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Abstract—We propose an ensemble learning (EL) based coop-
erative sensing framework in full-duplex cognitive radio networks
(FD-CRNs), which is robust with accuracy against malicious
attacks and interference. The FD communication further im-
proves the spectrum awareness capability of the secondary users
(SUs) by allowing them to sense and transmit simultaneously
over the same frequency band. However, it also complicates
the sensing environment by introducing self-interference and co-
channel interference. In the meantime, the presence of malicious
attacks such as Primary User Emulation and Spectrum Sensing
Data Falsification attacks also degrade the cooperative sensing
performance in practice. To alleviate the influence of interference
and attacks, we design an EL framework that provides robust and
accurate fusion performance with low time cost. In such a context,
we analyse the spectrum waste and collision probabilities in the
FD Listen-And-Talk (LAT) protocol to measure the performance.
Simulation results show that our proposed EML framework
can provide lower and more robust false-alarm probability than
single-model based fusion methods with the same detection
probability constraint for any size of training sets. It also
outperforms the conventional majority vote based fusion strategy
in terms of much lower and stable spectrum waste and collision
probability for any number of trusted SUs.

Index Terms—Cognitive radio, full-duplex, primary user em-
ulation, spectrum sensing data falsification, ensemble learning.

I. INTRODUCTION

THE rapid development of wireless networks exacerbates

the radio resource scarcity issue [1]. Cognitive radio

networks (CRNs), in which secondary users (SUs) can sense

and access the spectrum white spaces in primary users’

(PUs’) channels, has become a promising solution to increase

spectrum reuse. Cooperative sensing has been proven to be

an effective sensing strategy that mitigates the sensing errors

made by local SUs in CRNs, where a fusion centre (FC) takes

the responsibility for fusing the local sensing result from each

cooperative SU and making a final sensing decision [2]. The

majority vote (MV) rule is commonly used as a fusion strategy

[3]. On the other hand, the full-duplex (FD) communications

bring a new transmission protocol to CRNs, which is known as

Listen-And-Talk (LAT) [4], [5]. The LAT protocol proposed in

[5] allows one FD device to sense and transmit data at the same

time and the other one only receives data. However, it also

introduces new interference issues including self-interference

(SI) and co-channel interference (CCI) to FD-CRNs.

Besides the SI and CCI introduced by the FD LAT pro-

tocol, cooperative sensing frameworks also face malicious

attacks in the real-world CRNs due to the vulnerable nature

of wireless propagations [6]. Two typical malicious attacks

toward spectrum sensing are called Primary User Emulation

(PUE) attack and Spectrum Sensing Data Falsification (SSDF)

attack. A PUE attacker tries to mislead the cooperative SUs by

sending jamming signals to pretend that PU is occupying the

channel [6]. SSDF SU attackers launch attacks by randomly

flipping their sensing results to ‘blind’ the FC with their own

purposes [6]. As a result, the efficiency and reliability of the

communications in CRNs could be significantly degraded.

Considerable algorithms regarding mitigating PUE and

SSDF attacks in half-duplex (HD) CRNs have been proposed.

A PUE detector using K-means is proposed to differentiate

the contaminated sensing measurements sent by attacked SUs.

Such method intuitively mitigates PUE attacks by discarding

malicious reports, which also causes the loss of useful infor-

mation in these reports. Reputation-based voting mechanisms

are introduced in [7], [8] to mitigate SSDF, where a reputation

table is established to assign weights to each SU’s local result.

The authors in [7] also discuss the influence of SI and CCI

on the local sensing performance in the FD case.

The presence of SI, CCI and malicious attacks such as PUE

and SSDF significantly complicates the sensing environment,

where conventional fusion methods such as MV fails to

provide robust and accurate fusion results. Inspired by the

fast development of machine learning-based fusion strategy

for cooperative sensing, in this paper we have presented a

novel ensemble learning (EL) framework to provide robust

fusion results. The main contributions of this paper can be

summarised as follows. We propose a novel EL framework for

sensing result fusion, which is robust against interference and

malicious attacks. In the EL framework, three different base

learners including Temporal Convolutional Recurrent Neural

Network (TCRNN), Support Vector Machine (SVM) and

Reputation based Weighted Majority Vote (RWMV) algorithm

are introduced, followed by a Logistic Regression (LR) meta

learner to assign proper weight to each base learner’s result.

Then we analyse the spectrum waste and collision probabilities

of LAT for our proposed EL framework. Through simulation

and numerical results, we address the conclusion that our

proposed EL framework outperforms MV fusion method.

The rest of the paper is organised as follows. Section II

describes the system model, cooperative sensing metrics and

malicious attacks. In Section III, we elaborate on our proposed

978-1-7281-7440-2/20/$31.00 ©2020 IEEE
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Fig. 1. Structure of the system model.

EL framework by introducing three base learners and one

meta learner. In Section IV, we analyse the spectrum waste

and collision probabilities in LAT. Simulation and numerical

results are presented in Section V. In the end, we draw our

conclusion in Section VI.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a CRN consisting of one

PU-licensed channel, M unlicensed SUs, each of which is

equipped with two-antenna FD radio and partial SI suppression

(SIS) capability, and an FC. SUs cooperatively sense the

channel to detect the status of PU and report to FC. Among

all M SUs, we assume there are Mt (Mt � 2) trusted SUs

(TSUs), Mp PUE attacked SUs and Ms misbehaving SSDF

SUs that report highly unreliable sensing results to the FC.

There is a control channel in the secondary network, which

is used for reporting sensing results from SUs to the FC. The

reporting signal is assumed to be error-free.

A. Primary User’s Traffic Model
PU’s traffic is modelled as a simple ON and OFF process

which contains two instant states: st = 1 is for busy and

st = 0 is for idle at time slot t. Recent studies indicate

that the real-world PU’s channel occupancy status is rather

time-correlated than completely memoryless [9]. Therefore,

we assume random packet arrivals at PU packet arrival rate λa

(packet/slot). According to the Bernoulli process, PU becomes

active with probability P(st+1 = 1|st = 0) = p when its

queue is not empty and if it is not transmitting. Considering

the common case that PU changes its state sufficiently slow,

we assume 1
p � 1. Once activated, PU will keep transmitting

until its queue becomes empty with a transmission rate λt

(λt > λa). Thus, there is a temporal correlation between the

states of previous slots and the current slot.

B. Cooperative Sensing Metrics
In each time slot, local sensing is performed by each

SU in the network first. We consider energy-detection based

spectrum sensing technique in this paper due to its simplicity

and ability to identify spectrum white spaces without requiring

any a priori information of PU’s signal pattern. The sensing

result also has two states: ot = 1 is for busy and ot = 0
is for idle at time slot t. The performance of spectrum

sensing is judged by two fundamental measures, the false-

alarm Pf = P(ot = 1|st = 0) probability and the detection

probability Pd = P(ot = 1|st = 1). The former refers to the

probability that the channel is idle, and SU falsely decides that

it is occupied by the PU. The latter is the probability that the

PU is occupying the channel and the SU detects it.

We quantify the SIS capability in FD-LAT protocol by χ
(0 � χ � 1), where χ = 0 corresponds to perfect SIS and

χ = 1 indicates no SIS [10]. Without loss of generality, we

assume TSU1 and TSU2 is the current transmitter and receiver

pair with SIS coefficient χ. The false-alarm probability and

detection probability for TSU1 considering SI are given by

eq. (9) and (12) in [10], respectively.

The influence of CCI on sensing performance is also critical,

especially when the SU transmitter TSU1 is located nearby

the other SUs. The detection and false-alarm probabilities

considering CCI are similar to those with SI but replacing

the SI terms by CCI terms αsi,s1 , where αsi,s1 refers to the

SNR transmitted by TSU1 and received at SUi.

The local sensing decision for the ith SU is 0-1 binary,

determined by comparing the received energy level with its

pre-set threshold. The FC collects each SU’s sensing result

through the control channel. It then makes the final decision

according to its fusion rule, and broadcasts the final sensing

decision to all SUs by sending control messages.

C. PUE and SSDF Attacks

PUE attackers occasionally send PU-alike signal to nearby

SUs to prevent them from observing the spectrum white spaces

[6]. Those attacked SUs result in high false-alarm probability.

Consider the PUE attacker may occasionally save energy, we

define two attack probabilities, which are pPUE
0 and pPUE

1 ,

respectively. The former refers to the probability that the

PUE attacker sends a jamming signal when PU is absent

whilst the latter indicates the probability that it attacks when

PU is occupying the channel. Therefore, the sensing error

probabilities can be further expressed as:

P̂
(i)
d,PUE = P

(i)
d + pPUE

1 (P
(i)
d,PUE − P

(i)
d ) (1)

P̂
(i)
f,PUE = P

(i)
f + pPUE

0 (P
(i)
f,PUE − P

(i)
f ), (2)

where P
(i)
d,PUE and P

(i)
f,PUE are the ith SU’s sensing error prob-

abilities under PUE attack, which are calculated by replacing

the SI terms by the PUE interference terms αsi,a, where αsi,a

is the SNR transmitted by the PUE attacker a and received at

SUi.

SSDF attack refers to SUs sending modified sensing results

in order to “fool” the FC to make highly unreliable final

decisions [6]. Unlike PUE attackers who usually aim at pre-

venting SUs from discovering the idles slots, SSDF attackers

flip their sensing results for both preventing SUs transmission
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Fig. 2. Training and testing procedure for the proposed ensemble machine
learning based robust fusion strategy.

and increasing the collision probability between SUs and PU.

We also define two attack probabilities, pSSDF
0 and pSSDF

1 . The

former is the probability that SSDF SUs flip their results when

the channel is unoccupied whilst the latter is the probability

they flip their results when the PU is not absent. The sensing

error probabilities under the SSDF attack are given by:

P
(i)
d,SSDF = P

(i)
d (1− pSSDF

1 ) + (1− P
(i)
d )pSSDF

0 (3)

P
(i)
f,SSDF = P

(i)
f (1− pSSDF

1 ) + (1− P
(i)
f )pSSDF

0 . (4)

III. ENSEMBLE MACHINE LEARNING BASED ROBUST

FUSION STRATEGY

As analysed in Section II, the presence of SI and CCI and

malicious attackers significantly degrades SU’s local sensing

performance, and thus, worsens the global sensing decision

made by the FC. Conventional fusion method such as the MV

rule has been proven to be ineffective in this kind of compli-

cated scenario since the weight of each SU’s result cannot be

considered as equal [7]. On the other hand, since the learning

capability of a single model is usually limited, we propose an

ensemble framework which combines the results from various

models in order to increase the decision reliability and also

ensure secure and reliable communications in FD-CRNs [11].

The proposed learning and prediction procedure is shown in

Fig. 2, and described in the following.

A. Framework Structure

The EL framework contains two levels where the first level

is called the base learner level and the second level is called the

meta learner level. The base learner level consists of multiple

different machine learning methods, which aims at extracting

latent representations from different aspects. Studies have

proven that the larger difference between base learners leads

to better prediction results since the model can learn more

different latent expressions of the data [11]. In this paper, we

choose three different learning methods as base learners, which

are TCRNN, SVM and RWMV. TCRNN learns the temporal

Fig. 3. Structure of temporal convolutional layer with max-over-time pooling
in w time slots.

correlation between previous and current slots and the non-

linear mapping between inputs and output. SVM extracts high-

dimension implicit representations between SUs’ local results,

and RWMV learns the explicit linear relationships based on

their reputations (i.e., whether their sensing results are equal to

the label). The meta learner level usually contains one simple

linear learner to prevent overfitting. One commonly used meta

learner is the LR algorithm.

B. Training and Testing Procedures

The input of EL framework is a local decision vector

containing all cooperative SUs’ local results whilst the output

is either 0 or 1 (i.e., idle or busy). The training procedure is

illustrated in the left half of Fig. 2. First, we apply the K-

fold cross-validation to split the original training set into K
subsets (e.g., K = 5 in this paper). The base learners choose

K − 1 subset for training and evaluate their results on the

remaining one subset. This cross-validation process continues

for K times until all subsets are evaluated. Then the evaluation

results, which are called the Out-of-Fold (OOF) predictions,

are used as the training set for the meta learner. After the

cross-validation is finished, all learners are trained on the entire

original training set. The testing procedure is illustrated in the

right half of Fig. 2. The base learners predict on the test set

and then the meta learner combines their prediction results and

makes the final decision.

C. Temporal Convolutional Recurrent Neural Network

Both Temporal Convolutional Network (TCN) and Recur-

rent Neural Network (RNN) have shown promising capability

on time series classification tasks. Thus, we design a hybrid

TCRNN structure in this paper to extract the non-linear and

temporal feature representations of SUs’ local results.

1) Temporal Convolutional Layers: A temporal convolu-

tional layer is added before RNN to pre-extract the temporal

features. Figure. 3 illustrates the process of temporal convolu-

tional and max-over-time pooling operations. The input matrix

X has been processed in such a way that each sample contains

M SUs’ local sensing results over w time slots. Then the

convolutional filters extract temporal features and generate a

new feature matrix Zconv. In order to prevent overfitting, the

network only keeps a part of generated features by using max-

over-time pooling. After max pooling, the size of the feature

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on July 22,2020 at 20:19:32 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Reputation Based Weighted Majority Vote
1: Initialise each SU’s reputation to zero

2: for j = 1, 2, ..., N do
3: for i = 1, 2, ...,M do
4: if d(i)j == y∗j then
5: Increase SUi’s reputation: r

(i)
j = r

(i)
j + 1

6: else
7: Decrease SUi’s reputation: r

(i)
j = r

(i)
j − k

8: end if
9: end for

10: end for
11: The fusion result in probability:

prwmv = P(ŷ∗ = 1|x̂) = sigmoid(
∑M

i=1 r
(i)d̂(i))

matrix is reduced. At last, the pooled feature matrix Z is fed

into RNN for recurrent processing.

2) Long Short-Term Memory Layers: RNN is a superior

deep learning structure in solving time series prediction prob-

lem, which explores the temporal relationship between the

previous state to the current state. The input matrix Z, which

comes from the output of the convolutional and pooling layers,

are fed into the RNN network one vector at each step (e.g., zt
is the input vector of RNN at step t). The historical information

up to the current step is all stored in the hidden states of

RNN, by which RNN learns the temporal correlation between

previous slots and the current slot. In order to tackle the

gradient vanishment problem for traditional RNN cell, the

Long Short-Term Memory (LSTM) cell structure is used here.

The mapping function in an LSTM memory cell from the

input zt to output ht at step t is precisely specified by:

it = sigmoid(Wz
i · zt +Wh

i · ht−1 + bi)

ft = sigmoid(Wz
f · zt +Wh

f · ht−1 + bf )

ot = sigmoid(Wz
o · zt +Wh

o · ht−1 + bo)

c̃t = tanh(Wz
c · zt +Wh

c · ht−1 + bc)

ct = it � c̃t + ft � ct−1

ht = ot � tanh(ct),

(5)

where the operator � refers to the Hadamard product; W
and b are the corresponding weight matrices and bias vectors,

respectively. Since it is a binary classification problem, the

output of the last LSTM cell hT then passes a dense layer

with one neuron to map the output results into a probability:

ptcrnn = sigmoid(wd · hT + bd), (6)

where wd and bd are the weight vector and bias, respectively.

D. Support Vector Machine

SVM aims at finding a linearly separable hyper-plane by

mapping the features into a higher dimension feature space,

with the help of support vectors. It has been proven to be the

most effective classification algorithm among all traditional

machine learning algorithms for sensing-result fusion in [12].

Let φ(.) denote the non-linear mapping function, the convex

optimisation problem for maximising the margin of classifi-

cation while minimising the sum of prediction errors can be

formulated as:

min
1

2
||w||2 + Csvm

N∑

i=1

I{δi>1} (7)

s.t. y∗i · [w · φ(xi) + b0] � 1− δi (8)

δi � 0, for i = 1, ..., N, (9)

where δi is the slack variable for measuring the margin classi-

fication error; I{X} is the indicator function which is zero if X
is false; and is one, otherwise. If a miss-classification appears,

δi is set to be larger than one. w is the weight vector and b0 is

the bias. The parameter Csvm is used as a soft margin constant

for regularisation. The above optimisation problem is is a

quadratic programming problem, which can be further solved

by using sequential minimal optimisation method. Finally, the

Platt scaling method is applied to transforms the classified

output into probability. The estimated probability of x̂ is in

the class ŷ∗ = 1 is given as follows:

psvm = P(ŷ∗ = 1|x̂) = sigmoid(a · ŷ + b), (10)

where a and b are two scaling parameters learnt by fitting the

sigmoid function; ŷ is the soft decision function calculated by

solving the above optimisation problem.

E. Reputation Based Weighted Majority Vote
To find the explicit linear relationship between the output

and inputs, we propose a reputation based learning method,

which is called RWMV. The weight assigned to each SU

is based on its historical reputation. The general steps of

our proposed RWMV are given in Algorithm 1. Let r
(i)
j

denote the ith SU’s reputation at jth iteration. First, all SUs’

reputations are initialised to zero. Then during training, the

RWMV increases r
(i)
j by one if SUi’s local sensing result d

(i)
j

is equal to the label y∗j , and decreases by a penalty constant k
if they are different. During the test phase, the fusion result as

a probability is calculated by adding all SUs’ weighted local

decisions and passed by the sigmoid function to map them

into a probability.

F. Logistic Regression
The LR algorithm is a commonly used effective meta

learner in EL frameworks. It automatically learns the optimal

weights of base learners’ prediction results. The advantages

of using LR include its simplicity, stability and the ability

to prevent overfitting in small-scaled data sets without much

hyperparameter tuning.
Let xbase = {ptcrnn, psvm, prwmv} denote the OOF predic-

tion vector of the base learners, where pj is the predicted

probability of the corresponding base learner j. The output

probability of LR is defined as:

plr = sigmoid (wlr · xbase + blr) , (11)

where wlr and blr are learnable weight vector and bias, respec-

tively. The final binary classification decision is determined by

comparing the probabilistic output with a threshold (e.g., 0.5).
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Fig. 4. Listen-And-Talk protocol, where ‘S’, ‘T’ and ‘W’ refer to the sensing
period, transmission period and waiting period, respectively.

IV. PERFORMANCE ANALYSIS OF TWO FULL-DUPLEX

TRANSMISSION PROTOCOLS

In this section, we study SU’s analytical performance of the

LAT protocol, as shown in Fig. 4. We first derive the channel

idle and busy probabilities, and then the spectrum waste and

collision probabilities in LAT. The sensing error probabilities

used in the following derivations are all determined by the

fusion method applied at the FC.

A. Channel Idle and Busy Probabilities

Let l0 and l1 denote the instant length of idle and busy

periods, l1 and its corresponding average length L1 can be

written as:

l1 =
λa

λt − λa
l0 + 1, L1 =

λa

p(λt − λa)
+ 1. (12)

Using the Bayes’ theorem, PU’s idle and busy probabilities

P(s = 0) and P(s = 1) are given by:

P(s = 0) =
λt − λa

p(λt − λa) + λt
, P(s = 1) =

p(λt − λa) + λa

p(λt − λa) + λt
.

(13)

B. Spectrum Waste Probability

Since the sensing decision is made one slot ahead in LAT,

the spectrum waste probability contains two kinds of time

slots: a) the time slots when the channel remains idle and FC

falsely alarms it was busy in the last slot, and b) the slots when

the channel occupancy status changes from busy to idle while

FC correctly decided it was busy in the last slot. Therefore,

the spectrum waste probability in LAT is derived as follows:

Pw =
(λt − λa)(1− p)

p(λt − λa) + λt
· P (FC)

f +
p(λt − λa)

p(λt − λa) + λt
· P (FC)

d ,

(14)

where P
(FC)
f and P

(FC)
d are the error probabilities at the FC

after sensing result fusion.

C. Collision Probability

The collision probability in LAT also contains two kinds of

slots: a) the time slots when the channel remains busy and FC

decided it was idle in the last slot, and b) the slots of PU’s

arrival in which the FC decided the channel was idle in the

last slot. The collision probability is then given by:

Pc =
λa

p(λt − λa) + λt
· Pd

(FC)
+

p(λt − λa)

p(λt − λa) + λt
· Pf

(FC)
,

(15)

where Pf
(FC)

and Pd
(FC)

are the complimentary probabilities.

TABLE I
AUC SCORES FOR DIFFERENT NUMBER OF TRAINING SAMPLES AND

PU’S ACTIVE PROBABILITY IN LAT PROTOCOL

Fusion Methods
Number of Training Samples
1000 10000

p = 0.05 p = 0.1 p = 0.05 p = 0.1

EL 0.986 0.976 (0.988) [0.979]
TCRNN 0.956 0.941 (0.983) [0.969]

SVM 0.958 0.958 (0.960) [0.959]
RWMV (0.953) [0.956] 0.952 0.953

MV (0.524) [0.523] 0.511 0.512

V. SIMULATION RESULTS

Unless stated otherwise, we use the following parameter

values for simulation and numerical results. We set M = 10,

Mt = 4, Mp = 3, Ms = 3, χ = 0.1, λa = 2 packet/slot,

λt = 6 packet/slot, SNR received by TSU1 from itself

αs = 15 dB, SNR received by SUi from PU αsi,p = −13
dB, SNR received by SUi from TSU1 αsi,s1 ∈ [−10, 0] dB,

SNR received by SUi from PUE attacker αsi,a ∈ [0, 3] dB,

pPUE
0 = 0.6, pPUE

1 = 0.1, pSSDF
0 = pSSDF

1 = 1, the RNN

window size w = 10. The number of training and test samples

are 5000 and 10000, respectively.

A. Prediction Performance Analysis

One commonly used metric for binary classification meth-

ods is the Area Under Curve (AUC) score. AUC score provides

an aggregate measure of performance across all possible

classification thresholds. A high AUC score demonstrates the

classifier has a strong classification capability.

In Table I, we list the AUC scores for the different number

of training samples and PU’s active probability for each fusion

methods. The bold numbers in parenthesis and square brackets

refer to the highest AUC score of p = 0.05 and p = 0.1 in that

row, respectively. It can be seen that larger data sets lead to

higher AUC scores for EL, TCRNN and SVM, whilst RWMV

works better on a smaller data set. Specifically, the AUC score

of TCRNN increases dramatically with the size of the training

set, which shows the strong capability of deep learning-based

methods in a larger data set. However, its results on smaller

data sets are worse than traditional machine learning methods

such as SVM. Our proposed EL framework leverages the pros

and cons of each method and outperforms each of them with

a relatively high and stable prediction performance on both

small and large data sets. Furthermore, a smaller p results in a

higher value of AUC score, which indicates that PU’s activity

pattern can be predicted more easily if it changes more slowly.

Figure. 5 depicts the detection probability, false-alarm prob-

ability and classification time comparison for different fusion

methods. We constrain the detection probability at the FC

P
(FC)
d � 0.9 to protect the communication quality of PU.

The decision threshold of each method is accordingly adjusted.

From Fig. 5 we can see that the EL gives the lowest false-

alarm probability among all methods. The MV method has a
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Fig. 5. Detection probability, false-alarm probability and classification time
comparison for different fusion methods with constrained detection probability
in LAT protocol.
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Fig. 6. Spectrum waste and collision probability comparison for EL frame-
work and MV in LAT protocol.

very poor prediction performance in terms of extremely high

false-alarm probability in such a complicated scenario.

The prediction time for all fusion methods is much lower

than the sensing duration. Since the prediction of base learners

can be done in parallel, our proposed EL framework doesn’t

require a long time whilst it provides an up to 85% reduction of

false-alarm probability compared with conventional MV, and

4% reduction compared with three single-model base learners.

B. LAT Performance Analysis

Figure. 6 illustrates the spectrum waste and collision prob-

abilities in LAT for our proposed EL framework and conven-

tional MV. It can be seen that the spectrum waste probability of

MV is very high when the number of TSUs is small though its

collision probability is low. This indicates that the MV based

fusion method can be easily misled to decide that the channel

is occupied due to malicious attacks. However, our proposed

EL framework is much more stable in both probabilities with

any number of TSUs compared with MV method.

VI. CONCLUSION

In this paper, we proposed a novel EL framework for

cooperative sensing decision fusion, which is robust with

accuracy against malicious attackers and interference in FD-

CRN. First, we designed a deep learning structure, TCRNN,

to extract the temporal-correlation features. An SVM learner

was applied to figure out the high-dimensional implicit feature

representations whilst a learning-based RWMV algorithm was

proposed to learn the explicit linear relationships between the

inputs and the output. An LR meta learner was then trained to

assign weights to the base learners’ results. Then we derived

the channel idle and busy probabilities, the spectrum waste

and collision probabilities in LAT. By testing the classification

performance, we demonstrated the superiority of our proposed

EL framework in terms of high and robust accuracy, low time

cost, low spectrum waste and collision probabilities with any

number of TSUs. It outperforms single-model based fusion

methods and conventional MV based fusion strategy.
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