to
a distance up to k.

We first consider v ∈ λV . Even though we may have no change in, for exam-
ple, 1-type(v), that does not imply that 2-type(v) will be also unchanged (the
added or removed edge might connect or have connected v to different branches),
and thus we need to reprocess this node for all 0 ≤ i ≤ k. Line 7 guarantees
that by adding λV to all Mi. Now consider all other nodes, including the ones
previously processed. We are going to show, by induction, that Algorithm 1.5
correctly identifies the need for reprocessing. For i = 0, all new nodes (and only
those) need 0-type(v) inferred (line 4). Note that, for i > 1, a node v’s k-type(v)
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Algorithm 1.5: Incremental Inference Under Non-Monot. Case(V, E, δV , δE , k)

1 i n i t i a l i s e for a l l v ∈ δV and for a l l 0 ≤ i ≤ k
2 ti(v)← ∅
3 d e f i n e Ti = Ti(V) and θi = θ(V,i) , for 0 ≤ i ≤ k
4 Type Library (δV , δE , 0, ∅, T0, θ0)
5 d e f i n e s e t M0 = δV [these are marked nodes]
6 for i = 1 until k
7 d e f i n e Mi = M−i−1 ∪ λV
8 d e f i n e Li s e t o f edges s t a r t i n g at nodes in Mi

9 Type Library (Mi, Li, i, θi−1, Ti, θi)
10 for v ∈Mi [compare types for v before and after line 9]
11 i f (θ′i(v) == θi(v))
12 remove v from Mi

13 return T0, . . . , Tk, θ0, . . . , θk

needs to be reprocessed if and only if at least one of its forward-neighbours
u ∈ v+ had their (k − 1)-type(u) updated, i.e., reprocessed and changed. For
i > 1, assume that all nodes that required were reprocessed. We show that this
is also true for i+1. Indeed, no node that had their i-type modified was removed
from Mi (lines 11-12), and thus, v will be in set Mi+1 if and only if at least one
of its neighbours was not removed from Mi (or, of course, if v ∈ λV).

Complexity of Algorithm 1.5 In the worst case, this algorithm may need
to reprocess all nodes that have been previously seen. Line 4 takes O(|δV |) op-
erations on average. Let Li be the set of edges starting at nodes in Mi, i.e,
|Li| =

∑
v∈Mi

deg+(v). Then, each iteration of the loop starting in line 6 takes

O(|Li|), similarly to algorithm 1.3. Finally, denoting |L| =
∑k
i=1 |Li|, we con-

clude that Algorithm 1.5’s running time complexity is O(|δV | + |L|) amortised
time. Note that visiting all nodes in Mi (line 10) does not increase complexity
as |Li| > |Mi|.

In Section 4, we investigated the different modes of incremental processing
of provenance types, showing that, in the context of monotonically increasing
streams, provenance types of new nodes can be inferred fast and without the
need to reprocess previously seen nodes or access all past provenance data. In
non-monotonically increasing streams, however, reprocessing of old nodes might
be necessary, as well as access to edges of previously seen graphs.

5 Empirical Evaluation

In this section, we show that the size of a library is indeed much smaller than |V|.
We present empirical results of the processing of more than 36, 000 graphs, that
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Nodes with non-empty i-type for i =
Datasets Number of graphs 0 1 2 3 4 5

CM-buidings 5175 94k 89k 71k 58k 51k 38k

CM-routes 4997 105k 100k 90k 70k 44k 40k

CM-Routeset: 4710 101k 97k 76k 49k 45k 37k

MIMIC: 21892 1208k 865k 843k 821k 788k 753k

PG: 80 18k 14k 14k 14k 14k 14k

Total 36854 1526k 1165k 1094k 1012k 943k 883k

Table 2: Number of graphs in each dataset, as well as the number of nodes with
a non-empty i-type for each i = 0, . . . , 5

show that the number of distinct i-types, for each i ≤ 5, is approximately 5, 000.
The challenge of choosing i to best analyse and compare summary graphs left
for future work. We analysed datasets from 3 different domains. CollabMap [14]
(CM) is a database of provenance graphs for evacuation planning generated in a
crowd-sourcing platform. We separate CollabMap graphs into buildings, routes,
and route sets. MIMIC [9] is a database of information of patients in critical
hospital care. Finally, our last dataset of graphs describes actions of players on
Pokemón Go (PG) simulations.

We first provide an overview of the size of our datasets in Table 2. We have a
total of 36, 854 different provenance graphs, with an average of 41.4 nodes each.
Note that, although all nodes have a non-empty 0-type associated with them, the
same is not valid for deeper types. For example, leaf nodes have an empty 1-type
(and thus an empty i-type for i ≥ 1). The quantity of nodes with a non-empty
i-type for each i = 0, . . . , 5 is given rounded up to the nearest thousand. Observe,
for example, that of the nodes in graphs of the MIMIC dataset, approximately
343, 000 (≈ 28%) are leaf nodes, as they have an empty 1-type.

Table 3 shows the sizes of libraries of types Ti, for 0 ≤ i ≤ 5, for each dataset
separately, as well as them combined, using one common library of types. In
these experiments, we ignore primitive labels of provenance expressions, and
thus T0 = {ag, act, ent} for the combined dataset, although there are no agents

Datasets |T0| |T1| |T2| |T3| |T4| |T5|
CM-buidings 2 3 3 5 14 102

CM-routes 2 4 10 35 155 577

CM-Routeset: 2 4 8 23 58 262

MIMIC: 3 5 11 39 405 4328

PG: 2 3 5 10 23 54

sizes of common libraries for all domains 3 9 23 84 601 5197

sum of individual library sizes 11 19 37 112 655 5323

Table 3: Number of entries in libraries of types for different datasets, as well as
for a common one.
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in neither CollabMap nor PokemonGo datasets. The 6th row gives us the size of
libraries generated from all datasets, which implies that if the same type appears
in more than one dataset, it will be counted only once in our joint library. In
contrast, the last row gives the sum of sizes of the 5 individual libraries. We can
see that, especially for low-depth types, there is a significant overlap of types
across datasets.

This experiment shows that maintaining a library of types is an efficient way
of avoiding the need to store multiple copies of the same types. As the depth
increases, so does the number of different patterns to be stored and, although this
is expected due to increased complexity of neighbourhoods of greater radius, the
final library sizes continue to be much more compact than the size of original
data. Note also that there is a significant overlap of types between different
domains, which indicates that keeping a library of types across different domains
can contribute to further storage optimisation. The full library of types for each
of the datasets can be found at https://openprovenance.org/typelibrary/.

6 Related Work

To the best of our knowledge, this is the first work that proposes the study
of incremental processing of provenance types, which contributes to the study
of incremental provenance sumaries. There is, however, literature on dynamic
analysis of provenance, such as [8], which proposes the analysis of dynamic slid-
ing windows to identify behaviour anomalies. Also, MaMaDroid [11] builds a
Markov chain over continuously provided data for malware detection. Provenace
data streams without the focus on data incremental processes for contructing
summaries were also studied in [4] and [18].

Beyond the domain of provenance, there is also work on incremental in-
ferences of summaries. In particular, a DataGuide [5] provides summaries of
databases, in both incremental and non-incremental modes, although their model
may take require exponential time and space complexity on the number of nodes
and edges of input graphs. Also, [2] studies pattern matching in incremental sce-
narios. The main difference with our work is that they focus on finding a specific
pattern within a large (and changing) graph, rather than inferring each node’s
type. On a similar domain, [6] proposes the incremental processing of a sum-
mary graph in which nodes are associated to a hash value, although they do not
consider edge labels in their work. Song and Ge [17], on the other hand, do con-
sider edge labels and construct graph sketches over sliding windows. The main
difference compared to provenance types is that they do not consider patterns
within graphs, but only information encoded in edges such as their label and
endpoints. In the context of machine learning and Weisfeiler-Lehman graph ker-
nels, [20] provides graph classification with continuously provided data. Unlike
in our work, they discard nodes with less discriminatory power to facilitate the
classification process.

The concept of provenance types was introduced in [13] as the main step to
construct summary graphs, which are, in turn, a way to extract the essence of

https://openprovenance.org/typelibrary/
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provenance graphs. Based on their definition of provenance types, however, the
algorithm presented in [13] to infer types has an exponential time complexity
in function of the parameter k. This drawback comes from the fact that all
walks of lengh k from a given node may need to be inspected. In this paper, we
offer similar but recursive definition of provenance types which allows us infer
them in polynomial time. This recursive definition is similar to the one used
in the context of Weisfeiler-Lehman Graph Kernels [16], with the differences
that our sets θk(v) consist of pairs instead of single values, and that we discard
repetitions in such sets. Another difference, also explored in [19], is that we work
with graphs with labelled edges, and therefore they are taken in account when
processing nodes’ types.

7 Conclusions and Future Work

In this paper, we studied incremental processing of provenance in the context of
summarisation of provenance graphs. Our contribution focused on the inference
of provenance types, as we leave incremental computation of summary graphs
for future work.

First, we suggested an alternative definition of provenance types (Definition
1), which, in loose terms, consist of an abstraction of the forward-neighbourhood
of nodes in a provenance graph. This definition allows provenance types to be
inferred in polynomial time taking into account the size of the input data (Al-
gorithm 1.3). To avoid storing the same provenance types multiple times, we
suggest the creation of a library of types for each parameter k (Definition 2).
Such libraries record all seen (compact) provenance types. We also define, for
each parameter k, a function that maps each node to the library entry associated
with the node’s compact type (Definition 3).

In order to study the different modes of data increments, we considered
two broad scenarios: when previously processed edges are removed from - or
when new edges start at - previously seen nodes (non-monotonically increasing
streams), and when that is not the case (monotonically increasing streams). For
the former case, we provide Algorithm 1.5 that reprocess nodes when needed.
The latter scenario, on the other hand, was shown to allow the processing of in-
coming data without the need to reprocessing previous provenance information
(Question Q2). In that case, there is also no need to keep stored previously seen
provenance relations (Question Q1).

Subsequently, we presented an analysis of more than 36.000 provenance files
and showed that the size of libraries of types is small compared to the size of
our datasets (Question Q3). We also give the number of nodes in each dataset
that has a non-empty type for each level from 0 to 5.

As future work, it would be useful to develop an empirical analysis of the time
it takes to run Algorithm 1.5 in practice, i.e., to understand what proportion of
the graph needs to be reprocessed. Another important further step is to extend
the incremental inference to constructing summary graphs over continuously
provided provenance.
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