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Abstract 12 

Open burning of agricultural crop residues is widespread across eastern China, and during certain post-harvest periods 13 

this activity is believed to significantly influence air quality. However, the exact contribution of crop residue burning 14 

to major air quality exceedances and air quality episodes has proven difficult to quantify. Whilst highly successful in 15 

many regions, in areas dominated by agricultural burning MODIS-based fire emissions inventories such as GFAS and 16 

GFED are suspected of significantly underestimating the magnitude of biomass burning emissions due to the typically 17 

very small, but highly numerous, fires involved that are quite easily missed by coarser spatial resolution remote sensing 18 

observations. To address this issue, we here use twice daily fire radiative power (FRP) observations from the ‘small 19 

fire optimised’ VIIRS-IM FRP product, and combine it with fire diurnal cycle information taken from the 20 

geostationary Himawari-8 satellite. Using this we generate a unique high spatio-temporal resolution agricultural 21 

burning inventory for eastern China for the years 2012-2015, designed to fully take into account small fires well below 22 

the MODIS burned area or active fire detection limit, focusing on dry matter burned (DMB) and emissions of CO2, 23 

CO, PM2.5 and black carbon. We calculate DMB totals 100 to 400% higher than reported by GFAS and GFED4.1s, 24 

and quantify interesting spatial and temporal patterns previously un-noted. Wheat residue burning, primarily occurring 25 

in May-June, is responsible for more than half of the annual crop residue burning emissions of all species, whilst a 26 

secondary peak in autumn (Sept-Oct) is associated with rice and corn residue burning. We further identify a new 27 

winter (Nov-Dec) burning season, hypothesised to be caused by delays in burning driven by the stronger 28 

implementation of residue burning bans during the autumn post-harvest season. Whilst our emissions estimates are 29 

far higher than those of other satellite-based emissions inventories for the region, they are lower than estimates made 30 

using traditional ‘crop yield-based approaches’ (CYBA) by a factor of between 2 and 5x. We believe that this is at 31 

least in part caused by outdated and overly high burning ratios being used in the CYBA approach, leading to the 32 
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overestimation of DMB. Therefore we conclude that that satellite remote sensing approaches which adequately detect 33 

the presence of agricultural fires are a far better approach to agricultural fire emission estimation. 34 

 35 

Keywords: Agriculture, Biomass Burning, Active Fire, VIIRS, Air Quality, Fire Emission 36 

 37 

1. INTRODUCTION 38 

Eastern China (111 - 123 o E, 27 – 40 o N) is home to around one third of the Chinese population and includes the area 39 

of the North China Plain and the Yangtze Plain - two of the largest agricultural zones in China (Fig. 1). Cropland 40 

covers over 1.7 million km2 of eastern China, and the region is responsible for an estimated 25% of China's crop 41 

production, including around 51% of the national rice yield (NBSC, 2012). Large amounts of crop residue (~ 60 42 

Tg/year including stems, stalks, straw etc) results from this agricultural production (Chen et al., 2017; Huang et al., 43 

2012; Zhang et al., 2015), and the burning of this waste in open fields is widespread across much of eastern China 44 

(Fig. 2).  45 

This biomass burning has both local and regional scale air quality impacts, with emissions of particulate matter (PM) 46 

of particular concern (Bond et al., 2013). The East Asian monsoon system that influences much of mainland China 47 

results in prevailing north-westerly to south-easterly atmospheric transport during winter, which is reversed in the 48 

summer months. Under these influences, the smoke from agricultural residue fires in Eastern China often affects 49 

"mega-cities" like Beijing and Shanghai (Chan & Yao, 2008; Cheng et al., 2013; Du et al., 2011; Li et al., 2010). 50 

Modelling studies show that these agricultural emissions can drive intense regional air pollution episodes; Huang et 51 

al. (2012) suggest that PM10 concentrations in some cities could reach 600 µg m-3 during such episodes, a level 6 52 

higher than the WHO 24h-mean PM10 air quality guideline for human health (WHO, 2005). 53 

Agricultural burning in eastern China accounts for a significant part of China’s total biomass burning emissions 54 

(Streets et al., 2003; Chen et al., 2017), however the specific contribution of crop residue burning to air quality 55 

exceedances in China remains uncertain, partly because there is considerable doubt as to the amount of dry matter 56 

burned (DMB) in crop residue fires. For example, this leads to a ~450 % range in total crop residue burning black 57 

carbon emissions in Asia between different emissions inventories (Streets et al., 2003), while emissions estimates of 58 

gaseous species are similarly varied.  59 

A major source of this uncertainty stems from the hitherto relatively poor ability of earth observation (EO) satellite 60 

instruments to adequately detect biomass burning activity in many agricultural areas due to the small size of the fires 61 

usually found in these areas. Many agricultural fields in eastern China are typically only around 700 m2 in area (NBSC, 62 

2012), and fires ignited to burn across the stubble left in the place after harvest are therefore hard to detect with 63 

moderate spatial resolution burned area (BA) mapping from sensors such as MODIS (Moderate Resolution Imaging 64 

Spectroradiometer), and are made even more elusive by the common farming practice of pilling up residues into an 65 

even smaller area before igniting them (Zhang et al., 2017; 2018). As most BA mapping methods require ~ > 20 % of 66 
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a pixel to be burned in order for it to be classified as ‘fire affected’ (Giglio et al., 2006; 2009), BA-based emissions 67 

inventories such as GFED (Global Fire Emissions Database) tend to significantly underestimate fire activity in areas 68 

such as eastern China (Zhang et al., 2018).   69 

Infrared based Active fire (AF) based detection techniques can discriminate fires covering only 0.01-0.1 % of a pixel 70 

area (Wooster et al., 2005; Schroeder et al., 2014), and as such should in theory be able to capture far more fire activity 71 

in agricultural areas than BA based methods. Nevertheless, due to the extremely small size of agricultural fires in 72 

eastern China, a large proportion of fire activity remains undetected by AF detection algorithms applied to ‘moderate’ 73 

spatial resolution imagery (from sensors such as MODIS). This limitation is a key source of uncertainty within the 74 

FRP approach, and indeed in fact can lead to biased (underestimated) FRP totals caused by the non-detection of the 75 

lower FRP component of a regions fire regime (e.g. Roberts et al., 2015). Higher spatial resolution polar-orbiting 76 

sensors such as VIIRS (Visible Infrared Imaging Radiometer Suite) can provide the ability to identify an increased 77 

number of AFs having lower FRP values, particularly when used with algorithms optimised for small fire detection 78 

(Zhang et al., 2017) (Fig. 2), but they still only capture fires burning in clear skies at the time of the satellite overpass 79 

(Giglio et al., 2003; 2006). This limitation is also a considerable source of uncertainty, and a hinderance given the 80 

sometimes short duration of active burning (especially of  agricultural fires) and the typical polar orbiting imaging 81 

frequency of only a few times per day. To cope with this issue, FRP-based emissions inventories such as GFAS based 82 

upon AF methods are generally required to make assumptions or exploit additional data on the timing and relative 83 

diurnal variability of fire activity occurring between polar orbiting overpasses in order to estimate, for example, total 84 

daily Fire Radiative Energy (FRE) (Kaiser et al., 2012; Xu et al., 2017; Zhang et al., 2017). Here we provide this 85 

additional information by exploiting new fire diurnal cycle information taken from the geostationary satellite 86 

Himawari-8, combining it with twice daily FRP information provided by the ‘small fire optimised’ VIIRS-IM product 87 

of Zhang et al. (2017) to produce a unique high spatio-temporal resolution agricultural fire dataset (referred to hereafter 88 

as the VIIRS-IM/Him dataset) for eastern China based on FRE totals. This new inventory is designed to reduce bias 89 

and uncertainty caused by use of one FRP data type alone, and to account for small fires burning even for short periods 90 

and often well below the MODIS AF and BA detection limit. The fuel for these fires is waste straw and other 91 

agricultural residues, and we use a crop rotation map to classify the type of agricultural residue being burned at each 92 

observed location and time. It is then used to select the most appropriate smoke emissions factor for calculating the 93 

final fire emissions totals from FRE derived estimates of dry matter burned (DMB).  94 

  95 
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2. DATASETS 96 

2.1 Polar Orbiting VIIRS-IM FRP Product 97 

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is currently flown aboard the polar orbiting Suomi 98 

NPP (since 2011) and NOAA-20 (since 2017) satellites and expands upon the capabilities of the AVHRR and MODIS 99 

instruments for environmental monitoring (Zhou et al., 2019). VIIRS has 22 channels spanning the visible to the 100 

longwave infrared, a 3000 km swath width, and nadir pixel resolution ranging between 375 m and 750 m (Goldberg 101 

et al., 2013). Furthermore, a ‘pixel aggregation’ scheme is applied to VIIRS which limits pixel area increase with scan 102 

angle to a maximum of 4 compared to MODIS' 10 (Wolfe et al., 2013). 103 

With a necessary emphasis on the detection of small fires typical of agricultural regions, our work focuses on 104 

generating a gridded daily biomass burning fuel consumption product that estimates DMB and emissions from the 105 

VIIRS-IM AF Detection and FRP product developed and optimised for eastern China by Zhang et al. (2017), using 106 

data from the instrument aboard the Suomi NPP satellite with a mean local daytime overpass time of 13:30 in the 107 

ascending node, and a mean local nighttime overpass time of 01:30 in the descending node (Wolfe et al., 2013). Fig. 108 

2 shows an example of the VIIRS-IM FRP product, generated from the two observations per day provided by Suomi 109 

NPP VIIRS. This FRP product blends the advantages of the ‘small fire’ sensitivity of the VIIRS 375 m I-Band, with 110 

the ability to retrieve fire radiative power (FRP) over larger fires using the 750 m M-Band observations. Due to the 111 

very small size of agricultural fires in China, and because the VIIRS I-Band pixel area is 10 smaller than the pixel 112 

area of MODIS, far more fires can be detected in eastern china using the VIIRS-IM AF product of Zhang et al. (2017) 113 

than can be identified in near simultaneous MODIS data, and on average across eastern China retrieves FRP totals 114 

around 4 higher (Zhang et al., 2017).  115 

 116 

2.2 Geostationary Himawari FRP Product 117 

To convert the twice-daily VIIRS-IM FRP product to daily-integrated FRE, information on the fire diurnal cycle is 118 

required (Ellicott et al., 2009; Freeborn et al., 2008; Roberts et al., 2009). We obtained this from 10-min temporal 119 

resolution observations from the geostationary Himawari-8 satellite, whose data have recently been used to derive AF 120 

detections and FRP metrics across Asia by Xu et al. (2017). Himawari cannot be used in isolation to directly estimate 121 

daily FRE for each of the 4-years of the study, because (i) Himawari data are only available from early 2015 onwards, 122 

and (ii) Himawari’s relatively coarse pixel size (2 km at the sub-satellite point) means that it omits even more of the 123 

agricultural fires than does MODIS (as illustrated by Xu et al., 2017 and in Fig.3). However, where agricultural fires 124 

are concentrated in sufficient density, observations by Himawari do enable their detection and these data can be used 125 

to map the changing FRP of these fires over the day for derivation of the fire diurnal cycle.  126 

 127 

2.3 Crop Rotation Map 128 
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The predominant agricultural residues burned across eastern China are wheat, corn and rice straw (Huang et al., 2012). 129 

To classify the likely residue type of each detected fire, a crop rotation map (Fig. S1) was generated from the 130 

MIRCA2000 0.08o global monthly crop area dataset (Portmann et al., 2010), which has a spatial resolution equivalent 131 

to 9.2 km  9.2 km at the equator. These data were used to assign fire activity to a particular crop residue type, which 132 

determined the appropriate agricultural biomass burning emission factors to apply (see Section 3.3). 133 

 134 

2.4 Land Cover Data 135 

We use the GlobeLand30 land cover product (Chen et al, 2015) to classify land cover/use for our study area in Eastern 136 

China. GlobeLand30 provides 30m spatial resolution land cover data for a baseline year of 2010 derived primarily 137 

from Landsat (TM5 & ETM +) and China Environmental Disaster Alleviation Satellite (HJ-1) imagers. Fig. 1 shows 138 

the spatial distribution of the agricultural land ratio (regridded to 0.01 degree spatial resolution) calculated use this 139 

dataset in eastern China. 140 

 141 

2.5 GFED & GFAS Emissions Inventory Data 142 

The results from the combined VIIRS-IM and Himawari FRP based emissions (VIIRS-IM/Him) dataset were 143 

compared to two state-of-the-art global fire emission databases, the Global Fire Emissions Database (GFED) and the 144 

Global Fire Assimilation System (GFAS). GFED was built to combine remotely sensed data on BA with fuel loads 145 

from the CASA biogeochemical model of vegetation growth, producing monthly, spatially explicit pyrogenic fuel 146 

consumption, carbon, GHG and air pollution emission estimates at 0.25o grid cell resolution globally (Van der Werf 147 

et al., 2010; Giglio et al., 2013). The most recent version (GFED4.1s) includes a “small fire boost” based on AF 148 

detections, in an attempt to counteract the inability of the MODIS BA product to detect many agricultural fires 149 

(Randerson et al., 2012; Van der Werf et al., 2017). Due to this ‘boost’ GFED4.1s shows higher values of dry matter 150 

burned (DMB) in most eastern China grid cells compared to the ‘unboosted’ GFED4, and a more extensive fire 151 

distribution. However, Zhang et al. (2018) show that the boosting procedure can introduce significant anomalies into 152 

the GFED dataset at certain times of year, generated when MODIS’ AF detection procedure incorrectly identifies 153 

urban features in eastern China as fires. 154 

In contrast to GFED, the GFAS fire emissions database is based on AF detections and is integrated into Copernicus 155 

Atmosphere Monitoring Service (CAMS) system for near-real-time atmospheric composition monitoring and 156 

forecasting. Developed by Kaiser et al. (2012) and based on the FRP method, MODIS supplies the FRP data for the 157 

current GFAS v1.2 up to 4 times per day at most latitudes. From these observations, DMB is calculated via a regression 158 

against GFED DMB values (Kaiser et al., 2012) and daily emissions of 40 emitted species are then calculated at 0.1o 159 

spatial resolution.  160 

 161 
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2.6 Crop Yield Based Approach Emissions Inventory Data 162 

The traditional method for estimation of agricultural fire emissions is the so-called crop yield based approach (CYBA), 163 

and we compare data from such approaches to our new VIIRS-IM/Him methodology. CYBAs typically calculate the 164 

amount of crop residue burned in a region using a combination of crop production statistics and related additional 165 

parameters using following equation: 166 

𝐷𝑀𝐵 =  ∑ 𝑃𝑖𝑅𝑖𝐵𝑖𝐶𝑛
𝑖=1            (1) 167 

Where i stands for each of n different crops; DMB is total dry matter burned (kg) in the region; Pi is the regional 168 

production of crop i (kg), and is usually derived from annual agricultural statics reports; Ri is the dry matter production-169 

to-residue ratio (unitless), which depends on the crop type i; Bi is the proportion of residue burned in the field for crop 170 

type i in the region under study (i.e. the ‘burning ratio’; 0-1, unitless); and C is crop combustion completeness (0-1, 171 

unitless, Huang et al., 2012). DMB is then multiplied by appropriate particulate/gaseous emission factors in order to 172 

estimate the total emissions from agricultural burning.  173 

Certain of the parameters of Eqn. 1 are not so easily determined. For example, the burning ratio (Bi) is often based on 174 

questionnaires or investigations on the use of crop residues conducted with farmers (Gao et al., 2002; Wang and Zhang, 175 

2008). Because of strong variations in socio-economic development across the huge expanse of mainland China, large 176 

differences in the estimates of Bi exist (Jiang et al., 2012; Liu et al., 2008; Yamaji et al., 2010). Bi may also change 177 

considerably from year to year since it is strongly impacted by the level of local economic development, the 178 

availability of alternative uses for crop residues in the region, and the regional governance of fire prohibition (Chen 179 

et al., 2017). Moreover, considering the official prohibition of open air burning, the reliability of data based on surveys 180 

that ask farmer how much residue they burn is questionable. Despite this, most studies that include estimation of 181 

agricultural fire emissions in Eastern China have relied on the CYBA (e.g. Cao et al., 2006; He et al., 2011; Huang et 182 

al., 2012; Li et al., 2009; Qin and Xie, 2011; Yan et al., 2006; Zhao et al., 2015). 183 

 184 

3. METHODOLOGY  185 

3.1 Data Gridding and Cloud Cover Adjustment  186 

The VIIRS-IM FRP product data (in MW), originally derived at the pixel scale, were aggregated to 0.1° resolution for 187 

this analysis. Unlike the daily average MODIS FRP calculation of GFAS, which weights individually contributing 188 

MODIS FRP observations by their view zenith angle to downgrade the importance of far off-nadir measurements 189 

(Kaiser et al., 2012), no such weighting was applied to the VIIRS-IM FRP data since they have already shown very 190 

limited view zenith angle dependence as a result of the VIIRS’ pixel-averaging procedure (Zhang et al., 2017). For 191 

each VIIRS overpass, the total observed FRP present in each 0.1° grid cell j (i.e. FRPj) was calculated from the 192 

cumulative FRP of all native resolution AF pixels i within the grid cell: 193 

𝐹𝑅𝑃𝑗 = ∑ 𝐹𝑅𝑃𝑖𝑖∈𝑗                                                                                                                                   (2) 194 
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Total observed agricultural area (A, excluding cloud covered area) within each 0.1° grid cell was calculated similarly 195 

using the GlobeLand30 30m landcover map: 196 

𝐴𝑗 = ∑ 𝐴𝑖𝑖∈𝑗                                                                                                                                           (3) 197 

The VIIRS-IM product is only affected to a limited degree by smoke because of the relative transparency of smoke 198 

plumes at Mid-Wave Infrared (MWIR) wavelengths due to the dominant particle size being smaller than the 199 

wavelengths of the VIIRS MWIR channel (Zhang et al., 2017). However, the product cannot provide information in 200 

cloud covered areas, and so an adjustment is required to take into account actively burning fires hidden from view by 201 

clouds. Following Streets et al. (2003) we assume that for partially cloud covered grid cells, the AF and FRP 202 

distribution under cloud is the same as under the clear sky areas, as is also assumed in GFAS (Kaiser et al., 2012).  203 

Subsequently, the gridded and cloud-adjusted FRP areal density (𝜌𝑗, MW.km-2) is calculated using: 204 

𝜌𝑗 =
𝐹𝑅𝑃𝑗

𝐴𝑗
                                                                                                                                               (4)   205 

Cloud cover (CC) fractions in some grid cells occasionally reach 0.5 (50%), but most are zero. After the cloud cover 206 

adjustment, the mean FRP areal density across the study area increased by 11.5%, so the overall effect of the CC 207 

adjustment is relatively minor. 208 

3.2 Diurnal Cycle and Daily FRE Generation 209 

Hourly averages of the 10-minute FRP data from the Himawari-8 FRP product of Xu et al. (2017) were gridded to the 210 

same 0.1o grid cell resolution as the VIIRS-IM dataset. For each grid cell and calendar day, hourly FRP data were 211 

normalised in order to minimise the impact of day-to-day variations in fire activity:  212 

𝐹𝑅𝑃𝑗,𝑑
ℎ̃ =  

𝐹𝑅𝑃𝑗,𝑑
ℎ −min(𝐹𝑅𝑃𝑗,𝑑)

max(𝐹𝑅𝑃𝑗,𝑑)−min(𝐹𝑅𝑃𝑗,𝑑)
                                                                                                          (5) 213 

Where 𝐹𝑅𝑃𝑗,𝑑
ℎ̃  is the normalised Himawari-8 FRP for hour h on day d for grid cell j; 𝐹𝑅𝑃𝑗,𝑑

ℎ  is the averaged Himawari-214 

8 FRP (MW) for hour h on day d for grid cell j; max(𝐹𝑅𝑃𝑗,𝑑) and min(𝐹𝑅𝑃𝑗,𝑑) are respectively the maximum and 215 

minimum hourly Himawari-8 FRP (MW) observed on day d for grid cell j. Note that h is in local time (UTC/GMT + 216 

8 hours) and the diurnal cycle runs from 0 to 23 hours. 217 

𝐹𝑅𝑃𝑗,𝑑
ℎ̃  data for 2015 were used to produce two normalised ‘seasonal’ diurnal fire cycles for the eastern China study 218 

area: a ‘summer’ diurnal cycle, constructed from May-June data, and an ‘autumn’ diurnal cycle, constructed from 219 

Sept-Oct data. Both normalised seasonal diurnal cycles were calculated using a weighted mean so that days and grid 220 

cells with high fire activity had the greatest influence on the cycle: 221 

𝐹𝑅𝑃ℎ =
∑ ∑ (𝐹𝑅𝑃𝑗,𝑑

ℎ̃ × 𝐹𝑅𝑃𝑗,𝑑
ℎ )𝑗𝑑

∑ ∑ (𝐹𝑅𝑃𝑗,𝑑
ℎ )𝑗𝑑

 (7) 222 

 223 
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Where 𝐹𝑅𝑃ℎ is the normalised FRP for hour h for the entire study area and fire season (summer or autumn). Fig. 4 224 

shows the resulting weighted mean fire diurnal cycle for the summer season for Eastern China. This diurnal cycle is 225 

bi-modal: a primary peak occurs around 13:00 local time that extends from around 08:00 to 18:00 (daytime) and a 226 

second much smaller peak occurs around 21:00 local time (with a magnitude of only  20% of the normalised FRP 227 

value of the first peak).  228 

We blended information from the Himawari FRP diurnal cycle with the instantaneous twice-daily VIIRS-IM FRP 229 

areal density (𝜌𝑗, MW.km-2) data, using an approach based on Andela et al. (2015) to create the VIIRS-IM/Him dataset. 230 

Here we represent the diurnal fire cycle as a gaussian function parameterised using the Himawari FRP diurnal cycle, 231 

superimposed on a fixed baseline. For a given grid cell j, at instantaneous time t, VIIRS-IM/Him FRP areal density is 232 

calculated by: 233 

 234 

𝜌𝑉𝐼𝐼𝑅𝑆−𝐻𝑖𝑚𝑗,𝑡
= 𝜌𝑉𝐼𝐼𝑅𝑆𝑛𝑖𝑔ℎ𝑡,𝑗

 +  μ (𝜌𝑉𝐼𝐼𝑅𝑆𝑑𝑎𝑦,𝑗
− 𝜌𝑉𝐼𝐼𝑅𝑆𝑛𝑖𝑔ℎ𝑡,𝑗

) 𝑒
− 

(𝑡 − 𝑡𝐻𝑖𝑚𝑝𝑒𝑎𝑘)
2

2𝜎2 (8) 235 

 236 

Where 𝜌𝑉𝐼𝐼𝑅𝑆−𝐻𝑖𝑚𝑗,𝑡
 is the instantaneous VIIRS-IM/Him FRP areal density (MW.km-2) for grid cell j at time t; 237 

𝜌𝑉𝐼𝐼𝑅𝑆𝑛𝑖𝑔ℎ𝑡,𝑗
 is the night-time (~01:00 LST) VIIRS-IM FRP areal density value (MW.km-2) for grid cell j; 𝜌𝑉𝐼𝐼𝑅𝑆𝑑𝑎𝑦,𝑗

 238 

is the day time (~13:00 LST) VIIRS-IM FRP areal density value (MW.km-2) for grid cell j; µ is an adjustment factor 239 

used to account for the difference between the VIIRS daytime overpass time and the peak time of the weighted mean 240 

fire diurnal cycle (Eqn. 9); tHimpeak is the time of day at which the seasonal Himawari FRP diurnal cycle peaks; σ is the 241 

standard deviation of the main peak of the Himawari FRP diurnal cycle, calculated by fitting a gaussian function 242 

(using non-linear least squares) to the seasonal Himawari FRP diurnal cycles. The summer diurnal cycle σ value 243 

(2.39±0.053) was applied during the April-August period, and the autumn diurnal cycle σ value (1.63±0.041) was 244 

applied during the September-March period. 245 

The adjustment factor µ is used to account for the fact that the VIIRS daytime overpass time is unlikely to coincide 246 

with the peak of the fire diurnal cycle: 247 

 248 

𝜇 =  𝑒
 
(𝑡𝑉𝐼𝐼𝑅𝑆𝑑𝑎𝑦,𝑗

 − 𝑡𝐻𝑖𝑚𝑝𝑒𝑎𝑘)
2

2𝜎2  (9)
 249 

 250 

Where 𝑡𝑉𝐼𝐼𝑅𝑆𝑑𝑎𝑦,𝑗
 is the local time of the VIIRS-IM FRP observation for grid cell j. 251 

Daily FRE was then estimated for each grid cell j and calendar day by integrating the instantaneous VIIRS-IM/Him 252 

FRP data using Eqn. 8.  253 
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 254 

3.3 Conversion to Dry Matter Burned (DMB) and Smoke Emissions 255 

To convert the estimated FRE areal density to fuel consumption/DMB, we multiplied FRE by the 0.368 (±0.015) 256 

kg.MJ-1 factor derived by Wooster et al. (2005) from a series of outdoor experimental straw fires, that were very 257 

similar to the Chinese agricultural residue fires used herein (Zhang et al., 2015). To convert the resultant DMB into 258 

smoke emissions, we used the emission factors of wheat and rice derived from in situ measurements in agricultural 259 

areas by Zhang et al. (2015) (Table 1). Corn residue was not a fuel type measured during those experiments, and so 260 

for this fuel type (which was only 16-22% of the total agricultural fuel consumption) we used the emissions factors 261 

for agricultural corn fires from Andreae and Merlet (2001), as is used in GFAS (Kaiser et al., 2012) (Table 1). Together 262 

with the crop rotation map (see Section 2.3 and Fig. S1) the EFs from Table 1 enabled us to select the appropriate 263 

emissions factor for use at a particular location and time of year. 264 

Furthermore, a winter burning season was discovered during November and December (see details in Section 5.1) 265 

when no cultivation crop is shown in the MIRCA2000 data in the study region. Analysis in this study shows that 266 

winter fires are likely to result from the combustion of stored residues from the autumn harvest season, therefore all 267 

fire activity in winter was assigned to crop types (and therefore emission factors) using the crop rotation map from the 268 

previous closest month (October) (Fig. S1). This methodological change is accounted for in the data presented in Fig. 269 

5.  270 

 271 

4. BIOMASS BURNING AND EMISSIONS RESULTS 272 

4.1 Temporal and Spatial Distribution of FRE In Eastern China 273 

Fig. 5 shows the time series of daily mean FRE areal density in eastern China from February 2012 to December 2015, 274 

reported at 0.1o grid cell resolution, and broken down into three main crop residue types. A strong seasonal variation 275 

is seen, with peak activity in summer (May-June) associated with wheat residue burning and a smaller secondary peak 276 

in activity occurring in autumn (Sept-Oct) associated with corn and rice residue burning. In fact, the secondary peak 277 

is a combination of several fluctuations lasting from October until December, further discussed in Section 5.1. Over 278 

the whole 4-year period, wheat crop residues contributed 65% of the total FRE, rice residues 18%, and corn residues 279 

17%.  280 

A distinct spatial pattern showing two main burning seasons can also been seen when FRE areal density is mapped 281 

(Fig. 6). During the summer burning season (May-June), most fires are located between 32o N - 36 o N, extending from 282 

112o E - 120o E near the coast. In the autumn season (Sept-Oct), less fire activity occurs than in the summer fire season 283 

and it is more evenly distributed across the entire study area, though there is still a focus of fire activity between 32 - 284 

34o N and 112 - 119o E. Moreover, in the southwest of the study area (29 - 32o N and 112 - 114o E) we see a region 285 

that only appears to undergo substantial burning in the autumn. This is located in the centre of Hubei Province, which 286 
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contributes around 12% of the total rice yield of the whole of China (NBSC, 2015). This area contributes to between 287 

10 and 18 % (year dependant) of the total autumn burning season FRE.  288 

 289 

4.2 DMB Comparisons to GFAS and GFED 290 

The outputs generated by our combined VIIRS and Himawari processing chain were compared to those of GFAS and 291 

GFED4.1s (Fig. 7). Dry matter burned (DMB) was used as the common comparison metric, as this removes differences 292 

arising from the use of different emissions factors within the inventories. Overall, the VIIRS-IM/Him DMB estimates 293 

are around 2 to 5 higher than those reported for corresponding months by GFAS and GFED 4.1s. As detailed in 294 

Zhang et al. (2017) and discussed in Section 2, VIIRS has the ability to detect far smaller (and lower FRP) fires than 295 

MODIS, due to its far smaller pixel size and the fact that the I-band observations also retain their pixel area more 296 

effectively across the swath. Ultimately, this difference results in far higher DMB being obtained by the VIIRS-297 

IM/Him inventory compared to the MODIS based GFAS and GFED inventories. 298 

During the summer months of May-June, all three inventories (GFAS, GFED and VIIRS-IM/Himawari) show a clear 299 

peak in DMB, but GFAS and VIIRS-IM/Him show a much sharper peak in June, while GFED’s summer burning 300 

season extends one month earlier (May) and later (July). This extended summer fire season reported by GFED is likely 301 

the result false fire reporting, discussed at length in Zhang et al (2018). VIIRS-IM/Him shows a June DMB peak 302 

ranging from 3.30 to 11.2 Tg, 2 higher than GFED4.1s (1.89 - 5.34 Tg) and GFAS (2.00 to 4.30 Tg). It should be 303 

remembered that the conversion of daily average FRP to DMB in GFAS is derived via a calibration to GFED4.1s 304 

(Kaiser et al., 2012), so these two emissions databases understandably report similar monthly DMB totals.  305 

For the autumn (Sept-Oct) burning season, the peaks in the GFAS and GFED inventories are much less pronounced 306 

than the summer burning season peaks (Fig. 7). DMB in October ranges from 0.57 - 1.74 Tg for GFED, significantly 307 

higher than the 0.31 - 0.61 Tg reported by GFAS, but far lower than the 1.62 - 3.05 Tg of the VIIRS-IM/Him inventory. 308 

The VIIRS-IM/Him derived DMB estimates for eastern China are thus 2 to 3 higher than GFED4.1s and 5 higher 309 

than GFAS; these represent larger differences than exist for the earlier summer burning season. This indicates that 310 

agricultural fires burning during the autumn fire season may be on average smaller and/or more isolated from other 311 

fires than they are in the summer burning season, and thus are even more likely to be missed by the MODIS AF 312 

detection product (Giglio et al., 2006) and/or the MODIS BA product (Giglio et al., 2013) than they are during other 313 

more intense burning periods. 314 

 315 

4.3 Agricultural Fire Emissions Intercomparison  316 

This section presents a comparison of the total annual agricultural fire emissions calculated using the VIIRS-IM/Him 317 

method with other inventories of Chinese agricultural fire emissions in the literature, and against emissions totals from 318 

other sectors to gain a better understanding of the relative importance of agricultural fire emissions. To compare with 319 
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other reported agricultural fire emission inventories for China, the DMB estimates produced herein were converted to 320 

fire emissions estimates using the emissions factors and methods described in Section 3.3; these results are summarised 321 

in Fig. 8 and Table 2. 322 

From Fig. 8, it is clear that wheat residue burning is the primary agricultural emission source, accounting for over 50% 323 

of the total emissions released each year (specifically 55-69% of PM2.5, 71-81% of BC, 66-77% of CO2, and 69-80% 324 

of CO). Fig. 8 also indicates a considerable reduction in emissions in 2015 compared to previous years, largely 325 

attributable to a reduction in the amount of wheat residue burnt. For example, total PM2.5 emissions from agricultural 326 

residue burning in eastern China for 2012-14 cover a relatively narrow range of 107 - 130 Gg (Fig. 8 & Table 2), but 327 

decrease to 67 ± 24 Gg in 2015 due to an almost halving of DMB (Fig. 7); similar patterns are observed for BC, CO2, 328 

and CO (Fig.8). 329 

From Table 2, it is apparent that emissions totals calculated using the VIIRS-IM/Him approach are consistently higher 330 

than those reported by GFAS by factor of 1.2-4.2 (species/year dependent). Similarly, VIIRS-IM/Him emissions totals 331 

for CO2 and PM2.5 are greater than those reported by GFED by a factor of 1.1-1.7. In both cases, this can be explained 332 

by the tendency of MODIS to miss activity from small fires compared to VIIRS. VIIRS-IM/Him emissions for CO 333 

and BC in 2015 are lower than those reported for GFED, which can be attributed to differences in the emissions factors 334 

used between the approaches. 335 

Emissions totals calculated using the VIIRS-IM/Him approach are smaller than those estimated by CYBA studies for 336 

the East China/North China Plain regions (Zhang et al., 2008; Huang et al., 2012; Qiu et al., 2016) by a factor of 2-5. 337 

It is possible that the much higher totals estimated from the CYBA based studies maybe due to the use of very high 338 

residue burning ratios (Bi in Eq. 1) for corn and rice in particular. This finding is discussed further in Section 5. 339 

Liu et al., (2015) estimated total emissions in the North China Plain region (a similar area to the study area used in 340 

this paper) using MODIS FRP-based calculations, and assumed a modified Gaussian function for the diurnal cycle to 341 

generate the daily FRE estimates from which emissions were then derived. These estimates are much closer in 342 

magnitude to the equivalent estimates calculated using the VIIRS-IM/Him method than those from the CYBA studies, 343 

however 2013 & 2014 estimates by Liu et al. are consistently lower (by a factor of 0.3-0.9); again, we attribute this 344 

difference to the fact that MODIS based methods capture less fire activity than our VIIRS-IM/Him approach. 345 

Interestingly, Liu et al. (2015) estimated far higher emission totals for 2012 compared to 2013 & 2014 and report 346 

greater total CO and BC emissions than we do. For example, annual CO2 emissions in 2012 (26,000 Gg) are > 2 their 347 

reported total emissions for 2013 (9800 Gg) and 2014 (13,000 Gg). However, Liu et al.’s processing approach did not 348 

provide any adjustment for the impact of the MODIS ‘bow-tie’ scan geometry effect, which leads to duplicated AF 349 

detections and this FRP towards the edge of the MODIS swath, and which was highlighted as significant issue for 350 

FRP quantification by Freeborn et al. (2008) and Zhang et al. (2017). This is a particular problem in MODIS data 351 

from the year 2012, where large amount of duplicated observations have been found towards edge of swath (Fig. S2). 352 

This problem has been addressed in GFAS using a scan-angle dependent weighing factor for the MODIS FRP data 353 
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(Kaiser et al., 2012), as described in Section 2.5, and GFAS’ CO2 emissions from 2012 are only 24% and 10% higher 354 

than from 2013 and 2014 respectively, a much more modest increase compared to that reported in Liu et al. (2015).  355 

Fig. 9 presents a comparison of agricultural emissions calculated using the VIIRS-IM/Him method with emissions 356 

from non-biomass burning sources produced by Li et al. (2014) for a sub-area of eastern China (32-36o N, 112-122o 357 

E) for the year 2013. We note that crop burning emissions are of relatively little significance when considered on an 358 

annual basis; for all four species (CO2, CO, PM2.5, BC), contributions from agricultural residue burning range between 359 

0.56% and 2.0% of total annual emissions, with the majority of emissions resulting from industry and residential 360 

sources. However, in June when agricultural burning and emissions are at a maximum, residue burning contributes 361 

8.1%, 18%, 22% and 20% of total monthly emissions for CO2, CO, PM2.5 and BC respectively, highlighting the strong 362 

seasonal impact agricultural burning can have on the emission of species that affect both climate and air quality. 363 

 364 

5. ANALYSIS AND DISCUSSION  365 

5.1 Importance of Wheat Residue Burning 366 

Findings in Section 4 (Fig. 5 & 8) indicate that a larger proportion of wheat residue than corn or rice residue is burnt, 367 

for several reasons. First, the yields of these three crop types in Eastern China are relatively similar - in 2015 for 368 

example, wheat yield was 10% lower than rice yield, and only 20% higher than corn (Table S1; NBSC, 2015). Second, 369 

the dry matter production-to-residue ratio (Ri in Eqn. 1) of wheat is not higher than that of rice or corn (Table S2; 370 

Wang and Zhang, 2008). Third, with the exception of black carbon, the emission factors for wheat residues are broadly 371 

similar to or smaller than the corresponding rice and corn emission factors. It is unknown why a greater fraction of 372 

wheat residue than corn and rice residue is burnt, however, it is possible that local management practices and/or 373 

stakeholder priorities differ depending upon the residue type and time of year at which crops are harvested, ultimately 374 

impacting the fate of these residues e.g. residues from certain crops maybe valuable as fertiliser (Huang et al., 2012), 375 

animal feed or for domestic/local energy production (Chen et al., 2017; Liu et al., 2008). 376 

 377 

5.2 Discovery of A Winter Burning Season 378 

As detailed in Section 4.1, small peaks in our dry matter burned (DMB) time-series are apparent in November-379 

December of each year (grey shaded area shown in Fig. 5). Since no mention of such a winter burning season was 380 

found in the literature (e.g. Chen et al., 2017; Huang et al., 2012; Zhang et al., 2008), these winter peaks were initially 381 

considered to be erroneous and likely caused by VIIRS AF false alarms that had failed to be excluded by the landcover 382 

and/or persistent thermal anomaly masking detailed in Zhang et al., (2017). Furthermore, according to the crop rotation 383 

map derived from the MIRCA2000 data (Fig. S1), there is no obvious harvesting of wheat, corn, or rice during the 384 

winter in eastern China. However, close examination of the original VIIRS data and the VIIRS-IM FRP product 385 

generated from it by Zhang et al., (2017) shows that most of the AF pixels detected in eastern China in winter are in 386 

fact located in or very close to areas classified as agricultural land (Fig. S3), and are not located close to industrial 387 
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areas of the type known to cause false AF detections (Zhang et al., 2017), nor do the AF detections appear multiple 388 

times in the same month at the same location, as would be expected if they were false alarms generated by non-fire 389 

features. It therefore seems highly probable that these AF detections are actually a consequence of true agricultural 390 

burning (Fig. S3-5).  391 

The most reasonable explanation for the winter AFs appears to be that some of the crop residues from the Sept-Oct 392 

(Autumn) harvest season were left idle for a few months and burned in the winter, rather than immediately. Local 393 

newspapers, online media and other information sources were consulted, and were found to support the existence of 394 

winter residue burning episodes. One example is a report by Jiangsu Province TV station in 5 December 2013, where 395 

a huge crop residue burning episode was reported in Hongze (Jiangsu Province), close to the location shown in Fig. 396 

S3. Stills from this TV report show flames, thick smoke and extremely poor visibility resulting from the crop residue 397 

burning, described in Chinese language subtitles (Fig. S4). Reports of similar episodes were found in different 398 

websites/newspapers from across much of eastern China (e.g. Wang and Zhang, 2016; Za, 2015; Zuo, 2015). 399 

Subsequent to this confirmation, an explanation as to why this activity may have occurred outside of the normal 400 

burning season was sought. According to Yun Xia, a local governor of the Environmental Department in Hefei 401 

(interview conducted by Anhui News; Zuo, 2015), the prohibition on agricultural burning started at beginning of 402 

September in that area, and continued up until the 20th November. During this period, the local government strongly 403 

enforced its polices aiming to restrict agricultural residue burning, and established almost continuous patrols to 404 

identify areas likely to host crop residue fires in order to prevent their ignition. However, without a widespread and 405 

cost-effective alternative way to dispose of their crop residues, local farmers may simply have stored the residue 406 

material and burned it soon after the end of the prohibition period, when the intensive patrol period had ceased. The 407 

end of the prohibition period coincides almost exactly with the time of the new winter burning season identified by 408 

our VIIRS-IM/Him dataset (Figs. 5- 7). 409 

The winter season is important for biomass burning in this area of China, accounting for between 19 and 36 % (year 410 

dependant) of the combined autumn and winter FRE total. Based on the crop rotation map (Fig S1), this fire activity 411 

was assigned to the burning of both corn and rice residues, with the contribution of each residue to total FRE (and 412 

thus DMB) almost equal (49 % and 51 %, average over all years). This split by residue type is very similar to that 413 

observed in the Autumn burning season (corn = 54 %, rice = 46 %, average over all years), despite the observed 414 

variation in the spatial distribution of fire between autumn and winter (Fig. 6). In general, winter burning appears to 415 

take place closer to provincial capitals than autumn burning does; the reason for this spatial shift in fire is discussed 416 

in Section 5.4. 417 

 418 

5.3 Disagreement Between Satellite Derived Emissions and Crop Yield Based Approaches 419 

In Section 4.3, it was noted that annual emissions totals calculated using crop yield based approaches (CYBAs) are 420 

greater than those calculated using the VIIRS-IM/Him method by a factor of 2-3, depending on species. We believe 421 

that this discrepancy relates to the ‘burning ratio’ (BR) used in CYBA to produce emissions estimates. The burning 422 
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ratio is the ratio of crop residue burned in the field compared to the total amount of residue produced by harvesting, 423 

and is a key parameter in bottom up CYBAs (see Eqn. 1, and Chen et al., 2017; Gao et al., 2002; Huang et al., 2012; 424 

Li et al., 2016). Streets et al. (2003) used a uniform BR of 17 % derived from 1970’s data, however more recent 425 

studies often make use of regionally varying fractions. We identified three sources of regionally varying burning ratios 426 

that are widely used in the CYBA literature: 427 

i) Wang and Zhang (2008), divided all provinces in China into six zones according to their geographical 428 

distribution. A questionnaire-based survey conducted amongst farmers within these regions was used to 429 

elucidate the level of burning activity, and using the responses it was determined that burning ratios for 430 

the different categories ranged from 11% to 33%. Outputs were applied and referenced in a series of fire 431 

emission studies (He et al., 2011, Qin and Xie 2011, Zhang et al., 2016).  432 

ii) Gao et al. (2002) derived a set of province-dependent burning ratios adopted from a large-scale 433 

investigation of crop residue use across different Chinese provinces. These ratios have been used and 434 

referenced in Huang et al. (2012), Yan et al. (2006), Zhang et al. (2008), and are shown in Fig. 10. 435 

iii) A derived value based on farmers’ income levels, based on the fact that Cao et al., (2006) found a positive 436 

linear correlation between the income of farmers and burning ratio (r = 0.81). This relationship has been 437 

applied within several fire emission studies (Sun et al., 2016, Zhao et al., 2015) and will be examined in 438 

Section 5.4. 439 

Using crop yield information and the DMB data derived from the VIIRS-IM/Him processing performed herein, it is 440 

straight forward to reverse the CYBA methodology to calculate the burning ratio for each crop type. This procedure 441 

can help confirm whether the outputs derived herein are comparable with those of the existing literature, as well as 442 

enabling the advantages offered by the remote sensing time series to be fully exploited. The burning ratios (𝐵𝑖𝑗) for 443 

each province i and crop type j are calculated from: 444 

𝐵𝑖𝑗 =
𝐷𝑀𝐵𝑖𝑗

𝑃𝑖𝑗𝑅𝑖𝐶
                                                                                                                                                 (10) 445 

Where DMBij is the estimated VIIRS DMB (g/m2) for province j and crop i; Pij is the yield of crop i for province j (kg); 446 

Ri is the dry matter production-to-residue ratio for crop i (unitless) and C is crop combustion completeness (proportion, 447 

0-1). The province level crop yield Pij is derived from annually published statistical reports, and are presented in Table 448 

S1. Ri and C are from Huang et al., (2012); and are presented in Table S2. 449 

The crop and province dependent burning ratios calculated from the VIIRS-IM/Him data are shown in Fig. 10, 450 

alongside the burning ratios from Gao et al. (2002). Fig. 10 indicates that there is considerable variation in burning 451 

ratios between individual provinces, and that VIIRS-IM/Him wheat burning ratios for are clearly much higher than 452 

rice/corn burning ratios. When averaged over the entire Eastern China study area, yearly mean burning ratios from 453 

our results for wheat are highest (7.8 - 12%), followed by corn (1.7 - 2.3%), then rice (0.9 - 2.0%). Equivalent mean 454 

burning ratios calculated using data from Gao et al. (2002) are 9.8 %, 5.9 % and 8.5 %, respectively. While VIIRS-455 

IM/Him wheat residue burning ratios are in reasonable agreement with those used in the various CYBA studies, our 456 
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rice and corn burning ratios are much lower; this appears to explain why total annual emissions from the VIIRS-457 

IM/Him approach are much lower than the total emissions obtained from the CYBA studies.  458 

Fig. 10 also indicates that burning ratios are not only influenced by crop type and province, but also vary considerably 459 

from year to year. For example, in 2012, satellite derived wheat burning ratios for the important agricultural provinces 460 

of Anhui (30%), Shandong (11%), Jiangsu (24%) and Henan (11%) are not dissimilar to corresponding ratios (20%, 461 

8%, 10%, 7% respectively) from Gao et al., (2002). However, during 2015, values derived in this study are much 462 

lower (Anhui = 6 %; Shandong = 4 %; Jiangsu = 4 %; Henan = 6 %). This interannual variation may be linked with 463 

changing local farming activity and prohibition policies (Chen et al., 2017, Li et al., 2016, Yang et al., 2008).  464 

We believe that the disagreement between the burning ratios derived here and those used in CYBA derived studies 465 

indicate that emissions inventories derived using traditional CYBAs may be overestimating agricultural burning 466 

emissions, for two main reasons: (1) there appears to be considerable uncertainty and subjectivity associated with the 467 

methods used to estimating burning ratios used in CYBA studies, and (2) many burning ratios used in CYBA studies 468 

are taken from relatively old (>5-10 years) sources of data. For example, Street et al. (2003) use data from 1970’s, 469 

while most recent researchers use burning ratios from Wang and Zhang (2008) and Gao et al. (2002) as listed above 470 

in this section.  471 

As shown by this analysis, burning ratios appear to be subject to high spatial and interannual variability due to rapidly 472 

changing agricultural policies and decision making that influences the fate of crop residues. As such, in order to ensure 473 

reliable emissions estimates, we suggest that future agricultural emission studies and inventories that are based upon 474 

CYBAs should endeavour to use burning ratios derived from data (1) with high granularity, and (2) that was collected 475 

in the corresponding inventory year.  476 

 477 

5.4 Influence of Social Factors on Agricultural Burning 478 

As highlighted in Section 5.2, some studies assume a positive relationship between burning ratio and the mean local 479 

income of farmers (Cao et al., 2006; Qin and Xie, 2011). The explanation for this is that higher income areas have 480 

better access to electricity and other energy sources, and thus have less need to utilise crop residues for heating and 481 

cooking – leading to higher ratios of open burning at these locations. However, this is not what we observe in from 482 

analyses carried out for this study. In Fig. 11a, minimal correlation was found between GDP and burning ratio, and 483 

there is some suggestion of an inverse relationship between these variables (y=-89x+9542, r2=0.13). When directly 484 

comparing GDP with DMB,  as Fig. 12 demonstrates, the provinces with the highest average annual DMB per m2 485 

(Anhui and Henan; 46 and 27 g.m-2.yr-1 respectively) have lower GDP values (US$ 5,580 and 5,335 per capita) than 486 

provinces with lower annual DMB densities (e.g. Shandong and Jiangsu, with 15 and 21 g.m-2.yr-1 respectively) but 487 

high GDP per capita (USD$ 9,882 and 13,311 respectively). In fact, across the eastern China study area, our annual 488 

total DMB metric was found to be somewhat inversely correlated with GDP per capita (r2 = 0.33; Fig. 11b).  489 



16 

 

We theorise that the observed inverse correlation between GDP and DMB results from the fact that alternative residue 490 

disposal methods to biomass burning have a relatively high cost, and can only be afforded by wealthier 491 

farmers/provinces. For example, the local government of Jiangsu Province (a relatively wealthy province [$ 13,311 492 

per capita] with only moderate DMB [21 g.m-2.yr-1]) released a regulation in 2009 stating that by the end of 2012, over 493 

35% of crop residues should been incorporated into the soil after mechanised harvesting. The regulation also indicated 494 

that the local government should include a budget for improving the efficiency of agricultural machinery and subsidise 495 

farmers who follow this regulation. Furthermore, alternative uses for crop residues are often expensive, and are likely 496 

only a viable option in relatively wealthy areas. For example, research on residue burning for power generation shows 497 

the government needs to pay at least 20% of the total cost of the operation to keep the power plants running, partly 498 

because of the high costs associated with residue collection and transportation from the fields (Li and Hu, 2009). 499 

In addition to influencing the quantity of material burned and when it is burned, societal factors also appear influence 500 

the spatial pattern of burning within provinces, and at more granular levels such as at the 0.1o grid cell level. The work 501 

presented in Section 5.1 suggests that the winter burning season (Nov-Dec) is caused by delayed burning of residues 502 

left over from the autumn harvest season, because of prohibition policies related to burning being more robustly 503 

enforced earlier in the season. Fig. 6 also showed that the spatial distribution of FRE areal density during winter is 504 

different from the normal autumn burning season that occurs in Sep-Oct. Generally, the areas of strongest burning are 505 

further from the provincial capital cities (marked by the green stars in Fig. 6) during autumn. For example, fires in 506 

Anhui Province are mainly distributed in the north during autumn, whilst fire locations change to the south (closer to 507 

the capital city of Hefei) during the delayed winter burns. A similar example can also be seen in Hubei Province, 508 

where fires shift from west to east from the autumn to winter burning seasons. 509 

To examine this in a more quantitative manner, we calculated the distance from each grid cell shown in Fig. 6 to their 510 

provincial capitals. Fig. 13 shows the normalised frequency distribution of the distance from the capital to the top 10% 511 

of FRE releasing grid cells in each province, using data from the four burning seasons during the 2012-2015 period. 512 

The first and third distance quartiles during the autumn season are 109 km and 214 km respectively, but for the ‘lagged’ 513 

winter burning season, the distribution shifts to far shorter distances (first and third quartiles of 70 km and 153 km 514 

respectively). Similarly, the mean distance from provincial capitals also decreased from 165 km in autumn to 124 km 515 

in winter. A Kolmogorov–Smirnov (K-S) test was performed to evaluate the difference between the distributions of 516 

distance data for the autumn and winter burning seasons, and the resulting high K-S statistic (0.30, p < 0.001) indicates 517 

that the distribution of distances during the winter months is substantially different to the autumn distance distribution. 518 

Similar results were found when we applied the K-S test to each calendar year of data separately (not shown). One 519 

possible explanation for this observed difference is that the geographical shift might also be linked with the policies 520 

aimed at prohibiting burning, since areas close to capital cities are likely to have more resources for enforcing the 521 

prohibition compared to areas more distant from the major urban populations. 522 

 523 

 524 
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6. SUMMARY AND CONCLUSION 525 

We have developed a new state-of-the-art agricultural burning emissions inventory (‘VIIRS-IM/Him’) for eastern 526 

China by combining fire radiative power (FRP) observations from the VIIRS and Himawari-8 sensors for the 2012-527 

2015 period. While several other studies have also used satellite EO data to develop such inventories, they have all 528 

relied on MODIS fire products for their source observations. Such inventories include the global GFED and GFAS 529 

inventories, several Chinese regional studies (e.g. Huang et al., 2012, Liu et al., 2015). MODIS fire products are 530 

known to show very high omission rates in environments dominated by small agricultural fires (Randerson et al., 2012; 531 

Zhang et al., 2017, 2018), but the ‘small fire optimised’ VIIRS-IM product of Zhang et al. (2017) used in this study 532 

detects far more of the fire activity across eastern China and on average show FRP totals around 4x higher than those 533 

of the MODIS AF products. To convert the twice-daily VIIRS-IM FRP product information to daily time-integrated 534 

FRE, we have used new diurnal fire cycle data from Himawari-8, a geostationary satellite positioned over east Asia 535 

that can best capture the specific diurnal fire variability of the agricultural burning regions.  536 

Our final VIIRS/Him agricultural fire emissions inventory reports dry matter burned (DMB) totals around 2-5× higher 537 

than is reported by GFAS and GFED 4.1s in eastern China for corresponding time periods. Use of a crop rotation map 538 

allowed our VIIRS-IM/Him fire and emissions outputs to be disaggregated by individual crop types, and we found 539 

wheat residue burning to be the primary agricultural emission source, accounting for over 50% of the total emissions 540 

each year for all investigated smoke constituents (CO2, CO, PM2.5 and black carbon). A strong seasonal variation in 541 

fire activity and emissions is seen, with annual peak activity occurring in summer (May-June) as a result of wheat 542 

residue burning, and a smaller secondary activity peak occurring in autumn (Sept-Oct) as a result of corn and rice 543 

residue burning. Furthermore, we discovered a new winter (Nov-Dec) agricultural residue burning season. As no crop 544 

harvesting occurs during winter, we suspect that this fire activity results from farmers burning previously stored 545 

residues from the autumn harvest in winter, after autumn residue burning prohibitions have been lifted. This theory is 546 

supported by our observation of statistically distinct spatial burning patterns in the autumn and winter seasons; the 547 

majority of autumn burning occurs at a greater distance from provincial capitals than the winter burning does. This 548 

may reflect stronger enforcement of autumn residue burning prohibition measures in close proximity to major urban 549 

population centres than in rural locations. Farmers in areas with stronger prohibition enforcement (typically closer to 550 

urban areas) then burn their agricultural residue in winter. 551 

Detailed comparison to existing inventories showed that our VIIRS-IM/Him annual emissions totals are 1.2-4.7 552 

greater than those reported by GFAS, and 0.5-1.7x those reported by GFED4.1s, with some inter-species variability 553 

due to the use of different emissions factors between the inventories. By contrast, the VIIRS-IM/Him inventory shows 554 

emissions totals that are on average lower than those from emission inventories derived using crop yield based 555 

approaches (CYBA) by a factor of 2-5x. This discrepancy is believed to be primarily due to many CYBAs using 556 

outdated and/or inappropriate burning ratios, that consequently leads to CYBAs overestimating the amount of crop 557 

residue DMB annually. Back calculated burning ratios from the VIIRS-IM/Him data suggest that burning ratios for 558 

rice and corn are much lower than the CYBA literature suggests (approx. 0.9-2.3 % rather than 11-33 %). We also 559 

noted considerable inter-provincial and interannual variation in these back calculated burning ratios, for example, 560 
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wheat burning ratios significantly decrease over our four-year study period. This strongly suggests that high spatial 561 

resolution, up-to-date burning ratios should always be used in CYBA for agricultural burning fire emission estimation. 562 

Furthermore, several CYBA approaches (e.g. Sun et al., 2016, Zhao et al., 2015) have derived burning ratios from 563 

provincial GDP data, assuming a positive relationship between these variables (Cao et al., 2006). However, we found 564 

evidence of an opposite (i.e. negative) relationship between provincial GDP and the amount of DMB in agricultural 565 

fires, hypothesised to be due to the higher cost of disposal of crop residues by non-biomass burning methods. This 566 

suggests that great care needs to be taken when deriving burning ratios for use in future agricultural emissions 567 

inventories based upon CYBA methods, and that satellite remote sensing approaches based on EO datasets that 568 

adequately detect the presence of agricultural fires are a far better approach to fire emissions estimation in such 569 

environments. 570 

 571 
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Table 1: Emission Factors for agricultural residue burning used in this study. Wheat and rice emission factors were 709 

derived from field measurements conducted in eastern China and reported by Zhang et al. (2015), while the corn 710 

emission factors are from Andreae and Merlet (2001), the same as those used in GFAS (Kaiser et al., 2012). *PM2.5 711 

= particulate matter with diameter < 2.5μm 712 

 713 
 Emissions Factor (g.kg-1) 

 Wheat Corn Rice 

CO2 1739±19 1308±14 1761±30 

CO 60±12 92±18 47±19 

PM2.5* 6.1±1.3 8.3±1.8 9.6±4.3 

Black Carbon 0.70±0.09 0.42±0.05 0.56±0.04 

 714 

Table 2: Total species-specific fire emissions calculated in this study for agricultural burning in eastern China, and 715 

comparison to those contained within other fire emissions inventories and calculated in previous studies. 716 

 717 
Reference Region 

Year Method 
Emissions (Gg.yr-1) 

  CO2 CO PM2.5 BC 

This study Eastern China 2012 Satellite   31066 ± 1960   1035±327 124±43  11±1.8 

  2013    31107 ± 1748   1025±320 130±44  11±1.7 

  2014    27069 ± 1421     904±279 107±36  10±1.5 

  2015    16932 ± 1044     562±177   70±24    6±0.95 

GFAS  Eastern China 2012 Satellite     9219     649   58    3.0 

Kaiser et al., 2012  2013      8173     576   52    2.6 

  2014      8760     617   55    2.8 

  2015      6818     480   43    2.2 

GFED4.1s  Eastern China 2012 Satellite   18629   1199   74    8.8 

Van der Werf et al., 2017  2013    24034   1547   95  11 

  2014    18241   1173   72    8.6 

  2015    15892   1023   63    7.5 

Liu et al., 2015 NCP1 2012 Satellite   26000   1700 102  13 

  2013      9800     630   39    5 

  2014    13000     820   50    6 

Zhang et al., 2008 Eastern China3 2004 CYBA2   67703   5624   -   - 

Huang et al., 2012 Eastern China3 2006 CYBA   41374   2668 164  20 

Qiu et al., 2016 Eastern China 2013 CYBA   72071   2549 445  42 

Li et al., 2016 NCP 2012 CYBA   68675   5983 452  23 

Sun et al., 2016 China 2013 CYBA 192540       -   -   - 

Street et al., 2003 China 2000 CYBA 160000 10000   -  70 

Yan et al., 2006 China 2000 CYBA 184000 11000 470  80 
1 NCP refers to the North China Plain, which has a geographic extent similar to that of this study (32-41oN, 113-121oE).  718 
2 CYBA refers to Crop Yield Based Approaches, see Section 2.6.1 719 
3 Sum of provinces/cities shown in Fig.1 of this study. 720 
 721 
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 722 
Figure 1: The spatial extent of the study area (111-123° E, 27-40° N).  The agricultural land ratio taken from the 723 

GlobeLand30 land cover product (Chen et al, 2015) was re-gridded to 0.01 degree spatial resolution, and is overlain 724 

with the main provinces, mega-cities and some important provincial capital cities in eastern China. The basic layer of 725 

country/province borders within this map was created using Python Basemap library. 726 
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 727 
Figure 2: Example of the spatial distribution of total gridded FRP (MW; calculated per 0.1o grid cell) calculated from  728 

near simultaneous VIIRS-IM and MODIS Aqua data collected over  the eastern China study area of Fig. 1 on June 729 

12th, 2012. The VIIRS-IM data product clearly quantifies a higher proportion of the FRP from fires burning in the 730 

region at the time of the satellite overpass than MODIS Aqua does. The basic layer of country/province borders within 731 

this map was created using Python Basemap library. 732 

 733 

  734 
Figure 3: Time series of spatially summed FRP for eastern China, as retrieved from geostationary Himawari, and 735 

polar-orbiting VIIRS-IM and MODIS observations made on June 11th, 2015. VIIRS and MODIS Aqua provide 736 

typically two observations per day, and sometimes three when the swath overlaps from different orbits occur. 737 

Himawari provides 144 observations per day. 738 

 739 
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 740 
Figure 4: Time series of hourly normalised fire radiative power derived from Himawari-8 FRP data generated using 741 

the algorithm of Xu et al. (2017) over eastern China at 0.1 degree for June 2015 (the ‘Summer’ diurnal fire cycle). 742 

The blue curve shows the best fit of the Gaussian distribution, with orange error bar show standard deviation. Grey 743 

shading shows the two daily VIIRS overpass periods. 744 

 745 
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 746 
Figure 5: Time-series of mean daily FRE areal density (kJ m-2, calculated per 0.1o grid cell) from 2012-2015 for the 747 

entire study area disaggregated by crop residue type (wheat, corn and rice) according to the method described in 748 

Section 2.4. Grey shaded areas highlighted the usual newly discovered winter burning season from mid-November to 749 

December when no crop harvesting occurs but where fires are clearly occurring. This period of agricultural burning 750 

is discussed further in Section 5.1 751 
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Figure 6: Spatial distribution of FRE areal density (MJ.m-2, 0.1 deg grid cells) for agricultural fires in eastern China from 2012 to 2015 (top to bottom rows) split 

by fire season: summer (May-June, top row), autumn (Sep-Oct, middle row) and winter (Nov-Dec, bottom row). Mean regional FRE for each season is indicated 
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in white text, and the capital city location of each province is shown as a white star on each map. The basic layer of country/province borders within this map was 

created using Python Cartopy library.
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Figure 7: Monthly (2012-2015) time-series of total dry matter burned (DMB) retrieved using the VIIRS-IM/Him FRP 

product developed in this study (with standard deviation shown as black error bars), along with comparable GFAS 

and GFED4.1s DMB totals. Grey shaded areas highlighted the winter burning season from mid-November to 

December (Section 5.1). 

 

  
Figure 8:  Annual total PM2.5, BC, CO2, and CO emissions for eastern China for the three main crop residues burning 

types (wheat, corn, rice) calculated for 2012-2015 using the VIIRS-IM/Him based emissions inventory developed 

herein. Coloured error bars indicate 1 standard deviation. 
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Figure 9:  Comparison of monthly CO2, CO, PM2.5 and BC emissions from agricultural fires with those from other 

emission sources (residential, industry, power, transport, data source: Li et al., 2015) in the intensive burning area (32-

36o N, 112-122o E) of eastern China in the year 2013.  
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Figure 10: Temporal and spatial variability of province-specific percentages of crop residues burned in the fields (burning ratio metrics) of eastern China. Data 

are calculated using crop yield estimates from National Bureau of Statistics of China and the dry matter burned totals derived herein using our VIIRS-IM/Him 

DMB datasets from 2012-2015, and compared to the temporally invariant estimates provided by Gao et al., (2002, final column). The basic layer of country/province 

borders within this map was created using Python Basemap library.
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Figure 11: Direct comparisons of mean GDP per capita with (a) burning ratio for wheat from 2012, (b) province-

specific yearly dry matter burned (DMB). The best fit linear relationships are shown, along with its equation, and the 

grey shaded area represents the 95% confidence limit on the relationship.  

 

 

Figure 12: Spatial distribution of province-specific: (a) mean annual dry matter burned as calculated using the VIIRS-

IM/Him approach developed herein, (b) population (Data source: Fu et al., 2014a), (c) agricultural land area (Data 

source: GlobeLand30, http://www.globallandcover.com/) and (d) mean GDP per capita (Data source: Fu et al., 2014b).   

The basic layer of country/province borders within this map was created using Python Basemap library. 

http://www.globallandcover.com/
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Figure 13: Normalised frequency distribution of distance from province capital of the top 10% of high FRE VIIRS-

IM/Him product 0.1 degree grid cells during the three burning seasons: Summer - May to June (top, blue), Autumn – 

September to October (middle, green), and Winter - November to December (bottom, orange). A clear shift towards 

the origin can be observed in the Nov-Dec period compared with Sep-Oct. 


