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SUMMARY

Amyotrophic lateral sclerosis (ALS) is a fatal, pro-
gressive neurodegenerative disease resulting from
a complex interplay between genetics and environ-
ment. Impairments in axonal transport have been
identified in several ALSmodels, but in vivo evidence
remains limited, thus their pathogenetic importance
remains to be fully resolved. We therefore analyzed
the in vivo dynamics of retrogradely transported,
neurotrophin-containing signaling endosomes in
nerve axons of two ALS mouse models with muta-
tions in the RNA processing genes TARDBP and
FUS. TDP-43M337V mice, which show neuromuscular
pathology without motor neuron loss, display axonal
transport perturbations manifesting between 1.5 and
3 months and preceding symptom onset. Contrast-
ingly, despite 20% motor neuron loss, transport re-
mained largely unaffected in FusD14/+ mice. Defi-
ciencies in retrograde axonal transport of signaling
endosomes are therefore not shared by all ALS-
linked genes, indicating that there are mechanistic
distinctions in the pathogenesis of ALS caused by
mutations in different RNA processing genes.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive

neurodegenerative disorder that results from upper and lower

motor neuron loss, leading to muscle wasting, atrophy, and, ul-

timately, death most often due to respiratory failure (Brown

and Al-Chalabi, 2017). Treatment options for ALS patients are

severely limited, but gene therapy approaches hold great prom-

ise (Tosolini and Sleigh, 2017). ALS is thought to manifest

through a multi-step process encompassing additive effects

from genetic predispositions and environmental insults (Al-Cha-

labi and Hardiman, 2013); however, �10% of cases show clear
Cell R
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monogenic heritability (familial ALS [fALS]), while known causa-

tive genetic mutations underlie �68% of fALS and �11% of

the remaining sporadic cases of ALS (Renton et al., 2014). Muta-

tions in numerous genes are linked to the disease, the four most

common of which, in ascending order, are dominantmutations in

fused in sarcoma (FUS), transactive-region DNA-binding protein

(TARDBP encoding TDP-43), superoxide dismutase 1 (SOD1),

and large, intronic hexanucleotide repeat expansions in chromo-

some 9 open reading frame 72 (C9orf72) (Brown and Al-Chalabi,

2017).

Many genes associated with ALS encode proteins important

in all cells, and as such, it remains unknown why motor neurons

and certain brain regions, such as the frontotemporal cortex,

are selectively affected. Nonetheless, impairments in cytoskel-

etal dynamics and axonal transport are emerging as a central

theme based on ALS-linked gene function (Clark et al., 2016;

De Vos and Hafezparast, 2017; Sleigh et al., 2019). Axonal

transport is the fundamental, bi-directional process whereby

cargoes (e.g., organelles and proteins) are actively transported

from one end of an axon to the other, along polarized microtu-

bules (Maday et al., 2014). Anterograde transport, which is from

the cell body to axon terminal, is dependent on the kinesin fam-

ily of molecular motors, while the cytoplasmic dynein complex

is responsible for retrograde axonal transport in the opposite

direction. Patient post-mortem studies provided the first evi-

dence for involvement of impaired transport in ALS, which

has since been consolidated by results from a plethora of dis-

ease models implicating various cargoes (De Vos and Hafez-

parast, 2017). Transport deficits have been linked to all four

major ALS genes through in vitro, ex vivo, and Drosophila mel-

anogaster experiments; however, these experimental models

do not necessarily replicate the complex environment found

in mammals, which is required for efficient, rapid axonal trans-

port (Sleigh et al., 2017). In vivo results from mammals in which

individual cargoes are tracked in real time, rather than en

masse, have been generated in SOD1G93A and TDP-43A315T

ALS mice (Table S1; Bilsland et al., 2010; Fellows et al.,

2020; Gibbs et al., 2018; Magrané et al., 2014). Axonal trans-

port is disrupted in both models at early disease stages,
eports 30, 3655–3662, March 17, 2020 ª 2020 The Author(s). 3655
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Figure 1. Retrograde Axonal Transport of

Signaling Endosomes Is Faster in Motor

Neurons Than Sensory Neurons

(A) Speed distribution curves of signaling endo-

some frame-to-frame movements in motor

(ChAT+, green) and sensory axons (ChAT�, gray)
indicate that axonal transport is faster in motor

neurons.

(B) Mean (crosses), but not maximum (circles),

endosome transport is faster in motor neurons

when calculated per animal.

(C and D) There is no difference between motor

and sensory nerves in the percentage of time en-

dosomes paused for (C) or the percentage of en-

dosomes that paused (D).

(E) HCT-containing axons that are ChAT+ have a

larger caliber than ChAT� axons.

***p < 0.001 and NS, not significant, paired t test.

n = 5. Means ± standard error of the mean (SEM)

plotted for all graphs.

See also Figure S1.
consistent with a potential causative role in neuromuscular

dysfunction and motor neuron degeneration; nonetheless, it is

unclear whether these ALS mice, which express disease-

causing mutant proteins at supra-physiological levels, are

reflective of the full disease spectrum.

We have thus performed pseudolongitudinal assessments of

in vivo axonal transport in two recently engineered mouse models

of ALS with mutations in genes encoding DNA/RNA-binding pro-

teins instrumental to RNA processing, TDP-43 (Gordon et al.,

2019) and Fus (Devoy et al., 2017). Transgenic TDP-43M337V and

humanized, knockin FusD14/+ mice, which both express mutant

protein at physiologically relevant levels, have been used to

address the importance of altered axonal transport to ALS neuro-

pathology. Although mitochondria are the most frequently

analyzed axonal cargo, in this study we opted to assess the traf-

ficking of signaling endosomes, which are essential to the long-

range delivery of signals critical to neuronal survival.

RESULTS

Imaging In Vivo Axonal Transport in Motor Neurons
To assess in vivo dynamics of axonal transport, we used a fluo-

rescently labeled, binding fragment of tetanus neurotoxin (HCT),

which is retrogradely transported along axons within neurotro-

phin-containing signaling endosomes toward neuronal cell

bodies (Surana et al., 2018; Villarroel-Campos et al., 2018). Im-

pairments in long-range neurotrophic signaling have been impli-

cated in several neurodegenerative conditions, including ALS

(Bronfman et al., 2007; Sleigh et al., 2019). By injecting HCT

into the gastrocnemius and tibialis anterior muscles of the lower

leg, and exposing the sciatic nerve at mid-thigh level 4–8 h post-

injection, individual, fluorescently labeled endosomes being

retrogradely transported can be imaged and tracked in the
3656 Cell Reports 30, 3655–3662, March 17, 2020
peripheral nerve axons of live, anesthe-

tized mice (Figure S1A; Gibbs et al.,

2016; J.N.S., A.P.T., and G.S., unpub-

lished data).
Post-intramuscular injection, about 80% of HCT-positive

(HCT
+) axons stain for choline acetyltransferase (ChAT) (Bilsland

et al., 2010), suggesting that the probe is preferentially trans-

ported in motor neurons. Nevertheless, assessing transport in

a mixed motor and sensory population may weaken the ability

to identify motor-specific trafficking perturbations. Therefore,

before analyzing transport in ALS mice, we compared endo-

some dynamics in motor versus sensory neurons using

ChAT-eGFP mice, which permit visual differentiation of periph-

eral nerve types because motor axons are specifically labeled

with eGFP (Figure S1A). Mean endosome transport speeds

were greater in ChAT+ motor neurons compared with ChAT�

sensory neurons (Figures 1A and 1B), and this was not due

to major pausing differences (Figures 1C and 1D). Interestingly,

motor axons had clearly larger calibers than sensory axons

(Figure 1E), suggesting that by imaging thicker axons, HCT

transport can be measured in motor neurons with greater cer-

tainty than if randomly selecting an axon (i.e., >80%; Bilsland

et al., 2010). To confirm this, transport dynamics were

compared between ChAT+ axons and thicker axons from

non-fluorescent control mice, and no differences were

observed (Figure S1). The bell-shaped, rather than bi-modal,

speed frequency distribution generated from non-fluorescent

mice (Figure S1B) indicates that in vivo axonal transport of en-

dosomes can be assessed predominantly in motor neurons by

selecting large-caliber axons. This approach was thus used to

analyze axonal transport in ALS mice.

In Vivo Axonal Transport Is Pre-symptomatically
Impaired in Mutant TDP-43 Mice
Recently reported transgenic TDP-43M337V mice display impair-

ments in motor function and neuromuscular junction abnormal-

ities beginning at 9 months in homozygous mutants without



Figure 2. Mutant TDP Mice Display Perturbed Axonal Transport of Endosomes at 9 Months

(A) Endosome frame-to-frame speed distribution curves indicate that hemizygous and homozygous TDP-43M337V mice (i, iii, green) transport endosomes more

slowly than control, non-transgenic (NTg) mice (white), whereas transport is unaffected in TDP-43WT controls (ii, iii, purple).

(B) Mean endosomal speeds (crosses) are significantly reduced in TDP-43M337V/� and TDP-43M337V/M337V mice, but not TDP-43WT controls (p = 0.006, one-way

ANOVA), while maximum speeds (circles) remained unchanged (p = 0.0891, one-way ANOVA).

(C) Endosomes in mutant TDP-43M337V hemizygous and homozygous mice paused for longer periods of time compared with NTg mice (p = 0.0139, one-way

ANOVA).

(D) TDP-43M337V mice had a greater percentage of endosomes that paused (p = 0.0046, one-way ANOVA).

*p < 0.05 and **p < 0.01, Dunnett’s multiple-comparisons test. n = 6–11. Means ± SEM are plotted for all graphs.

See also Figures S2 and S4.
motor neuron loss up to 12months (Gordon et al., 2019; William-

son et al., 2019). We therefore first assessed retrograde trans-

port of signaling endosomes at 9 months of age in hemizygous

and homozygous TDP-43M337V and TDP-43WT mice and non-

transgenic (NTg) controls (Figure 2). The frequency histograms

of frame-to-frame endosome speeds of both TDP-43M337V/�

and TDP-43M337V/M337V animals are shifted to the left compared

with NTg mice, indicative of slower transport, whereas TDP-

43WT transport was unaffected because it overlaps with the

curve obtained using NTg controls (Figure 2A). When compared,

bothmutants showed a statistically significant reduction inmean

endosome speed (Figure 2B), which was at least partially due to

increased pausing (Figures 2C and 2D). Mutant TDP-43 mice do

not show clear behavioral phenotypes at 3 months (Gordon

et al., 2019; Williamson et al., 2019); we therefore assessed

transport at this early time point to see whether axonal transport

defects precede symptom onset and thus may contribute to

motor neuron pathology. Indeed, a similar deficiency in mutant

TDP-43 transport was observed at 3 months, while TDP-43WT

transport remained unperturbed (Figures 3A–3D). Finally, to

determine at what stage transport becomes affected, we

assessed endosomal trafficking at 1.5 months in TDP-

43M337V/M337V and TDP-43WT/WT mice. We found no difference

between genotypes (Figures 3E–3H) or from NTg control mice

(not shown). These data indicate that TDP-43M337V, but not

TDP-43WT, mice display a pre-symptomatic, non-developmental

in vivo impairment in axonal transport of signaling endosomes

that manifests between 1.5 and 3 months of age (Figure S2).
Axonal Transport Remains Largely Unaffected inMutant
Fus Mice Even at Late Stages
Deficient in vivo trafficking of signaling endosomes has now

been observed in SOD1G93A mice (Bilsland et al., 2010; Gibbs

et al., 2018) and the TDP-43M337V model reported here. To

assess whether this phenotype is common to mouse models

of ALS, we assessed in vivo transport in knockin mutant

FusD14/+ mice. This model displays loss of neuromuscular integ-

rity and progressive degeneration of lumbar spinal motor neu-

rons; at 3 months, mutant Fus mice show no motor neuron

loss, which becomes overt by 12 (14% reduction) and 18 (20%

reduction) months of age (Devoy et al., 2017). We therefore as-

sessed endosome transport at 3, 12, and 18 months in this

ALS model (Figure 4). At 3 and 12 months, there was no signifi-

cant difference in axonal kinetics of these organelles (Figures

4A–4H), and, despite an increase in pausing (Figures 4K and

4L), there was no significant change in signaling endosome

mean ormaximum speeds at the late disease stage of 18months

(Figures 4I and 4J). Consistent with this, no significant changes in

transport were observed across time points for Fus+/+ or

FusD14/+ mice, although Fusmutants show a subtle, progressive,

yet non-significant, decline (Figure S3).

We have previously shown that endosome transport remains

stable in wild-type mice from 1 to 13–14 months of age (Sleigh

and Schiavo, 2016), suggesting that a natural, aging-related

decline in transport does not compound the mutant TDP-43

transport defect. To ensure that this remains true up to

18 months, we compared axonal transport in all control mice
Cell Reports 30, 3655–3662, March 17, 2020 3657



Figure 3. TDP-43M337V Transport Disruption Occurs between 1.5 and 3 Months

(A) Endosome frame-to-frame speed distribution curves show that at 3 months TDP-43M337V (i, iii, green), but not TDP-43WT (ii, iii, purple), mice transport en-

dosomes more slowly than control, non-transgenic (NTg) mice (white).

(B) Mean (crosses, p = 0.004, one-way ANOVA) and maximum (circles, p = 0.0222, one-way ANOVA) endosomal speeds are significantly reduced in TDP-

43M337V/� mice.

(C and D) TDP-43M337V hemizygotes and homozygotes show increased endosome pausing as assessed by calculating the percentage of time paused (C)

(p = 0.0171, Kruskal-Wallis test) and the percentage of pausing endosomes (D) (p < 0.001, one-way ANOVA).

(E–H) At 1.5 months, there is no difference in endosome frame-to-frame speed distribution curves (E), average or maximum endosome transport speeds (F), the

percentage of time that endosomeswere paused (G), or the percentage of pausing endosomes (H) between TDP-43M337V/M337V (green) and TDP-43WT/WT (purple)

mice. This suggests that transport disruption occurs between 1.5 and 3 months. Presented 1.5 month data are not significantly different from NTg control (not

shown).

*p < 0.05, **p < 0.01, and ***p < 0.001, Dunnett’s/Dunn’s multiple-comparisons test. NS, not significant, unpaired t test/Mann-Whitney U test. n = 5–10. Means ±

SEM are plotted for all graphs.

See also Figures S2 and S4.
aged 3–18 months. There were no significant changes in cargo

dynamics (Figure S4), suggesting that the mild pausing defect

of 18-month-old mutant Fus mice is unlikely to be a direct

consequence of aging and that axonal transport of signaling

endosomes remains unaltered in wild-type mice up to

18 months.

DISCUSSION

Here, we show that an ALS mouse model of mutant TDP-43 dis-

plays a pre-symptomatic, in vivo deficit in axonal transport of

signaling endosomes in peripheral axons, which may contribute

to motor function deficits and impaired neuromuscular integrity.

This defect is specific to the M337V mutation, as TDP-43WT pro-
3658 Cell Reports 30, 3655–3662, March 17, 2020
tein, which is expressed at a similar, low level as TDP-43M337V

relative to endogenous mouse TDP-43 (Gordon et al., 2019),

had no effect on retrograde transport rates. Counter to observa-

tions of several, but not all (Gordon et al., 2019), reported TDP-

43-linked pathologies (Fratta et al., 2018; White et al., 2018),

hemizygous and homozygous TDP-43 mutant mice show similar

deficiencies in trafficking, suggesting that once a threshold level

of mutant TDP-43 is present, no further transport exacerbation

occurs. This may be due to the heterozygous mutant TDP-43

transport defect being caused by a loss of signaling or alterations

of the axonal proteome that precipitate amaximumphysiological

reduction in endosome transport speeds, which cannot be

further affected by additional pathological protein. Furthermore,

once manifested, the transport defect does not appear to get



Figure 4. FusD14/+ Mice Display a Minor Impairment in Axonal Transport of Endosomes, but Only at a Late Disease Stage

(A–H) The axonal dynamics of signaling endosomes are similar between Fus+/+ (gray) and FusD14/+ (red) mice at 3 months (A–D) and 12 months (E–H) of age.

(I–L) At 18 months, retrograde axonal transport speed of endosomes is unaffected in FusD14/+ mice (I and J); however, mutant Fus mice do show a significant

increase in the percentage of time that endosomes pause for (K) and the percentage of endosomes that paused (L).

*p < 0.05; NS, not significant, unpaired t test. n = 5–7. Means ± SEM are plotted for all graphs.

See also Figures S3 and S4.
progressively worse between 3 and 9 months, indicating that a

disturbance in retrograde transport of signaling endosomes

may underlie the subsequent progressive reduction in neuro-

muscular integrity andmotor function, yet is compatible withmo-

tor neuron survival at the level of the spinal cord (Gordon et al.,

2019).

Alterations in the population of sciatic nerve axons over the im-

aging period are unlikely to account for the different rates of TDP-

43M337V transport, as there is no spinal cordmotor neuron loss at

the time points assessed (Gordon et al., 2019). Importantly, loss

of neuromuscular junction connectivity does not occur until after

3 months, once again indicating that altered sciatic nerve axon

profiles do not cause the transport disruption. Furthermore,

loss of motor axons does not necessarily result in impaired

axonal endosome dynamics, as revealed by our experiments in

the FusD14/+ mouse, likely reflecting the robustness of our tech-

nique to accurately differentiate between motor and sensory
axons. All genotypes assessed showed plentiful uptake and

retrograde transport of the fluorescent probe, with no overt

changes in endosome number between mutant and wild-type

mice, despite endocytosis dysfunction being previously linked

to both TDP-43 and FUS toxicity (Liu et al., 2020). Moreover, het-

erogeneity in axonal endosome-associated Rab proteins, in

particular Rab5 and Rab7, is unlikely to cause the observed

transport distinctions because Rab7 is the predominant Rab

associated with HCT-positive axonal endosomes (Deinhardt

et al., 2006).

Nonetheless, the TDP-43M337V mouse data add to the

impaired mitochondrial transport reported in TDP-43A315T mice

and defective mitochondria and signaling endosome trafficking

in SOD1G93A mice (Table S1). ALS-linked mutations in SOD1

and TARDBP may thus cause early/pre-symptomatic, general-

ized defects in axonal transport in motor neurons (rather than

cargo-specific deficits), leading to dysfunction and degeneration
Cell Reports 30, 3655–3662, March 17, 2020 3659



(Gordon et al., 2019). This may be caused by cargo-independent

impairments in the cytoskeleton ormotor proteins (e.g., the cyto-

skeletal regulator HDAC6 is a known target of TDP-43; Fiesel

et al., 2010), or by aberrant binding of mutant ALS proteins to

motor complexes (Tateno et al., 2009; Zhang et al., 2007); how-

ever, this will have to be directly confirmed in the TDP-43M337V

model.

Contrastingly, signaling endosome transport in FusD14/+ mice

remained largely unaffected even during latter disease stages,

despite a 20% loss of spinal cord motor neurons at 18 months

(Devoy et al., 2017), confirming that degenerating axons do not

always have altered transport kinetics (Malik et al., 2011). This

implies that transport disturbances are not necessarily a non-

specific by-product of neurodegeneration, at least during earlier

disease stages, and thus emphasizes the specificity of transport

defects in mutant TDP-43 and SOD1 mice. However, it remains

possible that motor neuron loss proceeds very rapidly and tar-

gets only specific subpools of motor neurons in FusD14/+ mice,

such that any preceding defect in transport was missed (Nijssen

et al., 2017). Alternatively, mutant Fus mice may display cargo-

specific (e.g., mitochondria, RNA granules) or anterograde trans-

port defects, some of which have been reported in other ALS

models (Alami et al., 2014; Baldwin et al., 2016), thus additional

cargoes should also be assessed in FusD14/+mice. Nevertheless,

altogether our findings indicate that pre-symptomatic abnormal-

ities in retrograde axonal transport of neurotrophin-containing

signaling endosomes may not be common to all ALS-linked

genes and that there are inherent distinctions in the pathome-

chanism of ALS caused by mutations in different RNA

processing genes. Although TDP-43 and FUS are both RNA/

DNA-binding proteins that process RNA predominantly in the

nucleus, they regulate the expression and splicing of largely

distinct gene sets (Colombrita et al., 2012; Lagier-Tourenne

et al., 2012) and show neuropathological idiosyncrasies when

mutated (Bäumer et al., 2010), which could account for these

discrepancies in axonal transport deficits. As could the observa-

tion that wild-type TDP-43 and SOD1 proteins consistently asso-

ciate with motor neuron signaling endosomes, whereas FUS

does not (Debaisieux et al., 2016).

Disruptions in axonal transport have been linked to theM337V

TARDBP mutation in a range of in vitro and Drosophila larval

models (Alami et al., 2014; Baldwin et al., 2016; Wang et al.,

2013). Although the severe frameshift FUS mutation modeled

in FusD14/+ mice has not previously been assessed, transport

perturbations have been reported in several mutant FUSmodels,

including Drosophila larvae (Baldwin et al., 2016), isolated squid

axoplasm (Sama et al., 2017), and humanmotor neurons derived

from induced pluripotent stem cells (iPSCs) (Guo et al., 2017).

Why then do FusD14/+ mice not show impaired signaling endo-

some transport, at least until a late disease stage? In addition to

the possibilities mentioned above, there are other potential ex-

planations. First, distinctions may arise because of the different

FUS mutations being analyzed and their expression in the pres-

ence or absence of the wild-type allele. Second, although

Drosophila is an excellent model that has provided instrumental

insights into neurobiology, as well as neurological diseases

(Grice et al., 2011; Walters et al., 2019; Yamaguchi and Taka-

shima, 2018), in vivo transport analyses are conducted in larvae
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in which organs have been removed, so there is considerable

disruption to the organism, which is being analyzed during devel-

opment and is thus perhaps not the best model for age-related

neurodegeneration. Moreover, the complex, long-range neuro-

trophin signaling program is not conserved in Drosophila, while

mutant ALS transgenes are often overexpressed to above phys-

iological levels, which can induce phenotypes even with wild-

type FUS transgenes (Baldwin et al., 2016). In vitro axonal trans-

port dynamics differ from in vivo trafficking (Bilsland et al., 2010;

Gibbs et al., 2016), possibly because of cultured neurons lacking

the complete series of necessary cellular and chemical interac-

tions (e.g., myelination and target muscle cells in the case of mo-

tor neurons) (Sleigh et al., 2017), which is particularly important

for ALS as both cell- and non-cell-autonomous pathomechan-

isms contribute to disease onset and progression (Nijssen

et al., 2017). In addition to variability inherent to iPSC differenti-

ation, it remains unknown how closely motor neuron develop-

mental stages in culture correlate with age-related degeneration

in vivo. By imaging axonal transport of signaling endosomes in

intact sciatic nerves of anesthetized mice, we are instead certain

of the disease stage and physiological environment of the pe-

ripheral axons under investigation.

In summary, we have assessed in vivo retrograde axonal

transport of signaling endosomes in two mouse models of ALS

that express disease-causing mutant proteins at near endoge-

nous levels. Mutant TDP-43, but not mutant Fus, mice displayed

a pre-symptomatic deficiency in endosome transport, suggest-

ing that reduced neurotrophin signaling may contribute to

mutant TDP-43-mediated neuropathology and that general de-

fects in axonal transport are specific to a subset of ALS-linked

genes in an in vivo mammalian setting.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

HCT
441 Restani et al., 2012 N/A

AlexaFluor555 C2 maleimide Life Technologies A-20346

recombinant human brain-derived neurotrophic factor Peprotech 450-02

Experimental Models: Organisms/Strains

Mouse: Tg(Chat-EGFP)GH293Gsat/Mmucd (ChAT-eGFP) Mutant Mouse Resource and

Research Center

MMRRC: 000296-UCD

Mouse: B6;129S6-Gt(ROSA)26Sorm1(TARDBP*M337V/Ypet)Tlbt/J

(WT and M337V TDP43)

The Jackson Laboratory JAX: 029266

Mouse: B6N;B6J-Fustm1Emcf./H (Fus+/+ and FusD14/+) Devoy et al., 2017 N/A

Software and Algorithms

Tracker (Version 2.0.0.26) Kinetic Imaging Ltd. N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Giam-

pietro Schiavo (giampietro.schiavo@ucl.ac.uk). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All mouse handling and experiments were performed under license from the United Kingdom Home Office in accordance with the

Animals (Scientific Procedures) Act (1986) and approved by the University College London – Queen Square Institute of

Neurology Ethics Committee. All mice were maintained in individually ventilated cages and on a standard diet. Tg(Chat-EGFP)

GH293Gsat/Mmucd mice (MMRRC Stock Number 000296-UCD), referred to as ChAT-eGFP mice, were maintained and

imaged as heterozygotes on a CD-1 background. The male to female ratio used for these experiments was 2:3. B6;129S6-

Gt(ROSA)26Sorm1(TARDBP*M337V/Ypet)Tlbt/J (WT and M337V TDP43, Jackson Laboratory strain #029266, https://www.jax.org/strain/

029266) and B6N;B6J-Fustm1Emcf./H (Fus+/+ and FusD14/+) mice were maintained on a C57BL/6 background and genotyped as

detailed (Devoy et al., 2017; Gordon et al., 2019). ChAT-eGFP mice used for motor versus sensory analyses were 79-134 days

old. Non-transgenic (NTg) control and TDP43 mice sacrificed for 1.5, 3, and 9 month time points were 55-57, 102-125, and 249-

71 days old, respectively. The male to female ratio used for these time points were 1:1, 2:15 and 35:6, respectively. Fus mice sacri-

ficed for 3, 12, and 18 month time points were 104-115, 365-368, and 568-588 days old, respectively. The male to female ratio used

for these time points were 4:3, 6:7 and 3:7, respectively. Littermates of either sex were pooled in all analyses because no significant

differences in transport were observed between males and females independent of the genotype (Figures S4E–S4H, and data not

shown). Sample sizes of 5 or above were chosen based on two-sample, two-sided power calculations, with standard power of

0.8 (1�b) and type I error rate of 5% (a). Estimated mean and standard deviation of average signaling endosome transport speeds

per animal were calculated from previous data generated from mice modeling neuromuscular diseases.

METHOD DETAILS

Axonal transport imaging
In vivo kinetics of signaling endosomes labeled with atoxic binding fragment of tetanus neurotoxin (HCT) were assessed as previously

described (Gibbs et al., 2016; J.N.S., A.P.T., and G.S., unpublished data). Briefly, HCT (HCT
441, residues 875-1315) fused to an

improved cysteine-rich tag and a human influenza haemagglutinin epitope was bacterially expressed as a glutathione-S-transferase

fusion protein (Restani et al., 2012), and labeled with AlexaFluor555 C2 maleimide (Life Technologies, A-20346). On the morning of

analysis, HCT was pre-mixed with recombinant human brain-derived neurotrophic factor (BDNF, Peprotech, 450-02) in phosphate

buffered saline. Under isofluorane-induced anesthesia and on a heat-pad to maintain body temperature, two 1-2 mm long incisions

were made in the skin above the gastrocnemius and tibialis anterior muscles of the right leg. 3.5-5 mg of HCT with 25 ng BDNF was
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then injected in a volume ofz1.5 mL per muscle into the motor end plate region as per Mohan et al. (2014). The incisions were closed

by suturing and the animal allowed to fully recover. 4-8 h post-injection, animals were terminally anaesthetised using isofluorane and

1–1.5 cm of the right sciatic nerve was exposed by removal of the overlying skin and musculature. Curved forceps were then used to

cautiously separate the sciatic nerve from the underlying connective tissue, such that a small piece of magic tape could be placed

between the two to aid imaging. Still under anesthesia, themouse was transferred to an inverted LSM780 laser scanningmicroscope

(Zeiss) within an environmental chamber pre-warmed and set throughout the experiment to 37�C. The body weight of the animal and

careful positioning ensures that the sciatic nerve remains stationary on the coverslip overlying the 63x Plan-Apochromat oil immer-

sion objective lens (Zeiss). An area containing several axons retrogradely transporting the fluorescent HCT probe was selected and

imaged every 2.4-3.2 s at 100x digital zoom (1024x1024, 1% laser power). All imaging was completed within 1 h of initiating terminal

anesthesia.

Axonal transport analysis
Confocal image series were converted into .avi files and individual endosome dynamics manually tracked using Tracker (Kinetic Im-

aging Ltd.) (Figure S1A). Endosomes were included in the analysis if they could be observed forR 5 consecutive frames and did not

pause for > 10 consecutive images. Endosomes that were tracked and then paused for long periods were not included for fear of

issues associated with phototoxicity. Nevertheless, on average fewer than one endosome per animal did this and the phenotype

was not linked to a particular genotype. Moreover, endosomes moving solely in the anterograde direction were also not included

as they were similarly infrequent. All individual frame-to-frame step speeds are included in the presented speed frequency histo-

grams (459.6 ± 11.4 frame-to-frame speeds per animal were calculated), meaning that an endosome tracked across 11 consecutive

frames will generate 10 frame-to-frame speeds to be included in the frequency histogram. To determine the mean endosome speed

per animal, the speeds of individual endosomes were calculated and then an average of these speeds determined (50.3 ± 0.8 endo-

somes per animal were tracked). The fastest endosome speed per animal is reported as the ‘maximum speed’. All speed analyses

include frames and time during which endosomes may have been paused, i.e., we report the speed across the entire tracked run

length and not the speed solely when motile. An endosome was considered to have paused if it remained in the same position for

two consecutive images. The ‘% time paused’ is a calculation of the length of time all tracked endosomes remained stationary, while

the ‘% pausing endosomes’ details the proportion of endosomes that displayed at least one pause while being tracked. At least six

endosomes from at least two individual, thick axons were assessed per animal.

Axon calibre analysis
Axon calibres were determined from images taken for endosome transport analyses by measuring the distance between the upper

and lower margins of transported fluorescent signaling endosomes orthogonally from the direction of transport. A minimum of ten

measurements were made along the length of the axon to calculate average widths per axon, and three different axons per animal

were used to calculate a per animal mean width.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were assumed to be normally distributed unless evidence to the contrary could be provided by the D’Agostino and Pearson

omnibus normality test. Normally distributed data were statistically analyzed using a t test or one-way analysis of variance (ANOVA)

with Dunnett’s multiple comparisons test, and non-normally distributed data with a Mann-Whitney U test or Kruskal-Wallis test with

Dunn’s multiple comparisons test. Paired t tests were used to compare transport kinetics in ChAT+ versus ChAT- axons as data were

generated from the same animals. Endosomes were tracked from videos in which the genotype of the animal was blinded. All tests

were two-tailed and an a-level of p < 0.05 was used to determine significance. GraphPad Prism 6 software was used for all statistical

analyses and figure production. All figure legends contain details of statistical tests and sample sizes (i.e. number of animals) used,

with dispersion and precision measures.

DATA AND CODE AVAILABILITY

This study did not generate/analyze datasets/code.
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