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Abstract  16 

We provide major updates to the ‘top down’ Fire Radiative Energy Emissions’ (FREM) approach 17 

to biomass burning emissions calculations, bypassing the estimation of fuel consumption that is 18 

a major source of uncertainty in widely used ‘bottom up’ approaches.  The FREM approach links 19 

satellite observations of fire radiative power (FRP) to emission rates of total particulate matter 20 

(TPM) via spatially varying smoke emissions coefficients (g.MJ-1) – each derived from matchups 21 
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of FRP and smoke plume aerosol optical depth (AOD). In the original FREMv1 approach, FRP 22 

data came from the geostationary Meteosat satellite and AOD data from the 10 km spatial 23 

resolution MODIS MOD04 aerosol product. However, the latter often performs quite poorly close 24 

to biomass burning sources due to its large 10 km pixels, bias at high MODIS view zenith angles, 25 

and saturation and/or removal of areas of high AOD - limitations introducing bias and uncertainty 26 

into the final FREM-derived smoke emissions estimates. We address each of these issues 27 

through a series of significant methodological and input data improvements, including exploitation 28 

of the 1 km MODIS MAIAC AOD product that performs far better close to fire sources. We use 29 

our FREMv2 methodology to generate a new pan-African fire emissions inventory for TPM and 30 

the carbonaceous gases CO2, CO and CH4, and our annual mean TPM emissions are within 11% 31 

of those of the MODIS-based FEER top-down approach, but significantly higher than those of 32 

GFASv1.2 and GFEDv4.1s (by 114% and 69% respectively) - agreeing with independent 33 

assessments that aerosol emissions of GFASv1.2 require upscaling by a factor of 2 to 3.4 to 34 

deliver matching magnitudes between modelled and observed AODs. From our carbonaceous 35 

emissions totals we map dry matter consumed (DMC) across Africa, and dividing this by the 36 

FireCCISFD11 20 m burned area product we provide one of the first data-driven pan-African maps 37 

of fuel consumption per unit area (kg.m-2) which in many areas is higher than in GFEDv4.1s. Our 38 

estimates represent the highest spatio-temporal resolution biomass burning emissions data yet 39 

available over Africa, and strongly advance the aim of a pan-tropical and mid-latitude inventory 40 

based on FRP from the global geostationary satellite network (Meteosat, Meteosat IOD, GOES 41 

and Himawari). 42 

 43 

 44 
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1. INTRODUCTION  45 

Biomass burning is amongst the largest contributors of gaseous and particulate emissions to the 46 

atmosphere, generating a significant fraction of the global atmospheric load of black carbon (BC), 47 

particulate matter (PM) and carbon monoxide (CO) (Andreae and Merlet, 2001; Forster et al., 48 

2007; Reddington et al., 2016). Emissions impact regional and global air quality, weather and 49 

climate variability (Crutzen and Andreae, 1990; Randerson et al., 2006; Westerling et al., 2006; 50 

Schultz et al., 2008; Akagi et al., 2011).  The highly dynamic spatio-temporal nature of landscape 51 

fires makes their emissions challenging to quantify and satellite Earth Observation (EO) offers the 52 

only means to do so over large spatial scales, especially where near real-time information is 53 

required.  However, despite advancements in the quality of EO data and in fire emission inventory 54 

methodologies (Seiler and Crutzen, 1980; Flannigan and Vonder Haar, 1986; Pereira et al., 1999; 55 

Justice et al., 2002; Wooster et al., 2005; Van Der Werf et al., 2006; Ichoku et al., 2008; Vermote 56 

et al., 2009; Lehsten et al., 2009; Wiedinmyer et al., 2011; Kaiser et al., 2012; Ichoku and Ellison, 57 

2014; Darmenov and da Silva, 2015; Mota and Wooster, 2018), large uncertainties and 58 

discrepancies remain between the different inventories.  59 

Most fire emission inventories use a ‘bottom-up’ approach, in which estimates of burned biomass 60 

are generated from EO-derived metrics of burned area (BA), active fire counts and/or fire radiative 61 

power (FRP). These burned biomass estimates are multiplied by biome-specific emission factors 62 

(EFs) to relate each kilogram of burned dry matter to the amount of a trace gas or aerosol released 63 

into the atmosphere. EFs are mostly derived from small scale laboratory or ground-based field 64 

measurements (Andreae and Merlet, 2001; Akagi et al., 2011; Andreae, 2019), and more rarely 65 

through airborne sampling of larger plumes (Abel et al., 2003; Lavrov et al., 2006; Quennehen et 66 

al., 2012).  ‘Bottom up’ emissions inventories include GFED (Van Der Werf et al., 2006, 2010, 67 

2017), GFAS (Kaiser et al., 2012), FLAMBE (Reid et al., 2009) and FINN (Wiedinmyer et al., 68 

2011). Biases and uncertainties present in these landscape fire inventories stem primarily from:  69 
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i) Limitations of the original satellite observations and the fire detection and 70 

characterisation algorithms applied to them to generate the EO-derived fire 71 

metrics. Compromises are generally made between spatial and temporal 72 

resolution, and algorithm errors of omission and commission impact the 73 

precision and accuracy of the EO-derived fire measures (Boschetti et al., 74 

2004; Freeborn et al., 2009; Randerson et al., 2012).  75 

ii) Assumptions associated with estimating the fuel consumption per unit area 76 

(kg.m-2) or any alternative scalar required to turn the EO-derived metric into 77 

an estimate of burned dry matter (Kasischke and Penner, 2004; Reid et al., 78 

2009; Wooster et al., 2011; Kaiser et al., 2012)  79 

iii) Limitations in the EFs used to convert between burned dry matter and the 80 

final emissions of aerosols and trace gases (Van Leeuwen and Van Der Werf, 81 

2011). 82 

 83 

Addressing (i) above, advancements continue to be made to the EO-derived fire metrics extracted 84 

from data collected by polar-orbiting sensors such as MODIS and VIIRS (e.g. Schroeder et al., 85 

2014; Giglio et al., 2016; Zhang et al., 2017), and by geostationary sensors such as Meteosat 86 

SEVIRI and Himawari-8 AHI (Wooster et al., 2015) and in the case of (iii), more detailed EFs are 87 

regularly being proposed (e.g. Akagi et al., 2011; Huijnen et al., 2016; Andreae, 2019). However, 88 

arguably less research has focused on (ii), namely, how to improve estimates of burned dry matter 89 

derived from burned area, active fire (AF) detection or FRP data products. Despite this being 90 

considered to be the step introducing probably the greatest uncertainties in ‘bottom-up’ 91 

approaches (Reid et al., 2009; Ichoku and Ellison, 2014; Mota and Wooster, 2018). Partly for this 92 

reason, fully ‘top-down’ methodologies such as those of Ichoku and Ellison (2014) and Mota and 93 

Wooster (2018) have taken to deriving landscape fire emissions estimates directly from EO-94 
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derived FRP measures, thereby bypassing the fuel consumption estimation step altogether and 95 

reducing the number of assumptions required during the fire emissions calculation. In these 96 

approaches, a biome-dependent scalar (a smoke emission coefficient; 𝐶𝑒  in g.MJ-1) captures the 97 

relationship between the FRP of fires and their associated total particulate matter (TPM) 98 

emissions. These coefficients are derived from a series of matchup fires where FRP data and 99 

satellite aerosol optical depth (AOD) observations are available in the biome of interest. Once this 100 

scalar is determined, the need to calculate fuel consumption is removed when deriving further 101 

smoke emissions estimates from the FRP data of observed fires. Whilst these ‘top-down’ 102 

approaches successfully bypass the fuel consumption step, in both the Fire Energetics and 103 

Emissions Research (FEER; Ichoku and Ellison, 2014) and Fire Radiative Energy Emissions 104 

(FREM; Mota and Wooster, 2018) approach, the coarse 10 km spatial resolution of the MODIS 105 

AOD product used to derive in-plume TPM, and performance issues related to this AOD product 106 

in thick-smoke affected environments, can introduce significant problems when deriving the 107 

smoke emission coefficients. To address this problem, we here present a series of improvements 108 

to the FREMv1 methodology of Mota and Wooster (2018) and use this (FREMv2) method to 109 

produce a new Meteosat SEVIRI FRE-based fire emissions inventory for the whole of Africa. A 110 

series of methodological evolutions are presented, key of which is the exploitation of a far higher 111 

spatial resolution (1 km) MODIS AOD product (Lyapustin et al., 2018) that offers improved 112 

performance in heavily smoke impacted environments.  113 

 114 
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2. FIRE EMISSION INVENTORY METHODOLOGIES   115 

2.1 ‘Bottom-up’ Total Fuel Consumption (𝐹𝑐) Based Methodologies  116 

Most widely used ‘bottom-up’ fire emission inventories currently take their emission factors (EFs 117 

in g.kg-1) from those collated by Andreae and Merlet (2001), although recent updates are reported 118 

in Andreae (2019). Therefore, inter-inventory variations in both total fire emissions magnitude and 119 

spatio-temporal distribution originate primarily not from the EFs used, but in the estimation of total 120 

fuel consumption ( 𝐹𝑐 ), often called dry matter consumed (DMC). The uncertainty in DMC 121 

estimates primary stems from limitations (i) and (ii) introduced in Section 1. These are 122 

performance issues in the EO data products (typically BA or FRP) used to characterise the 123 

biomass burning, and the assumptions made when estimating DMC from these (e.g. Wooster et 124 

al., 2011; Knorr et al., 2012; Larkin et al., 2014).  125 

In the Burnt Area (BA) approach to estimating total fuel consumption (Seiler and Crutzen, 1980), 126 

DMC is estimated via multiplication of BA [m2], fuel load [FL; kg.m-2] and combustion 127 

completeness [CC; unitless]. BA measures are typically taken from the 500 m spatial resolution 128 

MODIS MCD64A1 product (Giglio et al., 2018), with the parameters of fuel load and combustion 129 

completeness either taken from literature values (e.g. Reid et al., 2005) or the outputs from 130 

vegetation growth models (GFED; van der Werf et al., 2006). In addition to uncertainties in the 131 

fuel load and combustion completeness parameters  (Reid et al., 2009; Vermote et al., 2009; Van 132 

Leeuwen and Van Der Werf, 2011), many small fires appear to remain unmapped in MCD64A1 133 

(Tsela et al., 2014; Hawbaker et al., 2017; Roteta et al., 2019). A widely used BA-based fire 134 

emissions inventory is the Global Fire Emissions Database (GFED; Van Der Werf et al., 2006), 135 

providing emissions at 0.25˚ grid cell resolution. The latest version (GFEDv4.1s; Van Der Werf et 136 

al., 2017) uses MODIS active fire (AF) detections to ‘boost’ the BA values in an attempt to 137 

compensate for small fires remaining undetected by MCD64A1 (Randerson et al., 2012). Whilst 138 
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MCD64A1 BA totals clearly need to be raised in some way, this ‘boosting’ process can introduce 139 

biases in BA in regions that are, for example, dominated by interspersed agricultural and urban 140 

areas (Zhang et al., 2018).  141 

In the FRP-based approach to estimating dry matter consumed, FRP observations are temporally 142 

integrated to estimate Fire Radiative Energy (FRE), which in small-scale fires has been shown to 143 

directly relate to DMC (Wooster et al., 2005; Freeborn et al., 2008; Ichoku et al., 2008). A 144 

conversion factor (g.MJ-1), typically derived from these small-scale fires (e.g. that of Wooster et 145 

al. (2005)) is then used to convert satellite-based FRE measures into DMC estimates (Roberts et 146 

al., 2005, 2011). This removes the need for assumptions about the poorly constrained parameters 147 

of fuel load and combustion completeness that are required by methods using BA data – but relies 148 

on the fact that the conversion factor derived from small scale fire experiments remains valid at 149 

the scale of landscape fires observed from satellites. This may be an unrealistic assumption, 150 

particularly in certain landscapes (Mota and Wooster, 2018). For example, tree canopy cover may 151 

intercept a significant percentage of the fire-emitted FRP in more forested regions, leading to 152 

lower spaceborne FRP measurements (Freeborn et al., 2009; Mota and Wooster, 2018; Roberts 153 

et al., 2018a). A positive benefit of satellite AF products are that they are sensitive to small fires 154 

covering as little as 10-4 of the pixel area (Roberts et al., 2005), hence the contribution of relatively 155 

small fires is typically included in FRP-based fire products, provided they are burning at the time 156 

of the satellite observation. This compares to most satellite BA products, where generally > 20% 157 

of the pixel area must be fire affected for a burn scar to be reliably detectable (Giglio et al., 2006, 158 

2009), but with the advantage that the burned area remains detectable and measurable for some 159 

time after the fire has ceased.  160 

For providing near-real time fire emissions estimates, BA-based approaches are, in any case, 161 

usually inappropriate since the required burned area, FL and CC datasets are typically only 162 
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available with significant time-lag. This is one further reason why FRP-based approaches are 163 

becoming more common, since satellite FRP data of a fire are typically available within minutes 164 

to hours depending on the observation system.  A widely used FRP-based fire emissions 165 

inventory is the Global Fire Assimilation System (GFAS; Kaiser et al., 2012). GFAS provides daily 166 

data at 0.1˚ globally as part of the Copernicus Atmospheric Monitoring Service (CAMS: 167 

https://atmosphere.copernicus.eu/). In GFAS, weighted mean FRP values from MODIS 168 

MOD/MYD14 products (Justice et al., 2002; Giglio et al., 2003) are used to derive daily FRE 169 

estimates (assuming either a flat FRP emissions profile or a standard fire diurnal cycle), which 170 

are then multiplied by biome-specific conversion factors (in kg.MJ-1) relating FRE to DMC (Kaiser 171 

et al., 2012). These GFAS-specific conversion factors are based on prior comparisons between 172 

the MODIS-based GFASv1.0 FRE estimates and the BA-derived DMC totals of GFEDv3.1 (Van 173 

Der Werf et al., 2006, 2010), which themselves come from an adaption of the original Seiler and 174 

Crutzen (1980) approach (Heil et al., 2010). In this way, GFAS fire emissions estimates are not 175 

only influenced by GFEDs biases and uncertainties in fuel load, combustion completeness and 176 

unmapped small burned areas (Reid et al., 2009; Vermote et al., 2009), but are also directly 177 

dependent on the GFED DMC estimates themselves (Kaiser et al., 2012). The operational GFAS 178 

also uses only polar-orbiting satellite FRP data, currently that from MODIS, somewhat limiting its 179 

temporal resolution and the accuracy of any FRP-to-FRE conversion.  180 

2.2 FRP Datasets for Emissions Estimation 181 

The FRP measures derived from the polar-orbiting (MODIS) sensors used within GFAS and 182 

elsewhere fail to capture the full diurnal cycle of a fire, and must typically be interpolated between 183 

observations or used to scale an assumed diurnal cycle in order to estimate FRE (Freeborn et al., 184 

2009; Vermote et al., 2009). It is however possible to use the very high temporal resolution FRP 185 

data available from geostationary satellites to provide almost continuous FRP observations, and 186 

https://atmosphere.copernicus.eu/
https://atmosphere.copernicus.eu/


9 

 

these can then be accurately and easily integrated to calculate FRE without any assumptions on 187 

the shape of the fire diurnal cycle (e.g. Wooster et al., 2015). The main limitation of geostationary 188 

FRP datasets is that the minimum FRP detection limit, below which actively burning fires remain 189 

undetected, is higher than for most polar-orbiting sensors due to the larger geostationary pixel 190 

areas (Roberts et al., 2005, 2015). However, the detectable AFs in geostationary products still 191 

remain significantly smaller in terms of pixel area coverage (e.g. down to perhaps 0.01% of the 192 

pixel) than the minimum burned area detectable in the MODIS BA products. Another 193 

disadvantage of geostationary active fire data is that geostationary pixel areas grow markedly at 194 

locations very far from nadir (> 40˚ view zenith angle), so high latitude regions are generally less 195 

well suited to geostationary FRP analysis. A recent evaluation of geostationary active fire data 196 

was carried out by Hall et al. (2019) who compared AF detections within the Meteosat SEVIRI 197 

FRP-PIXEL product used herein (see Section 4) to those identified in 30 m spatial resolution 198 

Landsat-8 Operational Land Imager (OLI) data (Hall et al., 2019). Results for the AF error of 199 

commission showed this to be 8% for the SEVIRI product compared to OLI, a false alarm rate 200 

very similar to that of the widely used MODIS AF products (Giglio et al., 2013; Schroeder et al., 201 

2014). AF errors of omission for the SEVIRI product were however 98% compared to OLI, but the 202 

30 m OLI pixel size enables fires covering just a few square meters to be detected, compared to 203 

the roughly one thousand square meters required for detection with SEVIRI assuming an AF 204 

detection limit of 0.01% of the pixel area. Thus, a large number of very small fires can be detected 205 

by OLI that remain essentially impossible to detect by SEVIRI. Comparison between the SEVIRI 206 

FRP-PIXEL AF product and 1 km MODIS AF data have been commonly performed (Roberts and 207 

Wooster, 2008; Roberts et al., 2015) and the SEVIRI AF error of omission rate in such 208 

comparisons is far lower than when OLI is used as the reference dataset (Roberts et al., 2015). 209 

Indeed, Wooster et al. (2015) indicate that over the lifetimes of most African fires, active fires 210 

detected by MODIS  211 
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 212 

become detectable by SEVIRI at some point in their diurnal cycle.  The Hall et al. (2019) study 213 

also highlights that, though at any given time the higher spatial resolution polar orbiter-based FRP 214 

products are likely to detect more fires than geostationary based products due to their ability to 215 

detect lower FRP fires, the increased temporal resolution provided from geostationary orbit 216 

typically results in far more AF detections overall, during a 24 hour period. 217 

2.3 Top-down FRP-based Methodologies  218 

The FREMv1 approach to fire emissions estimation (Mota and Wooster, 2018) is an FRP-based 219 

calculation, classed as a ‘top-down’ method since it only uses satellite observations (specifically 220 

geostationary FRP and polar orbiting-derived Aerosol Optical Depth [AOD] data). The method 221 

avoids problems inherent in the intermediate DMC estimation step of the ‘bottom-up’ approaches 222 

(Section 2.1), though fuel consumption in terms of total DMC or its combustion rate can still be 223 

calculated as a final output (see Mota and Wooster, 2018). Whilst the GFAS system (Kaiser et 224 

al., 2012) is also based on FRP data, it is not fully top down as it relies on conversion coefficients 225 

between FRP and DMC that come from BA-based approaches which themselves rely on model-226 

based fuel load and combustion completeness variables (Van Der Werf et al., 2006, 2010). The 227 

FREM approach is somewhat similar to the fire emissions estimation approach introduced by 228 

Ichoku and Kaufman (2005) in that it directly links FRP data to emissions of total particulate 229 

matter, albeit FREM uses geostationary rather than polar-orbiting FRP data for the reasons 230 

discussed in Section 2.2. Ichoku and Kaufman (2005) and follow-up work by Ichoku and Ellison 231 

(2014) took both their FRP and AOD data from the polar-orbiting MODIS sensor, and used these 232 

datasets to deliver the Fire Energetics and Emissions Research (FEER) smoke emission product. 233 

In the FEER and FREM approaches to fire emissions estimation, as well as in the other top-down 234 

methods of Lu et al. (2019) and Darmenov and da Silva (2015), the intermediate step of estimating 235 
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DMC (kg) or dry matter combustion rate (kg.s-1) is bypassed by deriving a ‘smoke emission 236 

coefficient’ [𝐶𝑒] describing the relationship between the thermal energy a fire radiates (i.e. the FRE 237 

in MJ) and the mass of total particulate matter (TPM in kg or g) it emits, or between the rates of 238 

these two (i.e. the FRP in MW and the TPM emission rate in g.s-1). 𝐶𝑒 has units of g.MJ-1 or g.s-239 

1.MW-1 respectively in each case, and is itself typically derived from a set of matchup fires for 240 

which good observations of both variables exist. To derive 𝐶𝑒, each matchup fire has its TPM 241 

estimated using satellite observations of AOD, or from modelled AOD in the case of Darmenov 242 

and da Silva (2015). Once 𝐶𝑒 is determined using these matchup fires, it can be applied to the 243 

FRE or FRP data of all fires to estimate their TPM emissions or emissions rate as well. FEER and 244 

Lu et al. (2019) use MODIS FRP data as opposed to FREM’s geostationary FRP data, and 245 

therefore can be affected by MODIS’s over-or-under estimation of FRE due to its limited temporal 246 

resolution as discussed in Section 2.2 (Kaiser et al., 2012; Andela et al., 2015).  The “bow tie 247 

effect” caused by the sensor’s design and scanning geometry can also affect the estimation of 248 

FRE from FRP measures (Freeborn et al., 2011; Wiedinmyer et al., 2011). Proposed methods to 249 

address the estimation of FRE from MODIS FRP assume that the MODIS Aqua early-afternoon 250 

overpass roughly coincides with, and captures, the peak of daily fire activity, and can therefore 251 

be used to parameterise a diurnal cycle that provides interpolation-based higher temporal 252 

frequency estimates of FRP (Ellicott et al., 2009; Vermote et al., 2009). However, due to the 253 

considerable spatial variability seen in both fire diurnal cycles (Giglio, 2007) and the local MODIS 254 

Aqua overpass time, the time difference between the peak of fire activity and the MODIS overpass 255 

varies both geographically and daily, as does the fraction of total daily fire pixel counts occurring 256 

at the MODIS overpass (Mota and Wooster, 2018). In cases where the latter is particularly low, 257 

polar-orbiting based calculations of daily FRE are susceptible to a low bias, but when the MODIS 258 

overpass coincides closely with peak fire activity this is less pronounced. Such spatial variations 259 

can lead to artificial differences in the derived daily FRE (Mota and Wooster, 2018), and this is 260 
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one justification for the use of geostationary-derived FRP data in the FREM approach. 261 

Furthermore, in the FEER approach of Ichoku and Ellison (2014) and in the Lu et al. (2019) 262 

methodology, the AOD and FRP observations of the matchup fires used to derive the 𝐶𝑒  263 

coefficients are based on MODIS observations of the plume and actively burning fire that are 264 

acquired at exactly the same time.  This inherently means that the TPM contained within the 265 

plume (which has been emitted since the fire commenced up to the time of the MODIS overpass) 266 

is being related to the FRP the fire is releasing at the moment of the overpass. This is a potential 267 

disadvantage, because earlier on in the fire lifetime – during which most of the TPM was actually 268 

released - the fire might have had a quite different FRP to that at the time of the MODIS overpass.  269 

The FREM approach avoids this problem by using geostationary FRP observations and 270 

integrating these over time to calculate the FRE released by the fire from the time it started until 271 

the time of the MODIS overpass providing the AOD-based TPM estimate. Furthermore, by 272 

subsequently applying the 𝐶𝑒 coefficients to all the geostationary FRP data, not just the matchup 273 

fires, very high temporal resolution fire emissions estimates can be generated, which can be 274 

important for (i) capturing sub-daily variability in fire and smoke emissions (Roberts et al., 2015), 275 

and (ii) delivering the most accurate modelling of atmospheric pollutant dispersion and peak air 276 

pollutant concentrations in large fire events (Baldassarre et al., 2015).  277 

 278 

 279 

2.4 Further limitations in current top-down methodologies  280 

In all previous top-down methodologies, biome dependant (e.g. FREMv1) and/or geographically 281 

dependant (e.g. FEER) smoke emission coefficients have been derived using satellite-based FRP 282 

observations and the 10 km AOD (MOD/MYD04) MODIS Level 2 product from Terra (~10:30 283 

overpass) and Aqua (~ 13:30 overpass) (Ichoku and Kaufman, 2005; Ichoku and Ellison, 2014; 284 
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Mota and Wooster, 2018; Lu et al., 2019). The outputs of two different AOD retrieval algorithms 285 

are available in this MODIS product;  286 

i) Dark Target (DT): designed to work over dense vegetation. 287 

ii) Deep Blue (DB): developed for desert surfaces but updated to apply to 288 

most cloud free land.  289 

Output from Dark Target was used by Ichoku and Kaufman (2005) and Ichoku and Ellison (2014), 290 

whereas Mota and Wooster (2018) and Lu et al. (2019) use Deep Blue (introduced in Collection 291 

6) since it showed better agreement with AREONET AOD observations across southern Africa 292 

(Sayer et al., 2014). 293 

The MODIS 10 km AOD (MxD04) product and its updates (Tanre et al., 1997; Hsu et al., 2004, 294 

2006, 2013; Remer et al., 2005; Levy et al., 2013) has been produced for more than 15 years, 295 

are widely used within the air quality community (Remer et al., 2013), and have been extensively 296 

characterised and validated (Holben et al., 2001; Chu et al., 2002; Ichoku et al., 2002, 2003; Sayer 297 

et al., 2013; Livingston et al., 2014; Xiao et al., 2016; Jethva et al., 2019). However, their use in 298 

top-down fire emissions inventories introduce some key uncertainties and limitations, including 299 

those associated with its relatively low 10 km spatial resolution (Lyapustin et al., 2011; Raffuse et 300 

al., 2013; Remer et al., 2013; He et al., 2017), the cloud mask implemented in both the DT and 301 

DB versions (Levy et al., 2013; Raffuse et al., 2013; Remer et al., 2013; Livingston et al., 2014), 302 

and MODIS view-angle effects (Sayer et al., 2015). The more recent 3 km MODIS AOD product 303 

which applies the Dark Target retrieval algorithm (Remer et al., 2013) also suffers from distortions 304 

at wide swath angles and erroneous cloud masking over thick smoke.  305 

AOD retrievals in the MxD04 product are produced at 10 km to improve the signal-to-noise ratio 306 

of the input reflectance data (Tanre et al., 1997). In the Deep Blue retrieval, henceforth referred 307 

to as MxD04_DB, the original 1 km pixels are arranged into 10  10 pixel blocks and screened to 308 
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remove those affected by cloud. The remaining pixels in each 10 km block are then used to deliver 309 

the AOD retrieval (Hsu et al., 2013), and the number of 1 km pixels used accompany the final 10 310 

km AOD estimates contained within the product. When targeting smoke plumes, our 311 

investigations and those of other studies (e.g. Levy et al., 2013; Livingston et al., 2014) show that 312 

the conservative cloud mask used by both the DT and DB algorithms result in cases of (i) the 10 313 

km AOD estimates at the locations of the thickest smoke being completely masked out, and (ii) 314 

the 10 km AOD estimates in areas of thick smoke being retrieved from only a fraction of the 1 km 315 

pixels present within the 10 km  10 km box. Figure 1 demonstrates an example of a smoke plume 316 

where some MxD04_DB pixels use as little as 40% of the original one hundred MODIS 1 km 317 

pixels to retrieve a single 10 km AOD value, though at wide swath other distortions occur and 318 

pixels are in fact not 10 km2. A comparison with the 500 m MODIS true colour image for the same 319 

area (Fig. 1c) demonstrates how the low spatial resolution of the MxD04_BD product introduces 320 

further uncertainty into the determination of the plume boundary, particularly when compared with 321 

the alternative 1 km MAIAC AOD product (Fig. 1d) discussed in Section 3. 322 
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 323 

(1.5 columns) Figure 1. Example plume from a fire burning north of the Save River (Mozambique), 324 

imaged on the morning of 8th October 2015 at 11:15 UTC via the Aqua satellites MODIS sensor 325 

(at a VZA 40.6°). (a) 10 km MxD04_DB AOD product; (b) MxD04_DB field showing the number 326 

of 1 km reflectance pixels (out of 100) used to retrieve each 10 km AOD pixel value; (c) 500 m 327 

MODIS Corrected Reflectance (True Colour) image; and (d) 1 km MCD19 MAIAC AOD product 328 

derived from the same MODIS imagery shown in (c). The colour scale shown in (d) is also relevant 329 

for (a). The plume is far more easily distinguished in the 1 km than the 10 km AOD product and 330 

better matched to the smoke spatial distribution shown in the MODIS true colour image of (c). 331 

Unlike the 1 km AOD product of (d), the 10 km MxD04_BD AOD data of (a) rather poorly defines 332 

the plume bounds and some pixels in this product are heavily impacted by the cloud mask which 333 

removes AOD pixels over the thickest smoke (b). Some erroneous masking does occur in the 1 334 

km product of (d), shown as the black pixels, but this is minimal and addressed via the 335 

interpolation described in Section 4.3.  336 
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The extreme masking of smoke affected 1 km pixels as cloud in the MxD04_DB algorithm, as 337 

demonstrated in Figure 1, introduces clear uncertainty and probably bias into any estimates of 338 

total particulate matter (TPM) derived from the 10 km MxD04 AOD observations. Since the 339 

excluded pixels are mainly located over the thickest smoke, their exclusion is likely to significantly 340 

affect the final retrieved 10 km AOD, and therefore the TPM measure. Additionally, the complete 341 

masking of 10 km pixels in some cases limits the number of plumes that can be identified and 342 

used in deriving the FREM smoke emission coefficients. Both Mota and Wooster (2018) and Lu 343 

et al. (2019) take measures to try and minimise the effect of completely masked MxD04_BD 344 

pixels. Mota and Wooster (2018) keep MxD04_BD pixels with quality mark ≥ 2, resulting in 345 

MxD04_BD pixels using as little as 40% of the native 1 km pixels being retained (e.g. in Fig. 1b), 346 

and they also excluded plumes comprising any completely masked 10 km pixels. Lu et al. (2019) 347 

use a nearest neighbour method to fill gaps in the data over plumes, which are caused by 348 

erroneously ‘cloud masked’ AOD pixels.  349 

Another source of uncertainty introduced when using either the MODIS DT or DB MxD04 product 350 

comes from the MODIS ‘bowtie’ effect that results from the MODIS design and scan geometry, 351 

along with Earth’s curvature (Wolfe et al., 1998). Above view zenith angles (VZA) of  20˚, two 352 

key distortions occur with respect to MxD04_BD -  (i) growth of the MODIS 10 km AOD ‘pixel’ 353 

area from about 10 × 10 km at nadir to around 20 × 40 km at the scan edge,  and (ii) the overlap 354 

of successive scans towards the scan edge meaning features are duplicated in adjacent pixels 355 

(Wolfe et al., 1998). Both result in an AOD data product rather dependent on the location of the 356 

AOD pixels within the MODIS swath, and there are indications that this may influence the statistics 357 

of the AOD retrievals towards the scan edges (Sayer et al., 2015), potentially introducing bias into 358 

top-down methodologies using the MxD04 AOD products without excluding high-VZA 359 

observations during derivation of their 𝐶𝑒  values.   360 
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A further significant limitation of the MxD04 AOD products relate to their fundamentally low 10 km  361 

(at nadir) spatial resolution (see Figure 1), which is unable to resolve smoke plumes from many 362 

smaller fires, or from fires not sufficiently isolated from other aerosol sources (primarily other 363 

nearby fires). In both cases, differences between the in-plume AOD and the background AOD 364 

(i.e. the AOD anomaly) may not be significant enough to define the AOD pixels that represent the 365 

plume. This both places a limit on the minimum fire size used to derive 𝐶𝑒  or 𝐶𝑏𝑖𝑜𝑚𝑒  values and 366 

makes the sampling of fires over certain areas during periods of peak fire activity difficult, as their 367 

plumes often merge together (Mota and Wooster, 2018).   368 

Separate from the MxD04 AOD product issues, differences in the method chosen to calculate the 369 

value of an AOD background exist between top-down methodologies. In all top-down inventories 370 

discussed herein, the equations proposed by Ichoku and Kaufman (2005) are used to convert 371 

AOD to the emitted TPM of an individual fire. The fire emitted AOD for a given smoke plume is 372 

defined as the summed total AOD of the smoke plume above the AOD background (for full details 373 

see Ichoku and Kaufman, 2005). It is clear then, that the choice of AOD background value used 374 

in these calculations impacts the final TPM estimate, and therefore the 𝐶𝑒  or 𝐶𝑏𝑖𝑜𝑚𝑒  values 375 

derived from matchups between these values and the corresponding fire FRE. Ichoku and 376 

Kaufman (2005) and Ichoku and Ellison (2014) select background AOD values based on pixels 377 

immediately up-wind of the smoke plume, whereas Mota and Wooster (2018) take background 378 

AOD values to be the 20th percentile AOD of all values within a set distance or area (e.g. 500 km2) 379 

surrounding a fire. The background AOD values estimated from this large-scale averaging may 380 

not be fully representative of the true background into which a plume is being emitted, and so 381 

may also negatively impact the derived 𝐶𝑏𝑖𝑜𝑚𝑒 values in FREMv1. 382 

The above problematic characteristics of the MxD04 products, and the FREMv1 and FEER 383 

methodologies, contribute to uncertainty and possibly bias in the smoke emission coefficients 384 
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derived, and thus to the resultant smoke emissions estimates. We here focus on developments 385 

to FREMv1 to try to mitigate these impacts. 386 

 387 

3. DEVELOPMENTS TO THE FREM APPROACH  388 

 The methodology proposed here builds on the original FREMv1 approach of Mota and Wooster 389 

(2018) to address the limitations described in Section 2.3. A key advance is use of an alternative 390 

MODIS AOD product that offers substantial advantages over the MxD04 products when used in 391 

smoke-affected areas. This alternative AOD product is based on the Multiangle Implementation 392 

of Atmospheric Correction (MAIAC) algorithm, developed to retrieve surface bidirectional 393 

reflectance factor (SBRF), internal cloud mask and AOD over land (Lyapustin et al., 2011). The 394 

MAIAC AOD product provides combined Aqua and Terra AOD retrievals at a 1 km resolution over 395 

both dark and bright surfaces, and has been shown to improve the resolvability of atmospheric 396 

smoke and dust features compared to the 10 km MxD04 product (Emili et al., 2011; Lyapustin et 397 

al., 2011, 2012; Jethva et al., 2019; Mhawish et al., 2019). At AERONET station locations, both 398 

Emili et al. (2011) and Jethva et al. (2019) show that the MAIAC product provides more than 399 

double the number of AOD retrievals compared to MxD04_DB, due to its higher spatial resolution 400 

and improved cloud mask. In fact, the MAIAC algorithm explicitly includes a ‘smoke test’ to 401 

discriminate biomass burning smoke from clouds (Lyapustin et al., 2012). Other evaluations have 402 

compared the MAIAC product to the Visible and Infrared Imaging Radiometer Suite (VIIRS) 750 403 

m spatial resolution AOD product, to AERONET measurements, and to surface measurements 404 

of particulate matter (Hu et al., 2014; Arvani et al., 2016; Martins et al., 2017; Superczynski et al., 405 

2017). They have shown its improved coverage compared to the standard VIIRS AOD product 406 

and its good agreement with ground-based AOD and particulate matter measures.  407 
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In addition to its higher spatial resolution and improved cloud mask, some key features of the 408 

MAIAC product address issues related to the dependence of AOD retrievals on VZA in the MxD04 409 

product. These include  the gridding of L1B MODIS bands to 1 km resolution prior to AOD retrieval 410 

using an area-weighted method (Wolfe et al., 1998), and the calculation of surface BRF using a 411 

dynamic spectral regression coefficient (SRC) (Lyapustin et al., 2011). The former results in an 412 

improved representation of any given 1 km grid cell by appropriately weighing the contribution of 413 

observations falling within that cell, and this is especially important at the swath edge where the 414 

MODIS pixel area is up to eight times larger than at nadir. The dynamic SRCs, are calculated 415 

from a time series analysis of previous AOD retrievals for each 1 km pixel. Therefore, when VZA 416 

are well sampled in the preceding retrieval times series (multiple cloud free observations per 417 

pixel), SRC values represent well the angular component of surface BRF (full details can be found 418 

in Lyapustin et al. (2011)). The final MAIAC AOD product is reported on a 1 km grid in the MODIS 419 

sinusoidal projection (Lyapustin et al., 2018) and Mahawish et al. (2019) show VZA-dependant 420 

bias to be the lowest in MAIAC AOD retrievals compared to the output of the MxD04 DT and DB 421 

algorithms. Figure 2 shows fire emitted TPM estimates for a series (n=635) of African smoke 422 

plumes, as derived from the MxD04_DB AOD product and the MAIAC AOD product, all calculated 423 

via multiplication of the plume-integrated AOD anomaly (accounting for pixel area) by the smoke 424 

mass extinction coefficient (following Ichoku and Kaufman (2005)). Whilst the MAIAC-derived 425 

TPM estimates appear consistent across all VZA’s, those from MxD04_BD increase significantly 426 

at VZA > 40˚. Inclusion of plumes observed at high VZA values in the MxD04_DB product used 427 

by Mota and Wooster (2018) could lead to artificially high in-plume TPM estimates, and therefore 428 

a high bias in the derived  𝐶𝑒  or 𝐶𝑏𝑖𝑜𝑚𝑒  values in FREMv1. When a comparison is made between 429 

MxD04_BD and MAIAC estimated TPM from plumes with VZA < 20° (Fig 2b.), MAIAC-based 430 

TPM estimates are typically higher (on average by ~ 26%) than those of MxD04_BD. This likely 431 
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results from the less conservative MAIAC cloud mask and the increased number of valid AOD 432 

retrievals available over the thickest smoke when compared to MxD04_BD. 433 

 434 

 435 

(1.5 columns) Figure 2. (a) Estimated fire emitted Total Particulate Matter (TPM) in 635 individual 436 

smoke plumes, as derived from the 10 km MxD04_DB AOD product (orange) and the 1 km MAIAC 437 

AOD product (blue), shown as a function of sensor view zenith angle (VZA). (b) Direct comparison 438 

of the matching MxD04_DB and MAIAC-derived TPM values for each plume, restricted to plumes 439 

observed at VZA ≤ 20˚. TPM is calculated from AOD using the equations presented in Ichoku and 440 

Kaufman (2005) as described in Section 4.4. 441 

Another update performed in FREMv2 compared to FREMv1 is an improved method for 442 

calculating the background AOD value of smoke plumes. FREMv2 applies a localised value for 443 

background AOD, as opposed to the large-area-average value applied in FREMv1. The minimum 444 

AOD pixel within a buffered area of the smoke plume, in most cases, up-wind of the targeted 445 
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plume is used as the background AOD value. This approach is similar to that adopted by Ichoku 446 

and Kaufman (2005) and Ichoku and Ellison (2014), and justified by the argument that (i) 447 

background AODs derived from large scale averaging could be biased by reflectance anomalies 448 

or aerosol changes far from the plume, for example dust in the averaging area, and (ii) a large-449 

area-averaged background will also be insensitive to the immediate local AOD background of the 450 

plume (e.g. during periods of high fire activity when atmospheric particulate matter concentrations 451 

are likely to locally be high already). 452 

Other adjustments in FREMv2 include the consideration of relative humidity in the estimation of 453 

fire generated TPM, expansion to the entirety of continental Africa, and the inclusion of more up-454 

to-date land cover and % tree cover information to delineate more precisely the fire-relevant 455 

biomes, details of which are included in Section 4.   456 

 457 

4. SMOKE EMISSION COEFFICENTS DERIVATION  458 

4.1 Geographic Area and Biome Classification  459 

For derivation of the biome-dependent FREMv2 smoke emission coefficients (𝐶𝑏𝑖𝑜𝑚𝑒) and final 460 

emissions estimates, we expanded the Southern Hemisphere Africa (SHAf) region of Mota and 461 

Wooster (2018) to include Northern Hemisphere Africa (NHAf). In SHAf the dry season is July to 462 

September, and in NHAf November to April, periods which also represent the primary fire seasons 463 

in these regions.  The dense tropical forests close to the equator (e.g. in northern D.R.C and 464 

Gabon) are wetter and less susceptible to large-scale fires compared to those dominated by 465 

deciduous and herbaceous vegetation further north and south. These woody savannah and 466 

shrubland/grassland areas are those that host most of Africa’s biomass burning. In addition to 467 

expanding FREMv2 to continental Africa, we also deployed an updated landcover map to provide 468 
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more detailed biome classification.  The 2015 European Space Agency (ESA) Climate Change 469 

Initiative (CCI) Landcover map (Validated by ESA (2017)) is derived from 300 m spatial resolution 470 

PROBA-V observations and comprises 36 landcover type, which we aggregate into five distinct 471 

biome classes. Following Mota and Wooster (2018), grassland and woodland savanna are 472 

classified as separate biomes as suggested by Korontzi et al. (2004) for fire-related GHG emission 473 

reporting. Full details of the CCI land cover class assignment for the FREMv2 biomes can be 474 

found in Appendix A. Five biomes were defined by the main vegetation types of closed canopy 475 

forest, woodland savanna/open forest, grassland, shrubland and managed lands. Since the biome 476 

classes of FREMv1 were based on the GLOBCOVER 2009 landcover map 477 

(http://due.esrin.esa.int/), which differs from the 2015 CCI landcover map in some respects, the 478 

spatial distribution of our biome classes also differ, for example in the Kalahari region of southern 479 

Africa.  To provide further biome discrimination, FREMv2 also includes use of percentage tree 480 

cover (above 5 m height), taken from the 30 m Landsat Vegetation Continuous Fields (VCF) 481 

product of 2015 (https://landsat.gsfc.nasa.gov/) (Fig. 2a). Since woodland savanna is by far the 482 

largest contributing biome to FRE release over Africa (Appendix B), correct assessment of its 483 

smoke emissions is critical to overall accuracy. Areas of woodland savanna having higher tree 484 

cover, though still dominated by surface fires (van Leeuwen et al., 2014), have the potential to 485 

produce smoke plumes more influenced by surface litter and woody debris (Heil et al., 2010). 486 

They may also be more affected by canopy interception of surface-emitted FRP (Freeborn et al., 487 

2009; Roberts et al., 2018a). Hence, to improve the precision of 𝐶𝑏𝑖𝑜𝑚𝑒  values for woodland 488 

savanna fires, we separated this class into low-woodland savanna and high-woodland savanna 489 

using a 20% VCF tree cover threshold.  490 

The FREMv2 biome map was re-projected and aggregated to the Meteosat SEVIRI full disk 491 

projection, such that each SEVIRI pixel was assigned a sub-pixel fraction of each biome, with the 492 

overall pixel class assigned to the majority fraction (Fig. 2b). Locations of the closed canopy forest 493 

http://due.esrin.esa.int/
http://due.esrin.esa.int/
http://due.esrin.esa.int/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
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and low- and high-woodland savanna biomes (the main classes having vegetation above 5 m 494 

height) broadly match the % tree cover spatial distribution of VCF product (Fig 2a), and also agree 495 

well with tree cover maps derived previously from MODIS data (e.g. Hansen et al., 2002; Sexton 496 

et al., 2013; Kobayashi et al., 2016).  497 

 498 

  499 

(2 columns) Figure 3. (a) Mapped percentage tree cover above 5 metres, as determined from the 500 

30 m spatial resolution Landsat Vegetation Continuous fields (VCF) product for 2015. (b) FREMv2 501 

biome map for Africa derived from the 2015 ESA CCI Landcover map (itself derived from 300 m 502 

PROBA-V imagery) and the Landsat VCF product. Biomes were aggregated from the 36 land 503 

cover types defined in the original CCI map, with the two woodland savanna biomes separated 504 

using (a) (see Appendix A).  505 

 506 
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4.2 FRP and AOD 2015 Datasets and Fire Matchups  507 

The geostationary Meteosat SEVIRI FRP-PIXEL product of Wooster et al. (2015) was a primary 508 

input for derivation of the 𝐶𝑏𝑖𝑜𝑚𝑒  values. The full spatio-temporal resolution (15 min, 3 km at nadir) 509 

FRP-PIXEL product covering the NHAf and SHAf fire season of 2015 was acquired from the 510 

EUMETSAT Land Surface Analysis Satellite Applications Facility (LSA SAF: 511 

http://landsaf.meteo.pt). The AOD product used was the Terra and Aqua combined MODIS 512 

MAIAC 550 nm 1 km product (Collection 6 MCD19A2; Lyapustin et al., 2018), described in Section 513 

3.  514 

Fire activity from the FRP-PIXEL product was assigned to MAIAC AOD measurements of smoke 515 

plumes in what we refer to here as ‘fire matchup selection’. First, a blob detection (Difference of 516 

Gaussian; Lindeberg , 1998) procedure commonly used in computer vision was applied to each 517 

MAIAC AOD image to identify regions of interest (ROIs) containing potential smoke plumes. 518 

These ROIs were filtered to keep only those having active fires (spatially contiguous FRP pixels 519 

observed between 00:00 local time and the MODIS overpass used to produce the MAIAC product) 520 

in close spatial proximity. To ensure complete sampling of all fire activity contributing to a given 521 

smoke plume, the FRP-PIXEL Quality Product detailed in Wooster et al. (2015) was used to filter 522 

out fires that were cloud-obscured leading up to the MODIS overpass time.  In cases when both 523 

Aqua and Terra MAIAC AOD data were available, the Aqua data acquired closer in-time to the 524 

peak of the fire diurnal cycle were preferentially used. This subset of candidate fire matchups was 525 

subject to a final manual check to remove any erroneously identified or poorly defined plumes. 526 

Each remaining ROI containing a smoke plume had the AOD boundary of the plume defined via 527 

histogram thresholding of AOD pixel values (Fig. 4a and 4b). The convex hull of the plume feature 528 

was used to define the plume edges and all FRP pixels measured within this bound, between 529 

00:00 hrs and the MODIS overpass time relevant to the AOD product, were categorised as being 530 

http://landsaf.meteo.pt/
http://landsaf.meteo.pt/
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from the fire which contributed smoke to the plume (Fig. 4c). Though in most of cases FRP pixels 531 

were not observed until 08:00 local time. The 1 km resolution of the MAIAC data meant analysis 532 

of plume RBG imagery was not needed to help define plume features, unlike with the 10 km 533 

MxD04_DB data used in FREMv1 (Mota and Wooster, 2018). 534 

  535 

  536 

(2 column) Figure 4. Example region of interest (ROI) containing the fire shown in Figure 1 along 537 

with matchup active fire pixels (white triangles) from the Meteosat FRP-PIXEL product detected 538 

between midnight and the MODIS overpass time. (a) MAIAC 1km AOD and SEVIRI active fire 539 

(AF) pixels; (b) histogram thresholding to discriminate the plume from the surrounding ‘ambient’ 540 

background. (c) SEVIRI AF pixels detected within the convex hull of the plume are considered to 541 

come from the same ‘fire’ that produced the smoke plume. The fire radiative energy (FRE) of the 542 

causal fire is then calculated from these observations and used to match to the AOD-derived total 543 

particulate matter (TPM) (see Figure 5). 544 

 545 
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Following Mota and Wooster (2018), only fire matchups for which a single FREMv2 biome 546 

represented more than 50% of the observed FRP pixels in a fire were retained. In some cases, 547 

the MAIAC AOD cloud mask did screen out some pixels within the smoke plume (e.g. Fig. 1d), 548 

though the impact was far less than for the 10 km MODIS MxD04 AOD data. To preserve the 549 

accuracy of fire emitted TPM estimates, matchup fires were limited to those with plumes having 550 

a MAIAC AOD retrieval at more than 95% of their pixels, and radial bias function interpolation was 551 

used to interpolate over the relatively few missing AOD values. To assess the impact of this 552 

interpolation on the calculated TPM values, we purposely removed additional AOD pixels and re-553 

estimated their value via the same process. Minimal impact was shown due to the quality of the 554 

interpolation procedure and the fewer than 5% of in-plume AOD pixels it was required to be 555 

applied to.  556 

After pre-processing and data screening, 968 fire matchups remained for 𝐶𝑏𝑖𝑜𝑚𝑒  derivation, and 557 

these are mapped in Figure 6d.  Each had its FRE and column integrated mass of total plume 558 

particulate matter estimated, the former from the temporal integration of FRP from the start of fire 559 

activity on that day to the time the MAIAC AOD data were acquired. The latter was calculated 560 

from the plumes’ total plume AOD anomaly divided by the smoke aerosol mass extinction 561 

coefficient, 𝛽𝑒 (in m2.g-1) and multiplied by the total plume area (m2) calculated over all AOD pixels 562 

(following Ichoku and Kaufman, 2005). 𝛽𝑒 can be measured in situ and its value depends on 563 

several factors including relative humidity, age of the smoke, vegetation burned and the 564 

wavelength used in measurements.  Reid et al. (2005) provide a detailed review of values for 𝛽𝑒 565 

in smoke plumes that range between 3.8 - 4.5 m2.g-1, and combining these with the values of 566 

Abel et al. (2005)  for South African fires that range from 2.22 – 3.37 m2.g-1 we assume an 567 

intermediary 𝛽𝑒 of 3.5±1.0 m2.g-1.  𝛽𝑒 values for smoke have been shown to increase with aerosol 568 

ageing (Formenti et al., 2003; Abel et al., 2005) and also with relative humidity (RH) (Chin et al., 569 

2002; Koppmann et al., 2005). The RH for each of our plumes was taken from the ERA-Interim 570 
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reanalysis at 762 m altitude (Balsamo et al., 2015), and all matchup plumes showed coincident 571 

RH values < 70% so we assume minimal effect of RH on 𝛽𝑒 since below this RH threshold inflation 572 

of 𝛽𝑒 for smoke generated from biomass burning is typically less than 10% (Chin et al., 2002; Reid 573 

et al., 2005).  The 𝛽𝑒 of fresh smoke aerosol has been shown to increase by 20 to 50% as it ages 574 

after 1 - 4 days (Reid et al., 1998; Abel et al., 2005). However, for the majority of our fire matchups, 575 

significant fire activity was not observed until 08:00 hrs or later in the day, resulting in the oldest 576 

smoke in our plumes being around 7 or 8 hours old and thus limiting the extent to which 𝛽𝑒 grows 577 

due to plume ageing. We therefore retain the 𝛽𝑒 value of 3.5±1.0 m2.g-1 used by Mota and Wooster 578 

(2018), and the uncertainty range attached to this value also includes these potentially higher 579 

bounds. We do however recommend further investigation into the potential for biome-dependent 580 

variability in 𝛽𝑒. 581 

4.3 Derivation of Smoke Emission Coefficients (𝐶𝑏𝑖𝑜𝑚𝑒)   582 

Our fire matchups were used to derive a set of smoke emission coefficients (Table 1; Fig. 5) for 583 

each of the biomes defined in Section 4.1, based on zero-intercept linear orthogonal distance 584 

regression (ODR). Uncertainties in each variable are accounted for in ODR and are calculated 585 

from the combined AOD uncertainty measures provided in the MAIAC product, the uncertainty in 586 

𝛽𝑒, and the FRP uncertainties provided in the FRP-PIXEL product (Wooster et al., 2015).  587 

 588 
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column) Figure 5. Smoke emission coefficients (𝐶𝑏𝑖𝑜𝑚𝑒; in g.MJ-1) for the six African fire-affected 590 

biomes defined in Section 4.1, each derived from the slope of an orthogonal distance regression 591 

(ODR) between data on fire-emitted total particulate matter (TPM) and matching fire radiative 592 

energy (FRE). Grey shaded area defines the 95% probability prediction interval of the ODR-593 

derived slope. Each scatterplot is accompanied by an illustrative insert that depicts the typical 594 

landcover for the biome as seen in Google Earth (example locations are Closed Canopy Forest, 595 

10.359° S, 19.086° E; Grassland 21.180° S, 19.560° E; Managed Land 10.495° N, 7.586° E; Low-596 

Woodland Savanna 7.085° N, 27.095° E, High-Woodland Savanna 12.523° S, 23.323° E; 597 

Shrubland 23.055° N, 22.242° E). 598 

 599 

Table 1. Biome-dependent smoke emission coefficients (𝐶𝑏𝑖𝑜𝑚𝑒)  and accompanying 600 

uncertainties for the African fire-affected biomes mapped in Figure 3b and calculated from 601 

FREMv2 and from FREMv1 (reported in Mota and Wooster (2018)). Matching FEER-equivalent 602 

coefficients are also shown, based on the geographical location of fire matchups and the FEER 603 

𝐶𝑒 (1° × 1°) product of Ichoku and Ellison (2014).  604 

 605 
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 606 

 607 

Our FREMv2 smoke emission coefficients were compared to those of FREMv1 (Mota and 608 

Wooster, 2018) and FEER (Ichoku and Ellison, 2014; Table 1). In FEER, 𝐶𝑒  values are derived 609 

for each individual 1˚ grid cell using the MODIS archive of that cell, rather than by biome. To 610 

derive FEER-equivalent 𝐶𝑏𝑖𝑜𝑚𝑒  values for comparison, we intersected all FREMv2 fire matchups 611 

with each FEER 1˚ grid cell and then calculated the mean FEER 𝐶𝑒 for each of our biomes.  612 

Our FREMv2 𝐶𝑏𝑖𝑜𝑚𝑒 values range from 9.99 ± 0.29 g MJ-1 (grassland) to 34.33 ± 2.85 g MJ-1 613 

(closed canopy forest), and in all biomes are lower than those of FREMv1 with an average 614 

decrease of 27% across all biomes, that for closed canopy forest is almost halved compared to 615 

FREMv1. These differences relate to a combination of the far more appropriate MAIAC AOD 616 

product, the improved method for background AOD estimation, the updated and extended biome 617 

mapping, and the inclusion of fire matchups from NHAf as well as SHAf.  Since plume TPM values 618 

are most strongly influenced by the AOD product used, use of MAIAC AODs is likely to have the 619 

most significant impact on the 𝐶𝑏𝑖𝑜𝑚𝑒 values and the product characteristics can both increase 620 

and decrease these compared to use of MxD04. As discussed in Sections 2.3 and Section 3, 621 
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MxD04 AOD retrievals are VZA dependent and bias can be seen at the swath edges (Sayer et 622 

al., 2015), meaning TPM estimates for plumes observed at wide VZA can be significantly inflated 623 

(Fig. 2a). In the original FREMv1 methodology such plumes were retained during the 𝐶𝑏𝑖𝑜𝑚𝑒  624 

derivation, and likely resulted in overestimated TPM values and thus FREMv1 𝐶𝑏𝑖𝑜𝑚𝑒  values. 625 

Additionally, the MAIAC AOD product uses an area-weighted method to grid L1B MODIS pixels 626 

to a 1 km pixel size prior to AOD retrieval, providing finer detail and improved plume distinction at 627 

VZA > 20°, allowing inclusion of smaller fires in the matchup dataset. A feature of the MAIAC 628 

AOD product likely to increase estimates of TPM and thus FREMv2 𝐶𝑏𝑖𝑜𝑚𝑒  values is its less 629 

conservative cloud mask, which resulted in MAIAC-derived TPM estimates being ~ 26% higher 630 

than the equivalent MxD04_BD values when only plumes observed at low VZA’s are considered 631 

(Fig. 2b).  632 

Final 𝐶𝑏𝑖𝑜𝑚𝑒 values for shrubland and low-woodland savanna are close (within 0.07 g MJ-1) (Table 633 

1), indicating these biomes appear broadly equivalent with respect to their fire and particulate 634 

matter emissions characteristics.  The number of fire matchups identified in both the closed 635 

canopy forest and managed land biomes are significantly fewer than for the other biomes, largely 636 

because of fewer identifiable fires and the fact that many do not meet the matchup criteria.  The 637 

lower number of matchups mean the 𝐶𝑏𝑖𝑜𝑚𝑒  coefficients for these two biomes have significantly 638 

larger uncertainties (3 and 10 higher than for the other biomes respectively), and their smoke 639 

emissions coefficients are quite strongly influenced by a relatively few high FRE fire matchups. 640 

As discussed in Section 2.1, the SEVIRI FRP-PIXEL product has a minimum AF detection limit of 641 

around 30 - 40 MW, and fires burning below this will often remain undetected until they breach 642 

this threshold or other fires within the same pixel cause the pixels FRP total to exceed this. 643 

Agricultural fires in managed lands are typically quite small (Zhang et al., 2017), and in closed 644 

canopy forests surface fires burning on the forest floor will be partially obscured by the tree canopy 645 

(Roberts et al., 2018a). Both these effects will result in a lower FRE total being measured at a fire 646 
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than might otherwise be the case, and these biomes also have the highest percentage of 647 

matchups with FRE below 1×107 MJ.  But to the extent that these issues affect both the matchup 648 

fires of these biomes and the overall set of SEVIRI-detected fires to which the coefficients are 649 

applied, the effect of these issues is taken into account. FREMv2 coefficients are on average only 650 

18% higher than FEER-equivalent 𝐶𝑏𝑖𝑜𝑚𝑒 values, with FREMv2 𝐶𝑙𝑜𝑤−𝑤𝑜𝑜𝑑𝑙𝑎𝑛𝑑 𝑠𝑎𝑣𝑎𝑛𝑛𝑎 (which has 651 

one of the largest matchup sample sizes) showing very good agreement with its FEER- equivalent 652 

(12.10±0.32 and 12.78 g MJ-1 respectively). FREMv2 𝐶𝑙𝑜𝑤−𝑤𝑜𝑜𝑑𝑙𝑎𝑛𝑑 𝑠𝑎𝑣𝑎𝑛𝑛𝑎 , 𝐶𝑠ℎ𝑢𝑏𝑙𝑎𝑛𝑑  and 653 

𝐶𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑  values are also all within 11% of their FEER-equivalents.  𝐶𝑐𝑙𝑜𝑠𝑒𝑑 𝑐𝑎𝑛𝑜𝑝𝑦 𝑓𝑜𝑟𝑒𝑠𝑡 shows the 654 

greatest divergence at around twice the FEER-equivalent, perhaps stemming from the relatively 655 

small sample size (n=38) and/or the high variability in FEER 𝐶𝑒  values for this biome (Fig. 6b). 656 

The newly derived FREMv2 𝐶𝑏𝑖𝑜𝑚𝑒  values of Table 1 were used to generate a SEVIRI per-pixel 657 

smoke emissions coefficient (𝐶𝑒 ) product for Africa, for subsequent use in smoke emissions 658 

estimation. 𝐶𝑒  values for each SEVIRI pixel across the African continent were calculated based 659 

on the weighted mean of the relevant 𝐶𝑏𝑖𝑜𝑚𝑒 values and the per-pixel biome fractional cover 660 

derived in Section 4.1.  Figure 6a shows the resulting FREMv2 𝐶𝑒  product, along with the FEER 661 

𝐶𝑒 (1° × 1°) product (Ichoku and Ellison, 2014) (Fig 6b) and their difference (averaged to 1˚ 662 

resolution) (Fig. 6c). As previously described, FEER 𝐶𝑒 values are calculated for each 1˚ grid cell 663 

from matchup fires within that cell, rather than per biome, so the spatial variability of FEER 𝐶𝑒 664 

values is far higher than for the biome-driven FREMv2 𝐶𝑒  values of Fig. 6a. Across Africa, FEER 665 

𝐶𝑒 are on average higher than those of FREMv2 by 0.53 g.MJ-1, and this difference is dominated 666 

by regions where the FEER coefficient is significantly higher than that of FREMv2 (Fig. 6c). The 667 

most similar regions are generally those well sampled by fire matchups in FREMv2 (Fig. 6d), 668 

whereas those with the highest differences have few or no fire matchups in FREMv2, due primarily 669 

to relatively low fire activity being recorded there but also frequent cloud cover in 2015. In some 670 

cases such areas appear to exhibit notably high FEER 𝐶𝑒 values (> 40 g.MJ-1). Future work on 671 
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FREM will extend the fire matchup sampling period to multiple years to obtain additional matchups 672 

in regions currently relatively poorly sampled, and will aim to better understand the large 673 

divergence in 𝐶𝑒values compared to FEER in these locations.  674 

 675 

 676 

(2 columns) Figure 6. (a) FREMv2 smoke emission coefficient (𝐶𝑒) mapped at 0.05˚; (b) the 677 

matching 1˚ FEER 𝐶𝑒 product; and (c) the difference. In (c), FEER grid cells whose value was 678 

derived from gap-filling or which were calculated from less than 15 samples were removed (see 679 

Ichoku and Ellison (2014) for full details). (d) Shows the spatial distribution of the fire matchups 680 

used to derive the FREMv2 𝐶𝑏𝑖𝑜𝑚𝑒  values of Figure 5.  681 



34 

 

5. FREMV2 EMISSION INVENTORY DEVELOPMENT   682 

5.1 Total Particulate Matter (TPM) Emissions  683 

We used the FREMv2 𝐶𝑒  product of Figure 6a to convert the 2013 to 2018 Meteosat FRP-PIXEL 684 

product (Wooster et al., 2015) into the highest spatio-temporal resolution TPM emissions 685 

inventory yet available over Africa (15 min, 3 km at the sub-satellite point). We compared these 686 

emissions to a series of other inventories widely used by the research and operational 687 

communities (Figs. 9 and 10). Hourly averages of SEVIRI FRP (in MW) multiplied directly by the 688 

FREMv2 𝐶𝑒 product provide mapped instantaneous TPM emission rates (in kg.s-1), whereas 689 

multiplication by FRE gives emission totals for the defined FRP temporal integration period. 690 

Figure 7 presents TPM emissions estimates for FREMv2, GFASv1.2 (Kaiser et al., 2012; 691 

https://apps.ecmwf.int/datasets/data/cams-gfas/), GFEDv4.1s (Van der Werf et al., 2017; 692 

www.globalfiredata.org/),  along with FEERv1.0-GFAS1.2  (the FEER 𝐶𝑒 product applied to 693 

GFASv1.2 FRP estimates, Ichoku and Ellison, 2014; www.feer.gsfc.nasa.gov/data/emissions/) 694 

and FEERv1.0-SEVIRI (the FEER 𝐶𝑒 product applied to SEVIRI FRE).  695 

FREMv2 estimates mean annual TPM emissions for Africa at 32.41±1.86 Tg.yr-1 for the five years 696 

studied, 38% of which are generated from fires in NHAf, and 62% SHAf. Pan-African totals are 697 

114% and 69% higher than GFASv1.2 and GFEDv4.1s respectively, with estimates from SHAf 698 

fires showing greater divergence in both cases. The FREMv2 values however, are within 11% of 699 

the top-down inventories FEER-GFASv1.2 and FEER-SEVIRI, agreeing with Ichoku and Ellison 700 

(2014) who also show FEER-GFAS to be higher than GFASv1 and GFEDv3 by similar factors 701 

over NHAf and SHAf. Kaiser et al. (2012) report that GFASv1.2 smoke aerosol emissions must 702 

be multiplied by a global scaling factor of 3.4 before input into atmospheric models if they are to 703 

provide modelled AODs more in line with observations. This provides evidence that Africa’s TPM 704 

emissions are indeed higher than GFAS (and GFED) currently estimate.  As demonstrated by 705 

https://apps.ecmwf.int/datasets/data/cams-gfas/
http://www.globalfiredata.org/
http://www.globalfiredata.org/
http://www.feer.gsfc.nasa.gov/data/emissions/
http://www.feer.gsfc.nasa.gov/data/emissions/
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Wooster et al. (2015) and Hall et al. ( 2019), at the time of their overpasses, polar-orbiter based 706 

AF products detect more “small” (i.e. low FRP) fires compared to the SEVIRI FRP-PIXEL product 707 

as a result of their finer pixel size and thus lower minimum FRP detection limit. This effect is 708 

amplified at SEVIRI VZA > 40° due to the growth of sensors pixel footprint area. However, it was 709 

also shown that over the course of several days, the far more frequent data available from SEVIRI 710 

allows an increased number of AF detections overall (Wooster et al., 2015; Hall et al., 2019). 711 

Since the SEVIRI-derived FREMv2 emissions agree well with those of FEER, which are derived 712 

from MODIS FRP data (which have a significantly lower minimum FRP detection limit than 713 

SEVIRI; Roberts et al., 2015), our findings suggest that FREMv2 accounts for the smoke emission 714 

contribution from a substantial proportion of the active fire pixels remaining undetected by SEVIRI. 715 

This is likely because, whilst SEVIRI fails to detect these lowest FRP fires, the smoke they 716 

generate has contributed to the AOD in the 1km MAIAC product used to generate the biome-717 

dependent smoke emissions coefficients from the fire matchups. Thus, our FREMv2 𝐶𝑏𝑖𝑜𝑚𝑒and 718 

𝐶𝑒  data contain an inherent ‘boost’ from the TPM emitted from undetected low-FRP active fire 719 

pixels. The 1 km spatial resolution of the MAIAC AOD, which enables us to distinguish and use 720 

many more of the smaller smoke plumes than the higher resolution MxD04 product, helps enable 721 

this compared to the 10 km AOD data used in FREMv1.  722 

  723 



36 

 

  724 

(2 columns) Figure 7. Monthly total particulate matter (TPM) emissions from landscape fires for 725 

2013 to 2018, as derived using the FREMv2 methodology (blue) applied to the Meteosat FRP-726 

PIXEL product of Wooster et al. (2015). Corresponding monthly TPM emissions are shown from 727 

GFEDv4.1s (green), GFASv1.2 (purple), and the FEERv1.0 coefficients applied to the GFASv1.2 728 

(red) and SEVIRI FRE data (yellow).  729 
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The five inventories of Figure 7 show similar temporal patterns of TPM emission, with clearly 730 

identifiable NHAf and SHAf burning seasons and annual peaks and minima occurring in the same 731 

years. Like Mota and Wooster (2018), FREMv2 predicts an earlier peak in TPM emissions over 732 

SHAf than do the other inventories. Peak smoke emission in FREMv2 occurs in July in every year 733 

but one, whereas in all other inventories (except FEER-SEVIRI, which has peak TPM split equally 734 

between July and August) this occurs in August. A potential cause may be the splitting of high 735 

and low woodland savanna biomes in FREMv2.  High-woodland savanna is mainly concentrated 736 

just below the equator (Fig. 3b), in a region that burns far earlier than the dominant southern 737 

African fire season. Therefore, due to FREMv2 discriminating between high and low woodland 738 

savanna and grasslands, the dominant 𝐶𝑒 values applied to the SEVIRI FRP-PIXEL data vary not 739 

only by biome, but also over time due to the seasonal progression of fire activity across the 740 

continent. Due to the FREMv2 biome map being based on land cover and VCF data from 2015, 741 

changes in land cover in the 2013 to 2018 period are not accounted for. However, canopy 742 

changing crown fires are very rare in low and high-woodland savanna, shrublands and grasslands 743 

– which are dominated by surface fires (Van Wilgen et al., 1990; Heil et al., 2010; Van Leeuwen 744 

et al., 2014) - and so fire-related changes in tree canopy cover is very limited in these biomes 745 

(Zhou et al., 2019). However, year-to-year anthropogenically driven landcover changes could 746 

impact the methodology and it may become more important to account for such changes within 747 

our FREMv2 coefficients as this increases. Future FREM versions will include more regular 748 

landcover updates in the mapped emissions coefficient estimation. 749 

The similar TPM estimates generated by FEER-GFASv1.2 (which uses MODIS FRP) and FEER-750 

SEVIRI (and FREMv2, which both use SEVIRI FRP), compared to the far lower values of 751 

GFASv1.2 (also based on MODIS FRP) indicate that the higher TPM emissions of the top-down 752 

approaches stem dominantly from the 𝐶𝑒 values applied to FRP measures, and less so from the 753 



38 

 

source of the FRP observations used. That said, in the case of FEER-GFASv1.2 it is noteworthy 754 

that whilst the FEER 𝐶𝑒  values are derived from use of direct MODIS FRP observations, the 755 

MODIS FRP data used within GFAS undergoes several stages of processing and thus presents  756 

different FRP values to those originally provided by the MODIS MOD14/MYD14 products (Kaiser 757 

et al., 2012). The similarity of the TPM emissions estimates generated by FREMv2 and the two 758 

FEER inventories supports the case that higher emissions estimates come mainly from the 759 

magnitude of 𝐶𝑒  values, since the FREMv2 and FEER 𝐶𝑒 values agree well in general (Table 1 760 

and Fig. 8). Future work will evaluate the quality of the final TPM emissions generated by FREMv2 761 

by placing them as inputs to atmospheric chemical transport models and comparing the resulting 762 

aerosol fields to independent data such as AERONET and surface PM2.5 measures.   763 

We generate 2016 FREMv2 TPM emissions at 0.05˚ across the African continent, a spatial 764 

resolution ×5, ×2 and ×2 times higher than offered by GFEDv4.1s, GFASv1.2 and FEER-765 

GFASv1.2 respectively.  We present these for Africa along with a magnified 20×20˚ region in 766 

Figure 8. The FEER 𝐶𝑒 product with its 1˚ grid cell resolution can, in theory, be applied to the 767 

native SEVIRI FRP-PIXEL product as has been done for the FEER-SEVIRI dataset shown in 768 

Figure 8. However, the spatial resolution of the FEER 𝐶𝑒  product is 20 times lower than that of 769 

the FRP observations, so these FEER-SEVIRI derived emissions estimates do not account for 770 

the finer detail inter-biome spatial variations that FREMv2 does. Additionally, the appropriateness 771 

of applying FEER 𝐶𝑒 values, which are derived from ‘raw’ MODIS FRP data, to ‘raw’ SEVIRI FRP 772 

data is unclear, particularly when their quite different minimum-FRP detection limits are 773 

considered.  774 

In general, the spatial distribution of the African TPM emissions is somewhat similar across all 775 

five inventories. In line with the temporal trends of Fig. 7, we see notably higher TPM totals for 776 

the three top-down emission inventories, particularly FREMv2. The high spatial resolution of 777 



39 

 

FREMv2 provides more precisely detailed spatial information on smoke emissions than do the 778 

other inventories, which maybe relevant for supporting improved local scale air quality modelling. 779 

In FREMv2, deriving separate 𝐶𝑏𝑖𝑜𝑚𝑒  coefficients for high- and low-woodland savanna results in 780 

distinctly higher total TPM emissions in north Angola/south D.R.C. compared to the other 781 

inventories. This region is dominated by high-woodland savanna (Fig. 3b), and  demonstrates the 782 

impact of the more spatially resolved biome classification used in FREMv2. 783 
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(1.5 columns) Figure 8. Total particulate matter (TPM) emission density (g.m-2) across Africa for 785 

2016 as determined by GFEDv4.1s (0.25° grid cells), GFASv1.2 (0.1° grid cells), FEERv1.0-786 

GFASv1.2 (0.1° grid cells), FEERv1.0-SEVIRI (0.05° grid cells), and FREMv2 inventory derived 787 

herein (0.05° grid cells). The red 20° × 20° region outlined in the top left GFED plot is shown 788 

magnified for each inventory in the right-hand column. 789 

The distribution of biomes across NHAf and SHAf has a significant impact on the contribution 790 

each biome has to the total TPM emissions of each hemisphere (Fig. 9). Both closed canopy 791 

forest and grassland show a similar percentage contribution to total TPM emissions in each 792 

hemisphere, with mean annual emissions totals within 2% of each other and a combined mean 793 

contribution of 17% and 20% of total TPM emissions for NHAf and SHAf respectively. In NHAf, 794 

fires from managed lands and shrublands contribute most to annual TPM emissions, though their 795 

fractional contributions exhibit significant seasonal variations (45% and 38% across the year 796 

respectively). In SHAf these two biomes show a narrower range across the year and an overall 797 

lower contribution to total TPM emissions, which are instead dominated by high-woodland 798 

savanna fires between May and November. In both NHAf and SHAf, the highest monthly 799 

contribution of emissions from managed lands occurs outside the primary burning season (Nov-800 

April in NHAf and July-Sept in SHAf), potentially due to deliberate post-harvest or end-of-growing 801 

season burning (Yevich and Logan, 2003). 802 

 803 
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  804 

(1.5 columns) Figure 9. Mean monthly contribution (%) of fires to total particulate matter (TPM) 805 

emissions in each of the six FREMv2 biomes from 2013 to 2018 in (a) Northern Hemisphere Africa 806 

and (b) Southern Hemisphere Africa.   807 

5.2 Trace gas and total carbon emissions  808 

As with FREMv1 (Mota and Wooster, 2018), trace gas emissions estimates are derived from 809 

FREMv2 outputs via application of the standard gaseous emission factors (EFs) of Andreae and 810 

Merlet (2001), which are also used in GFEDv4.1s, GFASv1.2 and FREMv1. Although EF updates 811 

to Andreae and Merlet (2001) have recently become available (Andreae, 2019), we maintain the 812 
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use of the original EFs for consistency and ease of comparison with the other fire emissions 813 

databases. Unlike the bottom-up approaches in which the EFs are applied to total fuel 814 

consumption estimates, in the FREM methodology trace gas emissions are estimated directly 815 

from the observed FRP or FRE values using a set of trace gas emissions coefficients. The 816 

approach is similar to that of Huijnen et al. (2016) who estimated CO2 and CH4 emissions from 817 

fire-emitted CO estimates. The trace gas emission coefficients in FREM are calculated using the 818 

EF ratios between the relevant gas and TPM, which are then multiplied by the TPM 𝐶𝑏𝑖𝑜𝑚𝑒  values 819 

presented in Section 4.4 (Table 1) (Mota and Wooster, 2018): 820 

𝐶𝑔𝑎𝑠
𝑏𝑖𝑜𝑚𝑒  [ 𝑔. 𝑀𝐽−1] =

𝐸𝐹𝑔𝑎𝑠
𝑏𝑖𝑜𝑚𝑒  [𝑔. 𝑘𝑔 −1]

𝐸𝐹𝑇𝑃𝑀
𝑏𝑖𝑜𝑚𝑒  [𝑔. 𝑘𝑔 −1]

∙ 𝐶𝑇𝑃𝑀
𝑏𝑖𝑜𝑚𝑒  [𝑔. 𝑀𝐽−1] 821 

These coefficients are applied directly to the geostationary FRP or FRE data to estimate the trace 822 

gas emissions. Trace gas emissions coefficient derivation for each SEVIRI pixel used an area-823 

weighted mean of the biome-specific EF ratios (similarly to 𝐶𝑒  product derivation in Section 4.3), 824 

thereby generating an emission coefficient map for each gas. The biomes used by Andreae and 825 

Merlet (2001) to report their EF values are less detailed than those of FREMv2, resulting in all but 826 

the closed canopy forest biome using the same EF values. This relative lack of EF detail affects 827 

all the fire emission inventories compared herein, and points to a potential need for more research 828 

focused on more finely detailed EFs with respect to vegetation type.  829 

Final monthly CO2, CH4 and CO emissions are shown in Figure 10, which exhibit a similar 830 

seasonal pattern to those of TPM (Fig. 7), and mean annual totals are shown in Table 2. Direct 831 

retrieval of CO atmospheric concentrations is carried out using data from instruments such as 832 

MOPITT (Worden et al., 2010) and TROPOMI (Veefkind et al., 2012), and comparisons of 833 

GFEDv2 and GFEDv3 CO emissions with MOPITT-derived CO have previously suggested that 834 

GFED underestimates fire emitted CO over Africa by up to 50% (Chevallier et al., 2009; Kopacz 835 
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et al., 2010; Pechony et al., 2013). Comparisons of the different GFED versions shows that for 836 

NHAf and SHAf, GFEDv4.1s CO emissions were around 30% lower than GFEDv3 (Van Der Werf 837 

et al., 2017), pointing to significant underestimation of CO emissions by GFEDv4.1s over Africa, 838 

similarly to that of TPM. Studies showing African burned area to be far higher when mapped using 839 

20 m Sentinel-2 MSI imagery than with the 500 m MCD64A1 product used in GFED supports this 840 

idea (Tsela et al., 2014; Hawbaker et al., 2017; Roteta et al., 2019). The substantially higher CO 841 

emissions provided by FREMv2 and by the other top down approaches compared herein may 842 

therefore be more realistic than the lower values provided by the bottom up inventories. 843 
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 844 

(2 columns) Figure 10. Monthly total emissions (Tg) of (a) CO2; (b) CO; and (c) CH4 for African 845 

landscape fires as estimated by FREMv2 (blue) between 2013 and 2018. Corresponding values 846 

from GFEDv4.1s (green), GFASv1.2 (purple), FEERv1.0-GFASv1.2 (red) and FEERv1.0-SEVIRI 847 

(yellow) are shown for comparison.  848 

 849 
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FREMv2 emissions of total carbon were calculated from the summed carbon contents of the CO2, 850 

CO and CH4 emissions, which typically contribute more than 99% of total carbon release in 851 

savanna/grassland and tropical forest fires (Andreae, 2019). Estimates of total fuel consumption 852 

in terms of dry matter consumed (DMC) were then calculated on the assumption of a 50% DM 853 

fuel carbon content (Van Der Werf et al., 2010; 2017), with mean annual totals reported in Table 2.    854 

 Table 2.  Mean annual total carbon and trace gas emissions for 2013 to 2018, along with dry 855 

matter consumed (DMC) totals (Tg.yr-1), for Northern and Southern Hemisphere Africa as 856 

estimated by the different fire emissions inventories compared herein including FREMv2 (final 857 

column). 858 

 859 

 860 

  861 

5.3 Fuel Consumption per unit area (𝐹𝑐) from 20 m Burnt Area 862 

As discussed in Section 2.1, poorly constrained fuel load and combustion completeness 863 

parameters contribute a significant part of the uncertainty in bottom up estimates of fuel 864 

consumption per unit area (𝐹𝑐 , in kg.m-2), and unmapped small burns missed by the 500 m 865 
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MCD64A1 MODIS burned area (BA) product adds further uncertainty and possibly bias into the 866 

final derived fuel consumptions (Reid et al., 2009; Vermote et al., 2009; Van Leeuwen and Van 867 

Der Werf, 2011; Tsela et al., 2014; Hawbaker et al., 2017; Roteta et al., 2019). As first 868 

demonstrated by Mota and Wooster (2018), it is however possible to generate FREM-derived 869 

estimates of 𝐹𝑐 through an inversion of the original Seiler and Crutzen (1980) BA-based approach 870 

to fire carbon emissions estimation. The 500 m MODIS MCD64A1 BA product used in GFED (Van 871 

Der Werf et al., 2017) and in the calibration of GFAS (Kaiser et al., 2012) was used in mapping 872 

of 𝐹𝑐 across southern Africa in FREMv1 (Mota and Wooster, 2018), but here we use  the far higher 873 

spatial resolution (20 m) FireCCISFD11 African BA product for 2016 that has been shown to map 874 

up to 60% more BA in some areas through the detection of far smaller burn patches (Roteta et 875 

al., 2019). We mapped 𝐹𝑐 across Africa at 0.25° (Fig. 11a) by gridding the FREMv2 dry matter 876 

consumed (DMC) data for 2016 (Section 5.2) and dividing this by the matching BA calculated 877 

from the approximately 1.5×106 potential FireCCISFD11 20 m pixels falling in each 0.25° grid cell. 878 

Note that these per-pixel 𝐹𝑐 values apply only to the burned area patch inside a given pixel, and 879 

not the 0.25° pixel as a whole. Compared to 𝐹𝑐 provided by the model-based GFEDv4.1s (Figure 880 

11b), around half the grid cells show a significantly higher 𝐹𝑐 value in FREMv2, which is to be 881 

expected due to the overall higher carbon emissions of the former (Fig. 10 and Table 2), and for 882 

the remaining cells the two inventories provide similar values (see difference map in Appendix C). 883 

There are some unprocessed tiles in the FireCCISFD11 product (see Roteta et al. (2019)), 884 

resulting in a small minority of 0.25° grid cells having unreported or unrealistically high 𝐹𝑐 values 885 

in excess of 10 kg.m-2. Avoiding use of these few anomalous cells, we derived biome-specific 886 

𝐹𝑐 frequency distributions and statistics based on those cells where the biome covered at least 887 

80% of the cell area and where more than 5% of the cell burned (Figure 11c).  Distributions are 888 

heavy-tailed and show a spatial variability somewhat similar to that derived by Roberts et al. 889 

(2011) using an alternative FRE and BA based approach. There are relatively few fuel 890 
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consumption databases derived from field measurements, but van Leeuwen et al. (2014) provides 891 

summary statistics for African savannah burns and our low woodland savannah and grassland 892 

averages listed in Figure 11c are very close to their 0.34 kg.m-2 mean.  893 

 894 
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   895 

(2 columns) Figure 11. Fuel consumption per unit area (𝐹𝑐, kg.m-2) mapped at 0.25˚ from (a) 2016 896 

FREMv2 dry matter consumed (DMC) totals and the FireCCISFD11-estimated burned area, and 897 

(b) GFEDv4.1s. (c) Per-biome FREMv2 𝐹𝑐 frequency distributions and derived means, medians 898 

and standard deviations. Note that 𝐹𝑐 values in (a) apply only to the burned area patch inside a 899 

given pixel, and not the 0.25° pixel as a whole. 900 

6. SUMMARY AND CONCLUSIONS  901 

 We have provided significant advances to the fully top-down ‘Fire Radiative Energy Emissions’ 902 

(FREM) landscape fire emissions methodology of Mota and Wooster (2018), and have used this 903 

to develop the highest spatio-temporal resolution African landscape fire emissions inventory 904 

currently available. The approach will form the basis of a new fire emissions product to be 905 

delivered by the EUMETSAT Land Surface Analysis Satellite Application Facility 906 

(http://landsaf.meteo.pt), and will in future be extended back to 2004 using the full Meteosat 907 

SEVIRI FRP archive already exploited to study African fires by Roberts et al. (2018b). 908 

 909 

The FREM approach bypasses the total fuel consumption step of ‘bottom up’ fire emissions 910 

methodologies, recognised as a key source of uncertainty (Reid et al., 2009; Vermote et al., 2009; 911 

Van Leeuwen and Van Der Werf, 2011). The method generates smoke emissions estimates 912 

directly from satellite retrievals of FRP and relies on a set of biome-dependent smoke emission 913 

coefficients (𝐶𝑏𝑖𝑜𝑚𝑒 , g.MJ-1) that are here derived from almost one thousand matchups between 914 

Meteosat SEVIRI Fire Radiative Energy (FRE) estimates (Wooster et al., 2015) and in-plume total 915 

particulate matter (TPM) estimates made using the 1 km MAIAC AOD product (Lyapustin et al., 916 

2018). Our FREMv2 methodology introduces significant improvements to all stages of the original 917 

FREM approach, and most particularly those associated with the prior use of the 10 km MODIS 918 

http://landsaf.meteo.pt/
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MxD04 AOD product for TPM estimation. Issues with use of MxD04 include, masking of thick 919 

smoke as cloud (Levy et al., 2013; Raffuse et al., 2013; Remer et al., 2013; Livingston et al., 920 

2014), the impact of sensor VZA dependence on AOD retrieval (Sayer et al., 2015; Mhawish et 921 

al., 2019), and the products’ relatively low spatial resolution making plumes harder to discriminate 922 

and requiring a focus on the largest fires when deriving the FREM coefficients (Lyapustin et al., 923 

2011; Raffuse et al., 2013; Remer et al., 2013; He et al., 2017). Our new use of the 1 km MAIAC 924 

AOD product of Lyapustin et al. (2018) addresses each of these issues, and we also derive a 925 

more up to date and detailed fire-relevant mapping of pan-African biomes using the CCI Land 926 

Cover 2015 (ESA, 2017) and Landsat-derived percentage tree cover information. The latter 927 

enables improved specification of the smoke emission coefficients in the woodland savanna 928 

biome, which annually contributes the most to Africa’s fire radiative energy release.  Expansion 929 

of the FREMv2 inventory to include both NHAf and SHAf enabled many more FRE-AOD matchup 930 

fires to be included in the smoke emissions coefficient generation compared to FREMv1, including 931 

many more small fires whose plumes can be discriminated using the 1 km MAIAC AODs. This 932 

also enabled localised values of plume background AOD to be selected in a more representative 933 

manner than in FREMv1 (Mota and Wooster, 2018), and the impact of relative humidity on our 934 

use of smoke mass extinction coefficient values was also assessed during our methodology.  935 

 936 

The evolutions reported herein result in a set of FREMv2 biome-dependent smoke emission 937 

coefficients (𝐶𝑏𝑖𝑜𝑚𝑒) for total particulate matter 10% to 48% lower than those of FREMv1 (Mota 938 

and Wooster, 2018). The FREMv2 coefficients are now closer to those of another top-down FRP-939 

based emissions methodology (FEER; Ichoku and Ellison 2014) compared to those of FREMv1, 940 

particularly for the low-woodland savanna, shrubland and grassland biomes which are each 941 

considerable sources of smoke emissions (Table 1). Some significant differences between the 942 

coefficients in FREMv2 and FEER do remain, but mostly in regions showing relatively few fires 943 
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and thus which are rather poorly sampled by FREMv2 fire matchups. A significant advantage of 944 

FREMv2 over FEER is that the spatial mapping of the final 𝐶𝑒  smoke emission coefficients across 945 

Africa is easily derived from the five FREMv2 𝐶𝑏𝑖𝑜𝑚𝑒  values reported in Table 1 and the SEVIRI-946 

pixel area biome coverage, meaning that  FREMv2 𝐶𝑒  updates related to landcover changes can 947 

be easily calculated using only an updated landcover map. In the FEER methodology of Ichoku 948 

and Ellison (2014), 𝐶𝑒  are mapped on a 1˚ grid cell basis from fire matchups observed within each 949 

cell using more than a decade of data from the MODIS record, and landcover change related 950 

updates thus require complete collection of a set of new fire matchups and re-derivation of 𝐶𝑒 .  951 

 952 

Whilst our FREMv2 approach addresses the principal uncertainties and biases in the original 953 

FREMv1 (and indeed the FEER) methodologies, there remain sources of uncertainty and 954 

limitations that will benefit from further investigation. These include:  955 

i) Elucidation of the effect of small fires having an FRP below the minimum geostationary 956 

active fire detection limit, and the extent to which these are now accounted for via the 957 

ability to include smaller fire matchups during the 𝐶𝑏𝑖𝑜𝑚𝑒 derivation via use of the 1km 958 

MAIAC AOD product (Section 5.1) 959 

ii) Further investigation of smoke mass extinction coefficients (𝛽𝑒) used to estimated column-960 

integrated TPM from AOD, and the relevance of smoke ageing over the period relevant 961 

here (typically < 8 hrs). 962 

iii) Assessment of the impact of the exponential growth of the geostationary sensor pixel area 963 

far from nadir, which amplifies the non-detection of low FRP fires by raising the minimum 964 

FRP detection limit (Wooster et al., 2015). 965 

iv) Improvement of the smoke emissions coefficients for closed canopy and managed land, 966 

which are currently derived from a relatively small number of matchup fires compared to 967 

the other biome classes.  968 
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  969 

With regards to point (iii), in the scope of any future pan-tropical and mid-latitude fire emissions 970 

product this issue can be partly overcome by applying the FREMv2 methodology to a suite of 971 

geostationary satellite FRP data, to derive a global 𝐶𝑒  product which could then be applied to the 972 

relevant local geostationary FRP product. For example, using a GOES-derived FRP product (Xu 973 

et al., 2010) over eastern South America rather than the very high view zenith angle FRP data 974 

provided by Meteosat SEVIRI. High latitudes prove more problematic for geostationary systems, 975 

though Xu et al. (2010) did show that the high FRPs typical of crown fires in northern Canada 976 

does, to some extent, offset increased northern latitude minimum FRP detection limits, and the 977 

trade-off requires further investigation. With respect to (iii) and (iv), an increased number of fire 978 

matchups could address both, by allowing for enough samples to stratify smoke emissions 979 

coefficients by VZA as well as by biome. Including multiple years of data and focusing on 980 

improving automation of the fire match-up process, for example through use of the MAIAC QA 981 

product’s ‘smoke mask’ (Lyapustin et al., 2012) and machine learning techniques, will help 982 

increase the range and efficiency of the matchup process and thus the number of matchups used. 983 

 984 

We compared our FREMv2 African biomass burning emission inventory data to those of GFAS, 985 

GFED and two versions of FEER (FEER-GFASv1.2 and FEER-SEVIRI). FREMv2 provides the 986 

highest levels of spatio-temporal detail (~0.05˚ spatially, updated 4 times per hour) since it can 987 

exploit the native geostationary FRP data resolutions. Monthly FREMv2 TPM emission totals 988 

agreed well with both FEER-GFASv1.2 and FEER-SEVIRI, and are significantly higher than those 989 

of GFEDv4.1s and GFASv1.2 which past studies have suggested tend to underestimate NHAf 990 

and SHAf aerosol emissions (Kaiser et al., 2012; Tosca et al., 2013; Ichoku and Ellison, 2014; 991 

Reddington et al., 2016, Chevallier et al., 2009; Kopacz et al., 2010; Pechony et al., 2013). Trace 992 

gas and carbon emissions are similarly also higher than for GFEDv4.1s and GFASv1.2, but similar 993 
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to those of FEER. Recent development of a 20 m African burned area (BA) product 994 

(FireCCISFD11; Roteta et al., 2019) has shown a potential reason for this, because the MODIS 995 

MCD64A1 500 m BA product, upon which GFED fire emissions estimates are based, 996 

underestimates BA by as much as 50% in some regions of Africa, and GFAS is also indirectly 997 

dependant on this BA product through its calibration against GFED (Kaiser et al., 2012).  998 

 999 

Using the FREMv2 carbon emissions estimates we derive estimates of dry matter consumed 1000 

(DMC) through an inversion of the Seiler and Crutzen (1980) approach, and dividing these by the 1001 

FireCCISFD11 20 m BA product we deliver one of the first data-driven mappings of fuel 1002 

consumption per unit area (𝐹𝑐) across Africa, which we find produces higher 𝐹𝑐 in many areas 1003 

compared to the modelled-based GFEDv4.1s (Figure 11). 1004 

 1005 

Future developments advancing the FREM approach further will include its application to FRP 1006 

data from other geostationary satellites based on the same baseline algorithm applied to generate 1007 

the Meteosat FRP-PIXEL product used herein (Roberts et al., 2015; Wooster et al., 2015), for 1008 

example data from Himawari (Xu et al., 2017), Meteosat Indian Ocean and GOES (Xu et al., 1009 

2010). Since direct validation of large-scale fire emissions estimates remains challenging, future 1010 

developments will also use the final FREMv2 smoke emissions estimates within atmospheric 1011 

models to generate trace gas concentration and AOD fields for comparison to ground-based and 1012 

EO-derived measures, exploiting a validation strategy similar to that previously used for 1013 

evaluating other large scale fire emissions estimates (e.g. Baldassarre et al., 2015). 1014 
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7. APPENDIX  1032 

Appendix A - CCI landcover classes and VCF Tree cover % assigned to each FREMv2 biome.  1033 

 1034 

https://landsaf.ipma.pt/en/


55 

 

 1035 

Appendix B - Mean percentage contribution of different biomes to the fire radiative energy (FRE) 1036 

released by fires between 2013 and 2018. On average woodland savanna fires contribute the 1037 

greatest total FRE throughout the year, except for in November, and this means their 1038 

determination is especially important for overall smoke emission estimate accuracy. The 1039 

importance and abundance of fires in this biome is reflected in the high numbers of fire-plume 1040 

matchups identified for both the low- and high- woodland savanna biomes (Figure 5). 1041 

  1042 

 1043 

  1044 
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Appendix C – Percentage difference in fuel consumption per unit area (𝐹𝑐, kg.m-2) 1045 

calculated at a 0.25˚ resolution for 2016 African fires by FREMv2 (Figure 11a) and 1046 

GFEDv4.1s (Figure 11b). The former provides significantly higher values in around half 1047 

of the 0.25° grid cells. Figure 11c provides the per-biome 𝐹𝑐 statistics coming from 1048 

FREMv2. 1049 

 1050 

  1051 
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 1426 

 1427 

 1428 

9. LIST OF FIGURE CAPTIONS 1429 

 1430 

Figure 1.  1431 

Example plume from a fire burning north of the Save River (Mozambique), imaged on the 1432 

morning of 8th October 2015 at 11:15 UTC via the Aqua satellites MODIS sensor (at a VZA 1433 

40.6°). (a) 10 km MxD04_DB AOD product; (b) MxD04_DB field showing the number of 1 km 1434 

reflectance pixels (out of 100) used to retrieve each 10 km AOD pixel value; (c) 500 m MODIS 1435 

Corrected Reflectance (True Colour) image; and (d) 1 km MCD19 MAIAC AOD product derived 1436 

from the same MODIS imagery shown in (c). The colour scale shown in (d) is also relevant for 1437 

(a). The plume is far more easily distinguished in the 1 km than the 10 km AOD product and 1438 

better matched to the smoke spatial distribution shown in the MODIS true colour image of (c). 1439 

Unlike the 1 km AOD product of (d), the 10 km MxD04_BD AOD data of (a) rather poorly 1440 
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defines the plume bounds and some pixels in this product are heavily impacted by the cloud 1441 

mask which removes AOD pixels over the thickest smoke (b). Some erroneous masking does 1442 

occur in the 1 km product of (d), shown as the black pixels, but this is minimal and addressed 1443 

via the interpolation described in Section 4.3. 1444 

 1445 

Figure 2.  1446 

(a) Estimated fire emitted Total Particulate Matter (TPM) in 635 individual smoke plumes, as 1447 

derived from the 10 km MxD04_DB AOD product (orange) and the 1 km MAIAC AOD product 1448 

(blue), shown as a function of sensor view zenith angle (VZA). (b) Direct comparison of the 1449 

matching MxD04_DB and MAIAC-derived TPM values for each plume, restricted to plumes 1450 

observed at VZA ≤ 20˚. TPM is calculated from AOD using the equations presented in Ichoku 1451 

and Kaufman (2005) as described in Section 4.4. 1452 

 1453 

Figure 3.  1454 

(a) Mapped percentage tree cover above 5 metres, as determined from the 30 m spatial resolution 1455 

Landsat Vegetation Continuous fields (VCF) product for 2015. (b) FREMv2 biome map for Africa 1456 

derived from the 2015 ESA CCI Landcover map (itself derived from 300 m PROBA-V imagery) 1457 

and the Landsat VCF product. Biomes were aggregated from the 36 land cover types defined in 1458 

the original CCI map, with the two woodland savanna biomes separated using (a) (see Appendix 1459 

A).  1460 

 1461 

Figure 4.  1462 
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Example region of interest (ROI) containing the fire shown in Figure 1 along with matchup active 1463 

fire pixels (white triangles) from the Meteosat FRP-PIXEL product detected between midnight 1464 

and the MODIS overpass time. (a) MAIAC 1km AOD and SEVIRI active fire (AF) pixels; (b) 1465 

histogram thresholding to discriminate the plume from the surrounding ‘ambient’ background. 1466 

(c) SEVIRI AF pixels detected within the convex hull of the plume are considered to come from 1467 

the same ‘fire’ that produced the smoke plume. The fire radiative energy (FRE) of the causal fire 1468 

is then calculated from these observations and used to match to the AOD-derived total 1469 

particulate matter (TPM) (see Figure 5). 1470 

 1471 

Figure 5.  1472 

Smoke emission coefficients (𝐶𝑏𝑖𝑜𝑚𝑒; in g.MJ-1) for the six African fire-affected biomes defined in 1473 

Section 4.1, each derived from the slope of an orthogonal distance regression (ODR) between 1474 

data on fire-emitted total particulate matter (TPM) and matching fire radiative energy (FRE). Grey 1475 

shaded area defines the 95% probability prediction interval of the ODR-derived slope. Each 1476 

scatterplot is accompanied by an illustrative insert that depicts the typical landcover for the biome 1477 

as seen in Google Earth (example locations are Closed Canopy Forest, 10.359° S, 19.086° E; 1478 

Grassland 21.180° S, 19.560° E; Managed Land 10.495° N, 7.586° E; Low-Woodland Savanna 1479 

7.085° N, 27.095° E, High-Woodland Savanna 12.523° S, 23.323° E; Shrubland 23.055° N, 1480 

22.242° E). 1481 

 1482 

Figure 6.  1483 

(a) FREMv2 smoke emission coefficient (𝐶𝑒) mapped at 0.05˚; (b) the matching 1˚ FEER 𝐶𝑒 1484 

product; and (c) the difference. In (c), FEER grid cells whose value was derived from gap-filling 1485 

or which were calculated from less than 15 samples were removed (see Ichoku and Ellison 1486 
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(2014) for full details). (d) Shows the spatial distribution of the fire matchups used to derive the 1487 

FREMv2 𝐶𝑏𝑖𝑜𝑚𝑒  values of Figure 5. 1488 

 1489 

Figure 7.  1490 

Monthly total particulate matter (TPM) emissions from landscape fires for 2013 to 2018, as 1491 

derived using the FREMv2 methodology (blue) applied to the Meteosat FRP-PIXEL product of 1492 

Wooster et al. (2015). Corresponding monthly TPM emissions are shown from GFEDv4.1s 1493 

(green), GFASv1.2 (purple), and the FEERv1.0 coefficients applied to the GFASv1.2 (red) and 1494 

SEVIRI FRE data (yellow). 1495 

 1496 

Figure 8.  1497 

Total particulate matter (TPM) emission density (g.m-2) across Africa for 2016 as determined by 1498 

GFEDv4.1s (0.25° grid cells), GFASv1.2 (0.1° grid cells), FEERv1.0-GFASv1.2 (0.1° grid cells), 1499 

FEERv1.0-SEVIRI (0.05° grid cells), and FREMv2 inventory derived herein (0.05° grid cells). The 1500 

red 20° × 20° region outlined in the top left GFED plot is shown magnified for each inventory in 1501 

the right-hand column. 1502 

Figure 9.  1503 

Mean monthly contribution (%) of fires to total particulate matter (TPM) emissions in each of the 1504 

six FREMv2 biomes from 2013 to 2018 in (a) Northern Hemisphere Africa and (b) Southern 1505 

Hemisphere Africa.   1506 

 1507 
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Figure 10.  1508 

Monthly total emissions (Tg) of (a) CO2; (b) CO; and (c) CH4 for African landscape fires as 1509 

estimated by FREMv2 (blue) between 2013 and 2018. Corresponding values from GFEDv4.1s 1510 

(green), GFASv1.2 (purple), FEERv1.0-GFASv1.2 (red) and FEERv1.0-SEVIRI (yellow) are 1511 

shown for comparison.  1512 

 1513 

Figure 11.  1514 

Fuel consumption per unit area (𝐹𝑐, kg.m-2) mapped at 0.25˚ from (a) 2016 FREMv2 dry matter 1515 

consumed (DMC) totals and the FireCCISFD11-estimated burned area, and (b) GFEDv4.1s. (c) 1516 

Per-biome FREMv2 𝐹𝑐 frequency distributions and derived means, medians and standard 1517 

deviations. Note that 𝐹𝑐 values in (a) apply only to the burned area patch inside a given pixel, 1518 

and not the 0.25° pixel as a whole. 1519 

 1520 

 1521 

 1522 

Appendix A - CCI landcover classes and VCF Tree cover % assigned to each FREMv2 biome.  1523 

 1524 

Appendix B - Mean percentage contribution of different biomes to the fire radiative energy (FRE) 1525 

released by fires between 2013 and 2018. On average woodland savanna fires contribute the 1526 

greatest total FRE throughout the year, except for in November, and this means their 1527 

determination is especially important for overall smoke emission estimate accuracy. The 1528 

importance and abundance of fires in this biome is reflected in the high numbers of fire-plume 1529 

matchups identified for both the low- and high- woodland savanna biomes (Figure 5). 1530 
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 1531 

Appendix C – Percentage difference in fuel consumption per unit area (𝐹𝑐, kg.m-2) 1532 

calculated at a 0.25˚ resolution for 2016 African fires by FREMv2 (Figure 11a) and 1533 

GFEDv4.1s (Figure 11b). The former provides significantly higher values in around half 1534 

of the 0.25° grid cells. Figure 11c provides the per-biome 𝐹𝑐 statistics coming from 1535 

FREMv2. 1536 

 1537 


