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	26	

Abstract	27	

Intrahepatic	cholestasis	of	pregnancy	(ICP)	is	characterized	by	elevated	maternal	circulating	bile	acid	28	

levels	and	associated	dyslipidemia.	ICP	leads	to	accumulation	of	bile	acids	in	the	fetal	compartment	29	

and	 the	 elevated	 bile	 acid	 concentrations	 are	 associated	 with	 an	 increased	 risk	 of	 adverse	 fetal	30	

outcomes.	The	 farnesoid	X	 receptor	agonist,	obeticholic	acid	 (OCA)	 is	efficient	 in	 the	 treatment	of	31	

cholestatic	conditions	such	as	primary	biliary	cholangitis.	We	hypothesized	that	OCA	administration	32	

during	 hypercholanemic	 pregnancy	 will	 improve	 maternal	 and	 fetal	 bile	 acid	 and	 lipid	 profiles.	33	

Female	C57BL/6J	mice	were	 fed	either:	a	normal	chow	diet,	a	0.5%	cholic	acid	 (CA)-supplemented	34	

diet,	a	0.03%	OCA-supplemented	diet,	or	a	0.5%	CA	+	0.03%	OCA-supplemented	diet	for	1	week	prior	35	

to	 mating	 and	 throughout	 pregnancy	 until	 euthanization	 on	 day	 18.	 The	 effects	 of	 CA	 and	 OCA	36	

feeding	 on	maternal	 and	 fetal	morphometry,	 bile	 acid	 and	 lipid	 levels,	 and	 cecal	microbiota	were	37	

investigated.	OCA	administration	during	gestation	did	not	alter	the	maternal	or	fetal	body	weight	or	38	

organ	morphometry.	OCA	treatment	during	hypercholanemic	pregnancy	reduced	bile	acid	 levels	 in	39	

the	 fetal	 compartment.	 However,	 fetal	 dyslipidemia	 was	 not	 reversed,	 and	 OCA	 did	 not	 impact	40	

maternal	bile	acid	levels	or	dyslipidemia.	In	conclusion,	OCA	administration	during	gestation	had	no	41	

apparent	 detrimental	 impact	 on	 maternal	 or	 fetal	 morphometry	 and	 improved	 fetal	42	

hypercholanemia.	As	high	serum	bile	acid	concentrations	in	ICP	are	associated	with	increased	rates	43	

of	 adverse	 fetal	 outcomes,	 further	 investigations	 into	 the	 potential	 use	 of	OCA	 during	 cholestatic	44	

gestation	are	warranted.		45	
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	46	

New	and	noteworthy	47	

We	used	a	mouse	model	of	gestational	hypercholanemia	to	 investigate	the	use	of	obeticholic	acid	48	

(OCA),	a	potent	FXR	agonist,	as	a	treatment	for	the	hypercholanemia	of	 intrahepatic	cholestasis	of	49	

pregnancy	 (ICP).	 The	 results	 demonstrate	 that	OCA	 can	 improve	 the	 fetal	 bile	 acid	 profile.	 This	 is	50	

relevant	 not	 only	 to	women	with	 ICP,	 but	 also	 for	women	who	 become	 pregnant	while	 receiving	51	

OCA	 treatment	 for	 other	 conditions	 such	 as	 primary	 biliary	 cholangitis	 and	 non-alcoholic	52	

steatohepatitis. 53	

	 	54	
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Introduction	55	

Intrahepatic	 cholestasis	 of	 pregnancy	 (ICP)	 is	 a	 cholestatic	 condition	 that	 affects	 0.4-2.2%	 of	56	

pregnancies	in	North	America	and	Western	Europe,	but	is	more	common	in	Chile	and	Bolivia	where	57	

it	can	affect	1.5-4%	of	pregnancies	(11,	13,	44).	ICP	typically	presents	from	30	weeks	of	gestation	and	58	

the	main	symptom	is	persistent	generalized	 itch.	Diagnosis	 is	made	in	women	with	an	elevation	of	59	

serum	 bile	 acids.	 ICP	 is	 associated	 with	 maternal	 dyslipidemia	 (12,	 27)	 and	 increased	 risk	 of	60	

gestational	diabetes	mellitus	 (26,	 27,	 49).	 The	most	 common	 treatment	 for	 ICP	 is	ursodeoxycholic	61	

acid	 (UDCA)	 administration,	 but	 not	 all	 patients	 respond	 (8,	 9,	 18)	 and	 a	 recent	 trial	 revealed	 no	62	

benefit	for	adverse	perinatal	outcomes	(8).	63	

The	adverse	fetal	outcomes	that	occur	in	ICP	include	preterm	birth,	fetal	hypoxia,	meconium-stained	64	

amniotic	fluid,	stillbirth	and	prolonged	admission	to	the	neonatal	unit	(19).	Maternal	bile	acid	levels	65	

have	 been	 reported	 to	 be	 positively	 correlated	 to	 fetal	 bile	 acid	 levels,	 and	 incremental	 rises	 in	66	

maternal	serum	bile	acids	above	40	µmol/l	are	associated	with	higher	risk	of	adverse	fetal	outcomes	67	

(7,	19,	21).	The	fetal	 lipid	profile	has	also	been	shown	to	be	affected	by	maternal	cholestasis,	with	68	

increased	cholesterol	accumulation	 in	the	 fetal	 liver	and	placenta	 in	a	mouse	model	of	gestational	69	

cholestasis	and	in	the	umbilical	cord	of	neonates	exposed	to	maternal	ICP	(41).		70	

It	has	previously	been	described	that	during	normal	pregnancy,	the	activity	of	farnesoid	X	receptor	71	

(FXR),	 the	 master	 nuclear	 receptor	 regulating	 bile	 acid	 homeostasis,	 is	 decreased	 allowing	 for	 a	72	

maternal	 pro-cholestatic	 profile	 even	during	 normal	 gestation	 (31,	 33,	 39).	However,	 it	 is	 thought	73	

that	 in	 ICP,	 the	 combination	 of	 genetic	 susceptibility,	 elevated	 reproductive	 hormones	 and	74	

environmental	factors	may	lead	to	an	exacerbation	of	the	pro-cholestatic	profile	found	in	pregnancy	75	

and	result	in	a	pathological	rise	of	bile	acid	levels	(17).		76	

In	 recent	years,	 synthetic	 FXR	agonists	have	been	developed.	 In	particular,	 the	 semi-synthetic	bile	77	

acid,	obeticholic	acid	(OCA)	has	over	100x	higher	affinity	for	FXR	than	its	most	potent	natural	ligand,	78	

chenodeoxycholic	acid	(CDCA),	and	has	been	shown	to	promote	bile	acid	efflux	and	reduce	bile	acid	79	
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synthesis	 (51).	 	 Clinical	 trials	 of	 OCA	 have	 shown	 promising	 results	 for	 the	 treatment	 of	 primary	80	

biliary	cholangitis	(PBC)	and	non-alcoholic	steatohepatitis	(NASH)	(2).		81	

In	this	study,	we	used	a	previously	established	model	of	0.5%	cholic	acid	(CA)	feeding	in	pregnancy	82	

to	mimic	 the	 hypercholanemia	 of	 ICP	 (32,	 41).	 Due	 to	 the	 key	 role	 of	 FXR	 in	 bile	 acid	 synthesis,	83	

transport	and	excretion,	as	well	as	regulation	of	lipid	metabolism,	we	hypothesized	that	activation	of	84	

FXR	by	OCA	could	improve	maternal	and	fetal	hypercholanemia	and	dyslipidemia.			 	85	
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Materials	and	methods	86	

Animal	experiments	87	

Six	to	eight-week-old	C57BL/6J	mice	were	purchased	from	Envigo,	UK	and	allowed	to	acclimatize	for	88	

one	week	before	any	experimental	procedures	were	carried	out.	All	mice	were	kept	on	a	12h/12h	89	

light/dark	 cycle	 with	 access	 to	 food	 and	 water	 ad	 libitum.	 All	 procedures	 were	 approved	 by	 the	90	

Animal	Welfare	and	Ethical	Review	Body	at	King’s	College	London	and	carried	out	according	to	the	91	

UK	Animals	(Scientific	Procedures)	Act	1986.	All	diets	were	supplied	by	Special	Diet	Services,	UK.	92	

We	 have	 previously	 shown	 that	 cholic	 acid	 (CA)	 feeding	 can	 induce	maternal	 hypercholanemia	 in	93	

mice	(32,	41).	Female	mice	were	assigned	to	either	standard	maintenance	and	breeding	diet	(CRM),	94	

referred	to	as	normal	chow	diet	(NC),	a	0.5%	CA-supplemented	CRM	diet,	a	0.03%	obeticholic	acid	95	

(Intercept	 Pharmaceuticals,	 USA)	 (OCA)-supplemented	 CRM	 diet,	 or	 a	 0.5%	 CA	 +	 0.03%	 OCA	96	

(CA+OCA)-supplemented	CRM	diet	one	week	prior	to	mating,	and	maintained	on	their	assigned	diet	97	

for	the	duration	of	the	experimental	procedures.	The	dose	of	OCA	was	selected	based	on	previously	98	

published	literature	(5),	and	was	equivalent	to	approximately	42	mg/kg/day.	Females	were	mated	to	99	

control	males	and	checked	daily	for	the	presence	of	a	copulatory	plug.	The	day	of	 identification	of	100	

the	copulatory	plug	was	considered	day	1	of	pregnancy	(D1).	Body	weight	of	pregnant	females	was	101	

measured	 on	 days	 7,	 14	 and	 18	 of	 pregnancy	 (D7,	D14,	D18).	On	D18,	 females	were	 fasted	 for	 4	102	

hours	and	euthanized	by	CO2	inhalation.	Maternal	and	fetal	sera	were	collected	and	pup	number	per	103	

litter	 was	 assessed.	 Maternal	 liver,	 subcutaneous	 white	 adipose	 tissue	 (sWAT),	 gonadal	 white	104	

adipose	 tissue	 (gWAT),	 brown	 adipose	 tissue	 (BAT),	 fetal	 and	 placental	 weight	 were	 measured.	105	

Maternal	 liver,	 terminal	 ileum,	 fetal	 liver	 and	 placenta	 were	 collected	 and	 snap-frozen.	 Non-106	

pregnant	 control	 female	 mice	 were	 maintained	 on	 the	 same	 diets	 as	 pregnant	 females	 for	 an	107	

equivalent	length	of	time	and	were	assessed	for	the	same	parameters.	108	

	109	
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Gene	expression	studies	110	

Total	 RNA	 was	 extracted	 from	 frozen	 tissue	 samples	 using	 the	 RNeasy	 Mini	 kit	 (Qiagen,	 UK)	111	

according	to	the	manufacturer’s	guidance.	Following	RNA	extraction,	1	μg	of	total	RNA	was	reversed	112	

transcribed	using	SuperScript™	II	Reverse	Transcriptase	(Invitrogen,	UK).	RNaseOUT™	Recombinant	113	

Ribonuclease	 Inhibitor	 (Invitrogen,	 UK)	 was	 used	 as	 an	 RNase	 inhibition	 step.	 Assessment	 of	 the	114	

expression	of	 target	genes	of	 interest	was	assessed	using	quantitative	RT-PCR	with	a	ViiA™	7	Real	115	

Time	 PCR	 System	 (Thermo	 Fisher	 Scientific,	 UK)	 by	 adding	 cDNA	 in	 duplicate	 to	 a	 384-well	 plate	116	

followed	by	a	reaction	mix	of	1X	SYBR	Green	Jumpstart	Readymix	(Sigma-Aldrich,	UK)	and	1	μM	of	117	

forward/reverse	primers.	The	housekeeping	gene	cyclophilin	b	was	used	as	an	internal	reference	for	118	

quantification	 of	 relative	 gene	 expression.	 Primer	 sequences	 of	 genes	 of	 interest	 are	 provided	 in	119	

Supplementary	 Table	 S1	 (Private	 sharing	 link	 for	 Figshare	 data	120	

https://figshare.com/s/d95fdf67ee4829c114df).	121	

	122	

Serum	and	tissue	lipid	quantification	123	

Serum	and	tissue	lipid	content	were	extracted	and	measured	as	previously	described	(38).	 In	brief,	124	

frozen	tissues	of	 interest	were	homogenized	in	Hank’s	Balanced	Salt	Solution	using	a	TissueLyser	 II	125	

(Qiagen,	UK)	 system.	 Samples	were	 then	 centrifuged	 at	 12000	 rpm	 for	 15	minutes	 at	 4oC	 (Rotina	126	

420R	Benchtop	Centrifuge,	Hettich,	Germany).	 The	 supernatant	was	 discarded.	 The	 pellet	was	 re-127	

suspended	in	500	μL	of	lysis	buffer	containing	0.125	M	potassium	phosphate,	1	mM	EDTA	and	0.1%	128	

Triton-X	100	at	pH	7.4.	Samples	were	sonicated	at	4oC	for	8	minutes	in	a	Bioruptor	Plus	(4	cycles	of	129	

sonication	 for	 30	 seconds	 followed	 by	 4	 cycles	 of	 resting	 for	 30	 seconds).	 Samples	 were	130	

subsequently	 centrifuged	 at	 10000	 rpm	 for	 15	minutes	 at	 4oC.	 Total	 cholesterol,	 LDL-cholesterol,	131	

HDL-cholesterol,	 triglycerides	 (TGs),	 free	 fatty	 acids	 (FFAs)	 and	 total	 protein	 were	 measured	 in	132	

plasma	and	tissue	extracts	with	an	Unicel	DxC	800	autoanalyzer	(Beckman-Coulter,	the	Netherlands)	133	

using	 dedicated	 kits,	 with	 the	 exception	 of	 FFAs	 which	 were	 measured	 using	 a	 kit	 from	 Wako	134	
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Diagnostics	(Germany).	The	measurements	 in	the	tissue	extracts	were	normalized	with	the	protein	135	

content	of	each	individual	tissue	sample.	136	

	137	

Serum	and	cecal	bile	acid	quantification	138	

Measurements	 of	 serum	 and	 cecal	 bile	 acids	 were	 performed	 on	 an	 ultra-performance	 liquid	139	

chromatography	Alliance	2695	system	coupled	to	a	Xevo	TQ	mass	spectrometer	using	a	SunFire	C18	140	

column	as	previously	described	 (1,	45).	Analytes	were	detected	using	 selected	 ion	monitoring	and	141	

quantified	 against	 deuterium-labelled	 internal	 standards.	 Quantification	 was	 achieved	 by	142	

comparison	 of	 peak	 height	 of	 molecular	 anions	 or	 negative	 daughter	 to	 the	 peak	 height	 of	 the	143	

deuterated	internal	standards.		144	

	145	

16S	rRNA	gene	sequencing	analysis	146	

Cecal	samples	were	homogenized	and	DNA	was	extracted	using	the	QIAamp	Fast	DNA	Stool	Mini	Kit	147	

(QIAGEN,	 UK),	 according	 to	 the	 manufacturers’	 protocol.	 Sample	 libraries	 were	 prepared	 as	148	

previously	 described	 (28)	 using	 the	 V1-V2	 primers	 (35).	 An	 Illumina	MiSeq	 platform	was	 used	 to	149	

perform	the	sequencing	with	the	MiSeq	Reagent	Kit	v3	and	paired-end	300	bp	chemistry	 (Illumina	150	

Inc,	 USA).	Mothur	 software	 (v1.35.1;	 www.mothur.org)	 was	 used	 for	 data	 analysis,	 following	 the	151	

MiSeq	 SOP	 Pipeline	 (47).	 The	 Silva	 bacterial	 database	 (www.arb-sliva.de)	were	 used	 for	 sequence	152	

alignments	and	sequences	were	classified	according	 to	 the	RDP	database	 reference	sequence	 files	153	

using	the	Wang	method	(16).	The	UniFrac	weighted	distance	matrix	created	by	Mothur	was	used	to	154	

produce	 non-metric	 multidimensional	 scaling	 (NMDS)	 plots	 and	 PERMANOVA	 (permutational	155	

multivariate	analysis	of	variance)	p-values	and	analysis	carried	out	using	the	Vegan	library	(6)	within	156	

the	 R	 statistical	 software	 (www.r-project.org).	 Bacterial	 relative	 abundance	 was	 expressed	 as	157	

extended	error	bar	plots	using	the	Statistical	Analysis	of	Metagenomic	Profiles	software	package	and	158	
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analyzed	by	White’s	non-parametric	t-test	with	Benjamini-Hochberg	False	Discovery	Rate	(FDR).	The	159	

alpha	 diversity	 (Shannon	 diversity	 index,	 H’)	 was	 calculated	 using	 Mothur	 and	 Tukey’s	 Honest	160	

Significant	Difference	 test	was	performed	using	 IBM	SPSS	Statistics	 Software	version	23.	P-	and	q-161	

values	of	0.05	were	considered	to	be	significant.		162	

	163	

Statistical	analysis	164	

All	values	are	shown	as	mean	±	standard	error	of	the	mean	(SEM).	Statistical	analysis	was	performed	165	

using	GraphPad	Prism	7	software.	One-way	ANOVA	followed	by	a	Newman-Keuls	post-hoc	test	was	166	

used,	with	a	significance	cut-off	of	P	≤	0.05.	Statistical	analysis	of	16S	rRNA	gene	sequencing	data	is	167	

detailed	in	the	relevant	section	above.		 	168	
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Results	169	

OCA	administration	during	pregnancy	does	not	negatively	impact	maternal	or	fetal	morphometry	170	

We	 first	 aimed	 to	 establish	 the	 effect	 of	 hypercholanemia	 and	 OCA	 supplementation	 during	171	

pregnancy	on	body	weight	and	organ	morphometry.	During	pregnancy,	no	body	weight	differences	172	

were	 seen	 between	 groups,	 except	 on	 D7	 when	 CA	 and	 CA+OCA-fed	 females	 were	 significantly	173	

lighter	than	OCA-fed	females	(Figure	1A).	Although	no	body	weight	differences	were	registered	on	174	

D18	 gestation,	 pregnant	 females	 fed	 a	 CA	 diet	 had	 increased	 liver	 weight	 and	 decreased	 gWAT	175	

weight,	regardless	of	OCA	co-feeding	(Figure	1B).	A	trend	for	decreased	sWAT	weight	was	also	seen	176	

in	 pregnant	 CA	 and	 CA+OCA	 groups	 (Figure	 1B).	 OCA	 supplementation	 alone	 did	 not	 affect	 body	177	

weight	or	organ	morphometry	(Figure	1B).				178	

Despite	the	changes	in	maternal	liver	and	gWAT	morphometry	in	the	CA	and	CA+OCA-fed	groups,	no	179	

changes	in	pup	number,	pup	weight	or	placental	weight	were	registered	(Figure	1C).	180	

Outside	of	pregnancy,	both	CA	and	CA+OCA	non-pregnant	females	were	lighter	than	NC-	and	OCA-181	

supplemented	 females	 on	 D18	 (Supplementary	 Fig.	 S1A,	 Private	 sharing	 link	 for	 Figshare	 data	182	

https://figshare.com/s/d95fdf67ee4829c114df).	This	weight	difference	likely	reflected	a	decrease	in	183	

gWAT,	sWAT	and	BAT	depot	weight,	despite	an	increase	in	liver	weight	(Supplementary	Fig.	S1B).		184	

These	 results	 demonstrate	 that	 OCA	 administration	 either	 alone	 or	 to	 hypercholanemic	 pregnant	185	

females	did	not	negatively	impact	maternal	or	fetal	body	or	organ	morphometry.		186	

	187	

OCA	administration	during	hypercholanemic	pregnancy	reduces	fetal	hypercholanemia		188	

We	 next	 investigated	 whether	 OCA	 administration	 ameliorated	 the	 maternal	 and	 fetal	 bile	 acid	189	

profiles	 during	 hypercholanemic	 gestation.	 In	 pregnant	 females,	 CA	 feeding	 led	 to	 a	 significant	190	

increase	 in	 total	 serum	 bile	 acid	 levels,	 CA,	 deoxycholic	 acid	 (DCA),	 taurocholic	 acid	 (TCA)	 and	191	

taurodeoxycholic	 acid	 (TDCA)	 compared	 to	 NC	 controls,	 confirming	 that	 CA-feeding	 induces	192	
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maternal	hypercholanemia,	as	has	previously	been	described	(32,	41).	CA+OCA	co-supplementation	193	

did	 not	 ameliorate	 total	 serum	 bile	 acid	 levels,	 although	 total	 unconjugated	 bile	 acids	 were	194	

significantly	 reduced	 compared	 to	 CA	 alone,	 due	 to	 changes	 in	 CA	 (P	 >	 0.05)	 and	 DCA	 (P	 ≤	 0.05)	195	

(Figure	2A).		196	

In	non-pregnant	females,	total	bile	acids,	DCA,	TCA	and	TDCA	levels	were	significantly	elevated	by	CA	197	

feeding	and	were	not	reduced	by	CA+OCA	co-feeding	(Supplementary	Fig.	S2).	198	

In	the	fetal	compartment,	maternal	hypercholanemia	led	to	a	significant	rise	in	fetal	serum	total	bile	199	

acids	 (Figure	2B).	However,	 total	serum	bile	acid	 levels	were	29.9%	 lower	 in	 fetuses	 from	mothers	200	

fed	a	CA+OCA	diet	compared	to	CA	alone,	although	still	higher	than	NC	controls	(Figure	2B).	This	was	201	

due	to	decreased	concentrations	of	DCA,	TCA,	TDCA	and	in	particular,	CA	(Figure	2B).	Maternal	OCA	202	

feeding	alone	did	not	change	fetal	bile	acid	concentrations	although	the	presence	of	OCA	and	T-OCA	203	

in	the	fetal	circulation	suggests	that	OCA	is	able	to	cross	the	placenta	(Figure	2B).	204	

Overall,	OCA	administration	 to	hypercholanemic	 females	 did	 not	 significantly	 ameliorate	maternal	205	

hypercholanemia,	but	improved	the	fetal	bile	acid	profile.	206	

	207	

OCA	administration	alone	reduces	cecal	bile	acid	levels	208	

Cecal	 bile	 acid	 concentrations	 were	 also	 measured.	 	 As	 expected	 in	 the	 cecum,	 bile	 acids	 were	209	

largely	unconjugated	(Figure	3).	Total	cecal	bile	acid	 levels	were	significantly	 increased	 in	mice	 fed	210	

CA+OCA	compared	to	CA	alone,	however	this	was	largely	due	to	enrichment	with	OCA,	and	also	with	211	

DCA	 that	 also	 increased	 in	 the	 CA-fed	 group	 (Figure	 3A,B).	Muricholic	 acids	 levels	were	markedly	212	

reduced	 in	 both	 CA	 and	 CA+OCA	 groups	 (Figure	 3B,C).	 OCA	 administration	 alone	 significantly	213	

reduced	 total	 cecal	 bile	 acid	 levels	 compared	 to	 all	 other	 groups,	 which	 was	 due	 to	 an	 overall	214	

reduction	in	bile	acids	(Figure	3A).	Interestingly,	as	seen	in	the	serum,	T-OCA	levels	were	significantly	215	
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lower	in	CA+OCA	co-fed	mice	compared	to	females	supplemented	with	OCA	only,	while	OCA	levels	216	

were	increased	(Figure	3B,C).	217	

	218	

Bile	acid	supplementation	impacts	the	cecal	microbiome’s	microbiota	composition	219	

Conversion	of	primary	to	secondary	bile	acids,	as	well	as	bile	acid	deconjugation,	are	performed	by	220	

intestinal	bacteria.	Since	changes	in	bile	metabolizing	bacteria	will	affect	the	host	bile	acid	pool,	the	221	

cecal	 bacterial	 community	 was	 investigated	 by	 16S	 rRNA	 gene	 sequencing.	 Non-metric	222	

multidimensional	 scaling	 (NMDS)	 analysis	 of	 weights	 UniFrac	 distances,	 which	 shows	 how	 the	223	

microbial	 communities	 vary	between	 the	groups,	 demonstrates	 significant	differences	between	all	224	

the	 dietary	 groups	 in	 pregnant	 mice	 (Figure	 4A,	 Supplementary	 Table	 S2).	 OCA	 supplementation	225	

alone	was	the	least	different	to	NC,	with	CA	and	then	CA+OCA	being	more	dissimilar.	Differences	in	226	

the	 relative	proportion	of	phyla	were	observed	between	pregnant	 groups	 (Figure	4B);	 specifically,	227	

both	 CA	 feeding	 and	 CA+OCA	 co-feeding	 significantly	 increased	 the	 relative	 abundance	 of	228	

Proteobacteria	 in	 the	 cecum	 of	 pregnant	mice,	 compared	 to	 NC	 groups	 (Figure	 4C).	 OCA	 feeding	229	

alone	did	not	significantly	 impact	Proteobacteria,	but	 the	 relative	abundance	of	Bacteroidetes	was	230	

significantly	 decreased	 in	pregnant	 females	 (Figure	4C).	 Significant	 changes	were	 also	observed	at	231	

genus	level,	with	an	increase	in	the	relative	proportion	of	Bilophila	and	Bacteroides	 in	CA+OCA-fed	232	

mice	compared	to	all	other	groups	(Figure	4D).		This	was	reinforced	by	correlation	analysis	between	233	

microbiota	 and	 bile	 acid	 concentrations	 in	 the	 cecum,	 which	 showed	 that	 Proteobacteria	 and	234	

Bacteroidetes	 positively	 correlated	 with	 OCA,	 and	 negatively	 with	 T-OCA,	 concentrations	235	

(Supplementary	 Fig.	 S3A).	 Alpha	 diversity	 (Shannon	 diversity	 index)	 plots	 showed	 that	 CA	236	

supplementation	alone	or	co-fed	with	OCA	resulted	in	decreased	bacterial	diversity	(Supplementary	237	

Fig.	 S3B).	 Pregnancy	 caused	 a	 significant	 increase	 in	 an	 unclassified	 class	 of	 Bacteroidetes	 in	 NC	238	

controls	 (Supplementary	 Fig.	 S3C).	 In	 non-pregnant	mice,	NMDS	analysis	 and	 alpha	diversity	 plots	239	

were	similar	 to	pregnant	mice	 (Supplementary	Fig.	S4A,B).	However,	changes	between	the	dietary	240	
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groups	differed	at	phylum	level;	in	particular,	significant	differences	were	observed	in	Bacteroidetes,	241	

Firmicutes	and	Proteobacteria	(Supplementary	Fig.	S4C).		242	

	243	

OCA	administration	represses	maternal	hepatic	Cyp7a1	expression	via	intestinal	FXR		244	

To	further	assess	the	effects	of	hypercholanemia	and	OCA	administration	on	bile	acid	homeostasis	245	

during	 pregnancy,	 the	 expression	 of	 key	 genes	 for	 bile	 acid	 homeostasis	 in	 the	 liver	 and	 terminal	246	

ileum	was	investigated.	247	

The	hepatic	FXR	target	Shp	was	significantly	upregulated	in	pregnant	females	fed	a	CA	or	a	CA+OCA	248	

diet	and	 this	 change	was	concomitant	with	 the	 repression	of	hepatic	Cyp7a1	 (Figure	5A).	Both	CA	249	

and	 CA+OCA	 diet	 increased	 the	 hepatic	 expression	 of	 the	 bile	 acid	 transporters	 Bsep,	 Mrp3	 and	250	

Mrp4	in	pregnant	females	(Figure	5A).	Whilst	OCA	supplementation	alone	did	not	induce	significant	251	

hepatic	Shp	 upregulation,	Cyp7a1	 expression	was	 significantly	 decreased	 in	D18	pregnant	 females	252	

(Figure	5A).	In	parallel,	intestinal	Shp	expression	was	upregulated	in	OCA-fed	females	and	intestinal	253	

Fgf15	 expression	 was	 significantly	 increased	 by	 maternal	 CA,	 OCA	 and	 CA+OCA	 supplementation	254	

(Figure	5B).		255	

In	non-pregnant	females,	relative	mRNA	expression	followed	a	very	similar	pattern	to	pregnant	mice	256	

(Supplementary	 Fig.	 S5A,B).	 Of	 note,	 lower	 hepatic	 gene	 expression	 of	 several	 FXR	 targets	 was	257	

observed	 in	 pregnant	mice	 compared	 to	 non-pregnant,	 regardless	 of	 diet	 (Table	 1).	 Expression	 of	258	

FXR	targets	 in	the	terminal	 ileum	was	similarly	affected	by	pregnancy.	 In	pregnant	CA-fed	females,	259	

Shp	and	Fgf15	expression	was	 lower	than	outside	pregnancy	 (Table	2). Shp expression levels	were	260	

also	lower	in	CA+OCA-fed	pregnant	females	compared	to	non-pregnant (Table	2).  261	

Overall,	 we	 conclude	 that	 despite	 decreased	 expression	 of	 FXR	 target	 genes	 during	 pregnancy,	262	

activation	 of	 intestinal	 rather	 than	 hepatic	 FXR	 can	mediate	 OCA-induced	 suppression	 of	 hepatic	263	

Cyp7a1	expression.	264	
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	265	

Maternal	OCA	administration	represses	fetal	hepatic	Cyp7a1	expression	266	

Given	the	decrease	in	fetal	serum	bile	acid	concentrations	in	maternal	CA+OCA	feeding	groups,	the	267	

expression	of	key	bile	acid	homeostasis	genes	in	the	fetal	liver	and	placenta	were	assessed.	Maternal	268	

CA	 feeding	alone	or	co-supplemented	with	OCA	 induced	an	upregulation	of	Shp	 expression,	and	a	269	

concomitant	 reduction	 in	Cyp7a1	and	 Ntcp,	 in	 the	 fetal	 liver	 (Figure	 6A).	Of	 note,	while	maternal	270	

OCA	diet	alone	did	not	have	an	impact	on	fetal	hepatic	Shp	expression,	a	significant	downregulation	271	

of	 hepatic	 Cyp7a1	 expression	 was	 observed,	 although	 to	 a	 lesser	 extent	 than	 in	 groups	 with	272	

maternal	 CA	 supplementation	 (Figure	 6A).	Maternal	 bile	 acid	 feeding	 did	 not	 have	 an	 impact	 on	273	

hepatic	fetal	Mrp3,	Mrp4	or	Oatp1b2	expression	(Figure	6A).	274	

As	the	placenta	plays	a	crucial	role	in	bile	acid	transport	between	maternal	and	fetal	circulations,	we	275	

further	sought	to	determine	whether	maternal	OCA	administration	had	an	impact	on	placental	bile	276	

acid	 transporter	 gene	 expression.	 Interestingly,	 all	 maternal	 bile	 acid	 feeding	 groups	 showed	 a	277	

significant	 upregulation	 of	 Abcg2	 expression	 in	 the	 placenta	 (Figure	 6B).	 Moreover,	 maternal	278	

CA+OCA	 feeding	 increased	 placental	Mrp2	 expression	 when	 compared	 against	 all	 other	 feeding	279	

groups,	and	Oatp1b2	expression	was	increased	compared	to	NC	and	CA	groups	(Figure	6B).	Overall,	280	

we	 conclude	 that	 OCA	 modulates	 the	 expression	 of	 Cyp7a1	 in	 the	 fetal	 liver	 and	 bile	 acid	281	

transporters	in	the	placenta.		282	

	283	

OCA	administration	during	hypercholanemic	pregnancy	does	not	reverse	maternal	dyslipidemia	284	

Cholestasis	 is	 commonly	 accompanied	 by	 dyslipidemia.	 Hence,	we	 next	 studied	 the	 effect	 of	OCA	285	

administration	 during	 hypercholanemic	 pregnancy	 on	maternal	 and	 fetal	 serum	 and	 hepatic	 lipid	286	

levels.	 No	 changes	 in	 total	 serum	 cholesterol	 levels	 were	 seen	 in	 pregnant	 CA	 and	 CA+OCA-287	

supplemented	 groups	 (Figure	 7A).	 However,	 females	 exposed	 to	 a	 CA	 or	 CA+OCA	 diet	 had	 raised	288	
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serum	 LDL-cholesterol	 and	decreased	HDL-cholesterol	 levels	 compared	 to	NC	 females	 (Figure	 7A),	289	

also	outside	of	pregnancy	(Supplementary	Fig.	S6A).	Conversely,	OCA	feeding	resulted	in	decreased	290	

total	 serum	 cholesterol	 levels	 compared	 to	NC	 controls	which	was	 associated	with	 a	 reduction	 in	291	

serum	HDL-cholesterol	concentrations	(Figure	7A).	Serum	HDL-cholesterol	was	also	reduced	in	non-292	

pregnant	OCA-fed	mice	(Supplementary	Fig.	S6A).	CA	feeding	did	not	alter	serum	triglyceride	levels	293	

in	 pregnant	 females,	 but	 OCA	 diet	 reduced	 serum	 triglyceride	 levels	 and	 a	 further	 decrease	 was	294	

observed	 in	CA+OCA	 fed	 females	 (Figure	7A).	 In	 contrast,	no	 significant	 changes	were	observed	 in	295	

serum	triglyceride	levels	in	non-pregnant	females	(Supplementary	Figure	S6A).	296	

In	 the	 liver,	CA,	OCA	and	CA+OCA	supplementation	of	pregnant	 females	 led	to	hepatic	cholesterol	297	

accumulation	 compared	 to	 NC	 control	 group	 (Figure	 7B).	 In	 non-pregnant	 females,	 hepatic	298	

cholesterol	 levels	 were	 significantly	 lower	 with	 OCA	 supplementation	 alone	 compared	 to	 CA	 and	299	

CA+OCA-fed	mice	(Supplementary	Fig.	S6B).		300	

Taken	 together,	 these	 data	 lead	 us	 to	 conclude	 that	 OCA	 administration	 does	 not	 ameliorate	301	

maternal	dyslipidemia	during	hypercholanemic	gestation.		302	

	303	

OCA	administration	during	hypercholanemic	pregnancy	does	not	reverse	fetal	dyslipidemia	304	

As	maternal	dyslipidemia	 is	commonly	associated	with	fetal	dyslipidemia,	we	next	 investigated	the	305	

fetal	 lipid	 profile.	 Maternal	 CA	 feeding	 significantly	 increased	 fetal	 serum	 cholesterol	 levels,	306	

including	 LDL-cholesterol,	 and	 this	was	 not	 altered	 by	maternal	 CA+OCA	 supplementation	 (Figure	307	

8A).	 In	 parallel,	 fetal	 serum	 HDL-cholesterol	 concentrations	 were	 reduced	 in	 maternal	 CA	 and	308	

CA+OCA	supplementation	groups.	Fetal	circulating	triglycerides	were	 increased	in	fetuses	from	CA-309	

fed	mothers	 and	were	 not	 improved	 by	maternal	 CA+OCA	 feeding	 (Figure	 8A).	Of	 note,	maternal	310	

OCA-feeding	alone	had	no	effect	on	fetal	total	and	LDL-	or	HDL-cholesterol	levels	or	triglyceride	and	311	

FFA	concentrations	(Figure	8A).		312	
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Fetal	 hepatic	 cholesterol	 and	 FFA	 content	 were	 increased	 in	 fetuses	 from	 CA+OCA-fed	 mothers	313	

compared	 to	 NC	 mothers	 (Figure	 8B).	 However,	 maternal	 OCA	 diet	 alone	 did	 not	 affect	 fetal	314	

cholesterol	and	FFA	accumulation	in	the	liver	(Figure	8B).	A	trend	for	increased	hepatic	cholesterol	315	

and	 FFAs	was	 also	 observed	 in	 fetuses	 from	CA-fed	mothers	 compared	 to	NC	 controls,	 albeit	 not	316	

reaching	statistical	significance	(Figure	8B).	317	

To	assess	a	potential	relationship	between	fetal	and	placental	lipid	levels,	the	placental	lipid	content	318	

on	D18	of	 gestation	was	 also	 evaluated.	However,	 no	 significant	 changes	 in	 placental	 cholesterol,	319	

triglycerides	or	FFAs	content	were	registered	between	different	groups	(Figure	8C).	320	

We	 subsequently	 aimed	 to	 establish	 whether	 the	 changes	 in	 the	 fetal	 lipid	 profile	 on	 D18	 of	321	

gestation	were	due	to	shifts	in	lipid	de	novo	biosynthesis	and	transport	in	the	fetal	liver	or	placenta.	322	

Maternal	bile	acid	feeding	did	not	impact	fetal	hepatic	Hmgcr,	Fas	or	Fatp4	expression	(Figure	9A).		323	

However,	 maternal	 CA+OCA	 feeding	 led	 to	 a	 significant	 increase	 in	 placental	 expression	 of	 the	324	

cholesterol	transporter	Abca1	compared	to	NC	placentas	(Figure	9B).	Interestingly,	maternal	CA	and	325	

CA+OCA	 supplementation,	 but	 not	maternal	OCA	alone,	 resulted	 in	 a	 significant	 increase	 in	Fatp4	326	

placental	 expression	 compared	 to	 NC	 controls	 (Figure	 9B).	 Taken	 together,	 these	 data	 lead	 us	 to	327	

conclude	 that	OCA	 administration	 does	 not	 ameliorate	 fetal	 dyslipidemia	 during	 hypercholanemic	328	

gestation.		 	329	
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Discussion	330	

ICP	is	the	commonest	gestational	liver	disease	and	can	lead	to	adverse	fetal	outcomes	(19,	21,	40).	331	

Increased	rates	of	stillbirth,	spontaneous	preterm	birth,	and	meconium-stained	amniotic	fluid	have	332	

been	 reported	 in	 pregnancies	with	 high	maternal	 serum	 concentrations	 of	 bile	 acids	 (19,	 21,	 40),	333	

likely	related	to	fetal	exposure	to	high	bile	acid	concentrations	(7).	While	UDCA	treatment	of	ICP	has	334	

been	shown	to	reduce	maternal	bile	acid	levels	in	some	studies	(23),	it	is	not	effective	in	all	patients	335	

(8),	 and	 it	 does	not	 return	 fetal	 bile	 acid	 levels	 to	normal	 concentrations	 (20).	 	 The	present	 study	336	

shows	 that	 OCA	 administration	 in	 a	 mouse	 model	 of	 hypercholanemia,	 as	 seen	 in	 ICP,	 is	 not	337	

detrimental	to	the	mother	or	fetus	and	improves	fetal	hypercholanemia.	338	

In	our	model,	CA-feeding	 led	 to	 significantly	 raised	 total	bile	acids	 in	 fetal	 serum.	This	was	 largely	339	

due	 to	 an	 increase	 in	 taurine-conjugated	CA	and	DCA.	While	 the	 fetus	 synthesizes	bile	 acids	 from	340	

early	pregnancy	onwards,	maternal	bile	acids	can	also	cross	the	placenta	and	contribute	to	the	fetal	341	

bile	acid	pool	 (29).	Unconjugated	and,	at	much	 lower	 levels,	 taurine-conjugated	CA	and	DCA	were	342	

also	 raised	 in	 the	 serum	 of	 CA-fed	 mothers.	 In	 the	 fetal	 compartment,	 DCA	 must	 be	 maternally	343	

derived	since	the	fetus	cannot	synthesize	secondary	bile	acids	due	to	the	absence	of	gut	flora,	and	it	344	

is	 possible	 that	 CA	 is	 also	 being	 transferred	 from	 the	mother.	 However,	 it	 is	 not	 known	whether	345	

there	 is	 preferential	 transport	 of	 more	 hydrophilic	 taurine	 conjugates	 across	 the	 placenta,	 or	346	

increased	 taurine	conjugation	occurring	 in	 the	 fetal	 liver.	We	have	previously	observed	 in	humans	347	

that	 the	 ratio	 of	 conjugated	 to	 unconjugated	 bile	 acids	 is	 higher	 in	 umbilical	 cord	 blood	 than	 in	348	

maternal	serum	(20).		349	

OCA	 treatment	 during	 hypercholanemic	 gestation	 significantly	 reduced	 fetal	 total	 serum	 bile	 acid	350	

levels,	due	to	a	reduction	in	DCA,	TDCA	and	TCA,	compared	to	fetuses	of	untreated	hypercholanemic	351	

mothers.	Furthermore,	analysis	of	fetal	serum	showed	that	OCA	crosses	the	placenta	and	is	present	352	

in	the	fetal	compartment,	predominantly	as	T-OCA.		In	line	with	this,	hepatic	Cyp7a1	expression	was	353	

reduced	 in	 fetuses	 from	OCA-fed	mice,	 and	 further	 reduced	 in	 both	 CA	 and	 CA+OCA-fed	 groups.	354	
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Interestingly,	OCA	 treatment	of	 hypercholanemic	mothers	was	 associated	with	 an	upregulation	of	355	

placental	 transporters	Mrp2	 (at	 the	 maternal-facing	 apical	 membrane)	 and	Oatp1b2	 (basolateral	356	

membrane),	 which	 suggests	 enhanced	 elimination	 of	 fetal	 bile	 acids	 via	 the	 placenta.	 Increased	357	

placental	 expression	 of	MRP2	 has	 previously	 been	 associated	with	 reduced	 bile	 acids	 in	 the	 fetal	358	

compartment	 in	 ICP	 pregnancies	 following	 UDCA	 treatment	 (3).	 	 Protein	 expression	 and	 bile	 acid	359	

transport	studies	would	be	required	to	confirm	whether	enhanced	placental	bile	acid	detoxification	360	

is	responsible	for	this	reduction	in	serum	bile	acids.	The	impact	of	OCA	on	fetal	bile	acid	levels	is	of	361	

clinical	interest	due	to	the	recent	approval	of	OCA	as	a	treatment	for	patients	with	PBC,	as	women	362	

with	PBC	may	already	be	receiving	OCA	treatment	when	they	become	pregnant.	In	our	study,	we	did	363	

not	 observe	 any	detrimental	 effect	 of	OCA	on	 the	 fetus,	 in	 agreement	with	 a	 previous	 study	 that	364	

found	 no	 impact	 on	 resorptions,	 number	 of	 fetuses,	 or	 fetal	 growth	 (10).	 However,	 detailed	365	

pathological	investigations	are	required	to	assess	the	safety	of	fetal	exposure	to	OCA.		366	

In	contrast	to	the	fetus,	maternal	total	serum	bile	acid	levels	were	not	reduced	by	OCA	treatment.	367	

Furthermore,	OCA	treatment	did	not	induce	significant	shifts	in	hepatic	mRNA	expression	of	bile	acid	368	

homeostasis	genes.	These	 findings	differ	 from	a	previous	study	of	an	estrogen-induced	cholestasis	369	

rodent	model	 reporting	 that	OCA	 treatment	 induced	 bile	 flow	 and	 hepatocyte	 expression	 of	 Shp,	370	

Bsep	 and	 Mrp-2,	 while	 repressing	 Ntcp	 and	 Cyp7a1	 expression	 (15).	 A	 more	 recent	 study	 of	371	

estrogen-induced	 cholestasis	 in	 mice	 showed	 that	 OCA	 treatment	 did	 not	 upregulate	 mRNA	372	

expression	of	FXR	targets	 in	the	 liver	or	placenta	but	did	 increase	hepatic	FXR	protein	 levels.	Total	373	

serum	bile	acid	levels	were	reduced	in	mothers,	however	serum	bile	acids	were	only	mildly	elevated	374	

in	this	model	(10).		In	contrast,	a	study	investigating	the	effect	of	OCA	administration	to	Mdr2-/-	mice	375	

found	 that	 dietary	 0.03%	 OCA	 supplementation	 failed	 to	 exert	 any	 effect	 on	 bile	 flow	 and	376	

composition.	This	study	further	reported	that	both	OCA	and	INT-767,	a	dual	FXR	and	TGR5	agonist,	377	

were	 effective	 in	 reducing	 Cyp7a1	 and	 Cyp8b1	 gene	 expression,	 but	 only	 INT-767	 administration	378	

resulted	 in	 increased	 hepatic	 Shp	 gene	 expression	 and	 BSEP	 protein	 expression	 (4).	 A	 possible	379	

explanation	is	that	despite	a	far	higher	affinity	of	FXR	for	OCA,	due	to	the	activation	of	FXR	by	CA-380	
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feeding,	 this	 limited	 the	 impact	 of	OCA	 in	 our	 study.	 This	 is	 perhaps	 surprising	 given	 that	 CA	 is	 a	381	

weak	agonist	of	FXR	(EC50	=	586	µM	(25))	 in	comparison	to	OCA	(EC50	=	99nM	(42)).	 In	 line,	CA	has	382	

previously	been	shown	to	only	partially	induce	BSEP	in	vitro,	in	comparison	to	the	natural	FXR	ligand,	383	

CDCA	(25).	A	possible	explanation	 is	the	10-times	higher	abundance	of	CA	as	compared	to	OCA,	at	384	

least	as	measured	in	serum,	which	limited	the	impact	of	OCA.	Regardless,	OCA	administration	alone	385	

did	 not	 cause	 the	 expected	 robust	 upregulation	 of	 hepatic	 FXR	 targets.	 Of	 note,	 OCA	 alone	386	

downregulated	hepatic	Cyp7a1	expression	and	this	change	was	associated	with	an	upregulation	of	387	

Shp	and	Fgf15	in	the	terminal	ileum	rather	than	hepatic	Shp	induction.	Indeed,	previous	studies	have	388	

demonstrated	that	OCA	administration	in	rats	leads	to	upregulation	of	Shp	in	the	terminal	ileum	(46)	389	

and	that	in	mice	lacking	intestinal	Fxr,	OCA	supplementation	does	not	result	in	repression	of	hepatic	390	

Cyp7a1	expression	(50).	Taken	together	with	these	studies,	our	findings	suggest	OCA	acts	primarily	391	

through	ileal	FXR	to	stimulate	FGF15	secretion	into	the	portal	circulation	and	repress	hepatic	Cyp7a1	392	

expression	 in	 the	maternal	 liver,	 rather	 than	 via	 hepatic	 FXR	 to	modulate	 the	expression	of	 other	393	

hepatic	 genes	 involved	 in	 bile	 acid	 homeostasis.	 Our	 study	 did	 not	 assess	 the	 effect	 of	 OCA	 on	394	

markers	of	 liver	damage.	However,	we	are	aware	 that	CA	 feeding	 in	 twice	 the	dose	 in	male	Swiss	395	

Albino	 mice	 has	 previously	 been	 shown	 to	 increase	 serum	 AST,	 ALT	 and	 AP	 levels,	 as	 well	 as	396	

hepatocyte	size,	mitosis	and	necrosis	(14).		397	

Of	note,	 the	expression	of	FXR	 target	genes	was	decreased	overall	by	pregnancy,	both	 in	 the	 liver	398	

and	 terminal	 ileum,	 which	 likely	 reflects	 the	 previously	 documented	 decreased	 gestational	 FXR	399	

activity	 	 (31,	33,	39).	Nonetheless,	 in	the	 liver	of	pregnant	NC-fed	females,	OCA	administration	did	400	

not	appear	to	efficiently	overcome	the	reduction	of	FXR	activity,	and	gene	expression	levels	of	FXR	401	

targets	were	similar.	Conversely,	in	the	maternal	terminal	ileum,	the	upregulation	of	Shp	and	Fgf15	402	

expression	suggests	an	 increase	 in	FXR	activity	 induced	by	OCA	administration	to	NC-fed	mice,	but	403	

levels	 remained	 below	 those	 observed	 outside	 of	 pregnancy	 and	 so	 similarly	 indicate	 that	OCA	 is	404	

unable	 to	 fully	 activate	 FXR	 in	 the	 terminal	 ileum.	 In	 support	 of	 this	 data,	we	 also	 observed	 in	 a	405	

mouse	model	of	gestational	diabetes	mellitus	a	diminished	effect	of	OCA	in	pregnant	mice	compared	406	
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to	non-pregnant	controls	 (30).	This	highlights	the	 issue	that	 limited	efficacy	of	FXR	agonists	should	407	

be	taken	into	account	in	treatment	of	pregnant	women.			408	

OCA	was	 predominately	 unconjugated	 in	 the	 serum	 and	 the	 cecum,	 in	 contrast	 to	mice	 fed	 OCA	409	

alone	 where	 T-OCA	 predominated.	 This	 indicated	 a	 different	 pattern	 or	 activity	 of	 bile	 acid	410	

deconjugating	microbiota.	Indeed,	16S	rRNA	gene	sequencing	showed	that	there	was	an	increase	in	411	

relative	abundance	of	Bacteroidetes	and	 Proteobacteria	 (and	also	Bacteroides	 and	Bilophila,	when	412	

analysed	 at	 genus	 level)	 in	 the	 cecum	 of	 CA+OCA-fed	 females.	We	 recently	 reported	 in	 pregnant	413	

mice	 that	 bile	 salt	 hydrolase,	 involved	 in	 deconjugation	 of	 bile	 acids,	 was	 exclusively	 detected	 in	414	

Bacteroidetes,	with	Proteobacteria	also	enriched	in	pregnancy,	likely	secondary	to	increased	taurine	415	

made	 available	 after	 bile	 acid	 deconjugation	 (39).	Bilophila	Wadsworthia	 is	 known	 to	 be	 taurine-416	

metabolizing	(24).	These	findings	suggest	that	the	predominance	of	unconjugated	OCA	in	the	serum	417	

of	CA+OCA-fed	mice	could	be	due	to	an	increase	of	Bacteroidetes	and	Proteobacteria	in	the	gut.	418	

OCA	 administration	 during	 hypercholanemic	 gestation	 did	 not	 reverse	 maternal	 dyslipidemia.	 Of	419	

note,	maternal	OCA	supplementation	alone	resulted	in	a	decrease	in	serum	total	cholesterol,	due	to	420	

a	 reduction	 in	 HDL-cholesterol.	 A	 similar	 decrease	 in	 serum	 HDL-cholesterol	 was	 seen	 in	 non-421	

pregnant	 females.	 This	 decrease	 is	 not	 unexpected	 as	 OCA	 has	 previously	 been	 shown	 to	 reduce	422	

HDL-cholesterol	 in	healthy	humans,	PBC	and	NASH	patients	 (22,	37,	43),	and	we	recently	reported	423	

that	 OCA	 reduced	 serum	 cholesterol	 in	 a	 mouse	 model	 of	 gestational	 diabetes	 mellitus	 (30).	424	

Furthermore,	hepatic	cholesterol	content	was	raised	in	all	bile	acid-supplemented	mice,	although	to	425	

a	 lesser	 extent	 in	 non-pregnant	 females	 fed	 an	 OCA	 diet.	 Dyslipidemia	 with	 hepatic	 cholesterol	426	

accumulation	 has	 previously	 been	 suggested	 to	 be	 associated	 with	 Cyp7a1	 repression	 found	 in	427	

cholestasis,	 as	 downregulation	 of	 bile	 acid	 synthesis	 from	 cholesterol	 leads	 to	 cholesterol	428	

accumulation	 in	 the	 liver	 (36,	 48),	 suggesting	 that	 cholesterol	 accumulation	 in	 the	 liver	 may	 be	429	

proportional	to	hepatic	Cyp7a1	repression	in	our	model.	430	
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Notably,	serum	triglycerides	were	reduced	in	pregnant	mice	that	received	OCA.	This	change	is	in	line	431	

with	 previous	 studies	 showing	 that	 FXR	 activation	 reduces	 circulating	 triglycerides	 in	 db/db	 mice	432	

(52).	 Additionally,	 in	 patients	 with	 non-alcoholic	 fatty	 liver	 disease	 and	 type	 2	 diabetes,	433	

administration	 of	 50	 mg	 OCA	 daily	 for	 6	 weeks	 resulted	 in	 decreased	 serum	 triglyceride	434	

concentrations	 (34).	 However,	 OCA	 administration	 did	 not	 improve	 fetal	 dyslipidemia.	 In	 fact,	435	

maternal	 CA+OCA	 co-administration	 resulted	 in	 accumulation	 of	 cholesterol	 and	 FFAs	 in	 the	 fetal	436	

liver	compared	to	fetuses	of	control	mothers.	Further	investigations	are	needed	to	establish	whether	437	

the	upregulation	of	expression	of	placental	lipid	transporters	Abca1	and	Fatp4	may	play	a	role.	438	

In	conclusion,	OCA	administration	during	hypercholanemic	pregnancy,	mimicking	 the	 raised	serum	439	

bile	 acids	 observed	 in	 ICP,	 ameliorated	 fetal	 hypercholanemia	 although	 maternal	 bile	 acid	 levels	440	

were	not	significantly	decreased,	and	maternal	and	fetal	dyslipidemia	was	not	resolved.	Significantly,	441	

no	 negative	 effects	 of	 maternal	 OCA	 treatment	 on	 maternal	 and	 fetal	 morphology,	 and	 most	442	

importantly,	fetal	survival,	were	observed.	As	OCA	may	be	used	to	treat	women	of	reproductive	age	443	

with	 PBC	 and	NASH,	 further	 investigations	 into	 the	 safety	 of	maternal	 and	 fetal	 exposure	 to	OCA	444	

during	pregnancy	are	warranted.	445	
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Figure	Legends	644	

645	
Figure	1	 –	 Effects	of	 hypercholanemia	and	OCA	 treatment	during	pregnancy	on	body	and	organ	646	

morphometry.	 (A)	Body	weight	of	pregnant	females	on	D1,	D7,	D14	and	D18.	#	P	≤	0.05	for	CA	vs	647	

OCA,	 	 *	 P	 ≤	 0.05	 for	 CA+OCA	 vs	 OCA	 groups.	 (B)	 Weight	 of	 liver,	 gonadal	 white	 adipose	 tissue	648	

(gWAT),	 subcutaneous	 white	 adipose	 tissue	 (sWAT)	 and	 brown	 adipose	 tissue	 (BAT)	 of	 pregnant	649	

females	 at	 D18.	 (C)	 Pup	 number,	 pup	 weight	 and	 placenta	 weight	 of	 D18	 fetuses.	 *	 P	 ≤	 0.05	 in	650	

comparisons	vs	NC	and	OCA	groups.	Data	are	presented	as	mean	±	SEM.	n	=	6-9	651	
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	652	

Figure	 2	 –	 Effects	 of	 hypercholanemia	 and	OCA	 treatment	 during	 pregnancy	 on	 serum	bile	 acid	653	

profile.	 (A)	 Serum	 total	 bile	 acid	 (BAs),	 unconjugated	 bile	 acid,	 and	 taurine-conjugated	 bile	 acid	654	

levels	 in	D18	pregnant	 females.	n	=	6	per	group.	 (B)	Serum	total	bile	acid,	unconjugated	bile	acid,	655	

and	taurine-conjugated	bile	acid	levels	in	D18	fetuses.	n	=	4-6	per	group.	*	P	≤	0.05	in	comparisons	656	

vs	NC	and	OCA	groups.	‡	P	≤	0.05	in	comparisons	vs	all	groups.	$	P	≤	0.05	in	comparisons	vs	OCA.		†	P	657	

≤	0.05	in	comparisons	vs	NC	and	CA	groups.	Data	are	presented	as	mean	±	SEM.	658	

	659	
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Figure	 3	 -	 Effects	 of	 hypercholanemia	 and	 OCA	 treatment	 during	 pregnancy	 on	 cecal	 bile	 acid	660	

profile.	 Bile	 acid	 levels	 in	 cecum	 of	 D18	 pregnant	 females.	 (A)	 Total	 cecal	 bile	 acids	 (BAs).	 (B)	661	

Unconjugated	bile	acids.	(C)	Taurine-conjugated	bile	acids.	Data	are	presented	as	mean	±	SEM.	n	=	6-662	

9.	‡	P	≤	0.05	in	comparisons	vs	all	groups.	*	P	≤	0.05	in	comparisons	vs	NC	and	OCA	groups.	663	

	664	

Figure	4	–	Changes	in	cecal	microbiota	in	pregnant	mice	measured	by	16S	rRNA	gene	sequencing.	665	

(A)	 	 Nonmetric	multidimensional	 scaling	 (NMDS)	 plot	 showing	 differences	 in	 bacterial	 community	666	

structure	based	on	the	weighted	UniFrac	distance	metric.	For	p-values	see	Supplementary	Table	S2.	667	

(B)	 Changes	 in	 relative	 proportion	 of	 reads	 at	 phylum	 level.	 (C	 and	 D)	 Significant	 changes	 in	 the	668	

average	relative	proportion	of	sequences	assigned	to	each	taxa	for	each	dietary	group,	at	phylum	(C)	669	

and	 genus	 level	 (D).	 Data	 presented	 as	 extended	 error	 bar	 plots	 showing	 p-value,	 effect	 size	 and	670	
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confidence	interval	for	each	taxa.	Analyzed	by	Kruskal-Wallis	H-test	with	Benjamini-Hochberg	False	671	

Discovery	Rate.	n	=	6	mice	per	group.		672	

	673	

Figure	5	–	Expression	of	key	bile	acid	homeostasis	genes	in	pregnant	females.	(A)	mRNA	expression	674	

of	 genes	 regulating	 bile	 acid	 synthesis	 and	 transport	 in	 the	 liver.	 (B)	 mRNA	 expression	 of	 genes	675	

regulating	 bile	 acid	 synthesis	 and	 transport	 in	 the	 terminal	 ileum.	 Data	 are	 presented	 as	mean	 ±	676	

SEM.	 n	 =	 4-6.	 *	 P	 ≤	 0.05	 in	 comparisons	 vs	NC	 and	OCA	 groups.	 ‡	 P	 ≤	 0.05	 in	 comparisons	 vs	 all	677	

groups.	678	

	679	
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	680	

	681	

	682	

Table	1	-	Effect	of	pregnancy	on	hepatic	mRNA	expression	of	key	bile	acid	homeostasis	genes.	

	 NC	 CA	 OCA	 CA+OCA	
	 NP	 P	 NP	 P	 NP	 P	 NP	 P	

Shp	 2.06	±	
0.35	

0.74	±	
0.14*	

3.36	±	
0.63	

2.59	±	
0.49	

1.78	±	
0.39	

1.12	±	
0.19	

3.46	±	
0.49	

2.15	±	
0.21*	

Cyp7a1	 1.37	±	
0.37	

1.59	±	
0.27	

0.004	±	
0.001	

0.004	±	
0.002	

0.66	±	
0.21	

0.14	±	
0.02*	

0.006	±	
0.0023	

0.005	±	
0.001	

Ntcp	 0.77	±	
0.21	

0.19	±	
0.05*	

0.29	±	
0.06*	

0.13	±	
0.02*	

0.36	±	
0.03	

0.15	±	
0.01*	

0.28	±	
0.05	

0.14	±	
0.01*	

Bsep	 1.74	±	
0.38	

1.02	±	
0.21	

2.78	±	
0.36	

1.98	±	
0.25	

2.05	±	
0.37	

1.05	±	
0.17*	

2.62	±	
0.34	

1.76	±	
0.15*	

Mrp3	 1.31	±	
0.12	

0.23	±	
0.13*	

2.68	±	
0.41	

0.59	±	
0.11*	

1.07	±	
0.17	

0.09	±	
0.01*	

2.28	±	
0.29	

0.63	±	
0.08*	

Mrp4	 1.17	±	
0.12	

1.25	±	
0.40	

4.87	±	
0.21	

3.11	±	
0.48*	

1.56	±	
0.28	

0.63	±	
0.11*	

4.58	±	
0.61	

3.412	±	
0.34	

Relative	mRNA	expression	of	target	genes	in	non-pregnant	(NP)	and	pregnant	(P)	females	fed	the	
same	diet.	Data	are	presented	as	mean	±	SEM.	n	=	3-6	*	P	≤	0.05	in	comparisons	vs	non-pregnant	
females	fed	the	same	diet.	

Table	2	-	Effect	of	pregnancy	on	mRNA	expression	of	key	bile	acid	homeostasis	genes	in	the	
terminal	ileum.		

	 NC	 CA	 OCA	 CA+OCA	
	 NP	 P	 NP	 P	 NP	 P	 NP	 P	

Shp	 3.17	±	
1.96	

3.93	±	
0.36	

229.70	
±	57.30	

76.18	±	
14.53*	

670.4	±	
211.6	

322.50	
±	80.76	

398.90	±	
73.87	

167.70	±	
36.85*	

Fgfr15	 1.47	±	
0.57	

0.27	±	
0.14	

4.29	±	
0.27	

2.23	±	
0.40*	

2.88	±	
0.55	

2.08	±	
0.64	

4.10	±	
0.62	

3.20	±	
0.66	

Relative	mRNA	expression	of	target	genes	in	non-pregnant	(NP)	and	pregnant	(P)	females	fed	
the	same	diet.	Data	are	presented	as	mean	±	SEM.	n	=	3-6	*	P	≤	0.05	in	comparisons	vs	non-
pregnant	females	fed	the	same	diet.	
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	683	

Figure	 6	 -	 Expression	 of	 key	 bile	 acid	 homeostasis	 genes	 in	 the	 fetoplacental	 unit.	 (A)	 mRNA	684	

expression	 of	 genes	 regulating	 bile	 acid	 synthesis	 and	 transport	 in	 the	 fetal	 liver.	 (B)	 mRNA	685	

expression	 of	 genes	 regulating	 bile	 acid	 transport	 in	 the	 placenta.	 Data	 are	 presented	 as	mean	 ±	686	

SEM.	n	=	5-6.	*	P	≤	0.05	in	comparisons	vs	NC	and	OCA	groups.	#	P	≤	0.05	in	comparisons	vs	NC.	‡	P	≤	687	

0.05	in	comparisons	vs	all	groups.†	P	≤	0.05	in	comparisons	vs	NC	and	CA	groups.		688	

	689	
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	690	

Figure	7	–	Effects	of	hypercholanemia	and	OCA	treatment	during	pregnancy	on	serum	and	hepatic	691	

lipid	levels.		(A)	Serum	lipid	levels.	(B)	Hepatic	lipid	levels.	Data	are	presented	as	mean	±	SEM.	n	=	4-692	

6.	‡	P	≤	0.05	in	comparisons	vs	all	groups.	#	P	≤	0.05	in	comparisons	vs	NC.	*	P	≤	0.05	in	comparisons	693	

vs	NC	and	OCA	groups.	TGs,	triglycerides;	FFAs,	free	fatty	acids.	694	
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	695	

Figure	8	–	Effects	of	hypercholanemia	and	OCA	treatment	on	lipid	levels	in	the	fetoplacental	unit.	696	

(A)	Fetal	serum	lipid	levels.	(B)	Fetal	hepatic	lipid	levels.	(C)	Placental	lipid	levels.	Data	are	presented	697	

as	mean	±	SEM.	n	=	4-6.	*	P	≤	0.05	in	comparisons	vs	NC	and	OCA	groups.	#	P	≤	0.05	in	comparisons	698	

vs	NC.	$	P	≤	0.05	in	comparisons	vs	OCA	group.	TGs,	triglycerides;	FFAs,	free	fatty	acids.	699	

	700	
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	701	

Figure	9	-	Effects	of	hypercholanemia	and	OCA	treatment	on	lipid	homeostasis	genes	in	the	702	

fetoplacental	unit.	(A)	Expression	of	key	hepatic	lipid	biosynthesis	and	transport	genes	in	the	fetal	703	

liver.	(B)	Placental	expression	of	lipid	transport	genes.	Data	are	presented	as	mean	±	SEM.	n	=	4-6.	#	704	

P	≤	0.05	in	comparisons	vs	NC.	705	


