ING'S
OPEN (5 ACCESS College
LONDON

King’s Research Portal

Document Version
Early version, also known as pre-print

Link to publication record in King's Research Portal

Citation for published version (APA):
Yassipour Tehrani, S., & Lano, K. (2014). Precise Requirements Engineering for Model Transformations. In
STAF 2014 Doctoral Symposium

Citing this paper

Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volumel/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

*Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
*You may not further distribute the material or use it for any profit-making activity or commercial gain
*You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 15. Jan. 2025


https://kclpure.kcl.ac.uk/portal/en/publications/5cce0415-a480-4d90-949f-d3c4f74c3a47

Precise Requirements Engineering for Model
Transformations

S. Yassipour Tehrani, K. Lano

Dept. of Informatics, King’s College London

Abstract. Requirements engineering is an essential process in the devel-
opment of effective software systems, and it is the basis for subsequent
development processes. In my PhD research I intend to identify tech-
niques for the systematic requirements engineering of model transforma-
tions, taking account of the specific characteristics of different categories
of model transformations.

1 Introduction

Requirements engineering has been a relatively neglected aspect of model trans-
formation development: the emphasis in transformation development has been
upon specification and implementation. The failure to explicitly identify require-
ments may result in developed transformations which do not satisfy the needs
of the transformation users. Problems may arise because implicitly-assumed re-
quirements have not been explicitly stated, for example, that a migration or
refactoring transformation should preserve the semantics of its source model
in the target model, or that a transformation is only required to operate on
a restricted range of input models. Without thorough requirements elicitation,
important requirements may be omitted from consideration, resulting in a de-
veloped transformation which fails to achieve its intended purpose.

As [14] argues, “we are far from making the writing of model transformations
an established and repeatable technical task”. The software engineering of model
transformations has only recently been considered in a systematic way, and most
of this work (eg., [2,7,9]) has focussed upon design and verification rather than
upon requirements engineering.

2 Model Transformation Requirements

Requirements for a system are generally divided into two main categories: func-
tional requirements, which identify what functional capabilities the system should
provide, and non-functional requirements, which identify quality characteristics
expected from the developed system, and restrictions upon the development
process itself.

The functional requirements of a model transformation 7 : § — T which
maps models of a source language S to a target language T are typically de-
fined by a set of mapping requirements considering different cases of structures



and elements within source models s : S. For refactoring transformations there
may be locally-defined refactoring requirements defining how particular cases of
structure within a model should be rewritten. In addition, assumptions about
the data of the input model should be identified as part of the functional re-
quirements.

It can be observed in many published examples of model transformations
that the initial descriptions of their intended functional behaviour is in terms of
a concrete syntaz for the source and target languages which they operate upon.
For example, in [5], the three key effects of the transformation are expressed in
terms of rewritings of UML class diagrams. In [15], the transformation effects
are expressed by parallel rewritings of Petri Nets and statecharts. In general,
specification of the intended functionality of the transformation in terms of con-
crete syntax rules is more natural and comprehensible for the stakeholders than
is specification in terms of abstract syntax, however this form of description has
the disadvantage that it may be imprecise: there may be significant details of
models which have no representation in the concrete syntax, or there may be
ambiguities in the concrete syntax representation. Therefore, conversion of the
concrete syntax rules into precise abstract syntax rules is a necessary step as
part of the formalisation of the requirements.

In addition to local functional requirements, there may be functional re-
quirements which specify that some global property of the model is achieved. In
particular, refactoring transformations may be aimed at improving some quality
measure of the model, e.g., to remove redundant elements from the model or
otherwise to improve its structure, model quality improvement requirements.

Figure 1 shows a taxonomy of functional requirements for model transforma-
tions, based on our experience of transformation requirements.

Functional Requirement

i

Local functional requirement Global functional requirement

Mapping Refactoring

requirements require- :
ments Model quality Postconditions Assumptions
improvement

Fig. 1. Taxonomy of functional requirements for model transformations

There may be a wide range of different non-functional requirements for a
system [16], in categories such as Quality of service, Compliance, Development



constraint, etc. Figure 2 shows a general decomposition of non-functional require-
ments for model transformations. The quality of service categories correspond
closely to the software quality characteristics identified by the IEC 9126 software
quality standard [3, 4].

Non-functional requirement .
Compliance
Quality of service --...._____- Suitability Development Architectural
\ Interface constraint constraint Conformity

Performance Reliability Accuracy Effectiveness a to standards

Development ] Installation,
Time Space Ma urity\ Correctness Effort. etc Cost, Deadline, Distribution

Completeness ’ Variability,
:::oaI::;nce User Interaction, Maintainability
Software

Interoperability

Fig. 2. Taxonomy of non-functional requirements (adapted from [16])

Quality of service characteristics can be further detailed. For Time perfor-
mance, there may be upper bound requirements on execution time for specific
model sizes, maximum capability requirements on sizes of models which should
be processed within a reasonable time limit, and requirements on the growth of
execution time with input model size. Reliability can be refined into subcharac-
teristics such as Maturity and Fault Tolerance.

For the Accuracy characteristic, we can identify subcharacteristics of Cor-
rectness and Completeness. Correctness requirements can be further subdivided
into the following specific forms [8]: Syntactic correctness; Termination; Conflu-
ence; Model-level semantic preservation; Invariance (that certain properties Inv
should be preserved as true during the execution of the transformation 7).

2.1 Requirements Formalisation

Mapping functional requirements can be formalised in a MT-language-independent
manner by using diagrams or predicates at the abstract syntax level. There
should be a direct correspondance between the concrete syntax elements in the
informal /semi-formal expression of the requirements, and the abstract syntax el-
ements in the formalised versions. Similarly, postconditions and assumptions can
be formalised by expressing them as predicates or diagrams at the concrete syn-
tax level. Model quality improvement requirements can be formalised by defining
a specific quantitative quality measure which should be improved. For quality
of service requirements, specific quantifiable measures for the properties of in-
terest should be identified, and precise bounds on the permitted values of these
measures (or ranges of acceptable values) specified.



3 Application of Requirements Engineering Methods

There are a wide range of existing requirements engineering techniques which
could be applicable to transformation requirements engineering. For example,
i* [17] can be used to establish connections between organisation goals and the
functional requirements of the intended transformation system. REMAP [10]
uses goals as a basis for an argumentation process which selects a design solu-
tion to satisfy the goals. Traces are established from requirements to the design
objects which are intended to achieve the requirements. The NFR framework
can be used to identify design alternatives to meet the non-functional require-
ments of a transformation system [1]. An approach which seems particularly
well-aligned with requirements engineering of model transformations is KAOS
[16], which supports requirements elaboration using temporal logic. The ‘Cease’
goal pattern of KAOS fits the usual case of refactoring transformations which
must remove structures of particular kinds in the model. Each local refactoring
requirement can be expressed by such a goal pattern, asserting that each occur-
rence of a condition ¢ which should be removed will eventually be removed, and
will not be reintroduced:

model elements x1, ..., xn satisfy property ¢ = <o 0O(zl,...,zn do not satisfy @)
Transformation invariants can be expressed using the ‘Maintain’ goal pattern:

Asm = O(Inv)

General postconditions can be expressed using the ‘Achieve’ pattern:

Asm = o (Postl A ... A Postm)

Formalised requirements in temporal logic could then be checked for partic-
ular implementations using model-checking techniques, as in [11].

4 Published examples of transformation requirements

We consider two published examples of requirements of transformations: the
model migration case study of [12] and the refactoring case study of [5]. Both
documents specified the requirements of transformations which were used for
comparative analysis of different MT approaches. The results of the analysis
were also published.

The model migration example concerns the migration of UML 1.4 activity
diagram models to UML 2.2 activity diagrams [12]. The requirements consist of:

Functional requirements: the transformation should successfully migrate one
example activity diagram which includes all of the core elements of UML 1.4
activity diagrams.

Non-functional requirements: size and comprehensibility of the specifica-
tion should be optimised.



It can be seen that many of the categories of requirements in our catalogue of
transformation requirements are missing for this case study. In particular: what
assumptions can be made upon the input model; model-level semantic preserva-
tion; confluence; reliability; time performance. The required functionality is only
indicated by one examplar case of a source model and its intended target.

The poor quality of the published solutions [13] may result in part from these
incomplete requirements:

— The highest score for correctness for the 9 solutions was 5.5 out of 10.

— No solution provided a proof of model-level semantic preservation. The pro-
posed migration strategy would lose semantic information (the action per-
formed in action states).

— The issue that some valid UML 1.4 activity diagrams are not valid as UML
2.2 activities (when directly translated according to the example given) was
not addressed by any solution [6].

All of these aspects would hinder the practical use of transformations for this
migration problem.

The refactoring example operates on UML class diagrams to remove cases
where all subclasses of a given class have an attribute with a common name and
type. The requirements of the case study are described in some detail in [5]:

Functional requirements: the assumptions are precisely defined; three in-
tended transformation steps (refactoring requirements) are described in text
and concrete syntax diagrams.

Non-functional requirements: invariance of the assumptions is specified. Ef-
fectiveness is specified in terms of minimising the number of new classes
created.

Missing are requirements for model-level semantic preservation, for model quality
improvement, and for reliability, extensibility, efficiency and comprehensibility.
The outcomes of the case study were that:

— None of the five published solutions in [5] provide a proof of model-level
semantic preservation. Some solutions do not achieve such preservation, be-
cause they use a different set of rules to those indicated in the functional
requirements.

— None of the solutions achieve more than a neutral measure of usability or
extensibility.

— Only 2 solutions have a practical efficiency in processing large models.

5 Conclusions and Future Work

My PhD research has as its research objectives: to define a requirements engi-
neering process for model transformations; to define taxonomies of functional
and non-functional requirements categories for model transformations; to define



goal-modelling techniques for transformations; to analyse industrial use of re-
quirements engineering by transformation developers, to identify the significant
issues and support needed for RE of model transformations. The result of the
PhD research will be a systematic RE process for transformations, and possibly
tool support for recording and tracing transformation requirements, which will
help to ensure that developers systematically consider all necessary requirements
and that these are all formalised, validated and verified correctly.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

L. Chung, J. Mylopoulos, E. Yu, From Object-oriented to Goal-oriented Require-
ments Analysis, Communications of the ACM, January 1999.

E. Guerra, J. de Lara, D. Kolovos, R. Paige, O. Marchi dos Santos, transML: A
family of languages to model model transformations, MODELS 2010, LNCS vol.
6394, Springer-Verlag, 2010.

ISO/IEC, ISO/IEC 9126-1, Software engineering — Product quality — Part 1: Qual-
ity Model, 2001.

ISO/IEC JTC1/SC7, ISO/IEC 25010, Software product Quality Requirements and
Evaluation (SQuaRE), 2007.

S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, P. Van Gorp, FEwvaluation of
model transformation approaches for model refactoring, Science of Computer Pro-
gramming, 2013, http://dx.doi.org/10.1016/j.scico.2013.07.013.

K. Lano, S. Kolahdouz-Rahimi, Model migration transformation specification in
UML-RSDS, TTC 2010.

K. Lano, S. Kolahdouz-Rahimi, Model-driven development of model transforma-
tions, ICMT 2011, 2011.

Kolahdouz-Rahimi, transformations,

K. Lano, S. Kolahdouz-Rahimi, T. Clark, Comparing verification techniques for
model transformations, Modevva workshop, MODELS 2012.

. K. Lano, S. Kolahdouz-Rahimi, Constraint-based specification of model transfor-

mations, Journal of Systems and Software, February 2013.

B. Ramesh, V. Dhar, Supporting systems development by capturing deliberations
during requirements engineering, IEEE Transactions on Software Engineering, vol.
18, no. 6, 1992, pp. 498-510.

A. Rensink, A. Schmidt, D. Varro, Model checking graph transformations: A com-
parison of two approaches, ICGT 2004, LNCS vol. 3256, 2004.

L. Rose, D. Kolovos, R. Paige, F. Polack, Model migration case for TTC 2010,
Transformation Tool Contest, 2010.

L. Rose, M. Herrmannsdoerfer, S. Mazanek, P. Van Gorp et al., Graph and Model
Transformation Tools for Model Migration, SoSym, 2012.

B. Selic, What will it take? A view on adoption of model-based methods in practice,
Software Systems Modeling, 11:513-526, 2012.

P. Van Gorp, L. Rose, The Petri-Nets to Statecharts Transformation Case, TTC
2013, EPTCS, 2013, pp. 16-31.

A. Van Lamsweerde, Requirements Engineering: from system goals to UML models
to software specifications, Wiley, 2009.

E. Yu, Towards modelling and reasoning support for early-phase requirements en-
gineering, proceedings 3rd IEEE Symposium on Requirements Engineering, 1997,
pPp. 226-235.



