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Abstract 

The prevalence of treatment-resistant schizophrenia points to a discrete illness subtype but to date its 

pathophysiologic characteristics are undetermined. Information transfer from ventral to dorsal striatum 

depends on both striato-cortico-striatal and striato-nigro-striatal sub-circuits, yet while the functional 

integrity of the former appears to track improvement of positive symptoms of schizophrenia, the latter 

have received little experimental attention in relation to the illness. Here, in a sample of individuals 

with schizophrenia stratified by treatment-resistance and matched controls, functional pathways 

involving four foci along the striatal axis were assessed to test the hypothesis that treatment-resistant 

and non-refractory patients would exhibit contrasting patterns of resting striatal connectivity. Compared 

with non-refractory patients, treatment-resistant individuals exhibited reduced connectivity between 

ventral striatum and substantia nigra. Furthermore, disturbance to corticostriatal connectivity was more 

pervasive in treatment-resistant individuals. The occurrence of a more distributed pattern of abnormality 

may contribute to the failure of medication to treat symptoms in these individuals. This work strongly 

supports the notion of pathophysiologic divergence between individuals with schizophrenia classified 

by treatment-resistance criteria. 
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1. Introduction 

Establishing why current antipsychotic medication fails to assuage hallucinations (aberrant perceptions) 

or delusions (fixed, false beliefs) in approximately 30% of schizophrenia patients (Lieberman et al, 

2005) is a key clinical problem and relies on identifying core neural features that predict treatment 

resistance. Current medication for schizophrenia principally targets the striatum (Seeman and Lee, 

1975); and clinical potency is predicted by its binding to and blockade of the dopamine D2 receptor 

(Creese et al, 1976). However, the observation that responders and treatment-resistant individuals 

exhibit virtually identical D2 receptor occupancy levels (Wolkin et al, 1989) suggests that occupancy 

alone is insufficient to produce symptomatic alleviation. More recent observations that treatment-

resistant patients differ from responders in terms of both dopamine concentrations in the limbic and 

associative striatal subdivisions and glutamate concentration in the anterior cingulate cortex 

(ACC)(Demjaha et al, 2014; Demjaha et al, 2012) suggest the presence of discrete pathophysiologic 

subtypes. Nevertheless, the mechanisms underlying treatment resistance remain incompletely resolved. 

Information appears to flow from ventral striatum - where basic stimulus features such as anticipated 

reward value are encoded - to dorsal structures, where distinct parallel circuits facilitate this transfer, 

and refine information content for subsequent appropriation by learning and action processes(Botvinick 

et al, 2009; Croxson et al, 2009; Haber and Knutson, 2010). Striato-cortico-striatal loops predominantly 

involving prefrontal cortex (PFC) projections have been delineated in nonhuman primates (Alexander 

et al, 1986), and confirmed in humans with diffusion tensor imaging (Leh et al, 2007; Lehericy et al, 

2004) and resting-state functional magnetic resonance imaging (rs-fMRI) (Di Martino et al, 2008). 

These loops include: a ventral circuit anchored in the inferior limbic subdivision of the striatum and 

comprising connections with orbitofrontal cortex (OFC), ventro-medial PFC, medial thalamus and 

limbic regions, which is fundamental to associative learning and reward-mediated decision making 

(Knutson and Cooper, 2005); and a dorsal circuit, including the associative subdivision of the striatum, 

dorsolateral PFC and medio-dorsal and ventro-anterior thalamus, which maintains information relating 

to reward outcomes (O'Doherty et al, 2004). Furthermore, there is convergent evidence for the 

complementary involvement of these corticostriatal networks in psychotic illness. Compromised ventral 

circuit function has been well established by consistently reduced activation of ventral striatum and 

PFC during reward processing in schizophrenia (Heinz and Schlagenhauf, 2010; White et al, 2013), 

structural changes of ventro-medial PFC after or during the transition to a first illness episode (Mechelli 

et al, 2011), and an up-regulation of ventral striatum dopamine concentration in psychotic individuals 

(Fusar-Poli and Meyer-Lindenberg, 2013). However, preferential elevation of dopamine in dorsal 

striatum has also been reported in both unmedicated patients and individuals in an at-risk mental state 

(ARMS) for developing psychosis(Howes et al, 2009; Kegeles et al, 2010).  

Sub-circuits comprising pathways between striatum and substantia nigra (SN) are less publicised but 

equally pivotal for information flow through the striatum; playing a seemingly crucial role in 
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instrumental learning and habit formation(Belin and Everitt, 2008). These projections are more broadly 

distributed than cortico-striatal pathways (Haber and Knutson, 2010). Despite this inter-mingled, 

clustered arrangement, ventral tegmental area and medial SN are generally associated with ventral 

striatum, and central and ventrolateral SN with associative and sensorimotor striatum respectively 

(Haber and Fudge, 1997; Haber et al, 2000; Nauta and Domesick, 1978; Somogyi et al, 1981). While 

ventral striatum receives sparse SN input, it projects to a large region of midbrain and is therefore a 

strong modulator of SN activity. By contrast, dorsal striatum (caudate/putamen) receives diverse and 

numerous afferent connections from SN, and is therefore heavily influenced by SN, but itself extends 

limited reciprocal projections. Individuals with schizophrenia have been recently shown to exhibit 

reduced nigro-striatal connectivity(Yoon et al, 2013; Yoon et al, 2014), but striato-nigro-striatal 

connections have not yet been investigated in relation to treatment resistance.  

Studying functional connectivity (FC) in striatal circuits at rest circumvents issues of performance (e.g. 

inter-subject differences, practice and ceiling/floor effects), which confound task-based functional 

imaging investigations. As yet, no robust structural or functional brain correlates have been associated 

specifically with treatment-resistant schizophrenia (Nakajima et al, 2015). Investigation of multiple 

cortico-striatal circuits has, however, revealed complex, subtle alterations in association with both 

vulnerability to psychosis and clinical features of the disorder. ARMS individuals display 

hypoconnectivity (as compared with control subjects) in the circuit involving dorsal caudate, right 

DLPFC, medial PFC and thalamus, but hyperconnectivity between ventral putamen, fronto-insular 

cortex and superior temporal gyrus (Dandash et al, 2014). Similarly, in individuals with first-episode 

psychosis (FEP) and their first-degree relatives, functional connectivity is enhanced for the ventral 

circuit and reduced for the dorsal circuit (Fornito et al, 2013).  These findings, together with the assumed 

importance of striatal networks for treatment response and the growing evidence for a dissociable 

neurophysiologic foundation for treatment-resistant schizophrenia, guided our interest in clarifying 

whether treatment-resistant individuals are differentiable from other individuals with schizophrenia on 

the basis of their striatal connectivity.  

If pharmacological blockade of striatal D2/3 receptors effects clinical improvement and normalisation of 

brain activity in some patients but not others, it is likely that treatment-responsive and resistant patients 

differ in terms of their striatal network function. A recent study has used this idea to examine 

prospective treatment response, identifying changes in striatal connectivity with prefrontal and limbic 

regions as important in symptomatic alleviation (Sarpal et al, 2015). Guided by these observations, the 

rationale that treatment-resistant individuals would differ from non-refractory patients in these brain 

substrates that track clinical improvement, and the idea that treatment-resistant individuals would 

exhibit striatal FC abnormalities indicative of their specific cognitive and behavioural impairments, we 

addressed two principal hypotheses: First, that treatment-resistant individuals with schizophrenia would 

display reduced connectivity along nigro-striatal pathways compared with non-refractory individuals, 
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since learning and its influence on action can be impaired in treatment-resistant individuals (Dratcu et 

al, 2007; Kolakowska et al, 1985), and related processes are regulated by striatum and substantia nigra 

(Braver et al, 1999a; Braver and Cohen, 1999b; D'Ardenne et al, 2012). Second, that fronto-striatal 

disruptions observed when comparing patients with healthy individuals (Quide et al, 2013; Sarpal et al, 

2015) would differ as a function of treatment resistance. In addition, as the persistence of positive 

symptoms is fundamental to treatment resistance, and with the aim of building on previous FEP 

observations (Fornito et al, 2013), we assessed the extent to which current positive symptom severity 

predicted striatal FC in treatment-resistant and non-refractory patients. 
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2. Materials and Methods 

2.1 Participants 

Thirty-eight right-handed individuals satisfying DSM-IV criteria for schizophrenia took part in this 

fMRI study. These individuals were stratified according to their documented response to antipsychotic 

treatment in electronic medical records: 16 met modified Kane criteria for treatment-resistant 

schizophrenia on the basis of: 1) completion of at least two sequential 4-week antipsychotic trials at a 

daily dose of 400-600 mg chlorpromazine (or equivalent); 2) persistent psychotic symptoms of at least 

moderate severity (as indexed by Positive and Negative Syndrome Scale (PANSS) scores (Kay et al, 

1987) on one or more positive subscale measure);  and 3) impaired occupational functioning (as indexed 

by a score ≤59 on the Global Assessment of Function (Conley and Kelly, 2001; Demjaha et al, 2012). 

Patients not satisfying all treatment resistance-related criteria were assigned to the non-refractory 

schizophrenia group. Medication compliance was assessed by review of pharmacy and medical records. 

This recruitment strategy, in contrast to the selection of treatment-resistant and treatment-responsive 

patients (with alleviated symptoms), permitted between patient-group matching in terms of current 

symptom severity, which presented the capability to dissociate effects of treatment resistance from those 

of current illness state. Patient groups were group-matched for age, sex, and parental socio-economic 

status (Rose and Pevalin, 2001) with each other and a sample of 20 healthy volunteers. Healthy 

participants were recruited by local poster advertisement. Respondents were excluded from study if: 

they reported a personal history of psychiatric or neurological illness; a recent history of illicit substance 

use; or a history of psychotic illness in a first-degree relative; or exhibited a major current physical 

illness. Details of these participants’ demographics, clinical characteristics are presented in Table 1. 

Ethical approval was provided by Central London Research and Ethics Committee 3. All participants 

provided informed written consent and were given a monetary inconvenience allowance for 

participation. 

2.2 Design 

All patients participated in one MRI session and experienced no amendment to their ongoing 

antipsychotic treatment regimen.  

2.3 fMRI data acquisition 

fMRI data for each scanning session comprised 300 gradient-echo echo-planar images (TR/TE: 2000/30 

ms, flip angle: 75°, matrix: 64 x 64) acquired on a 3 Tesla GE Signa MR scanner (GE Healthcare, USA) 

at the Institute of Psychiatry, London. Each whole-brain image contained 37 non-contiguous slices of 

2.4-mm thickness separated by a distance of 1 mm, and with in-plane isotropic voxel resolution of 3.4 

mm. Participants were instructed to remain still with gaze fixed on a central cross for the duration of 

this ten-minute resting-state scan. A high-resolution T1-weighted structural scan was acquired for each 
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participant using a fast-spoiled gradient-echo pulse sequence (repetition time = 9.4 ms, echo time = 3.8 

ms, flip angle = 12°, time to inversion= 450 ms). 

2.4 fMRI analysis 

fMRI data were preprocessed using SPM8 (Statistical Parametric Mapping, Wellcome Department of 

Imaging Neuroscience, University of London, UK). Data were slice-time corrected and realigned to the 

first image of each series, normalised via unified segmentation of subject-specific anatomical data 

coregistered to the SPM-T1 template, and smoothed using a 6-mm full-width at half maximum Gaussian 

kernel. Segmented white matter (WM) and cerebrospinal fluid (CSF) images were thresholded at 50% 

tissue probability and binarised to create nuisance variable masks. 

To facilitate potential comparisons with recent related findings, further processing and seed definition 

followed procedures outlined elsewhere (Dandash et al, 2014; Fornito et al, 2013).  Seeds were defined 

in both hemispheres as 3.5-mm radius spheres at the following stereotaxic coordinates: dorsal caudate 

(DC; x = ±13, y = 15, z = 9); ventral striatum/nucleus accumbens (VS; x = ±9, y = 9, z = -8); dorsal-

caudal putamen (dcP; x = ±28, y = 1, z = 3); and ventral-rostral putamen (vrP; x = ±20, y = 12, z = -

3)(Dandash et al, 2014). To complement di Martino and colleagues’ original investigation(Di Martino 

et al, 2008), effects were additionally modelled in relation to their remaining two seeds, but as per 

previous work(Dandash et al, 2014), experimental focus was placed upon the former four seeds. 

Component-based correction (CompCor) of temporal confounds relating to head movement and 

physiological noise was performed using the CONN toolbox (v.14) (Whitfield-Gabrieli and Nieto-

Castanon, 2012). Under the rationale that related noise effects are not spatially uniform, and that 

regional signals encode temporally distinct linear combinations of them, CompCor parses signals 

measured within specified masks into linearly additive temporal components whose effects on 

connectivity metrics can all be mitigated. Accordingly, the first 5 principal components of the WM- 

and CSF-mask signals were calculated, and the first eigenvariate of activity within each of the 6 bilateral 

seeds was estimated after regressing out linear effects of the 6 realignment parameters, their first 

derivatives and the 10 noise components. Preprocessed data were temporally bandpass-filtered (0.01-

0.1 Hz). 

First-level FC analyses were performed using general linear models, as implemented in SPM8. These 

modelled individual-specific co-variation between the activity of each seed and the rest of the brain,and 

comprised regressors for the 6 seed regions’ time-courses, 6 realignment parameters and their first 

derivatives, and the 10 noise components. Second-level models were estimated according to our explicit 

hypotheses. First, to test whether FC between each striatal seed and the rest of the brain differed between 

individuals with treatment-resistant and non-refractory schizophrenia, independent-samples T-tests 

were conducted for these groups for each seed. To permit dissociation of effects relating to, and those 

independent from, the severity of current psychotic illness, covariates included the positive, negative 
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and general PANSS sub-scores. To further account for potential motion effects on connectivity 

estimates, the effects of 4 summary measures of head movement were added as covariates (Fornito et 

al, 2013; Van Dijk et al, 2012) in these and all subsequent between-group, second-level analyses. 

Second, to examine potential idiosyncrasies in connectivity specific to each patient group, independent 

samples T-tests were conducted to compare their whole-brain connectivity patterns with those of the 

healthy individuals. Third, to evaluate patient-group specific relationships between current 

schizophrenic symptomatology and whole-brain striatal FC, analyses of covariance (ANCOVA) models 

were estimated for each of the four seeds, independently for treatment-resistant and non-refractory 

schizophrenia. These models included the 3 PANSS sub-scores as predictors, and the 4 summary 

measures of head movement and CPZ dosage as covariates. The inclusion of negative and general 

symptom sub-scores allowed detection of effects specific to the positive symptom sub-score.  

Finally, ANCOVA tests were used to investigate the extent to which striatal FC was predicted by 

antipsychotic medication dosage in individuals with schizophrenia. Effects were assessed via within-

group models because, as shown in Table 1, there was a significant difference in CPZ dosages between 

the patient groups. Covarying out the effects of variables which differ between groups does not 

statistically equate to conducting the same experiment in individuals matched on that variable, as has 

been elegantly and repeatedly discussed elsewhere (see, for example, Suckling, 2011). With this in 

mind, independent ANCOVA tests were run for the treatment-resistant and non-refractory individuals 

with schizophrenia.  The effects of medication dosage on each seed’s functional connectivity were 

examined separately in models incorporating subject-specific contrast images for the functional 

connectivity of that seed and covarying out effects of the 3 PANSS sub-scores, the 4 summary measures 

of head movement and the four summary measures of head movement. Importantly, on account of the 

between-group differences in CPZ dosage, the covariates were not mean centred. This ensured that the 

effects of each particular dosage were consistently described across both groups.  

For all analyses significance was ascribed according to a family-wise error corrected cluster-wise 

threshold determined using the AlphaSim permutation procedure implemented in the REST toolbox 

(http://pub.restfmri.net) in a manner identical to previous investigations of striatal FC in 

psychosis(Dandash et al, 2014; Fornito et al, 2013). To reduce Type 1 error, the conventional family-

wise error corrected cluster threshold of .05 was further Bonferroni corrected to reflect the number of 

seeds tested. Significant between-patient group effects are reported only in those voxels judged 

significant in the healthy individuals. Seed-specific masks were constructed from the results of one-

sample T-tests conducted on the healthy-group contrast images, covarying for effects of the summary 

measures of head movement, and using the cluster-level significance criterion described above (Figure 

S1). These were selected under the rationale that they represent the core connectivity circuit for each 

seed. (Figures S2 and S3 illustrate overlap between healthy group findings and significant clusters in 

non-refractory and treatment-resistant schizophrenia respectively.).  

http://pub.restfmri.net/
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3. Results 

3.1 Divergent functional connectivity in treatment-resistant and non-refractory schizophrenia 

In comparisons with healthy individuals, the patient groups exhibited divergent patterns of 

corticostriatal abnormality. The treatment-resistant patients displayed reduced FC between VS and 

middle frontal gyrus, between DC and sensorimotor cortex, and in terms of striato-striatal connectivity 

of circuits involving the vrP seed (Figure 1; Table 2). By contrast, significantly reduced functional 

connectivity was found between the DC and rostral PFC extending into dorsolateral PFC, and DC and 

visual cortex in non-refractory patients as compared with healthy controls (Figure 1; Table 2). Between-

group comparisons for the other seeds produced non-significant results. Compared with non-refractory 

patients, treatment-resistant individuals with schizophrenia exhibited reduced striato-nigral FC between 

VS and substantia nigra, and reduced FC between dcP and the pulvinar of the thalamus. In addition, 

they exhibited enhanced functional connectivity between DC and medial and superior PFC compared 

with non-refractory individuals (Figure 2; Table 2). 

 

3.2 Relationships between FC and positive symptoms of schizophrenia 

In treatment-resistant schizophrenia, increased positive PANSS sub-score was associated with reduced 

functional connectivity between VS and parietal midline structures and middle frontal gyrus. In the 

same group, increased positive PANSS sub-score was also associated with increased FC between dorsal 

striatum seeds and regions including precuneus, posterior cingulate and medial prefrontal cortex. In 

non-refractory schizophrenia, positive PANSS sub-score was positively associated with FC between 

VS and anterior cerebellum (Figure 3; Table 3). No other relationships between positive PANSS score 

and functional connectivity were significant. (Details of the relationships between antipsychotic 

medication dosage and striatal FC are presented in Supplementary Materials and Methods.) 

3.3 Relationships between FC and antipsychotic dosage 

In treatment-resistant schizophrenia CPZ dosage significantly positively predicted FC of the striatum 

with several cortical regions, including lingual gyrus (Table 4). Significant inverse relationships 

between medication and striatal FC were limited to the findings relating to the VS seed, whereby 

medication inversely predicted connectivity with regions including posterior cingulate gyrus, lingual 

gyrus, cerebellum, and prefrontal cortex (Table 4). 

By contrast, for non-refractory individuals with schizophrenia, no significant positive associations 

between CPZ dosage and FC were observed for any of the striatal regions investigated. However, CPZ 

dosage inversely predicted FC with prefrontal cortex for the DC, dcP and vrP seeds (Table 4). 
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4. Discussion 

Alleviating the persistent symptoms of treatment-resistant schizophrenia is contingent on understanding 

their neurophysiologic provenance. There is evidence that treatment-resistant individuals differ from 

responsive patients in terms of striatal dopamine synthesis capacity and prefrontal glutamate availability 

(Demjaha et al, 2014; Demjaha et al, 2012). In view of these findings, this study investigated functional 

connectivity with a focus on these brain structures in individuals with schizophrenia stratified by 

treatment resistance and healthy control subjects. It identifies potential idiosyncrasies of treatment-

resistant schizophrenia on two principal fronts. First, patients with schizophrenia with treatment 

resistance exhibited reduced connectivity between VS and SN; reduced connectivity between the dcP 

and thalamus; and elevated connectivity between DC and medial PFC (Figure 2; Table 2). We thereby 

identify diminished cross-talk between VS and SN as a potential mechanism for treatment resistance. 

In light of the relative abundance of connections from VS to SN (Haber et al, 2010), it is likely that this 

finding represents a diminution of the influence of VS on other brain structures in treatment-resistant 

schizophrenia.  

The current data also emphasises specific corticostriatal pathways along which information flow within 

cortico-basal ganglia reward systems differs between these patient groups. Specifically, coupling 

between DC and superior and medial prefrontal cortex is reduced in non-refractory compared with 

treatment-resistant patients (Figure 2; Table 2). These notable differences at multiple sites along the 

putative ventral-dorsal transfer axis suggest that there may be differential dysfunction, impacting the 

feedback systems that process and integrate reward-related information with cognition and action. 

Second, as compared with healthy control subjects, the schizophrenia groups displayed varying 

differences in striatal FC, which were for the most part demonstrative of reduced cortico-striatal and 

striato-striatal connectivity in patients. Treatment-resistant individuals exhibited reduced connectivity 

of the VS with orbito-frontal cortex, between DC and sensorimotor regions, and between vrP and a 

striatal cluster encompassing caudate head and putamen. By contrast, significant differences in striatal 

FC in non-refractory patients were limited to the DC, whose connectivity with regions including rostro-

lateral PFC, occipital cortex and cerebellum was attenuated (Figure 2). These findings imply that 

corticostriatal dysconnectivity is more anatomically distributed in treatment-resistant individuals, 

which could in part explain the reduced efficacy of medication in these individuals. However, 

neuroimaging data in treatment-resistant schizophrenia reported to date, which have failed to uncover 

robust correlates of poor response to medication (Nakajima et al, 2015), do not support this 

interpretation.  
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This work upholds and adds to recent observations from FEP and ARMS cohorts of hypoconnectivity 

(as compared with controls) of dorsal corticostriatal circuits (Dandash et al, 2014; Fornito et al, 2013). 

In our study however, reduced functional connectivity (compared with controls) between DC and PFC 

was specific to non-refractory patients. Furthermore, treatment-resistant individuals displayed elevated 

connectivity between DC and medial PFC when compared with non-refractory patients, suggesting that 

fronto-striatal hypoconnectivity is a less useful disease marker for treatment-resistant individuals; 

providing a further point of neurophysiologic distinction between patients stratified by response. 

Contrary to previous investigations, we found little evidence for ventral corticostriatal 

hyperconnectivity in schizophrenia. However, while ventral-circuit hyperconnectivity provides an 

elegant candidate mechanism for cognitive features of psychotic illness relating to aberrant salience 

attribution (Kapur et al, 2005), its empirical support is presently equivocal. In fact, there are numerous 

reports of reduced functional connectivity of ventral-circuit PFC regions in schizophrenia (Backasch et 

al, 2014; Diaconescu et al, 2011; He et al, 2013; Lynall et al, 2010; Tomasi and Volkow, 2014). While 

these discrepant findings may be attributable to factors including clinical heterogeneity, a more 

complete understanding of schizophrenia-related abnormalities in these networks can be assisted by 

examining reported effects in the context of a more comprehensive characterisation of the individuals 

involved (Insel, 2014), and with reference to specific abnormalities in task-related behaviour.  

One of the fundamental cornerstones of clinical practice is to increase the dosage of medication 

following insufficient clinical improvement in patient symptoms. This can be observed clearly in our 

sample, where the prescribed medication dose in the treatment-resistant group exceeds that of the non-

refractory group (Table 1). However, it does pose a confound for the investigation of treatment-resistant 

schizophrenia. Covarying out effects of medication dosage across groups is not a valid solution -  this 

would not equate to measuring FC in groups matched for medication dosage - as has been elegantly 

argued elsewhere (Suckling, 2011). As such, the extent to which the reported between-group differences 

are purely pathophysiological or the result of pharmacological confounds cannot be definitively 

detailed, and this limits the current findings. Nevertheless, the analyses of the relationships between 

CPZ and striatal FC imply that the between-group differences were not solely attributable to differences 

in current medication level. While medication effects in non-refractory schizophrenia were limited to 

inverse associations with prefrontal cortex, distributed drug effects were found in the treatment-resistant 

group, with the most robust associations between dosage and striato-occipital connections. It is possible 

that the relative scarcity of drug effects in the non-refractory group reflects reduced medication dosage 

in this group. For the most part the observed regional drug effects did not exhibit spatial correspondence 

with the regions whose FC was found to differ between the patient groups or between the healthy and 

patient groups. However, it is noteworthy that medication was inversely related with connectivity 

between DC and postcentral gyrus in treatment-resistant individuals and that connectivity between DC 

and an anatomically proximal region of postcentral gyrus was reduced in treatment-resistant individuals 
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as compared with controls, suggesting that this may be a pharmacologically-driven between-group 

effect rather than a direct effect of the disorder.   

Further support for the notion that the current effects are not purely medication derived is provided by 

the regional disparity between the current between patient group FC effects, and recent observations in 

responsive patients following medication (Sarpal et al, 2015). However, an incomplete understanding 

of the consequences of long-term antipsychotic treatment and inter-individual variation in related 

phenomena limits this work. Similarly, the possibility that medication with clozapine influenced 

connectivity in the treatment-resistant group cannot be wholly discounted. Investigating the direct 

effects of current clozapine treatment on striatal connectivity, and connectome differences specific to 

individuals with persistent positive symptoms despite clozapine treatment (termed ‘ultra-resistant 

psychosis’) are hugely pertinent areas for future work. Unfortunately, the size of the current subsamples 

precluded their adequate investigation with this dataset (Supplementary Information). However, one 

benefit of having a majority (n=11) of clozapine treated patients in the treatment-resistant group is that 

their treatment is accompanied by monitoring of serum blood levels to ensure that minimum therapeutic 

levels are achieved during dose titration. This provides a metric for antipsychotic dosage compliance, 

which can otherwise be a concern in these patients.  

Previous inverse associations between positive PANSS sub-scores and striatal functional connectivity 

(Fornito et al, 2013) were not replicated. In the non-refractory patient group no significant negative 

relationships were found. The treatment-resistant individuals did, however, exhibit significant negative 

relationship between positive symptom severity and connectivity between the VS seed and the cingulate 

and middle frontal gyrus. In this latter group, those individuals with more severe positive symptoms 

also displayed enhanced connectivity between dcP and expansive regions including precuneus, 

cingulate gyrus and superior parietal lobule, and between DC and cuneus, medial frontal and middle 

temporal gyrus. It would be speculative to suggest on the basis of these relationships that the 

mechanistic foundations of positive symptoms differ between these patient groups; the observed 

relationships may, however, represent mechanisms responsible for prolonging these disease features. 

Particularly noteworthy are the observations of enhanced connectivity between posterior cingulate 

gyrus, precuneus and inferior parietal lobule - core regions of the default mode network - and dcP in 

the treatment-resistant group, which intimate aberrant interconnections between processes of salience 

attribution and internal monitoring (Fox et al, 2005; Kapur et al, 2005; Raichle et al, 2001). 

While it is advantageous to detect discrepant brain-system features stratified on the basis of past 

treatment response - since this can potentially improve our understanding of the neural basis of 

treatment resistance – predicting which individuals are unlikely to respond prior to chronic ineffective 

medication is of greater import. Long-term medication has been suggested to produce D2 receptor up-

regulation and associated supersensitivity to dopamine (Ginovart et al, 2009; Samaha et al, 2007), in 
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turn reducing the effective potential of subsequent treatments. Furthermore, ineffective treatment adds 

to the functional and social incapacitation of long-term illness. As such, tracking the occurrence and 

timing of differences of cerebral structure and function, such as those currently identified, from the 

early stages of illness may help identify individuals unlikely to respond to treatment. Future longitudinal 

work geared towards establishing whether the detected features are a primary component of a treatment-

resistant illness sub-type, or a secondary feature of long-term illness or ineffective pharmacologic 

treatment, is warranted. The current study provides evidence of physiologic substrates related to 

treatment resistance in schizophrenia; however, while it is likely that both genetic (Frank et al, 2015) 

and environmental (Hassan and De Luca, 2015) factors underlie treatment resistance and its associated 

mechanisms, the causative factors remain inadequately explained. Characterising the treatment-

resistance phenotype in terms of clinical and cognitive features has the potential to improve our 

understanding of the key aetiological determinants (Gonzalez-Rodriguez et al, 2014). 

 

By finding that striatal functional connectivity selectively differs between treatment-resistant and non-

refractory patients, and that these differences cannot be directly attributable to symptomatic severity at 

time of study, this work advocates the notion that contrasting medication response reflects divergent 

pathophysiologic mechanisms in these individuals. More specifically, variations in corticostriatal 

association are seen in relation to treatment response in line with recent related findings (Sarpal et al, 

2015); and striato-nigral dysconnection is identified as a distinct feature of treatment-resistant illness. 

There is increasing interest in examining glutamatergic treatment options in schizophrenia 

(Papanastasiou et al, 2013) and elevated glutamate function has been observed in association with 

treatment resistance (Demjaha et al, 2014). Given recent accounts that the N-methyl-d-aspartate 

receptor antagonist, ketamine - which disinhibits glutamatergic stimulation of non-NMDA receptors 

(Moghaddam et al, 1997) - modulates functional connectivity of ventral striatum (Dandash et al, 2014), 

striato-nigral disconnection is a viable mechanism for targeted treatment of refractory schizophrenia. 

This work marks a potentially important bridge towards dealing with this chronically incapacitating 

aspect of the illness. 
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Table 1. Sample demographic and clinical characteristics. Bracketed values denote standard 

deviations.  

Variable Treatment-resistant 
schizophrenia (n=16) 

Non-refractory 
schizophrenia (n=22) 

Healthy                      
(n=20) 

Between-group 
comparisons 
 

Age (years) 36.69 (7.86) 37.55 (9.60) 36.30 (9.38) P >.5 for all comparisons 
 

Sex (male/female) 12/4 19/3 17/3 P >.5 for all comparisons 
 

Parental socio-
economic status (NS-
SEC) 

2.69 (1.49) 2.64 (1.65) 2.35 (1.59) P >.5 for all comparisons 
 

Intelligence quotient 
(WASI) 

96.81 (17.82) 99.09 (12.57) 111.67 
(17.40) 

TR vs. NR: T(36)=0.46, 
P=.646 
TR vs. HC: T(34)=2.46, 
P=.020 
NR vs. HC: T(40)=2.65, 

P=.012 
 

Positive PANSS 
Negative PANSS 
General PANSS 

17.88 (5.90) 
17.50 (7.00) 
34.88 (11.00) 
 

15.32 (3.87) 
18.45 (5.68) 
29.91 (6.66) 

 TR vs. NR: T(36)=1.61, 
P=.115 

TR vs. NR: T(36)=0.46, 
P=.646 

TR vs. NR: T(36)=0.73, 
P=.092 

     
Age at onset of illness 
(years) 

21.34 (4.40) 25.57 (5.88)  TR vs. NR: T(36)=2.41, 
P=.022 

     
Duration of illness 
(years) 

15.47 (6.41) 11.86 (10.35)  TR vs. NR: 
T(33.79)=1.30, P=.201 

     
     

Current antipsychotic 
medication  

Clozapine (n=11), 
Aripiprazole (n=2), 
Olanzapine (n=2), 
Amisulpride (n=1), 
Haloperidol (n=1), 
Palliperidone (n=1), 
Quetiapine (n=1), 
Zuclopenthixol (n=1) 

Olanzapine (n=9), 
Aripiprazole (n=3), 
Risperidone (n=3), 
Amisulpride (n=1), 
Fluphenazine decoate 
(n=1), Haloperidol (n=1), 
Pipotiazine (n=1), 
Quetiapine (n=1), 
Venlafaxine (n=1), 

Zuclopenthixol (n=1) 

  

Antipsychotic 
medication dosage 
(mg/day; CPZ) 
 

764.06 (339.15) 
 

281.68 (299.14) 
 

 TR vs. NR: T(36)=4.64, 
P=5x10-4 

Antidepressant 
medication 

Citalopram (n=1) Citalopram (n=1) 
Fluoxetine (n=1) 

  

     

  

TR, treatment-resistant schizophrenia; NR, non-refractory schizophrenia; HC, healthy controls; NS-

SEC, National Statistics Socio-Economic Classification (Rose and Pevalin, 2001); WASI, Wechsler 

Abbreviated Scale of Intelligence (Wechsler, 1999); PANSS, Positive and Negative Syndrome Scale 

for schizophrenia (Kay et al., 1987); CPZ, chlorpromazine equivalent 
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Table 2. Significant grey matter foci of between-group differences in striatal resting-state functional 

connectivity  

Contrast Seed Brain structure (Brodmann Area) Coordinates T-value kE 

   x y z   

TR < HC VS Middle frontal gyrus (47) 32 40 -6 3.26 156 

        

 DC Postcentral gyrus (2) 50 -30 44 3.83 363 

  Precentral gyrus (4) 58 -10 50 3.35 363 

 dcP None      

 vrP Caudate head -14 20 0 3.72 151 
  Lentiform nucleus, putamen -20 8 -2 3.70 151 

        

TR > HC VS None      

 DC None      

 dcP None      

 vrP None      

        
Non-TR < HC VS None      

 DC Cuneus (19) -2 -92 26 4.32 526 
  Cuneus (18) 4 -80 26 4.22 526 

  Lingual gyrus (18) -12 -74 -8 3.33 157 

  Fusiform gyrus (19) -26 -70 -16 4.13 191 

  Superior frontal gyrus (10) -16 66 18 4.08 211 

  Middle frontal gyrus (10) -30 64 10 3.60 232 

  Cerebellum, posterior lobe -28 -64 -20 4.18 191 

 dcP None      

 vrP None      

        

        

Non-TR > HC VS None      

 DC None      
 dcP None      

 vrP None      

        
TR < non-TR VS Mammillary body -2 -8 -12 4.81 270 

  Substantia nigra -14 -22 -6 3.94 270 

 DC None      

 dcP Thalamus, pulvinar 24 -32 8 3.48 231 

 vrP None      

        
TR > non-TR VS None      

 DC Superior frontal gyrus (8) 24 34 50 5.12 218 

  Superior frontal gyrus (9) -4 58 36 3.85 177 

  Superior frontal gyrus (8) -6 38 56 4.31 157 

  Superior frontal gyrus (8) -2 36 50 3.75 157 

  Medial frontal gyrus (10) -10 66 14 3.41 177 

 dcP None      

 vrP None      

        

TR, treatment-resistant schizophrenia; HC, healthy controls; VS, ventral striatum; DC, dorsal caudate; 

dcP, dorso-caudal putamen; vrP, ventro-rostral putamen  
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Table 3. Relationships between positive PANSS sub-score and striatal resting-state functional 

connectivity in treatment-resistant and non-resistant schizophrenia 

Group Seed Direction Brain structure (Brodmann Area) Coordinates T-value kE 

    x y z   

TR VS Positive None      

  Inverse Cingulate cortex (31) -10 -48 42 3.52 172 

   Precuneus (7) -8 -58 48 3.51 172 

   Middle frontal gyrus (9) 34 26 38 4.59 162 

 DC Positive Cuneus (18) 18 -100 2 11.02 240 

   Cuneus (17) 18 -96 0 9.84 240 
   Medial frontal gyrus (6) 8 -30 64 7.18 262 

   Medial frontal gyrus (6) -2 -24 56 5.09 262 

   Middle temporal gyrus (39) -46 -70 8 5.25 285 

 dcP Positive Precuneus (7) 6 -68 48 14.10 328 

   Precuneus (7) -8 -62 46 7.94 328 

   Cingulate cortex (31) 4 -44 38 7.77 1306 

   Inferior parietal lobule (40) 38 -48 40 4.52 1306 

   Superior parietal lobule (7) -22 -70 46 4.62 178 

   Precuneus (7) 40 -74 38 5.97 260 

   Superior parietal lobule (7) 38 -72 44 5.13 260 

  Inverse None      

 vrP Positive None      
  Inverse None      

         

non-TR VS Positive Cerebellum, anterior lobe 14 -28 20 5.10 156 

  Inverse None      

 DC Positive None      

  Inverse None      

 dcP Positive None      

  Inverse None      

 vrP Positive None      

  Inverse None      

         

TR, treatment-resistant schizophrenia; non-TR, non-refractory schizophrenia; VS, ventral striatum; 

DC, dorsal caudate; dcP, dorso-caudal putamen; vrP, ventro-rostral putamen  
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Table 4. Regions in which striatal resting-state functional connectivity was significantly related to 

antipsychotic dosage. 

A)Treatment-resistant schizophrenia (n=16) 
Contrast Seed Brain structure (Brodmann Area) Coordinates T-value kE 

   x y z   

Positive 

relationship 

VS None      

 DC Lingual gyrus (18) -32 -76 -16 7.71 382 
  Lingual gyrus (18) -22 -80 -16 6.54 382 

  Lingual gyrus (18) -20 -76 -12 5.79 382 

  Cerebellum, declive 24 -56 -16 6.21 457 

  Fusiform gyrus (19) 30 -68 -16 5.73 457 

  Occipital lobe (19) 16 -58 -8 4.69 457 

 dcP Lingual gyrus (18) -12 -74 -10 8.38 302 

  Lingual gyrus (19) -16 -64 -10 5.65 302 

  Lingual gyrus (18) -2 -86 -4 4.64 302 

  Lingual gyrus (18) -6 -82 -8 4.53 302 

  Cuneus (18) 4 -88 14 5.56 222 

  Lingual gyrus (18) 6 -78 -6 5.29 222 
 vrP Medial frontal gyrus (8) -8 28 44 5.97 277 

        

Inverse 

relationship 

VS Posterior cingulate gyrus (30) -6 -68 8 5.31 490 

  Lingual gyrus (19) -22 -64 -2 4.59 490 

  Middle frontal gyrus (9) 40 34 42 6.11 375 

  Middle frontal gyrus (8) 26 26 46 5.52 375 

  Middle frontal gyrus (9) 32 24 38 5.30 375 

  Lingual gyrus (18) 26 -76 -8 7.75 376 

  Cerebellum, declive 16 -68 -20 5.07 376 

  Cerebellum, culmen 12 -50 -20 5.03 376 

  Lingual gyrus (19) 10 -58 2 5.53 154 
  Medial frontal gyrus (8) 14 24 46 4.87 157 

 DC Postcentral gyrus (2) -36 -32 40 5.85 182 

 dcP None      

 vrP None      

        

B) Non-refractory schizophrenia (n=22) 
Contrast Seed Brain structure (Brodmann Area) Coordinates T-value kE 

   x y z   
Positive 

relationship 

VS None      

 DC None      

 dcP None      

 vrP Medial frontal gyrus (6) 6 -2 62 5.81 172 

  Paracentral lobule (5) 16 -40 52 4.12 214 

  Precentral gyrus (4) 28 -32 52 3.95 214 

        

Inverse 

relationship 

VS None      

 DC Medial frontal gyrus (8) -18 32 30 3.76 732 

  Anterior cingulate gyrus (24) -2 4 40 5.04 732 
 dcP Medial frontal gyrus (6) 4 -12 66 5.04 271 

  Medial frontal gyrus (6) 6 -16 54 3.87 271 

  Paracentral lobule (5) 10 -40 54 3.73 271 

 vrP None      

 

        

VS, ventral striatum; DC, dorsal caudate; dcP, dorso-caudal putamen; vrP, ventro-rostral putamen  
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Figure legends 

 

Figure 1. Specific disease-related reductions in striatal connectivity, showing: reductions in resting 

functional connectivity (FC) between the dorsal caudate (DC) seed and prefrontal cortex (top row); 

reductions in FC between the ventral striatum (VS) and middle frontal gyrus (second row); reductions 

in FC between DC and sensorimotor cortex (third row); and reductions in FC between ventro-rostral 

putamen (vrP) and proximal stuctures of the striatum (bottom row). All results are thresholded at a 

family-wise error corrected cluster threshold of .0125 (to correct for the investigation of four seeds) and 

overlaid on a standardised T1-weighted template image.  

 

Figure 2. Significant differences in striatal connectivity between treatment-resistant and non-refractory 

individuals with schizophrenia, controlling for effects of current psychiatric symptom severity and 

movement. Left column shows the seeds for which the subsequent results within each row apply. Blue 

scale denotes regions significantly less connected in non-refractory patients as compared with the 

treatment-resistant individuals; and yellow scale denotes regions significantly more connected with 

seed in non-refractory individuals. All results are thresholded at a family-wise error corrected cluster 

threshold of .0125 (to correct for the investigation of four seeds) and overlaid on a standardised T1-

weighted template image. VS, ventral striatum; DC, dorsal caudate; dcP, dorso-caudal putamen; vrP, 

ventro-rostral putamen. 

 

Figure 3. Significant associations between current positive symptom severity and striatal connectivity 

in treatment-resistant schizophrenia. Left column shows the seeds for which the subsequent results 

within each row apply. Blue scale denotes regions whose connectivity with the seed was significantly 

inversely related to symptoms severity; and yellow scale denotes whose connectivity with the seed was 

significantly positively related to symptoms severity. All results are thresholded at a family-wise error 

corrected cluster threshold of .0125 (to correct for the investigation of four seeds) and overlaid on a 

standardised T1-weighted template image. VS, ventral striatum; DC, dorsal caudate; dcP, dorso-caudal 

putamen. 

 

 


