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A contest success function for networks™
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Abstract

This paper models conflict as a contest within a network of friendships and enmities.
We assume that each player is either in a friendly or in an antagonistic relation with
every other player and players compete for winning by exerting costly efforts. We
axiomatically characterize a success function which determines the win probability
of each player given the efforts and the network of relations. In an extension, we
allow for varying intensities of friendships and enmities. This framework allows for
the study of strategic incentives and friendship formation under conflict as well as
the application of stability concepts of network theory to contests.

Keywords: conflict, contest, success function, network, pairwise stability
JEL classification: C70, D72, D74, D85

1. Introduction

In many situations of conflict, we often observe that competing parties join forces to
fight together against others or refrain from fighting with each other. For instance,
lobby groups may cooperate in supporting the same legislation when their interests
coincide; political parties may refrain from campaigning against each other when
they have a common opportunity; belligerent states may form alliances for joint
action if they face a common threat and so on. These parties do not necessarily act
in a perfectly coordinated way, especially when their relation is an occasional oppor-
tunistic cooperation rather than a long term commitment. Such relations usually
rely on informal bilateral agreements and may lead to a complex network.

This paper models conflict as a contest, where players compete for increasing their
win probabilities by exerting costly efforts. While doing so, each pair of players
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may be in a friendly relation and abstain from competing against each other (their
default state being antagonism), and the friendship relations between all pairs de-
fine a network. In this setting, we propose and axiomatically characterize a success
function which determines the probability of winning for each player given all efforts
and the network of relations. So far, the axiomatic work in the contest literature
has exclusively focused on conflict between groups (e.g., Miinster, 2009; Cubel and
Sanchez-Pages, 2016) or between individuals (e.g., Skaperdas, 1996). In the former,
players are divided into mutually exclusive groups (coalitions) and groups compete
with each other, while in the latter each player competes individually against all
others. Both approaches are crucial for the study of a broad set of environments.
Yet, many competitive situations may lead to networks different than the all against
all or groups against groups types of networks. For instance, in international rela-
tions most alliances between states do not mean perfect coordination or long term
commitments. The opportunistic nature of tactical alliances' does not exclude a
partnership between states which are not members of the same coalition, and the
friend of a friend can be an enemy at times. Political competition may also lead
to a complex network of relations. Despite the zero-sum nature of political gains,
we see that a political party does not necessarily target all its opponents during
campaigning and it might have a preference for which opponent to damage. In Fig-
ure 1, we illustrate a network representing a four party political competition. In
this example, the largest opposition party does not campaign against the nation-
alist party and the minority party hoping that there may be a vote switch from
the centrist ruling party to them, which increases the largest opposition’s chance of
winning the election. However, a coalition of opposition parties fails to emerge given
the historical conflict between the nationalist party and the minority party. This
‘missing link” should intuitively make the ruling party better off compared to facing
a coalition of opponents, while also strengthening the relative power of the largest
opposition party within the opposition (being the ‘hub’ of the opposition). We aim
to capture such strategic features of competition in our model. Our paper extends
the axiomatic foundations of success functions to contests with any type of network
of relations. As a starting point, we propose a class of success functions which we
derive through a probabilistic argument following well-known results by McFadden
(1973). We simply show that a player’s probability of winning is equivalent to the
probability that the effective strength of the player, which is an additively separa-
ble function of the efforts of her friends and enemies, is higher than anyone else’s
effective strength perturbed by random noise. This class is very general and partic-
ularly convenient in a variety of applications. To understand how win probabilities
depend on the relations as well as efforts, we provide an axiomatic characterization.
Our characterization consists of six axioms, three of which are direct extensions
of the well-known anonymity, monotonicity of efforts and exhaustivity axioms in

Tn his categorization of strategic alliances, Ghez (2011) defines the tactical alliance as a form
of state alignment which occurs when states encounter a common immediate threat. For further
examples of tactical alliances and definitions of other categories, see Ghez (2011).
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Figure 1: An example network for political competition. We consider an electoral competition with
4 parties: the ruling party, the largest opposition, the nationalist party and the party representing
a minority. A link between two parties represents friendship, and the political competition in this
country leads to a network where a friend of a friend is an enemy.

the literature. We define three new axioms; namely, the monotonicity of relations,
the independence of efforts of commons (IEC), and the independence of relations
of others (IRO), all of which incorporate the effect of the network variable on the
success function. The monotonicity of relations simply imposes that befriending a
player with higher effort than one’s own leads to an increase in the probability of
winning. We define our two independence axioms on the relative win probability
of two players; in other words, on the ratio of their win probabilities. IEC states
that the relative win probability of two players is independent of the efforts of their
common friends and common enemies. In the context of the example in Figure 1,
IEC imposes that the relative win probabilities of the minority party and the nation-
alist party will not change by increased campaigning efforts of the largest opposition
party (although each probability will increase). Hence, the effort of the largest op-
position affects both parties similarly, so that their relative win probability remains
constant. Our final axiom, IRO, allows for making across network comparisons
and together with monotonicity of relations, it identifies how probabilities change
in response to a changing relation. It implies that the rate of change of a relative
probability as a result of a new friendship or enmity (the ratio of the new relative
probability to the old) remains the same across all pairs of networks which differ
only by the new relation. Once we restrict our attention to all against all contests,
our functional form belongs to the well-established class characterized by Skaperdas
(1996).2 For contests between groups, our class does not immediately link to the
class axiomatized in Miinster (2009) as our function determines win probabilities of
individual players rather than groups. However, the function obtained by summing
up the win probabilities of group members derived by our function belongs to the
class axiomatized in Miinster (2009).

2The success functions characterized in Skaperdas (1996) had been widely applied to represent
conflict. For seminal contributions, see, e.g., Haavelmo (1954), Tullock (1975), Rosen (1986).



An immediate extension of our model is to allow for varying intensity of friend-
ship/antagonism across players. We extend both our probabilistic derivation and
our axiomatic characterization to the case of weighted directed networks, where each
player can have different degree of friendliness towards every other player and the
degree of friendliness between two players is not necessary mutual. The resulting
generalized functional form naturally contains the benchmark case of (unweighted
undirected) networks as well as the case of (unweighted) directed networks.

Our framework is useful in connecting two major fields, namely contests and network
theory. We consider an application of our benchmark model where players choose
both efforts and relations in a two-stage setting where relations are chosen first.
We define a solution concept that combines pairwise stability of networks and Nash
equilibrium of efforts in line with the idea of subgame perfection. In a contest with
symmetric effort costs, our analysis shows that there is always an equilibrium whose
outcome is the peace network and the effort profile where all efforts are zero. On the
other hand, this would not necessarily be the outcome if players were constrained
to be in coalitions or if we introduced cost asymmetries.

The paper develops as follows. Section 2 reviews the literature. We introduce our
model formally in Section 3 for the case where all efforts are positive and define our
class of success functions. We derive this class probabilistically in Section 3.1, while
we provide an axiomatic characterization in Section 3.2. In Section 4.1 we extend the
model to the cases where efforts can be zero, and in Section 4.2 we apply this model
to network formation problems and contest games. Finally, we extend the model to
directed and weighted directed networks in Sections 4.3 and 4.4 respectively. Section
5 concludes. All proofs are in Appendix.

2. Related literature

The contest is the workhorse model for representing conflict and competition over
scarce resources. Contest models have been applied in a variety of areas of economics
and social sciences, such as rent seeking, industrial organization, incentives within
organizations and armed conflict. See Konrad (2009) for an introduction to contest
theory and its applications.

A crucial element of a contest model is the success function, which generally defines
the mapping from individual efforts to win probabilities. The nature of a con-
test fundamentally depends on the features of this functional form. Foundational
work on success functions is divided into two leading approaches; namely, axiomatic
and stochastic approaches. The axiomatic approach to contest success functions
started with the seminal work by Skaperdas (1996), which characterizes a class of
success functions that includes the well-known ratio-form in Tullock (1975) and the
difference-form in Hirshleifer (1989). This characterization has been extended in sev-
eral directions by relaxing some of the axioms (e.g., Clark and Riis, 1998, Blavatskyy,
2010; see Jia et al., 2013 for a review), by generalizing to multi-dimensional efforts



of players (e.g., Rai and Sarin, 2009, Arbatskaya and Mialon, 2010), or by allow-
ing rankings as the outcome of a contest instead of a single winner (e.g., Lu and
Wang, 2015, 2016, Vesperoni, 2016). While these contributions are exclusively on all
against all contests, Miinster (2009) and Cubel and Sanchez-Pages (2016) axiomat-
ically characterize success functions for contests where the competition takes place
between mutually exclusive groups of players, i.e., coalitions. Such networks are
very important in several contexts; however, they constitute only a small subset of
possible networks in conflict. Our paper follows the axiomatic approach in contests,
allowing players to compete in every possible network of friendships and enmities.
As for the second body of literature on the foundations of success functions, it is
concerned with stochastic derivations of success functions following techniques from
discrete choice econometric models. The stochastic approach so far has focused on
success functions for all against all contests (e.g., Hirshleifer and Riley, 1992, Clark
and Riis, 1996, Jia, 2008, Fu and Lu, 2012; see Jia et al., 2013 for a review). To-
gether with the axiomatic characterization, we motivate our function by deriving it
following the standard probabilistic arguments in McFadden (1973).

We now selectively review works which study the broad subject of conflict when
players compete in networks or are linked to each other in a way that may indirectly
define a network. None of these works is axiomatic, nor their focus is on the success
function. A recent paper by Konig et al. (2017) considers conflict within networks
of alliances, where they propose a success function that determines each player’s
win probability. They show that the equilibrium effort of a player is related to an
index of her centrality in the network under some restrictions, and they perform
an empirical analysis using data from the Second Congo War. This work is an
important advance into directions different from our work which is concerned with
the axiomatic foundations of the conflict mechanism. A related body of literature
is the work on sabotage contests where players direct a specific effort to handicap
each particular opponent (e.g., Konrad, 2000, Giirtler, 2008, Giirtler and Miinster,
2010; see Amegashie, 2015 for a review). As the efforts are opponent specific, the
intensity of competition between each pair of players is different like in our work;
however, besides the differences in the theoretical approach (such as multiple efforts,
non-axiomatic approach) they do not consider alliances. Other related work with
indirectly defined networks is on contests with identity dependent externalities. For
example, in some of these papers players may value victory identically, however, the
value of defeat depends on the identity of the winner. The identity-based losses of
all pairs can be seen as defining a network of relations between players. Applications
of this setup are to model ethnic conflict between minorities (e.g., Esteban and Ray,
1999, 2011) or political lobbying between parties on an ideological spectrum (e.g.,
Klose and Kovenock, 2012, 2013).

Several papers in the subject of coalition formation in conflict study contests between
groups. Following the seminal contribution of Olson (1965), many of these works
focus on the collective action problem in groups, showing that the power of a group
may not increase in its size due to free-riding in the provision of collective effort. As



this literature is very broad, we do not attempt a review and refer to Bloch (2012) for
a comprehensive survey on endogenous formation of groups in conflict. Other papers
consider contests with multiple battlefields; see Kovenock and Roberson (2012b) for
an introduction to this literature. In this setting, Kovenock and Roberson (2012a)
study incentives for alliance formation in the sense of pooling resource budgets when
fighting a common adversary on separate battlefields. A related paper is Rietzke
and Roberson (2013), which shows that two players facing a common adversary on
separate battlefields have an incentive to enhance each other’s strength by transfers
that are (not necessarily) pre-committed. Although not strictly related to our paper
(as their focus is mostly on network analysis), there are contributions on the broader
subject of conflict within networks. Hiller (2017) analyzes a model where there are
as many local conflicts as pairs of players and the win probabilities for each pair are
determined by the number of their friends. In this model, there is no effort parameter
and payoffs are fully determined by the network of relations. Franke and Oztiirk
(2015) consider players embedded in a network of bilateral conflicts where each pair
can choose to fight in each conflict by spending conflict-specific efforts or refrain from
fighting. For each bilateral conflict they assume a success function of the ratio-form
by Tullock (1975), and the interdependence across conflicts follows from the non-
separability of a player’s cost function. In this setting, they characterize equilibrium
efforts given specific types of conflict networks. Jackson and Nei (2015) define
and analyze a new solution concept, called war-stability, for networks where each
player is in a friendly or antagonistic relation with every other player. A necessary
condition for war-stability is that no coalition of players can successfully attack
another coalition. Unlike ours, their success function is deterministic and takes value
0 or 1, and in their model efforts are always exogenous parameters. Goyal and Vigier
(2014) consider a two-player game where a designer chooses a network and allocates
specific efforts to defend each node, while an adversary allocates specific efforts to
attack each node after observing these. They find the optimal network structure for
the designer when the probability of destruction of each node is given by the ratio-
form success function by Tullock (1975). Dziubinski et al. (2017) analyze a dynamic
game of conflict between multiple players on a network of spatial proximities. At
each stage a randomly selected player chooses whether to attack one of her neighbors,
where in case of attack her win probability is determined by resources cumulated
in previous conflicts via a ratio-form success function by Tullock (1975). In this
setting, they find that the dynamics of conflict crucially depend on properties of the
success function interpreted as rich/poor rewarding.

3. Modeling networks in conflict

We consider a set of players N = {1,...,n}, where n > 3. Players compete in a
contest for increasing their win probabilities. We assume that a player ¢ € N is
either in a friendly relation or in an antagonistic relation with every other player in
N. We write F; C N for the set of friends of ¢ including ¢ herself. In this section,
we assume that relations between friends (or enemies) are mutual, so for any pair
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of players i,j € N, we have ¢ € Fj if and only if j € F;. We define a network
as the profile of sets of friends F' := (F7,..., F,,) and we denote by F the set of all
networks.® Each player i € N is associated with an effort x; > 0, and we write
r = (x1,...,x,) € X :=R%, for the profile of efforts. A success function defines for
each player ¢ € N a mapping s; : X x F — (0, 1), which maps any effort profile and
network pair (z, F) into player i’s win probability s;(z, F').

We now define a particular class of success functions. For each network F' € F,
effort profile x € X and player ¢ € N, this class is defined by the form

. L HjeFi f(z)
S E) = T f() W

where f: R, — (1, +00) is any increasing function. When we restrict our attention
to the all against all network, the class of success functions s} belongs to the one
characterized in Skaperdas (1996).* Conversely, for the peace network where there is
no enmity, s;(z, F') = 1/n and the contest degenerates into a fair lottery with equal
chances of winning. For contests between groups, s does not immediately link to
the class of success functions in Miinster (2009) since it defines win probabilities of
individual players rather than groups of players. However, we can easily relate the
two concepts by a simple transformation where the win probability of a group is
defined by the sum of the win probabilities of its members. The win probability of
a group defined by this sum using s belongs to the class of Miinster (2009). We
provide a formal derivation in Appendix A. The subclass of group success functions
derived from s! corresponds to a low degree of cooperation within coalitions since
we conceive friendship as refraining from damaging each other.’

3.1. Stochastic derivation

We now show that the form (1) can be derived from basic assumptions via a standard
probabilistic argument. For each x € X, F' € F and ¢ € N, let the effective strength
of player i be

vilw, 1) =8 g(x;) — (1= 5) Y _ gy,

JEF; ]¢FZ

3In standard network theory, a network or a graph g is defined as a list of unordered pairs of
players {4, j} which are linked. Here instead, we define a network as a profile of sets of friends for
convenience. We can easily link the two definitions in the following way: for each F' € F we define
g such that {4, j} € g if and only if i € Fj.

4For the all against all network, our class comprehends the difference-form by Hirshleifer (1989)
where f(z;) = exp (x;). Since f > 1, the ratio-form by Tullock (1975) where f(x;) = ¢ with p > 0
is ruled out; however, the closely related forms f(z;) =1+ 2 and f(z;) = (1 + 2;)” are included
in our class and lead to equivalent predictions in many applications.

5This does not constitute a limitation for the purpose of applications. A coalition that combines
efforts via a production function can be seen as committed to long-term cooperation and treated
as a single player in our model.



where § € [0,1] and g : Ry — R is any increasing function. Intuitively, a player
that competes within a network acquires strength from her friends’ efforts (including
her own), while her strength may be diminished by the efforts of her enemies. In
our specification, the parameter [ determines the relative importance of friends
and enemies in determining the effective strength of a player, while the additive
separability of y;(z, F;) in each transformed effort g(z;) keeps the model simple,
imposing perfect substitutability between the transformed efforts.® We assume that
win probabilities are determined by players’ effective strengths, so that the player
with the highest effective strength should be the most likely to win. More specifically,
for each x € X and F' € F, let the win probability of player i € N satisfy

si(z, F') = Pr (yi(z, F}) + & > y;(z, F}) + ¢; for any j € N\ {i}), (2)

where (€1, ..., €,) are independent and identically distributed Gumbel random shocks.
For simplicity let their variance be 72/6, so that we get rid of a parameter in what
follows. Following McFadden (1973), condition (2) holds if and only if *

[I;cr exp (9(x5))
D hen Hjth exp (g(z;))

Since exp(z) > 1 for all z > 0, lim, ,pexp(z) = 1 and the exponential function is
continuous and increasing, for any ¢ there is a unique f such that f(z;) = exp (g(z;))
for all ; > 0 (and for any f there is a unique g with g(x;) = In (f(z;)) for all z; > 0).
Hence, (1) and (3) define the same class of functions. To summarize, we have shown
that any success function from our class (1) is equivalent to the probability that the
effective strength of a player is higher than anyone else’s, in a context where effective
strength takes an additive form and it is perturbed by random noise.®

si(x, F) =

(3)

3.2. Aziomatic characterization

In this section we give a characterization of our class of success functions (1) through
six axioms. The first three axioms are direct extensions of classical axioms in contest
theory and they have similar justifications in our model. The latter three axioms
incorporate the concept of friendships in conflict. The first condition, exhaustivity,
requires that win probabilities of all players sum up to 1.

6 In our axiomatic characterization, the independence axioms IEC and IRO are strictly related
to this separability assumption. Alternatively, one may consider different specifications where com-
plementarities between efforts of friends or enemies may arise under particular network structures.

"If we add (1 — ) > jen 9(x;) to each side of the inequality y;(z, F;) + € > y;(x, Fj) +¢; in
(2), B always cancels out no matter which value it takes in [0, 1] since the set of friends and the
set of enemies of ¢ are two distinct sets whose union is N. This is why the expression (3) is free of
the parameter f.

8Clark and Riis (1996) develop a similar derivation of a success function for all against all
contests.



Ezhaustivity: For any FF'€ Fandz € X, ),y si(z, F) = 1.

Anonymity states that win probabilities are determined by efforts and networks, but
not by players’ identities. In short, it requires the contest to be a priori fair.

Anonymity: Let « be any permutation of N. For any F' € F and any = €
X, let a(F) = (Faq), - Fam)) and a(x) = (Ta@), - Taw)). Then, si(z, F) =
Sa@i)(a(x), a(F)) for each i € N.

We now impose two monotonicity axioms; namely, monotonicity of efforts and mono-
tonicity of relations. Monotonicity of efforts imposes that the win probability of a
player is increasing in her effort. Monotonicity of relations implies that being friends
with a player with higher effort increases the win probability. The higher effort re-
quirement is due to the fact that a friendship is a mutual relation and befriending a
player has the externality of helping the other player as well as helping oneself. The
overall effect on win probabilities may depend on the relative efforts of players but
one should always benefit from befriending a player with higher effort.

Monotonicity of efforts: Let F' € F be any network with some i,j € N such that
i ¢ F; and x € X be any effort profile. Then, s;(2', F) > s;(z, F)) for any 2’ € X
with @} > x; and ) = zy, for all k # i.

Monotonicity of relations: Let F' € F be any network and x € X be any effort
profile such that there is a pair 4, j € N with ¢ ¢ F;. Consider F' € F such that
i € F; and Fy = F, for all b ¢ {i,j}. Then, s;j(x, F') > si(x, F) if 2; > x;.

We finally introduce two axioms of independence. The first one, independence of
efforts of commons, imposes that the ratio of the win probabilities of two players
(their relative win probability) is independent of the efforts of their common friends
and common enemies. We focus on the ratio of win probabilities rather than, for in-
stance, the difference of win probabilities following a long tradition in probabilistic
choice theory which dates back to the seminal work of Luce (1959) on indepen-
dence of irrelevant alternatives.® The idea is that the efforts of common friends and
common enemies should similarly affect both players’ win probabilities; hence, they
should not affect their relative win probability.

Independence of efforts of commons (IEC): Take a network F' € F and two effort
profiles x, 2’ € X. For any pair of players i, € N, ;((ig = jjgil,f,
all k€ (F U Fy) \ (F N Fy),

)) if x, = a}, for

The axioms above say very little about what should happen when we move from one
network to another. How should we expect win probabilities to change when new
friendships/enmities are made, besides that win probabilities should increase upon
making a friend with higher effort? The second independence axiom, independence

9Most axiomatic work in contest theory follows a related approach (see, e.g., Skaperdas, 1996,
Clark and Riis, 1998, Blavatskyy, 2010). An alternative approach is to focus on the difference of
win probabilities (see, e.g., Cubel and Sanchez-Pages, 2016).



of relations of others, focuses on the relative win probability of two players and
identifies how the relative win probability should change when one of these players
makes a new friend or enemy. More specifically, the axiom requires that the rate
of change of this relative win probability (the ratio of the new to the old) remains
the same across all pairs of networks which differ only by the new friendship. So,
it can also be seen as a consistency requirement imposing the change that results
from befriending a player to be consistent across networks. As for IEC, we focus on
ratios rather than differences in win probabilities in line with the aforementioned
literature in probabilistic choice theory.

Independence of relations of others (IRO): Let F' € F be a network such that there
are at least two players ¢, € N with 7 € F;, and x € X be any effort profile. Let
F" € F be the network such that j ¢ F/ and F} = Fj, for all h ¢ {i,j}. Then,

si(xz,F’ si(z,F si(x,G’ si(z,G ..
(sh((LF,))) / <Sh((zF))> = (Sh((x’c,))> / <Sh((m7G))> for all h € N\ {i,j} and G,G' € F
with j € Gy, j & G and Gy = G/, for all k ¢ {i. j}.

Consider the example with n = 4 in Figure 2. By IRO, the rate of change of the
relative win probability of a pair of players from network F' to F” is equal to the
corresponding rate of change from network GG to GG'. For instance, focusing on players

1 and 3, (281{2,;) / (j;gg) and <Z;gg,§> / (2;&8) must be equal to each other

for all x € X. The idea is that, although the networks F' and G are very different,
the corresponding win probabilities should change in a similar way when the relation
between the same pair of players mutates in both networks.

F F’ G

G
1 2 1 2 2
| X ><
® ®
3 3 4 4

1
4 3 4 3

Figure 2: Networks F, F’ (G, G’) are identical except for the missing friendship between players 1
and 2 in network F’ (G’).

The following theorem states that our six axioms uniquely characterize the particular
class of success functions s; defined by (1).

Theorem 1. A success function satisfies exhaustivity, anonymity, monotonicity of
efforts, monotonicity of relations, IEC and IRO if and only if s;(x, F) = si(z, F)
foreachi € N,z € X and F € F.

Our characterization in Theorem 1 is tight. In Appendix C, we prove the indepen-
dence of our axioms by means of examples of success functions satisfying all but one.
Our axioms have desirable joint implications. For instance, it can be shown that a

10



player’s win probability always increases in her friends’ efforts and decreases in her
enemies’ efforts. Moreover, when a player becomes friend with a player which has
much lower effort her win probability may decrease, and a player is always worse off
when other players become friends. To see an example, consider three players in all
against all network F' and the effort profile x with transformed efforts f(z;) = 2,
f(za) = 7 and f(x3) = 8. The win probability of player 2 decreases if player 2 be-
comes friend with player 1, everything else equal. If f(x;) = 6 instead, befriending
player 1 makes player 2 better off in terms of win probability. Player 3, on the other
hand, always loses from this friendship. Our first four axioms are natural properties
and we believe they should be satisfied by any success function for networks. IEC
and TRO treat ratios of win probabilities as a measure of relative performance, which
leads to the multiplicative form in the numerator of (1). Alternative approaches to
relative performance (e.g., differences of win probabilities) may lead to different
functional forms whose analysis we leave for future research.

4. Applications and extensions

Due to its novelty and generality, our framework has potential for many applications.
We first extend our success function in Section 4.1 to a setting where we allow for
zero efforts. Then, using this extension, in Section 4.2 we consider an application
where players choose both their efforts and relations. More specifically, we consider a
two-stage setting where relations are chosen in the first stage and efforts are exerted
in the second stage.

We have so far assumed that the friendship between two players is mutual and that
the degree of friendship is the same across friends. This setting belongs to a broader
class of models of conflict on networks where each friendship might have a different
weight and is not necessary mutual. In Sections 4.3 and 4.4, we extend our model
by introducing directed and weighted directed friendships respectively. We derive
a generalized class of success functions via a probabilistic argument and provide an
axiomatic characterization of this class.

4.1. The case of zero efforts

So far, we have excluded the cases where efforts are zero or probabilities take value
0 or 1.1% For this section, we allow that efforts can take zero value, hence, z; > 0
for each i« € N and an effort profile is given by = € X = R?. Extending our
previous notation, a success function defines for each player ¢ € N a mapping

10Tn fact, our definitions, probabilistic derivation and axiomatic characterization can be adjusted
to incorporate the zero effort case, but at the expense of heavy notation and complications in the
proof. We believe for the purpose of the axiomatic characterization these are marginal cases, but
for application purposes it is useful to specify how our function extends.
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si - X x F — [0,1] which maps any effort profile and network pair (, F) into player
i’s win probability s;(x, F).

How do we extend our class of functions to incorporate zero efforts? Following the
existing assumptions in the literature, a player who exerts positive effort should
have positive probability of winning. Moreover, it seems natural that if no player
exerts positive effort, then each player should have probability of winning equal to
1/n as no player actively participates in the conflict. It is generally assumed that
if a player exerts zero effort while some other player exerts positive effort, her win
probability is zero; but in our context, we have to distinguish players whose friends
exert positive effort from those who have no friends with positive efforts whatsoever.
To incorporate all these aspects in our extended success function, we first define some
notation. For each network F € F and effort profile z € X, we define the set of
active players as A, p == {i € N : x; > 0 for some j € F;}; that is, the set of players
having at least one friend exerting positive effort. For each network F' € F, effort
profile x € X and player ¢« € N, we define our class of success functions by

er, /() if i € Ay p # 0,
Si(x, F) := zhEAz,F Hjth f(z) (4)
| 1/n if A, =0,
0 otherwise,

where f : R, — [1,+00) is any increasing function with f(0) = 1.1! Note that,
in (4), the win probability of a player is zero whenever all friends of the player
exert zero effort but there is some player who exerts positive effort; so the player is
inactive but the set of active players is non-empty. Conversely, the win probability
of a player is positive whenever at least one of the player’s friends exerts positive
effort (i.e., whenever the player is active), while when all players exert zero effort
they are all equally likely to win. We can summarize these points in the following
axiom which is satisfied by (4).

Perfect discrimination at zero: For any F € F and z € X, (i) s;(z, F) > 0if z; > 0
for some j € F}; (ii) si(z, F) = 1/n if z; = 0 for all i € N; (iii) s;(z, F) = 0 if for
all j € Fj, x; = 0 and x, > 0 for some k € N.

4.2. Choosing relations and effort

In this section, we aim to demonstrate the applicability of our model and its potential
for future research. We consider a game where players choose their relations as well
as their efforts in two stages. In the first stage, players choose their relations and a
network F' € F is formed, while in the second stage each player chooses her effort
given the network F'. We denote by x(F') the effort profile that results in the second

"The restriction f(0) = 1 guarantees that becoming friend of a player with zero effort cannot
increase the win probability.
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stage given F'. Following standard assumptions in the literature, we let the payoff
of player i € N take the form

mi(z, F) = 8;(x, F) — ¢z (5)

for all z € X and F € F, where ¢; > 0 for all i € N. We now define a solution
concept that combines pairwise stability of networks and Nash equilibrium of efforts
in line with the idea of subgame perfection, assuming relations are formed forecasting
how they will affect effort exertion.!? Given a network ' € F and a pair of players
1,7 € N with i € F}, let I'—14j be the network where players ¢ and j become enemies
while all other relations remain as in F'. Similarly, given a network F' € F and a
pair of players i,5 € N with ¢ ¢ F}, let F' + ij be the network where players i and
j become friends while all other relations remain as in F'. For each network F' € F,
let

rp={F eF:F=For F'=F+ijor F'=F —ij for some i,j € N}

be the set of networks that differ from F' by at most a pair’s relation. We define an
equilibrium as follows.

Definition 1. A network F* € F and an effort profile z*(F) € X for each F € Gp-

constitute an equilibrium if, for each player i € N and network F' € Gp-,

xf(F) = argmax m;(x;, x*,(F), F),

and the network F™* satisfies

(i) for alli,j € N with i € Fy, m(z*(F*), F*) > m(z*(F* —ij), F* —ij) and
(¥ (F*), F*) > mj(«*(F* —ij), F* — ij), and,

(ii) for all i,j € N with i ¢ F}, m(a*(F*),F*) > m(a*(F* +ij), F* + ij) or

Hence, an equilibrium contains a network F* and an effort profile z*(F') for each

network F' € Gp«. Each effort profile 2*(F) must be a Nash equilibrium given

the corresponding network F', and the network F* must be pairwise stable given
that efforts depend on networks according to the aforementioned Nash equilibria.!?

12Pairwise stability is a well-known solution concept in network formation theory (see Jackson,
2005 for a review). In a pairwise stable network, no player can be better off by unilaterally breaking
a friendship and no pair of players can both be better off by becoming friends. A refinement of
this solution concept is pairwise Nash equilibrium, introduced by Jackson and Wolinsky (1996).
Roughly speaking, in a pairwise Nash equilibrium any mutually beneficial friendship is always
implemented (as with pairwise stability), while multiple friendships can be broken simultaneously.
We refer to Bloch and Jackson (2006) for a discussion of these solution concepts. For simplicity,
in our analysis we exclusively focus on pairwise stability, although all our findings are robust to
employing pairwise Nash equilibrium as the solution concept.

13Goyal and Joshi (2003) employ the same solution concept in a model of oligopolistic competi-
tion between firms linked in a network. Belleflamme and Bloch (2004) and Calvé-Armengol and
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We refer to F* and z*(F*) as the outcome network and the outcome effort profile
respectively.

Proposition 1. Let payoffs take the form (5) with f(x;) = 1+ af and ¢; = ¢ for
all i € N, where p € (0,1) and ¢ > 0 or p = 1 and ¢ € (0,1/n?). There is an
equilibrium where the outcome network F* is the peace network and the outcome
effort profile is z*(F*) = (0,...,0).

This proposition implies that when effort costs are symmetric ‘unarmed peace’ is
always an equilibrium outcome, where for p = 1 the restriction ¢ € (0,1/n?) is
necessary to guarantee an interior Nash equilibrium x*(F) for every network F' €
Gr+. The intuition is straightforward. To see whether peace is pairwise stable it
is sufficient to verify that no player has an incentive to break the friendship with
another player while keeping other friendships intact. In this context, when two
players become enemies they always end up damaging each other while favoring
others, as effort costs are private while benefits are shared with friends within the
network.

We illustrate the result in Proposition 1 by a numerical example in Table 1 below,
where we assume ¢; = 0.01 for each i € N. One can see that F* in Table 1 (i.e., the
peace network) is the unique equilibrium network. To see how robust Proposition 1
is, we introduce asymmetries in effort costs by letting c3 = 0.001 while keeping the
rest of the parameters fixed, which gives us Table 2 below. It turns out that once
we introduce this asymmetry, we still obtain a unique equilibrium but the outcome
network is no longer the peace network but G* (up to the permutation of identities
of players 1 and 2). Moreover, welfare (defined as the sum of players’ payoffs) is
monotonic in the number of friendships under symmetric costs as seen in Table 1,
but this is no longer the case under asymmetric costs as seen in Table 2. While for
the symmetric case the welfare minimizing network is F'! (all against all network),
when we introduce the asymmetry network G? (where player 1 and player 2 form
a coalition against player 3) minimizes welfare. This is because player 1 and player
2 have higher effort costs than player 3 and an alliance between them balances the
contest, fostering competition and leading to higher equilibrium efforts compared to
the all against all network where player 3 dominates.

Let us now discuss what type of networks we may obtain in equilibrium if we restrict
the type of alliances to coalitions only (as in a standard group contest a la Miinster,
2009). More specifically, suppose individuals can leave coalitions unilaterally and
pairs of coalitions can merge by unanimous consent of their members. In our numer-
ical example in Table 1 with symmetric effort costs, F? is the unique equilibrium of

Zenou (2004) take a similar approach but consider pairwise Nash equilibrium instead of pairwise
stability as the solution concept for network formation in the first stage.

141f we instead employ pairwise Nash equilibrium as the solution concept for the first stage, we
should check that no player has an incentive to break any number of friendships (not just one
friendship). One can show this is true under the conditions in Proposition 1, where the existence
of a Nash equilibrium a*(F) for each F' € Gp- is generally guaranteed for ‘small enough’ c.
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the coalition game (up to all permutations of identities of players). Intuitively, the
members of the coalition ‘collude’ against the single player, even though this leads
to a welfare loss (i.e., the sum of equilibrium payoffs is lower than with unarmed
peace) due to the positive equilibrium efforts. This suggests that coalitions can be
harmful for peace (and welfare) as members of a coalition can prevent each other
from becoming friends with outsiders. (Players 1 and 2 are better off in F? than
in F%.) On the other hand, the unique equilibrium of the coalition game in the
asymmetric case is G%, hence, the peace network as seen in Table 2. So, coalitions
can also be helpful for peace (and welfare) as coalition members can coordinate in
jointly expanding their alliances. (Players 1 and 2 are better off in G° than in G?.)
Which effect prevails depends on the extent of the asymmetries in effort costs.

Table 1: Equilibrium efforts, payoffs and welfare for n = 3, f(x;) = 1+ x;, c1 = ¢co = ¢3 = 0.01.
Equilibrium efforts z} denote z}(F'), payoffs m} denote m;(z*(F'), F), and welfare W* denotes
W(x*(F),F) := > ,cn mi(x*(F), F) for the corresponding network F' in each row. We omit net-
works which lead to equivalent games under permutation of players’ identities. All values are
rounded to two decimals.

Network Equilibrium Efforts Payoffs Welfare
F! 1
x] = 21.22 = 0.12
x5 = 21.22 my = 0.12 W* =10.36
x3 = 21.22 my = 0.12
2 3
F? 1
x] = 5.07 w7 = 0.38
x5 = 05.07 5 = 0.38 W* =0.79
x3 = 11.14 m3 = 0.03
5 3
3 1
] = 2.41 w1 = 0.16
x5 =0 Ty = 0.63 W* =0.95
x3 =241 w3 = 0.16
2 3
4 1
1 =0 w1 = 0.33
x5 =0 my = 0.33 W*=1
2l =0 = 0.33
2 3
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Table 2: Equilibrium efforts, payoffs and welfare for n = 3, f(z;) = 1+ z;, ¢1 = ¢2 = 0.01,
cs = 0.001. Equilibrium efforts } denote z}(G), payoffs 7 denote m;(z*(G), G), and welfare W*
denotes W (2*(G), G) = >,y mi(2*(G), G) for the corresponding network G in each row. We omit
networks which lead to equivalent games under permutation of players’ identities. All values are
rounded to two decimals.

Network Equilibrium Efforts Payoffs Welfare
G* 1
x] = 3.53 w1 = 0.01
Ty = 3.53 my = 0.01 W* =0.84
. . 3 = 85.17 s = 0.82
2 3
G* 1
x] = 11.36 w1 = 0.16
x5 = 11.36 my = 0.16 W* =0.52
. T3 = 246.21 ms = 0.20
2 3
G3 1
x] = 3.27 w1 = 0.01
x5 =1.14 my = 0.47 W*=0.94
x5 = 20.36 s = 0.46
2 3
G* 1
/ zt = 0.49 = 0.03
x5 =0 my = 0.57 W* =0.97
x3 = 13.90 my = 0.37
2 3
G5 1
\ ] = 2.41 w1 = 0.16
x5 = 2.41 my = 0.16 W*=10.95
23 =10 3 = 0.63
2 3
G 1
1 =0 w1 = 0.33
/N 75 =0 7 =0.33 W =1
23 =10 m3 = 0.33
2 3
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4.8. The case of directed networks

We now extend our model to the case where relations are not necessarily mutual: if
player ¢ is a friend of j, this does not necessarily imply the opposite, hence, 7 may
or may not be a friend of 7. Throughout this section, we let F; denote the set of
friends of i € N as before, but j € F; does not imply ¢« € F;. A directed network
is a profile of all sets of friends F' = (Fy, ..., F},). We denote the set of all directed
networks by F¢, and a success function defines for each player i € N a mapping
s; + X x F4 — (0,1). For simplicity and to avoid repetition, we use the same
notation in Section 3.2, although dropping the mutuality requirement on relations
leads to a broader set of networks, F¢ O F.

Our class of success functions (1) extends directly and can also be read for directed
networks. Our aim is to see whether its characterization extends as well. It turns
out that our six axioms do not uniquely pin down (1) in the domain F¢. For a full
characterization we need to introduce an additional axiom, invariance of relative
win probabilities (IRWP), which we will discuss shortly. Exhaustivity, anonymity,
monotonicity of efforts and IEC can be read for directed networks without any
modification, while we introduce a slight modification in each of the definitions of
monotonicity of relations and IRO. The modified monotonicity of relations, mono-
tonicity of directed relations (MDR), simply requires that a player always benefits
from a new friendship towards herself. This is because in the context of directed
networks she is not obliged to reciprocate. The need for modifying IRO comes from
the fact that the initial data of the axiom is inconclusive under directed networks
(since F is unrestricted due to lack of mutuality). The modified IRO, indepen-
dence of directed relations of others (IDRQO), resolves this by requiring friends of j
to remain constant in the considered networks.

Monotonicity of directed relations (MDR): Let F' € F¢ be any network and x € X
be any effort profile such that there is a pair 4, j € N with j ¢ F;. Consider F' € F¢
such that j € F/ and F} = F}, for all h # i. Then, s;(z, F') > s;(z, F).

Independence of directed relations of others (IDRO): Let F € F¢ be a network
such that there are at least two players 7,7 € N with j € F;, and x € X be any
effort profile. Let F’ € F? be the network such that j ¢ F/ and F} = F}, for all

h# i Then, (@80 ) (nlef)) — (22Gh) /(200 for all h € N\{i} and
G,G' € Flwith j € Gy, j ¢ G and Gy, = G, for all k # 1.

Our new axiom, IRWP, imposes that, when player j breaks the friendship towards
player ¢, the relative win probabilities of all pairs of players whose set of friends are
unchanged (i.e., all h, k # i) should remain constant.

Invariance of relative win probabilities (IRWP): Let F € F? be a network such that
there are at least two players i, 5 € N with j € F;, and x € X be any effort profile.
Let I’ € F? be the network such that j ¢ F/ and F| = Fj, for all h # i. Then,

s (szl) S (x,F) .
Sz(I,F’) = S}Ij(:t,F) for all h, k # 7.
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IRWP is necessary to rule out the following class of success functions which is com-
patible with all other axioms. For each i € N, x € X and F € F¢,

s TEWP (1 F) = [Lcp, f(2;)0m(1/6)F)
Z 7 ZheN Hjth f(in)@‘Ih(F)(l/@)frh(F) ’

where 0 > 1, ¢;(F) == {k € N : i ¢ Fyand k € F}|, r(F) == |{k € N :
i € Fpand k ¢ F;}| and f : Ry, — (1,400) is any increasing function. To see
that IDRO and IRWP are independent, we define another class of success functions
which satisfy all axioms (including IRWP) but not IDRO. For each i € N, z € X

and F € F¢,
_ HjeFi f(xj)QQi(F)
ZheN Hjth f@j)eqh(m ’

where 6 > 1, ¢; is as defined above and f : R,; — (1,400) is any increasing
function. We conclude with the following remark. We do not provide a formal proof
of this result as it is a particular case of the characterization in the next section,
which applies to weighted directed networks.

SjIDRO (JZ, F)

(2

Remark 1. A success function defined on the domain X x F? satisfies exhaustivity,
anonymity, monotonicity of efforts, MDR, IEC, IDRO and IRWP if and only if
si(z,F)=s(z,F) for eachi € N, v € X and F € F°.

4.4. The case of weighted directed networks

We now extend our model to allow both for directionality and varying intensity of
friendship across players. For each pair of players 7,7 € N, we let the intensity of
friendship that player i receives from player j be given by ¢;,; € (—oo, 1], where
¢i; = 1 so that no player directs a higher friendship intensity to any other player
than to herself.'> We denote by ¢; := (¢1, ..., ¢in) the vector of intensities of all
friendships from all players towards player ¢ (including 7 herself), and the profile of
friendships ¢ = (¢4, ..., ¢,) defines a weighted directed network of relations. Let @
denote the space of all weighted directed networks. A generalized success function
defines for each player i € N a mapping p; : X x & — (0,1) which determines
player i’s win probability p;(z, ¢) for each effort profile x € X and weighted directed
network ¢ € P.

We now extend the probabilistic derivation in Section 3 to weighted directed net-

15The upper bound to friendship intensity is set to 1 without loss of generality, i.e., all our results
hold as long as there is an upper bound to friendship intensity defined as the friendship intensity
of a player towards herself (which can be positive or negative). We need friendship intensity to be
unbounded from below for technical reasons in the proof of Theorem 2. Alternatively, we could
assume ¢; ; to take value in any evenly-spaced finite set of levels of friendship intensity (e.g., all
integers between —k and k for some k € N).
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works to define our class of generalized success functions. Let

$¢z . Z¢zgg$]

JEN

be the generalized effective strength of each player i € N, where g : Ry, — R,
is any increasing function. Given this, we require win probabilities to depend on
players’ strengths, so that the player with the highest strength is the most likely to
win. More specifically, for each x € X and ¢ € ® we impose the win probability of
player ¢ € N to satisfy

pi(z,¢) = Pr(wi(z, ;) + € > wj(x, ¢;) +¢; for any j € N\ {i}), (6)

where (€1, ..., €,) are independent and identically distributed Gumbel random shocks
with variance 72/6. Following the same arguments in Section 3, it can be shown
that (6) holds if and only if

[Tjen exp (di,9(z)))
ZheN ngN exp (én,9(x5))’

which for generic g defines our class of generalized success functions

HJeN flaj)®is
ZheN H jeN f( )¢h]

where f : R, — (1,400) is any increasing function. This is because, as argued
in Section 3, for each g there is a unique f such that f(z;) = exp(g(z;)) for all
T; > 0.

pi(r,¢) = (7)

pi (@, ¢) == (8)

We now characterize our class of generalized success functions (8) via straightforward
adaptations of our axioms.

Extended exhaustivity (EE): For any ¢ € ® and x € X, Y.y pi(z,¢) = L.

Extended anonymity (EA): Let o be any permutation of N. For any ¢ € ® and
r € X, let a(¢) = (Paq), s Pa(n)) and a(z) = (Ta(1), .-, Tam)). Then, pi(z, ¢) =
Pagi)(a(x), a(¢)) for each i € N.

Ezxtended monotonicity of efforts (EME): Consider any z € X and ¢ € & with

¢;i # 1 for some 4,5 € N. Then, p;(2’,¢) > pi(x, ¢) for any 2’ € X with z} > z;
and z}, = xy, for all k # 7.

Eztended monotonicity of directed relations (EMDR): Consider any x € X and ¢ €
® such that there is a pair 4,5 € N with ¢; ; # 1. Then, p;(z,¢’) > pi(x, ¢) for any
¢’ € ® with ¢} ; > ¢; j and ¢}, ), = ¢n . for all h, k € N such that (h, k) 7é( J)-

FExtended mdependence of efforts of commons (EIEC): For any z,2’ € X, ¢ € ®

and i,j € N, szjj;g —p( 20 L if @, =, for all h € N such that @i, # .
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FEzxtended independence of directed relations of others (EIDRO): Consider any x € X,
i,j € N and ¢,¢" € ® with ¢;; > ¢} ; and ¢}, , = ¢py for all b,k € N such that

- pi(z,0") pi(z,0) \ _ [ pi(zy) pi(z,7) :
(h k) # (i, 7). Then, <ph<x,¢’)) / <ph<x,¢>) - (ph(m’>> / <ph(m>> for all A 7 ¢ and
7,7 € (I)'W'ith Yij — Yig = @i — ¢ij and ;. = yuy for all b,k € N such that
(h, k) 7 (i, )-
Extended invariance of relative win probabilities (EIRWP): Consider any z € X,
i,j € N and ¢,¢" € ® with ¢;; > ¢, ; and ¢}, = dny for all b,k € N such that

o pr(,¢) _ pr(x.¢) '
(h,k) # (i,7). Then, o) = poag) for all kb .

We are now ready to state our result.

Theorem 2. A generalized success function satisfies EE, EA, EME, EMDR, EIEC,
EIDRO and EIRWP if and only if p;(x,¢) = pi(x,d) for each i € N, x € X and
ped.

One can easily see the relationship between (1) and (8): if we restrict ¢, ; to take
only binary values and ¢; ; = ¢;,;, the model reduces to the one in Section 3 and
(8) reduces to (1). Similarly, if ¢; ; takes binary values but we drop the restriction
¢ij = ¢ji, the model reduces to the one in Section 4.3 and (8) reduces to the
respective interpretation of (1). There are many more alternative restrictions that
can be considered in applications, as the space of weighted directed networks (or
equivalently, the rules of network formation) can be restricted in various ways to
capture the crucial features of the specific environment. For instance, one may
want to restrict friendship intensities to three values in a way that, for each player,
each opponent is categorized as friend or enemy but the friendship intensity towards
an opponent is never as high as towards herself.' Another possibility is to allow
for multiple levels of friendship intensities and, for each player, to restrict friendship
intensities to take the highest value towards herself, the second highest value towards
her friends, the third highest value towards the friends of her friends and so on.
Indeed, in certain environments by establishing a friendly relation with somebody
one may connect (at some point, perhaps to a lesser degree) to the friends of the
new friend. In applications, different restrictions on the space of weighted directed
networks can lead to different equilibrium outcomes as we point out in the discussion
of Tables 1 and 2.

We now illustrate the applicability of our extended model via a simple example.
Suppose players’ relations are defined by their location on an ideological spectrum.!”

16We have so far interpreted ¢; ; as the intensity of friendship from j towards i. The degree
of enmity can be seen as the lack of friendship on the same scale. How about neutrality? In
a zero-sum environment like ours where one’s gain is necessarily another’s loss, neutrality from
a player towards another is impossible. Instead, a player can be neutral towards pairs of other
players, in the sense of not favoring one over the other. By EIEC, ¢; 1, = ¢;,;, implies the relative
win probability of ¢ to j is independent of xj. So, h can be neutral towards the pair ,j in this
sense.

17See Esteban and Ray (1999, 2011) and Klose and Kovenock (2012, 2013) for contest models
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For simplicity we let this spectrum be an interval of the real line and without loss of
generality we choose [0,1]. A player’s ideological location is a point in this interval,
e.g., 0 is extreme left-wing and 1 is extreme right-wing. Suppose the friendship
intensity ¢;; from player j to player ¢ is one minus the distance between their
locations, which implies ¢; ; = ¢,, for all 7,7 € N. For simplicity, let n = 3 and
suppose players 2 and 3 are at the opposite extremes of the spectrum, at 0 and 1
respectively (hence, ¢o3 = ¢32 = 0). For a given z € X, player 1 must choose
the location to maximize its probability of winning, which we assume takes the
form (7).'% By construction ¢yo = ¢o1 = 1 — 13 = 1 — ¢31; hence, player 1’s
choice reduces to identifying the optimal friendship intensity ¢ ;. See Figure 3 for
a graphical representation.

l—¢12=3 1—¢13=.7

Plager 2 Plager 1 Pla}:er 3
l—¢o3=1

Figure 3: In this example player 1’s location is .3, hence, ¢1 2 = .7 and ¢, 3 = .3.

Let 2/ € X be such that g(z}) =k > 0 for all i € N, i.e., all efforts are positive and
symmetric. By (7),
B exp [2k]

exp [2k] + exp [(1 + ¢o1)k] + exp [(2 — ¢21)k]

b1 (xla (b)

hence, player 1 implements ¢3 , that minimizes exp [(1 + ¢2,1)k] + exp [(2 — ¢21)k],
which gives ¢5, = 1/2 for all k. We can conclude that, if efforts are positive and
symmetric, player 1 should always take the ‘centrist’ ideology which is half way
between the opponents’ locations. Of course, this is just an example, and the result
does not necessarily hold if efforts are asymmetric. For instance, consider a marginal
increase in the effort of player 2. Should player 1 increase or decrease the intensity
of friendship towards this player? One can show that, in a neighborhood of z}, the

optimal friendship intensity as a function of a5 is ¢ ; (z2) = 12 (2:22) —In [9(22) — 1] :

which increases in x5 for all k. Then, starting from 2/, if player 2 marginally increases
the effort, player 1’s ideology should marginally shift towards player 2’s location. It
follows that, instead of pursuing a balance of power by taking the side of the weak,
player 1 bandwagons by siding with the strong.

where each player’s location on an ideological spectrum determines a player’s valuation of victory
and defeat.
18 As we leave g generic, the whole exercise can be repeated with the specification (8).
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5. Conclusion

We define and axiomatically characterize a class of success functions for contests
where each pair of players can be in a friendly or in an antagonistic relation, and these
pairwise relations form a network. For all against all contests, our class of success
functions belongs to the one characterized in Skaperdas (1996). For contests between
groups, the aggregate win probability of group members calculated by our functional
form belongs to the class axiomatized in Miinster (2009). In our basic setup a
success function treats every friend equally. However, it can easily be extended to
the setting where each friendship has a weight and relations between players are
not necessarily mutual. We define this more general class of models in Section 4.4
following a probabilistic argument in McFadden (1973), and provide an axiomatic
characterization.

The model we propose allows to study strategic interaction between parties in con-
flict who are connected by a complex network of relations. Among many other
environments, we commonly see such complex networks in international relations
between countries, in political lobbying between interest groups and in electoral
campaigning between competing parties. In this paper we consider an application
where players choose their relations first, and then they choose their efforts. Our
analysis is based on a solution concept that combines pairwise stability of networks
and Nash equilibrium of efforts in line with the idea of subgame perfection. In a
contest with symmetric effort costs, we show there is an equilibrium whose outcome
is the peace network and the profile of zero efforts (i.e., unarmed peace). On the
other hand, unarmed peace would not necessarily be the outcome if players were
constrained to be in coalitions as in a group contest a la Miinster (2009) or if we in-
troduced cost asymmetries. It would be interesting to formulate alternative solution
concepts, or consider alternative timings where efforts are chosen before relations or
where both relations and efforts are chosen simultaneously. Since a comprehensive
analysis of possible games and solution concepts is not the main focus of this paper,
we leave these questions open for future research.

Our success function has potential for empirical applications as well. For instance,
our model can be used to test for network effects by maximum likelihood or related
methods. We refer to Jia et al. (2013) for a review of empirical issues in the estima-
tion of success functions. The success function can also be used as an index of power
adjusted for the network of relations. In the context of international relations, a par-
ticularly suited collection of datasets is presented by The Correlates of War Project,
which spans for about two centuries and provides material for case studies as well
as econometric analysis. In this context, the effort of a country can be estimated
by its National Material Capabilities (see Singer et al., 1972) while its set of friends
can be estimated by its Formal Alliances (see Gibler, 2009). In a recent empirical
study on the effects of alliance networks on military conflict between countries, Li
et al. (2017) show that outbreaks of conflict are less likely between countries that
share common allies even though they are not necessarily allied. It would be inter-
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esting to incorporate the aforementioned index of power in their empirical study (to
control for countries’ bargaining positions in the shadow of conflict), and to study
theoretically the problem of conflict outbreak within our contest model to find a
rationale for this pacifying effect.

Appendix

A. Relation to the success functions in Minster (2009)

We now show how our class of success functions (1) relates to the one in Miinster
(2009) by applying a simple transformation. Let F C F be the set of all networks
which organize players into mutually exclusive groups, i.e., coalitions. Denote by
C(F) the partition of N defined by network F' € F. Miinster (2009) shows that
under some conditions the win probability of group C' € C(F') must take the form
ooz, F) = fc(xc)/[ZC’eC(F) fcl(xcf)] for any € X and F € F, where for any
group C' € C(F') the vector z¢ defines the efforts of all members of C' and the function

)

Then, it is straightforward that o} (z, F') belongs to the class of Miinster (2009) for
fo(zo) = [Cl1Lice f(@2)-

fo : ]R‘Jﬂ — R increases in all its arguments. Let of(z, F) = >, si(z, F).

B. Proofs

Proof of Theorem 1

It is easy to verify that (1) satisfies the axioms given in the theorem. To show that
the converse holds, we take a success function s; : X x F — (0,1) for each i € N
satisfying the axioms. We want to show that for any i € N, z € X and F € F, (%)
si(x, F) = sf(z, F).

Let F' € F be the network for which F; = N for each player ¢« € N. Take any effort
profile z € X. To show that (x) is true, it suffices to show that (xx) s;(z, F') = 1/n.
Take any pair i, j € N. Take a permutation « such that a(i) = j, a(j) =i, a(k) = k
for all k ¢ {i,j}. Note that a(F) = F. By anonymity, s;(z, F)) = s;(a(z), F') and

sj(z, F) = s;(a(x), F). Moreover, by IEC j((ig = ziz((gf,)) which then is equal to
I\ J ’
sj(x,F)

pEw This leads to s;(x, F') = sj(x, F), and together with exhaustivity this implies
Let F' € F be any network with at least one pair of players which are enemies, i.e.,
F; # N for at least one player i. Let x € X be any effort profile. It is easy to
show that there exists a sequence of networks F°,..., F™ with m > 1 such that
for t € {0,...,m — 1} (i) there is a pair of players i,j € N such that i € F} and
i ¢ FI*Y (i) for all k ¢ {i,j}, Fi = F;*! and (iii) FY = N for all i € N and
F™ = F. We take any such sequence.
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Let 7,5 € N be a pair of players such that i € Ff and ¢ ¢ 1‘7’;.”rl for some t. Let

h be any player in N\{i,j}. By IEC, jh(éﬁ)) depends only on the efforts of the
uncommon friends of 7 and h in F*. Similarly, ﬁi—m depends only on the efforts

of their uncommon friends in F'™!. Hence, there exists a real valued function 'yf;h
such that (o ) (o )
t 87/ xj Sl x?
Yigw@v) = | = )/ s
Sh(va ) Sh(xaF)
where xy is the profile of efforts of players | € U := [(FfUF})\ (F!NEH]U[(F/Tu

EON\ (FF N FY)L By IRO, for any pair of networks G, G’ € F such that i € G
and i ¢ G and G, = Gy, for all k ¢ {3, j},

Pt si(z, G") si(z, Q)

o) = (B2 (22, )
By IEC the right hand side of (9) is exclusively a function of xy,, where U’ :=
[(GiUGH)\ (GiNGR) UG UG\ (G N G})]. Note that j € U and j € U’ by
construction. As there is no restriction on G except that 7 € G, the function %I:}tjh
does not depend on the whole network F* but only on the relation between 4, ;.
Moreover, as (9) must hold for G such that U" = {j}, the function ,Y’L'I:;,h is constant
in all efforts except x;. A similar set of expressions can be written for the relative
win probabilities of players j and h in networks F* and F**!. Then, we can define
the functions g; ;5 : Ryy — Ryy and g5 : Ry — Ry so that

jan(@i) = (WFH? —;> - (11)

For n = 3, we can immediately write g; ;n(z;) = ¢;;(z;) and gj;n(x;) = gji(x)
for the unique player h ¢ {i,j}. Let n > 4, so that there are at least two players

h,k € N\ {i,j}. If we write (10) for h,k € N\ {i,j} and we take the ratio of the
two expressions we obtain

913k (75) (Sh(%Ft“)) / (M)

gign(zy) — \si(z, Fi+) si(z, F'*)

Similarly if we write (11) for h,k € N \ {4, j} we obtain

9jik(Ti) _ (Sh(%FH)) (M)

Gjin(T:) sk(z, FH1) sp(x, F't)

Let G, G’ € F besuch thati € Gjand i ¢ G and G} = G for alll ¢ {3, j}. Moreover
let G, = G. Consider the permutation 5 such that g(k) = h, B(h) =k, B(l) =1
for all [ ¢ {h,k}. By anonymity sy(z,G) = si(8(z), 5(G)). Note that f(G) = G,
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therefore s,(x,G) = sx(B(x),G). As G, = Gy implies G}, = G}, by anonymity we

must also have s, (z,G") = si(B(x),G’). Moreover, by IEC i’;g;gg = zzggggg% which

then is equal to 2% This implies that sp(z, G) = s(x, G). Similarly, by IEC we

sp(z,G) "

also have s, (z,G") = si(x,G"). It follows by IRO that
Ft+1 Ft
1= sn(, ) / sn(, ) 7 (12)
Sk($7Ft+1) Sk(xaFt)
hence g¢; jn(z;) does not depend on the identity of h as long as h ¢ {i,j}. Then,

we can write g; ;n(z;) = ¢;j(x;) and g;;n(z;) = g;:(z;) for each h € N\ {7, 7} also
when n > 4.

Now, let G’ € F be the network such that G) = {k} for all £ € N. Consider
the network G' € F which differs from G’ only by ¢, 7 being friends, so i € G; and
G = Gj forall k ¢ {i,j}. Consider the permutation « defined above. By anonymity
si(z,G) = sj(a(z),a(G)). Note that o(G) = G, therefore s;(z,G) = sj(a(x),G).
Then, as by IEC % is constant in =, we must have s;(z,G) = s;(z,G). Using
IRO, we can write

e/ (Gea) -5ee 5

Since a(G') = G', by anonymity g¢;; = g;;. Note that any permutation of players
besides a also leads to G’. Then, anonymity implies that g; ; and g;; do not depend
on the identities of 7 and j, hence we can write g;; = g;;, = g for all 4,5 € N.

We now determine the win probabilities in network F'. For any i,5 € N, if we
take the product of the rate of change of relative win probabilities for each pair of

consecutive networks in the sequence F°, ... F™ we obtain
: F ; FO m—1 ; Fitl ; Ft
(8(1}7 ))/<S(I, 0)):H (8($7 t+1))/<8(x7 t)) (13>
sj(z, F) s;(z, F9) o \sj(z, F) s;i(z, F*)

Note that j;(é?g% = 1, so the LHS reduces to % Conditions (10), (11) and (12)

jointly determine the rate of change of relative win probabilities in each step of the
sequence. Writing each term on the RHS of (13) in terms of g accordingly,

si(x, F)  llemr9@) [Licr, 9(x1)
si(a, F) HZEN\Fj glw) [Lier, 9(z1)

and defining f := 1/g we obtain

si(x, I) _ HleFif(xl>
sj(z, F) Hlepjf(xl).
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For any 7 € N, by exhaustivity,

1 _ si(x, F) . HleFi f(x) . ZieN HleFi f(@)
sj(z, F) Z Z (HleFj f(xl)> - HleFj flw)

ieEN Sj(x’ F) i€EN

[lLier, f(z1)
hence (e, ) = e /0

that the function f must be increasing and greater than 1. Consider a pair 7,5 € N
with ¢ ¢ F;. Take any z,2’ € X such that 2} > z; and z), = x), for h # i. By
monotonicity of efforts s;(2’, F') > s;(x, ). Then, it is easy to verify that f must be
increasing. To show that f > 1, consider the network F” with i € Fj and F}, = F}, for
all k ¢ {i,j}. Let z; > ;. Then, s;(x, F’) > s;(x, F) by monotonicity of relations,
which implies that f > 1. So, we achieve the desired result (x). O

Given this, to prove (x) it is sufficient to show

Proof of Proposition 1

Let payoffs take the form (5) where f(x;) = 1+ ¢ and ¢; = ¢ for all i € N with
p € (0,1) and ¢ > 0, or with p = 1 and ¢ € (0,1/n?). Our claim is that there is
an equilibrium where F* is the peace network and z*(F™*) = (0,...,0). Note that,
if F* is peace, the unique Nash equilibrium that follows F™* is z*(F*) = (0,...,0),
which implies each player i’s equilibrium payoff is m;(z*(F*), F*) = 1/n. Then, our
claim is true if and only if, given any Nash equilibrium z*(F) for each F' € Gp«\ F*,
there is no network F’ € Gp«\F* such that m;(z*(F"), F') > 1/n.

Note that any network in Gp+\F™* consists of all players being friends except for a
pair. Without loss of generality, let F' € Gg+\F* be such that player 1 is enemy
of player 2 while all other pairs are friends, i.e., F] = N\ {2} and F/ = N for all
i € N\{1,2}. To identify x*(F"), we solve for all possible Nash equilibria in the
game of contest induced by F’. By abuse of notation, we write =7 for x(F”) in the
rest of the proof. Tt is immediate that 7 = 0 for all i € N\ {1,2}. Each player
i € {1,2} solves

x; = argmax

m>0  [f(s) + f(aZ,) + (0 = 2) f @) f(2Z,)

It is easy to show that if f(x;) = 1+ 2 with p € (0, 1] the payoff function is always
concave in x;, and the first order condition is

f(xZ) [ (27)
@) + @) + (= 2)f(@]) fa2,)]
Combining the first order conditions of player 1 and player 2, we obtain f(z7) f'(z%) =
f(x3)f'(x7). As f(x;) = 14 «f this implies 27 = a3 in an interior equilibrium, so
that
f'(z})
f@p) 2+ (= 2) f@))

— CX; | -

= C.
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Given f(z;) = 1+ af with p € (0, 1], the LHS is always decreasing in z7, it has no
lower bound, its upper bound is 1/n? if p = 1 and it has no upper bound if p € (0,1).
Then, the interior equilibrium exists if p € (0,1), or if p = 1 and ¢ € (0,1/n?), and it
is the unique interior equilibrium. It follows that, within our parameter restrictions,
in an interior equilibrium the payoff of each player i € {1,2} takes value

* / / 1 E3
) = o

which is smaller than 1/n for all xf > 0, that is the desired result. We now show
there is no corner solution. Suppose for a contradiction z** is a corner solution. If
x3* =0, the best reply of player 1 must be positive and satisfy

f'(a1")
1+ (n = 1) f (i)

To check whether this can hold in equilibrium, we must verify z3* = 0 is a best reply
to 7", which requires
F()f(0)

1+ (n—=1)f (1))’
Given f(z;) = 1+, we can immediately rule out a corner solution for any p € (0, 1).
For the remaining case p = 1 we obtain

f(at")
%k 2
[1+(n—1)f(z7")]
which is in contradiction with (14) as f(z}*) = 1+z* > 1 = f'(z}*) for all z}* > 0.
It follows that, within our parameter restrictions, we cannot have an equilibrium
where only one player exerts positive effort (the case where only player 2 exerts
positive effort is identical). This completes our proof. [J

=c. (14)

<,

Proof of Theorem 2

It is straightforward to show that (8) satisfies our axioms. To show that the converse
holds, we take a generalized success function p; : X x & — (0,1) for each i € N
satisfying the axioms. We want to show that (x) p;(z, @) = pi(x,¢) for any i € N,
r € X and ¢ € P.

Let ¢ € ® be the weighted directed network (network, hereinafter through this
proof) where ¢; ; = 1 for all i, j € N. Take any effort profile z € X. To show that
(%) is true, it suffices to show that (xx) p;(x,¢) = 1/n for all i € N. Take any pair
i,j € N and a permutation « such that a(i) = j, a(j) =i, a(k) = k forall k & {3, j}.
Note that a(¢) = ¢. By EA, pl<x>¢) = pj(a($)a¢) and pj(l’,Qb) = pl(a($)7¢)
Moreover, by EIEC i ;Eiig = ;’ ;((Zggg which then is equal to %. This implies
that p;(x, ¢) = p,(x, ¢), which together with EE leads to (k).
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Let ¢ € ® be any network with at least one pair of players ¢,7 € N with ¢; ; # 1.
Let x € X be any effort profile. It is easy to show that there exists a sequence of
networks ¢°, ..., ¢™ with m > 1 such that for t € {0,...,m — 1} (i) there is a pair
of players 7,7 € N such that gzﬁt =1 and gth = ¢;; # 1, (ii) for all h,k € N with
(h, k) # (i,7), $hy = Opy and (111) ¢); =1foralli,j € N and ¢ = ¢. We take
any such sequence.

Let 7,5 € N be a pair of players such that gb’? =1 and gth = ¢, ; for some t. Let h
be any player in N\{i}. By EIEC, p = = ¢’ ) 7 depends only on the efforts of players with

different friendship intensities towards i and h in ¢'. Similarly, Z (m it 1 depends

only on the efforts of players with different friendshlp 1nten81tles towards z and h in

"1, Hence, there exists a real valued function ’y¢ 9" guch that

7¢t ‘i’Hl(xU) _ (Pz‘(f’?>¢t+1)> / (M(%W))
bk ph($7¢t+l) ph(x7¢t)
where xy is the profile of efforts of players in U, which is the set of players with
different friendship intensities towards ¢ and h in ¢' or ¢*1. By EIDRO, for any

pair of networks p, " € ® such that ¢ ; — p; ; = qbt“ i and @p g = o} for all
kK € N with (k, k') # (3, 7),

) = (B (B, (19

pr(z, ¢’) pr(T, )

By EIEC the right hand side of (15) is exclusively a function of 2y, i.e., the profile of
efforts of players in U’, which is the set of players with different friendship intensities
towards 7 and h in ¢ or ¢. Note that j € U and j € U’ by construction. As there
are no further restrictions on ¢, ¢, the function ’y¢t 9 Joes not depend on the full
networks ¢', " but only on the difference ¢} ; qbff;l. Moreover, as (15) must hold
¢t ¢t+1

for ¢, ¢’ such that U’ = {j}, the function Vi j is constant in all efforts except x;.

Then, we can define the function gwﬂh R++ —> R. . so that

where § := ¢}, — ¢! € Ry and h € N\{i}. Note that by EIRWP,

pk(:v,sﬁt“) _ pr(z,¢)
pu(z, o) pulz, ¢)

hence, gf’j’h(xj) = gf’j’k(xj) for all k € N\{i}, which means we can drop h and write

for all k € N\{i}, (17)

g9 ;(x;) instead.
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Let !, 02, 03, ¢* € ® be any four networks such that

P =i == 0= — 0=l =g = 0=, =0,

while ¢ 1 = Vi = Ol = @i for all k k" with {k,k'} # {i,j}. See below for a
graphical representation of the relationship between ¢ and j in these networks, where
an arrow from i to j (j to ¢) indicates an increase by ¢ in the friendship intensity
from i to j (j to 7) with respect to the intensity in ¢?.

By EIDRO
i o) = (L)) (o)) (18)

pi(z, ) iz, ?)
By the same arguments above there also exists an analogously defined function
g ;(x;) which can be written using ¢* and ¢* as

o () = (pj(fv,wg)) / (pj(x,so‘*)) _

pi(x, p?) pi(x, p*)

Combining this with (18) we obtain

9,(xj) _ <pi(177301)) / (2%(1‘_,904))

g9 (x;) pj(z, oh) pj(x, o)

Suppose ! is such that go}hk =1-4forall h,k € N, and ¢* is defined according to

the restrictions above. By EIEC and EA gg—’zg = 1, which leads to

g?,j(xj) . pi($,gol)
9?1(331) N pj(ar,gpl)' (19)

Note that 8(¢') = ¢! for any permutation 3. Then, EA implies that the functions
9}5,1' and gg ; do not depend on the identities of ¢ and j, hence, we can write gz j(xj) =
9 (x;)-

We now show ¢°(x;) is an exponential function of 6. To do so, we first prove that
¢°(z;) is bounded from above by 1, i.e., ¢°(x;) < 1. Consider the specific case
where ? is such that gpék =1 for all h,k € N, and let ¢ be defined according
to our restrictions above. We have already shown that py(z, p*) = pi(z, p?) for all
h,k € N. Rewriting ¢°(z;) using * and ¢*, we obtain ¢°(z;) = 1% for h # i.

It follows by EIRWP that py(z, p?) = pn(z,¢?) for all h,k € N\{i}, and by EMDR
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pi(z, ©*) < pi(z,¢*). Then, one can show by EE that p,(z,p?) > pu(z, p?) for all
h # i. This implies z% < 1, hence ¢°(x;) < 1. So, ¢°(x;) is bounded from
above by 1 as desired. By definition ¢°(z;) > 0, so ¢°(x;) € (0,1). For ¢' and ¢'*?
defined above, consider an ‘intermediate’ network ¢ which differs from ¢! and ¢+
only by the friendship intensity from j to ¢ in such a Way that (5” = fj — ¢ for
some ¢’ € (0,6). Using (16) we can write the functions g° "(z;) and g°~% (x;) for the
pairs of networks ¢ @' and @'t!, gb respectlvely By constructlon the multiplication
of these two functions is equal to ¢°(x;), so ¢°(z;) = ¢* (z;)¢°~° (x;). For any given
xj, this is the Cauchy’s exponential equation with respect to J, where § can take
any value in R, . As ¢°(z;) takes value in (0, 1), it can be shown by Corollary 2 in
Aczel et al. (2000) that there is a unique solution to this equation characterized by a
function ¢ : Ry, — R, such that ¢°(x;) = exp (—c(z;)d). Then, defining f(z;) :=
exp (c(z;)) we obtain ¢°(z;) = f(x;)~°. Note that f(z;) > 1 by construction.

We are now ready to determine the win probabilities in network ¢. For any i, 5 € N,
if we take the product of the rate of change of relative win probabilities for each
pair of consecutive networks in the sequence ¢°, ..., #™, we obtain

(2o (Bnd) T (Be07)  (Ba2). oy

Note that p’% ¢0)) = 1, so the LHS reduces to %. Condition (16) and EIRWP

jointly determine the rate of change of relative win probabilities in each step of the
sequence. Writing each term on the RHS of (20) in terms of f accordingly,

pi(z,¢)  Tlen flz )~ mend) ~ lien fa)?
pj(z, ¢> HleN fz ) (1=95.) HleN [t

For any j € N, by EE,

pi(x [len F@)?\ > ien Tien flz)?
Z (HleN f(z )¢j’l) B [Len f(a)%

iEN p] iEN

¢) = Ty S (@)%

Sien ey fa)?et
that the function f must be increasing. Take any z,2’ € X such that z} > x; and
z) = xy, for k # i. By EME p;(2', ¢) > pi(x, ¢). Then, it is easy to verify that f is
increasing. So, we achieve the desired result (x). O

Given this, to prove (x) it is sufficient to show

hence p;(z,

C. Independence of axioms

We demonstrate the independence of the six axioms employed in Theorem 1 by
identifying six success functions that violate each of them while satisfying all others.
Proofs are omitted as they are straightforward.
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. Foreachi € N, z € X and F € F, we define s (z, F) as

HheFi f(l‘h)
>jen Ilner, flan) +17
where f : R, — (1,400) is increasing. This class of success functions satisfies

all our axioms except exhaustivity.

. Foreachi € N, z € X and F € F, we define s?(z, F) as

HheFi fu(zn)
ZjeN HhEFj fulzn)’

where f; : Ryy — (1,400) is increasing for each i € N and f;, # f; for
some h,7 € N. This class of success functions fulfills all our axioms except
anonymity.

. Foreach i € N, z € X and F € F, we define s}(z, F) as

HheFi f(xh)
ZjeN HheFj fan)’

where f : Ry, — (1,+00) is decreasing. Then, s? satisfies all axioms except
monotonicity of efforts.

. Foreachi € N, z € X and F € F, we define s}(z, F) as

HheFi f(l‘h)
ZjeN HheFj fan)’

where f : Ry, — (0,1) is increasing. Then, s} fulfills all axioms but mono-
tonicity of relations.

. Foreachi € N, z € X and F € F, let us define s3(z, F) as

S}($’F):

s?(az,F) =

si (2, F) =

s?(m,F) =

exp (mi/ZkeN xk) HheFi exp(zn)

sile F) = ZjGN exp (xj/Zk:eN $k) HheFj exp(n)

This success function violates IEC, while it satisfies all other axioms.

. Foreachi € N,z € X and F € F, let us define s¥(z, F) as

. . f(:c})(;)Q if F, = {k} for all k € N,
jen J\Tj
Sz, F) =
Iyer, f(xn) otherwise
\ D jen HheFj f(xn) 7
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where f : Ry, — (1,+00) is an increasing function. Then, s¢ fulfills all axioms
but IRO.
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