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“Truth is ever to be found in simplicity, and not in the multiplicity and

confusion of things.”

Sir Issac Newton

“My goal is simple. It is a complete understanding of the universe, why

it is as it is and why it exists at all.”

Stephen Hawking

“Physics is really nothing more than a search for ultimate simplicity,

but so far all we have is a kind of elegant messiness.”

Bill Bryson

“If you realise all the time what’s kind of wonderful, that is, if we

expand our experience into wilder and wilder regions of experience,

every once in a while, we have these integrations when everything’s

pulled together into a unification, in which it turns out to be simpler

than it looked before.”

Richard P. Feynman

“Life is really simple, but we insist on making it complicated.”

Confucius



Abstract

The Random Matrix Axiverse &

Axion Cosmology in String Theory

Consistent frameworks of quantum gravity often predict the existence of large num-

bers of ultralight pseudoscalar degrees of freedom, forming the phenomenologi-

cal landscape of the String Axiverse. The complexity of the compactified extra-

dimensional spacetime manifold and plethoric ensemble of possible vacuum solu-

tions, indicate these fields could possess parameters fixed to cosmologically signifi-

cant scales in the associated four-dimensional effective field theories, which may span

many decades. In the framework of string/M- theory, a systematic construction of

the spectrum of these free model variables, the axion decay constant, fa, and field

mass, ma, when studying explicit realisations of the string axiverse, is an arduous

task to perform. The general approach to this problem requires extensive details

of all instanton corrections to the model’s superpotential, along with a detailed

knowledge of the full scalar potential, minimised in the supersymmetric theory. The

difficulty of this task scales significantly when considering realistic axion/moduli

population numbers. These have often been shown to appear at the order of tens or

even hundreds of axionic fields, realised from well defined geometrical constructions

and topological features of the model’s extra-dimensional manifold.

It is therefore of great interest to consider methods which can alleviate these issues,

specifically through a randomised statistical approach, due to the lack of definitive
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information we can assert on the higher-dimensional complex space. The link be-

tween free probability theory and the asymptotic nature of large random matrices

has incorporated itself into various areas associated to multi-axion cosmology. These

include models of inflation, quintessence and ensemble sampling of the superpoten-

tial Hessian in models of random supergravity. The complexities of these models can

be reduced by considering a series of simple yet very powerful nomothetic principles

applied to high-dimensional data structures. In this work we introduce a number

of random matrix theory inspired models based loosely on axion field alignment

considerations for the effective multi-field Lagrangian, as well as a random matrix

treatment of the explicit realisation of the string axiverse in M-theory. We detail

the forms of their limiting spectral distributions, which take universal forms and

provide traceable results based on both central limits theorems and classical ensem-

ble random matrix theory, along with the relevant powerful statements stemming

from the field of free probability theory. Using these frameworks we investigate spe-

cific configurations of these models based on the initial basis we begin to sample our

model, whilst providing simplistic fits to the limiting spectra through considerations

for the spectral moments. Such models can be used to test both the presence and

viability of axion contributions to the cosmic history, using hierarchical Bayesian

inference techniques, along with the possibility of performing an analysis of other

phenomenological consequences which may signal the appearance of these fields in

our four-dimensional spacetime.

To assess this, we discuss how astrophysical observations for stellar binary and super-

massive black hole systems can be used to exclude the existence of axions spanning

a large portion of the ultralight mass parameter space, via the superradiance phe-

nomenon. We show how these measurements can be used to constrain properties of

the defined and introduced universal statistical distributions, associated to multiple

bosonic field theories, covering axion phenomenologies important to the dark sector

of cosmological physics and grand unified theories. The presence of multiple fields

can enhance the exclusion bounds on both solar and supermassive black holes in
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the so called Regge spin plane, as apposed to considering the case of a single field.

In this work, we explore for the first time how these measurements can be used

to constrain properties of statistical probability measure functions for the masses

of multiple bosonic fields. We present an analysis of the statistical likelihoods for

each of these models with recorded black hole data spin and mass measurements,

in order to provide a picture of the significance of the axion parameter space and

its phenomenology in effective theories. Quite generally, in the limit of weak self-

interaction, our methodology excludes Nax & 30 axion-like fields, associated to a

range of mass distribution widths and central values, spanning many orders of mag-

nitude. We demonstrate this for the specific example of axions motivated by string

theory and M-theory in the random matrix theory axiverse, where the mass distri-

butions in specific configurations takes universal forms over logarithmic scales.

Finally to conclude, we present an analysis of the background cosmological (quasi-

)observables for a selection of the random matrix theory axiverse models, whilst

incorporating axion field population numbers, Nax ∼ O(10−100). This significantly

reduces the number of parameters from 2Nax to a small number of statistical hyper-

parameters related to the matrix parameters which regulate the spectral moments

of the parameter distributions. Once again our choice of models in this analysis rep-

resents a selection of random matrix models, either motivated purely by statistical

considerations, or the structure is specified according to a class of M-theory models

and stochastic variables. If the axion masses and (effective) decay constants, lie in

specific ranges, then axions contribute to the cosmological dark matter and dark

energy densities. We use these models to assess the chance of reproducing suitable

dark matter or dark energy cosmologies. Our methodology incorporates the use

of both random matrix theory sampling and Bayesian networks. Using Bayesian

methods in a a hierarchical model we constrain the hyperparameters of the sta-

tistical axion distributions. In some cases the hyperparameters can be related to

theoretical aspects of string theory, e.g. constraining the number ratio of axions

to moduli, or the typical decay constant scales needed to provide the correct relic
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densities today.
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Nomenclature: Physical Constants

The following represent the core and primary physical constants which appear

throughout the core structure of this doctoral thesis:

kB Boltzmann constant (1.380 658× 10−23 JK−1)

e Elementary charge (1.602 176 634× 10−19 C)

ge Electron g-factor (−2.002 319 304 362 564)

me Electron mass (9.109 383 701 528× 10−31 Kg)

α Fine-structure constant (7.297 352 569 311× 10−3)

GN Newtons Gravitational Constant (6.67× 10−11 m3 s−2 Kg−1)

π Pi 3.14159265359...

h Planck constant (6.626 070 150× 10−34 Js)

mPl Planck mass
√

~c
GN
' 1.220 910× 1019 Gev c−2)

tPl Planck time
√

~GN
c5
' (5.391 245 600× 10−44 s)

`Pl Planck length
√

~GN
c3
' (1.616 229 380× 10−35 m)

mP Proton mass (1.672 621 923 700× 10−27 Kg)

~ Reduced Planck constant (1.054 572 66× 10−34 Js)

MPl Reduced Planck mass
√

~c
8πGN

' (2.435× 1018 Gev c−2)

M� Solar mass (1.988 470× 1030 Kg)

c Speed of light (2.997 924 58× 108 ms−1)
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Parameters & Mathematical

Operations

The following represent the core and primary representations of common parameters

or conventions throughout this doctoral thesis. Care should be taken in the context

of individual chapters where it is possible to find an overlap or redefined variables

with equivalent designations:

µac Absolutely Continuous Measure Function

� Additive Free Convolution

fa Axion Decay Constant

Kij Axion Kinetic Matrix

ma Axion Mass

Mij Axion Mass Matrix

µax Axion Mass (Superradiance)

MBH Black Hole Mass

a∗ Black Hole Spin (Dimensionless)

S Canonical Action

φ Canonical Axion Field

Λ Cosmological Constant

ΩDE Cosmic Dark Energy Density Parameter
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shift of the observed spectra. Image credit: Edwin Hubble, taken

from Fig. 1 of Ref. [725]. . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 The effective relativistic degrees of freedom for both the energy and

entropy densities, g∗,r and g∗,s, as a function of temperature beginning

at, T = O(103) GeV, evolving assuming the standard evolution of the

Standard Model gauge group. The functions separate approximately

after e± annihilation, when Tν 6= Tγ. The fits are made following the

procedure of Ref. [1329] used to approximate the functions given in

Eq. (1.73) and Eq. (1.74). The dotted lines (light blue (entropy), dark

blue (energy)) represent the approximate fitted values of g∗,r and g∗,s
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1.5 Anisotropies of the cosmic microwave background emitted approxi-

mately 380,000 years after the Big Bang, as observed by the Planck

satellite, a strong indication of the nature of Big Bang cosmology. The

Red regions represent densities hotter than the average temperature,

the blue regions are cooler, reflecting the apparent density variations

present at recombination. The observational aspects of this map rep-

resent a vital probe to possible extensions to cosmological physics

models. Image credit: ESA and the Planck Collaboration, http://

sci.esa.int/science-e-media/img/61/Planck_CMB_Mollweide_4k.

jpg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.6 The cosmic energy budget determined by data collected by the Planck

collaboration in Eq. (1.80), Eq. (1.81) and Eq. (1.83). The Universe

is currently observed to be dominated by two principle dark com-

ponents which make up ∼ 95% of the total cosmic energy density.

The separated wedge component represents the only portion of the

observable Universe we can currently account for with the Standard

Model of particle physics. . . . . . . . . . . . . . . . . . . . . . . . . 54

1.7 Original superposition of 21 Sc galaxy rotation curves which first

appeared in Ref. [1130], detailing the unexpected flattened nature

of the curves when extending their analysis far beyond the galactic

nucleus. Contributions from a significant hidden unseen “matter”

sector were determined to be present in order to explain the observed

form of these rotational curves. Image credit: Taken from Fig. 6

found in Ref. [1130]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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2.1 The complete framework of the Standard Model of particle physics.

Each of the fields represented have been experimentally confirmed

and form our best understanding of how matter and the fundamen-

tal forces interact. The fermions are comprised of twelve elementary

particles of spin 1/2, in three generations which obey Pauli’s exclusion

principle. Each particle has its own antiparticle which defines the an-

timatter content of the Standard Model. The gauge bosons, manifest

under the gauge group representation of Eq. (2.1), define the force car-

riers that mediate the fundamental interactions of the strong, weak,

and electromagnetic forces. The Higgs boson is the only fundamen-

tal scalar required to describe the elementary-particle masses. Image

credit: Taken from https://commons.wikimedia.org/wiki/File:

Standard_Model_of_Elementary_Particles_Anti.svg. . . . . . . . 70

2.2 Left panel: Triangle loop interaction diagram for the anomalous axion-

gluon-gluon coupling. Each gluon vertex strength is regulated by the

strong coupling constant. The axion vertex strength is regulated by

the axion-fermion Yukawa coupling. Right Panel: Anomalous two-

photon vertex interaction which can be used to indicate the stability

of the axion field over cosmological time scales. The respective vertex

interactions are replaced with charged fermion coupling terms. . . . . 87

2.3 The Mexican hat symmetry breaking potential of Eq. (2.48), in the

complex ϕ plane. The VEV of the massive radial mode is fa/
√

2. The

axion is apparent as the massless angular phase degree of freedom at

the minimum of the potential. The field initially begins at the point

denoted by the green circle. Once the respective symmetry is spon-

taneously broken the field moves down its potential to the minimum

denoted by the blue circle, where is now possesses a continuous shift

symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
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2.4 General form of the standard dilute instanton gas axion potential

which forms non-perturbatively, periodic in the initial misalignment

angle domain along with associated higher order forms. The three

examples presented include the standard axion-cosine potential along

with two potentials possessing higher order harmonics. Such poten-

tials are often addressed by considering higher order instanton cor-

rections which allow for features such as the dilution of the axion

relic density at rates faster than a standard fluid matter component

[774, 1071]. This is shown by the green and yellow points which rep-

resent the same value of θ. . . . . . . . . . . . . . . . . . . . . . . . 100

2.5 Plots for the example evolution of the cosmological densities, ρi in

Eq. (1.42) as a function of the cosmic scale factor, a(t), with Nax = 10

axions behaving as the total DM density where the mass eigenstates

sampled with a realisation of the isometric S-matrix model in Sec-

tion 5.2.4.1. Upper inset: Enhanced view of the effect of multi-field

oscillations on the total axion density, ρax. Lower inset: Comparative

matter-radiation equality with crossings of ρm = ρb + ρax and ρr at

zeq = 3393. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.6 Plots for the example evolution of each contribution to the critical

density, Ωi = ρi/3H2, as a function of the cosmic scale factor, a(t).

This example cosmology represents a realisation of the total DM with

axion mass eigenstates sampled using a realisation of the isometric S-

matrix model of Section 5.2.4.1, including the remaining Ωr, ΩΛ and

Ωb terms. Inset: Enhanced view of the effect of multi-field oscillations

on the axion density parameter Ωax contributing to the critical density.110
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2.7 Evolution of various cosmological axion field quantities using the ex-

act solution of the background evolution of a single axion field deter-

mined using the scalar field equations of motion. As the axion field

begins to oscillate about its minimum the fields equations of state

(lower left panel) oscillates between the limits -1 and 1. At this point

the field begins to scale as a non-relativistic cold DM component as

shown in the lower right panel. . . . . . . . . . . . . . . . . . . . . . 115

2.8 Multi-field evolution of the collective equation of state, ωeff , as a func-

tion of the cosmic scale factor for three different configurations of

multi-axion models with, Nax = 5. Each of the five model masses

are scaled in order to reproduce examples realisations with DM dom-

inated, DM/quintessence mixed and quintessence dominated axion

cosmologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.9 Left panel: Temporal evolution of the standard cosmic energy den-

sity components, along with two additional ULA fields present in the

spectrum. The oscillatory behaviour of the total density is visually

observed twice, when the axion masses are sufficient separated so that

the heavier fields oscillations are heavily damped at a (tmaosc), the time

of onset oscillation of the second axion with a reduced mass. The

fields initial conditions mean the total contribution to the matter

density at the present time is insufficient, avoiding constraints such

as those in Ref. [710]. Right panel: Schematic representation of late

time oscillatory behaviour of the effective equation of state defined in

Eq. (2.107) for the two-axion effective matter fluid with features of

multi-oscillatory behaviour. . . . . . . . . . . . . . . . . . . . . . . . 125
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2.10 Example Axion-photon interaction via the Primakoff process, present

in an external electromagnetic field realised through the two photon

coupling to the axion particle, which can be reverted to allow for the

conversion to either photons or axions. This is the dominant process

in many experimental techniques to search for the axion which arising

from the properties of the electromagnetic anomaly. . . . . . . . . . . 127

3.1 Propagation of the traditional fundamental components of quantum

theories. Relativistic point particles (left example) map out their

historical trajectories using a world-line which is defined by a single

parameter τ often associated to the proper time. The remaining two

examples represent the propagation of open and closed fundamental

strings, respectively, of finite length `s, defining the space of the string

worldsheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.2 The unified space of string theories. Asymptotic expansions around

the cusps represent the limits of the weakly coupled superstring the-

ories, which can be studied under the perturbative regime. Currently

most of the moduli space associated to the eleven-dimensional quan-

tum theory of M-theory cannot be studied using these limits. The

dualities on the outer curves are examples of symmetries used to

overcome this issue in order to study the low energy sector using

supergravity theories. It is possible that some self-dual point not

represented here corresponds to the arbitrary dimensional limit of

the true fundamental theory. Whether or not “M” should sit in the

centre of this diagram is unclear. This has previously been referred

to as U-theory [1171] and strongly relates to the notions of string

universality. Energy or the distance from the Bogomol’nyi-Prasad-

Sommerfield (BPS) limit, increases (decreases) and we move away

from (towards) the page. . . . . . . . . . . . . . . . . . . . . . . . . . 138
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3.3 Approximate Gaussian fits for quantities formed using the topological

invariant Hodge numbers, h1,1 and h2,1. Left panel: Ratio of the axion

degrees of freedom and the total dimension of the extra-dimensional

space defined in Eq. (3.64), represented by the data from the Kreuzer-

Skarke list [825] for the distinct Hodge number combinations and

approximate density function fit. Right panel: Density plot for the

Euler characteristic from Eq. (3.61) for Calabi-Yau threefolds along

with its approximate density function fit. . . . . . . . . . . . . . . . . 158

3.4 Example general Calabi-Yau quintic cross-section, Z5
1 +Z5

2 = 1. The

two-dimensional projectional slice is an embedded surface represent-

ing a visualisation of the possible full six-dimensional Calabi-Yau

space, Z5
0 + Z5

1 + Z5
2 + Z5

3 + Z5
4 = 0, which could define the extra-

dimensions of spacetime in well-defined superstring compactification

models. The structural features of these spaces can have a drastic

effect on the particle content in the low-energy four-dimensional theory.167
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3.5 Complete construction of toric hypersurfaces parameterised by χ ∈

[−960, 960], using the 30,108 distinct Hodge pairs from the Kreuzer-

Skarke dataset of Calabi-Yau hypersurfaces in Gorenstein Fano-toric

fourfolds. The coloured surface represents the logarithmic multiplicity

of the Euler characteristic and functional height, y = h1,1+h2,1 for the

473,800,652 hodge pairs which run over these distinct values peaking

with a density O(106) at h1,1 = h2,1 = 27. The red dashed line

defines the boundaries enforced by the fact that the Hodge numbers

are strictly positive. The black dashed line is the mirror manifold

symmetry boundary. The grey solid line is the limits for the Euler

characteristic which defines the properties of the manifold. The light

blue lines represent a half mirror symmetry for points which have

mirror manifolds about the χ = −480 and χ = 480 axis. The grey grid

represents symmetry boundaries for features such as K3 fibrations

[309]. Adapted from the work found in Ref. [309]. . . . . . . . . . . . 171

4.2 Left panel: Density function plots for the Wishart distribution defined

in Eq. (4.54) for various values of the parameter representing the

functions degrees of freedom. Right Panel: Density function plots for

the inverse Wishart distribution defined in Eq. (4.97) also for various

values of the parameter representing the functions degrees of freedom. 213
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5.4 Normalised eigenvalue spectra for the Marčhenko-Pastur RMT model,

along with associated probability density functions for the squared

axion masses, m2
a, presented with both linear and logarithmic scales

in the left and right panels respectively. Each panel shows five se-

lected values of the spectrum shaping parameter βM, approximately

covering its defining interval βM ∈ (0, 1]. Left panel: The mass distri-

bution converges to the Marčhenko-Pastur limiting law as Nax →∞.

Asymptotically the largest eigenvalue, which can fluctuate outside its

defined compact interval, is determined by the Tracy-Widom law in

Eq. (D.4). Right panel: Probability density functions for each of the

associated distributions in the left panel displayed on a logarithmic

mass scale. Inset: As βM increases,1 the positive logarithmic dis-

placement of the upper bound is limited compared to the negative

displacement of the lower bound of the distribution. . . . . . . . . . . 270

5.5 Normalised eigenvalue spectra for the axion mass matrix defined with

spikes from eigenvalues defined in the supercritical regime of the BBP

phase transition. Left panel: Example mass spectra for the model

presented in Section 5.2.4.2 for a range of values of the distribution

shaping parameter βM. The spiked eigenvalues, µpm
spike, repulsed from

the bulk of the spectrum are enhanced by O(Nax) (right inset). The

bulk of the spectrum, µacMP, is defined by the Marčhenko-Pastur lim-

iting laws (left inset). Right panel: Example mass spectra for the

model presented in Section 5.2.5.2.3 for a range of values of the dis-

tribution shaping parameter βM. The bulk of the perturbed mass

spectrum is defined as µac
F found in Eq. (4.101) inheriting two spiked

values defined from both the kinetic and mass matrices. In the limit

βK,M = 1 the total distribution measure becomes an absolutely con-

tinuous function with each of the spiked point masses absolved into

the bulk support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
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5.6 Normalised mass spectra for the model presented in Section 5.2.5.1

for a range of values of the distribution shaping parameters βK = βM.

The multiplicative free convolution of the absolved decay constants

with the initial mass matrix causes the sampled spectra to univer-

sally converge to a symmetric LSD on logarithmic scales. The mass

spectrum measure is defined by the absolutely continuous measure

function, µac
F defined in Eq. (4.101). Each spectra is fitted with a beta

distribution function according to the expression found in Eq. (G.6).

The βM parameter regulates the limiting distributions kurtosis, act-

ing as a free compression operation, � (see Section 4.4.2). In the

limit βM → 0 the LSD approaches the limiting kurtosis of the infin-

ity divisible bounds for beta distributions, represented by the limit

for a semi-circular distribution. . . . . . . . . . . . . . . . . . . . . . 276

5.7 Normalised mass, decay constant and canonical field spectra for the

model presented in Section 5.2.5.1, for a single equal value of the

distribution shaping parameters βK = βM = 0.5. The upper panels

display model spectra, fitted with beta distribution functions accord-

ing to the expression found in Eq. (G.6). The vertical dotted lines

represent the spectral mean, where the dashed lines represent a 1σ

translation from this value. In the lower left, lower middle and left

central panels we display the covariance between each of the simple

axion cosmology model parameters. The strongest covariance rela-

tionship comes from the decay constants which act as a full rank

perturbation to the initial mass matrix ensemble in the geometric

lattice basis. The reduced dependance between the other parameters

comes from the basis rotations moving into the mass eigenstate ba-

sis. The red dashed lines represent the two-dimensional peak of the

contours in each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
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5.8 Left panel: Representation of the skew effect apparent when βK 6= βM

for arbitrarily normalised eigenvalues defined from matrices in the

model presented in Section 5.2.4.1. We demonstrate this using three

examples each when βK < βM (negative skew) and βK > βM (positive

skew). Each example has both binned eigenvalue densities from di-

rect sampling along with an approximated beta function fits defined

from Eq. (G.6). Right panel: Example normalised mass spectra for

the model presented in Section 5.2.4.1 for a range of priors on the

population covariance matrix. We demonstrate how some standard

example models can be well approximated within the bounds of the

Beta distribution function of Eq. (G.6) for skewed spectra. Specifi-

cally the case of log-uniform priors on the standard deviations using

the separation strategy defined in Eq. (B.6) to define the mass matrix

population covariance matrix, shows an example where the need for

explicit spectral functions may be required. . . . . . . . . . . . . . . . 279

5.10 Left panel: Example axion decay constant spectra defined using the

Kähler metric defined in Eq. (5.94) which can be modelled by the

prior fit in Eq. (5.96) for various values of the minimum and maxi-

mum moduli VEVs parameters, smin and smax. Right Panel: Example

spectra of the axion decay constant modulus defined using the non-

diagonal Kähler metric in Eq. (5.87) formed with uniform priors for

the moduli VEVs. The non-centred mean leads to perturbed eigenval-

ues from the bulk which give a non-positive spectrum for the squared

values of the axion decay constants as the matrix is not defined in

the form of a sample covariance matrix. . . . . . . . . . . . . . . . . . 301
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5.12 Left panel: Example M-theory RMT model eigenvalue spectra repre-

senting axion masses, ma constructed using different variance values,

σÑ , when using Gaussian priors defined in Eq. (5.129) on the elements

of Ñ i
j along with Gaussian prior fits. Changing the value of σÑ has the

effect of shifting the mean scale of the spectrum across the ultralight

sector. Right panel: Example M-theory RMT model eigenvalue spec-

tra representing axion masses, ma constructed using different mean

values, ¯̃N when using Gaussian priors defined in Eq. (5.129) on the

elements of Ñ i
j along with Gaussian prior fits. Decreasing the value

of ¯̃N has the effect of both reducing the spread of the spectrum whilst

increasing the mean value. . . . . . . . . . . . . . . . . . . . . . . . . 310

5.13 M-theory RMT model eigenvalue spectra representing axion masses,

ma for different values of the spectrum shaping parameter βM. The

mass spectra converge to an approximate log-normal distribution de-

fined by the function in Eq. (5.132) which have been fitted to each

example spectrum in the mass eigenstate basis. Each spectrum is

constructed using a fixed value of the average three-cycle volume,

〈VX〉 = 25 required for GUT scale unification. The spectra are con-

structed using 10000 iterations in the case of an axion population size,

Nax = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
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5.15 Example mass spectra in M-theory RMT axiverse as found in Fig. 5.14

normalised to shift the mean scale to unity. We demonstrate the na-

ture of universal convergence of the mass spectra in this model to be

well described by its first two centralised moments. The logarithm

of the spectrum is fitted with a Gaussian density fit (Eq. (5.142)),

a Beta distribution function (Eq. (G.6)) and GLD distribution using

the method of L-moments (Eq. (H.2)). All of these converge when

modelling the peak and tails of the distribution, representing a re-

dundancy in using more complicated distribution families which can

model the higher moments. . . . . . . . . . . . . . . . . . . . . . . . . 314

5.17 Hodge fountain for the distributions of the topological invariant Hodge

numbers h1,1 and h2,1 using the Euler number and additive height.

The mirror symmetry is realised at Euler number, χ = 0. Each of the

banded segments superimposed denotes the manifest forms of the dis-

tributions for the spectra of log10(ma) using the model in Section 5.2.5

when the distribution symmetry parameters are defined as equal. The

selected distributions represent unimodal bounded for the kurtosis of

well defined functions. The sum of the shaded regions approximate

the total fraction of the spectra which related to symmetric functions

about their mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
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5.19 Comparative fits for example mass and decay constant spectra us-

ing both simplistic priors as well as the GLD determined using var-

ious methods. Left panel: Normalised mass spectra from the model

outlined in Section 5.2.5 for the case where βK = βM = 1. The

GLD defined by using the method of L-moments (Eq. (H.2)) pro-

vides the best fit to the distribution peaks and tails. The worst fit

is the Gaussian function (Eq. (5.142)) which provides a good first

order approximation but misses several characteristic features of the

LSD for the axion masses. Right panel: Logarithmic spectra for both

the Marčhenko-Pastur density spectra and first order multiplicative

convolution of two Marčhenko-Pastur spectra representing the decay

constant distributions arbitrarily normalised to two separated scales.

Each spectrum is fitted with both a Beta function fit and a GLD

function determined by the method of L-moments which to a first

order approximation are sufficiently similar. . . . . . . . . . . . . . . 326

6.1 M87* SMBH at the centre of the Messier 87 galaxy as imaged by the

Event Horizon Telescope [48–53]. The BH presents a dark shadow

(central spot), which is larger than the BH event horizon, caused by

the gravitational warping of light and photon capture at the event

horizon. Image credit: Event Horizon Telescope, https://www.eso.

org/public/images/eso1907a/. . . . . . . . . . . . . . . . . . . . . 336

6.2 The BH-scalar condensate coupling, α = µaxMBH. The solid black

line represents the unity limit for non-relativistic and relativistic regimes.

The dashed line corresponds to α = 0.5, the approximate limit in

which the analytical approximation for the instability rate is valid.

Dotted lines correspond to frequency ranges for monochromatic grav-

itational wave emission from the scalar cloud accessible to current and

future GW observatories [4, 68, 69, 456, 523, 879, 1147]. . . . . . . . 337
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6.3 Behaviour of a Kerr BH horizons in three-dimensional and two-dimensional

Cartesian Kerr-Schild coordinates, for fixed values of the dimension-

less spin parameter, a∗ approaching the limit for a non-rotating BH.

The solid black line represents the ergoregion defined using Eq. (6.12),

which is minimally perturbed in the non-relativistic spin limit, a∗ < 1,

where these two regions approach the Schwarzschild solution limit.

The dashed blue and cyan lines represent the outer and inner hori-

zons respectively defined using Eq. (6.10). The two hypersurfaces of

the event horizon and the ergosphere meet at the co-latitude pole of

0 degrees. The x-axis is the radial distance from the black hole in

polar coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

6.4 Behaviour of a Kerr BHs defining horizons in three-dimensional space

and in the xz-plane for fixed values of the dimensionless spin param-

eter, a∗, approaching the limit for an extremal BH. The solid black

line/surface represents the ergoregion defined using Eq. (6.12), the

dashed blue and cyan lines/surfaces represent the outer and inner

horizons respectively defined using Eq. (6.10). In the limit that the

BH is extreme (a∗ = 1) the inner and outer horizons coincide. The

two hypersurfaces of the event horizon and the ergosphere meet at

the co-latitude pole of zero degrees. In the non-relativistic spin re-

gion these two regions approach each other in the Schwarzschild limit.

The x-axis is the radial distance from the BH in polar coordinates. . . 343
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6.5 Imaginary component of the bound-state frequency, MBHωI , rep-

resenting the superradiance instability rate, Γnlm, as a function of

the dimensionless coupling, α = µaxMBH. The superradiance rates

presented are for each of the orbital/azimuthal quantum numbers,

l = m = 1 to 5 for various values of the dimensionless BH spin, a∗,

approaching the extremal relativistic limit (a∗ = 1). The functions

presented were determined using the weak-field analytical approxi-

mations found in Eq. (6.42). . . . . . . . . . . . . . . . . . . . . . . . 352

6.6 Imaginary component of the bound-state frequency, MBHωI repre-

senting the superradiance instability rate, Γnlm, as a function of the

dimensionless coupling, α = µaxMBH. The superradiance rates pre-

sented are for the fundamental and higher order overtone modes n = 0

to 4 for various configurations satisfying either l = m or l > m.

The red lines correspond to the fundamental overtone modes, n = 0

which become subdominant for values of l = m ≥ 4 (see inset). The

functions presented were determined using the weak-field analytical

approximations found in Eq. (6.42). . . . . . . . . . . . . . . . . . . . 353

6.7 Timescale ratios for the superradiance rates determined for an axion

with a mass µax = 10−11.5 eV. These rates are compared with a typi-

cal BH astrophysical timescale, here taken to be τSalpeter (Eq. (6.108)).

Each cusp represents the analytical limit beyond which Eq. (6.71) is

satisfied. The limit to the right of the cusp (soldid line) represents the

ratio defining the nature of the timescales where superradiance is ap-

parent. The red volume defines the limit in the two dimensional BH

mass-spin parameter space where superradiance occurs within the de-

fined astrophysical timescale used to map the Regge plane isocontour

limits, such as those found in Fig. 6.8. . . . . . . . . . . . . . . . . . 357
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6.8 Isocontour exclusion bounds in the BH mass-spin Regge plane for

an axion mass, µax = 10−11.5 eV, probing the stellar BH parame-

ter space. The limits (black outline) for the instability threshold are

obtained by fixing the superradiant instability time scales for each

value of the orbital/azimuthal quantum numbers, l = m = 1 to 5

equal to the timescale of a typical BBH system shown in Eq. (6.106).

The extended limits come from considering superradiant instability

timescales shorter than τSalpeter (orange, Eq. (6.108)) and τHubble (yel-

low, Eq. (6.107)). The red/black data points denote mass and spin

estimates of the stellar BHs from X-ray/BBH sources presented in

Tabel 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

6.9 Isocontour exclusion bounds and calculated total exclusion probabil-

ities in the BH mass-spin Regge plane from superradiant instabili-

ties with a single axion field with a mass, µax, spanning the limits

in Eq. (6.105). The shaded regions represent instability thresholds

shorter than the time scale τSalpeter in Eq. (6.108), for each value of

the dominant orbital/azimuthal quantum numbers, l = m = 1 to

5. The blue data points are mass-spin estimates of stellar X-ray and

BBH systems. The orange points correspond to mass-spin estimates

of SMBHs from X-ray reflection spectroscopy. The exclusion proba-

bility function (black line) is calculated using the statistical model in

Appendix J using the BHs compiled in both Table 6.2 and Table 6.3,

which is given as a function of the axion mass spanning both the

stellar and supermassive regimes. . . . . . . . . . . . . . . . . . . . . 369
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6.11 Contour bounds on the fractional suppression factor of Eq. (6.124) as

a function of the axion mass and decay constant highlighting when

a bosenova event occurs before the fundamental superradiant mode
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Introduction and Origins

“There is no law of physics that does not lend itself to most economical

derivation from a symmetry principle. However, a symmetry principle

hides from view any sight of the deeper structure that underpins that

law and therefore also prevents any immediate sight of how in each

case that mutability comes about.”

Foundational Problems in the Special Sciences.

John Wheeler

Space and Time

Many of the most elementary questions first proposed by humanity, conveying our

intrigue in the finer details surrounding our origins, quickly found themselves chal-

lenging the metaphysical characteristics of the heavens. We have come a great dis-

tance certainly, since the various ages where our understanding of the foundations

of the Universe were inherently derived from numerous philosophical doctrines. In

De Caelo et Mundo, Aristotle’s chief cosmological treatise, dated 350 BC, we are en-

couraged to adopt the reference frame of a temporally infinite, eternal steady state,

unique1 in existence, confined only to a spatially finite setting [92, 627]. Much like its

ancient dogmatic counterpart, creatio ex nihilo, greek natural philosophic arguments

drove the narrative of our role in what seemed to be a concept so vast, humanity

surely could not possibly understand both how it came to be, and would come to

1A point still debated today, closely tied to the study of eternal inflation [649, 681, 1296] and
anthropic considerations [867, 1157, 1229].

1
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pass. The transition from the common conceptions of an eternal cosmos, into the

study of cosmogony minus the overarching framework of theogony, began to shape

the way fundamental physics, as well as distinct mathematical reasoning, would

change the landscape of all fundamental science. Over two millennia later, the fun-

damental postulates of Newtonian mechanics formulated in the Philosop Naturalis

Principia Mathematica [360, 978], detailed the revolutionary formalities of gravita-

tional kinematics, both defining and cementing astronomy and the motions of the

observed heavily bodies as a core branch of mathematical physics. The conceptual-

isation of universality beautifully encoded in the simplistic expression representing

the classical universal force of gravity,

F =
GNm1m2

r2
, (1)

for two massive bodies, m1 and m2 separated by a distance r. Newton’s gravitational

proportionality constant GN, is defined in Eq. (1.9). An overarching philosophical

backbone had remained resolute between the two time periods of these defining

works. In the century following Newton’s seminal work, various vastly celebrated

works such as Die kritik der reinen Vernunft [768], Immanuel Kant’s précis on the

scope of metaphysical arguments, began to suggest a full adoption of a Newtonian

universe was an intellectuals just cause, asserting a very different picture from the

classical, ontological trajectory of thinking. These works were representative of the

changing ethos of the leading intellectual conglomerate, the theoretical seesaw now

more evenly weighted between the divinity of the primordial chaos and the notions

of scientific analysis and reasoning. Many brilliant works surrounding observational

astronomy began to both open up and drive the very natural desire for more ro-

bust inductive physical arguments over the following two centuries, which would

ultimately be used to revolutionise our reasoning behind the structure and inherent

nature of the Universe, deterring from those with a more deductive, logical basis

and philosophical grounding.
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Figure 1: Faithful reproduction of Peter Apian’s geocentric celestial spheres orig-

inally sourced from his Cosmographia [86] (Antwerp, 1539). The iconic celestial

spheres often appeared as the foundations of models of fundamental bodies in cos-

mological models, pioneered by the likes of Plato, Aristotle, Ptolemy and Coperni-

cus. These heavenly bodies were generally considered fixed elements in a series of

rotating spheres made of an aetherial, transparent quintessence element, reproduc-

ing a natural beauty in the symmetry of geocentricity. Image credit: Celestial Orbs

in the Latin Middle Ages, Edward Grant [626].

Olbers’ paradox, the abstruse question as to why the Universe appears so dark in the

night sky, an example of the initial footings into considering solutions requiring a

spatially and temporally finite model of the Universe. This question would ironically

come to haunt theorists much later for very different reasons when moving into the

age of astrophysical cosmology after successfully mapping the energy content of the

observable universe. The era and understanding of modern cosmology began with

the insights and revolutionary arguments of Albert Einstein. His defining work on

the nature of spacetime succeeding his already striking presentation of the mass-

energy equivalence principle [510], summed up in arguably one of the most famous
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equations in any field of study,

E = mc2 . (2)

This mass (m), energy (E) equivalence serving as a vital revolutionary insight and

grounding into what we now understand as the field of relativistic quantum field

theory [1340–1342]. The theory of general relativity [513] was a captivating revolu-

tion in our conceptualisation and understanding of gravity, a grandiose expression

in the ability to define results in the most complex of landscapes through a se-

ries of relatively simple mathematical formulations. It quickly became apparent

the richness of Einstein’s mathematical equations proposed interesting solutions to

the temporal nature of the Universe, along with its geometrical structure. These

solutions would prove to be the focal point of many important features in cosmol-

ogy, which today remain key elements which must be incorporated into any real-

istic cosmological model. Two of the most fascinating solutions concerned them-

selves with the strong-field limit of Einstein’s equations and the evolutionary na-

ture of the Universe. The first relates to the explicit solutions of Einstein’s equa-

tions formulated by Karl Schwarzschild [1163], his metric solution to the spacetime

surrounding spherically symmetric, non-rotating objects with zero charge, even-

tually leading to the formal definition of the mathematical curiosities known as

black holes (BHs) [334]. These astrophysical wonders were later championed by

the likes of Stephen Hawking and Rodger Penrose [683] as very generic predictions

for cosmological scenarios, and remain today a vital probe of unchartered physics

[106, 539, 584, 745, 878, 892, 894, 927]. In order to conform to the general consensus

of thinking, Einstein later added the kosmologische Gleid (see Eq. (1.41)), his now

posthumously celebrated addition of a cosmological constant counter term, included

to ensure his equations would reproduce a static universe.

The second solution of interest, was realised over a series of seminal works in the

1920’s, forming the basis of what is referred to today as the standard cosmological

model. The first half of the decade saw the establishment of the Friedman equations
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[565], subsequently corroborated in the second half through the independent results

of Georges Lemâıtre [845]. The work of Howard Robertson and Arthur Walker

in the following decade unified the Friedmann-Robertson-Lemâıtre-Walker (FRLW)

[846, 1114–1116, 1316] metric, which certified the dynamics of the Universe over

cosmological scales under the description of the general theory of relativity, which

was ultimately forced to obey a modern interpretation of the The Copernican Prin-

ciple. The Copernican Principle states that as observers of the Universe we are not

privileged in our position situated on Earth or more generally in the Solar System.

The modern adaptation of this notion is known as the Cosmological Principle, the

conjecture that the field equations must correspond to a homogeneous and isotropic

universe. A seminal point in the development of this Standard Model of Cosmol-

ogy came with Edwin Hubble’s understanding of the redshift-distance correlation

and recessional nature of galaxies expressed with a simple relation known as, the

Hubble-Lemâıtre Law [725],

v = H0d , (3)

where H0 denotes Hubble’s constant as defined in Eq. (1.86). The remaining two

values are the recessional velocity v and proper distance d. This work formalising the

independent findings of Georges Lemâıtre [844] and Vesto Melvin Slipher. Slipher

performed the first measurements of the radial velocities for galaxies [1195, 1197]

which lead to our current understanding today of an expanding universe, amongst

numerous other seminal observational works. The initial calculation for the value of

the Hubble constant, H0, representing the ratio of the recession velocity to distance

of the observed objects, returned a value ofH0 ∼ 500 kms−1 Mpc−1. This value is ap-

proximately an order of magnitude out from the current best measurements [40] (see

Eq. (1.86), but clearly showed the first convincing evidence the Universe was indeed

expanding2. Following this extraordinary discovery attempts were made to under-

2Supposedly after these results were published Einstein later referred to the addition of his
cosmological constant term as the ‘biggest blunder’ of his career. Given the erudition of Einstein,
it came as no surprise his greatest mistake in his eyes would turn out to be a stroke of genius with
the discovery of the nature of the Universes acceleration some years later.
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stand how the composition of the chemical elements [61] would be realised within

this framework, eventually leading to the vital prediction the Universe previously

contained a radiation dominated epoch [60]. This rapidly developing framework

soon came to be referenced as the Big Bang3 model of cosmology.

Shortly after what seemed to be a great period of discovery and standardisation as

to how to model our Universe, big issues began to arise. It was soon discovered the

Universe contained a mysterious dark matter (DM) component, understood through

the kinematics of galaxies, specifically initially through their perplexing rotational

velocity curves [252, 560, 1129, 1130]. This extended matter component was re-

quired to ensure the rapidly developing observational techniques and gathered data

could be accounted for using the known laws of gravitation. The magnitude of this

matter, now a staple of any cosmological analysis, has been further clarified through

extended probes such as gravitational lensing [1097, 1250], general cosmological

structure formation [59] and features of the cosmic microwave background (CMB)

[603]. These have all subsequently offered a wealth of convincing evidence for DM

over a range of different scales. One of the most important observational discoveries

of the 20th century was actually a decisively fortunate accident [1048], enlightening

us to the presence of the CMB, the previously predicted radiation background, ob-

served as a strikingly perfect blackbody, offering decisive evidence for the Big Bang

scenario. Since its discovery it has undergone a dynamic and intensive analysis, now

offering a vitally important indication of how to shape and probe allowed extensions

to cosmological models, stemming from more exotic constructions in fundamental

physics, which must conform or not significantly perturb the conjectured evolution

of primordial physics during this epoch.

Meanwhile on the quantum mechanical frontier, the formulation of field theories

building on the physics and mathematics behind relativistic waves, began to holis-

tically describe the various matter constituents under the elegance of gauge theory.

3This term was coined by Fred Hoyle, an advocate of steady-state cosmology [717], during
a radio broadcast, in an attempt to undermine the principles behind the singular nature of the
universe in its initial state for the up and coming models of an expanding universe.
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Figure 2: Bohr model of the Hydrogen atom [1057], 1H, representing an electrically

neutral atom containing a single, positively charged proton at the centre, along

with a single negatively charged electron. The electron sits in one of the designated

energy levels, bound to the nucleus by the Coulomb force. The model serves as a first

order approximation of the later formulated “true” quantum mechanical description.

Traditionally the radius of each orbit goes as n2, where n represents the principle

quantum number. Here we show only the first two electron orbits to the correct scale.

The solid black lines represent adsorption series and the dashed lines represent series

examples for emission processes. The example electron transition produces the first

line of the Balmer series resulting in a proton with a wavelength of 656 nm.

These models presented an invariance over particular Lie groups, specifically mak-

ing use of Lie algebras under certain representations, reaffirming the importance of

symmetry arguments in a mathematical universe. Standing on the esteemed theo-

retical shoulders of the eminent founders of quantum theory operating in the 1920’s

and 1930’s [249, 250, 411, 540, 695, 696, 1026, 1027, 1158, 1159], a new generation

of theorists began the aspiring task of unifying the fundamental forces of nature.

Pioneers such as Abdus Salam [612, 1141, 1142], t’Hooft [1233, 1234, 1237, 1239],

Feynman [535, 537, 538], Gell-Man [592–594], Weinberg [607, 608, 1332, 1333], Higgs

[703–705], Glashow [416, 606], Yukawa [1383], along with many other distinguished
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physicists, over a series of elegant and captivating works, mainly confined to the

1960’s and 1970’s, established and defined the Standard Model of particle physics

as a fully renormalisable quantum field theory. The model possesses a gauge sym-

metry, characterised by a non-abelian symmetry group, representing three of the

fundamental forces of nature, an incredibly promising gauntlet thrown down to the

task of completing the elusive picture of everything. The decades which followed the

formulation of the Standard Model and its representation were proliferated with ex-

perimental discoveries in fundamental physics, furnishing theory and evidence with

a comforting sense of unity and direction [6, 14, 120, 122, 398, 1050, 1098], the

experimental frontiers crescendo recently coming with the discovery of the Higgs

Boson [3, 336].

Although it appeared that both naturalistic beauty and physical order was staring

theorist’s in the face, complete gauge unification and harmony with cosmological

physics and relativity via ultraviolet (UV)-completion proved an enigmatic pursuit.

Of course, much like the parallel field of cosmology, particle physics faced many

issues regarding its paradigmatic structuring and how these linked to previous ex-

perimental endeavours. Absent of any obvious DM candidate, its arbitrary nature

and complicated number of parameters did little to reassure many in the community

that the model was sitting at the level of a beautiful formulation to the effective

level, ultimately representing a largely incomplete framework. How natural this the-

ory is in the context of grand unification motivated extensions to particle physics

models in the form of supersymmetric field theories. These field theories offered a

new formulation of spacetime and the conjectured fundamental fields, one of the

most successful theoretical results coming from the ability to define an attractive re-

lationship between the bosonic and fermionic states of the Standard Model, through

the internal symmetries of microscopic phenomena. These mathematically robust

field theories, alongside the mysterious emerging field of string theory, quickly as-

serted that maybe the picture wasn’t just incomplete, it was actually operating on

an entirely different scale and dimension.
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Returning to cosmology, the CMB anisotropies, or small temperature fluctuations

about the black body peak were first detailed by COBE in Ref. [541] (see Fig. 1.5).

The physics of these temperature fluctuations and density perturbations are now a

very well understood phenomena, representing the origins of the so called golden age

of cosmology, which soon became a fully incorporated feature of Big Bang cosmology,

providing theoretical motivations for the seeds of large scale cosmological structure

and ultimately, life. Cosmic inflation [647, 864] was proposed as a phase of quasi-

exponential spacetime expansion, conjectured to have taken place in the very early

universe to withdraw some of the standard model of cosmologies shortcomings with

the observed anisotropies amongst other poignant issues. The quantum nature of

this period is of great interest to both cosmologies and particle physics today due to

the energy scales involved. Armed with the ability to eliminate competing theories,

Big Bang cosmology slowly morphed into a model accounting for first order obser-

vational fits, known as the concordance model of cosmology or Lambda Cold Dark

Matter (ΛCDM) model. Following the initial results of COBE, the angular power

spectrum for the CMB was precisely mapped, further supporting the magnitude

of the distributions of DM and dark energy (DE) [40, 709]. The first term refer-

enced in this paragon model stemming from observation evidence, is incorporated

from the experimental results of supernovae Ia measurements from the Supernova

Cosmology Project and High-Z Supernova Search Team surveys, affirming that the

comic expansion is accelerating [1051, 1108]. The apparent cosmic expansion now

synonymous with the general reference of a non-zero cosmological constant or DE

component for the Universe, possessing a negative equation of state.

Around the same time that cosmology was forced to fully adopt the unexpected

enigma of accelerated expansion, the Standard Model of particle physics also re-

ceived a very unique consensus placed on one of its constituents [574, 663]. The

discovery of a non-zero mass and conformation [357] of the nature of atmospheric

neutrino oscillation [891, 1068, 1069] for each of the Standard Model neutrinos,

an almost certain sign that extended physics was operating outside the bounds of
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the traditional Gauge group structure which had been adopted over the previous

decades. This discovery would give suggestions on the directions extended models

could take, which is briefly highlighted below. If the previous age was golden, we now

find ourselves in the age of precision, recently captivated by the direct detection of

gravitational waves [9], coming a century after Einstein informed the world of their

theoretical motivations. The recent image of the supermassive BH M87* [48–53]

(see Fig. 6.1) in the supergiant elliptical galaxy, Messier 87, a wondrous achieve-

ment demonstrating the first visual conformation of the singular and mysterious

nature of spacetime. The emerging region of the observational spectrum which will

support these future endeavours is the field of gravitational wave astronomy. Much

like its historical predecessors it aims to bring clarity to the most extreme solu-

tions of Einstein’s field equations, opening up new observational windows for key

processes such as cosmic inflation and astrophysical object merges/dynamics.

By the turn of the 21st century, cosmology and particle physics ultimately found

themselves united and intertwined in a confounding ambiguity, the theoretical cracks

formed from the 20th centuries observational endeavours in exploring our physical

universe, defining the problematic paradigms of fundamental physics which drive

many theoretical physicists today. Drawing together what appeared to be signifi-

cant, but fractured pieces of the overall puzzle from the numerous works highlighted

above, has now lead to a huge investment in extending these well defined solutions

to incorporate elements from a more fundamental domain. Kindred in spirit to how

Einstein changed everything with our understanding of space and time, along with

the force of gravity, is the modern task of quantising this aforementioned fundamen-

tal force within a framework of elementary particle physics. Superstring theories are

the leading theories which aim to replicate these ambitious goals through considera-

tions of the spacetime of a fundamental string, whilst accounting for the supersym-

metric and gauge symmetries it is required to exhibit. The dynamics of classical

string theory initially showed that these one-dimensional objects could reproduce

a conformally invariant two-dimensional quantum field theory that is consistently
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renormalisable. Building on this excitement, superstring theories went through two

primary revolutions, each of which distinctly morphing its plausibility as a funda-

mental theory to reconcile the quantum nature of all the fundamental forces. The

hidden six/seven extra dimensions these theories tax us with generally live on some

compact manifold with a size of the order the Planck length,

lPl =

√
~GN

c3
≈ 1.617× 10−35 m , (4)

a seemingly discouraging roadblock in the general scientific practise of preaching

theory and practising proof. Operating a general direct probe at these scales is

currently far beyond the realms of mans greatest achievements to date. This does

not however, limit the scope of both our potential understanding of this space, nor

the ability to look for signals representing a smoking gun of distinct features these

models must incorporate, to an impossible task. It is the echos from the primordial

chaos manifest as phenomenological ripples in our four-dimensional spacetime which

may prove vital in the meantime when building our understanding of physics on the

smallest scales.

Symmetry has long been the mathematical chisel to physical ignorance when defin-

ing models representing elements or features of the natural world. The utilisation

of Lie algebras, which have provided so much historical success in the fundamen-

tal ground work of field theories, continue to offer a wealth of catalytic theoretical

sparks through the utilisation of more extensive groups. In particular two of the

exceptional algebras, G2 and E8, may offer the key to unlocking the mysterious na-

ture of spacetime [1086, 1376]. This exceptional Lie group is formally characterised

as the automorphism group of the octonions as a normed algebra. It has rank 2

with dimension 14 and two fundamental representations (dimension 7 and 14). The

smallest of the exceptional algebras is fundamental in M-theory model constructions,

as highlighted in both Section 3.3.5 and Section 5.3.
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Figure 3: Symmetric orthographic projection in the Coxeter plane of the E8 Cox-

eter group of the Gosset 421 polytope, represented as a two-dimensional skew or-

thogonal projection inside a Petrie polygon. This particular projection in two-

dimensions consists of 6720 edges with an eight-dimensional length
√

2 along with

240 vertices. The Lie group E8 has dimension 248 and its rank, eight, is the

dimension of its maximal torus. Image credit: Author: Jgmoxness, taken from

https://commons.wikimedia.org/wiki/File:E8Petrie.svg.

The exceptional group E8 also presents a tantalising offering, both4 on the grounds

of consistent superstring theory models and the ability to neatly embed the charges

of both the quarks and leptons, encompassed in the representation of the Stan-

dard Model gauge group, as shown in Fig. 4, originating from a more fundamental

standpoint. The story loosely follows [1086] (which we quote here only for context)

from the ability to initially embed the Standard Model representation neatly into

an SU(5) representation [597] i.e. SU(5) ⊃ SU(3)⊗ SU(2)⊗ U(1). The previously

mentioned discovery of neutrino masses suggest the existence of a suitable Dirac

4There are other fascinating unified field theories incorporating E8 such as An Exceptionally
Simple Theory of Everything [869] used to describe all known fundamental interactions.

https://commons.wikimedia.org/wiki/File:E8Petrie.svg
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partner. The SU(5) group would now naturally fit in the fundamental spinor repre-

sentation of SO(10) [568], i.e. SO(10) ⊃ SU(5)⊗U(1). Extending this by a singular

rank, we encounter the complex representation of the exceptional Lie group E6. This

is understood as, E6 ⊃ SO(10)⊗U(1) [646]. The final stage of this symmetry hier-

archy concerns the fundamental complex representations with no anomalies [1086],

resulting in the set structure, E8 ⊃ E7 ⊗ SU(2) ⊃ E6 ⊗ U(1). In the case of string

theory briefly covered in Section 3.1.1, the specific case of the heterotic string [636]

strongly motivates the appearance of the E8 group, naturally realised through the

form of a ten-dimensional spacetime. Of course the previous point on embedding the

Standard Model along with the neat properties of preserving supersymmetry when

compactifiying the extra six-dimensional manifold, make this solution particularly

appealing.

In Fig. 3 we show a symmetric orthographic projection in a Coxeter plane of the

E8 coxeter group. Although this representation is a beautiful snapshot of the com-

plexity features of superstring theories could be required to tackle, we can draw a

symbolic comparison with both Fig. 1 and Fig. 2. The history of our endeavours

have always been motivated by the ability to identify the most eloquent and simplest

approaches. Indeed although Fig. 1, Fig. 2 and Fig. 3 share an endearing pictorial

resemblance, their historical significance is more profound. Contrasting our initial

fascination with the symmetries of objects believed to be a conception mirrored in

the structures of nature, to the mathematical rigour and beauty in defining results

in hugely complex frameworks, each figure represents the trajectory in the evolution

of our understanding, moving from the largest to the smallest scales. The constant

evolution of modelling, which has radically changed through our successive success-

ful ability to probe scales ranging in many orders of magnitude, now puts us in a

landscape which, although potentially simplified through symmetrical formalities,

is ultimately far more complex than anything humanity has encountered before, in

the context of some consistent model for the dynamics of the fundamental domain.

We must now seek to understand if the mathematical symmetries, such as those
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Figure 4: Dynkin diagrams for both the exceptional Lie group E8 and the Standard

Model. The mathematical process of reducing one to the other, represented by the

arrow, could hold the key to understanding how our observed spectrum of particles

fit in a consistent model of quantum gravity. The byproducts of such a process

through compactification of some extra-dimensional spacetime manifold could also

provide solutions to some of the largest paradigmatic issues in the Standard Model

of Cosmology. Reproduced from figures found in Section 3 of Ref. [1086].

represented in Fig. 3, offer a physical manifestation or maybe need a significant re-

finement, such as our intuitive but ultimately naive theoretical footings represented

in Fig. 2.

The scope and potential pay off of this landscape has catapulted it to the forefront

of particle, cosmological and phenomenological research today. In particular, a

focus often placed on the possible benefits found in the extra-dimensional sector

operating on the smallest scales related to the mentioned symmetry constructions.

Theorists currently often rely on the ability to draw up models based on conjectured

principles in this landscape, such as the existence of an extended sector of scalar

fields. One of these and the elementary focus of this thesis comes from the ever-

present nature of moduli, or more specially the fundamental prediction of ultralight

scalar degrees of freedom which have both Standard Model motivations as solutions

to issues regarding the vacuum structure of quantum chromodynamics (QCD) and

as intrinsic signatures of extra-dimensional physics, known collectively as the field

of axion physics.
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Outline of the Thesis

The role and importance of ultralight scalar particles which are continually present

in models approaching the task of grand unification cannot be understated in terms

of both their prospective phenomenological flexibility and ability to infer theoretical

model validity through observational evidence. This is often realised via their abil-

ity to potentially constrain significant and tricky to probe sectors of cosmological

physics. The structural organisation of this thesis is as follows. In Chapter 1 we

introduce the standard model of cosmology and the concepts of isotropy and homo-

geneity, which can be used to model the evolution of scalar field components in a

simplistic manner, evolving as background densities on a geometrically flat, expand-

ing spacetime, due to numerous seminal works over the 20th century. We will also

comment on several of the large scale issues facing our understanding of cosmologi-

cal physics, in particular the dark sector of cosmology and the potential challenges

facing models in this sector. Following the discussions of large scale dynamics, Chap-

ter 2 introduces and details elements of the Standard Model of particle physics, in

particular its constituents and current theoretical limitations. We shall also high-

light some of the pervasive issues facing its historical formulation and the possible

required extensions present in the literature, which seek to best realise a consistent

framework capable of matching various key observational and experimental results.

In particular a focus is placed on that of the strong CP problem of the Standard

Model, concerning CP invariance and the topological complexities of the QCD vac-

uum. This concern, motivates the introduction of a theoretically uncomfortable, θ

parameter into the effective field theory. A possible and very well motivated solution

of this issue defines the theoretical foundations and historical emergence of the axion

field, its inception quickly becoming the dominant mechanism to dynamically evolve

the troublesome topological term in the Standard Model Lagrangian, stemming from

the QCD vacuum. It is likely the QCD axion is ultralight, possessing a distinct cos-

mological significance which may address several of the uncertain paradigms of dark
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sector physics. In the final chapter of Part I we selectively comment on elements of

superstring theory compactification models which often lead to the appearance of

ultralight degrees of freedom with properties analogous to the physics of the QCD

axion, stemming from high-dimensional gauge symmetries. The results stated in

this chapter are done so without derivation, provided only to give context to the

nature and complexity of axion fields in extended models of fundamental physics.

These axion-like fields have a distinct independence in their fundamental defining

parameters, realised as intrinsic scalar degrees of freedom associated to higher di-

mensional forms, and therefore have a large degree of cosmological flexibility. They

generally act as a generic, ubiquitous prediction in all low energy four-dimensional

sectors of supergravity theories. This string conjecture scenario is often referred to

as the string axiverse. We will introduce the basic properties of the string axiverse

and highlight features of explicit models in both Type IIB superstring theory and

M-theory. The features of these models of the string axiverse heavily rely on our

understanding of moduli stabilisation techniques and the geometry of the extra-

dimensional spacetime, which define the features and scales of the axion fields in the

low energy limit of the effective theory.

Subsequently in Part II we begin in Chapter 4 by highlighting the statistical methods

we use to alleviate the complexities in this landscape from the high-dimensionality

of the problem. These are concerned with canonical random matrix theory, used to

model high-dimensional statistical data. These methods can be used to draw possi-

ble inferences from a vastly complex space in the large N limit of large random data

matrices. We first introduce the general topic and basic theory surrounding random

matrices, a focus placed on the key seminal formulation of the invariant Gaussian

and Wishart-Laguerre ensembles. Next considering a focus on the Wishart-Laguerre

ensemble, we explore the principles of universality via the convergence of spectral

measures which provide limiting distributions for a large number of classes of high-

dimensional random matrices, in particular sample covariance matrices often used to

model measure spaces on the real positive definite domain. We focus on the nature of
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maximally random ensembles and the position of minimal information in our effec-

tive equations, which can be perturbed by both full rank and finite rank operations.

Using features of free probability theory we cover selected powerful results associated

to free random variables and the analysis of models of perturbed high-dimensional

matrices, formed in principle from invariant ensembles. We show how general con-

volution operations are used to ensure probability measure functions can be traced

and assigned in each basis of the multi-field effective description, guaranteeing reg-

ularity with a positive definite spectrum for the physical model parameters. All of

the theoretical concepts covered in this chapter are highlighted to demonstrate the

ability and motivations behind assigning a set of simplistic statistical priors on the

axion parameter space. In Chapter 5 we follow up the theoretical concepts covered

in the previous chapter, in order to present selected models in the random matrix

axiverse, where we show how the principle results of the theory of random sample

covariance matrices can be applied in the context of effective field theories for the

case of many axion fields. We first introduce the standard multi-scalar effective field

theory equations for the multi-axion framework where we work in the simplified ba-

sis in which the multi-field potential is well aligned to allow for a trivial expansion

about the minimum. This fixes the effective equations to be concerned with two

statistical matrix arguments to leading order, which are susceptible to the meth-

ods covered in the previous chapter. We introduce both our models of the random

matrix axiverse and their limiting measure decompositions, along with a special

random matrix model of the G2 compactified M-theory axiverse, making use of the

model parameters as a series of stochastic variables, each with some assigned prior

representing theoretical uncertainty in the model. We conclude with discussions

on how these models can be considered using simplified priors from the universal

nature of the spectra on logarithmic scales, in order to capture a significant portion

of model behaviour in a statistically simplistic manner.

The final part (Part III) of this thesis is dedicated to the phenomenological results

published in Refs. [1219, 1221], making use of the random matrix models covered
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in Part II, a specific focused is placed on the topics of BH superradiance and the

dark sector of axion physics. In Chapter 6 we explore how it is possible to constrain

the number of axion-like particles, with parameters determined by simple statistical

priors, fixed at scales susceptible to the Penrose process, via the use of spin mea-

surements for astrophysical BHs. Using these astrophysical observations of rapidly

spinning BHs, which span the approximate range, 5M� . MBH . 108M�, it is

possible to exclude the existence of certain massive bosons. In this work, based on

Ref. [1219] we explore how these measurements can be used to constrain properties

of the discussed statistical distributions for the masses of multiple bosonic fields. We

place upper and lower bounds on the fields masses in the weakly interacting limit for

multiple fields before discussing constraints on Nax for certain scenarios of interest.

These are realised approximately as mass distributions in GUT models such as M-

theory or models for DM, including particular phenomenological fields. In the final

chapter of this thesis, based on the work covered in Ref. [1221], we present further

results, this time concerned with dark sector cosmology. By sampling the axion

fields in the introduced effective models, we investigate a population of axion fields

with masses, ma, and (effective) decay constants, fa, which lie in specific ranges

relevant for contributions to the cosmological DM and DE densities. We compute

the background cosmological (quasi-)observables for models with a large number of

axion fields, Nax ∼ (10−100), using a number of distributions, both those motivated

purely by statistical considerations and when the structure is specified according to

a class of M-theory models. Using Bayesian methods, specifically a Bayesian hi-

erarchical network analysis, we are able to constrain the hyperparameters of the

distributions. We then conclude the thesis with a discussion regarding all the topics

covered in each of the chapters, along with thoughts regarding possible future direc-

tions. Under the principles of concordance cosmology it is clear our picture of the

Universe requires a significant extended sector of physics in order to unravel some

of the biggest mysteries facing the unification of the smallest and largest physical

scales. Where exactly this sector is defined is still a huge enigma, requiring a very
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detailed analysis of previous results to unravel where this mysterious physics could

be located.

“Something deeply hidden had to be behind things.”

Albert Einstein

Autobiographical Notes
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Chapter 1

The Standard Model of

Concordance Cosmology

“Philosophy is written in that great book which ever is before our eyes –

I mean the universe – but we cannot understand it if we do not first

learn the language and grasp the symbols in which it is written. The

book is written in mathematical language, and the symbols are

triangles, circles and other geometrical figures, without whose help it is

impossible to comprehend a single word of it; without which one

wanders in vain through a dark labyrinth.”

Il Saggiatore

Galileo Galilei, (October 1623)

1.1 From Cosmogony to Cosmology

1.1.1 The Standard Cosmological Principle

Cosmology in its essence holds a rich philosophical history, both grandiose in its am-

bitions and meticulous in its stubborn efforts to unify prodigious experimental data

with the elegant, beautifully simplistic rigorous mathematical formulation. It can

21
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not however, despite its successes, escape the reality (at least up to certain energy

scales) that it contains an erroneous sector, theoretically and fundamentally discon-

nected in several key areas from the vibrant and luminous spectrum of the Standard

Model of particle physics defining a vital, but currently detached, component of the

elusive theory of everything. It is this mandate in the theoretical and experimen-

tal communities that forces the search for intrinsic theories at the smallest scales

outside of the known and well defined forces of nature in order to give reason and

momentum to problems on the grandest proportions, before we can declare some

sense of command over the tentative philosophical origins of what cosmology truly

tries to divulge. At the core of cosmological theory lies the so called Cosmologi-

cal Principle, the assumption that the universe is both homogenous and isotropic

when viewed on sufficiently large scales. This notion can be viewed in Fig. 1.5,

displaying the temperature map of the CMB [447, 1048], as measured by the Planck

space observatory, representing the largest observable scales currently probed by

humanity. The temperature anisotropies in this map are of some of the earliest

electromagnetic radiation present in our observable universe, showing temperature

fluctuations of density deviations at the level of ∼ 10−5 [414]. This picture repre-

sents the pioneering conformation that matter and light both originally behaved as

a radiation like fluid, in a thermal equilibrium best described by Planckian black-

body. This universal understanding cemented the idea that the Universe started in

a hot, dense initial state and subsequently expanded whilst cooling, the so called

big bang model of cosmology. The modern and standardised fully adopted model for

mapping our cosmological evolution is the ΛCDM model or the model of concor-

dance cosmology. The model incorporates Einstein’s theory of General Relativity

partnered with a minimum parameterisation of the two unknown but well measured

energy quantities in the cosmological dark sector. The term concordance is a refer-

ence to practical disregard of the true nature of the theoretically unknown, used to

define a baseline for analysis of the expected evolution of measured properties and

components. These consist of the existence of the CMB and large scale structure.
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The abundance of light nuclei such as hydrogen, deuterium, helium, and lithium

(H, D, 3He, 4He, 7Li) and the seemingly accelerating state the universe finds itself

in. The theoretical pillars of the model consist of general relativity, representing a

valid description of gravity, the nature that a majority of the matter content of the

universe consists of an additional non-relativistic component to the observed bary-

onic matter, these possible cold particles can be approximated as only interacting

through gravity. The final component, the unwanted gift of Einstein, a cosmological

constant term. This simple but devilish mystery to his vacuum solutions represents

the more prevalent form of energy we observe today. It is expected then that to

a minimal level any extended physics should reproduce the results of ΛCDM to a

satisfactory agreement.

1.1.2 Epochal Evolution

The thermal evolution of the Standard Model of Cosmology can be briefly reca-

pitulated using a series of epochal states of evolution. The initial stages of the

Universe currently present a range of conflicting theories surrounding the undertak-

ing of grand unification, with a few pillars of conjecture to normalise discussions.

It is generally expected gravity became a classical theory with fixed dimensions in

space and time shortly after the Planck time, t ∼ 10−35 s and ρ ∼ (1017GeV)
4
. Be-

fore this, quantum corrections to general relativity are expected to render the theory

invalid. Shortly after it was believed that there was a a phase of cosmic inflation

(see Section 1.6) related to models of grand unification and symmetry breaking of

high dimensional gauge theories at around t ∼ 10−32 s or ρ ∼ (1016GeV)
4

[987]. The

final stage of cosmic ambiguity is the epoch of reheating [812, 813], where the hy-

pothetical oscillating inflaton field decays into the thermal bath of Standard Model

matter fields, transitioning into the hot Universe. The primordial plasma at this

point contains all the Standard Model particles such as quarks, leptons and the

Higgs boson. A little better understood are the phases of symmetry breaking which
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Figure 1.1: The Hubble Ultra Deep Field (HUDF), representing an image of

some of the oldest visible light seen by mankind. This particular image was taken

over eight hundred exposures with the NASA/ESA Hubble Space Telescope, per-

forming four hundred Hubble orbits of Earth in order to finalise the data for

this image. The total exposure time was 11.3 days, capturing approximately ten

thousand galaxies spanning billions of light years. Image credit: NASA, ESA,

S. Beckwith (STScI) and the HUDF Team, https://hubblesite.org/contents/

news-releases/2004/news-2004-07.html.

generate the states of matter we observe today, at the current temperature of the

Universe. Electroweak symmetry breaking occurs at t ∼ 10−6 s or ρ ∼ (100GeV)4,

where the Higgs mechanism generates masses for the vector gauge bosons and breaks

the full symmetry to a lower gauge group structure. Next chiral symmetry breaking,

colour confinement and the defining of the QCD vacuum occurs at approximately

t ∼ 10−4 s or ρ ∼ (100MeV)4, confining the quarks into the hadronic states of mat-

ter as either color-singlet-quark-triplet or color-singlet-quark-antiquark states. At

this point the true power of the Standard Model kicks in with a series of thermo-

dynamical transitions to non-equilibrium dynamics, constituting the observational

https://hubblesite.org/contents/news-releases/2004/news-2004-07.html
https://hubblesite.org/contents/news-releases/2004/news-2004-07.html
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pillars of the standard cosmology. Firstly big bang nucleosynthesis (BBN) [61, 585]

occurs, generating the light nuclei elements such as hydrogen, helium and lithium

via the process of incorporating neutrons inside the relevant nuclei. This period is

traditionally parameterised by the photon-Baryon ration, ηB. This occurs approxi-

mately at t = O(1−100) s, T = (109 − 1010) K, or ρ ∼ ((0.1− 1) MeV)4. At around

t = O(104) yrs, T = (O104) K, or ρ ∼ (O(1) eV)4, matter radiation occurs, where

the dominant fluid component switches. Finally at t = O(105) yrs, T = 2500 K,

or ρ ∼ (O(1) eV)4 the recombination of atoms leaves the photons decoupled, where

they are free to propagate and free-stream along geodesics. Observing the CMB

today indicates the nature of how the Universe must have evolved. Finally the

tiny anisotropies as initially detailed by The Cosmic Background Explorer (COBE)

[1202] which are imprinted in the matter distribution, are greatly amplified, acting

as the sources responsible for the formation of stars, galaxies, clusters, and all large

scale structures we observe today in our Universe.

The persistent endeavour to understand these stages of universal transformation lead

us to question what is the nature of space and time and what model takes the sim-

plest form, which allows us to describe the four-dimensional geometrical landscape

which humanity calls its home. It turns out there is a topological simplicity to the

Universe we ceaselessly look out into, a humbling fraction of which is displayed in

Fig. 1.1. Enlightenment can be found in both the past and present nature of the uni-

verse due to a series of extensive pioneering theories and demonstrations of erudition

over the 20th century. A suitable starting point to understand the various properties

of the cosmos and its inhabitant quanta are the assumptions of homogeneity and

isotropy of spacetime itself.
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1.2 The Friedman-Lemâıtre-Robertson-Walker

Metric

The most general standard background we can consider conforming to the cosmo-

logical principle for an expanding, homogeneous and isotropic universe are described

by the functions of the Friedman-Lemâıtre Robertson-Walker (FLRW) metric. The

features of the cosmological principle are suitably encoded in the form of a coordi-

nate system which in cartesian coordinates does not depend on its position. The

general spacetime coordinates are expressed in the standard vectorial form,

xµ = (x0, xi) . (1.1)

The zeroth index represents the temporal component, x0 = t and the remaining

three indices, xi; i = 1, 2, 3 run over the three spatial components. The simplest

parameterisation of a general coordinate reference frame for the invariant distance

between two points is,

ds2 ≡ gµνdx
µdxν , (1.2)

invoking the usual summation notation over any repeated indices with a spacetime

metric denoted, gµν . In any geometrical coordinate system, the value of ds2 repre-

sents the squared invariant distance, where the properties of the spacetime are then

understood via the representational form of the spacetime metric, gµν . In order to

describe our observed four-dimensional universe, gµν in Eq. 1.2 must be a 4 × 4

tensor, possessing the features of the standard cosmological principle. Specifically

the FLRW metric must possess vanishing off-diagonal terms, µ 6= ν, to account for

invariance over our choice of direction and the conjecture of isotopy. Homogeneity

then enforces the metric must have independence over the spatial components. The
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flat or Euclidean spacetime FLRW metric can be expressed as,

gµν =




−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)




, (1.3)

where a(t) represents the cosmic scale factor and can be neatly written in the form

of the compact invariant line element,

ds2 = −dt2 + a2(t)δijdx
idxj , (1.4)

where δij represents the Euclidean-space Kronecker delta operator. Locally a space-

time observer is governed by the physics of special relativity, where the spacetime

metric, gµν , is replaced with the local approximation of Minkowski spacetime with a

metric signature, ηµν = diag(−1,+1,+1,+1). Geometrically, we could consider the

case in which the global picture of the Universe may not be perfectly flat, possessing

a curvature factor. It is then convenient to introduce a new parameterisation of the

spacetime distance, of the form,

ds2 = −dt2 + a2(t)dΣ2 . (1.5)

The three-dimensional space interval dΣ2, is a time independent function in uni-

formly curved space, which can be expressed in terms of hyperspherical coordinates,

dΣ2 = dr2 + S2
k(r)dΩ2 , (1.6)
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where dΩ2 = dθ2 + sin2θdφ2, and the Gaussian curvature, k, are defined by the

bounds,

Sk(r) =





|k|− 1/2 sin(|k|1/2r) for k > 0 ,

r for k = 0 ,

|k|− 1/2 sinh(|k|1/2r) for k < 0 .

(1.7)

The spacetime metric is now parameterised in terms of both the cosmic scale factor

and a normalisation with respect to the spatial three-dimensional curvature, for each

of the topologically distinct spacetimes, conforming to elliptical (k > 0), hyperbolic

(k < 0) and Euclidean (k = 0) three-dimensional spaces. The metric gives us a

geometrical blueprint to the nature of both the local and global spacetime of a given

model of the Universe.

1.3 The Einstein Equations

1.3.1 The Field Equations of Matter and Energy

At the turn of the 20th century, the work of leading mathematicians and theoretical

physicists began to unravel the morphology behind our understanding of space and

time. The renowned Einstein field equations formulated in his 1915 seminal paper,

characterise the relationship between local spacetime curvature and the local energy

and momentum distribution, encapsulated in the stress energy or energy-momentum

tensor, Tµν . These two tensors come about by defining the action for both gravity

and the dynamics of the spacetime metric along with the action for matter on

the given spacetime. The first of these is the Einstein-Hilbert action for canonical

matter,

SGrav =
1

2κ

∫
d4xR√−g , (1.8)



The Standard Model of Concordance Cosmology 29

where g = det(gµν) is the metric determinant, R is the Ricci scalar and κ ≡ 8πGN =

8π/m2
Pl = 1/M2

Pl, defined using Newton’s gravitational constant,

GN ' 6.67× 10−11 m3 s−2 Kg−1, (1.9)

and mPl is the Planck mass. The reduced Planck mass, MPl is defined as,

MPl ' 2.4× 1018 GeV . (1.10)

Our global understanding of the content matter-energy for a fixed point in spacetime,

with a spacetime coordinate of the form in Eq. (1.1), comes from the geometrical

properties of the Einstein tensor, Gµν , which is used to define the Einstein field

equations by varying the Einstein-Hilbert action with respect to the metric, gµν ,

Gµν + Λgµν ≡
2κ√−g

∂SGrav

∂gµν
= Rµν −

1

2
Rgµν + Λgµν , (1.11)

where,

Rµν = Rβ
µνβ , (1.12)

is the Ricci curvature tensor defined from the Riemann curvature tensor and Λ, a

cosmological constant. Let us also introduce the standard form of the canonical

action for matter,

Sm =

∫
d4xLm

√−g , (1.13)

with Lm the four dimensional matter Lagrangian. Under variation of the metric,

gµν , we can define the energy-momentum tensor,

Tµν ≡ −
2√−g

∂Sm

∂gµν
= gµνLm − 2

δLm

δgµν
, (1.14)

which reveals the famous Einstein field equations of the form,

Gµν ≡ Rµν −
1

2
Rgµν + Λgµν = 8πGNTµν . (1.15)
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The Ricci curvature tensor encapsulates the magnitude of convergence or divergence

of matter over time, expressed via the various Christoffel symbols, Γµαβ,

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ
β
µα . (1.16)

The Christoffel symbols relate to the partial derivates of the metric at a spacetime

point (i.e. ∂βgαν = ∂gαν/∂xµ), describing the metric connection for a physical model

where,

Γµαβ =
gµν

2
(∂βgαν + ∂αgβν − ∂νgαβ) . (1.17)

Taking the trace of the Ricci tensor with respect to the spacetime metric defined in

Eq. (1.16) gives the Ricci Scalar,

R ≡ Rµ
µ = gµνRµν , (1.18)

which is a scalar measure of the geometrical features of the spacetime manifold, for

a fixed spacetime point and the simplest scalar quantity defined from the curvature

of a general Riemannian manifold. For the general FLRW metric in Eq. (1.5), the

complete non-vanishing set of Christoffel symbols are,

Γ0
11 =

aȧ

1− kr2
, Γ0

22 = aȧr2 , Γ0
33 = aȧr2 sin2 θ , (1.19)

Γ1
11 =

kr

1− kr2
, Γ1

22 = −r
(
1− kr2

)
, Γ1

33 = −r
(
1− kr2

)
sin2 θ ,

(1.20)

Γ1
01 = Γ2

02 = Γ3
03 =

ȧ

a
, Γ2

12 = Γ3
13 =

1

r
, Γ3

23 = cot θ , (1.21)

Γ2
33 = − sin θ cos θ , (1.22)

where each of the indices, {0, 1, 2, 3}, correspond to the set of coordinate parameters

{t, r, θ, φ}. The Ricci tensor contains the following non-zero components along its
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Figure 1.2: Constraints on the curvature of the Universe representing limits for a

non-flat universe as a minimal extension to the standard ΛCDM model of cosmology.

The dashed lines represent 68% and 95% contour bounds from samples taken using

the Planck TT,TE,EE+lowE chains as a function of the total matter and curvature

densities, along with limits on the value of H0. Image credit: Taken from Fig. 29

found in Ref. [40]

diagonal,

R00 = −3
ä

a
, R11 =

aä+ 2ȧ2 + 2k

1− kr2
, (1.23)

R22 = r2
(
aä+ 2ȧ2 + 2k

)
, R33 = r2

(
aä+ 2ȧ2 + 2k

)
sin2 θ . (1.24)

Under a contraction of the FLRW spacetime metric with the Ricci tensor we can

define the following form for the Ricci scalar,

R = 6

[(
ȧ

a

)2

+

(
ä

a

)
+

(
k

a2

)]
. (1.25)
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Figure 1.3: Original radial velocity-distance relationship plot for extra-galactic

nebulae in a single cluster representing the distinguished work of Edwin Hubble.

The original analysis detailed forty six galaxies, which showed the apparent nature

of an expanding universe which came to be described by the Hubble-Lemâıtre Law

(Eq. (3)). The slope of best fit represents the Hubble Parameter determined by

the Doppler shift of the observed spectra. Image credit: Edwin Hubble, taken from

Fig. 1 of Ref. [725].

Excluding the addition of the cosmological constant in Eq. (1.15), the remaining

non-vanishing components of the Einstein tensor are,

G00 = 3

[(
ȧ

a

)2

+

(
k

a2

)]
, (1.26)

G11 = −
[(

ȧ

a

)2

+ 2

(
ä

a

)
+

(
k

a2

)]
a2

1− kr2
, (1.27)

G22 = −
[(

ȧ

a

)2

+ 2

(
ä

a

)
+

(
k

a2

)]
a2r2 , (1.28)

G33 = −
[(

ȧ

a

)2

+ 2

(
ä

a

)
+

(
k

a2

)]
a2r2 sin2 θ . (1.29)

1.3.2 The Serendipity of Spacetime

The global geometrical structure of the Universe actually proposes a double edged

sword of sorts in regards to a theoretical treatment of the concordance model of
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cosmology. The ability to treat the Universe as effectively flat (k ' 0), is the first

key point in terms of understanding the principle conjecture required to simplify

how we model the evolution and features of matter and energy density components

defining the Universe today. This issue is a cosmological fine tuning problem, which

goes under the name of the cosmological flatness problem. Specifically this issue

relates to the nature of the initial conditions required in order to realise the present

day observational data, suggesting the value of k is only a very minor deviation from

unity which indicates our universe is spatially flat to the best part in 10−2 [40]. The

standard approach in order to realise an attractor solution which predicts a more

natural realisation of a flat universe is the introduction of a period of spacetime

expansion known as cosmic inflation. Figure 1.2 shows the current constraints from

Planck data for the exclusion bounds at 68% and 95% confidence intervals (CIs) tak-

ing into account TT, TE, EE+lowE, lensing and baryon acoustic oscillation (BAO)

data. The full joint constraints combine to provide a picture very consistent with a

flat universe today. We have very strong observational evidence to believe that we

can take the value of k to be zero at the effective level of our cosmological theory.

Assuming then that our Universe is topologically flat with a spacetime metric de-

scribed by a FLRW Universe, using the metric of the form in Eq. 1.3, and inserting

k = 0 into Eq. (1.19), Eq. (1.20), Eq. (1.21) and Eq. (1.22), the Christoffel symbols

can be further factorised using the symmetries of a geometrically flat Universe,

Γ0
0µ = Γ0

µ0 = 0 , Γ0
0µ = δij ȧa , (1.30)

Γi0j = Γij0 = δij
ȧ

a
, Γiαβ = 0 , (1.31)

which leads to the definition of the following components of the Ricci tensor,

R00 = −3
ȧ

a
, (1.32)

Rij = δij
(
2ȧ2 + aä

)
. (1.33)
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Finally we can define the simplified Ricci scalar as,

R = 6

(
ä

a
+
ȧ2

a2

)
. (1.34)

Let us return now to the issue of matter in the Universe. For each species of

test particle described by a perfect isotropic fluid, its evolution is governed by our

understanding of its motion over a straight line in the context of a non-trivial metric.

This standardised trajectory is known as geodesic motion, which is formulated via

the geodesic equation,

d2xµ

dλ2
= −Γµαβ

dxα

dλ

dxβ

dλ
, (1.35)

for a given scalar monotonically increasing variable λ, which describes the geodesic

position. The final terms in Eq. (1.35) correspond to the four-velocity with respect to

this variable, along the particles path. In the limit of a non-relativistic test particle,

with a significantly weak gravitational potential, the geodesic equation recovers the

principles of Newtonian mechanics,

d2~x

dt2
= −~∇φ , (1.36)

where ~∇ is the gradient operator. The stress-energy tensor in Eq. (1.15) for a

perfect isotropic fluid in thermal equilibrium with energy density, ρ and pressure, P

is formulated as,

T µν = (ρ+ P )UµUν + Pgµν , (1.37)

with is conserved in an expanding universe. The Bianchi identities enforce the

covariant derivative must vanish,

DµT
µ
ν ≡ ∂µT

µ
ν + ΓµαµT

αν − ΓαµνT
µ
α = 0 . (1.38)

In an inertial frame, i.e. Uµ = dxµ/dt = (1,~0), comoving with the perfect fluid in

homogenous and isotropic space, the stress-energy tensor has the reduced form of a
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diagonal matrix,

T µν =




ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P




, (1.39)

which encodes the requirements of the cosmological principle for the constituent

matter components of the Universe. A rather interesting feature of the stress-energy

tensor in this form is the emergence of a vacuum energy component, ensuring the

presence of a cosmological constant. Locally the vacuum energy should be Lorentz

invariant, which when subsequently generalised to general coordinates yields,

T vac
µν = −ρvacgµν . (1.40)

When this is expressed in terms of the Einstein field equations we find,

Λ = 8πGNρvac = −Pvac . (1.41)

The cosmological constant can now be understood in terms of a DE fluid, which

we will address later in more detail in Section 1.7.3. Decomposing into temporal

and spatial components yields expressions for the energy density and the pressure of

matter respectively. The temporal component of the conservation relation, ∇µT
µν =

0, defines the continuity equation,

ρ̇tot + 3
ȧ

a
(ρtot + ptot) = 0 . (1.42)

The continuity equation stems from the principles of thermodynamics where, dU =

−pdV with U = ρV and V = a3, ensures we have an adiabatic expansion of the Uni-

verse. The main components of the Universe consist of a dust like non-relativistic

matter fluid (ρm and pm), a radiation energy component (ρp and pr) and an effective

cosmological constant fluid or vacuum energy component (ρΛ = Λ/8πGN). A common
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dimensionless parameterisation of the diagonal components of the stress-energy ten-

sor for a perfect fluid is given by the standard equation of state, governing the

relationship between the density and pressure,

ωi =
pi
ρi
, (1.43)

where the index i runs over each cosmological fluid. The equation of state for

pressureless dust, relativistic species and vacuum energy with negative pressure are

respectively,

ωm ' 0 , (1.44)

ωr =
1

3
, (1.45)

ωΛ = −1 . (1.46)

The equation of state defines the following form of the continuity equation,

ρ̇+ 3
ȧ

a
(1 + ω) ρ = 0 . (1.47)

It is now possible to understand the evolutionary nature of each constituent fluid

density by defining their phases of epochal evolution using time-dependent solutions

to the defined Einstein equations.

1.4 The Friedmann Equations

1.4.1 The Expanding Universe

The metric tensor we have introduced, gµν , is a measure of the geometric and causal

structure of spacetime. We must now take into account that we will consider the

case of an expanding universe and so must understand the nature of the cosmic

scale factor, a(t), i.e. the time dependent nature of the solutions for the the spatial
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Figure 1.4: The effective relativistic degrees of freedom for both the energy and

entropy densities, g∗,r and g∗,s, as a function of temperature beginning at, T =

O(103) GeV, evolving assuming the standard evolution of the Standard Model gauge

group. The functions separate approximately after e± annihilation, when Tν 6= Tγ.

The fits are made following the procedure of Ref. [1329] used to approximate the

functions given in Eq. (1.73) and Eq. (1.74). The dotted lines (light blue (entropy),

dark blue (energy)) represent the approximate fitted values of g∗,r and g∗,s at the

present time.

curvature and the homogeneous energy density present in the Universe. To do

this we turn back to the non-zero components (µ = ν = 0) of the Einstein field

equations in Eq. (1.15). The first of these is given by the temporal (G00) component

of Eq. (1.30),

G00 ≡ 3

[(
ȧ

a

)2

+

(
k

a2

)]
= 8πGN (ρ+ ρΛ) , (1.48)

which is rearranged to define the first of the Friedmann equations,

ȧ2(t)

a2(t)
=

8πGN

3
ρ− k

a2
− Λ

3
. (1.49)

We have at this stage reintroduced a dependance on the spatial curvature, whilst

also formally defining the Hubble parameter,

H(t) ≡
˙a(t)

a(t)
, (1.50)
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a measure of the history of the cosmic expansion. In a similar fashion the remain-

ing diagonal components of the Einstein field equations reveal further information

regarding the evolution of the cosmic expansion,

Gii ≡
[

2

(
ä

a

)
+

(
ȧ

a

)2

+

(
k

a2

)]
= 8πGN (ρ+ P ) , (1.51)

which after rearrangement give the acceleration or Raychaudhuri equation,

ä(t)

a(t)
= −4πGN

3
(ρ+ 3p) +

Λ

3
. (1.52)

The cosmic deceleration parameter is defined as,

q = − ä
a

1

H2
0

, (1.53)

which can also be expressed as,

q =
Ωtot

2
(1 + 3ωtot) , (1.54)

where Ωtot is the total dimensionless density as defined in Eq. (1.64). If the cos-

mological constant, Λ, or some cosmic fluid with an equation of state matching its

behaviour i.e. ω < 1/3, the deceleration parameter becomes negative, representing

the presence of an accelerating expansion of the Universe. The total equation of

state is simply the following linear summation,

ωtot ≡
∑

i Pi∑
i ρi

. (1.55)

This summation over the values of ρi and Pi represents the total energy density and

total pressure of the fluid system components comprising the Universe. The nature

of Eq. (1.52) tells us that the expansion is both adiabatic whilst ensuring that the

total entropy is conserved. Using Eq. (1.49) and Eq. (1.52) the Bianchi identities

return us to the stage where we can derive the continuity equation, for a system
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Figure 1.5: Anisotropies of the cosmic microwave background emitted approx-

imately 380,000 years after the Big Bang, as observed by the Planck satellite, a

strong indication of the nature of Big Bang cosmology. The Red regions repre-

sent densities hotter than the average temperature, the blue regions are cooler,

reflecting the apparent density variations present at recombination. The observa-

tional aspects of this map represent a vital probe to possible extensions to cosmo-

logical physics models. Image credit: ESA and the Planck Collaboration, http:

//sci.esa.int/science-e-media/img/61/Planck_CMB_Mollweide_4k.jpg.

containing the complete spectrum of fluid components in the Universe, as defined

in Eq. (1.42). It is also possible to define the evolutional properties of the cosmic

scale factor and fluid densities via the equation of state (Eq. (1.43)), continuity

equation (Eq. (1.42)) and Friedmann equation (Eq. (1.49)). This understanding of

the evolution takes the form,

ρi,t = ρi,0

(
a

a0

)−3(1+ωi)

, (1.56)

where the zero subscript defines the value at the present time and the subscript,

i, runs over each energy density component. Correspondingly for the cosmic scale

factor we have,

a(t) = a0

(
t

t0

) 2
3(1+ω)

. (1.57)

with an initial time, t0 and time, t. By replacing the values defined in Eq. (1.44),

Eq. (1.45) and Eq. (1.46) into Eq. (1.56), we retrieve the standard scale dependance

http://sci.esa.int/science-e-media/img/61/Planck_CMB_Mollweide_4k.jpg
http://sci.esa.int/science-e-media/img/61/Planck_CMB_Mollweide_4k.jpg
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for the cosmic densities, where for dust like components we have, ρm ∝ a(t)−3 and

for radiation components, ρr ∝ a(t)−4. Performing the relevant integration gives the

complete set of dominant component evolutions,

α(t) ∝





t
2

3(1+ω) ω 6= −1 ,

eHt ω = −1 .

(1.58)

Defining the epochs of matter and radiation domination where ρtot ≈ ρm and ρtot ≈

ρr, respectively allows us to determine the dynamical time dependance of the cosmic

scale factor for each period,

Radiation domination− a ∝ t
1
2 and H(t) ∝ 1

2t
, (1.59)

Matter domination− a ∝ t
2
3 and H(t) ∝ 2

3t
, (1.60)

where finally for a dark-energy-dominated universe we have,

DE domination− a ∝ e
√

Λ
3
t and H(t) ∝

√
Λ

3
. (1.61)

The exponential dependance in this relationship leaves the spacetime geometry iden-

tical to a de Sitter Universe.

1.4.2 The Standard Energy Constituents

A common nomenclature in cosmological literature is the expression of the cosmo-

logical fluid densities with respect to the critical density parameter. Throughout

this work we will now assume the background evolution is defined on a spatially

flat universe, that is the normalised spatial curvature appearing in Eq, (1.7) is set

to, k = 0. As such it is possible to define the critical energy density using the
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Friedmann equations (Eq. (1.49) and Eq. (1.52)),

ρcrit ≡
3H(t)2

8πGN

, (1.62)

ρcrit,0 ≡
3H0(t)2

8πGN

' 1.88× 10−29h2 g cm−3 . (1.63)

Using ρcrit we can define each of the dimensional cosmic density parameters as,

Ωi =
ρi
ρcrit

, (1.64)

where the index i again runs over each component evolving on the spacetime back-

ground. We can also define the quantities,

ρk ≡ −
3k

8πGNa2
, (1.65)

ρλ ≡
Λ

8πGN

, (1.66)

and,

Ωtot(t) = Σi 6=kΩi = 1− Ωk ≡ 1 , (1.67)

for a spatially flat Universe. The total contributions from radiation today in the

summation are suppressed with respect to dust like components and consists of

contributions from photons and neutrinos, as for standard ΛCDM considerations

we should not traditionally expect to receive any significant contributions from hot

DM. The equilibrium thermodynamics of the relativistic energy densities can be

understood via the quantities,

ργ =
π2

15
T 4
γ , (1.68)

ρν = Neff
7π2

120
T 4
ν , (1.69)

where Neff ' 3.046 [898], represents the effective number of relativistic species and

Tγ and Tν are the photon and neutrino temperatures respectively. These quantities
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define the total radiation energy density in terms of the total relativistic degrees of

freedom,

ρr =
∑

i

ρi = ργ + ρν =
π2

15
T 4
γ

[
1 +

7

8

(
4

11
Neff

)4/3
]
. (1.70)

The total relativistic energy density well after the phase of electron-positron anni-

hilation is expressed as,

ρr = Neff
7

8

(
4

11

)4/3

ργ ≡
π2

30
g∗(T )T 4 ≈ 8.09× 10−34g cm−3 , (1.71)

today, where the value of 7/8 accounts for the variations in Fermi and Bose statistics.

Correspondingly the total system entropy is,

s =
∑

i

si =
2π2

45
g∗,s(T )T 3 . (1.72)

The complete picture of the entropy and radiation density is approximated by count-

ing the relativistic degrees of freedom. When the temperature of the primordial

plasma drops below the mass of a particular field, the particle’s contribution to both

the entropy and radiation density drops out. An accurate expression for the effec-

tive contributions to the total energy density and pressure of all species, expressed

using the photon temperature and g∗, representing the total number of effectively

massless degrees of freedom, i.e. mi � T Ref. [1329] is,

g∗,r(T ) =
∑

i

(
Ti
T

)4
15gi
π4

∫ ∞

0

dx

√
x2 + y2

i

exp
√
x2 + y2

i + (−1)Q
f
i

, (1.73)

g∗,s(T ) =
∑

i

(
Ti
T

)3
45gi
4π4

∫ ∞

0

dx
x2
√
x2 + y2

i

exp
√
x2 + y2

i + (−1)Q
f
i

(
1 +

1

3

x2

x2 + y2
i

)
.

(1.74)

Here Qf = 1 for fermionic degrees of freedom, Qf = 0 for bosonic degrees of freedom,

g∗,r is the effective degrees of freedom for the density and g∗,s represents the effective

degrees of freedom for the entropy. The value of T represents the temperature of the

plasma and Ti the temperature of each species where yi = mi/Ti. The separation of
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these two functions occurs at neutrino decoupling, after e± annihilation at the time

when Tν 6= Tγ. In the standard thermal history g∗,s ' g∗,r, with possible variations

occurring at defining periods such as during the QCD phase transition. In Fig. 1.4

we show fits for the effective degrees of freedom g∗,R and g∗,S, using the functional

fit procedure found in Ref. [1329]. The case of non-relativistic species is somewhat

easier to track. The quantity Ωm represents a summation over the total matter

density in the Universe, comprising of the baryonic, Ωb and DM, ΩDM components

respectively,

Ωm = Ωb + ΩDM . (1.75)

The Friedmann equation can also be re-expressed in terms of the dimensionless

density parameters,

Ωtot(t) = Ωr(t) + Ωm(t) + ΩΛ(t) + Ωk(t) , (1.76)

representing the form of the total summation where we exclude any external degrees

of freedom from physics beyond the standard model. Suitably Eq. (1.49) parame-

terised with respect to the composition of the Universe today is,

H2(t)

H2
0 (t)

= Ωr,0a
−4 + Ωm,0a

−3 + ΩΛ,0 + Ωk,0a
−2 . (1.77)

The final component, Ωk = 1−Ωtot drops out for a spatially flat universe, recovering

Euclidean expressions when Ωk → 0. Observationally the spatial hypersurfaces are

heavily constrained using both Planck lensing and BAO data [40],

Ωk,0 = 0.0007± 0.0019 , (1.78)

which sufficiently breaks the geometric degeneracy so we can safely assume the flat

nature of the Universe. We can then suitably truncate Ωk(t) out of Eq. (1.76) and

Eq. (1.77), fully adopting the issues of the flatness problem. This then defines the
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simplistic density relation,

Ωtot(t) = Ωr(t) + Ωm(t) + ΩΛ(t) = 1 , (1.79)

where the values of the density parameters have been normalised against the critical

density. The current best estimates of these time dependent functions determined

by the Planck collaboration [40], defines the values of the following cosmological

parameters,

Ωb,0h
2 = 0.02242± 0.00014 , (1.80)

ΩDM,0h
2 = 0.11933± 0.00091 , (1.81)

Ωmh
2 = 0.1430± 0.0011 , (1.82)

ΩΛ,0 = 0.6889± 0.0056 , (1.83)

all of which are quoted using the TT,TE,EE+lowE+lensing+BAO 68% CI data.

The radiation density is defined to be,

Ωrh
2 = 4.31× 10−5 , (1.84)

found using the fits for the relativistic degrees of freedom in Eq. (1.71), whilst

assuming the photon temperature today is,

T0 ' 2.75K . (1.85)

The value of the Hubble parameter today is quoted as,

H0 = 100× h Km s−1Mpc−1 = 67.37± 0.54 Km s−1Mpc−1. (1.86)

Each of the values in Eq. (1.80), Eq. (1.81), Eq. (1.82) and Eq. (1.83), represent the

68% CI from the baseline TT, TE, EE+lowE+lensing data. We normalise both Ωtot

and the cosmic scale factor a(t) to unity at t0, which we define as the current time.
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1.5 The Causality and Kinematics of Spacetime

The nature of measuring time and tracking the evolution of distance in the Universe

is understandably no easy task. A fundamental measure assigned to track such a

procedure is the definition of the comoving distance. In order to build a picture

of distances in a homogeneous and isotropic universe we use a redefinition of the

spacetime coordinates, where we focus on the case of radiation emitted at a source

and observed after a finite period of propagation. Due to the expansion of the

universe any incident electromagnetic radiation is redshifted away, where there is

an enhancement to the observed wavelengths (λobs) when compared to the original

value emitted at the source (λemit). This notion defines the cosmological redshift,

z ≡ λobs − λemit

λemit

. (1.87)

The cosmological redshift parameter can be defined as an expression of the ratio of

detected lights wavelength to the emitted wavelength,

1 + z ≡ λobs

λemit

=
δt0
δte

=
a(t0)

a(t)
, (1.88)

where the numerator in the final term is normalised to unity today to give, 1/a(t). It

is possible to redefine the the first of the Friedmann equations using the relationship

for the cosmological redshift into the form,

ȧ2 = H2
0

[∑

i

Ωi(t0)a−(1+3ωi) + (1− Ω(t0))

]
. (1.89)

Performing the relevant integration leads to an estimation of the age of the Universe,

t =
1

H0

∫ ∞

z

dz(1 + z)−2

(ΣiΩi(t0)(1 + z)(1+3ωi) + 1− Ω0)
1/2

. (1.90)
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If we begin at t = 0 representing a point like singularity as our initial conditions,

the age of the universe is approximated to be,

tUniv ≈ 13.796 Gyrs . (1.91)

The causal horizon can be defined as the region of spacetime connected to a point

translated into other region by causal physical processes. The limit of this horizon

can be fixed by the propagation of light where the massless waves travel on geodesics,

ds2 = 0. Using the spherical coordinates and addressing the radial direction defines

the comoving distance,

dt

a(t)
≡ dχ = ± dr√

1− kr2
, (1.92)

where χ(r) is defined as the comoving coordinate and the ± solutions relate to

a propagation towards and away from the observer. These coordinates leads to a

reparameterisation of the FLRW metric, where it can now be conveniently expressed

in the form,

ds2 = −dt2 + a2(t)
{
dχ2 + f 2

k (χ)
(
dθ2 + sin2 θθdφ2

)}
, (1.93)

where the principle of homogeneity always allows us to renormalise our reference

frame to r = 0. The curvature relation of the positional function is defined as,

fk(χ) =





sinχ(r) , k = +1 ,

χ(r) , k = 0 ,

sinhχ(r) k = −1 .

(1.94)

The conformal time is defined as,

τ(a) ≡
∫ t0

temit

=
dt

a(t)
=

∫ a(t0)

a(temit)

da

a2(t)H(a)
=

∫ z(temit)

0

dz

H(z)
, (1.95)
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which represents the maximum distance for the propagation of information in the

comoving distance, defining the disconnection limits of regions of causal connection.

It is common practise to quantify distances in terms of standard candles defined at

some comoving distance coordinate, χ. Initially the luminosity passing through a

spherical shell of radius defined at a distance dL emitting at an intrinsic luminosity,

L, is,

F =
L

4πd2
L(a)

. (1.96)

This flux can be redefined in terms of the comoving coordinate to account for the

expansion of the Universe by accounting for the physical distance relation for the

shell corresponding to the comoving distance,

F =
La2

4πχ2(a)
, (1.97)

which now relates to the luminosity distance,

dL(a) =
χ(a)

a
≡ χ(z)(1 + z) . (1.98)

We can also define the angular distance which relates the intrinsic size of an object

to its angular presence in the sky,

θ ≡ D

dA(a)
, (1.99)

with D the luminosity distance. In the case of a flat universe (k = 0) we recover the

simple relationship between the angular distance and the comoving coordinate,

dA ≡ aχ(a) . (1.100)
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Finally we can express the matter and radiation densities in terms of the cosmological

redshift,

ρm = ρm,0 (1 + z)3 , (1.101)

ρr = ρr,0 (1 + z)4 , (1.102)

the case of equality between the matter and radiation domination epochs defines

the value of redshift equality,

1 + zeq ≡
ρm,0
ρr,0
' 3387 , (1.103)

according to the best fit measures on the cosmological parameters presented in

Eq. (1.82) and Eq. (1.84).

1.6 Beyond the Traditional Paradigms

1.6.1 Problems with Concordance Cosmology

Despite the extremely successful framework above allowing for both an understand-

ing of spatial distance and the temporal evolution of matter, the simple model of a

cosmological constant and a CDM component do not provide the necessary theoret-

ical ground work for homogeneity and isotropy in the Universe. There are several

key observation contradictions to what the Standard Model of Cosmology predicts,

such as:

• The Spatial Flatness Problem - The initial epochs of the Universe require a

large amount of fine tuning in order generate a value of Ωtot of order unity

today [40]. This apparent spatial flatness will shift from unity as the Universe

expands if ä < 0. The fine tuning can be as extreme as |Ωtot − 1| < O(10−64)

at the Planck epoch [1113], which represents the stability precision required
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to ensure the Universe doesn’t over-close or accelerate too quickly to deny the

possibility of large scale structure formation.

• The Cosmic Horizon Problem - The total particle horizon at decoupling corre-

sponds to the spacetime regions where observed photons in the CMB, present

at the time of decoupling, could have causal contact. Taking the ratio for this

limit and the particle horizon today, shows the causality regions are in fact

very small, restricted to minor angular distances in the observable sky. We

know however, that observed photons do thermalise at the same temperatures

all across the visible sky. This discrepancy in the nature of CMB photon

temperatures is known as the cosmic horizon problem.

• The Absence of Magnetic Monopoles - The early phase transition periods of

the Universe generate many relics in particle physics theories [489, 650, 786].

These possible relics often have the potential to spoil required observations

due to the dissipative nature of matter content over the expected dominant

radiation contribution [1075]. A large problem arises for point topological

defects, which are expected to dominate the matter content in hot Big Bang

models. Such relics have yet to be observed. These magnetic monopoles seem

to require extended physics in order to generate a negligible relic density that

would remain unobservable today.

• Large Scale Structure - The ability to formulate a mechanism which accounts

for the large scale structure in the universe is impossible to realise in the

Standard Model of cosmology when considering the nature of the present pri-

mordial fluctuations [1209, 1271]. A reconciliation of the scales required and

the nature of the evolution of the Hubble radius seem to require a catalyst for

dynamics beyond simple Big Bang Cosmology concerns.
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1.6.2 The Paradigm of Cosmic Inflation

The inflationary paradigm is an accelerated period of exponential expansion hypoth-

esised to address the core problems detailed above, where we have,

a(t) ∼ eHt, (1.104)

occurring approximately, 10−36s − 10−33s after the initial singularity. The initial

formulations of inflationary dynamics in the cosmic setting described de-Sitter in-

flation by using a first-order transition to the true vacuum [647, 1148]. It soon

became apparent that issues surrounding inhomogeneity and bubble collisions re-

quired models of slow-roll inflation and second-order phase transitions to the true

vacuum [55, 864]. Modifications to these models were presented to fix fine-tuning

problems by requiring enough time is spent in the false vacuum, known as chaotic

inflation [865]. Acceleration occurs (ä > 0), when the fluid responsible for its dy-

namics presents a negative pressure, i.e. ρ + 3P < 0. The hypothetical field often

introduced in order to drive this accelerated period is known as the inflaton. The

scalar dynamics of the inflaton require the general relations,

3Hφ̇ ≈ −V (φ) , (1.105)

H2 ≈ 1

3M2
Pl

V (φ) , (1.106)

which are often collectively referred to as the slow roll conditions, with field potential

V (φ). The quantum fluctuations of the inflation field could provide a vital solution

to the evolutionary nature of the matter content in the Universe today. These fluc-

tuations are typically frozen during the cosmic acceleration, when the fields scale

leaves the Hubble radius, where the perturbations offer a possible explanation to

the seeds of large-scale structure formation. Likewise a readjustment to the trajec-

tory of the Hubble radius can allow for a phase expansion which causes unwanted

topological relics to be red-shifted away during inflation, solving for example the
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standard Monopole problem. This is only sufficient of course, given unwanted par-

ticles do not now enter the spectrum during the phase of reheating which follows.

If the reheating temperature is accounted for in such a way to ensure the avoidance

of unwanted energy transfer into radiation, spoiling the balance of phases such as

nucleosynthesis, then the issues of any unobserved relic abundance totally vanishes.

The standard measure of inflationary models is given by the slow roll parameters,

used to formally define the slow roll conditions found in Eq. (1.105) and Eq. (1.106)

which measure the ability to sufficiently inflate the Universe. The slow roll param-

eters for cosmic inflation are,

ε =
M2

Pl

16π

(
V ′

V

)2

, (1.107)

η =
M2

Pl

8π

(
V ′′

V

)
, (1.108)

with V ′ and V ′′ the first and second derivatives of the fields potential. We require,

ε� 1 and |η| � 1, in order for the potential to dominate its kinetic function thereby

allowing for subsequent reheating. When both ε and η become O(1) the period of

cosmic inflation ends. The amount of inflation a model can generate is normally

expressed in terms of the number of e-folds,

Nfold ≡ ln

(
afin

aini

)
=

∫ tfin

tini

Hdt . (1.109)

In order to address both the horizon and flatness fine tuning problems the ratio

between the initial and final phases of inflation defines the ratio between the initial

(Ωini) and final (Ωfin) dimensionless density quantities,

|Ωfin − 1|
|Ωini − 1| '

(
aini

afin

)2

= e−2Nfold , (1.110)

assuming that the value of H is relatively constant during inflation itself. In order

to ensure that |Ωini−1| ' O(1) we require Nfold & 70, give or take O(10) depending

on the specifics of the model, in order to find a satisfactory solution to the issues
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surrounding the cosmic horizon which also results in a spatially flat universe.

There are copious methods of incorporating a period of inflation into the evolution

of the Universe [883]. These are broadly classified as large field inflation models

(∆φ � MPl), small field (∆φ � MPl) inflation models and Modular (∆φ ∼ MPl)

inflation models. Classic models include Eternal inflation [648, 1296] and eternal

chaotic inflation [863]. Many variants and clever emulators of the original proposal

consist of R2 [888], new [1172], chaotic, extended inflation [816, 834], power-law

[876], classical hybrid inflation [866], natural [562], supernatural [1088], extranatu-

ral [98], D-term [222], F-term [904], oscillating [486], trace-anomaly driven [684] and

Standard Model Higgs inflation [216] to name a few. Further examples take advan-

tage of multiple fields such as models of assisted inflation with multiple fields [860]

and multi-component chaotic inflation [170, 885, 1145, 1146, 1212]. String theory

generally also offers a vast landscape to construct models of inflation [176, 757, 760].

In particular inflation in brane world cosmology [488, 1083], warped brane inflation

[177], relativistic brane inflation [1186], D-brane inflation in an unwarped compact-

ifications [402, 403, 691, 719, 720], matrix inflation [113, 114] and modular inflation

[151, 223, 227, 835, 862, 1119], again a minor sample of the theoretical landscape.

The most relevant to discussions in subsequent chapters are models of axion infla-

tion [353, 457, 499, 561, 761, 1010], which we shall expand on in Section 2.8.1. It

seems that the dynamics of the Universe over large scales do certainly require ad-

ditional modifications to explain these paramount issues without help from the well

documented luminous matter candidates. It is also clear there are many consistent

ways in which to tackle such problems.
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1.7 The Matter and Energy Content of the Dark

Universe

1.7.1 A Historical Perspective of a Dark Universe

A glaringly obvious omission from any cosmological model is the true understanding

behind the theoretical origins of approximately 95% of the energy density present

in the Universe today, as demonstrated in the typically obliged representation of

Fig. 1.6, the so called dominating dark sector of cosmology. The simplest parame-

terisation of Big Bang cosmology which is used to account for this dark sector as

we have covered, is the concordance model of cosmology or ΛCDM. The origins of

concordance cosmology stem from the desire to unify baryonic matter to a mys-

terious dark sector, whose density dominates over the constant components of the

low energy sector of particle physics which we can formulate from the Standard

Model. The initial origins of the term “dark” being used to describe a component

of our Universe, evasive to standard observational or experimental rigour, can be

traced as far back as several decades before the turn of the 20th century. Although

blissfully unaware at the true puzzle behind the monolithic door of cosmology they

found themselves at, the reference to “dark nebulae”, “dark clouds” and even “dark

masses” providing a captivating insight into how the foundations of the scientific

community sensed that the astronomical picture of our surroundings were far from

complete. Perhaps the most famous pioneer in this sector pertaining to the infa-

mous galactic rotational curves was Swiss-American astronomer Fritz Zwicky and

his comments on the Coma Cluster, a preface to the seminal pillars in observational

astronomy which would eventually highlight the presence of a vast mysterious sec-

tor of physics. The 20th century saw an explosion of work regarding the inherent

observational consistency that both the presence of non-luminous unaccounted for

matter and later vacuum energy were not just present but indeed an extensive is-

sue [713, 726, 877, 1000, 1196]. It eventually took until the turn of the century for
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Figure 1.6: The cosmic energy budget determined by data collected by the Planck

collaboration in Eq. (1.80), Eq. (1.81) and Eq. (1.83). The Universe is currently

observed to be dominated by two principle dark components which make up ∼ 95%

of the total cosmic energy density. The separated wedge component represents

the only portion of the observable Universe we can currently account for with the

Standard Model of particle physics.

the standardised conventions and complexities to make themselves known with the

discovery of anisotropies in the CMB [542] along with the first direct detections of

an accelerating Universe [1051, 1108]. These sectors commonly treated as a divided

issues inherit many challenging factors in order to reproduce the formulations from

the standard approaches to cosmological models, the origins of which remain a vast

mystery today.

1.7.2 A Mysterious Matter

The realisation that baryonic matter with the familiar picture of empirical science

via the manipulation of protons and neutrons was not the dominant form of matter

density in the Universe was a pivotal turning point in 20th century science. The

abundance of this mysterious matter is significant, it’s measured density approxi-

mately five times our own ordinary matter, enforcing it must be considered as a

staple necessity in realistic cosmological models [212, 396, 426, 587]. There are
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several standard properties DM must possess stemming from astrophysical observa-

tions, which must be incorporated into minimal DM models. Firstly it can not be

made from Standard Model particles, as these generally possess unwanted charges

and couplings. For example possible candidates such as the Higgs and Z bosons

both have short lifetimes and neutrinos are considered too light. Its interactions

with Baryons must be heavily suppressed to account for the absence of observa-

tional signatures such as baryon-DM galactic disks and modifications to the CMB

from the baryon-photon fluid. It should also be weakly self-interacting to avoid com-

plications with halo-dark-matter structure, as to avoid the gravothermal catastrophe

[881]. Finally of course it must be dark, coupling very minimally to photons in order

to avoid constraints from the dimming of spectra from astrophysical sources. The

clarity behind DM and its historical inception comes from its primary gravitational

coupling. The first footings into what we now define as the DM problem came from

particular works, such as Jacobus Kapteyn study of the kinetic theories of gases

and their relationship with observed velocity dispersions of the stars [775]. Fur-

ther work continued with one of his students, Jan Oort, who continued the pressing

idea of analysing stellar kinematics in the context of estimating the matter content

[1000]. Both pieces of work revealed a non-negligible component, which must be

accounted for to produce the observed and documented dynamics. Edwin Hubble

and his groundbreaking work on galactic redshifts [725] later motivated Fritz Zwicky

to address the velocities of galaxies inside selected galaxy clusters. His results were

salient in nature, using the virial theorem to predict that the Coma cluster should be

∼ 400 times larger than what luminous matter observations were initially indicating

[1398]. These were the initial footings into the physics of dark halos, galactic rota-

tional curves and the conclusion of general DM domination we take as fundamental

gospel today.

For any massive body where we can neglect the possibility of collisions in a stable

orbit, we can first define using a spherical matter distribution, the relationship
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between the density of matter ρ(r) and its gravitational potential Φ(r) as,

∆Φ(r) = 4πGNρ(r) , (1.111)

where ∆ ≡ ∇2 is the Laplacian operator. Using the Poisson equation above and

standard Newtonian Gravity the motion of the bodies in a circular orbit is,

vrot(r) =

√
GNM(r)

r
, (1.112)

for an enclosed mass, M ,

M(r) =

∫ r

0

ρ(r′)d3r′ , (1.113)

and radial distance, r. The rotational velocity for the mass of the body should follow

Keplars law of proportionality,

V (r) ∝ r−
1/2 , (1.114)

representing the velocity profiles of galaxies and the expected distributions of lumi-

nous matter. Some decades after the initial speculations of Jacobus Kapteyn, Jan

Oort and Fritz Zwicky, Vera Rubin [1128] and others used doppler shift measure-

ments of distant galaxies to show the velocity profile actually remains constant at

increasing radius. These flat rotational curve profiles suggest a contribution to the

matter density outside of the luminous matter core which scales with the radius

of the profile [171, 253, 254, 560, 1130, 1397]. This apparent DM component is

understood purely from the astrophysical nature and properties of its gravitational

interactions with visible baryonic matter. An example of this is shown in Fig. 1.7

from the seminal work which presented the data for 21 Sc rotational curves detailing

the flattened nature of the rotational curves when extending far beyond the galac-

tic nucleus [1130]. Further work continued [509, 1007] which highlighted that this

problem could extend beyond the initially considered scales, rotational curves still

acting as inference methods for mass measurements today with the help of dark halo
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models [373].

A more modern understanding and further examples providing indications of DM

come from, gravitational microlensing and measurements in observational cosmology

such as BAOs and the matter power spectrum [169, 392]. The primordial baryon

acoustic waves in the baryon-photon plasma generate overdensities which tie to-

gether the physics of baryonic matter and DM. Various surveys (2dFGRS [361],

Sloan Digital Sky Survey III [54] and BOSS [410]) have shown that perturbative

theories of gravity, used in order to describe power spectrum oscillations must con-

tain a DM component. Other methods include looking at the Lyman-α emission

lines and the nature of the Lyman-α forest [404, 700]. Direct signal indications of

the presence of DM have been made in recent years [359] through lensing techniques.

Lensing is typically factorised into two regimes. Strong lensing occurs when gravity

is sufficient enough to generate several geodesic paths for the light to reach the ob-

server. This phenomena can lead to the presence of Einstein rings, the appearance,

density and distributions of which help map the nature of the DM [855],

θEin '
√

4GNMdos

dods

, (1.115)

where dos is angular diameter distance between the lens and the source, do is the

angular diameter distance to the lens and ds is the angular diameter distance to the

source. The weak lensing regime [731, 925] makes inferences based on the bending

of light and minor distortions through measurements of galaxy shear. These can

be used to infer the general large scale baryonic to DM ratios. Lensing can provide

interesting constraints on the particle nature of DM, which is well demonstrated

through observations of the Bullet Cluster [1089], limiting the DM particle self-

interaction cross section to, σ/mχ < 0.7cm2g−1 for a particle of mass, mχ.

Often many of the traditional methods used to model DM invoke various forms of

a density profile for the distribution of the missing matter. In particular N-body

simulations try to incorporate the DM as an important component in structure for-
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mation where they apply semi-analytical methods to galaxy formation with complete

hydrodynamical simulations, including other details such as supernovae explosion

dynamics. Classical approaches for DM halos with large sizes use the model of

the Navarro-Frenk-White (NFW) profile [972] for the density of dark matter as a

function of radius,

ρNFW(r) =
ρ0(

r
rs

) [
1 +

(
r
rs

)]2 , (1.116)

which is divergent in the limit, r → 0. The values of ρ0 = ρcritΩ0h
2 and rs = rv/C

represent the characteristic density and scale radius of the profile, both parameters

which vary between halos. The scale radius rs, is defined via the virial radius, rv

and a concentration parameter, C. Further well known example profiles consist of,

the Einasto profile [508] and Burkert profile [298]. Switching to the particle nature

of DM, models are conventionally categorised as either cold [90, 960, 973, 1331],

warm [242] or hot [669, 804, 1156] which were initially introduced in order to define

the nature of DM at the time of decoupling. Hot DM arises in particle physics

models where the DM candidate has sufficiently high thermal velocities. Models of

DM with negligible thermal velocities compared to the expansion of the Hubble flow

are primarily considered leading candidates due to numerous observational features

and the ability to avoid complications in during the early formation of the Universe.

So what exactly is the true nature and origins of a possible DM candidate? The

standard approach of assuming a CDM component may present issues with higher

relic densities than required or greater predicted substructure on small scales than

what is observed. Primarily the literature and historical documentation of recent

studies into the properties of DM concerns itself with either weakly interacting mas-

sive particles (WIMPs) or massive astrophysical compact halo objects (MACHOs)

(sometimes referred to as robust association of massive baryonic objects (RAMBOs)

[959]) with highly suppressed luminous emissions [270]. MACHOs focus on the dark

nature of DM, where it could in fact be represented by familiar cosmological ob-

jects, possibly identified by lensing analysis. There are strong constraints on the
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Figure 1.7: Original superposition of 21 Sc galaxy rotation curves which first

appeared in Ref. [1130], detailing the unexpected flattened nature of the curves

when extending their analysis far beyond the galactic nucleus. Contributions from

a significant hidden unseen “matter” sector were determined to be present in order

to explain the observed form of these rotational curves. Image credit: Taken from

Fig. 6 found in Ref. [1130].

contributions these can make, with microlensing surveys [56, 182] showing a limited

number of events [1260]. Whilst potentially accounting for a large quantity of un-

accounted for baryonic density, it is well known the possible contributions to DM

are therefore minimal, requiring additional external contributions [576, 577]. Un-

derstanding these contributions is mainly important in the context of the dynamics

and structure of galactic disks. Possible sources are, faint stars and stellar remnants

(i.e. brown dwarfs located suitably far into the dark halo) [937, 982, 1387], cold gas

clouds and molecular hydrogen [698, 1055], hot intergalactic gas representing the

filamentary web which connects the dark halos of groups of galaxies and clusters

[979]. Baryonic objects such as brown dwarfs, BHs, and neutron stars are also fairly

strongly excluded to exist in galactic halos, suggesting these certainly can’t explain

previous measurements of halo masses. The treatments of BBN in general also rule

out other forms of baryonic matter accounting for a substantial portion of the DM.

We must then turn outside of traditional baryonic forms of matter and look more

closely at at more exotic models which produce massive relics. WIMPs serve as

one of the traditional leading candidates to act as the DM particle, where their
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attractive motivations come from their tantalising link between the ability to realise

a suitable cosmological relic density of CDM and the possible interaction strength

in the electroweak sector.

The WIMP paradigm represents a collection of realisations based upon cosmologi-

cal implications along with statistical mechanics embedded in particle and nuclear

physics. The relic density of WIMP DM can be parameterised as [135],

Ωχh
2 ' s0h

2

ρDM

(
45

π2g∗

)1/2
1

xfMPl

1

〈σannv〉
, (1.117)

where the denominator is regulated by the thermally averaged WIMP self-annihilation

cross section. The value of s0 denotes the present day entropy density of the Uni-

verse, g∗ the number of relativistic degrees of freedom at freeze-out and xf ≡ Tfr/mX ∼

25−1, the freeze-out temperature normalised to the particles mass, mX . By mod-

elling the number of relativistic degrees of freedom at freeze-out and entering known

values for the remaining parameters [995], defines the normalised density relation

in terms of the thermally averaged WIMP annihilation cross section, σann and the

WIMP relative velocity, v,

Ωχh
2 ' 0.12〈

σannv
10−36cm20.1c

〉 , (1.118)

demonstrating that a cross section of weak scale strength, with some WIMP can-

didate possessing typical velocities at freeze out, generates the correct relic density

of DM we expect today. This thermal miracle is the stark realisation that the DM

particle could simply be generated from new electroweak physics occurring at the

Fermi scale, i.e. σ ∼ G2
FT

2 where GF ' 1.1663787× 10−5 GeV−2(~c)3 [1243] is the

Fermi constant and T represents the typical freeze out temperature, whilst implying

the field mass should also be of the same order. Despite this there are a number

of issues with WIMP candidates such as the validity of the mass scale, the true

relic abundance of DM with specific candidates, the true nature of couplings and

relationship with new physics appearing around and above the Higgs scale, and of
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course arguably the only required issue to understand, a distinct continuous lack

of any experimental signal [1120]. There are many WIMP candidates [1120] such

as the lightest neutralino [517, 611], two Higgs doublet models [269], little Higgs

[95–97, 1154] and sneutrinos [653, 737], some practically ruled out, others still of-

fering an interesting possibility to using familiar physics to solve this cosmological

dilemma. The above issues have lead many to now consider this general sector of

research as a possible mathematical misnomer, superfluous to further investment,

extending searches far beyond Standard Model motivated candidates.

There are a myriad [135] of excellent candidates which attempt to provide theoretical

solutions to account for the total DM density whilst tackling the problematic nuances

along the way. Specific examples include: warm DM [241], mixed DM [857], self-

interacting DM [43, 1053, 1207, 1278, 1319], self-annihilating or decaying DM [384,

771], fuzzy dark matter (FDM) [722], modified Newtonian dynamics [187, 935, 945],

strongly interacting massive particles (SIMPs), saxion DM [782], gravitino DM [192,

246, 573, 1214], non-topological solitons or Q-balls [828–830], Chaplygin gas [201,

220, 221], axino DM [345, 382, 383], majorons [205], branons or brane world DM

[330], sterile neutrinos [7, 264], minimal DM [354, 355], primordial BHs as the DM

[311, 320, 1011], wimpzillas [348, 817, 831], mirror matter [548, 956, 993] or exotic

types of matter present in a hypothetical hidden sector or mirror world [204], Kaluza-

Klein (KK) particles [338, 1173, 1174] and finally pseudo-Nambu Goldstone boson

(pNGB) or axion DM [482] to name but a few. Despite all these possible confusions

it could certainly be argued that this is not the most perplexing issue still evading

theorists and experimentalists in terms of observationally observed and undefined

energy. Although more traditionally considered as separate problems, the vacuum

energy of the Universe could potentially be understood through models which may

actually have a close relation to some of the best DM candidates using the physics

of fundamental scalar fields.
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1.7.3 A Quintessential Quandary

The standard cosmological model is an extremely successful framework to describe

the nature of the core features we observe in our cosmological evolution. In partic-

ular, the previously mentioned nature and features of the CMB, the formation of

galactic and large scale structure, the abundances of light atomic structures and the

incorporation of a universe undergoing an accelerated expansion. This last feature

is theoretically plagued with two of the most troublesome questions regarding model

construction beyond standard ΛCDM concerns. The aims of UV completion and the

incorporation of physics to account for the almost certainly confirmed observation

that our universe is accelerating, must answer two pressing issues:

• The cosmological constant problem - One of the largest issues at the heart

of unification between a relativistic quantum field theory (QFT) and obser-

vational cosmology. This famous discrepancy spanning approximately one

hundred and twenty orders of magnitude is an unavoidable enigma which can

be understood on the basis of two very different scales. The cosmological

constant introduced by Einstein into his field equations for an expanding Uni-

verse predicts a gravitational contribution to the vacuum fluctuations. The

observed value of the cosmological constant is measured to be of the order,

Λobs ∼ 10−120M4
Pl. On the other hand, QFT tells us that the matter com-

ponents of the Universe are quantised, possessing a continual non-vanishing

energy density even when under its vacuum state description. The form of

the stress energy tensor is 〈Tµν〉 = −〈ρ〉gµν where 〈ρ〉 is understood as a

summation over the zero-point energies for a collection of independent har-

monic oscillators, up to some cutoff scale on the theory. Even up to scales

ΛCut ∼ O(1) TeV, which the Standard Model has been tested to extensively,

the theoretical value of the cosmological constant is, ΛTheory ∼ 10−60M4
Pl. The

possible scale of this issue is approximated using the infamous catastrophic

theoretical and observational vacuum energy ratio when the cut off scale is
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taken to the Planck scale, revealing the full one hundred and twenty orders of

magnitude separation in the two values.

• The coincidence problem - The ratio of the energy density of DM and DE at

the current time as inferred from observational measurements is, ρm,0/ρΛ,0 ∼

O(1), which suggests fine tuning is required for the model to reproduce the

data. This fine tuning would rectify the uncomfortable notion that the cubic

inverse scaling power law for matter matches the constant evolution of the

cosmological constant in the current epoch. Why exactly this period of physics

is occurring at our time of observation is a mystery potentially understood as

either coincidental or something more fundamental, either of which propose

interesting questions regarding the dynamics of DE.

Historically there are several distinct signatures that provide evidence for the na-

ture of the present epochs expansion rate. Various contributions consist of, Type-1a

Supernovae acting as standard candles [806, 1051, 1108], which can be calibrated

to provide quality distance measurements irregardless of the surrounding complica-

tions of the host galaxy. The temperature anisotropies of the CMB can be used in

order to measure and place independent constraints on the properties of the cosmic

densities, implies that it is dominated by acoustic peaks from sound waves in the

photon-baryon fluid. The positional structure of these peaks is a strong indicator

of the properties of cosmic expansion. The characteristics of the CMB photons

which are susceptible to distortions in the CMB spectrum through inverse Comp-

ton scatterings, where such known signatures are described using the Integrated

Sachs-Wolfe effect, occurring over large angular scales [1135, 1166]. Measurements

of the matter power spectrum and the presence of BAOs acting as a standard ruler

[362, 479, 1377], related to over densities or clustering of baryonic matter at specific

length scales, can generate measurements to be made and compared with the theo-

retical estimates on three-dimensional position measurements of galaxies and sound

horizon scales of large scale structure. Weak gravitational lensing can be used to

determine the nature of DM and how its clustering is effected by the presence of
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DE, through estimates on the distributions on distant objects and the geometrical

nature of the spacetime manifold [690, 1179]. Measurements and analysis of the cos-

mic shear of galaxies, through weak lensing effects indicate the Universe is now in a

phase of cosmic acceleration. These methods can also be applied to numerous other

cosmological energy sources, white dwarfs [528], clusters of galaxies [59, 654, 1325]

and expansion dynamics [559, 1382] etc.

Like most issues, some of which we have covered that refuse to enlighten theorists

with an obvious conclusion, the two issues above have a wide array of proposed novel

solutions which attempt to bring together the problematic nature of vacuum energy

into a singular defined solution [375, 1275, 1343], utilising dynamical/geometrical

extensions beyond the cosmological constant model [514]. Some examples consist

of holographic models of DE, which aim to use the principles of holography and

dimensional analysis [1226, 1238] in order to parameterise the DE density using an

infrared cutoff length scale [1327]. Various models consist of, original holographic

DE [851], new agegraphic [1180] and Ricci DE [1389]. Modifications to gravity at

large distances and Einstein’s tensor in his field equations [358, 413, 1203, 1274]

with examples including the Dvali-Gabadadze-Porrati (DGP) model [490], the α

DE extension to this [487], double coupled massive gravity [694] and vacuum meta-

morphosis [304, 1015, 1016]. Popular models often materialise as general minimal

models incorporating additional matter fields. The simplest and leading theory in

terms of phenomenological models is the quintaessentia inspired model of dynamical

quintessence [166, 276, 277, 534, 566, 858, 1094, 1137, 1138, 1194, 1284, 1346, 1395].

Other examples of scalar-field/matter theory applied as minimal extensions are k-

essence models [42, 102, 415], ghost condensation [99, 1058], kinetic gravity braiding

[422, 807, 980, 1082] and the Chaplygin gas model [200, 756, 764], normally formu-

lated using D-brane theories. Other states of matter can also act as the quintessence

field [852] such as vector fields [101], fermionic spinor fields [1105, 1276, 1370], p-form

fields [400, 815] and fields with exotic nature [243, 421, 942].

The general quintessence model can be understood using the action of a canonical
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scalar field, minimally coupled to gravity, its potential defined in such as way to

allow for a successful mimicking of the cosmological constant on large scales. The

evolution of this dynamical DE is slow enough to give rise to a negative pressure,

hence a solution to both accelerated expansion and apparent late time domination

by the mysterious energy. The quintessence action for non-relativistic matter acting

as a barotropic perfect fluid is,

SQuin =

∫
d4x
√−g

[
1

2
M2

PlR−
1

2
gµν∂µφ∂νφ− V (φ)

]
+ Sm , (1.119)

with Sm is canonical action for matter (Eq. (1.13)). In a flat FLRW universe the

field in usually constructed using a sum of a homogeneous component and a small

perturbation, which for the purposes of reproducing an effective cosmological con-

stant on large scales, allows for a removal of the inhomogeneous piece present in the

equations of motion. The dynamical evolution of the field is normally understood

in two main classes, denoted as thawing or freezing models [301]. We now recover

the scalar dynamics covered in Section 2.7 where the equations of motion for the

quintessence field follow the continuity equation found in Eq. (1.42). The equation

of state for the additional matter must follow, pφ < −ρφ/3, for late time acceleration

as well as the general slow roll condition φ̇� V (φ), for the kinetic field component.

These conditions fix the scale of potential where we require the approximate scale

proportionality, H ∼
√

∂2V/∂φ2. The new scalar field mass must then be proportional

to the Hubble scale today,

mφ ≤ H0 ≈ 10−33 eV . (1.120)

The equation of state for DE is often re-parameterised, i.e. Chevalliear-Polarski-

Linder (CPL) parameterisation [340, 868] or Wang parameterisation [1328] etc. in

order to adopt a functional form to track its evolution [375, 868]. An example

common general expression is a scale factor dependent equation of state of the form



The Standard Model of Concordance Cosmology 66

[340, 868],

ω(a) = ω0 + ωa (1− a) , (1.121)

where ω0 represents the equation of state and ωa its derivative with respect to

the logarithm of the cosmic scale factor at present time. Such models allow for the

exploration of possible tensions with the standard ΛCDM model using specific model

parameter measurements. This form of ω(a) also allows for the re-parameterisation

of the Hubble parameter,

H2(a) = H2
0

[
Ωma

−3 + Ωra
−4 + ΩΛa

−3(1+ω0+ωa)e−3ωa(1−a)
]
. (1.122)

The determination of ω(a) will shed a light on whether our Universe is currently

being accelerated by a quintessence field or other options such as phantom energy

[303] or quintom cosmology [299]. With ωa = 0 fixed, the current value today is

currently constrained to,

ω(a) = −1.028± 0.03242 (68% CI) , (1.123)

from the Planck TT,TE,EE+lowE+lensing+SNe+BAO data [40]. Allowing wa to

vary leads to slightly different bounds on the value of H0,

H0 = (68.35± 0.82) kms−1Mpc−1 , (1.124)

H0 = (68.34± 0.83) kms−1Mpc−1 , (1.125)

where ωa is not allowed and allowed to vary respectively. Current observations fail to

enlighten us to the nature of the DE we could be dealing with, leaving concordance

cosmology as a suitable first order model. The coincidence side of the problem is

normally treated with so called tracker solutions [124, 302, 374, 534, 668, 1124, 1136,

1218, 1395].

Dynamical models of DE can also act as mechanisms to alleviate tensions in other
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areas in cosmological models. So called early DE models [474, 712], provide non-

negligible contributions from DE at early times, i.e. mφ & H0. The value of H0

in Eq. (1.86) has a potential discrepancy referred to as the Hubble tension or H0-

tension. This recent statistically significant tension has manifest itself through an

analysis of values of the Hubble expansion rate today from both supernovae data

and CMB observations. Supernovae data has been found and continues to show

evidence of preferring larger values of H0. For example recent local supernovae

measurements calibrated using Cepheid star variables in host galaxies has returned

the value [1107],

HLocal
0 = (74.03± 1.42) kms−1Mpc−1 . (1.126)

Comparing the value in Eq. (1.126) to those inferred from Planck CMB and ΛCDM

presents a discrepancy at the level of 4.4σ [1107]. There are also many other tech-

niques or measurements which have reenforced this issue, with approximate data

combinations now returning discrepancies with the early Universe results found in

Eq. (1.86) ranging from & 4σ ∼ 6σ. See Refs. [1106, 1295] or the discussions in

Refs. [224, 248, 1110–1112] for a summary of the current status of the Hubble ten-

sion along with an analysis of the significance of these values and the methods used

to acquire them. Naturally there have been several different approaches deployed in

order to offer a possible resolution to this issue. Examples include models of dark

radiation [207] and early DE [1072]. These measurements are essentially indepen-

dent constructs yet they almost agree. Whether this deviation is emergent from

troublesome systematics or a hint at something deeper in the physics is yet to be

clarified, offering an interesting topic of debate in the era of precision cosmology

over the forthcoming years.



Chapter 2

The Strong CP Problem and the

Axion

“There must be a beginning of any great matter, but the continuing

unto the end until it be thoroughly finished yields the true glory.”

Letter to Sir Francis Walsingham

Sir Francis Drake (May 1587)

2.1 The Standard Model of Particle Physics

2.1.1 A Quantum Theory of Fields

The Standard Model of particle physics [15, 958, 1052] represents one of the greatest

accomplishments of fundamental physics to date, the theoretical apogee represent-

ing a spectacular revolution in our understanding of nature across the 20th century,

forming the mathematical framework of the fundamental forces among the experi-

mentally verified defining constituents of matter. Subdivided into two defining cat-

egories, the first class of components of the Standard Model, defines the fermionic

sector of particles with fractional spin, organised into three families which are are

further sub-dived into leptons and quarks. Quarks come in six different flavours,

68
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u, d, s, c, b and t1 with fractional charges, Q = 2/3,−1/3,−1/3, 2/3,−1/3 and 2/3, in

units of the elementary charge e, respectively. The known leptons are the elec-

tron, e−, muon, µ−, and tau, τ−, which are each partnered with the corresponding

neutrinos, νe, νµ and ντ respectively. The observed matter particles formed from

quarks represent colourless composite structures, incorporating either two or three

quark combinations. The baryons are made from three quarks such as the neutron,

n ∼ ddu and the mesons are formed from quark, anti-quark pairs such as the neu-

tral pion, π0 ∼ uū/dd̄. The second class of components are the elementary vector

gauge bosons of spin, s = 1, each of which are associated to the generators of their

respective gauge representation groups. The complete Standard Model is built as a

quantum field theory based on the specific gauge symmetry group,

G = SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (2.1)

where SU(3)C is the symmetry group representing the colour interactions. The

gauge bosons for colour interactions are the eight massless gluons, gi, where i =

1 . . . 8. The remaining SU(2)L ⊗ U(1)Y symmetry represents the electroweak inter-

actions, a subgroup of which forms the group of the unified electromagnetic inter-

actions, U(1)em. The perturbative theory of the electromagnetic quantum vacuum

is known as quantum electrodynamics (QED) [536]. The four vector gauge bosons

of SU(2)L⊗U(1)Y are the photon, γ and weak gauge bosons, W± and Z0. Like the

colour charge mediators, the photon is massless, however the weak gauge bosons are

experimentally observed as massive, self-interacting particles. The significance of

this property in the low energy spectrum represents the fact that SU(2)L ⊗ U(1)Y

is in fact not a true symmetry of the vacuum. The Standard Model group structure

in Eq. (2.1) is required to be spontaneously broken down to a further group, which

by construction is a true symmetry of the vacuum,

SU(3)C ⊗ SU(2)L ⊗ U(1)Y → SU(3)C ⊗ U(1)em , (2.2)

1up, down, strange, charm, bottom and top
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Figure 2.1: The complete framework of the Standard Model of particle physics.

Each of the fields represented have been experimentally confirmed and form our best

understanding of how matter and the fundamental forces interact. The fermions are

comprised of twelve elementary particles of spin 1/2, in three generations which obey

Pauli’s exclusion principle. Each particle has its own antiparticle which defines the

antimatter content of the Standard Model. The gauge bosons, manifest under the

gauge group representation of Eq. (2.1), define the force carriers that mediate the

fundamental interactions of the strong, weak, and electromagnetic forces. The Higgs

boson is the only fundamental scalar required to describe the elementary-particle

masses. Image credit: Taken from https://commons.wikimedia.org/wiki/File:

Standard_Model_of_Elementary_Particles_Anti.svg.

a theoretical exercise implemented by the well-known Brout-Englert-Higgs-Guralnik-

Hagen-Kibble mechanism [292, 521, 643, 644, 704]. Initially the vector gauge bosons

are massless, coupling to both themselves and the massless fermions in the the-

ory. The non-abelian Glashow-Weinberg-Salam theory of the electroweak sector

postulates the addition of scalar bosons with gauge invariant couplings to each of

the vector bosons and fermions incorporated. The self-coupling interactions of the

newly introduced scalar define its potential to be in the form found in Eq. (2.52).

The simplest example of these models introduces a single complex Higgs multiplet,

which transforms as a doublet under weak SU(2) gauge symmetry. Once the new

https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles_Anti.svg
https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles_Anti.svg
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field gains a non-zero vacuum expectation value (VEV) the symmetry is sponta-

neously broken, due to the form of the potential. The relevant transformations

which leave the field at its minimum invariant are associated to electric charge, i.e.

electromagnetism remains a symmetry property of the vacuum when the additional

scalar field obtains a VEV. The four scalar degrees of freedom from the introduced

complex Higgs doublet factorise out of the physical theory, three of which are the

massless Goldstone bosons, absorbed and assigned to the longitudinal polarisation

components of the massive vector bosons. The remaining neutral component is

associated to a physical scalar field known as the Higgs boson, the recently discov-

ered final piece of the fundamental jigsaw displayed in Fig 2.1 [3, 336]. The fields

renormalisable interactions are deemed such that the Higgs field acquires a VEV

which fixes the scale of electroweak symmetry breaking, v ≈ 246 GeV. The fermions

receive their masses through Yukawa type interactions of the form,

LYukawa = f ∗e l̄LφeR + f ∗u q̄Lφ̃uR + f ∗d q̄LφdR + h.c. . (2.3)

The first terms consists of most general gauge-invariant renormalisable Lagrangian

terms involving the Higgs doublet and leptons for a single generation. The value of

f ∗e represents a dimensionless coupling constant2, eR an SU(2)L singlet and l̄L an

SU(2)L anti-doublet fermion field. The second and third relate to the up and down

quarks respectively. In these terms q̄L represents an SU(2)L quark doublet with uR

and dR the up and down quark singlets respectively. Finally φ represents the an

SU(2)L doublet for the Higgs field which in unitary gauge takes the form,

φ =




0

(v + h)/
√

2


 (2.4)

2The coupling constant is in general complex but its phase can be absorbed into a physically
consistent redefinition of the phase for the right-handed electron field in order to consider a real
valued variable.
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with dimensionless constant λ, where h is a field of mass, mh =
√

2λv2 and the

value of v is defined above from the scale of electroweak symmetry breaking. The

conjugate Higgs doublet is denoted by φ̃ given by,

φ̃ ≡ iσ2φ∗ = i




0 −i

i 0






φ−

φ0∗


 =



φ0∗

−φ−


 . (2.5)

After consideration of the Higgs doublet representation at the potential minima take

the form,

LYukawa =
fev√

2
(ēLeR + ēReL) +

fuv√
2

(ūLuR + ūRuL) +
fdv√

2

(
d̄LdR + d̄RdL

)
, (2.6)

where the relevant mass terms for the fermions can now be identified as,

mi = −fiv√
2

; i = e, u, d . (2.7)

The points above represent a minor snapshot of a remarkable collective piece of work,

responsible for many outstandingly accurate predictions across the field of modern

particle physics. Of particular note are precision tests of QED and results for the

fine structure constant and the anomalous magnetic moment of the electron [83–

85, 667]. After spontaneous symmetry breaking occurs (see Fig 2.3) the factorised

Standard Model Lagrangian takes the general factorised form,

LSM = LGauge + LYukawa + LHiggs + LFermion , (2.8)

determined by the standard approach of modelling the electroweak gauge sector in

a consistent renormalisable field-theory capable of reproducing all current experi-

mental data.

The complete picture of the Standard Model interactions explained above in Eq. (2.8)

can be expressed in the grandiose, completely expanded form of the Standard Model

Lagrangian density found in Eq. (A.1) of Appendix A. This collection of terms rep-
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resent both a beauty in our ability to write down an effective description of many

of the phenomena we observe, but does however still form a stark reminder that

our current best understanding of fundamental physics from a completionist point

of view, houses a rather large number of free parameters formed from the complex

products of essentially arbitrary gauge sub-groups. This unsatisfactory aesthetic

offers no pleasing clarification for the values these parameters should take and the

measured hierarchy between them. There is also no routed understanding in this

equation as to why the heavier fermionic families exist in the manner they do, along

with the three-generational groupings and the apparent deviations in their Cabibbo-

Kobayashi-Maskawa (CKM) mass matrix mixings etc. There is no defining reason

as to why the structure of these particular facets, i.e. charge quantisation of the

specific multiples of the fermionic sectors families, lead us to the electrical neutrality

of atoms. The fermion masses generated via interactions of the form in Eq. (2.6)

and associated dimensionless couplings, possess a logarithmic sensitivity to a scale

in which any new physics, Λ is deemed relevant. The observed Higgs boson of the

Standard Model (which we now refer to with the H notation) as a scalar component

of the theory has a quadratic sensitivity to this hypothetical parametrically higher

scale, the observable mass squared term taking the following form,

m2
H = m2

H,0 +
kg2Λ2

16π2
≈
√
λ

2
v , (2.9)

where g is the electroweak coupling constant, k is a constant of O(1) variation, λ

is the Higgs self coupling strength and m2
H,0 is the true fundamental parameter of

the theory referred to as the tree-level bare mass. The value of the final term has

been previously defined in the discussions surrounding Eq. (2.6). If Λ is in fact

significantly larger than the electroweak scale, associated to the observable Higgs,

then the theory must also possess unnatural cancellations to counter significant

corrections from the quadratically-divergent corrections stemming from higher order

loop diagrams. It is at least expected the integrals should be cut-off at the scales

which re-introduce gravity, i.e. the Planck scale, naively fixing mH ∼ O(Λ) ∼
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O(MPl). The ability to allow for a stabilisation of the electroweak scale and observed

Higgs mass with expected fundamental scales of the theory, often gives rise to models

which inject new physics occurring just above the electroweak scale, collectively

known as supersymmetric theories [919], which originally appeared in attempts to

generalise the Poincaré algebra to mix representations with different spin [613, 1314,

1345]. These theories introduce a new boson-fermion symmetry. Formally in a

relativistic field theory we must introduce graded Lie algebras, which are formalised

by the representation of the Super-Poincaré Lie algebra possessing supersymmetry

generators of the general form,

Q̄ |Boson〉 ∼ |Fermion〉 ; Q |Fermion〉 ∼ |Boson〉 , (2.10)

where Q and Q̄ represent Weyl spinors related by the ani-commutation relation

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ. Here Pµ represents a Poincaré operator and σµ = {1, σ} the

four vector of Pauli matrices. Precise measurements of the gauge unification coupling

constants in Eq. (2.1) numerically predict the running of the renormalisation group

equations do not unify by several deviations of σ. Supersymmetric generalisations

of this exercise with sufficiently low scales, O(1) TeV, do however make unification a

possible reality. Currently any signs of supersymmetry are evasive in ongoing efforts

to identify any trace of signals for new underlying physics and may be the defining

prerogative of future incarnations of high-energy colliders [516, 899].

Returning to the Standard Model, the theoretical formulation of the Higgs boson

scattered amongst the terms of Eq. (A.1) and its eventual discovery finalised the

shape this completed framework should take, representing both a necessary, and

striking solution to understanding the mechanics behind the electroweak sector. Its

discovery by both the ATLAS and CMS collaborations experimentally reinforced

the scale of the issue at hand, detailed in Eq. (2.9), which is often formally referred

to as the hierarchy problem of the Standard Model. Supersymmetric theories offer

protection of the low energy theory against radiative corrections due to the pres-
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ence of contributions from the newly introduced super-partner particles in the loop

integrals.

2.1.2 Problems with The Standard Model

Despite its prestigious successes within the field of particle physics the Standard

Model along with numerous validations of its predictions, made under its gauge field

representation, there are number of further intimidating issues yet to be suitably

addressed. An obvious additional aspiration is the ability to provide a natural

candidate for the DM particle in cosmological models and an explanation of the

myserteous nature of DE. It is clear even only from the hierarchy problem alone

that the Standard Model requires a significant expansion to incorporate the new

physics required to correctly understand the deeper routes and theoretical questions

surrounding the origins of mass generation. Further specific examples of major

empirical and cosmological issues/tensions consist of:

• The nature of neutrinos. The construction of the Standard Model leaves neu-

trinos under their chiral representation both massless and left-handed. Ob-

servations of neutrino flavour oscillations [575] conclude that these particles

should possess a theoretical mechanism to produce massive states, with their

masses related by unitary mixing of the Pontecorve-Maki-Nakagawa-Sakata

(PMNS) matrix. The true understanding of neutrinos often spans to physics

beyond the Standard Model, a primary example is the mysterious nature of

right-handed neutrinos of opposite chirality. These are expected to be rep-

resented as singlets under all gauge interactions and potentially completely

understood using sterile neutrino models [264, 478].

• Muon anomalous magnetic moment - The briefly mentioned successes of the

Standard Model to explain the anomalous magnetic moment of the electron

actually relates to one of obvious tensions of the Standard Model when looking

at the properties of the Muon. Unlike the electron, the calculation of the
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anomalous magnetic moment of the Muon presents a theoretical prediction

of 0.5 × (gµ − 2) = 0.00116591803(69) [1021] and an experimental result of

0.5×(gµ − 2) = 0.00116592091(9) [957]. This difference represents a deviation

of more than 4σ, a result which could suggest a hint for new physics required

to explain the variations in the loop integrals.

• Inflation - The inflationary paradigm [647] was introduced to understand the

apparent origins of matter in the observable Universe, a solution to the horizon

and flatness problems. During an extreme phase of acceleration, primordial

density perturbations are stretched from sub-Hubble to super-Hubble length

scales. Observationally this approach is supported by precision measurements

of perturbations in the CMB. We have already commented on the only natural

candidate in the Standard Model to represent the inflation field, the Higgs

boson. It is often a complicated procedure to embed this idea successfully and

so the introduction of additional scalars represent the standard approach to

model construction.

• Matter-Antimatter asymmetry - The baryon asymmetry of the Universe is

defined as the difference between the number of baryons and anti-baryons,

divided by their sum or entropy just before antiprotons disappeared from the

primordial plasma. The value of the asymmetry is parameterised in terms of

the ratio,

ηmat =
nB

nγ
≡ ηanti−mat ' 10−10 , (2.11)

where nB and nγ represent the number density of baryons and the cosmic back-

ground radiation photons respectively. This quantity well measured by both

data from the cosmic background anisotropy determined by the Wilkinson-

Microwave-Anisotropy-Probe (WMAP) [1208] and BBN physics [1215]. This

value suggests that the current significant matter-antimatter asymmetry was

actually much smaller in the past. In 1967 Andrei Sakharov defined the condi-

tions used to quantify how to generate the asymmetry we measure, something
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which may be understood in terms of microphysical laws:

1. The theory must violate fermion number.

2. The laws of nature must violate C and CP symmetries.

3. The fermion number violating processes must be out of equilibrium in the

Universe.

Both the Standard Model of particle physics and cosmology do actually suc-

cessfully predict the Sakharov conditions to be satisfied [832]. The Baryon

number is violated by sphaleron processes and the non-equilibrium condition

apparent due to the expansion of the Universe. The final condition and a key

area of focus in this thesis concerns the violation of P and CP symmetries,

violated by the weak interactions and quark Yukawa couplings [346, 1369].

However, the magnitude of the CP-violating Kobayashi-Maskawa phase with

the measured mass of the Higgs particle lead to the conclusion it is extremely

difficult to realise successful baryogenesis within the current form of the Stan-

dard Model. Measurements of CP violation are also still too small. The ability

to fully explain the origins of the primordial matter-antimatter asymmetry is

still a defiant mystery.

The overriding message from the details above is we still require our understanding

to evolve significantly before a more unified picture becomes experimentally percep-

tible. Theoretical physics provides many exciting and sometimes divisive options

to explore these directions in the meantime. These novel and seemingly required

extensions to the Standard Model can also often provide a coupled solution to the

issues detailed above, reintroducing the comforting feeling of naturalness, albeit it is

often required to move into a vastly more complicated landscape beforehand (gen-

eral supersymmetric GUT extensions). One final problem inherent to the Standard

Model and a further example of a fine-tuning problem is known as the strong CP

problem. Its favoured solution offers a captivating frontier in both fundamental par-

ticle physics and cosmology. Its historical origins come from a more detailed look at
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the complexities involved in the colour interactions and the gauge group structure

in Eq. (2.2), which serves as the theoretical catalyst for the work presented in this

thesis.

2.2 Quantum Chromodynamics and the U(1)A

Problem

One of aforementioned fundamental forces of nature, the strong interactions of par-

ticle physics, is a non-abelian gauge theory used to describe all known nuclear phe-

nomena. The theory formulated to understand these interactions is formally known

as Quantum Chromodynamics (QCD) and as a QFT, possess many features quali-

tatively different as to using a classical field theory approach. The bare non-Abelian

gauge theory QCD Lagrangian for N quark flavours, ψar with masses mr is,

L̃QCD = −1

4
Ga
µνG

a,µν +
N∑

r=1

ψ̄ar
(
i��D

b
a −mrδ

b
a

)
ψrb , (2.12)

with covariant derivative, ��D
b
a = γµ

(
∂µδ

b
a + igs

1
2
λiabA

µ
i

)
and SU(3) gauge group gen-

erators λiab. The index r runs over all the quark flavour species of the theory. The

gluon field strength tensor is defined as,

Ga
µν ≡ ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν , (2.13)

where fabc are the SU(3) structure constants and Aaν , the gluon field strength. The

initial foundations of the axion field, which has become a dynamic and prevailing

feature of many theoretical extensions to the Standard Model, stem from the con-

sistent structural complexities of Eq. (2.12) and the elegant solution proposed to

understand the so called strong CP problem it inherits. Before we address this we

need to understand a troubling aesthetic question of the theory regarding why the

structure of the QCD vacuum doesn’t appear to break charge-parity (CP) symmetry.
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The roots of the answer to this question begin with the symmetry properties of the

theory of QCD via the experimentally apparent hadronic spectrum of quark con-

densates. Initially it was pointed out that in the massless limit for the quark masses

the Lagrangian in Eq. (2.12) possesses a global chiral U(1)V ⊗ U(1)A symmetry in

which the fields transform under the following rotation,

ψ → eiα ⊗ 13ψ , (2.14)

for singlet vector transformations and,

ψ → eiαγ
5 ⊗ 13ψ , (2.15)

for singlet axial transformations, where α is a real number and γ5 is a product

over the four gamma matrices, γ5 = iγ0γ1γ2γ3. The vector symmetry of the model

is invariant as it is non-chiral and not broken by the condensate. This symmetry

corresponds to baryon number conservation via Noether’s theorem. Experimen-

tally we know, that in the limit of vanishing quark masses this is not a realisation

of nature, i.e. the three lightest quarks, u, d and s can be considered under the

more general group, U(Nf )V ⊗ U(Nf )A, where Nf = 3 represents the number of

flavours we are considering. There are then, nine conserved axial currents which

break the vacuum of the general symmetry group. The axial part of this general

group structure is in fact spontaneously broken into the further decomposed group

structure, SU(Nf )V ⊗ U(1)A. Using Goldstone’s theorem, spontaneous symmetry

breaking leaves us with a spectrum of massive Goldstone bosons. Experimentally

these bosons are realised in nature as the octet set of light, but explicitly non-zero

mass pseudo-Nambu-Goldstone bosons (pNGB). These are the three pions π0, π±,

the four kaons K0, K̄0, K± and the eta meson η. At this point, theory and exper-

imental evidence seemingly diverge, where the required realisation of the diagonal

U(3)V, cannot be accounted for via the spontaneous breakdown of the U(1)A sym-

metry. To account for this we would require a further breakdown corresponding
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to a ninth light pNGB, which to date has no experimental candidate to match this

required feature of the theory. The closest candidate is the η′ meson which has the

approximate mass, mη′ ≈ 960 MeV. The bound on the U(1)A boson however is fixed

by the mass of the pion mπ, to the limit,

mU(1)A
.
√

3mπ , (2.16)

which rules out a clear and simplistic understanding for the fundamental nature of

this region of the spectrum. This comprehension determines the symmetry issue

reducible only in the massless limit unless new physics is introduced to account for

this deviation from our theoretical expectations. The absence of a valid candidate for

the U(1)A Goldstone boson or the discrepancy between its expected mass is known

as the U(1)A problem [1334]. This troublesome U(1)A current has an anomalous

divergence at the quantum level, where its solution must be forged from a deeper

understanding of the QCD vacuum structure and a treatment of its chiral anomaly

[38]. The presence of this anomaly means that the divergence of the axial current

is non-vanishing. The symmetry breaking can actually be realised not through

quantum symmetries of the QCD gauge theory but from Adler-Bell-Jackiw (ABJ)

anomalies [1236]. The presence of the chiral anomaly means that the divergence of

the remaining axial current is non-vanishing from quantum corrections of triangle

graph configurations,

∂µJ
µ
5 =

Cg2
s

32π2
Ga
µνG̃

µν
a , (2.17)

up to some numerical constant C and gauge coupling constant term gs. The term

furthest to the right in Eq. (2.17) is the Hodge dual of the gauge field strength

tensor,

G̃µν
a =

1

2
εµναβGαβa , (2.18)

where εµναβ is the completely anti-symmetric Levi-Civita tensor [1341]. Using this

notation is it possible to express the four dimensional operator for the strength
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tensor contracted with its dual as a total divergence,

Ga
µνG̃

µν
a = ∂µKµ , (2.19)

which for the study of QCD is given by the Chern-Simons (CS) current [158, 795,

1033],

Kµ =
1

16π2
εµναβ

(
Ga
ν∂αG

a
β +

fabc
3
Ga
νG

b
αG

c
β

)
. (2.20)

Performing an integration over this total derivative reveals a key feature of the more

complicated vacuum structure of QCD. Fixing the boundary conditions, Gµ
a = 0,

at spatial infinity, this surface integral is non-vanishing for certain gauge conditions

[188], where the gauge field takes a general form,

Gµ = if(r)g−1(x)∂µg(x) , (2.21)

f(r) =
r2

r2 + ρ2
, (2.22)

with g(x) deemed a pure gauge transformation and ρ the size of the instanton. The

classical gluon field theory of QCD now presents a series of instanton solutions which

satisfy the anti-duality condition,

Ga
µν = G̃a

µν . (2.23)

The integer index emitted is known as the topological charge of the gauge field

configuration or Pontryagin number, used to distinguish between different homotopy

classes,

n =
1

16π2

∫
d4xTr GG̃ =

1

32π2

∫
d4x Ga

µνG̃
µν
a , (2.24)

where Tr denotes the trace over gluon field strength tensor contraction with its dual.

Any classical solutions are defined to fall within the set,

n = −∞, ... ,−1, 0, 1, ... ,∞ . (2.25)
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Perturbative field theory has trivial topology and so zero topological charge. The

|n〉 states are not physical states, these are vacua belonging to different topological

equivalence classes where physical solutions are realised by a superposition of the

eigenstates of these vacuum solutions. Each value of n relates to the winding number

of the U(1)A symmetry and is used to parameterise a linear combination of |n〉

vacuum solutions, the so called, theta vacua,

|θ〉 =
+∞∑

n=−∞
eiθn |n〉 . (2.26)

The parameter θ in QCD is a vacuum angle, an arbitrary phase which is periodic in

the interval of a unit circle,

θ ∈ [0, 2π] . (2.27)

Formally the instanton solutions are non-vanishing configurations of topologically

non-trivial solutions to the classical field theory equations in four-dimensional Eu-

clidean space. These solutions are a description of transitions between different

vacuum states, where the more complex vacuum structure has consequences on the

effective action of the theory. An expression of the vacuum to vacuum transition

amplitude using the path integral formulation reveals the following sum over the

difference in index, ξ, of the winding number vacua,

+
〈θ|θ〉− =

∑

ξ

∫
δGeiSeff [G]δ

[
ν − g2

s

32π2

∫
d4xGa

µνG̃
µν
a

]
, (2.28)

which can be re-expressed by introducing a topological term into the effective action,

Seff [G] = SQCD[G] +
θg2

s

32π2

∫
d4xGa

µνG̃
µν
a , (2.29)

where SQCD[G] represents the original action formed from Eq. (2.12). This translates

as a redefinition to the effective Lagrangian density,

LQCD = LQCD,0 + Lθ = LQCD,0 +
θg2

s

32π2
Ga
µνG̃

µν
a , (2.30)
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where LQCD,0 is the bare theory Lagrangian (see Eq. (2.12)). The incorporation of

this topological term is indeed a novel solution to the U(1)A axial problem, however

the newly introduced θ parameter certainly cannot be glossed over in the pertur-

bative theory. Details are still required for its presence to be accounted for from a

fundamental standpoint. This transition is comprehended as moving to an initial

problem of naturalness and fine tuning, referenced as the strong CP problem of the

Standard Model.

2.3 The Strong CP Problem and the Peccei-Quinn

Solution

2.3.1 An Issue with the QCD Vacuum

If the newly introduced θ term of QCD is to tune the physical spectrum of the

Standard Model it must be pointed out that by definition it is invariant under

charge conjugation but does violate time and parity reversal symmetry, stemming

from ~Ea · ~Ba interactions of the colour fields. This term is then fully understood

to violate CP invariance, revealing the origins to the name of the problem at hand.

The magnitude of this issue is realised by the extremely strong bound placed on the

neutron electric dipole moment (EDM). There have been many different methods

aiming to refine the calculation used to measure this value however a conservative

limit on the EDM of the neutron is [389],

dn ≈ 3.6× 10−16 θ e cm , (2.31)

where e is the absolute value of the electron charge. The permanent static dipole

moment is constrained to a result which details the extent of the fine tuning required

[143],

|dn| < 2.9× 10−26 e cm , (2.32)
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at the 90% CI. This is understood via the following relationship for the θ parameter,

dn '
eθmq

m2
N

, (2.33)

where mN is the mass of the neutron and mq is a mass expression in terms of the

up and down quark mass parameters,

mq =
mumd

mu +md

. (2.34)

These relationships define the current bound on θ to be,

|θ| . 10−10 . (2.35)

This constraint is actually made worse when we account for a further term of CP

violation coming from the structure of the QCD vacuum. Aside from strong inter-

actions if we consider interactions in the electroweak sector, we must account for

leading order corrections to the θ parameter. Spontaneous symmetry breaking of

the electroweak gauge symmetry provides a mass term for the quarks of the Stan-

dard Model, who’s values are encoded in a mass matrix, MQuark, residing in the

Standard Model Lagrangian. Following this phase of symmetry breaking, the basis

of the mass matrix is in general both non-hermitian and non-diagonal, requiring

a unitary transformation to the chiral quark fields to move into a physical basis,

thereby defining the mass eigenstates. These transformations incorporate a chiral

U(1)A transformation, which also acts as a rotation of the θ vacua via the properties

of the axial anomaly, inducing non-invariance at the quantum level. The coefficient

in Eq. (2.30) must then be redefined as,

θ̄ = θ + θWeak = θ + arg(det(MQuark)) . (2.36)

This reparameterisation is the true Strong CP problem of the Standard Model,

our lack of understanding as to why we should have no a priori basis in which
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to understand a cancellation of the original topological QCD vacuum term and

the associated properties of the electroweak and strong gauge sectors. The next

question we must then ask is, how can we naturally realise such a cancellation?.

There are several methods which can be applied in order to solve the strong CP

problem. Broadly speaking these can be categorised into three different schemes

inside a framework of naturalness, the salient issue being addressed suitably. The

first, briefly touched on previously, observes that if the up quark is massless then

the Lagrangian in Eq. (2.30) allows for the simple transformation,

LQCD → LQCD,0 , (2.37)

via a chiral rotation of the quark fields, which naturally removes the θ term and

fixes the issue rather straightforwardly. This possibility has however been strictly

ruled out via measurements of a non-zero value of the up quark mass. The second

model involves a form of θ renormalisation in the Standard Model via approaching

the source of CP violation as mainly an issue with θWeak. These class of models are

known as Barr-Nelson CP violating models [164, 165, 975]. In such a framework

the value of θWeak is reduced to zero at the tree level under certain considerations

for CKM mixing and the magnitude of the phase in the quark mass matrix. The

non-zero value of θWeak is then restored via higher loop corrections only.

2.3.2 The QCD Axion

Possibly the most celebrated and elegant solution to the Strong CP problem comes

from the work of Roberto Peccei and Helen Quinn, who introduced a further U(1)

global chiral symmetry invariance to the full Standard Model Lagrangian. We shall

refer to this symmetry now as the Peccei-Quinn symmetry denoted as, U(1)PQ. This

newly introduced symmetry which still suffers from the chiral anomaly, elevates the θ̄

parameter from the static vacuum angle to a dynamical field. This symmetry is not a

natural product of the Standard Model and so requires either a significant extension
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to the theory with physics beyond the Standard Model or minimal implementation

via adjustments to the standard spectrum of particle physics such as Higgs sector

physics. The pNGB produced from the spontaneous symmetry breaking of the

U(1)PQ symmetry is known as the axion. The axion field, a(x) transforms under

the PQ symmetry transformation,

a(x) −−−−→
U(1)PQ

a(x) + αfa , (2.38)

with α a phase parameter. The newly introduced parameter fa, is an order parame-

ter associated to the symmetry breaking scale of the U(1)PQ symmetry, known as the

axion decay constant (up to colour anomaly number normalisation concerns). After

symmetry breaking has occurred the axion field (a ≡ a(x)) possesses a Lagrangian

of the form,

La = −1

2
∂µa∂µa+

aN

fa

g2
s

32π2
Ga
µνG̃

µν
a , (2.39)

where N is the PQ colour anomaly, defined as a sum over the PQ-charged species

in the fermionic sector defined in Eq. (2.72). The form of Eq. (2.39) suppresses any

higher order derivative couplings interaction terms to other Standard Model matter

fields, which are contained in LSM, where the new form for the QCD Lagrangian is,

LQCD = LQCD,0 + Lθ̄ + La , (2.40)

= LQCD,0 +
θg2

s

32π2
Ga
µνG̃

µν
a −

1

2
∂µa∂µa+

aN

fa

g2
s

32π2
Ga
µνG̃

µν
a . (2.41)

As the axions U(1)PQ symmetry is susceptible to the colour anomaly the field cou-

ples to gluons, via triangle loop interactions, as demonstrated in the interaction

vertex shown in the left panel of Fig. 2.2. We still must understand the nature of

the dynamics as to how the θ term is effectively removed. Analysing the effective

potential of the axion field we see that the minimum lies at,

〈a(x) + faθ̄/N〉 = 0 , (2.42)
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Figure 2.2: Left panel: Triangle loop interaction diagram for the anomalous axion-

gluon-gluon coupling. Each gluon vertex strength is regulated by the strong coupling

constant. The axion vertex strength is regulated by the axion-fermion Yukawa

coupling. Right Panel: Anomalous two-photon vertex interaction which can be

used to indicate the stability of the axion field over cosmological time scales. The

respective vertex interactions are replaced with charged fermion coupling terms.

which can also be expressed as,

〈
∂Veff

∂a

〉
= −N

fa

g2
s

32π2

〈
Ga
µνG̃

µν
a

〉∣∣∣
〈a〉=−faθ̄/N

= 0 , (2.43)

where 〈a〉 = 〈0|a|0〉 is the axion field VEV. We now arrive at one of the most

important features of the axion field, its periodicity (see Eq. (2.38)). The periodicity

of θ̄ means that 〈a〉 has a periodicity naturally realised in n, 〈a〉 = 2πnfa. This

ability to shift the axion field value can be defined by the axion misalignment angle,

θ = θ̄ +
aN

fa
. (2.44)

Finally defining the physical axion field as, aphys = a − 〈a〉, which can be inserted

into Eq. (2.41), we rather neatly remove the CP violating term present in the La-

grangian. The spontaneous symmetry breaking of the newly introduced anomalous

U(1)PQ global symmetry has introduced a new dynamical parameter understood as

pseudoscalar field which, under dynamical evolution to its CP conserving potential

minimum can replace CP violating interaction terms by ensuring we have, θ̄ = 0 in

our effective description. The introduction of the axion is a novel solution to the

strong CP problem, however formalising its embedding among the historical matter

fields is a little more troublesome.
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2.4 The Standard Model(s) of the QCD Axion

The introduction of the U(1)PQ symmetry in order to solve the strong CP problem

has so far replaced a theoretical exercise in model consistency with experimental

conclusions, with a further problem, similar in principle. The anomalous nature of

the symmetry generates a potential for the axion field, which is periodic in the vac-

uum angle and as we have seen in Eq. (2.42), which is used to solve the presence of

any CP violating interaction terms in our effective Standard Model Lagrangian. Ex-

panding this solution to the potential reveals a mass for axion as shown in Eq. (2.43),

so the solution is actually a massive pseudoscalar boson apparent in the spectrum.

Obviously then we must address, how do we naturally realise this newly introduced

symmetry in the context of either new sectors or modifications to existing physics

and what are the couplings and scales associated to this new field. Frankly expressed,

where is it?

2.4.1 Visible Axions

2.4.1.1 The Peccei-Quinn-Weinberg-Wilczek Model

Historically there have been several consistent frameworks drawn up very soon after

the theoretical inception of the axion into the literature, now serving as pedagogical

examples, each of which predicting several different aspects in order to understand

the axions place in the context of the Standard Model. The first model is known

as the visible axion model and although it is ruled out through experimentation, it

still serves as a good insight into issues regarding embedding the axion consistently

in models of particle physics and the energy scales required to avoid collider con-

straints. See Refs. [91, 305, 437, 438, 604, 1126] for other frameworks incorporating

the axion into grand unified theories (GUTs) slightly outside the following historical,

traditional concerns. The axion can be considered as a phase degree of freedom to
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an introduced complex scalar field,

ϕ(x) = η(x) exp

(
ia(x)

fa

)
, (2.45)

where the axion field is the angular degree of freedom or the phase of ϕ. The radial

component of ϕ initially obtains a VEV, 〈η〉 = fa/
√

2. This field is heavy, naturally

regulated by the high scales of any PQ symmetry breaking. The original axion

model was formed by Peccei, Quinn, Weinberg and Wilczek, by introducing the

required chiral symmetry through two Higgs doublets, Hu and Hd, which are used

to generate masses for the up and down quarks. This visible axion model is often

referred to as the PQWW axion [1035, 1036, 1335, 1353]. The primary reason this

model fails to hold up is the required scale of the fields VEV and its relationship

with the electroweak sector. Symmetry restrictions enforce a single Higgs doublet is

not invariant under the required transformations for the required U(1)PQ symmetry.

This does change however if we account for the presence of two Higgs doublets [1035].

Using these Higgs doublets we can express the relevant terms in the Yukawa sector

as,

LYukawa = λuq̄LHuuR + λdq̄LHddR + H.c. , (2.46)

where q are the left and right handed quark doublets, which are invariant under the

following chiral rotations,

ql → eiαqL, qR → e−iαqR, Hu → e2iαHu, Hd → e−2iαHd . (2.47)

It is required the full Lagrangian possesses the global symmetry who’s chiral rota-

tions shift the angular part of the complex scalar in Eq. (2.45), which in this case

is a common phase field between the Higgs doublets, by some constant value. The

new complex scalar is coupled to the Standard Models fields via Yukawa terms like

those in Eq. (2.46). Due to these connections the spontaneous symmetry breaking

of the global U(1)PQ symmetry occurs at the electroweak symmetry breaking scale,
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Figure 2.3: The Mexican hat symmetry breaking potential of Eq. (2.48), in the

complex ϕ plane. The VEV of the massive radial mode is fa/
√

2. The axion is

apparent as the massless angular phase degree of freedom at the minimum of the

potential. The field initially begins at the point denoted by the green circle. Once

the respective symmetry is spontaneously broken the field moves down its potential

to the minimum denoted by the blue circle, where is now possesses a continuous

shift symmetry.

i.e. vEW =
√
v2
u + v2

d ≈ 246 GeV, where the phase field possess the famous Mexican

hat symmetry breaking potential,

Va(ϕ) = λ

(
|ϕ| − f 2

a

2

)2

, (2.48)

as visualised in Fig. 2.3. The radial model of the potential obtains a VEV due to

the non-zero VEVs of each Higgs doublet. It soon became apparent these scales are

problematic though, and the model was quickly eliminated [473, 794] as a possible

candidate to realise the axion field. Specifically they are excluded by beam dump

experiments [790] and collider exclusions [466, 949]. The required solution to these

exclusion issues is that the symmetry breaking scale or axion decay constant fa,

must be significantly increased in order to avoid these types of constraints. Visi-

ble axions can also impose very interesting features in regards to the wider picture

of particle physics, namely providing solutions to explain the anomalous magnetic
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moment of the muon [175, 335, 906] and factors of electroweak symmetry break-

ing such as solutions to the hierarchy problem via the relaxion [543, 624]. Axion

particles with symmetry breaking scales around the electroweak scale are relatively

unimportant for cosmological physics. When, however we impose the general un-

derstanding needed to avoid the exclusions of the visible axion model with higher

symmetry breaking scales (and in turn suppressed Standard Model couplings) for

the introduced global chiral symmetry, we enter the realm of the ultralight axion

which is potentially of great importance to the standard model of cosmology. These

are generally known as invisible axion models.

2.4.2 Invisible Axions

2.4.2.1 The Kim-Shifman-Vainshtein-Zakharov Axion Model

The first invisible axion model is referred to as the KSVZ axion after its introduction

in the work by, Kim, Shifman, Vainshtein and Zakharov [789, 1182]. This model

contains a general freedom from couplings to Standard Model matter fields and so

are also sometimes referred to as hadronic axions (apart from the regular anomalous

QCD gluon coupling and higher order loop couplings to photons), but this comes at

a cost, the incorporation of a heavy quark doublet. Theoretically the origins of such

a field are not so clear, once again potentially shifting the model completion issues

from one sector to another. The PQ scalar field, ϕ, now becomes a Standard Model

singlet. The heavy quark doublet field, Q possesses a discrete R symmetry in order

to avoid the presence of any bare mass terms [788]. The relevant KSVZ Lagrangian

Yukawa terms are,

LKSVZ,Yukawa = −λQϕQ̄LQR + h.c. , (2.49)

with Yukawa coupling, λQ. The quark field is invariant under the global PQ sym-

metry, leaving the model Lagrangian invariant at the classical level. For scales lower

than the axion decay constant, symmetry breaking occurs and the radial part of
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the complex scalar freezes out, leaving just the remaining phase free to evolve dy-

namically for the scalar singlet. As with the previous model, the chiral rotational

invariance of the Lagrangian shifts the axion field. The spontaneous symmetry

breaking of the PQ symmetry gives a large effective mass term to the heavy quark,

mQ ∼ λQfa. As we require fa � vEW the effective mass must in fact be very

large. At tree level there are no couplings to the Standard Model quarks, where we

only need to account for gluon couplings via chiral rotations at high energies, along

with couplings to photons via the heavy quarks couplings to the electroweak gauge

bosons. The effective Lagrangian after any chiral rotations of the heavy quark fields,

which are integrated out (after suppressing couplings to photons) becomes,

LKSVZ = −1

4
Ga
µνG

µν
a +

(
θ̄ − a

fa

)
g

8π
Ga
µνG̃

µν
a +

1

2
∂µa∂

µa . (2.50)

The standard canonical choice for photon couplings comes from loop contributions

of the EM anomaly, where Q fields are assumed to be uncharged. This means the

coupling actually arises as the longitudinal mode of the Z-boson [793]. In this model

the colour anomaly term N , which is also equivalent to the domain wall number NDW

(see Section 2.6.2) [791, 1183], is fixed to N = NDW = 1, corresponding to a single

axion minimum.

2.4.2.2 The Dine-Fischler-Srednicki-Zhitnitsky Axion Model

A further consistent framework drawn up as a minimal model approach to realising

an invisible axion field is the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion [459,

1392]. Again the Standard Model Lagrangian must be invariant under the new

Global PQ symmetry where the axion field is coupled via the Higgs sector. In this

model the Standard Model fermions are charged under the PQ symmetry which

alleviates the issue of including heavy quarks present for the KSVZ axion. Like the

previous PQWW model we require two Higgs doublets which must couple to light

quarks but this time we include the axion as a Standard Model singlet, although
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models do exist with three doublets etc., along with so called non-universal DFSZ

models (see Ref. [438]). The relevant Yukawa coupling terms in the model are,

LYukawa = λuQ̄LHuuR + λdQ̄LHddR + h.c. , (2.51)

where the axion scalar singlet, denoted φ couples to the two doublets in the Higgs

sector with the most general scalar Higgs potential [459],

V (Hu, Hd, φ) = Ξu

(
|H2

u| − v2
u

)2
+ Ξd

(
|Hd|2 − v2

d

)2

+ Ξ
(
|φ|2 − vφ

)2
+
(
A|Hu|2 + B|Hd|2

)
|φ|2

+ C
(
H i
uεijH

j
dφ

2 + H.c.
)

+D|H i
uεijH

j
d|2 + E|H∗uHd|2 .

(2.52)

The completely antisymmetric tensor of SU(2) gauge theory is εij and the values of

Ξu,Ξd,Ξ and A,B, C,D, E all represent dimensionless constants of the theory. The

potential is fully invariant under the following chiral rotations,

Hu → Hue
iαu , Hd → Hde

iβd , φ→ φe
i
2

(αu−βd) , (2.53)

with αu and βd both phase parameters for the up and down Higgs doublets respec-

tively. Repeating the procedure, once we break the PQ symmetry with a potential

of the form defined in Eq. (2.48), the radial component of the scalar field freezes

and we are left with the axionic angular phase degree of freedom. The parameters

in the Higgs potential in Eq. (2.52) must be specially selected in such a way that

the Higgs fields will remain light, reproducing the standard experimentally observed

125 GeV Higgs Boson [3, 336] of the Standard Model with the phenomenologically

required scale, vEW. This represents an element of tuning present in the model.

Once electroweak symmetry breaking occurs the the Higgs is replaced by its VEV

in Eq. (2.51), which induces axial current coupling between the Standard Model

fermions so that we have tree-level couplings between the axion in the model, with

the requirement that the individual VEV scales associated to the Higgs doublets
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follow,
√

2 〈φ〉 = fφ �
√

(f 2
u + f 2

d ) ≡ fa . (2.54)

The Higgs doublets each contain four degrees of freedom. As is standard practise,

the redundant massless degrees of freedom below the electroweak phase transition

are accounted for in the unitary gauge. The remaining degree of freedom mixes with

the axion phase via the last term in Eq. (2.52) such that the electroweak sector is

modified with an extra axial Higgs field from standard considerations analogous to

supersymmetric Higgs models. As all the Standard Model quarks are charged under

the PQ symmetry in this model, the value of the colour anomaly is higher, N = 6.

2.5 Axion Interactions and Effective Field

Theories

2.5.1 An Effective Description of the QCD Axion

The standard models of the QCD axion in Section 2.4 generally represent a detailed

embedding of the field in some grand unified framework, those of which account

for the appearance of the axion in the low energy spectrum as a solution to the

strong CP problem. The axions global symmetry generates specific model depen-

dant interactions in each of these cases. It is beneficial therefore, to make a series of

model independent statements which, ultimately in turn, can be further generalised

to particles enjoying the same symmetry properties, through investigating the fields

mixings induced via the topological QCD term responsible for the anomalous cou-

pling to gluons. Below the QCD confinement scale, the gluons and quarks of the

theory must be integrated out, where QCD takes on the form of an effective chiral

theory. This point should be stressed, non-perturbative physics is a complex land-

scape, stemming from the non-trivial nature of the QCD vacuum and the topological

features which manifest themselves as factors in the effective low-energy sector. This
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is a model dependant statement and we have seen previously how the value of N

for the colour anomaly in the normalisation of the potential in Eq. (2.68), is fixed

depending on explicit models of the axion. This number actually has a further in-

tuitive purpose. The axion field is an angular variable which as we have mentioned

possesses a shift symmetry like that found in Eq. (2.38), which acts on the inter-

val [0, 2πnfa], where n is an integer periodicity term. The value of N can always

be normalised to take integer values which in the context of the axion potential,

represents the number of vacua in the shift symmetric interval [1210]. Values of

N ≡ NDW > 1 are sources for long-lived string wall configurations, where the decay

products of topological defects act as sources for axion particle generation.

The orthonormal combination which is responsible for the solution of the strong

CP problem via a shift to the minimum energy of the potential mixes with the

remaining scalar mesons in the spectrum in order to generate a mass. The induced

transitions to quark states and therefore to the neutral pion, π0. The small axion

mass then holds the approximate mass scale relationship with the mass (mπ) and

decay constant (fπ) of the neutral pion,

mafa ≈ mπfπ , (2.55)

ma ∝ f−1
a . (2.56)

Vafa and Witten showed that the instanton potential is always minimised at the

CP conserving limit [1288]. This mixing of the axion with the neutral pseudoscalar

meson forms a rich model-independent phenomenology we can explore without the

need to limit ourselves to a specific class of model. We can therefore study the form

of the effective potential in order to draw conclusions about the QCD axion. A more

precise understanding of the potential comes from first order considerations in chiral

perturbation theory defining the effective chiral potential, expressed as a function

of the masses of the lightest quarks, the neutral pion mass and the fields symmetry
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breaking scale,

V (a) = −m2
πf

2
π

√
1− 4mumd

(mu +md)
2 sin2

(
a

2fa

)
. (2.57)

After the QCD phase transition the quark bilinears can be used to determine an

effective QCD axion mass proportionality relationship, by expanding the potential

to quadratic order [1335],

ma =
mumd

(mu +md)
2

m2
πf

2
π

f 2
a

≈ 6× 10−6 eV

(
1012GeV
fa/NDW

)
, (2.58)

found using the values, mπ ' 135 MeV, fπ ' 92 MeV and the ratio of the lightest

quark masses, approximated as mu/md ≈ 0.56 [588, 849], although this can posses

some freedom [503].

2.5.2 The Effective Axion Potential

A phenomenologically beneficial form of the effective potential which is both more

tractable and susceptible to an analytic expansion, can be realised from Eq. (2.43)

at its CP conserving minimum, 〈a〉 = 0 when we allow for the adoption of a semi-

classical approximation [441, 1362]. Any possibility of a general explicit analytical

treatment is generally ruled out due to the presence of strong QCD coupling ef-

fects. The spacetime integral of the anomalous coupling does however only require

a consideration of instanton field configurations and the nature of the Pontryagin

index at spacial infinity related to the winding number of the gluon field. Therefore,

the effective potential can be defined by integrating out the gluon field of the path

integral, usually expressed in Euclidean spacetime in the following form,

Z = e[−
∫
d4xV (a)] =

∫
DAae−S[Aa]−iθ

∫
d4x[ α8πGaµνG̃

µν
a ] . (2.59)
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An effective approximation must be made for an analytical treatment of the po-

tential, which comes from the ability to saturate the path integral in the effective

potential description with considerations made to important features of the problem,

namely the instantons present from the coupling to the topological charge [1329].

This is done under the so called dilute instanton gas approximation [306, 307, 635,

1281], using an ensemble of non-interacting instantons where the path integral in

the effective potential factorises into single constituent contributions. At zero tem-

perature [1235], it has been shown under this approximation the effective potential

must be periodic due to the topological nature of the QCD path integral exponent,

V (a) = −2

∫
dρn(ρ) cos

(
a

fa

)
. (2.60)

Combining the form of the potential in Eq. (2.60) with Eq. (2.64) leads to the

standard expression of the periodic axion field potential known as the instanton

potential, demonstrated as the black line in Fig. 2.4,

V (a) = f 2
am

2
a(T )

[
1− cos

(
NDWa

f 2
a

)]
, (2.61)

which in terms of the complex scalar in Eq. (2.45) and the potential in Fig. 2.3 is,

V (ϕ) =
λ

4

(
|ϕ|2 − f 2

a

)2
+ f 2

πm
2
π

|ϕ|
fa

(1− cos θ) . (2.62)

This is the residual potential of spontaneous PQ symmetry breaking, which after

factorisation of the radial mode in Eq. (2.62) leaves the most general, model in-

dependent configuration for the axion field. Expanding either general forms for

the effective potential in Eq. (2.57) or Eq. (2.61) around the origin up to quartic

interaction terms, yields the simple algebraic series form for the potential,

V (a) = V0 +
1

2
m2
aa

2 +
λa
4!
a4 + . . . . (2.63)
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This is the standard approach taken to axion phenomenology in a cosmological

setting, where the most general simplified case consists of an axion field described

by a potential with quadratic minimum and periodicity of 2π. The potential in

Eq. (2.61) need not be to unitary power at leading order. It is possible to find

periodic potentials of higher harmonics via higher order instanton corrections to the

effective potential. The potentials in Fig. 2.4 represent general forms of the axion

potential up to third order exponents in the periodic domain for the field. Potentials

of higher order approach the minimum of the potential faster when perturbed from

their initial position, which corresponds to accelerated dilution of the axion relic

density in a cosmological setting. The axion mass can be found under a redefinition

of the vacuum,

m2
a ≡

∂2V (a)

∂a2

∣∣∣∣
a=0

=
χ(T )

f 2
a

≡ lim
V→∞

〈Q2〉T |θ=0

f 2
aV

, (2.64)

∼ Λ4
QCD

f 2
a

, (2.65)

where χ(T ) ≡ f 2
am

2
a(T ) is the topological susceptibility factor as a function of tem-

perature with the defining energy scale for QCD, ΛQCD. The values of Q and V

represent the topological charge and a four volume normalisation factor respec-

tively. The terms in Eq. (2.65) are representative of the dimensionality of the prob-

lem. At high energies the topological susceptibility is heavily suppressed where

its dependance can be neglected and at zero temperature its value saturates to,

ΛQCD = χ1/4(0) ≈ 75 MeV [631], leading to the zero temperature formalities in

Eq. (2.58). We must be careful however when approaching the QCD confinement

scale. For high temperatures, perturbative simplifications still remain valid solu-

tions, i.e. the topological susceptibility is sufficiently suppressed as long as a tem-

perature dependant correction factor is included in the form of a power-law [635],

m2
a(T ) = α

Λ3
QCDmu

f 2
a

(
T

ΛQCD

)−n
for T & 1GeV , (2.66)
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where the values for n and α come from the fits of calculations computed non-

perturbatively on the lattice, e.g. see Ref. [1329] and must be matched to results

in the zero temperature limit. In the intimidate regime however the complicated

nature and dynamics of the QCD plasma calls for lattice simulations to maintain

sufficient consistency, given the high non-linearity. We must account for the in-

stantons interactions, replacing the dilute gas approximation with the interacting

instanton liquid model (IILM) [557, 635, 1329].

2.5.3 Standard Model Couplings to the Axion Field

Although it is commonly accepted that the full potential should contain many more

additional complex terms [572, 580, 581, 655, 656], it is understood that the first

order periodic form for the effective potential should capture the dynamics of the

axion fields to an excellent approximation [792]. In this context, it is common place

for most predictions to be entirely based on the semi-classical expansion of the

Euclidean path integral in the limit of temperature QCD under the assumption of

validity of a dilute gas of non-interacting instantons with no considerations made

for the higher moments of the topological charge distributions. Under this general

cognisance the form of the axion potential can be determined by following the work

in Ref. [159, 1335], leading to a general form of the axion effective Lagrangian, which

was initially studied using algebraic techniques under consideration of the effective

field theory. In between the epochs of the electroweak scale, EEW ∼ O(100) GeV

and the QCD confinement transition, ΛQCD ∼ O(100) MeV, the Lagrangian for

the effective theory including the axion to first order is factorised according to CP

conserving and CP-violating integration terms [598],

Leff =
1

2
∂µa∂

µa− g

8π
Ga
µνG̃

µν
a −

gaγ
4
aFµνF̃

µν − ∂µa

2fa

∑

f

Cf ψ̄fγ5γ
µψf , (2.67)

with the Maxwell stress tensor Fµν , and its respective dual, F̃ µν . The final term

in this expression represents the model dependent derivative couplings to chiral
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Figure 2.4: General form of the standard dilute instanton gas axion potential

which forms non-perturbatively, periodic in the initial misalignment angle domain

along with associated higher order forms. The three examples presented include the

standard axion-cosine potential along with two potentials possessing higher order

harmonics. Such potentials are often addressed by considering higher order instanton

corrections which allow for features such as the dilution of the axion relic density at

rates faster than a standard fluid matter component [774, 1071]. This is shown by

the green and yellow points which represent the same value of θ.

currents of the massive Standard Model fermion fields. The index f runs over the

fermions of the Standard Model and the values of gaγγ and Cf represent the axion-

photon and axion-fermion coupling constants respectively. The ratio of E/N is a

model dependant component (DFSZ = 8⁄3 [788] and KSVZ = 0 [1392] etc) and in

general, allowed to vary forming a banded range in axion-mass and decay constant

space [339, 769, 793]. Once the potential is minimised at its CP conserving value

via the dynamical relaxation of the QCD θ term the Lagrangian takes the reduced

form,

La =
1

2
∂µa∂

µa−m2
af

2
a

[
1− cos

(
aN

fa

)]
− gaγ

4
aFµνF̃

µν − LaSM , (2.68)
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the final term represents the remaining axion-Standard Model interactions. The

presence of these axial currents deems the interactions of the axions with standard

model constituents as spin-dependant, acting only between spin-polarised sources.

The significance of this statement is that ultralight scalar axion particle is not sus-

ceptible to long range scalar forces and problems with fifth force constraints present

in other models incorporating additional scalars [911], an vitally important feature

in cosmological models.

The second from last term determines a generic interaction vital in the search for

the axion via the study of axion electrodynamics representing the anomalous axion-

photon coupling [823, 854, 1300, 1305, 1354],

Laγ =
gaγ
4
aFµνF̃

µν = −gαγaE ·B , (2.69)

with electric field, E and magnetic field, B. Axions will transform into photos and

vice versa via the presence of an external B field. The model dependant corrections

stemming from the axion mass are negligible to leading order, so the only model

dependant concerns lie in the anomaly coefficients. This decay mode is the dominant

channel unless the axion mass follows, ma & 2me. The coupling constant for the

interaction in the right panel of Fig 2.2, which receives contributions via the EM

anomaly, is parameterised using the fine structure constant α,

gaγ =
α

2πfa

(
E

N
− 2

3

4 + mu/md
1 + mu/md

)

=
α

2π

(
E

N
− 2

3

4 + mu/md
1 + mu/md

)
1 + mu/md√

mu/md

ma

mπfπ
≡ α

2πfa
Cγ ,

(2.70)

where α ≈ 137−1 is the fine structure constant, Cγ is a specific constant relating to

the axion-photon interaction, with E and N the electromagnetic and colour anomaly

for the axial current of the axion field [41, 1084, 1210]. This ratio is determined to
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the grand unified model considered and are expressed via the linearised sums,

E ≡ 2
∑

f

Qf,PQQ
2
f,EMVf ≡ 2TrQPQQ

2
EM , (2.71)

N ≡ TrQPQ , (2.72)

for each of the PQ (QPQ) and EM (QEM) charges, where Vf is determined by whether

the fermion in the triangle loop interactions is a charged lepton singlet or a quark

triplet [1084]. The dimensionful couplings all possess the f−1
a suppression factor,

categorising the axion as weakly coupled, capable of avoiding detection through

such channels given the magnitude of suppression. Finally the two-photon coupling

does highlight an additional important feature of the axion in generic models. For

a KSVZ axion, the decay rate in the photon channel is expressed as [793, 1084],

Γa→γγ =
g2
aγ

64π
≈ 1.1× 10−24s−1

(ma

eV

)5

, (2.73)

which, analogous to pion decays, details the axions lifetime dependance on the fields

mass to the fifth power. If the axion is then assumed to be at least, ma . 1eV, then

axion particles are stable over cosmological timescales. The standard phenomeno-

logical concerns of the axion are broadly related to those of weakly coupled pNGBs

with global symmetries spontaneous broken at large energy scales. These extremely

stable fields which are disconnected from the PQ mechanism and the distinct PQ

symmetry breaking will not realise their scales from QCD physics, relaying only on

other non-trivial effects in order to break the general symmetries. These types of

additional scalar are often referred to as axion-like particles (ALPs). The stability,

symmetries and couplings of the generic axion define this field as a possible solution

to the strong CP problem, whilst also acting as a versatile utility capable of slotting

into paradigm solutions required in standard models of cosmology. These features

define the phenomenological landscape of the cosmological axion field.
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2.6 The Cosmological Axion

We now move away from the focus considering the axion as a specific issue surround-

ing particle physics and focus on the general understanding which we can draw from

the simplified effective potential in Eq. (2.68). Assuming the concluding points of

the previous section, if the axion field does exist then it has significantly suppressed

couplings to the other matter fields, regulated by some high energy scale, it is stable

on cosmological timescales and possesses a parametrically light mass. All of these

features actually lead the axion to be understood as not just a novel solution to

issues surrounding Standard Model unification but as something of great interest in

the standard approach to the picture of cosmology too. Interest in an invisible ax-

ion, which can contribute significantly to the cosmic energy density budget, provide

extremely interesting solutions within a range of physical models. The production

of axions can be factorised into two principle categories, thermal and non-thermal or

cold. Our main area of focus will be non-thermal production mechanisms, where we

specifically focus on axions generated specifically though the dominant mechanism

of vacuum realignment.

2.6.1 Thermal Axion Relics

In the evolution of the early Universe, thermal axions can originate alongside various

other exotics and the Standard Model matter fields [620, 926, 1143]. In general this

thermal population is usually considered in the context of models for the QCD axion

due to the general nature of symmetry breaking scales in models containing axion-

like fields and the explicit nature of the expected couplings from Standard Model

gauge theories. Axions, which possess couplings to the Standard Model, are created

and annihilated via their contact and interactions with the primordial plasma. This

density produced from the Standard Model interactions in the plasma decouples

when the pion scattering rate, π + π → π + a, drops below the rate of the Hubble

flow. At this point the interactions freeze out. The relic density is then determined
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by the temperature of this decoupling process, TD [911]. Even axions not in contact

and in thermal equilibrium with the primordial plasma, due to the scales of inflation

can be produced by scattering processes. The general number density of thermal

axions, na, is controlled and regulated by the Boltzmann equation,

dna
dt

+ 3H(t)na +
∑

i

ni 〈σiv〉 (na − na,eq) = 0 , (2.74)

for particle species, ni where na,eq represents the number density of axions in thermal

equilibrium assuming a negligible chemical potential,

na,eq =
ζ(3)

π2
T 3 , (2.75)

where ζ(x) is the Riemann zeta function of argument x. It is considered safe to

exclude index values i = a, as the axion self-interactions are suppressed by factors

of f 4
a in the quartic interactions of the effective Lagrangian defined in Eq. (2.63). The

total rate of interactions between axions and the other particle species is dependent

on the temperature of the thermal plasma. The sum over 〈σv〉 represents the rate

of axion creation and annihilation as the flux-averaged cross-section,

Γann =
∑

i

ni 〈σiv〉 . (2.76)

This average can be found by determining the momentum, the matrix element for the

relevant interaction process and the associated distribution functions. Currently the

thermal axion number density today can be expressed relative to the photon number

density nγ, as,

na =
nγ
2

g?S (T0)

g?S (TD)
, (2.77)

determined by the conservation of comoving entropy and expressed using the the

dilution factor following from the energy density in a comoving volume, with T0 the

CMB temperature today. The values of g?S can be determined using Eq. (1.74).

When TD > ma, considering standard thermal histories, the axions are relativistic
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and contribute to the effective relativistic degrees of freedom Neff , shifting the value

by ∆Neff ≈ 0.0264na/na,eq ≈ 10 [911]. Thermal axions can therefore be cosmologically

categorised similar to massive neutrinos, whereby they contribute to the overall hot

DM density. The upper bound on thermal axion masses are restricted by CMB

constraints on these hot DM models [88, 439, 440], which follow the loose bound,

ma < O(1) eV . (2.78)

It is possible to enhance these limits under the adoption of non-thermal histories

[633]. Axions with lower decay constant scales are required in order to enhance

the significance of the contributions made from thermal sources, i.e. fa . 109 GeV

[1282] for the QCD axion. Populations of thermal axions can also be removed from

the thermal spectrum under periods of inflation when some models require extra

methods in order to re-establish such a population. It should also be stated that in

general case of ALPs, particularly in string models, their couplings to QCD are far

less than the case of the QCD axion. We shall assume going forward any thermal

population of axions is significantly diluted today, focusing only on the case of cold

production mechanisms.

2.6.2 Vacuum Realignment Axions

The simple principle of vacuum realignment or misalignment production of axions

can be understood by a field in the early Universe, which may take any random ini-

tial state or amplitude. This misalignment methodology may serve as a description

for the production of the total required relic density of a cold DM fluid compo-

nent. Vacuum realignment is also very relevant for models of axion quintessence

and inflationary models with an axion serving as the inflaton field. The magnitude

of misalignment corresponds to the degree in which the field is displaced from its

potential minima. At some point in time in the fields evolution, it is allowed to

evolve dynamically, rolling towards its potential minimum with a velocity sufficient
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to induce an oscillatory period about the minimum. In the simplest case these os-

cillations are coherent, where the field is approximated under the simple system

description of a harmonic oscillator. The cosmological stability of these quanta

determines they evolve as an effective cold DM fluid on cosmological timescales.

Vacuum realignment is a reference to the dynamical relaxation of this initial value

to the potential minimum. For the axion field, causality dictates how we understand

the evolutionary properties of field. The chronological order of the epoch of cosmic

inflation and the spontaneous breaking of PQ symmetry, determine homogeneity of

the cosmological field. When symmetry breaking occurs the initial field values, θi,

generate casually disconnected regions inherent with topological defects. This can

be understood in terms of the temperature of PQ symmetry breaking, TPQ and some

critical temperature, TIN, related to scales present in inflationary models. If,

TPQ > TIN ≈ fa , (2.79)

cosmic inflation is believed to have occurred before or during the complete phase of

symmetry breaking where any initial defects are diluted away. We must also assume

that any PQ symmetries are not restored after cosmic inflation has finished. The

casual regions of θ are now stretched, homogenising a single uniform value of the

initial field over our Hubble volume. Our understanding of θ then, as a random

variable, is a uniform vacuum potentially taking any random initial phase value

from the unit circle. In model construction terms the anthropic window for axion

relic densities comes from considering a tuning to the range of initial values ‘our’

axion can take. The most dominant mode is the zero-moment mode, when the PQ

scales are beyond the inflationary scales of concern. We will see that zero momentum

modes produce a simplified description of the fields evolution as a damped harmonic

oscillator, representing the dominant contributing factor for a population of cold

axions. On scales larger than the axion coherence length, the field will behave as a

collection of cold collisionless particles. The field produces wavelike effects on scales
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of order the De Broglie wavelength,

λax ∼
2π

pax

, (2.80)

with a relativistic momentum for the axion, pax. This gives rise to fascinating phe-

nomena such as the formation of axion stars, localised and coherently oscillating

solutions of the axion classical equations of motion [405, 699, 1185, 1350]. A partic-

ular feature of cold axion dynamics we shall return to in Chapter 7.

We can understand a general lower bound on the axion decay constant, fa, by

considering the Gibbons-Hawking temperature [911] TGH, defined using the Hubble

rate when the pivot scale of primordial initial conditions became larger than the

horizon,

TGH =
HI

2π
, (2.81)

where HI is the inflationary Hubble scale. Bounds on the tensor-to-scalar ratio,

along with measurements of the CMB scalar amplitude are used to place an es-

timated limit on the lowest relevant temperature for which inflation is exhausted.

Using the requirements in Eq. (2.79) and Eq. (2.81) this fixes the general bound,

fa .
HI

2π
, (2.82)

which in turn translates across to give an approximate upper limit for the axion

decay constant [911],

fa & 8.2× 1012 GeV . (2.83)

This also relates to the reheating temperature, TRH [349],

fa ∼ TIN ≈ 4
√
T 2

RHHIMPl , (2.84)

which determines the scales where PQ symmetry is not restored once broken. If

symmetry breaking occurs beyond the scales of Eq. (2.83) then topological de-
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fects are present and must be accounted for. Topological defects are important

structures which occur during symmetry breaking phase transitions of the early

Universe. These can include topological features of the vacuum manifold such as

one-dimensional cosmic (super)strings, which can form a cosmic string network

which may have observational signatures via gravitational wave burst emissions

[376, 397, 708, 787, 1139, 1140, 1220, 1286, 1297]. Other higher dimensional vari-

ants of these solitonic solutions to the Kibble-Zurek mechanism are two-dimensional

domain walls and three-dimensional textures. Relevant to the case of axion pro-

duction are the presence of axion-strings [406] and domain walls [814], when the

symmetry breaking scales are sufficiently low. These strings can interact as they

enter the cosmic horizon, whereby they form loops and junctions, entering into a

scaling solution. These loops can decay into axions, contributing to the total axion

energy density. These decays are in general dominated by low frequency modes,

where these particles are cold and so could represent a portion of the CDM.

We have briefly touched on the nature of the periodic, dimensionless axion field

in Eq. (2.44). The number of distinct minima is regulated by NDW, the domain

wall number. If this value exceeds NDW > 1 then the axion may posses a domain

wall problem [1385], under the selection of different minima in causally disconnected

regions. There are a number of solutions to this, the most obvious solution when

NDW > 1 is to enforce PQ symmetry breaking before or during inflation as we have

covered. Other novel solutions to this situation consist of a small explicit breaking

of the PQ symmetry [1183].

The topological mechanisms in general maintain a large number of added complex-

ities in order to study the full inhomogeneous evolution of the PQ field, certainly in

the case of incorporating multiple fields. We will then from now on assume that any

PQ symmetry breaking occurs above the bound in Eq. (2.83), the axion field fluc-

tuating adiabatically with a single value of the initial vacuum misalignment which

determines any contributions to the axion energy density. We will also assume the

scales are sufficiently high enough for any ultralight fields to fix NDW = 1, factoris-
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Figure 2.5: Plots for the example evolution of the cosmological densities, ρi in

Eq. (1.42) as a function of the cosmic scale factor, a(t), with Nax = 10 axions

behaving as the total DM density where the mass eigenstates sampled with a real-

isation of the isometric S-matrix model in Section 5.2.4.1. Upper inset: Enhanced

view of the effect of multi-field oscillations on the total axion density, ρax. Lower

inset: Comparative matter-radiation equality with crossings of ρm = ρb + ρax and

ρr at zeq = 3393.

ing its presence out of any future discussions. For the considered energy scales, the

effects of cosmological axions can be easily accounted for using the salient features of

the fields cosmology, which is determined by the simple three-dimensional parameter

space,

~X = {θ, fa,ma} . (2.85)

The determination of the spectrum of the scalings in ~X will be the focus of Chapter 5,

where we now discuss their importance for the evolutionary properties of the fields

oscillatory behaviour.
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Figure 2.6: Plots for the example evolution of each contribution to the critical

density, Ωi = ρi/3H2, as a function of the cosmic scale factor, a(t). This example cos-

mology represents a realisation of the total DM with axion mass eigenstates sampled

using a realisation of the isometric S-matrix model of Section 5.2.4.1, including the

remaining Ωr, ΩΛ and Ωb terms. Inset: Enhanced view of the effect of multi-field

oscillations on the axion density parameter Ωax contributing to the critical density.

2.7 Coherent Axion Field Evolution

2.7.1 Hubble Friction

The background determining the evolution of the axion fields is assumed to be that

of a flat FLRW universe, introduced and discussed in Section 1.2. It is assumed

the field is a homogeneous component of the model, its expectation value only a

function of time, where the evolutionary equations for the axion field follow from

the canonical action for matter,

Sax =

∫
d4x
√−gLax , (2.86)
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with g the FLRW metric determinant and Lax some four dimensional effective La-

grangian for the axion field. The equations of motion for the homogeneous compo-

nent, or zero mode of the axion field, now denoted φ, are given by the homogeneous

Klein-Gordon equation by varying the canonical action in Eq. (2.86) with respect

to the cosmic scale factor and some potential V ,

φ̈i + 3H(t)φ̇i +
∂V

∂φ
= 0 , (2.87)

where we have enforced the freedom to suppress gradient effects and terms relating

the decay of the field due to its stability over cosmological timescales. Assuming the

field is suitably described by the instanton potential in Eq. (2.61), we can Taylor

expand to give an approximation of the final derivative term in Eq. (2.87),

V (φ) = Λ4

(
1− cos

(
φ

fa

))
≈ 1

2
m2
aφ

2 . (2.88)

The quadratic form of the fields potential, leads to the field equations of a damped

harmonic oscillator,

φ̈i + 3H(t)φ̇i +m2
a,iφi = 0 , (2.89)

where the over-dot denotes a derivative with respect to the cosmic time. The evo-

lution of Eq. (2.89) is epochal, due to the time dependance of the damping term.

When the age of the Universe is of order t . 1/ma, so that H(t) & ma, the field has

had insufficient time to oscillate and is over-damped, fixed at its initial value taken

before inflation occurred via Hubble friction. At this stage the field slowly rolls down

its potential, φ̇i ≈ 0, with an almost constant equation of state, wa ≈ −1. As the

Universe expands the following condition is satisfied,

ma ' 3H(tosc) . (2.90)

The value of tosc represents the cosmic time in which the axion field begins to os-

cillate about the minimum of its potential. The axion field is now underdamped
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oscillating with a frequency f ≈ m−1
a , and an amplitude determined by its initial

fields misalignment angle where the mass remains an adiabatic invariant. Example

plots for the oscillatory evolution of the axion parameters acting as a damped har-

monic oscillator are shown in Fig. 2.7. At this point in time the number of axions

in a comoving volume is fixed. On time scales t� H−1, the energy density is fixed

to ρmax = 1/2m2
aφ

2
max where the field takes on the ansatz solution φ = φmax cos(mat),

where φmax is a slowly varying function. Using the WKB approximation, the pres-

sure in the axion energy momentum tensor is expressed to leading order as,

P = ρmax − 2V (φ) =
1

2
m2
aφ

2
max cos (2mt) . (2.91)

The pressure is oscillatory, and when considered over short enough timescales it

contributes to an equation of state of state which is a non-trivial and is a strongly

time dependent function. However when analysed over timescales, t−1 & ma, the

pressure averages to zero,

〈Pa〉 = 0 . (2.92)

When the time scale passes t = tosc ∼ H−1, the axion energy density begins to dilute,

the scaling found from the ansatz field solution which gives φmax ∝ a3/2 leading to,

ρa ∝ a(t)−3. (2.93)

The explicit homogeneous energy-density and pressure of the axion zero mode are,

ρa =
1

2
φ̇+ V (φ) , (2.94)

Pa =
1

2
φ̇− V (φ) , (2.95)

where V (φ) follows the approximation found in Eq. (2.88). The equation of state

of the axion field to leading order is given by the ratio of the homogenous pressure
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and density functions which when time averaged gives,

ωa =
〈Pa〉
〈ρa〉

' 0 , (2.96)

detailing the behaviour of the zero-momentum mode axion field as non-relativistic

matter, entering the scaling regime applicable to act as a cold DM component.

The power law scaling on the time-dependant cosmic scale factor in the matter

and radiation dominated phases of the Universe found in Eq. (2.89) has the exact

analytical solution [911],

φ = a−
3/2 (t/ti) [U1Jn(mat) + U2Yn(mat)] . (2.97)

The constants U1 and U2 are determined the initial conditions. The functions Jn and

Yn are Bessel functions of the first and second kind, where the subscript n = (3p− 1)/2,

which is a function of p, is determined by the exponent factor of the fluid power law

in Eq. (1.57).

2.7.2 The Equations of Motion

When the axion field comes to dominate the comic energy density, the solution

must be solved numerically. The initial conditions of Eq. (2.97) are defined when

the equation of motion is over-damped,

φ(ti) = faθa , (2.98)

φ̇(ti) = 0 . (2.99)

Recalling the Friedmann constraint on the Hubble parameter in Eq. (1.77), the

Hubble equation can be expressed incorporating the axion fluid density defined in
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Eq. (2.94), into the cosmic budget via,

H =

√
1

3MPl

(
ρm,0
a(t)3

+
ρr,0
a(t)4

+ ρΛ + ρa

)
, (2.100)

= H0

√
Ωm(a(t)) + Ωr(a(t)) + ΩΛ(a(t)) + Ωa(a(t)) , (2.101)

where ρcrit, used to define the second expression, is defined in Eq. (1.62) and Ωa(a(t))

is introduced as the total dimensionless density for the axion. The values of ρm,0 and

ρr,0 are the usual observed matter and radiation density constants at the current

time. Combining Eq. (2.101) with the Klein-Gordon equation of motion, reveals the

following first and second order differential equations defining the complete evolution

of the field,

ȧ(t) =
1√

3MPl

√(
ρm,0
a(t)

+
ρm,0
a(t)2

+ ρΛa(t)2 + ρaa(t)2

)
, (2.102)

φ̈ = −
√

3

MPl

(√
ρm,0
a(t)3

+
ρr,0
a(t)4

+ ρΛ + ρa

)
φ̇−m2

aφ . (2.103)

Depending on the tuning of the axion parameters we can realise this newly intro-

duced field as a field which can satisfy either,

Ωa ≡ ΩCDM ≈ 0.26 , (2.104)

Ωa ≡ ΩΛ ≈ 0.69 , (2.105)

which serves as the focus of discussions in Chapter 7, for the cosmological axion

dark sector of physics.

In the case of multiple fields when more than one axion enters the cosmic horizon,

the equations must be linearised to run over a further index j, to account for j =

1, . . . ,Nax fields contributing to the total energy density, expressed via the simple

summation,

3H2M2
Pl =

∑

i,j

ρi,j , (2.106)
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Figure 2.7: Evolution of various cosmological axion field quantities using the exact

solution of the background evolution of a single axion field determined using the

scalar field equations of motion. As the axion field begins to oscillate about its

minimum the fields equations of state (lower left panel) oscillates between the limits

-1 and 1. At this point the field begins to scale as a non-relativistic cold DM

component as shown in the lower right panel.

where the sum over i extends over all axions, ordinary matter, DM, radiation, and

the cosmological constant. For all i not representing an axionic contribution each

further index j is zero for all i 6= j. We solve the axion field equations in cosmic

time, and use the Friedmann constraint to find a(t), which determines the evolution

of the standard fluid components via their equation of state. The combined effective

equation of state for the axions used to determine the cosmic acceleration parameter,

ä, is defined by the summation,

weff(a) =
Pa
ρa

=
1
2

∑Nax

i φ̇2
i − V (φ)

1
2

∑Nax

i φ̇2
i + V (φ)

. (2.107)

This represents the full temporal evolution of the effective equation of state from a

linear mixture of multiple components. In Fig. 2.5 we detail an example evolution of
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Figure 2.8: Multi-field evolution of the collective equation of state, ωeff , as a func-

tion of the cosmic scale factor for three different configurations of multi-axion models

with, Nax = 5. Each of the five model masses are scaled in order to reproduce ex-

amples realisations with DM dominated, DM/quintessence mixed and quintessence

dominated axion cosmologies.

the components of the energy density through numerical integration of the equations

of motion for Nax = 10 fields, as well as the remaining standard ΛCDM parameters.

The evolution of the corresponding critical density parameters are plotted in Fig. 2.6.

We also present a comparative plot for the total equation of state for axion fields

distributed about selected mass scales in Fig 2.8. The highest, middle and lowest

scales represent collective field behaviour suitable for DM, constrained late-time DM

and quintessence configurations respectively. At any given time, fields with H & ma,i

will behave as a contribution to the total effective DE density, ΩDE and fields with

H . ma,i behave as contribution to the total DM density, ΩDM. We classify axions

as either DM or DE components of the energy density of the Universe according

to the descriptions found in Section 1.4. We use this to determine the total sums,

Ωm = Ωb+ΩDM and ΩDE,tot = ΩΛ +ΩDE, which we will introduce in Chapter 7. The

evolution of ρm with redshift determines the redshift of matter radiation equality,
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zeq.

2.8 Dark Axions and Accelerated Expansion

2.8.1 The Axion Inflaton

Although not a focus of the work in this thesis, we shall quickly review here the

ability of the axion to represent a natural candidate to drive the hypothesised pe-

riod of inflationary expansion in the very early Universe. The scales considered

for these models are in principle disconnected from the concerns we have with the

ultralight sector of cosmology, but the dynamics and model construction are very

much relatable. The axion-inflaton potential must be extremely flat, to sufficiently

drive the expansion. This requirement is parameterised in terms of the fields slow

roll conditions, defined in Eq. (2.113) and Eq. (2.114). It is generally expected that

the axion acting as the inflaton should decay, rejecting the hypothesis that this field

can also be the DM, DE or QCD model counterparts. As is standard practise with

inflationary models the axion potential can be constrained using the tilt, ns and

the tensor to scalar ratio, rT parameters. It is expected that the primordial power

spectra are described using power laws.

The simplest form the axion-inflaton potential can take is that of natural inflation

[562], using a standard single field slow roll model. In order to embed the axion in

models of natural inflation requires a general theoretically unsettling phenomenology

requiring, fa �MPl [154]. Higher order instantons can induce higher harmonics and

corrections to the canonical potential, but this is expected with an amplitude that

is sufficiently suppressed to leading order in the non-perturbative scales in which it

appears. We do however generally expect large field excursions inhibit an instability

in the perturbative control of the potential, particularly dangerous are the quan-

tum mechanical corrections of quantum gravity [882]. There are several methods

often used to circumvent these issues arising for the case of a single canonically
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normalised field. Examples consist of enforcing the axion shift symmetry is broken

in a controlled manner, either explicitly or spontaneously. Generating enhanced dy-

namics through multi-component spectra, dynamics from couplings to other fields

and extra-dimensional operators etc. When the shift symmetries are not explicitly

broken, the axion potential is constant at all orders in perturbation theory.

A primary example of modifications to the axion inflation model in order to generate

the large field displacements is the model of axion monodromy [366, 544, 931, 1187].

These models modulates the power law spectra with periodic features, attempting

to unify the principle of chaotic and natural inflation. In the context of string theory

monodromy occurs when the axion field is wound around a particular location in

moduli space, in order to explicitly break the periodicity of the fields potential and

extend the field range of individual axions to distances exceeding the Planck scale.

The general monodromy potential takes the form [911],

V (φ) = µ4−pφp + Λ4
a

[
1− cos

(
φ

fa

)]
, (2.108)

with p some numerical value. When the field excursions are large, the potential

averages out to be described by the power law proportionality relationship, V ∝ φp.

On small scales the potential is modulated using the standard axion instanton cosine

piece. This modulation procedure leads to oscillatory features of primordial curva-

ture perturbations [544]. Further expected results predict resonant non-Gaussianity

and unique signals in primordial correlators. Features which may be detectable

in future experiments. Inflation can be assisted by the presence of multiple fields.

The Kim-Nilles-Peloso (KNP) alignment model [798] first considered the case of two

fields using natural inflation to account for possible dynamics of the effective po-

tential when rotating through the fields. Each field possesses associated symmetry

breaking scales from non-perturbative physics of varying degree. The considered
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potential with two interacting axion fields is,

V (ρ, θ) = Λ4
1

[
1− cos

(
ρ

f1

+
θ

g1

)]
+ Λ4

2

[
1− cos

(
ρ

f2

+
θ

g2

)]
. (2.109)

In this expression the values of f1,2 and g1,2 represent the fundamental axion decay

constants and θ and ρ are the initial dimensionless values taken by the fields. Under

the approximate relation, f1/f2 ' g1/g2 it is possible for the linear combination of

axions to present a combination where one field substantially lighter. Inflation is

then driven by the lighter combination entering the spectrum, where the heavier field

has settled to its minimum. A further two component axion model of inflation is the

Dantes inferno model [206], where a two-field potential displays a stable trench for

a linear combination which slowly rolls dynamically, rendering the resultant physics

essentially identical to single-field chaotic inflation.

It is also possible to generate effective trans-Planckian decay constants using the

phenomenological predictions of many-field axion models. The N-flation model in-

corporates Nax axions with identical potentials for the canonically normalised fields,

V (φn) =
Nax∑

n=1

Λ4
n cos

(
φn
fn

)
+ c . (2.110)

Each axion is defined to only allow for sub-Planckian displacements from its potential

minima, ∆ ≡ φn − φ0
n ∼ fa � MPl. When accounting for the total displacement

of the N-dimensional effective potential, the maximum is given by the diagonal of

a hypercube (see Fig. 5.1 and Fig. 5.2 and relevant discussions). The so called N-

flation type enhancement projects the total displacement to be of the order |∆φn| ∼
√
Naxfa, which for large enough values of Nax can transcend the Planckian theoretical

barrier. It is then this collective effect which acts as the effective inflaton field. The

general effective potential can find a flat direction though alignment when there is

enough degeneracy between the decay constants, each of which strictly obey the weak

gravity conjecture (WGC). The form of the N-flation model will be a primary focus

in the effective models of the ultra-light dark sector we will introduce in Chapter 5
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and has features easily translatable to the needs of quintessence cosmology.

2.8.2 A Quintessential Component

The apparent natural occurrence of ALPs in numerous high energy physics models

had lead many to consider these fields as an attractive solution to help solve one of

the greatest issues in theoretical physics to date [300, 1041, 1109, 1137]. The iden-

tification of axions as a possible clarification on issues surrounding the cosmological

constant, now identified as the mysterious dominant DE component of the Universe,

quickly became a desirable model as it offered a potential rectification to both com-

ponents of the origins of such uncertain physics, i.e. its natural realised presence,

whilst addressing the cosmic coincidence problem. Axion models for DE are often

analogous to inflationary models with one key differential feature, the energy scale

required for the field potential is deemed to be much smaller than the supersym-

metry breaking scale of the embedded GUT. The origins of such schools of thought

protrude from anthropic tuning [1339] in the string landscape [260, 293, 1229]. The

quintessence scenario postulates that the current acceleration of the Universe is

driven by the potential energy of scalar field displaced from the minimum of its

potential [1275], the string landscape provides a suitable background to realise this

proposal, the axion an obvious candidate. Examples of quintessence models in-

clude tracker/freezing models, which suggest functional forms to the quintessence

potential tuned to reproduce the measured behaviour of dominant energy density

component at late times in the cosmic history, via so called tracker solutions which

fix the equation of state as constant during the matter era [302, 1094, 1347]. Other

models which require exceptionally flat potentials are often referred to as thawing

models, which if motivated by an axion-like field [322, 567, 707], inherit the required

properties from the protective shift symmetries the axion enjoys to all orders or

perturbation theory. The canonical axion potential can give sizeable contributions

to a negative energy density factor of the vacuum energy, potentially alleviating
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the requirements of external sources in the model to contribute. Generic late-time

potentials predict the DE axion mass must be ultralight,

ma,quin '
Λ2
a

fa
≡ H0 ∼ 10−33 eV , (2.111)

to ensure the required dynamic shallowness of the potential, with H0 the present-day

Hubble rate. The scale of the dynamically generated potential can be approximated

as,

Λ4
a '

Observational

10−130 M4
Pl �

Theoretical

M4
Pl . (2.112)

There is a general degeneracy between the initial field displacement and the re-

quirements for large decay constants, which can be constrained by cosmological

measurements [1198]. In order for the axion to play a suitable role in quintessence

models it must vary sufficiently slowly on cosmological scales, defining the general

slow role conditions for the potential,

(
V ′′

V

)
MPl ≤ 1 , (2.113)

(
V ′

V

)2

MPl ≤ 1 , (2.114)

where the form of the instantonic periodic potential suggests that V ′′/V ∼ (V ′/V )2 ∼
1/f2

a , so that in general we require,

fa &MPl . (2.115)

This is a notable issue for axion quintessence models where the inclusion of an axion

field with a trans-Planckian decay constant in a simple sense violates the WGC,

determining gravity as the weakest force [100]. Tensions from standard swampland

conjecture with the WGC however fix the general bound on the decay constant as,

αfa .MPl , (2.116)
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where α ≤ 1 is a suppression factor specific to the model considered. In string

theory the suppression factor is generally related to Sinst (the action of the string

instanton that generates the axion potential) as considered in Ref. [1230], the size

of the instanton action over the corresponding cycles responsible for the axion. In

order to generate a suitable axion potential for successful quintessence requires,

Sinst ∼ 200− 300 , (2.117)

which for multi-field style quintessence fixes,

Nax & S2
inst ∼ 104 . (2.118)

Currently there have been numerous ways in which the expansive string landscape

has been able to tread carefully around the wall of the WGC and UV physics. These

are often enforced dynamically with the use of clever N-flation [172, 353, 457] type

enhancements to the vacuum energy through the presence of multiple ultralight

scalars which become dynamical at late times. These models often incorporate

the alignment mechanism [762, 798], a topic that will be covered in more detail in

Section 5.1.1.1. These ensure higher order corrections to the field potential, with

higher harmonics in the expansion over the instanton contributions, do not spoil the

required flatness. The window in which these fields can enter the cosmic horizon

defines the nature of their evolution through various constraints. For early DE the

critical scale defines the mass of the axion,

ma,quin ∼ Hc ∼ H0 ∼ 10−27 eV , (2.119)

which falls in the parameter space of potential ultralight DM. This region is prob-

lematic due to cosmological observations and strongly constrained by cosmological

observations of the CMB and galaxy data [70, 710]. Such models have interest-

ing features such as the ability to help alleviate the Hubble tension [1072, 1201].
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If the decay constant is assumed to follow and conform to Eq. (2.116), then we

can consider the maximum value of the field decay constants to be of the order,

fa,max ∼ MPl ∼ 1018 GeV. For late-time DE this can be achieved by ensuring the

initial displacement of the axion misalignment angle is maximised, θ ∼ π, in turn

maximising the potential required to sufficiently mimic the behaviour of DE. If a sin-

gular axion is present in the particle spectrum then this method would only appear

to translate one fine tuning problem to another, the cosmological constant with the

fields initial displacement whilst also failing to enlighten us further on the subtleties

of the coincidence issue. Often then to relieve these two tensions naturally it is pro-

posed that the so called historical singular quintessence field [210, 211, 323, 1386]

is found either within or assisted by an ensemble of ALPs in order to enforce a rea-

sonable statistical degree to the serendipity of the solution. This scenario is indeed

well motivated in the string landscape and something that will be discussed in Sec-

tion 3.3. Originally this idea gained traction from the myriad of string vacua often

found in the string landscape. Assuming the Universe is governed by some string

vacuum which finds its place amongst vast number of the possible vacua (i.e. 10500)

then both the coincidence problem and statistical grievances of late time accelera-

tion are potentially solved in the framework of the string axiverse. In Ref. [765] it

was argued that a ensemble of axion fields with sub-Planckian decay constants in

the spectrum could result in sufficient conditions to account for DE, their mass hi-

erarchy used account for a reasonable solution to the coincidence of the problem by

proposing an axion field should become dynamical approximately once per decade,

i.e. the instanton action changes O(10) per field and is found using the proposed

axion mass function,

ma =
Λ2
a

fa
' H0

µ2
12

α0.1

e−
(βa−223.1)

2 . (2.120)

The values of βa and µ12 are O(1) dimensionless constants used to tune the scales

of the theory. The value of α0.1 is a reference to fixing the approximate decay

constant scales to fa ∼ 0.1MPl ' 1017 GeV. Under certain considerations with

fixed decay scales, it was found it only requires 24 axions to generate a 1% chance
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or obtaining sufficient DE, where the 24th axion is the quintessence field. The

symmetry breaking scales in this model are bounded under problematic UV physics

limits and the fine-tuning is restricted, however there is a phenomenological trade off.

The approximate equidistant logarithmic steps each field mass takes in Eq. (2.120)

places some of the first 23 fields in constrained problematic regions of the parameter

space (see Fig. 5.3). These constraints can be avoided if the fields are allowed to

dissipate sufficiently quickly, which can be achieved if their potentials take the form

of the higher harmonics in Fig. 2.4 [765, 1071]. We will argue in Section 5.2.1 these

issues can be avoided whilst realising a large number of fields in the spectrum via

motivations of modality in the mass function and separated scales for clusters of

fields determined by universal laws, as opposed to point measure masses.

2.8.3 A Fuzzy Field

It is known cold DM models with a vanishing equation of state are the general

leading frameworks to account for the mysterious majority of unaccounted for matter

content in the Universe. Axions in principle satisfy two criterion which make them

excellent alternative solutions to the problem of DM identification, arising from

weakly coupled string models. If the axion relic population is formed pre/during

inflation via the misalignment mechanism3 then it is non-relativistic, with potentially

sufficient quantities to reproduce the complete DM density required. They are also

effectively collisionless, only relying on long range gravitational interactions [13,

458, 1074]. The original models of the axion covered in Section 2.4.2 provide the

possibility that if the axion mass simply obeys, ma & 10−27 eV, then the axion

energy-density dilutes equivalent to non-relativistic particles after matter-radiation

equality, ensuring their candidacy to provide the full DM density of the Universe.

Ultralight axionic DM which approaches the scales of early DE is heavily constrained

3We can focus our general arguments on realignment production as there is always a contri-
bution to the DM density from this mechanism. Although other mechanisms exist as discussed
in Section 2.6, these are often model dependent and can have effects on the tensor modes on the
CMB, requiring a suppression to the magnitude of their contributions. See Ref. [453] for details.
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Figure 2.9: Left panel: Temporal evolution of the standard cosmic energy density

components, along with two additional ULA fields present in the spectrum. The

oscillatory behaviour of the total density is visually observed twice, when the ax-

ion masses are sufficient separated so that the heavier fields oscillations are heavily

damped at a (tmaosc), the time of onset oscillation of the second axion with a reduced

mass. The fields initial conditions mean the total contribution to the matter density

at the present time is insufficient, avoiding constraints such as those in Ref. [710].

Right panel: Schematic representation of late time oscillatory behaviour of the effec-

tive equation of state defined in Eq. (2.107) for the two-axion effective matter fluid

with features of multi-oscillatory behaviour.

via acoustic peaks of the CMB and shapes of the amplitudes of the matter power-

spectrum [710]. An example field evolution of a two-component axion cosmic density

is shown in the left panel of Fig 2.9 which avoids such constraints, highlighting its

ability to only contribute a minor fraction of the total DM today. The right panel

of Fig 2.9 shows the two-component oscillations of the effective equation of state

when each field has a significant hierarchy between the masses. To highlight the

strengths general ultralight pseudoscalars have as a DM candidate we will focus

on a leading model incorporating an ultralight axion (ULA) field as an alternative

approach to the issues of DM. There are numerous small-scale problems with galaxy

formation in concordance cosmology. These consist of the missing satellites problem

[805, 853, 1199], the Too-Big-To-Fail Problem [265, 266, 1014, 1117], the Core-Cusp

problem [251, 545, 913, 1393], and the Plane Satellites Problem [964] to name a

few. The true nature to how these issues arise is currently unclear but the exotic

nature of DM on small scales is a troublesome part of the problem that must be
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understood.

A modification to the standard models of the cold and collisionless axion field to ad-

dress these issues is known as fuzzy DM (FDM) or wave DM [70, 615, 722, 1040, 1078,

1152, 1190]. FDM postulates the scalar-particles are initially in a Bose-Einstein con-

densate (BEC) which yields kiloparsec scale de Broglie wavelength properties for the

DM field. This allows for the field to support the cores of galaxies via their exerted

quantum pressure. The free parameter of the model is the axion field mass, ma. The

limiting window which could potentially simultaneously solve the Missing Satellites

Problem, the Core-Cusp Problem, and perhaps the related Too-Big-To-Fail Prob-

lem is then of great interest. These models are often seen as much more beneficial

compared to say warm DM as these have non-negligible free-streaming properties

which in turn suppresses structure formation on small scales.

The ultralight dark scalar particles are required to fall inside the approximate mass

window,

10−22 eV . mFDM . 10−21 eV . (2.121)

The FDM mass is often then parameterised as,

m22 ≡ mFDM/10−22 eV , (2.122)

where the approximate time the scalar field approximates to CDM is [974],

tosc ∼
(
10−22 m22 ev

)−1 ' 0.2m−1
22 yr . (2.123)

When the scalar mass is ma & 10−20 eV the Jeans scale acts as the geometric mean

between the dynamical scale and the Compton scale,

rjeans =
2π

kjeans

= π
3/4 (Gρ)−

1/4 m
−1/2
22 , (2.124)

and is suppressed significantly such that FDM becomes indistinguishable to CDM
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Figure 2.10: Example Axion-photon interaction via the Primakoff process, present

in an external electromagnetic field realised through the two photon coupling to the

axion particle, which can be reverted to allow for the conversion to either photons

or axions. This is the dominant process in many experimental techniques to search

for the axion which arising from the properties of the electromagnetic anomaly.

models, where kjeans is the Jeans wave number [722]. This fixes an approximate

demarkation boundary between CMD and FDM axion cosmologies. The relic density

of the FDM axion with initial field value φini, is parameterised as [453, 808],

ΩFDM ' 0.16
√
m22

(
φini

1017 GeV

)2

ln
3/2

[
e

1− (φini/πfa)

]
, (2.125)

where the logarithmic correction is required for anharmonic effects. It is not hard

to find limits in which ΩFDM = ΩDM as motivated by both particle physics and

cosmological observations. Fields possessing high scale decay constants with masses

of order, ma ' m22 are of particular interest for our analysis. In particular we

will discuss constraints on the mass bound in Eq. (2.121) in the context of the 21cm

signal and BH constraints with the recently imaged supermassive BH (SMBH) M87*

and a spectrum of fields in Section 6.4.7.

2.9 Experimental Searches for the Axion Field

Given the wide landscape of axion masses and associated energy scales quoted in

countless models, a small number we have touched on above, many have sought
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to develop practical and cleaver solutions in order to search for indications of a

signal representative of the possible presence of an axion-like field in the low energy

spectrum. Although ALPs have remained elusive so far, substantial effort has been

made to exclude and limit the axion parameter windows, where these inferences can

be used to drive how to construct and shape future models. The family of invisible

axions in Section 2.4.2 proposed the first insight as to how consistent models of the

axion offered a pretty vexatious freedom in the sheer extent of the fields feasible

mass range. We have already commented on how beam dump experiments quickly

ruled out [790] any considerations for the original visible axion model of Section 2.4.

The general assumption that the axion decay constant scale should be raised and

fixed towards more fundamental scales naturally manifests issues surrounding the

now significantly suppressed couplings to probeable matter contents of the Standard

Model, greatly increasing the difficulty of the task at hand. For example, for the

case of the QCD axion the couplings expressed as a function of the inverse energy

of the axion field scale, f−1
a are [739],

gaf ≡
Cafmf

fa
= 1.75× 10−13Caf

mf

GeV

ma

µeV
, (2.126)

gaγ ≡
α

2π

Caγ
fa

= 2.0× 10−16Caγ
ma

µeV
GeV−1 , (2.127)

gaγn ≡
Caγn
mnfa

= 6.4× 10−16 ma

µeV
GeV−2 . (2.128)

Axion experimental searches rely on these couplings which are often as general as

possible to account for the ability to search for both the QCD axion and ALPs

arising in extended theories such as general string compactification models. Var-

ious observational sources have been used to constrain these couplings [739], i.e.

neutron star cooling [1167] and SN1987A ν-pulse duration [621] etc. The one-to-

one correspondence of the QCD axion decay constant to its mass when realising

the new axion symmetry forms a single function line in the axions two-dimensional

parameter space. For ALP concerns it is often argued there is an independence

between these two parameters, where the field couplings and its mass are relatively
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free to be tuned, turning the functional parameter line into a parameter window.

For an extensive overview of current searches for ALPs and the QCD axion see

Refs. [623, 739, 911]. There are recent interesting suggestions that the boundaries

between searches for the QCD axion and purely derivative couplings of spin-0 fields,

could in fact very much be the same endeavour [289]. The couplings and symmetries

of the QCD axion and ALPs ensure there are several key physical processes which

can be measured. Below we detail a selection of the experimental methods used to

look for the axion which is certainly far from an exhaustive list, but highlights the

diversity and intriguing nature of the approaches taken thus far:

• Axionic DM direct detections using haloscopes - One of the classical experi-

ments in order to approach the difficult task of detecting such weakly coupled

and ultralight fields [1184]. Currently the most promising active experiment

looking for signs of DM is the Axion DM eXperiment (ADMX) [118]. If the

axion is the DM particle, then when it enters the microwave cavity with an

applied magnetic field, it interacts using the photon coupling to produce a sig-

nal which can be measured. The structure of the cavity is tuned so to enhance

this process ensuring resonant conversion rates. ADMX is tuned to look for

axions with masses, ma ≈ 10−6 eV. Future upgrades to ADMX and similar

experiments will start to rule our larger portions of the axion mass space in

the classical QCD axion window with fa ≈ 1012 GeV.

• Black hole superradiance - The primary focus of Chapter 6, BH superradiance

offers strong constraints though the fields gravitational couplings for ALPs

with a Compton wavelength comparable to the Kerr radii of both stellar and

supermassive BHs. Principally a model independent process, this interaction

in principle does not rely on couplings to Standard Model matter fields or the

cosmological energy density, as these quasi-stable bound states can form from

quantum fluctuations of the vacuum. The scalar cloud which forms may also

offer interesting dynamics to source monochromatic gravitational waves which

could be detectable by future detectors. We will cover the fundamentals of this
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subject along with a discussion of obtained results in more detail in Section 6.2

and Section 6.4 respectively.

• Solar axions - Axions possess a two photon vertex which can lead to the

production of photons in an external electric or magnetic field though the so

called Primakoff process [123, 448], as shown in Fig. 2.10, which was initially

detailed in terms of pion physics [1081]. The solar playground of our sun may

give indications to the presence of axions due to the electromagnetic fields

in the interior of the stellar plasma, which can generate a solar-axion flux

measurable on the earth. Contributions can also occur from other ionised

sources. The approximate differential flux from solar ALPs is [623],

dΦa

dE
= 6.02× 1010

( gaγ

10−10GeV−1

)2

E2.481e−
E/1.205

1

cm2 s keV
, (2.129)

where E denotes the energy in keV. In the context of the QCD, many of the

approaches taken are currently not satisfactory in order to probe the model

parameter space.

• Light shining through a wall - One of the more captivating methods of detection

based on its apparent simplicity and ‘pure’ laboratory setting [39, 89, 215,

1096]. When a laser is shinned at a surface or ‘wall’ this represents a production

region in which a magnetic field is applied, so that axion conversion occurs and

the particles are free to travel through the experimental wall. The process can

be reverted on the other side in order to convert the axions back into photons,

which come with an associated probability of conversion [911],

P (γ → a) =
4g2

aγB
2ω2

m4
a

sin2

(
m2
aL

4ω

)
, (2.130)

where ω denotes the energy of the photons and B a coherent magnetic field of

length L. Using this current constraints are not as exciting as those imposed

from astrophysical sources giving the current strongest bounds [911], gaγ .
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7 × 10−8 GeV−1 (ma . 10−3eV) [507], which may be enhanced with future

experiments [136, 314], with Any Light Particle Search II (ALPS-II) sensitivity

expected to hit gaγ < 2× 10−11.

• Vacuum birefringence and dichroism - The vacuum of of a static B-field is

birefringent and dichroic [697, 732, 1184] due to Primakoff interactions be-

tween axions and photons mediated by virtual electron loops [890]. Mag-

netic fields induce vacuum birefringence where any incident electromagnetic

radiation with parallel or perpendicular polarisation modes perpendicular to

the B-field posses a different refractive index, stemming from the one-loop

QED corrections to the field equations. The dichroism amplitude is given by

[911, 1384],

ε = sin 2θ

(
BLgaγ

4

)2 [
sin(m2

aL/4ω)
m2
aL/4ω

]2

, (2.131)

where θ is the angle between the magnetic field and the remaining parameters

are defined according to those found in Eq. (2.130). By assessing evidence of

any polarisation rotation, constraints can be translated to axion couplings and

masses. Currently results have proved to be inconclusive, initial Polarizzazione

del Vuoto con LASer (PVLAS) signatures deemed to posses no relation to

solutions of the strong CP problem or galactic DM.

The methods above represent just a snapshot of the task at hand in either determin-

ing the nature of the current hypothetical QCD axion or any signs of possible exis-

tence for similar ALPs. Other methods include, the Cosmic Axion Spin Precession

Experiment (CASPEr) [294], which proposes an interesting concept to revert away

from traditional reliance of the two-photon vertex, underground ion detectors [103],

spin dependant fifth force experiments [900], polarisation experiments [430, 1242],

Primakoff-Bragg in crystals [740] and Pick up coil and LC circuits [759]. In fact if we

dig deeper into unification territory at the must fundamental scales, models actually

show almost surely under the assumption of their validity, the QCD axion is most

likely not a degenerate state of scalar ultralight matter we should expect to find.
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The problem of understanding this space seemingly gets significantly more complex

when we consider the fact these fields are often realised as multifarious constituents

of a much larger and more complex framework, related to the size and structure of

the extra-dimensional spacetime manifolds found in the world of string theory and

the extensive landscape of possible vacua forming the string axiverse scenario.



Chapter 3

The Landscape of String Theory

and The String Axiverse

“The best that most of us can hope to achieve in physics is simply to

misunderstand at a deeper level.”

To Jagdish Mehra, in Berkeley, California

Wolfgang Pauli (May 1958)

3.1 A Landscape of Landscapes

3.1.1 An Outer Dissonance

There are a number of compelling models or frameworks proposed to tackle form-

ing a theory of quantum gravity. One of the main features they all share is that

their current appearance in the literature is far from close to being complete. The

two theoretical pillars in this endeavour are superstring theories [184, 235, 387,

461, 625, 629, 800, 1063–1065, 1262, 1344, 1366, 1399] and loop quantum gravity

[115, 116, 245, 824, 1121–1123, 1258, 1259]. Some major and some minor offshoots

are causal-set spacetime [247], asymptotic safety [1240, 1336], shape dynamics [156],

superfluid vacuum theory [1191–1193], twistor theory [1043, 1045] and E8 theory

133
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Figure 3.1: Propagation of the traditional fundamental components of quantum

theories. Relativistic point particles (left example) map out their historical trajec-

tories using a world-line which is defined by a single parameter τ often associated

to the proper time. The remaining two examples represent the propagation of open

and closed fundamental strings, respectively, of finite length `s, defining the space

of the string worldsheet.

[869]. Perhaps the metaphorical torch barer of these models based on its potentially

rich particle content, generated from the elementary vibrational modes of funda-

mental one-dimensional extended objects, is the broad framework of string theory.

These objects are parameterised with a one dimensional spatial direction, σ, which

propagates in time, τ , both of which define the functions Xµ(σ, τ) which map out

the strings worldsheet, with coordinates (σ, τ). The string worldsheet action deter-

mining the evolution of an initial configuration to a final state for a free propagating

string, is a sum over string worldsheets, where the action contains terms proportional

to,

S ⊃
∫
dσdτ∂αX

µ∂αX
νGµν(X) , (3.1)

where the index i runs over both the temporal and spatial coordinates and Gµν(X)

is the spacetime metric. It is possible to define two types of propagating string,

those of open strings and closed strings. Each of these propagate in an open interval

and a closed circle respectively, as shown in Fig. 3.1, possessing a different number
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of degrees of freedom from their different respective boundary conditions, along with

the nature of their left and right moving modes. Originally formulated with the study

of scattering amplitudes associated to hadronic bound states in the 1960’s [1290,

1299], these studies eventually lead to the conceptual formulation of fundamental

relativistic strings from the works of Susskind, Nambu and Nielsen [570, 1224, 1225].

If such models were to connect with the rapidly forming Standard Model of particle

physics, parity violation had to be accounted for. This process tends to see the

introduction of gauge anomalies which raise complications in constructing a well-

defined quantum theory. Initially quantum anomaly considerations for a well defined

quantum theory, along with gauge symmetry formalities in order to quantise these

strings, offered two very surprising results. The first was an analysis of the string

world-sheet action showed the arguments of standard quantisation remained invalid,

unless the spacetime considered was in twenty six dimensions [875], containing a

particle spectrum hard to control in terms of tachyonic states. These models of

the bosonic string are now firmly ruled out for numerous obvious physical reasons

but they did lay the groundwork for a series of far more interesting superstring

theories, with the incorporation of the supersymmetry algebra. In this case the

string worldsheet now inherits anti-commuting fermionic coordinates representing

spacetime vectors of fermionic spinors. The general action now contains terms for

the superstring which compared to Eq. (3.1) for the bosonic string are proportional

to,

S ⊃
∫
dσdτ

(
∂αX

µ∂αX
µ + ψ̄µρα∂αψα

)
, (3.2)

where ρα are two-dimensional Dirac matrices with indices, α = {0, 1}, with ψµ and

ψ̄µ representing left-moving and right-moving fermionic coordinates respectively.

The general introduction of a supersymmetric spacetime, with fermionic degrees

of freedom on the string worldsheet, offered a number of comforting and exciting

prospects to the particle spectrum. Firstly the number of dimensions is rather dra-

matically reduced to a much more congenial ten. Secondly the tachyonic states

present in bosonic quantisation are removed via the new supersymmetric symme-
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try and familiar zero-point energy cancellations. Furthermore issues regarding free

closed superstring quantisation and the apparent massless spin-2 states actually

developed a courteous relationship with the unwanted massless spin-1 open string

counterpart. It quickly became accepted closed and open strings were in fact de-

scriptions of gravity and gauge theory interactions, all that theorists would need

in principle to form the basis of a quantum theory of all the fundamental forces of

nature. The spin-2 component, which can now be associated with the graviton via

quantisation of the closed string, also generates a further degree of freedom known

to as the dilaton. This scalar component is part of the moduli sector in string the-

ories, which in principle can take an arbitrary value for its VEV and dynamically

determines the values of the string coupling constant, gs. Understanding the prop-

erties of a theories moduli represent one of the most important issues in superstring

model constructions today.

The second striking result from the process of removing anomalies which are not

dependant on the physics in the UV sector, is how anomaly freedom leads to five

distinct consistent superstring theories. These can be roughly categorised according

to the incorporation of open and closed strings which are historically defined as Type

I and Type II models respectively. Type I is often reserved to reference theories with

both open and closed string excitations about the vacuum. Type II superstring theo-

ries historically contain only oriented closed strings, where it was later realised these

theories could include open string using structures known as D-branes. In both the

Type I and Type II cases their low energy limits reduce to Type I and Type II su-

pergravity theories respectively. In the critical ten-dimensional limit anomaly-free

supergravity theories were found in several perturbative limits based on different

gauge group structures. Type IIA by definition is free of anomalies due to its non-

chiral formulation. In the case of Type IIB theories its resulting supergravity limit

was found to be anomaly-free by using non-trivial cancellations from various anoma-

lous contributions [67]. In a similar nature, model consistency was found in the Type

I case when theories were coupled to super Yang-Mills theories. In Ref. [628] it was



The Landscape of String Theory and The String Axiverse 137

shown that anomaly-free field theories existed with the special gauge group config-

urations, SO(32) and the exceptional gauge group E8 × E8, where all gauge and

gravitational anomalies rather nicely cancel. Shortly after these results, the formu-

lation of the Heterotic string [636] was discovered using the twenty six dimensional

bosonic string for the left-movers and the ten-dimensional superstring for the right

movers. This made it possible to build in the distinct gauge groups of dimension 496

and rank 16 which enjoy a N = 1 supersymmetry in ten-dimensions. There were

by the end of the first superstring revolution five-well defined UV-finite perturbative

field theories satisfying all the general requirements such as unitarity and causality

etc. A focus was then placed on the anomaly freedom coming from restrictions on

the gauge groups themselves, rather than traditional concerns of representation lim-

its in four-dimensional field theory and the Standard Model. Although the shape of

this framework still contained seemingly arbitrary features, the discovery of string

dualities and the ability to relate all five superstring theories to one another and a

common vacua of a more fundamental theory, provided a very positive, refreshing

outlook and focus adopted over the second superstring revolution.

3.1.2 An Inner Harmony

The second superstring revolution brought about a transition of sorts from natural

pessimism which began to manifest itself at the end of the first revolution, to eager

optimism in the use of string theory as a viable physical model, the inertia of which

is very much apparent today. This was understood by the formation and concep-

tualisation of the string landscape and the understanding that a vast number of

four-dimensional theories were actually related. The primary catalyst for this and a

vital theoretical discovery in the historical construction of superstring theories are

the remarkably unique duality conjectures. These conjectures, at the rudimentary

level, offer a teasing insight into how we might reach the non-perturbative sector

of superstring theories, representing a very deep connection between our current
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Figure 3.2: The unified space of string theories. Asymptotic expansions around

the cusps represent the limits of the weakly coupled superstring theories, which

can be studied under the perturbative regime. Currently most of the moduli space

associated to the eleven-dimensional quantum theory of M-theory cannot be studied

using these limits. The dualities on the outer curves are examples of symmetries

used to overcome this issue in order to study the low energy sector using supergravity

theories. It is possible that some self-dual point not represented here corresponds to

the arbitrary dimensional limit of the true fundamental theory. Whether or not “M”

should sit in the centre of this diagram is unclear. This has previously been referred

to as U-theory [1171] and strongly relates to the notions of string universality. Energy

or the distance from the Bogomol’nyi-Prasad-Sommerfield (BPS) limit, increases

(decreases) and we move away from (towards) the page.

consistent field theories. These conjectures are understood as a series of equiva-

lence symmetries, which have to date been well tested. They still however, due

to the impracticalities of the non-perturbative limits in this sector, remain a fun-

damental belief in the structure of the string landscape, which have lead to many

interesting extensions to the original models. The two principle dualities are the

target space duality or T-duality [65, 605] and the strong-weak duality or S-duality

[1168]. Consider two arbitrary superstring theories A and B. When theory A holds

an equivalence on a space with large volume to theory B compactified on a space

with small volume, these two theories possess a T-duality symmetry, which can be
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expressed perturbatively. This duality relates two string theories when we consider

one of the spatial dimensions as S1. If each theory A and B have a ten-dimensional

geometry R9 × S1 their relationship can be expressed as,

R1R2 = α′ , (3.3)

where R1 and R2 are the circle radii in each theory and α′ = `2
s is the Regge slope

parameter related to the fundamental string length. This defines the general T-dual

relationship,

R→ α′

R
, (3.4)

where KK excitations in one string theory are interpreted as a winding-mode excita-

tions in another. T-duality symmetry relates both the Het E8×E8 and Het SO(32)

theories as well as Type IIA and Type IIB theories, defining relationships between

two limiting points or cusps in a continuous moduli space of many quantum vacua

as shown in Fig. 3.2. The discovery of T-duality was also vital in later discoveries

such as orientifold constructions, key components in understanding the low energy

spectra in particular superstring theories. The second principle duality, S-duality

can be expressed as the quantum mechanical equivalence of two theories via the

following simple relationship,

g = g̃−1 , (3.5)

where a weakly coupled theory (g) is related to a strongly coupled one (g̃). The

ability to perturbatively expand g ensures non-perturbative information can be ob-

tained about the theory described by g̃. S-duality relates Type I theories to the Het

SO(32) as well as Type IIB theories to themselves. This provides information on

the strong coupling regimes for each of these three theories. The unification of these

two dualities is often referred to as unification duality or U-duality [729, 950, 992].

When theory A is compactified on a space of either large or small volume and it

holds equivalence to theory B at strong or weak coupling respectively, then A is the

U-dual of B. These studies lead to a further mathematical symmetry, known as mir-
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ror symmetry which has lead to a series of extremely powerful physical statements

in what initially appeared to be a vastly complex geometrical space (see Fig. 3.5).

This symmetry is now best understood with its foundations related to T-duality

[1223] and will be briefly touched on in Section 3.3.6. The nuances of how these du-

alities act on each of the weakly coupled limits, which can be thought of as mapping

one point in the moduli space to another, combined with the inclusion of D-branes,

lead to a very interesting result. It was determined that in the case of the Type IIA

superstring and the E8×E8 heterotic string an eleventh dimension with a size of the

order, gs`s is revealed in the limit of strong coupling [729, 1264]. This mutual limit

and non-perturbative extension of superstring theory, defines the branch of study

known as M-theory [715, 1162, 1365], often used to refer to a consistent quantum the-

ory of gravity in eleven dimensions. In the weakly coupled limit M-theory reduces to

a theory representing the limiting critical dimension of supergravity determined by

supersymmetry. Unlike the previously defined ten-dimensional theories, M-theory

has no dilaton and therefore no perturbative expansion. In the limit of decompactifi-

cation, it is a theory constructed using two-dimensional extended objects referred to

as membranes as opposed to one-dimensional strings. The traditional dilaton in the

weakly coupled limits is a scalar mode of the eleven-dimensional metric, detailing

M-theory as a more fundamental formulation. A particular use of our understanding

of these dualities in an attempt to define results in the non-perturbative regime is

M(atrix)-theory [152, 1227, 1251], which defines a quantum theory of membranes in

eleven dimensions.

Of course all of these beautiful symmetry properties, from a physicists perspective,

only have significant value if they can fully connect to the experimental landscape of

four-dimensional physics. Chiral fermions arise naturally from theories with N = 0

and N = 1 supersymmetry, so this is often deemed a preferential starting point to

aim for. In a general sense there has been real traction to believe these theories act

as a very natural candidate to understand many of the mysteries coming from the

Standard Model. Even within these consistent theories there are several pervasive
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issues for phenomenologists. An obvious one is the space of vacua is extremely large.

The famous quoted number of possible flux vacua [112, 260, 428],

Nflux ∼ O(10500) , (3.6)

a number on the surface, which seems to rule out any practical methods of scan-

ning or exploring the possible total space. At this current stage in the evolution of

these theories, a fascinating and very necessary task which presents itself is the ex-

ploration and contemplation of string theoretic features which are common in what

appears to be all current consistent formulated string models, or rephrased, common

in entire classes of compactification methods. Possible inferences can then be drawn

from these underlying symmetry concepts or features. These theoretical features

could lead to what is one of a number of possible smoking guns to the presence of

superstrings. The process of connecting the critical higher dimensional spaces to

the four-dimensional universe predict the appearance of generic signatures, such as

fundamental scalars which act like the axion of the Standard Model found in the

discussions of Section 2.4. How exactly these manifest themselves is understood in

how we stabilise the scalar moduli. It should be noted in the following sections a

substantial number of formulae are quoted without derivation or explicit construc-

tion, as this is beyond the scope of this thesis. They are therefore included only to

provide some context to the complexities behind the nature of axions apparent in

four-dimensional extensions to the Standard Model of particle physics.

3.1.3 String GUTs

Although string theory in principle provides us everything we need to describe the

world we observe, gravitational interactions, non-abelian gauge groups and chiral

matter etc. the task of cementing these features in a more fundamental GUT theory

representation stemming from a string model is a tricky task. The general consider-

ation and excitement surrounding GUT models embedded in some string framework
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has seen the construction of many techniques aiming to arrive at the Standard Model

and unify these two visions. From the ground up, a pillar of this endeavour con-

cerns the incorporation of the important feature that the gauge coupling constants

of Eq. (2.1) appear to unify in the minimal supersymmetric extension of the Stan-

dard Model (MSSM) [455, 1337]. It would then appear we are on the right track

by considering the familiar matter content of the Standard Model to be part of a

more simple group (for example SU(5) or SO(10)). As discussed in Section 2.1 the

Standard Model of Particle Physics contains a large number of free parameters. The

ability to reduce this number is a natural feature of GUTs through the incorpora-

tion of a relationship between the matter fields and interactions at some high energy

scale, i.e. MMSSM ' 2 × 1016 GeV. For a GUT construction the desire of unifying

the three Standard Model gauge couplings will occur when they meet at a common

value, αGUT = g2/4π at the relevant fundamental scale. The value of g represents the

gauge coupling constant of the gauge unification group. In the context of string the-

ory, given the vast space the theoretical landscape offers, suitable phenomenological

guidelines (gauge coupling unification, proton decay, the chiral spectrum, Yukawa

couplings and neutrino masses etc.) are often considered as solid aims to guide the

search for ‘realistic’ string models. This represents just one example of a suitable

strategy deployed to deal with the vast numbers of four-dimensional vacua. In its

minimal implementation unification offers a number of set backs. One key example

being SU(5) GUT extensions incorporating a standard Higgs sector and the ap-

parent tensions between the bounds on proton decay [837, 983]. Given the various

extended freedoms we may encounter in the landscape, string theoretic models may

well hold the key to unlocking these issues from details stemming from the top down

approach to unification [79, 181, 255, 841, 971]. It is therefore of great importance

to understand how unification may be realised in string theory where these prin-

ciples motivate the exploration of a subset of vacua in the landscape. Of course

traditional supersymmetric GUTs are not a unique path to unification although

it does appear the most natural, other examples and extension [449] also include
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heavy string threshold corrections [337, 450, 451, 465, 772, 928, 929, 984, 1059],

strong-coupling effects [1367], non-standard hypercharge normalisations [452, 733],

extended MSSM matter [450, 451] to name a few.

Historically a significant part of the formulation of GUTs with string theory belongs

to the heterotic String and the ability to naturally realise GUT subgroups with a

promising spectrum at the perturbative level. We have already touched on an ex-

ample of this group structure in the introduction, namely E8 ⊃ E6 ⊃ SO(10) ⊃

SU(5) ⊃ SU(3)⊗SU(2)⊗U(1) (see also Fig. 3 and surrounding discussions). Ever

since the first string revolution there have been a many string model constructions

which have demonstrated the ability to provide a total number of three genera-

tions. This work nicely built on many of the successes which provided the ground

work for realistic string frameworks, producing grand unified theories combined

with quantum gravity, such as the insights of Green-Schwarz anomaly cancellation

in Ref. [1363]. The subsequent construction of the E8 × E8 heterotic string [636]

signalled a defining point in the practically of approaching a string description of

GUTs. The model used the compactification of a Calabi-Yau manifold, specifically

with the unique supersymmetric background where only the internal metric is non-

trivial [308]. The primary motivations behind this work coming from the attractive

feature that groups one would typically associate to GUTs, such as those quoted

above, naturally embed themselves in one of the E8 factors and the naturally high

string scales in these models. Subsequent to these models, heterotic string solutions

on six-dimensional orbifold spaces were considered with some considerable success.

One early example of a benchmark model can be found in Refs. [735, 738], making

use of the Z3 orbifold and Wilson lines, due to the naturally ability to find multiples

of three families [73–75, 471, 622]. Later attempts were also made in the context of

the internal degrees of freedom of free fermions [81, 779] or bosons on a covariant

lattice [848] formulating consistent four-dimensional heterotic string vacua.

One broad categorisation of these higher dimensional models are those with ei-

ther local or non-local GUT symmetry breaking. Local unification concerns itself



The Landscape of String Theory and The String Axiverse 144

with consistent (global) string models in which the gauge symmetries are enhanced

at special points in extra-dimensional space. An example of local GUT symme-

try breaking can be found in traditional orbifold compactifications [230, 326, 327,

344, 461, 462, 547, 735, 738, 841–843, 985] of the heterotic string [637, 638]. Orb-

ifold compactification of the heterotic string is a process which takes advantage of

the simplicity of torus compactification and the relevant presence of realistic gauge

groups and the resultant spectrum in four-dimensions. Example Non-local GUT

breaking can be found in models explored through Calabi-Yau compactifications

[72–74, 256, 275, 634]. Many subsequent models which stemmed from the original

formulation of the heterotic string often contain extended content such as vector-like

pairs, exotics or unconstrained moduli. See Ref. [629] for a review of GUT frame-

works arising from these compactification models. These issues are an example of

one possible signal that a deeper exploration amongst the web of dualities of string

theory may be required for consistency.

Many modern approaches have considered Type II frameworks which switch up the

paradigm with the use of D-branes [234–236, 475, 880, 986]. The most relevant

details for D-branes being that they can produce the required gauge symmetries

in Type II models exactly where gauge groups cannot appear otherwise. In Type

II constructions, non-abelian gauge structure is found by embedding stacks of D-

branes on a Calabi-Yau three-fold [385, 386]. In terms of realising the MSSM, a

minimal model takes the form of a Calabi-Yau three-fold, taken to be an orbifold

where the Standard Model gauge structure can be identified through a stack of

three D-branes (‘baryonic’), intersecting a stack of two D-branes (‘left’ - for left-

chiral quarks and leptons) finally intersecting several single D-branes (one ‘leptonic’

and one ‘right’ for right-chiral fields). The resulting four-dimensional gauge sector is

of the form SU(3)⊗SU(2)⊗U(1)⊗U(1). The required symmetries are manifest from

independent oriented open strings that can be attached to a D-brane or to a stack of

superposed D-branes. For a review of Type II constructions and the useful features

of D-branes see Ref. [234, 237, 889]. See Refs.[71, 328, 609, 610] for discussions of
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Type IIA models and Refs. [71, 238, 391, 903] for discussions around Type IIB. For

Type IIA and Type IIB theories, GUTs can also arise from the compactification of

M-theory or F-theory on Calabi-Yau fourfolds respectively.

In the context of F-theory, a minimal approach to local models concerns itself with a

stack of seven-branes wrapping a del Pezzo 8-surface equipped with the desired gauge

group SU(5) (or some larger applicable group) [180, 181]. Under this representation,

localised on curves where the GUT brane intersects other branes we find features

such as the three generations of chiral matter or the Higgs field. See Ref. [240]

for a non-local approach realised on a Calabi-Yau four-fold. One consideration in

F-theory which differs from other approaches, in the context of the rigidity of the

framework, is the nature of how to break the GUT group. For example the use of

a del Pezzo surface restricts the applicability of Wilson line breaking. One example

alternative to this is making use of gauge field fluxes [181]. For a review of F-

theory approaches see Ref. [180, 181, 239, 469, 470, 685, 905, 908, 1330]. See also

Refs. [329, 368, 546, 692, 736, 777, 847, 907, 908, 1249] for particular considerations

on certain phenomenological guidelines as mentioned above.

It has been shown in numerous works that M-theory compactified on a manifold

of G2 holonomy reduces nicely to four-dimensional models with supersymmetry.

For general considerations in these models the presence of Yang-Mills fields and

chiral fermions occur from the exploration of particular singularities in the extra-

dimensional space [23, 25]. More specifically the Yang-Mills fields are localised along

three-dimensional subspaces of the seven-dimensional manifold in the presence of an

orbifold singularity. The chiral fermions in these models are coupled to the Yang-

Mills fields and appear at localised points at which there is a conical singularity. See

Refs [20, 22, 23, 27–29, 31, 119] for an extensive review of these points and a more

complete look at the M-theory framework in which realistic four-dimensional vacua

can arise.

The G2-MSSM [22, 29] represents a framework which considers the general known
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properties of G2 compactifications of M-theory in order to explore numerous details

in the context of string phenomenology. In particular success has been found in areas

such as, radiative electroweak symmetry breaking [28], baryogenesis [767], inflation

[766] and investigations of Yukawa couplings [614]. These models offer several novel

features in regards to their phenomenological viability with unification such as a

possible resolution [35] to the double triplet splitting problem [734] or a solution [32]

to the µ problem [797]. In terms of unification and extended groups examples MSSM

type models in the low energy limits of M-theory with GUTs based on SO(10) were

considered in Refs. [35, 36]. These models utilised discrete symmetry and Wilson

lines [1368] to prevent proton decay whilst ensuring the required gauge unification.

Assuming an MSSM visible sector below the unification scale, the unified gauge

coupling can be parametrised by the volume of the seven dimensional internal space

(Eq. (5.78)) or suitably the three cycle volume supporting the visible sector (see

Eq. (5.127) and surrounding discussions). The Yukawa couplings are determined

by membrane instantons which relate to singularities in which the chiral superfields

are supported. We will cover some features of these models in more depth in both

Section 3.3.5 and Section 5.3. The examples mentioned above are of course far from

an exhaustive list of the spaces in the string landscape and techniques used where

comfort has been found in regards to the possibility of unification.

3.2 Generalities of Moduli

The striking feature of superstring models and their low energy supergravity limits

for phenomenologists and cosmologists is the obvious appearance and requirement to

account for the extra-dimensional spacetime, present for consistency in quantisation.

The standard caveat of string model building is that we must account for, and

suitably stabilise, the model moduli when compacting the extra-dimensions. As

we have seen grand unified supersymmetric models for mathematical consistency

currently require at least a ten/eleven dimensional spacetime, in which the extra
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six/seven dimensions must be compact and suitably small to maintain consistency

in the limit of the four-dimensional observational universe we inhabit. This process

manifests the appearance of scalar moduli which can have a drastic effect on both

model viability and phenomenological predications.

3.2.1 Dimensional Reduction

In order to understand the principles behind what is ultimately a very complicated

picture let us begin with the general principle of bosonic field theories with extra di-

mensions and the defining precursor of string compactification using the generalities

of KK reduction [763, 802, 803]. The theoretical origins of five-dimensional theories

initially came on the back of extensions to general relativity and attempts to unify

the gravitational force and electromagnetism. The general action of a real massless

scalar field φ, in five dimensions is,

S =

∫
d5x∂Mφ∂

Mφ , (3.7)

using the standard conventions ∂M, with Minkowski field space metric, ηMN = ∂MN =

diag(−,+, . . . ,+), M,N = 0, . . . , 4. The flat space metric is such that the five-

dimensional space M5 has a product form,

M5 =M4 × S1 , (3.8)

where M4 is four-dimensional Minkowski space and S1 represents a circle of radius

R. The background metric solutions then take the form,

ηαβ(~x, ~y) =



ηµν(~x) 0

0 ηmn(~y)


 , (3.9)

with ηmn(~y) the newly introduced metric on the compact space, with the full co-

ordinate decomposition, xM = (xµ, y), where µ = 0, 1, 2, 3 and y ∈ [0, 2πR]. The
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value of R represents the radius of the compact dimension. The field can be decom-

posed using these coordinates due to its periodicity, ϕ(xµ, y) = ϕ(xµ, y+ 2πR), as a

generalisation of a Fourier expansion on a circle,

ϕ(x, y) =
1√
2πR

∞∑

n=−∞
ϕn(x)e

iny
R , (3.10)

where the quantities, Rn(y), represent the orthonormalised eigenfunctions of the

Laplacian ∂y on S1. The decomposed action is now,

S =

∫
d4x

∫ 2πR

0

dy∂µϕ∂
µϕ+ ∂yϕ∂

yϕ , (3.11)

where the field satisfies the five-dimensional equations of motion defined using the

five-dimensional Laplacian operator,

�5ϕ = 0 , (3.12)

∂µ∂
µϕ+ ∂2

yϕ = 0 . (3.13)

Substituting in the Fourier expansion of Eq. (3.10) into the equations of motion

yields,

∂µ∂
µϕn −

n2

R2
ϕn = 0 , (3.14)

which represents a four-dimensional scalar field ϕ(x), with a mass n/R. Combining

the orthonormal eigenfunctions with the decomposed action of Eq. (3.11) along with

an integration over the extra radial dimension gives the new form of the action,

S =
∞∑

n=−∞

∫
d4x

(
∂µϕn∂

µϕ∗n +
n2

R2
ϕnϕ

∗
n

)
. (3.15)

This reveals the nature of compactification, where in four dimensions there is now

a single massless scalar plus an infinite tower of massive scalars each with a mass,

n/R. The VEV of the field is the radius and a free parameter of the background,

where the background solutions are required to produce Ricci flat metrics. When
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the field, φ(xµ, y) has a five-dimensional mass m2
0, the four-dimensional KK degrees

of freedom have a mass, m2
n = m2

0 + n2/R2. This can easily be generalised to a

torus in higher dimensions where we now have, m2
n5,n6,...

= m2
0 + n2

5/R2
5 + n2

6/R2
6 + . . . .

The values of R6 etc. are the radii of the higher dimensional compact dimensions.

Generally we are interested in a reduction of the extra-dimensional space in the limit

R → 0, where it is small enough such that it cannot be probed, meaning the four-

dimensional effective description does not see the compact space. In this limit the

zero-mode ϕ0 often remains light and ϕn when n 6= 0 are heavy degrees of freedom

we integrate out of the spectrum.

Suppose now we consider the metric itself as a dynamical field then KK compactifi-

cation can be expressed starting with the five-dimensional Einstein-Hilbert action,

S = M3
5

∫
d5x
√
−GR5D , (3.16)

where G = det (GMN) and R5D is the five-dimensional Ricci scalar. A Fourier ex-

pansion of the metric field gives,

GMN =
1√
2πR

∑
Gn

MN(x)e
iny
R , (3.17)

where performing the same process as before with the metric field expansion and

the five-dimensional Einstein-Hilbert action reveals a spectrum for the massless sec-

tor, with the graviton, gµν partnered with a vector field, Aµ and scalar S from the

zero-mode component of the metric [802]. These general additional scalar fields can

be viewed as the presence of extra-dimensional gravitons, massless modes which al-

ways appear in compactification models when perturbing around the leading order

linearised equations. It is clear then, that in general this process gives rise to both

problematic components such as massless moduli generally forbidden due to the

nature of long range forces. It can also furnish our theory nicely with suitable can-

didates representing fields expected to appear in the low energy sector, taking phe-

nomenological concerns into account. We seek a solution of the lower-dimensional
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equations of motion which also serve as a solution to the full higher-dimensional

counterparts. Using these general ingredients the minimal ten-dimensional super-

string models offer a rich low energy effective description where KK reduction is

applicable in certain regions of the moduli space of consistent vacua.

3.2.2 Ten-Dimensional Supergravity and Kähler Moduli

Stabilisation

There are numerous consistent compactification models which work in the critical

ten/eleven-dimensional limit required for superstring theories. Some examples are

M-theory on G2 [25, 481, 1013], Non-Kähler [183, 571, 1222] or heterotic string

compactifications [308, 1222, 1364]. In the case of a ten-dimensional theory, let

us briefly focus on a snapshot representation of the principle features of the well

structured case of flux vacua in Type II theories. Once again, the equations quoted

in this section are done so without derivation, presented only to provide a ten-

dimensional context to the four-dimensional theory addressed in this thesis. In the

simplest case we now want to address,

M10 =M4 ×K6 , (3.18)

whereM4 is a four-dimensional Minkowski space and K6 is a compact space admit-

ting a Ricci-flat metric. Compactified Type IIB superstring theories preserve N = 2

supersymmetry where it is required to introduce external objects such as orientifold

planes and D-branes to break down the theory to the case of a N = 1 [235], four-

dimensional theory. In the limit of supergravity any interactions of the relevant

modes are described by a low-energy effective Lagrangian which is formed using

KK reduction of the ten-dimensional Lagrangian. The Type IIB classical effective

supergravity action is divided up as follows [602, 784],

S
(10)
IIB = SBulk + SCS + SSource , (3.19)
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where each component is defined in the string frame. The decomposed factors SBulk,

SCS and SSource are explicitly defined to leading order in α′ as,

SBulk =
1

(2π)7α′4

∫
d10x
√−g

[
e−2φ (R+ 4(∇φ))− F 2

1

2
− 1

2 · 3!
G3 · Ḡ3 −

F̃ 2
5

4 · 5!

]
,

(3.20)

SCS =
1

4i(2π)7α′4

∫
eφC4 ∧G3 ∧ Ḡ3 , (3.21)

SSource =
∑

Sources

(
−
∫

R4×Σ

dp+1ξTpe
−φ√−g + µp

∫

R4×Σ

Cp+1

)
, (3.22)

with the form fields Cn, and field strengths Fn+1 ≡ dCn. The term R represents the

Ricci scalar and G3 = F3 − φH3 (H3 ≡ dB2) in the CS action is the field strength

formed from the Ramond-Ramond (RR) and Neveu-Schwarz (NS) three-form field

strengths. The final term represents the possibility of including localised sources in

the background such as the D3/D7-branes and orientifold planes used to regulate

the level of supersymmetry and the resulting spectrum. The values of Tp and µp

represent the tension and charge of the Dp-brane respectively. The term φ defines

the axion-dilaton field,

φ = C0 + ie−S , (3.23)

with S the Dilaton and C0 the axion. Finally the five-form field which satisfies the

self-duality condition with the Bianchi identity is defined as, F̃5 = F5 − 1
2
C2 ∧H3 +

1
2
B2 ∧ F3. We can consider the warped compactifcation metric ansatz for a Calabi-

Yau to leading order in α′, for solutions of the form, Mα × C(11/10−α) analogous to

that of Eq. (3.18), for a six dimensional compact manifold, where in the presence of

fluxes we have,

ds2
10 =

9∑

m,n=0

Gmndx
mdxn = e2a(y)ηµνdx

µdxν + e−2a(y)gαβdy
αdyβ , (3.24)

using four-dimensional coordinates xµ and compact manifold coordinates, yα. The

nature of these warped solutions on a compact manifold determines various con-
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straints for the valid flux/brane configurations to consider [417, 893]. The value of

a(y) represents a warp factor related to the scale of the four-dimensional Minkowski

space. The axion/dilaton can vary over the compact manifold, φ = φ(y). When

compactifiying the extra dimensions on a Calabi-Yau to a four-dimensional theory,

the naturally arising supergravity theory is parameterised by a Kähler potential,

K, a superpotential, W , and gauge kinetic function, F . A Kähler modulus is un-

derstood as the radial modulus in a four-dimensional superfield, ρ. The tree-level

Kähler potential after dimensional reduction of the ten-dimensional action is,

K = −3ln [(ρ+ ρ̄)]

Radius

−

Dilaton and complex structure moduli

ln
[(
φ+ φ̄

)]
− ln

[
−i
∫

M
Ω ∧ Ω̄

]
, (3.25)

where Ω is the holomorphic (3,0) form. The present fluxes generate a superpotential

of the Gukov-Vafa-Witten (GVW) form [642],

W =

∫

M
Ω ∧G3 , (3.26)

independent of the Kähler moduli but dependant on the complex structure moduli.

Similar physical scenarios arise and can be defined with F-theory compactified on

an elliptically fibered Calabi-Yau four-fold [1170]. In principle when K and W are

well defined, the moduli potential can be calculated at the minima, where they

are stabilised. There are both perturbative and non-perturbative corrections to the

effective supergravity action. In the case ofN = 1 supersymmetric compactifications

the ten-dimensional effective supergravity action is perturbatively corrected by a

series of higher-derivative terms,

S = S(0) + α′3S(3) + . . . α′nS(n) + . . . , (3.27)

where the α′ correctional terms have absolved factors of string loop corrections

suppressed by powers of gs. The nature of these corrections will become important

in defining the spectrum of axions. The N = 1 supergravity scalar potential is
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defined as,

V = eK

(∑

a,b

gab̄DaWDbW − 3|W |2
)

, (3.28)

with Kähler potential K, where the values of both a and b run over all the moduli

and DiW = ∂Wi + (∂iK)W . In a very general N = 1 compactification sense these

components (Eq. (3.25), Eq. (5.101) and Eq. (3.28)) define the ability to compute

the spectrum of axions. The process must consider all leading order corrections to

the superpotential in Eq. (5.101), whilst then computing the full scalar potential

in Eq. (3.28), which must finally be minimised to define metastable de Sitter vacua

[657]. In the case of large Hodge numbers this quickly becomes a systematically

devilish task. Specifically returning to the case of Type IIB flux compactifications,

the scalar potential emits a no-scale structure [388, 518], where the full tree-level

flux potential is,

Vns = eK

(∑

i,j

gij̄DiWDjW

)
, (3.29)

where we have performed a sum over the Kähler moduli to cancel the 3|W |2 term

in Eq. (3.28). The indices i and j now run over the dilaton and complex structure

moduli. These two terms can now be defined in a supersymmetric minimum by solv-

ing the requirement, DaW = 0. We must still account for the nature of the volume

modulus, where it is currently understood to be a flat direction. The two principle

moduli stabilisation methods deployed in order to obtain realistic stabilised vacua

from the Type IIB superstring setting are the two flux compactification model pro-

cedures of Kachru-Kallosh-Linde-Trivedi (KKLT) compactification and the LARGE

Volume Scenario (LVS).

3.2.2.1 The Kachru-Kallosh-Linde-Trivedi Scenario

The KKLT scenario [758] proposes that all the Kähler moduli are stabilised by

solving DTiW = 0, considering the nature of non-perturbative corrections to the

superpotential. It is possible to retrieve deSitter vacua in this framework with
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the incorporation of a small number of anti-D3-branes [625]. The simplest set up

considers a Calabi-Yau with a single Kähler modulus,

T ≡ τ + iθ , (3.30)

with τ a Kähler moduli and θ its associated pseudoscalar partner. The Kähler

potential and superpotential are of the standard form,

K = −2lnV = −3ln(T + T̄ ) , (3.31)

W = W0 + Ae−aT , (3.32)

where a is a numerical coefficient (e.g. brane instantons (a = 2π) or gaugino con-

densation (a = 2πN−1)). The parameter V represents the volume of the Calabi-Yau

in string units. The value of |W0| is fine-tuned to extremely small values in order to

neglect perturbative corrections to the Kähler potential. The minimisation of the

induced scalar potential defines the nature of the stable vacuum for the τ and θ

degrees of freedom. KKLT is often considered a toy configuration at the level of a

conceptual understanding of compactifications of Type IIB Calabi-Yau orientifolds.

Relevant to the physics of effective field theory axions, this method has problem-

atic concerns when realising the traditional axiverse scenario as the Kähler moduli

are fixed by assuming that the superpotential has non-perturbative contributions

for each Kähler modulus. In this case each axion field in the low energy theory is

realised as a state which inherits a mass of order the Kähler moduli,

mθ ' mτ ' m3/2 '
|W0|
V MPl , (3.33)

fixed at the scales of the models gravitino mass (m3/2), with moduli stabilisation oc-

curring by only superpotential effects. The mass in the effective action is associated

to the single non-perturbative effect relating to the cycle of the single modulus. In

general we would wish to form schemes which generate basic stabilisation require-
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ments, i.e. QCD axion and ultralight DM fields, suitable supersymmetry breaking

terms and heavy moduli fully stabilised.

3.2.2.2 The Large Volume Scenario

The LVS [144, 369] allows for the stabilisation of the overall volume of the compact-

ification at some exponentially large value, making use of both perturbative and

non-perturbative terms. Unlike the previous compactification the LVS is realised in

its simplest form with a Calabi-Yau orientifold, this time with two Kähler moduli,

τb and τs [353],

V = τ
3/2
b − τ

3/2
s . (3.34)

As apposed to the flux superpotential in KKLT in Section 3.2.2.1, |W0| is order unity,

where perturbative corrections now must be considered for moduli stabilisation.

Considering only the leading order α′ correction, the Kähler potential is defined as,

KKLT

−2 ln(V)→ −2 ln

(
V +

ξ

g
3/2
s

)
' −2 lnV − ξ

g
3/2
s V

LVS

. (3.35)

The term ξ is proportional to the Euler characteristic in Eq. (3.61) and gs is now

a parameter to be fixed by the fluxes. The scalar potential is greatly simplified in

the limit, τb � τs. In this example one of the axions, related to τs, obtains a mass

the same order as that found in the simple KKLT example found in Eq. (3.33).

The remaining large modulus τb, is fixed according to balancing the leading order

α′ correctional effects. The associated remaining axion only generates its potential

through sub-leading terms in the non-perturbative superpotential of the order,

mθb '
√
|W0|MPle

−ab
2
V2/3

, (3.36)

generating a parametrically lighter degree of freedom in the low energy spectrum.

We will see how these concepts give rise to a natural realisation of the axiverse, when
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Table 3.1: Collection of superstring theories and the relevant forms which lead to

axion degrees of freedom and associated instantons which generate potentials for

the fields. Collected and reproduced from the discussions found in Ref. [657].

Axionic Forms
String Model Forms Euclidean instantons
M-theory C3 M2 Brane instantons
F-theory and Type
IIB

B2 and C0,
C2, C4, B2.

Worldsheet instantons, ED(-1), ED1, and
ED3-instantons.

Type IIA C1, C3, C5

and B2

Worldsheet instantons, ED0, ED2 and ED4-
instantons.

Heterotic B2 String worldsheet instantons

this process is generalised to the case of including many moduli in Section 3.3.4.

3.3 The String Axiverse

3.3.1 A Plentitude of Pseudoscalars from Topological

Complexity

The general process of dimensional reduction covered in Section 3.2.1 can be ex-

tended to the case of generic compactification models related to the traditional

weakly coupled string models which form the web in Fig. 3.2. Taking a step back,

there are several ways we can approach the issue of dealing with a landscape of mod-

els which arise, when approaching the limits of quantum gravity. Consistency argu-

ments such as BH thermodynamics and causality have historically motivated what

this landscape could look like. General conjecture offers a much looser approach to

the high energy framework, however their strengths and features are not often a well

defined topic. This approach does often lead to many benefits in terms of assessing

likelihoods in cosmology and general phenomenology though. Finally we can expand

our understanding of the four-dimensional space and effective field theories which

arise in the weakly coupled limits of well defined string vacua through enumeration.

One such conjecture which has emerged much to the delight of phenomenologists is
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the particle treasure chest scenario of the string axiverse [107, 1231]. The massless

spectrum of any string model seems to suggest the dimensional reduction of the

extra-dimensional spacetime manifold, M6/7, emits a spectrum of antisymmetric

forms which appear as ALPs in the four-dimensional effective theory [107, 1231].

These fields possess shift symmetries from the higher dimensional gauge symme-

tries, rendering them as phenomenological counterparts to the original axion field

introduced in Section 2.3. They are generally manifest as the imaginary compo-

nents of a complex modulus scalar field, used to regulate characteristics such as the

size of the extra-dimensions or low-dimensional gauge couplings etc. The nature of

this plethoric spectrum of fields is represented by the potential topological complex-

ity the extra-dimensional compact space can inherit. This freedom and uncertainty

gives a very general prediction that there exists a family of fields in any string model

with masses that span a huge number of decades, right down to the Hubble scale to-

day. This represents one of the most important features of string theory in regards

to the identification of a possible low energy signature representing its existence,

and has evolved to become a vital field of study in general high-energy physics to-

day. The number of these fields is fixed by the topology of the extra-dimensional

compact space, parameterised by its Betti numbers, a value strictly determined by

topological considerations. This value tends to be of the order,

Nax ∼ O(10)−O(100) , (3.37)

in generic Calabi-Yau models (see Fig. 3.5) and could even be much higher (see

Section 3.3.3). The number of fields which survive the compactification process

right down to the effective theory is of course a very specific model feature. For

example the orientifold projection first mentioned in Section 3.1.2, used to define a

chiral N = 1 theory in Type II theories, will project out some of these degrees of

freedom, but this does not generally tend to change the order of magnitude of the

ALPs in the existent axiverse.
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Figure 3.3: Approximate Gaussian fits for quantities formed using the topological

invariant Hodge numbers, h1,1 and h2,1. Left panel: Ratio of the axion degrees of

freedom and the total dimension of the extra-dimensional space defined in Eq. (3.64),

represented by the data from the Kreuzer-Skarke list [825] for the distinct Hodge

number combinations and approximate density function fit. Right panel: Density

plot for the Euler characteristic from Eq. (3.61) for Calabi-Yau threefolds along with

its approximate density function fit.

As these ubiquitous PQ symmetries analogous to the familiar Standard Model axion,

do naturally arise in string models in a multifarious fashion, it is common practise

to reproduce string modes which can behave like the phenomenologically desired

axion fields in the low energy effective action. Following the discussions found in

Refs. [657, 911] we can summarise the general four-dimensional compactified axiverse

as follows. The arbitrary D-dimensional effective quantum field theory supergravity

action with D > 4 contains terms of the form,

S ⊃
∫
dDx

√−gD dCp ∧ ?dCp , (3.38)

where Cp represents the p-form gauge field and
√
gD is the D-dimensional metric

determinant. The field strength Fp+1 = dCp, has an equation of motion, dF = 0

and transforms under the gauge symmetry as,

Cp → Cp + dΛp−1 , (3.39)

with Λ a (p − 1)-form. Consider the familiar general compactification ansatz in
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which the D-dimensional manifold XD, is expressed as,

XD = X4 ×MD−4 , (3.40)

where X4 represents the required (3+1)-dimensional non-compact manifold. We

can dimensionally reduce the effective action in Eq. (3.38) for a smooth (D − 4)-

dimensional manifold, MD−4. This is done by accounting for the fact that the

p-form gauge field Cp, can be written as a sum of non-trivial harmonic p-forms on

MD−4, forming a complete basis,

Cp =

bp∑

i

ai(x)ωp,i(y) , (3.41)

the sum running over the pth Betti number bp (see Section 3.3.6.1), with ωp,i ∈

Hp(X,Z). The coordinates x act on the non-compact (3+1) dimensions and the

coordinates y act on the compact space of MD−4. The 4-dimensional fields, ai(x)

are the axion fields. These pseudo-scalars remain apparent in the dimensionally

reduced form of the action, possessing continuous shift symmetries manifest from

the higher-dimensional gauge symmetry in Eq. (3.39). Formally the axion fields are

related to the p-form gauge field, Cp via the integral,

ai =

∫

Bp,i
Cp , (3.42)

where Bp,i the ith closed basis of p-cycles onMD−4. The basis sum runs over the total

number of harmonic p-forms determined by the topology of the manifold structure.

This number is evaluated by the number of homologically non-equivalent p-cycles

expressed as the pth Betti number, bi. We can generally define,

Nax ≡ bi(MD−4) . (3.43)

When considering the standard landscape of string theory in the (3+1) low energy
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limit, with N = 1 supersymmetry the complex manifold M6 is that of Calabi-Yau.

The KK reduction process shown in Section 3.2.1 of Eq. (3.38) gives a massless

spectrum which later defines a spectrum of axion decay constants and masses from

the full details of the moduli stabilisation as the Universe evolves.

3.3.2 The General Parametric Description of Axion-Like

Fields

The general parametric dependance on the two defining string axion parameters can

be summarised as:

• The axion decay constant - fa - The process of KK reduction kinematically

mixes the axions where they couple to the moduli through the Kähler metric.

General considerations include factors such as the volume and warp factor of

the internal space, along with mixings with other model remnants and defining

model scales, i.e. supersymmetry breaking scales. The decay constants appear

as a linearly suppressed factor of fundamental scales, using properties of the

associated cycles,

fa ∼
MPl

S
.MPl , (3.44)

where S represents the volume of the cycle. The value of fa is generally

expected to be the order of the GUT scale in string models [1231].

• The axion mass - ma - As compared to its modulus counterpart, the axion

has a familiar shift symmetry, its potential generated from non-perturbative

physics. Spontaneous symmetry breaking of global U(1)PQ symmetries by

numerous instantons sources such as flux, worldsheet, brane, QCD or EW

sectors etc. lead to the understanding that axion masses should mimic the

following general relationship,

m2
a ∼

µ4

f 2
a

e−Sinst , (3.45)
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where Sinst is the action over the corresponding cycles. The parameter, µ,

represents a hard non-perturbative physics scale, generally expected to be of

the order,

µ '
√
mSUSYMPl . (3.46)

The axion masses scale exponentially with the volume of the cycle determined

by the action of the cycle, leading to the expectation of homogeneity of the

axion field masses over logarithmic scales.

This process is a simple representation of the standard blueprint applied to realise

both the number of ALPs and their approximate scalings, where the quantity Cp
in Eq. (3.41) representing closed string axions, can be identified in a number of

ways as shown in Table 3.1, along with the various instanton solutions present

in each theory which can be used to generate the fields potential. The axiverse

represents a principle conjecture of all four-dimensional effective field theories in

weakly coupled string limits. There has been various successful demonstrations of

how it is possible to suitably stabilise the moduli for cosmological concerns whilst

producing a hierarchical spectrum of pseudo-scalars one can associate to the string

axiverse scenario, with special efforts made to incorporate a candidate for the QCD

axion. These have been formulated in both the background of Type IIB and M-

theory, defining explicit model class realisations of the string axiverse.

3.3.3 The F-theory Landscape

Much like the theories of Type IIA and Het E8 × E8, possessing a T-duality sym-

metry with a more fundamental eleven-dimensional theory, Type IIB also possess

an interesting symmetry relation which relates to a higher dimensional framework.

The Type IIB superstring theory possesses a SL(2,Z) symmetry which is a modular

group of a torus. F-theory [962, 1287] is a non-perturbative geometric reformulation

of Type IIB models, which is understood using a duality relation with M-theory. F-

theory has found various success in model construction [180, 181, 469, 686]. In the
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case of a four-dimensional theory the space is unsurprisingly very large. In Ref. [660]

the geometrical ensemble studied was a collection of 4/3× 2.96× 10755 six-manifolds,

acting as the extra dimensions of spacetime. For the case of axions arising from the

reduction of the form, C4, is has been shown that typical configurations often give,

h1,1 ' O(1000) [660, 1252, 1253]. It has been suggested that F-theory itself has

weakly coupled limits [1169, 1170], where the statistical appearance of when these

weakly coupled limits appear, in such vast ensembles, still offers a series of inter-

esting open-ended questions [661]. For the case of a string axiverse this framework

does offer interesting theoretical suggestions that an ignorant sampling of the space

in an effective model could motivate the inclusion of O(1000) axion fields.

3.3.4 The Type IIB Axiverse

Continuing from the points in Section 3.2.2.2, the LVS compactification process

has been used to form an explicit model of the string axiverse realised in Type

IIB models utilising Calabi-Yau manifolds [144, 369]. The LVS Type IIB axiverse

[351, 352] produces a series of closed string axions which stem from the orientifold

compactification, which come to be realised as a logarithmically hierarchical set of

states in the low energy field theory. In the natural regime W0 ∼ O(1), a single

Kähler modulus, the del Pezzo divisor, is fixed by non-perturbative effects. All

remaining moduli are generally expected to be stabilised perturbatively through

correctional α′ or gs effects. The general scalar potential is defined using several

contributions, each which scale differently according to the overall exponentially

large volume,

V = VD + V tree
F + V np

F + V p
F , (3.47)

representing a sum of the D-term potential (VD), tree-level F-term scalar potential

(V tree
F ), non-perturbative scalar potential (V np

F ) and perturbative potential (V p
F ).

The leading order effect for the expansion in inverse powers of the volume is the

D-term potential, minimised when VD = 0. In order to ensure the overall volume, V
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remains exponentially large, the minimisation condition, whilst also considering the

nature of visible sector, i.e. required couplings, forces the LVS axiverse to contain,

Nax ≥ 2. The term V p
F is the source of the LVS axiverse, generating a series of

exponentially suppressed ALP states. The α′ corrections give rise to terms which

dominate over any gs corrections where the remaining Nax − 1 flat directions are

lifted at sub-leading order. Terms similar to the final summation in Eq. (3.53)

constitutes a potential for the axions ci, through minor non-perturbative effects of

the form [351],

VWnp(ci) ' −
Nax∑

i=1

e−niaiτi
niaiτiW0

V2
cos(niaici) , (3.48)

where again the prefactor terms a and n are determined by the relations a = n/2π,

with n = 1 for an E3-instantons and n = N for gaugino condensation on N D7-

branes [351]. Axions can also generate a potential via non-perturbative corrections

to the Kähler potential [364], which takes a similar general form,

VKnp(ci) '
W 2

0

V3

Nax∑

i=1

e−niaiτi cos(niaici) . (3.49)

Considering an axion mass generated by a single Kähler potential contribution gives

the natural mass hierarchy [351, 364],

ma . m3/2e
−πα−1

QCD . O(10−11) eV , (3.50)

under considerations for chirality and the relevant instanton contributions when the

gravitino mass is of the order, m3/2 ∼ 100 TeV, signalling the general expectation

of ULA fields in the spectrum. This represents the suppression on the other axion

masses with respect to the QCD axion, which generates fields which sit inside an

ultralight axiverse. The simplest realisations of the LVS axiverse includes two fields,

one of which is realised as a candidate for the QCD axion along with a generic ALP

counterpart. The number of fields in these models is related to the topology of the
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internal manifold which are all closed string axions living in the bulk. A general

model with a large value of h1,1 will naturally realise a large number of ultralight

fields which is also related to the degree of supersymmetry at the effective level of

the theory. For Type IIB flux compactifications where the axions are manifest as

KK zero modes of the RR antisymmetric tensor fields C2 and C4 [351, 632, 752].

The effective action for the axion fields is [351],

L ⊃ − eΦ

4V2

(
dca +

e−Φ

2π
MPlAir

ia

)
Kab ∧ ?

(
dcb +

e−Φ

2π
MPlAir

jb

)

+
2πM2

Pl

V2(2π)3
e−ΦAiAjr

iarjbKab −
(
dcα +

MPl

π
Aiqiα

) Kαβ
8
∧ ?
(
dcβ +

MPl

π
Ajqjβ

)

+
M2

Pl

2(2π)2
AiAjqiαKαβqjβ +

1

4πMPl

(
riαcα + qiac

a
)

tr(F ∧ F )− riατα
4πMPl

tr(Fi ∧ ?Fi) ,

(3.51)

which we quote without derivation to highlight the complications which come from

modelling an effective theory of this form. The values of ca and cα represent the

axion-like pseudo-scalars of the theory. The quantities Ai are the massive anomalous

U(1) gauge bosons which can eat some of the axions. See Eq. (2.1) of Ref. [351] and

surrounding discussions for definitions of the remaining parameters.

3.3.5 The M-theory Axiverse

M-theory is a vast endeavour which attempts to unify current consistent superstring

theories into one consistent language, as an eleven-dimensional quantum theory.

Traditionally studies are often focused around particular (9+1) dimensional limits

M-theory reduces to, given the ambiguity which can easily be encountered in terms

of compactification. These limits are represented by the apparent dualities used

to make inferences in such a complex space. Unlike the ten-dimensional weakly

coupled theories M-theory does not possess a defined coupling constant to gener-

ate calculations beyond its low energy limit. M-theory is principally constructed as

an eleven-dimensional theory which reduces to our familiar four, whilst preserving
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N = 1 supersymmetry using a seven dimensional metric which is understood with

a holonomy group equal to the exceptional Lie group G2 [33]. These manifolds tend

to emit our desired particle content under specific configurations and considerations

of present singularities. For example chiral fermions charged under a non-abelian

gauge symmetry, arise in four-dimensions when special considerations are made for

the orbifold singular nature of the seven-manifold [25, 119]. Currently a more holis-

tic classification of the natural outputs in these types of manifolds is an extremely

difficult task. Although it is strongly suspected compactified versions of these ge-

ometrical structures do exist with the full required phenomenological content, i.e.

conjectured using the T-Dualities between heterotic E8 × E8 and Type IIA [23]

(see Fig. (3.2)) which represent particular limits where we could realise consistent

structure. It is currently safe to say a general analysis of the full phenomenologi-

cal landscape is no easy feat, although much can be understood in the context of

KK reduction of the low energy limit of M-theory, namely eleven-dimensional su-

pergravity. In this limit the supergravity theory of M-theory possesses a metric, a

three-form gauge field and a gravitino. Of course as always, the moduli must be

suitably accounted for and stabilised. For particle content consistency it is prefer-

ential for this to be done without fluxes, a topic that we expanded on in Section 5.3.

All the moduli in these models are massless fluctuations of the extra-dimensional

manifold. The harmonic fluctuations of the three-form gauge fields along the G2

compactified manifold represent the axionic content of the theory. These are re-

quired to live in complex chiral supermultiplets, partnering to the real scalar moduli

under supersymmetry considerations. Understanding the nature of these complex

scalar fields representative of the constituents of the chiral superfields is how we can

realise the string axiverse in an M-theory framework. This is done by assessing the

relation between the VEV scales of the moduli, the extra dimensional volumes and

gauge couplings of the matter content.

As we just mentioned an explicit realisation of the string axiverse using M-theory

involves the interesting proposition that full model consistency requires the use of
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leading order moduli stabilisation with an absence of fluxes [31]. The nature of the

axion spectrum is determined when moduli stabilisation occurs at a sufficiently large

mass to avoid BBN constraints. Much like the Type IIB axiverse in Section 3.3.4

the moduli are stabilised using a combination of Kähler potential and superpotential

effects. The axions arise from a reduction of the three-form in eleven dimensions

to the required four, where the higher dimensional gauge symmetries reduce to the

axion shift symmetries. Chiral superfields are formed from modes stemming from the

dimensional reduction of the metric, which also possess relevant shift symmetries,

Φi → Φi + ci . (3.52)

These qualitative results transform across to the scenario where the tree-level su-

perpotential is tuned to be W0 = 0, such as generic Type IIB concerns, where a

single non-perturbative effect can be shown to generate a stable minimum for all

the Kähler moduli. The stabilisation of all the moduli relates to the nature of one

axion, the imaginary degree of freedom of the ample divisor expected to exhibit

specific characteristics, lifted to become a massive state in the effective theory. The

remaining h1,1 − 1 contributions to the axiverse spectrum later develop a suitable

potential via higher order instanton corrections of the form,

W = W0 + Ae−aTam +
h1,1−1∑

i=1

Aie
−niaiTi , (3.53)

where Tam represents the ample divisor modulus, the Ti represent a combination

of moduli orthogonal to Tam and W0 is fixed by different concerns in Type IIB and

M-theory scenarios with numerical constants Ai. The stabilisation of axions in these

scenarios involves a general exponential suppression compared to m3/2, unlike the

issues encountered in more general KKLT models. The stabilised axions are now

distributed according to approximate equidistant separations on logarithmic scales.

Unlike the Calabi-Yau threefolds we will cover below G2 manifolds have an added

complexity due to their topological practicalities in terms of defining a suitable met-
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Figure 3.4: Example general Calabi-Yau quintic cross-section, Z5
1 + Z5

2 = 1. The

two-dimensional projectional slice is an embedded surface representing a visualisa-

tion of the possible full six-dimensional Calabi-Yau space, Z5
0 +Z5

1 +Z5
2 +Z5

3 +Z5
4 = 0,

which could define the extra-dimensions of spacetime in well-defined superstring

compactification models. The structural features of these spaces can have a drastic

effect on the particle content in the low-energy four-dimensional theory.

ric [33, 1013]. There are various construction attempts made to understand the likely

degrees of freedom we could find in the four-dimensional space such as those detailed

in Ref. [657]. Generally these surround twisted connected sum constructions of G2

manifolds [271–274, 379, 658, 822]. It has been shown these ensembles often lead to

b3 ' O(30) [379, 657], suggesting numerous axions are generally present in the low

energy descriptions of compactified seven-manifolds. We will leave the remaining

subtleties of the formation of an ultralight axiverse spectrum in this landscape to

the discussions in Section 5.3.1.
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3.3.6 The Kreuzer-Skarke Axiverse

3.3.6.1 Calabi-Yau Manifolds

A very detailed example of how enumeration methods can be applied to effective field

theories, which could arise from concerns surrounding string geometries, is detailed

in the Kreuzer-Skarke Axiverse [427]. A Calabi-Yau manifold Z, can be defined as

a complex manifold admitting a Kähler metric with vanishing Ricci curvature, and

can generally be defined in two categories, compact and non-compact. They serve

as generalisations of K3 surfaces in any number of complex dimensions. Specifically

in the context of superstring theory these complex manifold spaces are required to

possess a complex dimension, dc = 3. These are referred to as Calabi-Yau threefolds.

See Fig. (3.4) for a two-dimensional slice representation of a generic six-dimensional

Calabi-Yau quintic manifold. The points discussed below are extensively covered in

Ref. [688]. The tools used to study the cohomology groups of a smooth manifolds

geometry such as a compact Riemannian or Kähler manifold comes under the um-

brella of Hodge theory. The condition that imposes vanishing curvature is known

as the Calabi-Yau condition, where the metric of the Kähler form is Ricci flat,

Rij = 0 . (3.54)

Using an amalgamation of the aforementioned condition, Hodge theory and Poincaré

duality allows us to express the hodge diamond representation of the Hodge numbers

of Z, assuming it is simply connected. The Hodge numbers are represented by,
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hp,q(Z) with p, q = 1, 2, 3, and are arranged as,

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3 .

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

(3.55)

Specifically the complex conjugate shows that, hp,q = hq,p and Poincaré duality

defines the relation, hp,q = hn−p,n−q. The Betti numbers of a Kähler n-fold Z are

defined by the Hodge sum [688],

bk =
n∑

p,q=0
p+q=k

hp,q(Z); k = 0, . . . , n . (3.56)

There are several simplifications which can be made to the initial diamond form

in Eq. (3.55) in order to determine the relevant degrees of freedom for Calabi-Yau

threefolds. When Z is compact and connected we have, b0 = 0 defining h0,0 = 1.

If the connection is simple then this also reduces h1,0 and h0,1 to h1,0 = h0,1 = 0.

This can be taken a step further with the unique non-vanishing holomorphic n-form

which defines hn,0 = h0,n = 1, with Poincaré duality finally defining, hp,0 = hn−p,0.

Taking all these equivalence simplifications into account the reduced Hodge diamond
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now becomes,

1

0 0

0 h1,1 0

1 h2,1 h1,2 1 .

0 h1,1 0

0 0

1

(3.57)

The threefold Hodge diamond is now fully defined by the non-trivial Betti numbers,

b2 = h1,1, b3 = 2 + 2h2,1 and b4 = h1,1 which detail how these manifolds can be fully

understood using only two degrees of freedom. These are the Kähler parameters,

h1,1(Z) and complex structure parameters h2,1(Z), which define the dimensions

of the associated cohomology groups. The Euler number, which can be used to

understand the topological structure of a Riemann surface, represents a single integer

for Calabi-Yau threefolds defined using an alternating sum of Betti numbers,

χ(Z) =

dimR(Z)∑

i=0

(−1)ibi . (3.58)

When combined with the simplified Hodge diamond in Eq. (3.57) the summation

reduces to,

χ(Z) = b0 − b1 + b2 − b3 + b4 − b5 + b6 , (3.59)

= 1− 0 + h1,1 − (2 + 2h2,1) + h1,1 − 0 + 1 , (3.60)

= 2
(
h1,1 − h2,1

)
, (3.61)

representing the free parameters of the metric. The lower bound on the complex

deformation parameter, h2,1 = 0 defines a rigid manifold. The value of h1,1 is al-

ways assumed to be at least unity to ensure the manifold can be defined as Kähler.
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Figure 3.5: Complete construction of toric hypersurfaces parameterised by χ ∈
[−960, 960], using the 30,108 distinct Hodge pairs from the Kreuzer-Skarke dataset of

Calabi-Yau hypersurfaces in Gorenstein Fano-toric fourfolds. The coloured surface

represents the logarithmic multiplicity of the Euler characteristic and functional

height, y = h1,1 + h2,1 for the 473,800,652 hodge pairs which run over these distinct

values peaking with a density O(106) at h1,1 = h2,1 = 27. The red dashed line

defines the boundaries enforced by the fact that the Hodge numbers are strictly

positive. The black dashed line is the mirror manifold symmetry boundary. The

grey solid line is the limits for the Euler characteristic which defines the properties

of the manifold. The light blue lines represent a half mirror symmetry for points

which have mirror manifolds about the χ = −480 and χ = 480 axis. The grey grid

represents symmetry boundaries for features such as K3 fibrations [309]. Adapted

from the work found in Ref. [309].

Calabi-Yau manifolds in general come in families whereby a deformation of a given

Calabi-Yau manifold structure through a change of parameters can be made without

a violation of the Calabi-Yau condition. The Calabi-Yau families are parameterised

in terms of the above mentioned Kähler parameters and complex deformation pa-

rameters. The first of these specifies relative sizes, for example the areas of the

embedded holomorphic curves. The second determines the nature of the complex

structure. The value of the Kähler parameters defines the number of axionic degrees

of freedom we could expect to find in the low energy phenomenology of supergrav-
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ity theories arising from these compact spaces. Under the general process of KK

reduction, as discussed in Section 3.2.1, these metric deformations become four-

dimensional scalar fields that define the moduli of the model.

3.3.6.2 Mirror Symmetry

A core and fundamental principle of the symmetry classes present in the construction

of string models and an example of the previously mentioned string dualities, is the

beautifully manifest mirror symmetry for Calabi-Yau threefolds. As displayed in

Fig. 3.5, for any Calabi-Yau manifold Z there exists a further Calabi-Yau manifold,

Z̃ whereby any model A embedded on Z holds equivalence to any model, B embedded

on Z̃. This relation between model parameters is known as a mirror map, expressed

by the Hodge symmetry condition,

h1,1(Z) = h2,1(Z̃) . (3.62)

Visually Eq. (3.62) is represented by the appropriate reflection transformation de-

fined over the black dashed line in Fig. 3.5, which relates the transformed Hodge

diamonds. In the context of superstring theories, topologically distinct Calabi-Yau

threefolds are partnered up in mirror pairs which relate Type IIA and Type IIB the-

ories. The massless spectrum in Type IIA theories contains h1,1 vector multiplets,

h2,1 hypermultiplets and one tensor multiplet [645]. For Type IIB this is reversed

where we now have one h2,1 vector multiplet, h1,1 hypermultiplets and one tensor

multiplet. This suggests the four-dimensional effective theories share the relation,

L(IIA)(Z) = L(IIB)(Z̃) , (3.63)

where we have assumed a disregard for any possible complications stemming from

the inclusion of fluxes which can change the nature of the effective field theory.

These points represent just a small insight into how geometrical features can used
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to simplify and express the properties of complex spaces, relating to the vacua of

different theories associated to the extra dimensions of spacetime. In Ref. [499] a

random matrix approach is taken to express a spectrum of axions in the context of

multi-field inflation, where the masses are regulated using the topological invariants

associated to Type IIB theories. Specifically the Hodge numbers, h11 and h2,1, define

the number of axions and the total dimension of the moduli space, understood via

the parameterisation,

β =
h1,1

h1,1 + h2,1 + 1
. (3.64)

This ratio represents the nature of the number of axionic degrees of freedom present

in different manifold structures. One of the most striking demonstrations of the

interplay between geometrical data and theoretical physics is presented in the vast

database of categorised Calabi-Yau threefolds, found in the Kreuzer-Skarke database

of four-dimensional reflexive polytopes [64, 825]. The topological information in this

database can be manipulated to construct and build an understanding of string mod-

els in a cosmological/phenomenological context. In the nomenclature of toric geom-

etry, the Calabi-Yau data in the database is categorised according to the topological

invariant Hodge numbers, second Chern class and intersection numbers. Despite the

potential complexity a complete analysis of the extra dimensional space could yield,

compactification models on Calabi-Yau hypersurfaces benefit greatly from Yau’s

theorem and the extensive nature of the Kreuzer-Skarke database. The database

contains a total of 473, 800, 776 polytopes, denoted by ∆◦ where performing a fine,

regular, star triangulation (FRST) of any of these polytopes defines a toric variety.

The Hodge numbers themselves can be expressed in terms of the polytope data

[689, 825],

h1,1(Z) = `(∆◦)−
∑

codimθ◦=1

`?(θ◦) +
∑

codimθ◦=2

`∗(θ◦)`?(θ)− 5 , (3.65)

h2,1(Z) = `(∆)−
∑

codimθ=1

`?(θ) +
∑

codimθ=2

`∗(θ)`?(θ◦)− 5 , (3.66)
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which displays the the polar duality, ∆↔ ∆◦ for the ambient toric variety. In these

expressions the terms θ and θ◦ represent the faces of specified codimension of the

polytope ∆ and its dual ∆◦, respectively. Finally `() represents the number of integer

points of the polytope while `?() is the number of interior integer points [689]. The

anticanonical hypersurafaces which arise as smooth Calabi-Yau threefolds, present a

total of 30,108 distinct Hodge pairs, (h1,1, h2,1), for the possible combinations of h1,1

and h2,1, defining the distinct values of the Euler characteristic. The Hodge numbers

are independent of triangulations, so future extensions to the full list of Calabi-Yau

hypersurfaces for all possible triangulations will not alter these defining features.

The Euler number is fixed within the bounds, χ ∈ [−960, 960], which represents an

interesting and currently undefined limitation set on the magnitude of the Hodge

numbers we could wish to consider when building an axiverse. In Fig. (3.5) we

display the apparent fractal nature of manifest symmetries found by plotting the

Euler number against the Hodge summation, h1,1 + h2,1. The mirror line symmetry

centred around zero is an obvious feature of this plot. The Hodge numbers peak at

the most occupied mirror symmetric point, (h1,1 = 27, h2,1 = 27) with a multiplicity

of 910,113, which we can associate to the typical number of axions we could expect.

The general density of these points gives us a good reference point to the number

of axions we might expect in some general string compactification model, which we

will assume is roughly of the order,

Nax ≡ h1,1 ' O(30) . (3.67)

Rather interestingly the Euler number is approximately Gaussian distributed (see

the right panel of Fig. 3.3 and discussions in Ref. [444]) and well modelled in certain

contexts by modified pseudo-Voigt/Planckian distributions [689]. The total dimen-

sion of the moduli space expressed in Eq. (3.64) can also be extracted using the

Kreuzer-Skarke list and the distinct Hodge number combinations. This parame-

ter also approaches a Gaussian like curve as displayed in the left panel of Fig. 3.3.

These two examples represent the ability to replace (at least as a very approximate
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assumption) geometrical topological parameters with simplified priors represented

by unimodal functions. The polar duality in Eq. (3.65) and Eq. (3.66) is an incredi-

ble numerical realisation of the conjectured mirror symmetry in string theory models

through the study of Calabi-Yau manifolds and their interchangeable features with

respect to the associated reflexive polytope and its dual polytope. There are in fact

many patterns or apparent symmetries which can greatly simplify the process of

analysis when considering the way the topological invariants are distributed. For

extended details see discussions in Refs. [309, 372, 645, 687, 688, 724].

3.3.6.3 From Geometry to Phenomenology

In Ref. [427] an analysis was considered using a subset of threefolds determined by

triangulating polytopes for various values of h1,1. A general focus was placed on the

study of ensembles with a large values of h1,1 in the context of axion cosmology. This

analysis determined a series of interesting results in terms of how the geometrical

features for the complex manifolds both relate and define a possible spectrum of

ultralight fields. Of course these results represent an indication of possible model

behaviour for isolated Type IIB compactification models on an orientifold of a hy-

persurface X, due to the limited nature of the sampling process, which does not rule

out configurations completely. For geometries where h1,1 > 22, their initial results

indicate that each geometry reproduces a series of ultralight states, representative of

an axiverse, where the lightest field is hyperlight and essentially a massless quantity.

In fact for configurations where h1,1 � 11 it was shown that in the regime of control

of the α′ expansion, the effective field theories tend to manifest a large number of

fields which are very light, possibly falling in regions of great interest in models of

ULA cosmology. The kinetic matrix eigenvalues, associated to defining the axion

fundamental domain were also found to be small, in turn defining the effective axion

decay constants as small, generally confined to sub-Planckian ranges. Previous liter-

ature has already shown the domain is sub-Planckian for all geometries with h1,1 ≤ 4

1See Ref. [64] for details on the h1,1 ≤ 6 domain.
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[874]. In Ref. [427] this was extended to geometries with a large number of axions

where it was found a limited number of configurations could potentially realise a

trans-Planckian fundamental domains, which would be of great interest to model

frameworks such as cosmic inflation. Models with large h1,1 tend to show promise in

finding fields which may appear in problematic and constrained regions of the axion

parameter space. Specifically in the regime of control of the α′ expansion, a three-

fold hypersurface, along with sub-varieties can inherit very large volumes in string

units. Although the complete picture of moduli stabilisation would be required to

rule these out, along with a detailed focus on the regime of control of the α′ ex-

pansion, these results do offer a fascinating prospect for future studies. Namely the

consideration of specific phenomenological model features such as the independent

axion gravitational coupling determining the nature of the superradiance process

covered in Chapter 6, which could begin to rule out geometrical parameters for the

extra-dimensional space directly.

It is currently, for the case of a general assessment of cosmological parameters and

phenomena, too difficult to perform explicit string calculations to sample complete

geometrical spaces in order to understand the overall properties of axiverse phe-

nomenology. A minimalist approach is to consider the effective field theory of the

Standard Model coupled to an extended sector symmetry or symmetries represent-

ing the axion field(s). These arguments now rely more simply on the parameters of

the effective theory, which can be inspired or fully motivated by considerations made

from the string models discussed above. Such methods often call upon randomised

landscapes and the powerful mathematical phenomena of universality in order make

sense of the dimensionality of the problem. With a reduction of the models infor-

mation it is possible to generate results which could lead to inferences relevant for

shaping future explicit model constructions.
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3.3.7 Can We Really Have an Axiverse?

Given the assumption of the axiverse in the context of phenomenology, it’s impor-

tant to pause briefly to assess further details regarding the ability to realise this

scenario in the surroundings of the wider string landscape. There may be few or

indeed no light axionic degrees of freedom remaining once physical constraints are

placed on models, e.g. moduli stabilisation mechanisms and other requirements for

the resultant vacua. This may therefore bring into question the plausibility of de-

tails surrounding the assumptions made for the incorporation of light axions. In

Section 3.3.4 and Section 3.3.5 we briefly covered the basic features of the string

axiverse realised in both Type IIB and M-theory models respectively. These both

provide two suitable frameworks in which a hierarchy of axion mass scales are well

realised. Although these represent a ‘proof of concept ’ of finding an axiverse in the

string landscape, it is important to consider an example of when can’t we realise the

string axiverse?

Issues surrounding the viability of light axions associated to supersymmetric moduli

configurations which generically result in AdS vacua in the context of the string

landscape [758] will be discussed. Indeed it has been shown that the presence of

tachyons are generic for constructions attempting to stabilise the moduli supersym-

metrically while preserving unfixed axions [364]. For any supersymmetric compact-

ification solution the axions are partnered up with their scalar counter parts, the

saxions. In this context the phenomenological features of ultralight solutions such

as the QCD axion therefore heavily depend on the features and details of the stabil-

isation details of this scalar partner. The statement that supersymmetric solutions

for any U(1)PQ-invariant effective supergravity framework lead to a tachyonic saxion

mass is a powerful one. Solutions to this tension can be found in areas such as the

required uplifting the potential undergoes in order arrive at a phenomenologically

viable dS/Minkowski vacuum [758] (see discussions below in Section 3.3.7.2). To un-

derstand this example we will quickly review the no-go theorem of supersymmetric
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moduli stabilisation with axions defined to be unfixed, applicable to general string

compactification models, found in Section 3.3 of Ref. [364]. See also the relevant

discussions in Refs. [341, 351, 460, 702, 781].

3.3.7.1 Tachyonic Saxion Masses and AdS Vacua

As detailed in Ref. [364] consider the framework of an arbitrary N = 1 supergravity

theory with two classes of moduli denoted by Φα and Tβ = τβ + icβ. The string-

theoretic axions are identified as the imaginary component of Tβ, indicated by cβ.

The Kähler potential and the superpotential are a function of the moduli fields of

the form, K(Φα, Tβ+T̄β) and W (Φα, Tβ) respectively. We are concerned with details

of the saxion masses (τβ ≡ Re(Tβ)) in the supersymmetric vacuum and the possible

presence of light axions. In the supersymmetric vacuum, with stabilised moduli,

we have the solutions, DΦαW = 0 and DTβW = 0 for all values which run over the

indices α and β. The chiral superfields can be re-expressed in a basis maintaining any

required holomorphic properties such that there exists a superfield whose imaginary

component is an axion unfixed by the solutions of the supersymmetric vacuum [364].

We will denote this axion, cΥ ≡ Im(TΥ).

As the solutions to the F-term equations are independent of cΥ, the unfixed axion

is a flat direction of the potential in Eq. (3.28) at the supersymmetric locus. The

potential at the supersymmetric locus is defined as, V = −3eK |W |2. The axion cΥ

does not appear in the Kähler potential and as a flat-direction indicates that |W | is

independent of cΥ, and therefore W can also be considered so2. Holomorphy dictates

that the superpotential also has no explicit dependence on its saxion partner and

therefore the modulus superfield, TΥ. This leads to the realisation that, ∂TΥ
W ≡ 0

which also recalling that DTΥ
W = 0 leads to the following conclusion that we must

consider either one of the two conditions ∂TΥ
K = 0 or W = 0 at the supersym-

2As pointed out in Ref. [364] there is an exception to this assumption. If the axion cΥ represents
an overall phase i.e. W = e−aTΥ then the assumption breaks down. This is however expected to
be an exceptional case.
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metric locus. Focusing on the case of ∂TΥ
K = 0 for motivations of genericity3, the

scalar potential in Eq. (3.28) can be investigated whilst using the previously stated

conditions. The first derivative is given as [364],

∂τΥV = eKKij̄
(
∂τΥ (∂iK)W

(
Dj̄W

)
+DiW∂τΥ

(
Dj̄W

))
, (3.68)

which is found by expanding DiW and using ∂τΥW ≡ 0. Eq. (3.68) contains only

the terms which will provide non-vanishing contributions to the second derivative at

the supersymmetric locus. Evaluating the second derivative of the potential gives

details of the mass of the saxion of interest which is determined by the expression

[364],

∂τΥ∂τΥV = eKKij̄
(
2∂τΥ (∂iK) ∂τΥ

(
∂j̄K

)
WW

)
− 3 (∂τΥ∂τΥK) eKWW . (3.69)

Utilising both that Kij̄ = Kij and τΥ = 1/2
(
TΥ + TΥ

)
which defines the relationship,

∂τΥK
(
T + T

)
= 2∂TΥ

K
(
T + T

)
, leads to a simplified expression for the second

derivative of the potential,

∂τΥ∂τΥV = 4eKWW
(

2Kij̄KiΥKΥj̄ − 3KΥῩ

)
= −4eKWWKΥῩ ≤ 0 . (3.70)

Recalling that Kij̄ is a metric the quantity KΥῩ is strictly positive definite leading

to the conclusion that the τΥ direction is indeed tachyonic. The above gives a no-

go theorem for the ability to realise a naturally suppressed mass for cΥ required

to explore phenomenological and cosmological solutions such as the QCD axion or

quintessence. The arguments above imply that the supersymmetric locus is always

tachyonic, with one tachyon for every massless axion. In this sense the appearance of

undesirable tachyonic saxions would seem a generic prediction in these models of the

AdS vacuum whilst seeking the axiverse. Specifically that there does not exist any

3As detailed in Ref. [364] even in the case that the superpotential vanished it is expected to
obtain non-perturbative corrections to result in a non-vanishing potential. Given it follows that
∂τΥ∂τΥV = 0 the massless modulus τΥ would leads to issues such as fifth forces as yet unobserved.
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supersymmetric minimum of the F-term potential consistent with stabilised moduli

and unfixed axions one would desire for an axiverse scenario.

3.3.7.2 An Axiverse Assumption

While we have detailed in previous sections that axions appear to be a ubiquitous

feature of critical string theories, the details of their survival within a framework

of some low energy four-dimensional effective field theory can ultimately prove a

very complex issue. In the case of incorporating many axions we have seen in Sec-

tion 3.3.7.1 there may be many tachyons present, one for each massless axion field.

A general conclusion then from the above points is the implication that light ax-

ions such as the QCD axion or light DM fields prefer non-supersymmetric moduli

stabilisation. As pointed out in Ref [364] there are a number of loopholes to the

arguments in Section 3.3.7.1 we could consider. These include the true nature of

the Kähler potential in the non-perturbative limit and the subsequent dependency

on the axion. The interplay of the D-term potential and the ability to consider the

supersymmetric locus as a true minimum of the full potential. Alternatively the

application of stability and the possible ability to ignore wether the locus is an ac-

tual minimum of the potential and details surrounding the Breitenlohner-Freedman

bound [278]. A number of solutions have also been proposed in order to find stable

vacuum with non-tachyonic saxions and a positive definitive mass matrix as required

by realistic models. For example the utilisation of an uplifting potential induced by

supersymmetry breaking brane stabilised at the end of warped throat [342, 343, 758]

as detailed in Ref. [341].

One can then consider the assumption of an axiverse as both a limitation placed on

the compactification scenario from the general underlying theory which motivates

it and the total space of the string landscape we are operating in. That is the

ad hoc assumption, we are only focused on the portion of the landscape in which

sampling the axion parameter space of an axiverse is well motivated in the low
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energy effective field theory. One of the most important problems in string theory

is the ability to make direct and consistent contact with low-energy phenomenology

we adopt in some effective theory as an extension to the Standard Model. The key

takeaway is that ultralight fields are not features we can blindly associate to the

vacuum. We can retain however the statement they are well motivated and will do

so for the remained of this thesis. There has been good progress in defining both

consistent masses for axions and moduli. A good example is the toy model presented

in Appendix B of Ref. [31]. Given the current state of the field of axion cosmology

and its place in the wider framework of string theory we can at best conjecture

that the moduli are suitably stabilised. This leads to the conclusion that the study

of axions whose masses are logarithmically hierarchical into an ultralight sector a

well motivated endeavour. We will assume throughout any effective theories stem

only from either the general framework of an Axiverse [107, 1230, 1231] or explicit

works such as those in Refs. [21, 22, 27, 28, 31] which cover aspects of microscopic

models. Our main focus will predominantly be on considering a random distribution

of both decay constants, allowing for kinetic mixing of the axions and dynamical

mass scales via the use of random matrices. These assumptions will allow us to

study the dynamics of the axions.
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Chapter 4

Canonical Random Matrix Theory

“My colleagues in elementary particle theory in many lands are driven

by the usual insatiable curiosity of the scientist, and our work is a

delightful game. I am frequently astonished that it so often results in

correct predictions of experimental results. How can it be that writing

down a few simple and elegant formulae, like short poems governed by

strict rules such as those of the sonnet or the waka, can predict

universal regularities of Nature?”

Nobel Banquet Speech

Murray Gell-Mann (December 1969)

4.1 Elements of Random Matrix Theory

4.1.1 Statistical Tools and Assumptions

The following sections in this chapter will detail some of the very well researched

RMT machinery which allows us to make simplified statements or assumptions on

a potentially extremely complex space to study or sample from. Our use of RMT

will only be applied to a simplified treatment of a general two-derivative effective

Lagrangian for a spectrum of ultralight fields which is well motivated in the context

183
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of string models. We will be specifically interested in the case of random matrix en-

sembles which produce positive definite spectra in order to sample the dimensionful

parameters at some phenomenological scale of interest, their values determined by

a distribution of eigenvalues. The ‘landscape ’ of possible potentials incorporating a

large number of scalar degrees of freedom resulting in masses spanning many scales

(i.e. the Axiverse scenario [107]) is a very different space compared to the solutions

we may find in the ‘string landscape ’ as highlighted in Section 3.3.7, representing

the landscape provided to us by string theory. Our choice to sample based on the

ad hoc assumption of an axiverse defines a starting point in our choice of modelling

and represents just a part of the overall space we could choose to operate in. It

does not therefore account for solutions or models, which factoring physical criteria

(i.e. details of moduli stabilisation or supersymmetric concerns) suggest a possible

absence of hierarchically light axions as highlighted by the example no-go theorem

in Section 3.3.7. Our models and subsequent results are therefore to be interpreted

as only relevant to the fraction of the string landscape in which an axiverse of scales

seems to be a possible feature, and not the general axion parameter space as a whole.

As a result we expect a significant space of string models and therefore string cos-

mology/phenomenology which cant be explored with the approaches we will take

and ultimately our conclusions.

We also do not currently have a reason to believe statistical RMT models offer an

accurate representation of actual string data from the top down. Therefore such

approximations can be very restrictive and certainly in the context of the string

landscape will fail to incorporate much of the possible rich structure which can be

found there. The use of data vectors will take us far from physically realistic models

and details of any microscopic parameters. However we can argue that as an initial

investigation of part of what could be an important feature of the string landscape

(ultralight sector cosmology), we can still retain some (albeit potentially limited) of

the fundamental features of a model at the effective level that allow us to gain an

understanding of some of the landscape’s properties through our choice of ensembles
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classes.

Using this incentive previous results have been determined applying both more de-

tailed and simple matrix models with random potentials in the study of cosmo-

logical issues. This predominantly to-date has involved several or many scalar

fields tackling the problem of inflationary modelling. Some other examples in-

clude random multi-field models such as those in Refs. [5, 347, 501, 502, 918] or

approximations made to random supergravities (see Section 5.2.8 and references

therein). For studies of multiple scalar fields or axions specifically, closer to the

work in this thesis, parameter ensembles have also been considered which fea-

ture models with strictly positive spectra and sample covariance matrices. These

are loosely inspired by explicit compactifications of string theory, in order to in-

vestigate simple axion cosmologies (Eq. (2.85)) and can found within the follow-

ing works. Firstly utilising the assumption that the mass distribution depends

only on the basic structure of the mass matrix itself, with the spectrum well-

approximated by a Wishart matrix, (see Section 4.3.1.1 and Appendix I) can be

found in Refs. [128, 173, 176, 268, 347, 353, 499, 501, 799, 1079, 1080]. For details

of non-trivial kinetic matrices, charge matrices and a look at the fundamental do-

main of the axion field space using canonical ensembles of positive definite random

matrices see Refs. [126, 128–133, 133, 134, 533, 693].

We will follow these motivations along with some elements of the examples listed

above in order to investigate a simple picture of part of the multiple axion field

landscape, the key difference from some of these works being the scale of the problem.

Our approach considers modelling both the axion kinetic mixing and mass matrices

simultaneously where we focus on the case of taking the quadratic approximation

to the potential. That is we are assuming any higher order terms can be neglected,

so that what are really cosine functions under the dilute gas approximation for the

axion potential can be approximated to the case of Nax massive uncoupled fields. The

applicability of this analysis is prompted by the general expectation these parameters

(Eq. (2.85)) should present a non-trivial spectrum, which could span many orders of
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magnitude. We then wish to assess this through a statistical analysis, absent of any

specific information for the microscopic parameters of some theory which they find

their motivations. Using the general case of random potentials highlighted above

as an example one may choose to assume that the landscape consists of a sufficient

number of largely uncorrelated terms that it can be treated probabilistically. This

does not how ever suggest the string landscape itself is arbitrary, an important

distinction.

The benchmark models we consider in a minimal framework become beneficial when

considering an analysis of the case when Nax & O(10)−O(100). Our models of the

axiverse using the statistical tools below whilst incorporating a large number of fields

have considerations and assumptions placed on their masses, decay constants and

interactions, following the ad hoc assumption of an axiverse scenario as detailed in

Ref. [107] and Section 3.3. A primary assumption we are making is therefore that our

field masses can span many scales (i.e. MH - MPl) with a specific focus placed on the

ultralight sector (See both Section 5.1.2 (Eq. (5.32) and Eq. (5.33)) and Section 7.1.3

for the mass ranges we consider). Likewise we will make the assumption the axion

decay constants may also span many decades, as discussed in both Section 2.6.2

and Section 5.1.2 (Eq. (5.30) and Eq. (5.31)). In general we will ignore interactions

between the fields (as is often seen in the literature) although we will touch on

elements of this in Section 6.3 in regards to BH superradiance. The interpretation

of the results and analyses in both Chapter 6 and Chapter 7 therefore apply only for

the case of a general axion parameter space sampled using the matrix theory covered

in this chapter. The following sections present the theoretical elements which allow

us to understand spectral features of our models in each basis in which we sample.

4.1.2 Matrix Theory

We will begin by focusing on the study of a subset of the general linear group,

GL(N,R) for all N × N non-singular real matrices, as well as the matrix groups
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which act on that subset such as the orthogonal, O(N) group, in order to define

solutions to systems of randomised linear equations. The applications of RMT are

numerous, making use of many of the available ensemble forms to structure the

analysis of random operators [1298], counting devices [442], ensemble functional

analysis and relevant for our interests for sampling physical dimensionful model pa-

rameters, data driven concerns surrounding sample covariance matrices [137, 1060]

with high dimensional data analysis [755]. The standard and extensive literature on

the compelling subjects surrounding random matrices and their striking results can

be found in the monographic works and discussions in Refs. [138, 641, 939, 1279].

As a mathematical tool, RMT provides a very flexible and powerful framework in

which to manipulate and move around large data sets associated to complex models

and systems, often allowing for the extraction of conclusions based on introduced

global symmetries. At the heart of this framework, often relied upon for many

forms of analysis or methodologies used to gain insight into physical systems, is

the beautiful theoretical aphorism of universality. The topic of RMT has a lavish

and diverse narrative in the literature, several key landmark works injected into the

landscape of mathematics during its booming phase of development, now represent

staple configurations of analysis. The defining formulation of the invariant Haar

measure over the classical groups, a theoretical underpinning of the many novel

representations and modern disciplines of RMT today [443, 730]. Some decades

after these studies, random matrices initially appeared in the work of John Wishart

[1360], with his efforts to generalise the two parameter family of continuous gamma

probability distributions to multiple dimensions, along with the work of Hsu [721]

as far back as the 1930’s. This aforementioned family formulation is known as the

Wishart distribution, defining a series of probability distributions over the symmet-

ric, nonnegative-definite matrix-valued random variables. The asymptotic formalism

for random matrix ensembles came some twenty years later however, with the work

of Wigner in regards to his research surrounding nuclear physics, where he postu-

lated apparent associations between the spacings of lines in the spectrum of heavy
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atomic nuclei and the eigenvalues of random matrices [1351, 1352, 1360].

Random matrix theory (RMT) is often broadly classified as the analysis and de-

composition of eigenvalues (also often referred to as latent or characteristic roots)

and eigenvectors of high-dimensional matrices distributed according to a defined

statistical distribution. A symmetric random matrix can be classified as positive

definite if and only if its eigenvalues are strictly all positive, negative definite if and

only if its eigenvalues are all negative, and positive semi-definite if and only if all

its eigenvalues are strictly non-negative. It is common to work in the regime where

the size of the random matrix is taken to infinity which, given the defining results

of numerous studies, has been shown to provide excellent accurate descriptions of

the finite dimensional domain. Let us define this now as:

• Analysis in the large N limit: The study of the universal laws of conver-

gence, central limit theorems (CLTs) and asymptotic statistics (for example

limiting density functions) which arise when the dimension of the matrix is

taken to the limit N→∞.

4.1.3 Fundamentals of Eigendecomposition

The primary matrix decomposition we will concern ourselves throughout this the-

sis is the spectral decomposition or eigendecomposition of a matrix, which for any

Hermitian matrix can be defined by a real diagonal matrix Λ,

M = UΛU−1 , (4.1)

which possesses diagonal entries defined by the matrix eigenvalues, uniquely deter-

mined by M. The Jacobian decomposition is defined as,

dβ(M) =
∏

1≤i<j≤N
|λi − λj|β

N∏

k=1

dλkdµ(U) , (4.2)
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where dµ(U) = [U−1dU] is the Haar measure. The specific form for the Jacobian can

be defined by the choice of matrix ensemble, which produces a marginal distribution

of the joint probability distribution. The invariance of the measure on M directly

stems from the invariance of the Haar measure. For any matrix M ≡M(N), its en-

semble can be understood through a probability distribution function that depends

on the statistical nature of the entries forming the matrix elements. If we must

insist on statistical independence for the matrix entries, often prescribed for analyt-

ical simplification, along with general basis transformation invariance, then general

arguments taking a non-biased approach determine we must focus on the general

results associated to ensembles related to the classical Gaussian ensembles, as often

such features cannot be generalised to other random matrix ensembles consisting

of real symmetric matrices. Formally our matrix ensemble distribution must retain

the following symmetry arguments,

P (M) ∝
N∏

i=1

fi(Mii)dMij

∏

i<j

fij (Mij) dMij , (4.3)

P (M) = P (UMU−1) , (4.4)

for the Gaussian functions, fi and fij, where Eq. (4.4) is a consequence of the

properties of the trace in the exponent of Eq. (4.5). By ensuring this choice in regard

to the probability distribution of the matrix ensemble, we can now integrate over

the relevant parameters related to the ensemble eigenvectors in order to determine

an expression for the joint symmetrised probability density of the eigenvalues of M

[748, 939],

PN,β̃(λ)dNλ =
1

ẐN,β̃

e−ξ
∑Ni=1 V

N,β̃

∏

1≤i<j≤N
|λi − λj|β̃dλ1 . . . dλN . (4.5)

where ξ is is a constant determined by the choice of β̃ (see discussions in Sec-

tion 4.1.4.1) and ẐN,β̃ a normalisation constant. The presence of the Vandermonde

determinant,
∏

1≤i<j≤N |λi − λj|β̃ is a consequence of a change of variables for the
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eigenvalues and is significant as its square represents the statistical nature that there

is a natural eigenvalue repulsion inherent to the distribution. The special form of

this repulsive term, allows us to study such ensembles using orthogonal polynomials

(see Section 4.1.4.1). The spectral behaviour of the characteristic roots from these

relevant polynomials are generally factorised into two regions:

• The global macroscopic regime: Probability measure space and linear for-

mulations for the empirical spectral measures concerned with the bulk statistics,

CLTs and limiting laws which demonstrate convergence over the entire set of

ensemble eigenvalues.

• The local microscopic regime: Repulsive behaviour between the spacing of

individual eigenvalues, along with statistical fluctuations at spectral radii of

both the infimum and supremum at the relevant hard and soft edges via the

determination of data correlations.

Traditionally the limiting spectral density laws for the global space are represented

by a deterministic measure density up to some scale associated to the eigenvalue

spacing, normally of the order of the bulk spectrum normalisation factor, O(N−1).

In the large N limit the normalisation factor saturates, placing a mass of N−1 on

each random eigenvalue when sampling the ensemble. When sampling our model we

therefore normally assume a given statistical model is ignorant to the scale of the

physical problem we are attempting to solve, requiring normalisation to the limiting

forms of the universal spectra according to the spacing in the bulk of the spectrum

in the large N limit. This leaves a natural factorisation of the model scale and the

global and local asymptotics coming from the random matrix.

Matrix models in theoretical physics have found traction regarding many fascinating

fields of study. Close relations to string theory span as far back as the 1970’s [281]

(see Ref.[525] for classified examples of RMT usage). Further interesting insights

have been drawn up regarding the study of eigenvalue repulsion and the holographic

behaviour of matrix BHs [153, 1067, 1228], or the study of wrapped D-branes coordi-
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nates [1066], study of moduli spaces [257, 524, 821], F-terms [454] and matrix valued

scalar inflation [113], a small subsample of the complete analytical space. M-theory

has also seen results derived from the conjecture that there exists a correspondence

between uncompactified M-theory and the large N limit of supersymmetric quantum

mechanics for D0 branes [152].

4.1.4 The Nature of Eigenvalues

Only if the diagonal elements of Λ in Eq. (4.1) are independent, identically dis-

tributed (IID) random variables, does the joint eigenvalue density take a factorisable

form,

ρN(λ1, ..., λN) = P (λ1) . . . P (λN) . (4.6)

The applicability of Eq. (4.6) is therefore only valid if we wish to model variables

usually determined by the spectrum of the matrices in a simplistic manor, not the

spectrum of a matrices themselves. Take for example the axiverse solution we will

discuss in Section 5.1.2. Taking a simplistic prior on the field parameters, fa and ma

represents an approach of minimal information inspired by the possible landscape

of solutions, motivating the type of prior in Eq. (4.6). The statistical independence

in this simplistic model will never hold however when considering the eigenvalues

of a random matrix representation for the axion parameter space, which we may

encounter in some effective theory, for example a random matrix representing the

unknown axion mass matrix. The joint eigenvalue density of a general class of

invariant random matrix models (such as those determined using Eq. (4.2)) we may

wish to use will take the following generic form,

ρN (λ1, ..., λN) = C
∏

1≤i<j≤N
|λi − λj|

N∏

i=1

e−V , (4.7)

where C represents a normalisation constant and V a polynomial. See Eq. (4.5) and

surrounding discussions for details on the structure of this density function. The
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probability for each eigenvalue is a more complicated picture due to the natural

correlations between the eigenvalues. See Section 4 of Ref. [599] and Chapters 3, 4

and 5 of Ref. [939] for detailed discussions on topics such as correlation functions,

cluster functions and gap probabilities which contribute to a correct understanding

the true relationships between individual eigenvalues in classical matrix ensembles.

4.1.4.1 The Orthogonal Polynomial Method

There are various solutions and algebraic methods used in both the finite N and large

N limits [525, 939], devised to evaluate the limiting behaviours of ensemble eigen-

values. Examples are the Stieltjes method [939], saddle point analysis [281], loop

equations [944], superintegrals [651] and orthogonal polynomials [214]. Focusing on

this last example, it is worth highlighting the use of this systematic procedure as it

often plays a vital role in the analysis of limiting results of classic ensembles. For

a detailed account of the complete procedure we only briefly highlight below of one

of the most commonly used ansatz when investigating a distribution of eigenvalues

see Refs. [46, 231, 423, 579, 811, 939, 1356]. A key feature of invariant ensembles

is the ability to express the joint density of N eigenvalues as an expression incorpo-

rating a N×N determinant. An example of this is shown in the density function in

Eq. (4.5). This relationship allows for the extraction of the limiting eigenvalue be-

haviour through the study of the asymptotics of orthogonal polynomials. Consider a

generic Hermitian matrix model described by a partition function whose eigenvalues

are described by a gas of N equally charged particles in the real domain. Their

interactions are determined by a log potential and are confined by some polynomial

potential of degree ν,

ZN =

∫
dNxe[−N

2{N−1
∑
k v(xk)−N−2

∑
i 6=j log |xi−xj |}] . (4.8)

The powerful methods behind orthogonal polynomials are used to formally define

exact solutions to Hermitian matrices of the form defined in Eq. (4.8), for all values
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of N, efficiently in terms of a kernel.

To begin we must focus on the properties of the Vandermonde determinant found in

the exponential of Eq. (4.8). The statistical probability that individual eigenvalues

are close is very small due to this term. The Gaussian orthogonal ensembles which

relate to Eq. (4.8) are more formally referenced as Hermite ensembles due to their

relation with the Hermite polynomials. These incorporate the Gaussian orthogo-

nal ensemble (GOE), Gaussian unitary ensemble (GUE) and Gaussian symplectic

ensemble (GSE). This categorisation was formalised back in 1962 when Freeman

Dyson published a series of seminal works [493–495, 497, 497] which accrued in

Ref. [492], where he proposed a symmetry classification of these invariant ensembles

by introducing the Dyson index β̃. This parameter categorises the different possible

real, complex, or quaternion entries, formulating the classical threefold way.

For any monic polynomial (a single-variable polynomial with a leading coefficient

equal to 1), pk(x) = xk + . . . , using elementary column operations on the Vander-

monde determinant we can define,

det




1 x1 . . . xN−1
1

1 x2 . . . xN−1
2

...
...

...

1 xN . . . xN−1
N




= det




p0(x1) p1(x1) . . . pN−1(x1)

p0(x2) p1(x1) . . . pN−1(x2)

...
...

...

p0(xN) p1(xN) . . . pN−1(xN)



, (4.9)

where the value of k represents a finite sequence and we have replaced the monomials

in the left hand expression with polynomial functions. There are many ‘classical ’

orthogonal polynomials which represent our choice of basis (Jacobi polynomials,

Laguerre polynomials or Hermite polynomials etc.) each required to follow the

general condition, ∫ b

a

pj(x)pi(x)w(x)dx = cicjδij , (4.10)

where w(x) represents a weight function over the interval [a, b], with constants ci and

cj. The remaining terms pj(x), represents our selected series of orthogonal polyno-
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mials of degree j. The canonical orthogonal ensembles weight functions are |x|ae−x2
,

xae−x and xa(1 − x)b for the Hermite, Laguerre and Jacobi ensembles respectively.

The system of N eigenvalues of interest may be considered as N fluctuating particles

(Coulomb gas analogy). As the β̃ parameter in Eq. (4.5) tends to ∞, these particle

positions behave as multivariate normals with variance O(1/β̃), their variance and

means located at roots of the respective orthogonal polynomials [483, 484]. A use-

ful feature from the orthogonality of the chosen polynomials is that they must also

satisfy a three-term recurrence relation, of the form,

xpk(x) = pk+1(x) + Skpk(x) +Rkpk−1(x) , (4.11)

where Sk and Rk are real constants. This is a simple recursive system of linear

equations which leads to important features regarding the spectral information of

the matrix ensemble. It is convenient to normalise the polynomials rather than work

with the monic orthogonal polynomials to produce an orthonormal set of functions

on the support of the relevant weight, φj(x) ≡ pj(x)
√
w(x). These expressions

satisfy the basis condition,
∫
φi(x)φj(x)dx = δij. These normalised polynomials

define the reproducing kernel, a vital component in a general analysis of invariant

matrix ensemble eigenvalue behaviour,

KN(x, y) =
N−1∑

k=0

φk(x)φk(y) . (4.12)

The reproducing kernels are defined as self-reproducing from our choice of an or-

thonormal set, and abide by the following self-replication condition,

∫
KN(x, y)KN(y, z)dµ(y) = KN(x, z) , (4.13)

for each value of N. The kernel in Eq. 4.12 can be expressed in terms of both φN−1

and φN as a result of the Christoffel-Darboux formula [811, 939]. This informs us

that the study the large N behaviour of these kernels is encoded in the study of just
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two polynomials. Using Dyson’s lemma [496] and Eq. (4.13) (see also [44, 45]) we

learn that the marginal distributions for the eigenvalues can be represented in the

form of a determinant constructed from the same kernel. This tells us the whole

statistical information is contained in our definition ofKN(x, y). Specific investigated

examples include the probability density of bulk and extremal eigenvalues (Eq. 4.15),

correlation functions, cluster functions, gap probabilities (see Section 6.4.6.1 (Ṕ )),

Janossy densities and spacing distributions, all of which can be expressed in terms

of a kernel in the form in Eq. (4.12). Three extremely common examples of kernels

in RMT are the Airy kernel [262, 551, 1265], sine kernel [493, 968, 1018] and Bessel

kernel [551, 968, 1267]. These each correspond to scaling at the soft edge of the

GUE, scaling in the spectral bulk of the GUE, and scaling at the hard edge of the

LUE/JUE respectively.

The fundamental Dyson representation for the join density and N-point correlation

function,

Rk (x1, . . . , xk) =
N

(N − k)!

∫
PN (x1, . . . , xN)

N∏

i=k+1

d2xi , (4.14)

are respectively re-expressed as [939],

P (x1, . . . , xN) =
1

N
det (KN(xp, xq)1≤p,q≤N) , (4.15)

Rk (x1, . . . , xk) = det(KN(xi, xj))
k
i,j=1 . (4.16)

The N-point correlation function is associated to the probability density that N of

the eigenvalues, irrespective of order, lie in infinitesimal neighbourhoods, x1, . . . , xN.

It is representative of a marginal distribution on the set of N ≤ k eigenvalues. The

kernels which arise from the use of orthogonal polynomials therefore give rise to

explicit formulae for the spectral quantities of interest. The asymptotic behaviour

of of these kernels dictate our understanding of the statistics of the eigenvalues of

unitary ensembles in the large N limit and give us a heuristical understanding of



Canonical Random Matrix Theory 196

universality in random ensembles.

4.1.5 Convergence of Limiting Spectral Distributions

One example of universality is often found with a consideration of the marginal

eigenvalue distribution, found by integrating the joint and unordered eigenvalue dis-

tribution over each latent root aside from the one of interest. This is also understood

as placing a probability measure on the matrix, M and subsequently its eigenval-

ues, which once evaluated represents the nature of a randomised eigenvalues for a

random matrix, i.e. a member of the chosen ensemble. When this is averaged over

the defined probability measure, the limiting eigenvalue distribution is found. This

function represented in a form which characterises the distribution of eigenvalues,

is known as the empirical spectral distribution (ESD),

µM
N =

1

N

N∑

i=1

δx (x− λi) , (4.17)

where δx represents a Dirac delta measure at x, leading to the ordered set of eigen-

values of M,

λ1 ≤ λ2 ≤ · · · ≤ λN−1 ≤ λN−1 . (4.18)

If λi 6= λj for all j where j 6= i then the spectrum distribution is simple. Perhaps one

of the most powerful ideas stemming from the properties of the eigenvalue spectrum

is the principles of convergence of measure, ergodicity or self-averaging the spectrum

demonstrates in the large N limit. The statistical features of the invariant ensembles

we have mentioned have flourished since their initial appearance, where often a

focus is placed on the level densities, spacing distributions and spectra of eigenvalue

extrema found in these models. As a defining feature present in many ensembles

of random matrices, the ESD will converge to a unique and deterministic form as

N → ∞. This function is known as the spectrums limiting spectral density (LSD)

which is understood as µM converging weakly on R either almost surely or with a
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given probability, to some non-random probability distribution function, µM
N . The

deterministic probability measures converge in the weak* topology on a given space,

Ω with an associated algebra to a defined measure, µ where such convergence holds

if, µM
N → µM if and only if ||µM

N − µM||∞ → 0 along with the general limits,

µM
N

Weak−−−→
N→∞

µM, ∀ ∈ Cc(R), lim
N→∞

∫
µM
N dµM

N =

∫
µMdµM , (4.19)

for the continuous bounded function set, Cc(R). The LSD can be expressed via the

self-averaging properties of the ESD found by averaging over our choice of matrix

ensemble, with an average eigenvalue density,

µ(M) = lim
N→∞

µM
N (x) = E

{
1

N

N∑

i=1

δx (x− λi)
}

=

∫
1

N

N∑

i=1

δx (x− λi) dµM
N . (4.20)

The above points represent mathematical formalities generally beyond the scope of

the topics in this thesis. The principle of weak convergence a formality which allows

us the ability for us to fix statistical priors and suitable function approximations to

limiting measures in our analysis.

4.1.6 Classical Random Matrix Theory

In order to introduce the familiar matrix ensembles we will begin with a partic-

ular special class of matrix ensemble concerns those invariant under group basis

automorphisms, formally defined by a Radon-Nikodym density of the form,

PN,β̃(M)dβ̃M =
1

ZN,β̃

e−Tr[VN,β̃(M)]dβ̃M , (4.21)

with respect to a flat Lebesgue measure on the space of algebraically independent

entries, where ZN,β̃ is a normalisation constant, present to ensure we maintain the

correct probabilistic normalisation,
∫
dµ(M) = 1. The subscript, β̃ = 1, 2 and 4

represents the orthogonal, unitary and symplectic ensembles for the N × N real
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symmetric, N × N real Hermitian and 2N × 2N Hermitian self-dual matrices re-

spectively. The exponent in Eq. (4.21) is an arbitrary real function of the matrix,

VN,β̃(M), which is also referred to as the potential of the invariant ensemble. When

VN,β̃(M) is degree two, i.e. VN,β̃(x) ∝ x2 we retrieve the classical case relating to the

famous Gaussian ensembles. These ensembles are often referenced in the literature

as defining an ensemble class with invariant trace. Gaussian ensembles are unique

as they represent both a family of invariant ensembles, which also belong in the

ensemble of matrices defined with IID entries. These are paradigmatic ensembles,

with a natural realisation in many models of physical systems used to describe the

universal laws of physics.

4.1.6.1 Ensemble Invariance and Physical Systems

One of the first defining presentations of the insights these ensembles bring with

an understanding of eigenvalue spacings, serving as a test for the conjecture of uni-

versality in a naturalistic study, was Wigners’ motivations to study generic models

representing the spectral fluctuation properties of complex many-body systems in

nuclear physics. Specifically he focused on the general properties of the energy levels

of atomic nuclei with the use of a random Hamiltonian, H. The real or complex

Wigner ensemble consists of general N × N self-adjoint matrices with normalised

variance. The entries have an imposed symmetry constraint, hij = h̄ji. A Wigner

matrix is defined as a matrix with the form,

WWig =
1√
N
HN , (4.22)

with centred real or complex random variable entries, Ehij = 0 and i, j = 1, 2, . . . ,N.

Wigner proved that the weak limiting empirical density of the eigenvalues converges
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to the now renowned semicircle distribution,

µSC ≡ f (λ) =





1
2π

√
4− λ2 if |λ| ≤ 2 ,

0 if |λ| ≥ 2 ,

(4.23)

the famous CLT canonical density for scalar probability theory (see Fig. 4.1). Rather

interestingly these distributions have also been manipulated and embedded in the

context of representing the limiting spectra in flux compactification models, using

shifted Wigner spectra in order to greatly simplify the treatment of the study of

vacua utilising random ensembles of supergravity theories [125, 127, 429, 909]. Sim-

ilar example ensembles also appear such as the Altland-Zirnbauer CI ensemble [63]

when modelling non-supersymmetric flux vacua [429, 909]. The use of these mini-

mal information randomised landscapes has also found significant traction as a tool

in inflationary multi-field cosmology [564, 1039]. The black dotted line in Fig. 4.1

defines the empirical eigenvalue limiting law often referred to as the Wigner sea.

The density points outside this region represent the local fluctuations of the spec-

trum in the finite limit over a scale of width N−1/6. The limiting density function

of these fluctuations is determined by the Tracy-Widom distributions introduced in

Appendix D. Each of the coloured lines represent the density functions of fluctuated

spectra for different values of the smallest eigenvalue in the spectrum. In the context

of random vacua, the function corresponding to λmin = 0 (blue line), is representative

of a specific example where we realise an eigenvalue spectra detailing a metastable

vacuum configuration, formed from probability relations of fluctuations to atypical

configurations. The probability function for these fluctuations as a function of the

smallest eigenvalue is,

P (λ)λmin
=

1

6
√

3π

(
3λ− λmin +

√
12 + λ2

min

)√−3λ+ λmin + 2
√

12 + λ2
min

λ− λmin

,

(4.24)

which recovers the famous semicircular law of Eq. (4.23) in the limit λmin = −2. As



Canonical Random Matrix Theory 200

�1.0 �0.5 0.0 0.5 1.0

�

0.0

0.2

0.4

0.6

0.8

1.0

P
(�

)

Wigner semicircle empirical limit

Fluctuated spectrum density function

Figure 4.1: Normalised eigenvalue spectrum of the GOE ensemble for classical

random Gaussian matrices [505, 939], represented by both numerical samples and the

empirical spectral Wigner semicircle density limiting law defined in Eq. (4.23) [1352].

Each coloured density function in regards to the probability of large fluctuations

of extreme eigenvalues is defined using Eq. (4.24), which is found in Ref. [418] and

detailed in Ref. [1039], for different specific bounds placed on the infimum eigenvalue.

The final function (blue line) represents the atypical fluctuated spectrum in which

the complete set of eigenvalues are defined on the real positive interval.

detailed in Ref. [1039] the probability of realising such fluctuations is computed by

integration of the probability density function,

P (λ > λmin) =

∫ +∞

λmin

dP , (4.25)

where the saddle point evaluation of Ref. [418] leads to the probability function,

P = e−βN
2Φ(λmin) , (4.26)

with a rate,

Φ(λmin) =
1

432

[
72λ2

min − λ4
min +

(
30λmin + λ3

min

)√
12 + λ2

min

]

+
1

432

[
108 ln(36)− 216 ln

(
−λmin +

√
12 + λ2

min

)]
,

(4.27)
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which represents a specific example of landscape statistics in order to define the

required density of states. Such simple landscapes represent potentially vast possible

field space regions, defined by the theory. These models are in principle used to

model the energy landscape of random potentials and such concern themselves with

the statistical nature of stable vacuum considerations. For example in the case of

the Hessian modelled in the landscape of Gaussian random fields the saddle point

approximation [399] can be used to assess the form of the statistical functions for

critical points [1371]. The form of these functions detail the potentially non-trivial

and exponential suppression to realise the desirable atypical eigenvalue alignment

required for metastable vacua of critical points. Statistically this represents a vast

suppression against realising solutions given by the universal lampposts of RMT.

See Section 5.2.8 for a more detailed discussion on these topics.

The properties of the individual eigenvalues Wigner had poured his focus into reaped

a novel result, his prediction, the fluctuations of the gaps are universal, distributed

according to a law referred to as the Wigner surmise. His sentiments on the signif-

icance of this result translated through his words on the subject:

“Perhaps I am now too courageous when I try to guess the distribution of

the distances between successive levels (of energies of heavy nuclei). Theo-

retically, the situation is quite simple if one attacks the problem in a sim-

pleminded fashion. The question is simply what are the distances of the

characteristic values of a symmetric matrix with random coefficients.”

As it turns out, Wigners’ law was incorrect, the true solution later formulated by

Gaudin [589], following the recently developed orthogonal polynomial methods of

M. L. Mehta [938]. Wigner had however at the very least, set a gratifying prece-

dent, successfully testing the conjecture that complicated quantum systems were

well modelled by universal forms, with dependancies seemingly only placed on the

symmetry classes of the physical system, with the ability to integrate out other de-

tailed structures. Must like the models of other physical systems such as random
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supergravity (Section 5.2.8) the key aspects of the universal limits were inevitability

perturbed by various forms of required correctional terms representing a level of

quasi-universality of the systems description.

4.1.6.2 A Minimally Informative Stance

An interesting perspective on the use of these invariant ensembles in model building

with RMT is the principle that they can be understood at a fairly fundamental level

as a model of ‘minimal information’, through Shannon’s information theory [1178].

To give an insight as to why we might wish to use such ensembles when leaning on

features of universality, we can look at the stance taken by Roger Balian [145, 291],

some time shortly after the decisive work of Wigner-Dyson-Mehta. It quickly became

apparent that particular canonical matrix ensembles, i.e. those of Eq. (4.21) can be

reformulated by minimising the information content of the probability distribution

which defines the ensemble, once symmetry considerations have been taken into

account. Alternatively this is viewed as maximising the entropy of the system,

factorising the remaining system properties to be assumed as maximally random.

Consider the case of discrete events where the information for a set of probabilities

is defined as,

I [P ] ≡
N∑

i=1

Pi logPi , (4.28)

which is generalised for the case of continua,

I [P (M)] ≡
∫
dMP (M) logP (M) , (4.29)

up to normalisation factors. We wish to select the probability distribution P (M),

which is constrained to satisfy certain properties that de-biases our approach, min-

imising the information and maximising the entropy functions on the matrix space,
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which takes the form [291],

S ≡ −
∫
. . .

∫
D (M) log [D (M)] dM , (4.30)

for fixed requirements placed on the conditions and symmetries of the problem.

The standard procedure now involves fixing conditions such as the expectation of

the lowest order traces which are required to conform to defined prescribed values

[579],

E [TrM] = A , (4.31)

E
[
TrM2

]
= B . (4.32)

These constraints are placed into the minimisation by using forms for Lagrange

multipliers, ν1 and ν2, where the function,

I [P (M)] = −
∫
dµ (M)P (M)

[
logP (M)− ν1TrM− ν2TrM2

]
, (4.33)

is now minimised. Allowing for a variation of Eq. (4.33) with respect to δP (M) gives

the expression,

δI [P (M)] = −
∫
dµ (M) δP (M)

[
1 + logP (M)− ν1TrM− ν2TrM2

]
= 0 , (4.34)

which must take the proportional solution,

P (M) ∝ e(ν1TrM+ν2TrM2) , (4.35)

which is nothing more than a Gaussian form for the distribution placed on the ma-

trix elements. Defining the probability distribution for the matrix M, allows us to

now focus on the nature of the joint eigenvalue distribution. The required Gaussian

matrix distribution for the elements is obtained by maximising the Boltzmann-

Gibbs-Shannon entropy with considerations for the expectation values in Eq. (4.31)
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and Eq. (4.32). This represents an extremely strong link between the nature of

Gaussian statistics and the eigenvalues of a large class of random matrix models,

when the requirements on the trace are fixed. See Refs.[16–19, 213, 1263] for con-

struction of random matrix ensembles by using the same approach this time with

the Tsallis’ non-extensive entropy [1272, 1273], a generalisation of Boltzmann-Gibbs

entropy statistics.

4.2 Sample Covariance Matrices and High

Dimensional Data

4.2.1 Multivariate Statistics and Positive Definite Spectra

Parametric statistics is now a mainstay in the modern climate of data analysis,

utilised in models in many fields requiring more and more elements in their funda-

mental domains. Many of these have a natural desire for more and more powerful

inference methods to evaluate the deterministic and potentially unknown model pa-

rameters. These natural concerns are often centred around possible conclusions we

can draw from our model via the use of a subset of statistical principles, multivari-

ate statistics, which concerns itself primarily with vector valued data. Beyond the

classical contemplations of the 20th century, random matrices have seen a vast resur-

gence due to the modern practicalities of examining high-dimensional data sets. It is

indeed common to encounter the asymptotics of large N and P synonymous with the

theoretical manifestations of limiting distributions formulated some decades previ-

ous. The so called large P-large N setting is the current prime landscape for informa-

tive discussions of high-dimensional data. Of course in this day and age it is expected

much of the data found in the modern world should concern itself with multicom-

ponent vectors of random data, or data sets consisting of multiple if not numerous

variables. How these data sets or variables relate to each other has a long history
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spanning back to the seminal works of Karl Pearson and even as far back as the work

of Carl Friedrich Gauss. The understanding that it is possible to encompass such

theoretical uncertainty in a simplified model revolutionised the approaches made

toward highly complex and initially assumed to be analytically untouchable, physi-

cal systems, where predictive conclusions were eventually formed on the grounds of

symmetries and universality. Given the recent evolution of computational capaci-

ties and algorithms, such as machine learning methods and the powerful theoretical

foundations to generate model reference frames, it is no surprise innovative model

applications requiring the analysis and statistical formulations of random matrix ar-

guments, representing high-dimensional data structures are numerous in the fields of

theoretical physics [436], telecommunications [1280], number theory [371], quantum

mechanics [58, 259, 641, 1291], condensed matter physics [185], information theory

[145, 930, 966] and quantitive finance [258, 370, 640, 836, 836, 895, 1009, 1062, 1285],

representing a taste of the reach this branch of mathematics has.

Typically sampled data sets can be factorised into two contributing components,

signal and noise. Sampled data can be compared against the universal cornerstone

laws relevant for high dimensional data structures which have driven much of the

research in the field over the past many decades, in order to declare whether one

observes correlations between data vectors for model variables. These conclusions

stem from the nature of singular values and deviations from the RMT predictions

often associated to local spacing and bulk singular value statistics, such as the

celebrated quarter and semicircle laws [1351, 1352, 1360] or Marčhenko-Pastur law

[901, 1360]. Lets us flip this procedure on its head and now suppose the deterministic

generation of model data under a frequentist style framework is in general, beyond

either analytical or computational practicalities, such as requiring solutions to vast

systems of explicit linear equations. These powerful laws of statistical convergence

can also be viewed from a different stance in regards to model evaluation and the

school of statistics we use to formulate our conclusions. Replacing the deterministic

data sets from directly sampled inputs, we now call upon the Bayesian type approach
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discussed in Appendix B, introducing an estimator quantity for the data, where

the uncertainty of the data inputs is translated across from theoretical uncertainty

present in model, now turning to the study of priors and parameterisation of measure

spaces. This theme of universal asymptotic behaviour ever present in our discussions

so far is indeed analogous to that found in classical probability theory. A standard

example is the sum of independent standard normal random variables producing

a normalised sum, which is understood as a further independent standard normal

random variable. A common use for multivariate random variables is to define a

series of data vectors which categorise a series of unknown values under the pretence

of a lack of sufficient information or imperfect knowledge of an overall model. These

data vectors form the structure of a sample covariance matrix.

4.2.1.1 The Sample Covariance Matrix

The question we should now address is how we understand the universal nature of

RMT in the context of the priors we place on our ensemble and how both signal

and noise elements are represented in terms of data vectors. Let us begin with the

random variable X, where we define X to be absolutely integrable if E|X| < ∞

and almost surely finite if |X| <∞. The expectation of a given quantity is denoted

by E, where we can express the first raw and second centralised moments of our

random variable respectively as,

µx = E[X] , (4.36)

σX =
√

E[(X − µX)2] . (4.37)

Now, by introducing a further random variable Y , we can define the integral defini-

tions of both the covariance and correlation between two variables,

ΣX,Y = E[(X − µX)(Y − µY )] , (4.38)

ρX,Y =
ΣX,Y

σXσY
. (4.39)
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Elevating this statistical standardisation, to a system incorporating many correlated

random variables for model data sets forms the notion of a covariance matrix, used

to regulate covariates between elements of higher dimensional structures,

Sij = E[(Xi − µXi)(Xj − µXj)] , (4.40)

which is defined in the positive semi-definite subset of all (P× P)-matrices,

S ∈ RP×P : xTSx ≥ 0, ∀x ∈ RP . (4.41)

The conventional approach to making an estimation of the population covariance

replaces the matrix in Eq. (4.40) with the sample covariance matrix, now making

use of sample estimates. The unbiased-maximum-likelihood-based estimator of a

population covariance matrix is expressed via the relationship,

Ŝij =
1

N − 1

N∑

i=1

(
Xiy − X̄i

) (
Xjy − X̄j

)
, (4.42)

X̄i =
1

N

N∑

α=1

Xiα , (4.43)

where X̄i is the sample mean, acting as a common estimator for the covariance

matrix, Ŝij. Matrices defined in this way offer many beneficial features such as or-

thonormal eigenvectors, non-negative definitive eigenvalues and symmetricity. Sam-

ple covariance matrices serve to provide initial estimates of relationships between

random variables and to provide sample estimates used in model construction. Sam-

ple covariance matrices will act as our primary mathematical tools in order to al-

leviate the complexity of the string landscape, encoding the theoretical uncertainly

of a large number of unknown contributions to the effective theory in a series of

data parameter vectors, with a given statistical distribution prior fixed primarily

using the requirement of minimal information. Consider a collection of data sam-

ples, x1, ..., xN ∈ RP which for a defined number of degrees of freedom forms the



Canonical Random Matrix Theory 208

data array understood as a N × P dimensional matrix,

XN ≡ (xij)1≤i≤P,1≤j≤N ∈ RN×P , (4.44)

XN,P = (xij)N,P =




x11 x12 . . . . . . . . . x1P

x21
...

...
...

... x2P

...
...

...
...

...
...

...
...

...
...

... xN−1P

xN1 xN2 . . . . . . xNP−1 xNP




, (4.45)

where the index denotes the primary dimension of interest for the sample statistic

in the data frame. The dimensions of the matrix in Eq. (4.44) represent defined sta-

tistical features, which shape the combinatorics of the data set, normally associated

to the following parameters of interest,

• N - The number of observations or samples.

• P - The number of unknown random variables relevant to the reduced dimen-

sional description of the model.

These correspond to the size of the rows and columns respectively. The sample

results are stored in the rectangular matrix formed of empirical data. Each sample,

i then has statistical data in the p−vector, xi and so on. The dimensionality or

concentration of the data matrix is understood via the rectangularity ratio of these

two dimensions,

β =
N

P
. (4.46)

When the value of β converges to a constant value, then we are operating in the

framework of large-dimensional asymptotics or the high-dimensional regime.

4.2.1.1.1 The High-Dimensional Regime

When the dimension of P is fixed and the sample size N→∞, the problem reduces

to the limits of classical multivariate asymptotic theory for each random variable. At
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this point the sample covariance matrix converges to use the population covariance

matrix as the standard estimator. As the value of β approaches large N limits we

enter into various regimes which account for the validity of our statistical estimation.

The realm of large N-large P asymptotics predict fundamental differences from the

classical counterpart by leaving empirical estimators of covariance unreliable. Each

of the regimes of interest are:

• Classical regime: P� N: As the dimensionality of the random variable vec-

tors tends to infinity with a fixed sample size, the sample covariance estimation

is no longer valid and breaks down.

• High-dimensional regime: P,N → ∞, N/P → β. The non classical crite-

rion: There exists well defined constants, c1 and c2 such that in the large N

limit, 0 < c1 ≤ β ≤ c2 < ∞ for the general regime of analysis using large

dimensional random sample covariance matrices.

We will always be interested in and operate in the high-dimensional regime, ensur-

ing both c1 and c2 are suitably well defined values between 0 and 1 to ensure the

spectrum is non-singular. Let us more formally define the structure of a general

data matrix used to sample a simple description of a high dimensional model and

explore how universal features arise.

4.2.1.1.2 Data Vectors and Standard Matrix Forms

The principle foundations to measure convergent or universal behaviour comes from

considerations made to the moments of the statistical entries used to generate the

random data vectors. Under the assumption that the limiting laws for large numbers

hold, then in the limit where P� N, the eigenvalues of the sample covariance matrix

tend to non-degeneracy at unity. In this setting we can define the following standard

form of the random symmetric positive definite sample covariance matrix estimator,

Yij =
1

P

P∑

i=1

XiX
T
i ≡

1

P
XXT , (4.47)
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where the generic form of sub-matrices we will use to construct Yij are defined in

Eq. (4.44). The normalisation shift compared to Eq. (4.42) represents an estimation

of the mean using the maximum likelihood before calculating the maximum like-

lihood estimate of the covariance. The mean vector, sometimes referred to as the

centroid, is a quantity which is assumed to be undefined and therefore factorised

out of the covariance estimation. The model scales are accounted for externally,

where we are only interested in the remaining statistical dispersions estimated us-

ing the standard variance-covariance estimator in Eq. (4.47). Models of this form

often take advantage of very powerful statistical laws concerning the convergence of

random variables such as the previously mentioned law of large numbers. For any

sequence of independent real valued random variables drawn from a common statis-

tical distribution, their summation
∑N

i=1 xi will converge to the following expression,

representing the strong criterion of the law,

N∑

i=1

xi ∼ N

∫
xdF (x) , (4.48)

provided that
∫
|x|dF (x) is finite. When the sample covariance matrix is a high-

dimensional matrix the requirement to define a suitable measure of correlations

between random data vectors defines the population spectral measure,

µ
(Σ)
P (x) =

1

P

P∑

i=1

δσi(x) , (4.49)

where δσi represents a point mass of weight unity at each population covariance

eigenvalue, σi. In the limit of the null formalism defined below the population

spectral measure is simply a point mass at unity, where µ
(Σ)
P (x) = δ1. The nature of

rates of convergence are normally found using the Stieltjes transform introduced in

Eq. (C.1).

Model sampling using matrices of the form in Eq. (4.47) represents a standard simpli-

fication one can bring to the description of a physical problem via the incorporation
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of random variables or vector quantities which are used to represent the underlying

properties of that system. This is done with the use of multivariate random vari-

ables to define a series of data vectors which categorise a series of unknown values

under the pretence of a lack of sufficient information or imperfect knowledge of the

overall model, in order to approximate explicit deterministic values of interest. The

relationship between a model and observed data can often lead to significantly com-

plicated mathematics in order to drive constraints whereby we must call upon the

notions of ensemble statistical inference in order to develop our understanding. We

restrict ourselves to sample covariance matrices of the general form, M = P−1XXT

which posses the desired ensemble symmetry properties (Eq. (4.3) and Eq. (4.4)).

This defines our RMT statistical baseline, which using the aspirations of sample

covariance and minimal information (see Section 4.1.6.2) concerns matrix elements

drawn using normal multivariate distributions and matrices residing in the Wishart-

Laguerre ensemble.

4.2.2 The Wishart-Laguerre Ensemble

In the statistical landscape, the RMT analogue of the Pearson estimator defines

the Wishart-Laguerre ensemble. The Wishart-Laguerre ensemble represents a stan-

dard method when estimating in the domain of big data. Traditionally physics

has seen many examples concerning themselves with invariant ensembles such as

the Wigner ensemble we previously commented on in Section 4.1.6.1. In the so

called Kolmogorov regime1 the Wishart-Laguerre ensemble also offers many pow-

erful universal results, some shared and some vitally different from its paramount

field defining counterpart, the Wigner ensemble. The finite moment convergence

condition corresponds to the limitation placed on the matrix ensemble, stating the

random variables, xij are jointly IID and obey the following moment limits. Firstly

1The Kolmogorov condition, named after Andrey Kolmogorov is a further term reserved for the
previously defined high-dimensional regime, the conditions that the ratio N/P is suitably convergent
to some constant value.
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the variables are centred, i.e. have zero mean with unitary variance and also up to

some order exponent, obey the following general supremum condition [1246–1248],

sup
i,j

E[xi,j]
∆ ≤ C , (4.50)

for a given constant C, independent of the dimension of the matrix. At this stage

we need not distinguish between continuous or discrete distributions although we

shall naturally assume any prior distribution for the data elements comes from a

continuous function. This is indeed a very powerful statement on the sampling

potential of our random variables. This independence placed on the distribution

for the random data vectors requires we only need to consider the expectation of

the moments follow finite constraints up to a given order, in order to define the

required local and global statistics in the high-dimensional regime. Traditionally

most models of statistical theory concern themselves with normal or multi-normal

models. The simplest multivariate prior or selection for a statistical distribution, Ω,

for the entries of the p−data vectors in Eq. (4.45) is the centred standard normal

distribution, N (µ, σ2 = 1), where µ ∈ R and σ2 > 0 defined by the density function,

f(x) =
1√

2πσ2
e

(
− (x−µ)2

2σ2

)
, (4.51)

encoding the theoretical uncertainty of the model into a multivariate normal linear

model. In a multidimensional sense the generated entries are understood as a sam-

pling from a p−dimensional normal distribution, with unitary covariance between

random vectors,

Ω = N (0,Σ ∝ I) . (4.52)

The sum of squares of independent univariate Gaussian random variables, such as

those drawn from Eq. (4.51), is chi-squared distributed. The multivariate gener-

alisation of this is the sum of outer products of p−dimensional Gaussian random

variables which is Wishart distributed. We will for the time being denote a ran-

dom matrix which contains IID entries with W inside a defined class or family of
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Figure 4.2: Left panel: Density function plots for the Wishart distribution defined

in Eq. (4.54) for various values of the parameter representing the functions degrees

of freedom. Right Panel: Density function plots for the inverse Wishart distribu-

tion defined in Eq. (4.97) also for various values of the parameter representing the

functions degrees of freedom.

P−variate sample covariance matrices,

W ∼ WN(Σ,P) . (4.53)

Explicitly if this family of random matrices utilises real valued sampling, we define

the real-Wishart ensemble for symmetric positive definite matrices. This ensemble

is understood by the following naturally arising probability distribution function,

vital for inference in multivariate data analysis [138, 939],

f(W) =
1

2NP/2ΓN

(
P
2

)
|Σ|P/2 |W|

(P−N − 1)/2 exp
[
−1/2 Tr

(
Σ−1W

)]
, (4.54)

where ΓN is the multivariate gamma function and P represents the degrees of free-

dom. In the left panel of Fig. 4.2 we demonstrate the Wishart distribution for

various different degrees of freedom, denoted by ν. The Wishart distribution is a

multivariate generalisation of the Gamma distribution when the degrees of freedom

are real valued, and the chi-square (χ2) distribution when the degrees of freedom are

integer valued. We shall refer to the case when Σ = I in Eq. (4.53) as the standard

Wishart distribution. Analogous to the standardisation of the normal distribution
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to exhibit a centralised first moment and unitary variance, the Wishart distribution

can be centralised according to the assumption of identity covariance. This will be

explicitly detailed under two formalisms later.

4.2.2.1 Laguerre Orthogonal Polynomials

Continuing from Section 4.1.4.1 the explicit spectral statistics of the Wishart-Laguerre

ensemble can be determined using Laguerre polynomials. These functions therefore

have an extremely useful relationship to the limiting spectral distributions found in

the context of multivariate statistics and sample covariance matrices. Formally the

Laguerre polynomials Lan(x), can be defined by the relationship [550, 555],

n!Lan(x) = exx−a
dn

dxn
(
e−xxn+a

)
. (4.55)

We can rewrite the expression in Eq. (4.10) in order to define the ensembles orthog-

onal relationship using the relevant classical weight function class for the Laguerre

polynomials [46],

∫ ∞

0

Lαn(x)Lαm(x)xαe−xdx =
Γ(α + n+ 1))

Γ(n+ 1)
δm,n . (4.56)

The Laguerre polynomials Lαn, are orthogonal on the interval [0,∞) with respect to

the Gamma density xαe−x, (when α > −1). The Gamma density function is found in

eigenvalue density of the Wishart-Laguerre ensemble analogous to how the Gaussian

density function occurring in an analysis of the GUE and GOE eigenvalue densities

occurs. The joint probability density for the eigenvalues of product matrices in the

form, X†X (where the elements are assumed to be IID random variables) takes the

form [231, 425],

P (λ1, . . . , λN) = KNe
−β̃σ

N∑

i=1

λ
β̃
2

(1+P−N)−1

i

∏

j<k

|λj − λk|β̃ . (4.57)
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The parameter σ is for the variance of the matrix entry distribution. The reproduc-

ing kernel KN in Eq. (4.57) represents our incorporation of Laguerre polynomials

into the analysis of the spectral features of the matrix ensemble. Using the gen-

eral methodology found in Section 4.1.4.1 we can compute probabilities for spectral

features of Wishart-Laguerre matrices. The asymptotic density of the scaled zeroes

which directly relate to the eigenvalues of Eq. (4.57) (normalised to ensure they do

not diverge to infinity), are defined by the limiting relationship [550],

lim
N→∞

=
1

N

N∑

i=1

(xi,N
N

)
=

1

2π

∫ 4

0

f(x)

√
4− x
x

dx , (4.58)

for every continuous function f(x), defined on the interval, [0, 4]. See Refs. [432, 526,

826] for various proofs for the the asymptotic distributions of the zeros of Laguerre

polynomials with varying parameters. The right hand side of this expression is what

we will understand as the Marčhenko-Pastur limiting density function (Eq. 4.67), as

discussed in Section 4.3.1.1. This family of classical orthogonal polynomials (along

with the other classic families) has one of few integral representations, a feature

often exploited when discussing their properties. The Laguerre polynomials are

extremely useful in understanding various macroscopic and microscopic universal

features of classics sample covariance matrices residing in the Wishart-Laguerre

ensemble. Exploiting the asymptotic behaviour of the corresponding orthogonal

polynomials also provides us with information on the larger class of these matrices

associated with the same orthogonal polynomials [556, 586].

To be a little more specific to the real ensembles (β̃ = 1) we will encounter in

Section 4.2.2.1 and use in Section 5.2.4.1 (which we only quote for consistency) for

finite values of P and arbitrary values of P − N ≥ 1 (see Eq. (4.54)) information

in regards to the spectral density and correlation functions of the real Wishart-

Laguerre ensemble are defined by a Pfaffian determinant for a kernel incorporating

skew-orthogonal polynomials [1292–1294, 1357]. These are what can be expressed

in terms of the previously discussed Laguerre polynomials in Eq. (4.55).
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4.2.2.2 A General Sample Covariance Matrix

It should be noted that under the conditions of the dimensionality criterion we

ensure is fixed throughout (P ≥ N), the limiting spectra of XXT and XTX differ by

only their singular eigenvalues, so that in the limit of non-singular sample covariance

matrices this product is interchangeable and the spectrum commutes. In a Bayesian

sense the function in Eq. (4.54) is defined as the conjugate prior of the inverse

covariance-matrix of a multivariate-normal random-vector. Wishart matrices often

represent the prior precision matrix of multivariate Gaussian data sets. This problem

can be reparameterised by using a Wishart distribution as the conjugate prior of the

inverse covariance-matrix for a series of multivariate normal random vectors. We

can define a further, more general factorisation of the standard sample covariance

matrix form in Eq. (4.47), which now takes the form [138],

WN = P−1Σ
1/2
P XNXT

NΣ
1/2
P . (4.59)

As referenced previously we maintain the normalisation factor, P−1, as a replace-

ment for P−1 in Eq. (4.42), where the sample covariance is the maximum likelihood

under normality but no longer unbiased. Alternatively one can define the sample

set of observations using the form in Eq. (4.59), Wj = Σ
1/2
P Xj for the N × P set

{X1, . . . , XN} ≡ {xij}1≤i≤N,1≤j≤P. The divisor normalisation factor in Eq. (4.59)

represents a scaling term on the eigenvalues and eigenvectors, where our sample

eigenvalues of course remain unaffected by such normalisation, which does not de-

pend on the nature of rank deficiency. If the rank of the sample covariance matrix is

R, then it must hold that for a data matrix, X that R ≤ min(N,P). If the number

of variables is assumed to be larger than the number of samples then rank is at most

equal to the sample size of the covariance matrix, i.e. R ≤ N < P. The remaining

terms in Eq. (4.59) are present to account for the factorised components of the pop-

ulation covariance matrix, ΣP. The spectral decomposition of W is defined via the
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unitary conjugation of the eigenvector matrix,

W = UTΛU , (4.60)

where Λ = diag(λ) and U is a matrix in the group of orthogonal matrices, O(N),

defining the vector set of sample Wishart eigenvalues of W,

{λN} = λ
(W)
1 ≥ . . . ≥ λ

(W)
N . (4.61)

Equivalently the population eigenvalues of the covariance matrix, ΣP are defined in

the vector set,

{σP} = σ
(Σ)
1 ≥ . . . ≥ σ

(Σ)
P . (4.62)

Performing an orthogonal transformation on W yields a transformed distribution

for the Wishart matrix,

UWUT ∼ W(P,UΣUT) , (4.63)

highlighting the orthogonal invariance of the standard Wishart distribution under

the null formalism (Σ = I). This can be extended for any decomposed non-singular

matrix, Σ = AAT,

W ≡ AWIAT ∼ W(P,Σ) , (4.64)

where WI represented matrix distributed according to the standard wishart distri-

bution, transformed under a decomposed non-singular matrix rotation. This point

is something which will prove extremely important later when we account for limits

of perturbed cases using free probability theory (see Section 4.4). Assuming the

covariates of the matrix are defined and non-singular any Wishart matrix is suscep-

tible to a spectral decomposition, defining the similarity relation, A = VΛ1/2 via the

product of the associated eigenvector matrix, and matrix square root of the positive

eigenvalues.
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4.2.2.2.1 A General Hypothesis and Isometry

For the uncorrelated null case which occurs when ΣW = I, the empirical spectral

distribution of W almost surely converges in the weak* topology, towards a non-

negative and continuous probability measure on the half-real interval, [0,∞). In the

classical regime where P remains fixed, as the sample size N → ∞, the sample co-

variance matrix remains a consistent estimator [225, 1374]. In the high-dimensional

regime however this convention breaks down and we must refer to hypothesis tests

as a standard measure of covariance. We will now begin the process of standardising

our analysis in terms of the forms of the components in Eq. (4.59), indicating how

these relate to general multivariate normal models. We have two areas we must hy-

pothesise in order build a multivariate random matrix. The first are the assumptions

made on the distribution moments for the entries of the P−random data matrices.

The second is the initial level of control we enforce over the covariates of the random

data vectors.

Abstractly speaking we will adopt the nomenclature of statistical hypothesis test-

ing, in order to build and suitably contrast the frameworks of our random matrix

models. We must state we have adopted this convention in accordance with sta-

tistical practises only and not to infer any physical meaning of covariance in terms

of any underlying theory we are attempting to represent. The second consideration

regarding a prior on the covariates or hierarchies between model variables can be

classified as taking either the null or alternative cases. When taking the null hy-

pothesis, which corresponds to the notions of isotropy, which we denote with H0,

the population covariance matrix is defined as, Σ ∝ I residing in a subset of classes

of alternative hypotheses, HA where, H0 ∈ HA. Any matrix constructed under this

hypothesis is distributed according to the standard Wishart distribution, sometimes

referred to as a white or uncorrelated Wishart matrix. In the context of large sample

covariance matrices the null hypothesis represents the statement that there are no

correlations between the P-variables we are making uncertain statements for. The
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analytical tractability of the measure density in the limit of large random matrices

under the null hypothesises can be directly linked to the perturbative structure and

nature of element correlation (specifically a lack of) for the sample parameter space.

Considering the law of large numbers and the Cramér-Wold theorem with deviations

from the null case represent the presence of true information in the system and the

introduction of noise. Let us formally define each of the standard hypotheses asso-

ciated to the covariance formalism for a given sample matrix which constructs two

common testing grounds, namely the proportionality or equality of the population

covariance matrix to a known matrix form:

The Null Formalism: For a given empirical problem incorporating large

sample covariance matrices, let us define the invertible covariance matrix Σ0

under the hypothesis, H0 : Σ = Σ0, where Σ0 ∝ I. This hypothesis repre-

sents the nature of sphericity and that the observations are cross-sectionally

uncorrelated and have homoscedastic variance.

The Alternative Formalism: For a given empirical problem incorporating

large sample covariance matrices let us define the invertible covariance matrix

Σ0 under the hypothesis, HA : Σ = Σ0, where Σ0 6∝ I. This hypothesis corre-

sponds to additive or multiplicative perturbations to the covariance matrix of

either singular, finite or full rank.

Our simplest starting point will make the initial assumption of zero correlation

between the random vectors. A model which rejects the null formalism would suggest

the introduction of correlated entries and ultimately any eigenvalue which jumps

from the expected measure support in the limit N → ∞ holds a strong correlation

to the eigenvalues of the bulk in the local regime.
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4.3 Spectral Statistics and Universality

4.3.1 The Isotropic Null Formalism

The cornerstone matrix model of RMT introduced in the previous section will act

as the general baseline and reference point for any of our random matrix models,

a bench mark for a statistical analysis in the multivariate landscape. The null

hypothesis for the sample covariance matrix in Eq. (4.59) fixes the covariance matrix

to its isotropic limit, Σ ∝ I, where we can define the general matrix form,

Y = P−1XIXT . (4.65)

We will refer to a data matrix of this form as a Y -matrix. The limiting spectral dis-

tribution and bulk statistics for these matrices represent one of the defining results

of RMT and a principle feature of multivariate models developed over the course of

the 20th century. Under the assumption that the covariance matrix takes the form

of a scale matrix, then it has been shown the limiting spectrum of singular values

converges almost surely when the dimensionality constant in Eq. (4.46) approaches

a constant in the large N limit. This universal behaviour also holds in the statis-

tics of the local extrema, which serve as a testing ground for a rejection of the null

hypothesis. An emerging signal subspace via higher variances of the standard noise

variables constitutes statistical fluctuations outside the limiting spectra present un-

der the assumption of null covariance. This is understood via the union intersection

principle [217, 1022, 1125].

4.3.1.1 Bulk Universality and The Marčhenko-Pastur Law

In many models the eigenvalues of matrices represent critical elements of the theory.

The large N limit has given very useful qualitative and quantitative results which can

guide both the the classification of model structure or provide a source of complexity
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alleviation in scenarios where the theoretical uncertainty is high. One of the most

celebrated limiting features of RMT concerns the spectral analysis and empirical

limits of sample covariance matrices under the null formalism, with matrix entries

assumed to be IID random variables with mean zero and finite variance. In the limit

that N grows sufficiently large at a comparable rate to P inside the fixed bounds,

N

P
→ β ∈ (0,∞) , (4.66)

then with unity probability the ESD of Eq. (4.65) converges in the weak* topology

with respect to Lebesgue measure such that µY = fMP. The function fMP is the

LSD function represented by the Marčhenko-Pastur distribution law [901],

fMP(λ) = (1− β) δ0 +
1

2πβλσ2
MP

√
(λ+ − λ) (λ− λ−)1γ−≤λ≤γ+ , (4.67)

where 1 is an indicator function on the interval [γ−; γ+]. When β ≥ 1 the spectrum

of Y has N−P zero eigenvalues. This is shown in the density function of Eq. (4.67)

where we find a point mass at 0, along with a density function, each weighted by

1 − 1/β and 1/β respectively. When β ≥ 1 and N = βP then we have a fractional

split of 1− 1/β zero and 1/β non-zero eigenvalues in the spectrum. The parameter σ2

represents the model scaling term associated to the distribution variance, used to

shift the spectrum from its standard normalised window. When we restrict ourselves

to consider the following interval,

N

P

N→∞−−−→ β ∈ (0, 1] , (4.68)

the point mass at zero drops out and we are left with just the spectral bulk de-

termined by the Marčhenko-Pastur density, representing the limits to formulate a

strictly positive definite spectrum from a non-singular matrix. The rate of con-

vergence for the ESD function towards Eq. (4.67) is equivalent to the semi-circle

limiting distribution of the Wigner ensemble, which when sampled using canonical
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Figure 4.3: Marčhenko-Pastur density functions representing the limiting spectral

distributions of the isometric Y -matrix as defined by the function in Eq. (4.67). The

functions are defined with the distribution shaping parameter, β, inside the interval

β ∈ (0, 1], which gives Lebesgue absolutely continuous measures over the bounds

λ ∈ (0, 4], apart from in the limit β = 1 where a point mass appears at λ = 0.

Gaussian ensembles is N−2/5 [141]. The values of λ+ and λ− denote the supremum

and infimum eigenvalues of the standard uncorrelated sample covariance matrix set,

fixing the spectral radii. These limits were defined in the large N limit for the

largest scaled eigenvalue [1375], which converges almost surely to the boundaries of

the support defined to be,

λ+ = σ2
MP

(
1 +

√
β
)2

, (4.69)

and when β ≤ 1 the smallest scaled eigenvalue [141] also converges to,

λ− = σ2
MP

(
1−

√
β
)2

, (4.70)

such that each eigenvalue falls in the support bounds,

λ− ≤ λi ≤ λ+ , (4.71)
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for all i = 1, 2, . . . ,N. In the special limit β = 1 the upper edge eigenvalue saturates

to, λ+ = 4 defining,

dfMP(λ)

dλ
=

1

2πλ

√
(4− λ)λ10≤λ≤4 , (4.72)

which is a representation of the semicircle distribution under the general mapping

λ→ λ2. When P/N→ 0, the ESD of the covariance matrix, WN =
√

N/P (SN − σ2IP)

converges almost surely to the limiting Wigner semicircle law with scale index vari-

able, σ2. The normalised semicircular distribution is a translated large N limit

defined on the real domain, R+. The nth moment of the Marčhenko-Pastur density

is defined as,

∫
xnfβ(λ)dλ =

n∑

i=0



n− 1

i






n

i




(i+ 1)
. (4.73)

The associated first raw and second centralised moments are,

Mean : σ2
MP =

∫
λ dµMP(λ) , (4.74)

Variance :
σ4

MP

γ
=

∫
λ2 dµMP(λ)−

(∫
λ dµMP(λ)

)2

. (4.75)

We can also define the eigenvalue density of an isotropic inverse Wishart matrix or in-

verse Y -matrix via the Marčhenko-Pastur law in Eq. (4.67), formed using Eq. (4.97),

f(ν) =
ζ

ν2π

√
(ν+ − ν)(ν − ν−) , (4.76)

using the change of variables ν = ((1− β)λ)−1. The upper and lower bounds are

now defined as,

ν± =
(
ζ + 1±

√
2ζ + 1

)
=

(1− β)

λ±
, (4.77)

with the dimensionality relation taking on the translated form,

β =
1

2ζ + 1
∈ (0, 1] , (4.78)
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which shows the ability to interchange the use of both Wishart and inverse Wishart

matrices in many different types of invariant modelling.

4.3.1.2 Edge Statistics and Extremal Universality of the Spectral

Infimum and Supremum

The predictive nature of the eigenvalue statistics for large random matrices is a

vital tool often used in high dimensional data analysis. As we have previously

reviewed these universal features come with the benefits of independence of the

underlying distributions for the random variable vector quantities used to construct

the high dimensional data set. It is of course of great interest therefore, to seek

under what conditions it is to be expected that eigenvalues could be found outside

of such convergent limits for the bulk statistics and the categorisation of whether

these are an artefact of finite dimensionality or present in the large N limit of the

theory. This local universality can be classified at each of the two spectral edges.

More formally singular values which reside outside the bounds of a LSD probability

measure are usually concerned with two types of statistics. Firstly the presence

of perturbations to the population covariance matrix from the null formalism and

secondly the statistical properties of finite N realisations for the sample set. let us

focus on the second of these two points.

• Soft-edge universality: The soft edge of the limiting spectral distribution is

defined as the supremum limit of the spectral radii. As the eigenvalue density

is non-zero for finite perturbations from this value in the finite limit, this is

referred to as the soft edge.

• Hard-edge universality: The hard edge of the limiting spectral distribution

is defined as the infimum eigenvalue boundary, fixed by the model. For the

Laguerre ensembles the neighbourhood of the origin for the positive definite

Hermitian matrices fixes the hard edge to the value zero.

For an example see Appendix D for the famous Tracy-Widom limiting laws. These
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are powerful universal laws, which demonstrate convergence in the local statistics

of the eigenspace under the assumption of identity population covariance. When Σ

is not a multiple of the identity, the local statistics become factorised into regimes

which were first considered in Ref. [754]. Stemming from motivations of principle

component analysis (PCA), the behaviour of large sample covariance matrices were

studied under conditions representing the presence of trends in the correlations of

the population covariance matrix. These models have later become defined as spiked

population models, representing the case of matrices which have undergone a finite

rank perturbation from the null case in the high dimensionality limit, a specific case

of perturbative matrix dynamics.

4.3.2 The Alternative Formalism

4.3.2.1 The Population Covariance Matrix

The form of the covariance matrix in both Eq. (4.47) and Eq. (4.65) represents

the isometric limit of the general normalised variance-covariance matrix introduced

in Eq. (4.59), which under a similarity transformation and commutativity we can

re-express as,

Yij =
1

P
XikΣklXT

lj , (4.79)

where Σkl is the P × P population covariance matrix, its spectral measure defined

in Eq. (4.49). The null hypothesis formalism of Section 4.3.1 represents the sim-

plest composition of Wishart-like matrices we can use to sample the parameters

of our model. Deviations from this formalism can sometimes require sophisticated

approaches such as forming spectral expressions determined by zonal polynomials

[701, 747–749], whose explicit forms are often not known in a more general setting. If

we wish to de-bias the sample eigenvalues, it is normally required to estimate the so-

called population spectral distribution, a probability measure that characterises the

population eigenvalues of the covariance matrix. This is certainly a well motivated
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general stance to take. Often the assumptions of zero-information and pure-noise

residing in the bulk represents an impractical approach for model construction of

complex systems. This indicates the current need and general trend in the literature

to model a population covariance estimator, its significance to indicate the possible

magnitude and rank of correlations, not an explicit definition, given this ambiguity.

4.3.2.2 Finite Rank Correlations

A logical starting point in understanding the nature of how our model could diverge

from the results of classical universal ensembles, is the study of the introduction of

idiosyncratic noise in the form of finite rank perturbations, where we will briefly

review the theoretical concepts behind the seminal work of Jinho Baik, Gérard Ben

Arous and Sandrine Péché. This work highlighted the presence of a phase tran-

sition phenomena, suitably referenced as the Baik-Ben Arous-Péché (BBP) phase

transition. If the true population covariance matrix, Σ in Eq. (4.79), consists of a

singular perturbed value and P − 1 eigenvalues at unity then these matrices rep-

resent ensemble distributions inherent with signal and noise, defined as rank one

spiked Wishart models [142, 232, 233, 954, 1321]. These models were initially stud-

ied in Ref. [753], formally introduced by Johnstone in Ref. [754] and extensively

expanded on in Ref [1038]. They represent the initial presence of strong correlations

in the prior understanding of the test model. In a general sense these models are

Hermitian matrices with a spiked external source, where the real Wishart-Laguerre

ensemble is a special example of the potential V (x) = x/2− N−P−1
2P

log(x) defined in

Eq. (4.21). Focusing on the case of a single stray eigenvalue away from the limiting

bulk of the distribution, means we must consider the limiting laws of the largest

and smallest extremal eigenvalues for random sample covariance matrices in the

spectrum. It follows from the Bai-Yin theorem [140, 141] that for a given matrix

comprised of isotropic random vectors with IID components, Zij with zero mean,
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unit variance and finite fourth moment,

E(Z11) = 0, E(|Z11|2) = 1, and E(|Z11|4) <∞ , (4.80)

the distribution of the largest eigenvalue converges almost surely in the large N limit

to,

λmax =





(
1 +
√
β
)2
, ϑmax ≤ 1 +

√
β ,

σ1 + cσ1

σ1−1
, ϑmax ≥ 1 +

√
β .

(4.81)

The limiting spectral distribution remains valid even if the first centralised moment

of the statistical distribution used for the entries is non-zero. However in the case

where the Bai-Yin theorem breaks down we now find a susceptibility for finite rank

perturbations in the local regime at the soft spectral edge of the bulk. Intuitively

this can be seen as perturbing a model additively by a rank one matrix of growing

norm, forming additive noise around the rank one matrix. This behaviour can be

induced by using a uniform prior, which importantly is a non-centred function, on

the elements of our sample covariance matrix, Yij ∈ U [a, b] where a + b 6= 0. In

the case of singular rank deformation this is equivalent to defining the population

covariance for the data set of independent vectors as,

ΣP = diag(

λmax︷ ︸︸ ︷
1 + θ, 1, . . . , 1︸ ︷︷ ︸

λbulk

) . (4.82)

For all sample eigenvalues with associated unitary population covariance, the spec-

tral properties are confined to the bulk formed from both the hard and soft edges

of the limited probability measure. See Ref. [553] for discussions of the presence

of spikes in the context of the joint probability density function of the ensembles

eigenvalues. This phenomena was initially considered for the quarternionic Wishart

case in Ref. [1320] and described in detail for the real case in Ref. [953, 954].
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4.3.2.2.1 The Baik-Ben Arous-Péché Phase Transition

The limiting spectral features of these models has been thoroughly investigated since

their inception into the literature. The value of θ in Eq. (4.82) defines the bounds

of three distinct regimes based on eigenvalue criticality:

• The subcritical regime - When the eigenvalue perturbation falls inside the lim-

its, −1 < θ < γ−1 the perturbation is not sufficiently strong enough to form a

spike in the LSD, where the largest eigenvalue sits inside the bulk. As shown

in Ref. [530] the LSD remains the same as the null isotropic case for matrices

in the LOE.

• The critical regime - Inside the regime where 1 − βϑ = O
(
P−1/3

)
, the per-

turbation is just sufficient to form a spike on the limiting edge of the bulk.

Studies of the statistical fluctuations of these spikes in the case of real analysis

can be found in both Ref. [954] and Ref. [232].

• The supercritical regime - If ϑ > 1 then the perturbation is strong enough to

form a spike in the LSD where the largest eigenvalue is placed beyond the soft

edge of the spectrum bulk. The asymptotic properties of the formed spike were

considered in Ref. [1023] and generalised in Ref. ([1322]). In the regime the

largest sample covariance eigenvalue, λmax converges to λmax → ϑ (1 + β/ϑ− 1).

To summarise, for any eigenvalues sufficiently close to unity, then the associated

sample eigenvalues behave approximately in same way as if the true covariance were

the identity. Beyond this threshold the original work also demonstrated the scaling

was also shown to deviate. Eigenvalues remaining in the bulk scale as N2/3 and those

repulsed outside scale as N
1/2. In the non-large N limit estimates can be made for

the criticality bounds for as expressed by the inequality,

(
1− c−

√
N/P
)2

≤ λmin(W) ≤ λ (W) ≤ λmax(W) ≤
(

1 + c+
√

N/P
)
, (4.83)

where c± > 0 are model constants. The properties of the largest finite eigenvalues
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for real wishart matrices are understood in terms of these constants. See Ref. [356]

for discussions of eigenvalue correlation kernels defined from criticality regimes for

finite perturbations.

In general the observed data is represented as a series of vectors, Yi = Xi + εi where

Xi ∈ Rp, representing the information plus noise understanding of these models.

In much of the literature the data contained in Xi is defined as representing an

unobserved signal where a linear perturbation of the transformation vector εi, rep-

resents model noise. A signifiant amount of work has been conducted regarding the

high-dimensional asymptotics of these models. In the regime of identity covariance

incorporating Gaussianity, the limits were detailed in Ref. [754]. For real spiked

Wishart matrices let us denote the population eigenvalues as, ϑi ≡ 1 + θi for the

sample eigenvalue spikes or signal components. These have been shown to fluctu-

ate asymptotically as a Gaussian, which is repulsed O(N) from the bulk. Consider

ϑmax > 1 +
√
β with unitary multiplicity, then in the large N limit [77, 1023],

√
N (λmax − ηmax)→ N (0, σ2(ϑmax)) , (4.84)

where,

η(ϑ) = ϑ

(
1 +

β

(ϑ− 1)

)
, (4.85)

and,

σ2(ϑ) =
2ϑη(ϑ)

1 + ϑβ
∫
x(η(ϑ)− x)−2dFβ(x)

=
2ϑη(ϑ)

1 + ϑβ
(ϑ−1)2−β

= 2ϑ2

(
1− β

(ϑ− 1)2

)
,

(4.86)

representing Gaussian fluctuations of the supremum. Counting the number of spikes

has important consequences in general statistics, i.e. the number of factors in factor

models [997, 998] or the number of signals in signal processing [967]. When the

rank of the perturbation is low the spectrum remains recognisable due to Weyl’s

interlacement property of eigenvalues. If however we associate this spiked phase

transition process to every eigenvalue, possibly through fixed assumptions placed on



Canonical Random Matrix Theory 230

model correlations, then the symmetry classifications break down fully where the

system has undergone a full rank perturbation.

4.3.2.3 Full Rank Correlations

4.3.2.3.1 The Covariance F -Matrix

If we take the matrix considered in the previous section, ΣP, and decrease the

triviality of its rank then we can readdress the problem of eigenvalue transitions as

a more general matrix perturbation issue. Consider the general perturbation matrix

P, which we assume is full rank. Also consider a statistically independent random

matrix, X. The most general case of matrix products, PX will typically reproduce a

non-Hermitian matrix, with complex eigenvalues. Under the similarity relation, we

can express the matrix product of self-adjoint matrices in the form,

PX =
√
PX
√
P =
√
XP
√
X , (4.87)

as they posses the same moments where the square-root operation represents the

Hermitian matrix square-root. It is possible to define a Hermitian matrix required

to ensure a positive spectrum eigenvalues using the above relation, supported only

on the positive real axis where we now have,
√
P = UTdiag(

√
λ1, . . . ,

√
λN)U . The

characteristic polynomial is preserved under invariant transformations whereby the

characteristic roots or eigenvalues are identical preserving an identical spectrum.

The matrix X can be identified as our initial data matrix and P its externally

defined perturbative counterpart. If both X and P are positive definite then YN

is congruent to X and must also be positive definite, have positive eigenvalues and

can be well defined in its eigendecomposition basis by Sylvester’s law of inertia.

If these two matrices also commute, the limiting spectra is simply defined as the

convolution of their measures but this assumption may not always be valid. If the

matrix product components are invariant then the resultant matrix is also invariant.
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There are numerous methods dispatched in order the formulate the LSD of structures

such as those found in Eq. (4.87) incorporating the general case with possible non-

commutativity in the large N limit. Perhaps the most powerful of these is the field

of free probability theory introduced by Voiculescu [1205, 1307–1309, 1312], which is

comprehensively covered in the monograph of Ref [393]. We will address this topic

in Section 4.4 and the power these methods have to incorporate non-commutative

operations.

4.3.2.3.2 Correlated Data Observations

Suppose now that the matrix X is a correlated or non-isotropic Wishart matrix and

P ≡ ΣP, a deterministic positive definite Hermitian matrix, we recover the sample

covariance matrix in Eq. (4.79) often motivated for linear models in multivariate

statistics,

Y = P−1P1/2XXTP1/2 , (4.88)

≡ P−1XΣXT . (4.89)

In the limit P = diag(ti), Y reduces to a generalisation of the standard sample

covariance matrix or gram matrix [652], Y = ZZ, where the elements of Z = PX must

be independent by definition, modelling the empirical covariance of a sample of N

independent observations. The BBP phase transition phenomena in Section (4.3.2.2)

concerned itself with finite rank perturbations of the form,

Y =
√
BW
√
B , (4.90)

where W was represented by a matrix in the LUE ensemble and B is a diagonal

matrix with a finite number of elements or spikes which deviate from unity. Beyond

the regime of the rank one spiked models initially introduced into the literature, it

was shown the same phase transition also occurs in unitarily invariant models with
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higher rank perturbations, defining the unitary multiplicative perturbation ensemble,

F =
√
PU∗YU

√
P . (4.91)

Here Y is defined according to the isotropic principle of Eq. (4.65) with the required

unitary invariance over Haar-distributed random matrix conjugations ensured by our

use of a Wishart sample covariance matrix. If Y is defined according to Eq. (4.90),

then this defines the finitely deformed unitary multiplicative perturbation ensemble,

Fε =
√
PU∗(Y + εI)U

√
P ≡ F + εP , (4.92)

where the LSD is formed with both a spectral bulk and a series of spikes determined

by the multiplicative convolution of the eigenspaces, as addressed in Section 4.4. It

is also possible to define the perturbation P to possess spikes itself.

4.3.2.3.3 Perturbed High-Dimensional Correlated Data Observations

It is clear there are general additive and multiplicative forms a perturbed matrix

can take just considering the form of F and Fε above. In order to encode this total

behaviour we can first consider the most general form a high-dimensional sample

covariance matrix could take, found by expanding and decomposing the form in

Eq. (4.79) to [515, 1025, 1390],

SN =
1

P
ZZT =

1

P
P1/2XΣPXTP1/2 . (4.93)

This represents the most general form for the empirical covariance matrix, con-

structed with the perturbed correlated data observations, Z = P1/2XΣ1/2, the inher-

ent form of the data which incorporates both cross-correlations and auto-covariance

between variables and an external perturbative deformation source. If P is a strictly

non-negative definite perturbation then the matrices in Eq. (4.93) generalise matri-

ces of the form in Eq. (4.88), where there are statistical correlations between the
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row and column vectors of the initial data matrix. If P and Σ are symmetric non-

negative definite Hermitian matrices, i.e. P possesses a unique positive-definite root,

then the eigenvalues of Eq. (4.93) are then same as,

SN =
1

P
PNXΣPXT , (4.94)

which is understood via the similarity transformation relationship,

PΣ = P1/2ΣP1/2 = P−1/2 (PΣ)P1/2 , (4.95)

presuming the commutativity between P1/2 and X holds. Specifically these relation-

ships help us relate the equivalent nature of general unitarily invariant models and

perturbed correlated models. Said alternatively there is an equivalence relation-

ship between considering the final form of the sample covariance matrix as either a

problem regarding correlation priors or a matrix perturbation problem after initial

declaration. There is a caveat to the decompositional form of Eq. (4.93). A general

detailed approach and precise understanding of the properties of such distributions

is a challenging task and not fully explored in the literature. The full impact on

the posterior inference for such models has been explored in the contexts of struc-

tured ensembles of composite systems via various probabilistic techniques such as

planar diagrams, free probability and comparisons of hypergeometric function via

functional transformation techniques [148, 197, 296, 554, 965, 1047, 1400].

4.3.2.3.4 The Inverse Wishart Distribution

The standard approach to modelling covariance estimation for sample covariance

matrices is to use an inverse Wishart distribution prior, the proper conjugate prior

for an unknown multivariate normal covariance matrix [596], due to its analytical

convenience and tractability. This is defined as,

WIW ∼ W−1(Ψ, ν) , (4.96)
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for a general matrix X whose inverse, X−1 is Wishart distributed. The degree of

freedom parameter, ν is regarded as the prior sample size. The probability density

function of the inverse Wishart prior is shown in the right panel of Fig. 4.2 and is

defined by the function [161, 939, 1279],

f (WIW) = C|Σ|−(ν+p+1)
2 e[−Tr

(
ΣΨ−1

)
/2] . (4.97)

Often chosen to simplify posterior results, this function’s conjugacy properties mean

its combination with the likelihood function results in a posterior function in the

same family of distributions. The inverse Wishart prior is the multivariate gen-

eralisation of the inverse Gamma distribution, however analogous to its univariate

counterpart it has been show to be problematic for a number of reasons. The use of

an inverse Wishart prior is fully parameterised by the scale hyperparameter matrix

and a single degree of freedom hyperparameter, that only allow for a singular speci-

fication in the overall degree of confidence in all the elements of the hyperparameter

scale matrix. As the inverse of any inverse Wishart distributed matrix has a strictly

non-negative definite posterior mode, the diagonal elements must all possess the

same number of degrees of freedom and as such all the components of X depend on

each other. This dependance can lead to the inverse Wishart prior to be considered

as a potentially highly informative procedure, where large correlation coefficients

correspond to large marginal variances. It is therefore not desirable to include uni-

tarity in control for all of the precision elements for the covariance matrix, with

possible dependencies between the correlations and the variances [1261].

4.3.2.3.5 The F -matrix Distribution

We now adopt the formalities of the multivariate analysis of variance (MANOVA) to

define the form of the classical sample matrix under the least informative approach

incorporating covariance priors. The matrix ensemble of the Fisher matrix or simply

F -matrix is distributed according to a multivariate F -distribution, also referred to as
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Snedecors’ F distribution or the Fisher-Snedecor distributions [664, 963, 1024, 1326].

The probability density function for the scaled matrix-F function is [963],

f(Σ; ν, δ,Λ) =
Γk
(
ν+δ+k−1

2

)

Γk
(
ν
2

)
Γk
(
δ+k−1

2

)
|Λ| ν2 |Σ|

ν−k−1
2 |Ik + ΣΛ−1|− ν+δ+k−1

2 , (4.98)

which satisfies the required reciprocity condition, where Λ is defined as a positive

definite scale matrix, with associated degrees of freedom, ν > k − 1 and δ > 0.

When the scale matrix reduces to the identity we recover the standard form of the

distribution proposed in Ref. [409], whilst for k = 1 the standard representation of

the univariate case. Perhaps more edifying for model classification is the ability to

represent the matrix-variate F distribution as a Wishart-mixture of functions (and

suitably inverse Wishart mixture) [963],

f(Σ; ν, δ,Λ) =

∫
W
(
Σ; ν,Ψ−1

)
×W (Ψ; δ + k − 1,Λ) dΨ , (4.99)

for a P×P positive definite random matrix. Often used in many statistical inference

models [856, 920, 1165]. The F -matrix also represents the product of a sample covari-

ance matrix of independent data (EXij = 0,EYij = 0 and E|Xij|2 = 1,E|Yij|2 = 1)

with the inverse of an independent covariance matrix possessing independent data

for its covariance. It is a common intrinsic prior used to test covariance estima-

tion for multivariate normal data and is broadly defined as non-informative, i.e.

the parameters of Eq. (4.98) can be tuned to extract a minimally informative prior

(ν = k, δ = 1) in Eq. (4.99). In a Bayesian sense this represents the generalised way

to sample eigenvalues incorporating the default prior for covariance. Although a

sample covariance matrix distributed according to the F -distribution is often a non-

naturally arising form for a covariance matrix, is does possess a key trait. The LSD

of a matrix distributed according to Eq. (4.98) is the same as a sample covariance

matrix of the form [139],

F = Y1Y−1
2 =

(
M−1XXT

) (
N−1LLT

)−1
. (4.100)
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Figure 4.4: Matrix-F density functions defined in Eq. (4.98), representing the

limiting spectral distributions of the F -matrix defined in Eq. (4.100), formed using

an inverse Wishart prior for the population covariance. The functions are defined

with the distribution shaping parameter for each matrix equated such that, β =

β′, and are defined inside the interval β ∈ (0, 1] returning Lebesgue absolutely

continuous measures. Inset: Range of values of β which result in measures defined

inside the bounds found for the case of an isometric Wishart matrix. In general the

addition of covariance increases the bounds of the resulting spectrum.

It was originally shown that the empirical distribution function of the eigenvalues of

Eq. (4.100) converges in probability in the large N limit to a non random probability

measure density function. The limiting form of the non-random density function for

values of β, β′ ∈ (0, 1] was found to be [1188],

fβ(λ) = (1− β′)
√

(λ− λ−) (λ+ − λ) , (4.101)

which possesses a support on a closed interval on R+ between the spectral radii fixed

by the infimum and supremum supports,

λ+ =

(
1 +

√
1− (1− β) (1− β′)

1− β′

)2

, (4.102)
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λ− =

(
1−

√
1− (1− β) (1− β′)

1− β′

)2

, (4.103)

the density of which falling to zero outside this support. The CLTs of the linearised

spectral statistics were determined in Refs.[139, 1391]. See Ref. [665] for a general

approach using these models. In the context of MANOVA the eigenvalues of matrices

of the form in Eq. (4.100) are in a one-to-one correspondence with matrix variate beta

or double Wishart ensembles [139, 1024]. The largest eigenvalues have determined

results for data with zero mean [664],

lim
P→∞

P

(
N/M

σ
≤ s

)
= F1(s) , (4.104)

which remains the functional form found in the left panel of Fig. (D.1) when, β ≤ 1,

an example indication of extremal local spectra universality of correlated or per-

turbed models.

4.4 Free Convolutions of Spectral Measure

Densities

4.4.1 Asymptotic Freeness and Non-Commutative

Probability

As we have touched on traditional random matrix methods often take advantage of

the so called Coulomb gas methodologies in order to evaluate general spectral linear

statistics. This analogy is present for invariant ensembles, the rotational invariance

leading to the eigenvalues and eigenvectors of large-dimensional random matrices

to present a unique statistical independence. Traditionally the probability measure

placed on the matrix ensemble represents a canonical distribution of a system of

identical particles. Under this procedure the normalisation constant such as those
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found in Eq. (4.21), takes the form of a positional partition function. This picture is

very useful and intuitive in order to build a picture of invariant ensembles and pair

repulsion. When however, a noise source is introduced to the invariant ensemble

these methods break down for an analysis of the resultant spectrum. There are

three principle classes of model we can define based on matrix perturbation theory.

That of the baseline unperturbed case for isometric uncorrelated matrices, those of

finite rank perturbation and finally matrices subject to a full rank perturbation. A

neat and extremely powerful way to classify these models is in terms of a series of

convolution operations associated to the properties of free random variables and free

subordination functions. These operations relate to defined probability measures on

the positive real line R+, which allow us to compute and infer a series of basic char-

acteristics for the empirical spectral densities of large and potentially complicated

random matrices.

4.4.1.1 Free Probability Theory

Free probability theory is a non-commutative generalisation of the spaces we will be

operating in, the physical realisation and application of its mathematics embedded

strongly within RMT. Originally introduced to consider special classes of Von Neu-

mann algebras, the study of free probability relates to a series of non-commutative

operators which principally rely on the notion of freeness. The concepts of free

independence were first discussed by Voiculescu in Ref. [1308], where its powerful

associations and applicability to RMT were later introduced in Ref. [1310]. The dis-

covered link between rotationally invariant ensembles which asymptotically satisfy

the freeness criterion provides, a very enlightening analysis of both global and local

behaviour of eigenvalues and eigenmeasure spaces of polynomials in asymptotically

free random matrices. The simplified main principle is the consideration of two

eigenspaces, corresponding to deterministic matrices in randomly chosen relative

basis, where the notion of a random matrix structure is replaced with a series of

operations which are in free relation. Two random independent self-adjoint matrices
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are asymptotically free if the spectral density of each matrix converges almost surely

in the large N limit, where importantly one of the matrices must also be invariant

under a rotational change of basis, their eigenbasis related by an random rotation.

Consider the normalised ensemble trace operation for all polynomial sequences,

ζ(M) =
1

N
TrM , (4.105)

which defines a measure of the the sequence of moments and therefore effectively

the LSD for the ensemble. Traditional approximations for convolution operations

are given using either combinatorial theory [1204] for the moments up to a defined

order or free subordination methods, on the basis of practicality in analytically

manipulation and numerical implementation [191, 219, 1311, 1313]. In order to

simplify our analysis we restrict ourself to introducing the basics of asymptotic

freeness, with a specific focus on the operations placed on measure functions we can

suitably assign as limiting probability measures we can understand in a Bayesian

sense as prior functions. For the case of two independent self-adjoint matrices, M1

and M2 freeness is realised for the values of, ε1 . . . εz and ε1 . . . εz, where z ∈ N+,

when,

ζ(Mε1
1 Mε1

2 Mε2
1 Mε2

2 . . .Mεz
1 Mεz

2 ) = ζ(Mε1
1 )ζ(Mε1

2 )ζ(Mε2
1 )ζ(Mε2

2 ) . . . ζ(Mεz
1 )ζ(Mεz

2 ) ,

(4.106)

given ζ(M1) = ζ(M2) = 0. This property is often considered as the statistical

analogue of the moment factorisation property, often vital in estimating statistical

properties of measure approximations. It is usually common practise to consider

perturbed models where the noisy component of the model is defined by a suitable

invariant ensemble, the addition of a signal a fixed choice of prior or deterministic

matrix.
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4.4.1.2 Probability Spaces and Borel Measures

Recall from Appendix B (which we again quote as points beyond the scope of this

thesis for context) that a general probability measure space can be understood under

the triplet representation, (Ω, σ, P ). The parameter σ represents the sigma-algebra

for the subsets of Ω and P is a probability measure on (Ω, σ). Our random matrix,

M, represents the measurable map when moving from (Ω, σ), to the complete set of

all N×N matrices [444]. Consider B to be the class of all Borel probability measures

on the real line, R. The relevant subclass of measures we will focus on defines the

subclass, B+ which comprises of all probability measures suitably bounded on the

positive real interval, R+ fully analytic in the bounds, [0,∞). Let us reintroduce

and also define two Borel measures, µ and ν which correspond to the LSD of both

the initially defined space and its perturbing source term. Both models of finite and

full rank perturbations can be considered as limits of information plus noise type

matrices, the principles of these models covered in Section 4.3.2.2 for the rank one

perturbed case. It is well known that free convolution of two admissible measures,

will in general produce an invertible measure which we will now explore. For the

case of two generic measures the asymptotics are not so clear. If our two measures µ

and ν are defined as general there free multiplicative convolution often can only be

understood in terms of details revolving around their S-transforms. Strictly speaking

its explicit formulation is defined using inverse mapping of the Cauchy-Stieltjes

transform. It is certainly possible to draw conclusions in more generic frameworks,

see techniques discussed in Ref. [1311] for example. These often require a much

more detailed analysis with incorporation of subordination functions, curtailing the

brevity we require for a more simplistic randomised analysis of the positive define

space for the field parameters.
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4.4.2 Classically Deformed Models

4.4.2.1 Rotation Invariance and Traceability

We are generally not too concerned at this point about the specifics revolving around

the forms of the limiting distributions and their explicit spectral representations

formed under convolution operations. We will mainly focus on the convergent sta-

bility of the spectrum itself, where we require an understanding of the general re-

sulting nature of a spectral measure description, the localisation of eigenvalues and

the fluctuations of extremal limits. Any probability measures we consider are well

defined with compacted support on the positive real line. The results of free prob-

ability theory give us a good understanding on the limiting spectrum in the large

N limit for specific classical cases of deformed models using traditional isometric

positive definite sample covariance matrices. Let us formally introduce the three

classical cases of deformed ensemble for isotropic models, as detailed extensively

in Refs. [313, 1255], invariant under a sequence of unitary operations, formed with

their distribution normalised under the Haar measure on the unitary group U(N):

• Additive perturbation model - Consider the case of two deterministic matrices,

X and P, each with compactly supported limiting eigenvalue distributions

denoted, µ and ν respectively. The additively perturbed model is defined as

[1255],

M = X + U∗PU , (4.107)

where U is a Haar-distributed unitary random matrix. This model relates to

the transformation operation for free random variables, RM = Rµ + Rν and

key transformations, Rµ(y) = G−1
µ (y)−1/y, where Gµ(z) represents the Cauchy

transform of Eq. (C.1) of the measure µ on the real line. Although not a focus

in this thesis, these models have been used in the context of scalar physics in

models of random supergravity (see Section 5.2.8).
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• Multiplicative perturbation model - Consider the case of two normalised matri-

ces, X and P, defined to be non-negative definite, each with compactly sup-

ported limiting eigenvalue distributions denoted, µ and ν respectively. The

multiplicatively perturbed model is defined as [1255],

M = P1/2U∗XUP1/2 ≡ PU∗XU, (4.108)

where U is a Haar-distributed unitary random matrix. Any examples we

consider are related to both perturbations of non-negative unitary matri-

ces. This model relates to the transformation operation for free random

variables, SM(z) = Sµ(z)Sν(z) and key transformations, Tµ(z) =
∫ xdµ(x)

z−x ,

Sµ(y) = 1 + y/y · 1/T−1
µ (y).

• Information plus noise model - Relevant for discussions in Section 4.3.2.2.

Consider the case of two independent rectangular matrices of dimension N×P,

X and P. The information plus-noise type matrix takes the form [477],

M = P−1 (X + σP) (X + σP)∗ . (4.109)

These matrices represent a series of data vectors x + σp, where x carries the

information of the system and p represents a perturbative vector of additive

noise, its strength regulated by σ.

It is known that U∗XU and P are asymptotically free when both X and P are Hermi-

tian matrices, U is a Haar matrix independent of both and each possess compactly

supported eigenvalue distributions.

4.4.2.2 Free Convolution Operations

We can then make general statements on the LSD of M, the resultant matrix in

each of the perturbed models above by considering the the probability measures for

the original matrix and the perturbative matrix as a series of relevant operations
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between their asymptotically limiting measures. For an extensive review of these

topics and the liming features of perturbed matrix spectra and operations we again

refer to Refs. [313, 1255]. The primary operations on the eigenspaces are defined as,

• � - Additive free convolution: For two compactly supported Borel measures, µ

and ν on R, the additive free convolution is denoted as µ�ν, where φµ�ν(z) =

φµ(z) + φν(z). The induced measure is defined as the sum of two free random

variables.

• � - Multiplicative free convolution: For two compactly supported Borel mea-

sures, µ and ν on R+, the multiplicative free convolution is denoted as µ� ν.

The matrix perturbation product associated to these two measures is self-

adjoint where its resultant free probability measure depends only on the in-

dividual Borel measure spaces. The free multiplicative convolution operation

on B+ is both associative and commutative.

These operations serve as natural analogues of classical convolutions found in free

probability theory representing the distributions of either traceable additive or mul-

tiplicative perturbations [202, 1308, 1309].

4.4.2.3 Limiting Measure Representations of Matrix Ensembles

Using the operations above there have been many free probabilistic interpretations

of the LSD for each class of perturbed matrix model mentioned. It has been shown

the concepts on universality remain valid in this sector where the behaviour of free

self-adjoint random variables allow us to trace the generic behaviour of compactly

supported measure spaces, associated to well known distribution functions. Consider

the three example perturbed matrix models above consisting of large self-adjoint ran-

dom matrices, X and P. When the matrices are in generic position we can first recall

the limiting form from the almost sure convergence for the eigenvalue distribution

attributed to additive and multiplicative perturbations. Convergence of measure for

the general BBP phase transition phenomena has been demonstrated for deformed
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Wigner type matrices [198], sample covariance matrices [198] and information plus

noise type matrices [199]. In the context of free probability we maintain the weak*

measure convergence defined in Eq. (4.20), which for the specific deformed model

cases gives the following universal results,

• Isotropic Wigner type matrices:

µM = µSC � ν . (4.110)

• Isotropic Wishart covariance matrices:

µM = µMP � ν . (4.111)

• Information plus noise type matrices:

µM = (
√
µMP �β ν)2 . (4.112)

The operator, �β represents the ability to generalise the primary operations above

to include the rectangularity parameter, β. Free rectangular convolution in general

is a much more complicated picture in terms of formulating explicit results, often

operating in regimes with measures supported on multiple intervals. The non com-

mutative probability framework of rectangular free additive convolution, �β, was

the focus of study in Refs. [189, 194, 196]. It is also possible to consider free rectan-

gular infinite divisibility for rectangular free convolution with the ratio parameter,

β.

4.4.2.4 The Lebesgue Decomposition Theorem

In order to collect and summarise the results detailed above it is perhaps best to

consider the ability to decompose the structure of µM in each model. For any Borel
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probability measure µ, defined on the real interval, [0,∞), we can define its Lebesgue

decomposition as [190, 750],

µ = µpm + µsc + µac , (4.113)

where the linearised terms, µpm, µsc and µac represent the point mass, singular con-

tinuous, and absolutely continuous components of the measure function respectively.

It has been shown when the operand measure is that of Marchenko-Pastur the de-

fined absolutely continuous probability measure in this case is always an analytic

function on the real positive interval [476]. For the case where we have the presence

of spikes such as the rank one perturbative case covered in Section 4.3.2.2 the addi-

tion of correlated signal presents a single outlier, the location of which is represented

by the perturbed point mass measure, µpm. The eigenvector of this singular point

possesses a square projection in the direction of the spike given by the mass of the

atom. We can of course also present the case of finite perturbative terms which

fall inside the sub-critical regimes which interlace themselves into the absolutely

continuous measure function. We have reviewed here just the basics of a series of

powerful statements regarding the continuity and bounded nature of the density of

states using convolution operations.



Chapter 5

The Random Matrix Axiverse

“In desperation I asked Fermi whether he was not impressed by the

agreement between our calculated numbers and his measured numbers.

He replied, “How many arbitrary parameters did you use for your

calculations?” I thought for a moment about our cut-off procedures and

said, “Four.” He said, “I remember my friend Johnny von Neumann

used to say, with four parameters I can fit an elephant, and with five I

can make him wiggle his trunk.” With that, the conversation was over.”

A meeting with Enrico Fermi [491]

Freeman John Dyson

5.1 Effective Models of the String Axiverse

Each of the models presented in this chapter can be categorised according to how we

assert a simplistic treatment of the high dimensional effective axion parameter space,

ensuring they are formed on the grounds that they are suitable to be embedded in

some hierarchical framework, such as those introduced in Appendix B.2. Each model

represents a simple effective statistical model of a low energy effective phenomenol-

ogy determined by a general two-derivative theory description for the ultra-light

bosons. These are motivated by those which appear in many flux compactification

246
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models such as those detailed in Refs. [129, 427, 429, 475, 659, 660, 873, 874, 909].

We will consider three classes of model. Each of these consider minimal information

placed on our understanding of the underlying physics or geometrical space. That is

we make many assumptions in terms of the microphysical parameters begging with

the ad hoc solution of an axiverse scenario and a positive spectrum of fields present

is the four-dimensional limit of the theory. The motivations and representation of

each model are in concordance with previous simplified models of the axiverse and

their respective dimension or (hyper)parameterisation:

Class I - Section 5.1.2 - Epistemic priors on the independent parameter space

based solely on the general theoretic conjecture of the string axiverse.

Class II - Section 5.2 - The statistical RMT axiverse with measure spaces de-

fined using free probability convolution operations associated to the arguments

of the expanded effective potential in the multi-field action.

Class III - Section 5.3 - Random matrix treatment of the explicit model of the

string axiverse in M-theory on manifolds of G2 holonomy, using the expanded

effective superpotential. The physical model parameters are treated as stochas-

tic variables with some theoretical uncertainty motivated by phenomenological

concerns.

In order to cope with the high dimensionality of any multivariate distributions com-

ing from the form of the simplified multi-field action, we can make best use of the

symmetries in conventional matrix ensemble classes, to generate statistical prior dis-

tributions, stemming from empirical sample covariance matrices in order to visualise

key aspects of these distributions. Adopting a focus on so-called non-informative

priors we form a series of reference models to be used as standardised points of

comparison, when performing more comprehensive approaches. These models are

in a physical sense formulated using parsimonious modelling, utilising fundamental

matrix models in multivariate statistics, coarse-graining a part of the landscape to

search for universal features with minimal information. Again we stress the use of
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such models are very simplistic in the context of the rich landscape of more explicit

models. The primary features of each model we consider will be some distinct, sin-

gular mean phenomenological scale, where statistical draws are made about. Aside

from possible extended point masses, each distribution is by construction unimodal,

where we can generalise the discussions in the following sections in the future for

multimodal functions with a hierarchy of scales. We will address this possibility in

Section 5.2.6.

Our first class of model represents a statistical straw man, where we only need

to consider how we normalise the prior bounds placed on the simple cosmological

axion parameter space. The second and third model classes introduce the high-

dimensional nature of the problem using the most general case of the effective field

action defined in Eq. (5.6), along with the universal convergence and unique modes of

the parameter spectra which arise in these limits. Each Class II model is concerned

with compound matrix distributions and Bayesian predictions using Borel measures

on R+ for general multivariate linear models as a proxy for the unknown dimensionful

parameters. Broadly speaking in the context of the physical considerations for

the the fields, the matrix arguments of Eq. (5.12) are replaced with the following

factorised sample covariance matrices,

Kij =
1

P
X

Field alignment
coefficients

ΣP XT

Decay constant
data vectors

, (5.1)

M̃ij =
1

P
P1/2
N

Canonical
normalisation
perturbation

X

Mass state
correlation indices

ΣP XT

Mass state
data vectors

P1/2
N . (5.2)

Each of these data sets represent a measure space, where by ensuring rotational

invariance for the ensemble representing the initial decay constant and mass state

data vectors, fixes a traceable nature to the induced probability measures for both

Kij andMij in any basis. The matrices must be normalised to a defining scale. For
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the axion mass eigenstates, we can choose for this to follow on of three standard

general ultralight sector scale hierarchies, taking motivations from phenomenological

concerns in string inspired models. These are fixed according to the infimum and

supremum of the eigenvalue set,

mmin
a . mmax

a . H0 < Mmod < MKK < Ms < MPl , (5.3)

H0 . mmin
a . mmax

a < Mmod < MKK < Ms < MPl , (5.4)

mmin
a . H0 . mmax

a < Mmod < MKK < Ms < MPl . (5.5)

Each of the expressions above is motivated by the general assumption that all the

moduli are stabilised in such a way to avoid the cosmological moduli problem (see

discussions in Section 5.3). We also assume a sufficiently separated hierarchy for the

ultralight tower of mass states which are either bounded by the lightest modulus and

the Hubble scale today (Eq. (1.86)) or the lightest modulus mass and unbounded

from below. This represents the general understanding that ULAs could behave as

either DE, DM or both, from a single spectrum of fields.

There are of course many considerations to be made in a complete multi-field analysis

of ALPs and their possible phenomenology, especially those which seek to model

directly the nature of the possible vacua in the landscape. In this thesis we will only

limit our attention to the parameter space of a set of very simple example models

consisting of fields retaining discrete shift symmetries. As stated above and in the

discussions at the start of Chapter 4, in this chapter we only consider a very limited

case of sampling from distributions utilising specific elements of RMT, taking into

account features and motivations such as the phenomenological scales of interest and

the dimension of the ‘black box ’ data vectors which we use to define the parameters

of the axion fields. It must therefore be stressed that the use of data vectors take

our analysis far from the physically realistic models which often inspire this type

study and is certainly not a general approach to the use of RMT in the field of

axion cosmology. We are in principle allowing for many assumptions placed on the
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underlying physics in our approach, primarily to retain statistical traceability and

simplicity in our approach. The following sections are therefore concerned with a

simple statistical analysis of the multi-field space applied in the context of simple

models of BH superradiance (Chapter 6) or axion DM and DE (Chapter 7). The

models in this chapter are inspired by the treatment and approaches made with

multiple scalars highlighted at the start of Chapter 4 1. This analysis does not

therefore provide insight directly into how random matrix modelling of the axiverse

may in fact be related to the actual microscopic physical parameters in string models

and the nature of the string landscape directly. This work is a fascinating ongoing

sector of research which has already seen some interesting initial results (for example

see Section 5.2.8 and references therein).

5.1.1 The Effective Four-Dimensional Multi-Field Action

5.1.1.1 Well-Aligned Multi-Field Potentials

Continuing the topics covered in Section 2.5, we can consider an extension of the

effective equations to incorporate the case of multiple fields. Truncating any sub-

leading source terms, the most general multi-field effective action for the axion fields

below any fundamental, KK, PQ symmetry breaking, moduli stabilisation or non-

perturbative physics scales, along with a suppression of derivative coupling terms to

any Standard Model matter fields is,

L = −M2
PlKij∂µθi∂µθj −

Ninst∑

n=1

Λ4
nUn (Qi,nθi + δn) , (5.6)

where θi are the dimensionless axion fields, Kij is a kinetic field space metric with

mass dimension two, Un is the nth general periodic instanton potential coupled to the

anomaly coefficients lattice charge matrix Q, with δn representing the CP phases.

Conforming to the standard phenomenological approach used to study the effective

1For accessibility the relevant similar approaches can be found in Refs. [126, 128–134, 173, 176,
268, 347, 353, 499, 501, 533, 693, 799, 1079, 1080].
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axion, the leading non-perturbative periodic potential, U , takes the form of the

general dilute gas instanton potential which we recall here for convenience,

Un = [1− cos (θ)] , (5.7)

first introduced in Ref. [1035] considering leading order Yukawa couplings for the

complex scalar charged with global U(1)PQ symmetry. In order to avoid the general-

ities of analytical complexity which arise due to the form of the potential when both

Nax,Ninst � 1, we assume the simplest fundamental domain for the dimensionless

fields in Eq. (5.7), parameterised by a single potential argument. The periodicities of

the dimensionless fields form a hypercube fundamental domain with sides of length,

2π in RNax . By considering the most simplified periodic domain for the dimension-

less fields, fixes the Nax axionic continuous shift symmetries of a general multi-field

effective potential to be broken down to discrete symmetries, by only Ninst = Nax

leading order non-perturbative effects. The intersection of the 2Ninst hyperplane to

constrain the domain is trivial, fixing the fundamental dimensionless field domain

to be,

−π ≤ θi ≤ π . (5.8)

See Ref. [131] for an extensive review of potentials beyond this simplified approach

utilising general multi-axion theories with considerations made for the more general

case of Ninst ≥ Nax. In order to realise Eq. (5.8), we assume generalities allow

us to consider the case where the exact axion shift symmetries effectively cancel

the presence of the CP phases. We must also enforce the null hypothesis on the

rational anomaly coefficients, i.e. assume an initial trivial form inside the potential

argument, Q = I, or that the decomposition of the lattice charge matrix must adhere

to the relationship, QKQ = I, an approximation made in numerous multi-field axion

models [128, 131, 499]. Under this consideration the potential can now be expressed

in the following simplified form in Planck units,



The Random Matrix Axiverse 252

−2π −π 0 π 2π
φ1

−2π

−π

0

π

2π

φ
2

√ 2π
f2

πf2

πf1

Figure 5.1: Fundamental domain for canonical fields in the two-axion N-flation

model where each field possesses a well-aligned potential. Both fields are defined

in the periodic boundary φ ∈ [−π, π], which is represented by the dotted black line

limit. The black vectors represent the individual maximum displacements which can

sum to the maximal Pythagorean red vector in the two dimensional potential. The

inner region enclosed by the black dot-dashed boundary represents the quadratic

domain where the potential can be well approximated by a second order expansion

as detailed in Ref. [131].

L = −Kij∂µθi∂µθj −
Nax∑

n=1

Λ4
n (1− cos (θn)) , (5.9)

assuming the unitary nature of the non-perturbative source terms for each axion

field, along with an absence of further higher order corrections. We will refer to

this basis as the geometric lattice basis for well-aligned potentials. See the excellent

discussions in Refs. [129–134, 874] for extensive details on axion field alignment in a

more general setting. Although far from a veracious account of the space defining the

possible axion fields potential, considering the case of well-aligned theories represents

a good trade off with the systematics of the effective description when allowing

for the possibility of including many fields, as opposed to providing a qualitative

description of the likely very complex form of the true potential for multiple axions.
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The alignment properties of Eq. (5.9) define the potential for the fields in canonical

coordinates as the simple linearised sum,

V =
Nax∑

i

Vi (φi) . (5.10)

When Ninst ≥ Nax ≥ 1 we can assume all the axions in the spectrum possess non-

zero masses, generated from non-perturbative contributions to the potential, where

our alignment assumptions fix Ninst = Nax ≥ 1. Assuming the potential is suitably

minimised, whereby each field is fixed close to its local minima, we can expand about

the potential minimum, where the quadratic term approximation of Eq. (5.9) is valid

(see Fig. 5.1 and Fig. 5.2). The potential is now understood as a linear summation

of mass eigenstates to leading order,

Vφi '
Nax∑

i=1

1

2
m2
iφ

2
i , (5.11)

where m2
i > 0 and each axion is the ith mass eigenstate of the mass hierarchy set,

m2
1 ≤ m2

2 ≤ · · · ≤ m2
Nax

, encoded as the eigenvalues of the axion mass matrix

counter-term, Mij. Considering the minimal number of terms from a truncation of

the expanded potential where we begin in the geometrical basis where the kinetic

terms are sampled under the assumption of initial field independence, defines the

simplest general multi-field equation ansatz we could assume,

L = −Kij∂µθi∂µθj −Mijθiθj . (5.12)

This expression is formed solely from the simplified bare quantities of the general

non-canonically normalised Lagrangian. In order then to define the axion cosmology

we must understand how a hierarchy of mass eigenstates are defined in accordance

to effective statistical theories by considering the priors placed on the kinetic and

potential terms in Eq. (5.12), in the geometric lattice basis. Our approach is then

only concerned with the axion potential aligned in such a way the problem can
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Figure 5.2: Enhanced view of the fundamental domain of the canonical fields in the

two-axion N-flation model with well aligned potentials. Each of the fields are defined

in the periodic boundary φ ∈ [−π, π] outlined by the dotted black line. The colour

scale represents the magnitude (1 is maximal and 0 is minimal) of enhancement

utilising two fields. This is maximal along the pythagorean sum between the two-

dimensional fields potential and minimal when the potentials are orthogonal. The

inner region enclosed by the black dot-dashed boundary represents the quadratic

domain where the potential can be well approximated by a second order expansion

as shown in Ref. [131].

be considered as an outright statistical analysis of two random matrix arguments,

which must then be simultaneously diagonalised.

5.1.1.2 Canonical Normalisation

In order to fully define a simple set of canonical fields, we must first diagonalise and

canonically normalise the axion field space kinetic matrix with a unitary congruence

transformation, Uij,

Kij = UT
ikdiag(Kkl)Ulj =

1

2
UTdiag(fa)diag(fa)U . (5.13)
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After this transformation the vector of axion decay constants, fa, can be defined in

Planck units as the normalised eigenvalues of the diagonal field space metric,

~fa =
√

2eig (Kij) . (5.14)

Absolving this vector of decay constants into the dimensionless misaligned fields,

transforms them into canonical coordinates in the kinetic basis. The canonical fields

in this basis are,

φ̃i = Mpldiag(fa)Uijθj . (5.15)

The effective field Lagrangian in the kinetic basis is now expressed with canonically

normalised kinetic terms,

L = −1

2
δij∂µφ̃i∂

µφ̃j −
1

2
φ̃iM̃ijφ̃j , (5.16)

where the perturbed axion mass matrix in this basis is now defined as,

M̃ij = 2diag(1/fa)UMUTdiag(1/fa) . (5.17)

The kinetic terms are unitarily invariant, proportional to the identity matrix, where

we are free to diagonalise the perturbed mass matrix with a subsequent unitary

congruence transformation, Vij. The rotated, perturbed mass matrix now takes the

form,

M̃ij = VTdiag(ma)diag(ma)V , (5.18)

defining a vector of mass eigenstates,

~ma =

√
eig
(
M̃ij

)
. (5.19)

The canonical fields in the mass eigenstate basis are,

φi = Vφ̃i = MplVdiag(fa)Uθi , (5.20)
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with the effective Lagrangian now in the simple diagonalised form,

L = −1

2
∂µφi∂

µφi −
1

2
diag(m2

a)φiφi . (5.21)

The steps above represent a simple general procedure of canonical field normalisa-

tion used to determine the spectra in each effective model. The diagonalisation of

both Kij and Mij represent basis rotations where the parameters can be suitably

sampled, loosely based on the principles of axion field alignment and the conver-

gence of universal forms for the parameter distributions. These basis rotations from

canonical normalisation can be related to a series of full rank perturbation opera-

tions performed on the initial matrix parameter spectra we define in our choice of

model. There are three distinct basis we can initialise our analysis based on the

steps above:

• Geometric lattice basis - The initial basis which defines the effective two-

derivative axion field Lagrangian in its most simple general form, containing

both a non-trivial mixing of the kinetic terms along with a non-diagonal mass

matrix, which is in general not trivially aligned with the field space metric. In

this basis the initial Lagrangian is defined in the form found in Eq. (5.12).

• Canonically normalised kinetic basis - The basis in which the axion effective

Lagrangian contains canonically normalised kinetic terms with a trivial field

space metric, proportional to the identity, but possesses a non-diagonal mass

matrix. In this basis the Lagrangian is defined in the form found in Eq. (5.16).

• Diagonalised mass-eigenstate basis - The sample basis for the mass-eigenstates

for each of the axion fields where the axion mass matrix is now in its eigende-

composition basis. In this basis the Lagrangian is defined in the form found

in Eq. (5.21).

Each model we introduce will be referenced in terms of the distributions for the

elements in the geometric lattice basis and how the sample distribution changes
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for the mass eigenstates as we rotate through each subsequent basis. To visualise

the general features of the limiting spectra we perform the following parameter

normalisations,

f 2
a → log10

(
f 2
a

)
, (5.22)

m2
a → log10

(
m2
a

)
, (5.23)

φ→ log10(φ) , (5.24)

akin to the common parameterisation practise for priors found when modelling sim-

ple models of the string axiverse. This coordinate transformation will later help

reduce the number of moments we must account for by producing a skew-symmetry

under certain considerations for the initial form of each matrix.

5.1.2 Epistemic Priors on the Axion Parameter Space

As is often custom in simplistic models of the phenomenological axiverse found in

Ref. [107], the axion decay constants and masses are drawn from log-flat priors,

under the motivations of scale invariance on the positive, real, physical and dimen-

sionful parameters [1306] determined by Kij and Mij. Very simplistic arguments

follow that both the axion masses (See discussions in Section 3.3.2) and decay con-

stants are expected to span several decades [154, 367, 714]. We use a log-flat prior

on both of these unknown dimensionful quantities as a ‘maximally ignorant’ baseline

approach to an ad hoc axiverse solution assumption. The uniform distribution is un-

normalised, only defined as a proper prior for our considerations once the end points

of the distribution are fixed by controlling limits. These of course can naturally be

extended to include some degree of variation with the use of a hyperparameter. By

definition this breaks the scale invariance of our prior, however we retain motivations

for bounded limits in concordance with the literature. The values,

eig(Kij) ≡ f 2
a,i , (5.25)
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eig(Mij) ≡ m2
a,i , (5.26)

represent the elements of the diagonalised kinetic and mass matrix respectively, we

could find in a matrix approach to a non-trivial spectrum for these parameters.

Without any deterministic or explicit definition placed on the parameters of the

underlying physical theory the point of least information concerns itself with a gen-

eral scale invariance placed on the simple axion cosmology parameter space. This

zeroth order approximation and statistical straw man seeks to factor in the wealth

of possible models which may realise an axion field at many different energy scales,

from the assumption that string compactification models generally give rises to vast

numbers of moduli which span many decades due to the the plethoric properties

of the landscape [107, 1231]. This is achieved by a simultaneous sampling of the

parameter space in the mass eigenstate basis where, by definition, the parameters

are strictly uncorrelated. The non-canonically normalised parameter space is a hy-

percube, which for the simplified axion cosmology with n = 3 parameters gives a

non-informative prior cube for the dimensionless fields. The normalised side lengths

are then fixed by assumptions determined by string model motivations. We sample

each parameter in the simple axion cosmology using the model priors,

log10 (eig (Kij)) ∈ U [kmin, kmax] , (5.27)

log10 (eig (Mij)) ∈ U [mmin,mmax] , (5.28)

θi ∈ U [−π, π] . (5.29)

The uniform distributions are initially unnormalised, in a Bayesian sense acting

analogous to taking a Jeffery’s prior. The limits kmin and kmax are associated with

lower and upper bounds on CP symmetry breaking scales, with mmin and mmax

bounds on scales for non-perturbative scales which break the high-dimensional gauge

symmetries. The limits can be normalised to either the full space or sub-normalised

for considerations of dealing with particular phenomenologies, i.e. DM cosmologies
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or quintessence fields. The upper limit for fmax
a is motivated by the WGC and limits

on non-effective trans-Planckian displacements of an axion field. For an effective

field theory description, shift symmetries with large periodicities encounter issues in

regards to stability in the UV sector of the theory, although effective displacement

from alignment could raise the value of fmax
a we wish to model or allow for. It is

often well motivated to assume then that,

log10 (fmax
a ) ∼ 0 , (5.30)

in Planck units to avoid the inclusion of too many scales which don’t adhere to cur-

rent understanding of string vacua, which exhibit parametric control in the effective

limits of the theory. The lower bound on log10(fmin
a ) we could wish to account for

generally comes from cosmological constraints, such as stellar object cooling bounds

[459, 789, 1181, 1306, 1392], fixing the approximate lower bound,

log10(fmin
a ) & −9 , (5.31)

in Planck units. The values for both mmin
a and mmax

a are fixed purely by cosmolog-

ical model concerns. The value of mmin
a should be conservative, accounting for the

fact the spectrum could contain fields which have not begun oscillating about their

potential. This fixes mmin
a to follow the approximate bound,

mmin
a ∼ αH0 ∼ α10−33 eV , (5.32)

where α ≤ 1 is a O(N−1
ax ) suppression factor and H0 the is Hubble scale today.

The upper bound mmax
a is a relatively free parameter, although as we are primarily

concerned with the ultralight sector we shall ensure this follows,

log10

(
mmax
a eV−1

)
� 0 . (5.33)
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The initial field misalignment follows standard practice, drawn from the unit circle

for PQ symmetry breaking. These general phenomenological limits above will also

be followed when fixing the scales of the matrices in our models of the effective RMT

axiverse.

5.2 The Random Matrix Axiverse

5.2.1 Arguments to Explore Modality

Any string or M-theory model that seeks to realises one of the phenomenological

axion models of interest, (QCD axion, FDM, or GUTs etc.) could contain a distri-

bution of masses fixed according to some defining value. Even a small spread over

logarithmic distances could lead to strong constraints on the model from numer-

ous forms of constraints both theoretical and observational. Consider the following

toy model conforming, to standard string axiverse conjecture of using the epis-

temic priors outlined in Section 5.1.2. As it was previously discussed in Section 3.3,

Ref. [107] introduces the idea that the axion masses are well motivated to follow a

log-flat distribution from the Planck scale to the Hubble scale, covering potentially

approximately sixty orders of magnitude. Take one set of the numerous astrophys-

ical bounds placed on axions, such as the BH superradiance constraints covered in

Section 6.4.1. These constraints currently conservatively cover at least four orders

of magnitude, as detailed using the methods covered in Appendix J, which already

imposes an interesting tension to this form of modelling. Assuming independent

and identically distributed draws from the epistemic prior in Eq. (5.28), this naive

model of the axiverse is excluded with a very simple probability,

Pex = 1− (56/60)Nax , (5.34)
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which is greater than the 95% CI if Nax ≥ 44. Clearly, a model with such an

uninformative prior on the axion mass is excluded by BH superradiance alone, for a

large number of fields a priori. The exclusion is a function of the upper and lower

bounds on the mass spectrum, or the relevant scales of the theory associated to non-

perturbative physics. The constraint gets considerably stronger if the upper bound

is below the Planck scale, and vanishes if the distribution does not extend below

about O (10−11) eV, for these particular constraints. Such a truncated spectrum,

on the other hand, cannot realise many of the models of interest to cosmologists.

Consider also the specific model of quintessence covered in Section 2.8.2, used to

identify a suitable quintessence field candidate, utilising an axion spectrum com-

prised of Nax = 24 fields. Assuming the mass states are equidistantly separated on

logarithmic scales, as detailed in Ref. [765], driven by the exponential sensitivity

of the instanton action over the corresponding cycles, the axion states must ‘step ’

through the entire ultralight sector towards the Hubble scale today. If no means are

deployed to dissipate the energy density of these fields, or additional mechanisms

incorporated to alleviate the relevant constraints, then the model is very quickly

ruled out by BH constraints along with other ultralight limits such as those detailed

in Ref. [710]. For example using Eq. (2.120) to define our axion mass scales up to

m24
a ≈ MH , the middle axion is defined at approximately the order of the upper

bound limits coming from stellar mass BH superradiance constraints. As shown in

Fig. 5.3 this simple model of the axiverse produces a number of problematic and

potentially strongly constrained masses when attempting to realise a suitable DE

axion candidate. Even just considering bounds from stellar mass BHs, supermassive

BHs and late time DM fields this model produces at least six fields falling inside

constrained contours as shown in Fig. 5.3. Considering many string models generally

predict Nax � 24, it is clear that modal prior functions on the axion mass space offer

the ability to potentially realise multi-field dynamics incorporating large numbers of

fields in the ultralight sector, whilst potentially avoiding astrophysical constraints.

Fortunately as we will now see for the considerations of phenomenologists, the mass
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Figure 5.3: Schematic representation of equidistant axion masses used to realise

a natural quintessence scenario, where the axion mass eigenstates are generated by

the function in Eq. (2.120). As shown in Ref. [765] the axion quintessence field

appears as the twenty forth field where in this example, Sinst = 216. This value

falls inside the approximate bounds for the value of the instanton action required to

break the field shift symmetry of a single axion with a vacuum energy comparable to

present DE density today [1230, 1231]. The previous fields entering the horizon in

the ultralight domain could encounter problematic or constrained regions as shown

by the red points, defined inside the phenomenological contours. Methods would be

required to dilute the energy densities of these fields such as decaying to Standard

Model fields or higher order corrections to the fields potential or in the case of

superradiance constraints, considerations of non-linear effects such as bosenova or

bose supernova events. This would ensure the energy density in the coherent field

oscillations scale comparable to radiation like components and the superradiance

process is shut off to avoid limits placed on the fields mass.

distributions arising from effective RMT models under the considerations of mul-

tivariate statistics are indeed generally not log-flat from the Hubble scale to the

Planck scale.
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5.2.2 The Black Boxes of the Axion Cosmology

5.2.2.1 Utilising the Spectral Theory of Traditional Ensembles

We will now detail a series of models, each of which are loosely related to previous

studies in the literature, categorised according to the initial basis we start in and

possible perturbations to the mass spectrum using the notations of Lebesgue decom-

posed measures. Traditionally for sample covariance models, positive-semidefinite

constructions generate a point mass at zero, which occurs above the limit of mini-

mum rectangularity for our Y -matrix, i.e. β > 1. This is of course vital to ensure

the invertibility condition, which is required to ensure the mass spectrum is a well

defined quantity. To ensure this is absent, unless otherwise stated, we define the

minimum and maximum values of the distribution shaping parameter, as found in

Eq. (4.83) to be, βmin = 0.05 and βmax = 1.00 respectively in any example spec-

tra. For each model presented below we adopt the notation of identifying spiked

eigenvalues as separated point mass measure with some absolutely continuous bulk.

We can of course always express the bulk as a weighted sum of point masses (e.g.

the ESD in Eq. (4.17)), where we choose to separate the treatment of the spikes to

detail the features of the model. As such the results below can be considered as in-

dicative of a single realised draw in the large N limit, where the modelled spikes are

more generally subject to some absolutely continuous spectrum for their statistical

fluctuations. We also only focus on the simplest case of spiked ensembles containing

a singular spike with a singular linear statistic and is therefore not a general study

of spiked statistics. We leave the case of linear spectral statistics (LSS) at its asso-

ciated CLTs for large dimensional random matrices as a natural extension to any

models covered here.

We will only focus only on models constructed using ensembles possessing group

symmetries and real spectra with possible allowances made for correlated entries.

Each of these are initially defined according to either the null or alternative hy-

pothesis of the Wishart-Laguerre ensemble, as covered in Section 4.2.2. The axion
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mass matrix is represented by a sample covariance matrix, which depending on the

coordinate transformations of the canonical fields will be perturbed both through

normalisation of the field basis and some initial assumption made on possible data

correlations from higher order stochastic processes.

5.2.2.2 Augmenting the Unknown

Strictly speaking data augmentation consists of latent or unavailable data repre-

sented as parameters requiring estimation [820, 1244, 1245]. Instrumental in the

pioneering works of Nicholas Metropolis [941] and Wilfred Keith Hastings [675],

laying the groundwork for Markov chain Monte Carlo (MCMC) methods and al-

gorithm classes applied to the analysis of complex systems. Our realisation of the

string axiverse is formed using probability techniques based on heuristics and an-

alytical statistics, our field parameter values populated via pre-determined priors,

with minimal information applied to our models. In this context, these models are

used to maintain a high level of simplicity, according to the idea we are lacking a

practical way of obtaining the ‘complete’ information for the effective potential in

the lattice/kinetic basis.

This represents a stochastic approach to features of exploring ad hoc models of

the axiverse introduced in Ref. [107] such as the possible exponential sensitivity of

cycles over the total extra-dimensional compactified manifold. These data vector

type models are generally speaking far from explicit physically realistic models, but

offer an efficient sampling of a high-dimensional parameter space. In this sense we

can associate the resultant parameter spectra very loosely to unimodal functions

(plus point mass fluctuations) regulated by statical parameters to greatly reduce

the dimension of the model (see Section 5.4). In each of the RMT models presented

below we use the notation M for sample axion mass matrices which have not been

perturbed from basis rotations and M̃ for matrices which have been perturbed before

sampling. Many of the models below are inspired by those which have initially been
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considered in the context of multi-field inflationary models, these dynamics we now

reproduce in the ultralight sector of axion cosmology.

5.2.3 I. Models With Degenerate Mass States

Diagonalised Mass-Eigenstate Basis

5.2.3.1 Degenerate Scalings

Originally defined in the context of models of N-flation [457], representing an axion

generalisation of models of assisted inflation [859], the kinetic matrix and axion

mass matrix are represented by scalar matrices, initially aligned in their spectral

decomposition basis,

Kij = δij k̃jk, Mij = δijm̃jk . (5.35)

The quantities, k̃jk and m̃jk are matrices, with each element fixed to a single scalar

variable, defined by the two scalar quantities f̄a and Λ̄ma . Each value is fixed to

some generic scale for either PQ symmetry breaking or the non-perturbative physics

responsible for breaking the axion shift symmetries, i.e. f̄a ≈MGUT and m̄a ≈MFDM

(see Section 2.8.3). Each matrix has a degenerate spectrum represented by the point

mass measure functions,

µf2
a
≡ µpm

f̄2
a
, µm2

a
≡ µpm

Λ̃
m2
a

, (5.36)

where Λ̃m2
a

now represents the canonical mass scale of the theory. This defines

the maximum invariant field range which is parametrically scaled as,
√
Naxf̄a (see

Fig. 5.2). The canonical fields are distributed according to a rescaled uniform prior

on the unit circle,

φ ∈ U
[
−f̄aπ; f̄aπ

]
. (5.37)
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5.2.3.2 Non-Trivial Metric with a Degenerate Mass Spectrum

The spectrum of the matrices in the initial basis is now defined to be non-degenerate.

The kinetic and mass matrices are both defined as isotropic Y -matrices which possess

the following alignment relation,

Kij =Mij = P−1XIXT , (5.38)

where each matrix is fully normalised. Each matrix is initially aligned in such a

basis that performing a singular GL(N,R) transformation simultaneously puts each

matrix in its eigendecomposition basis where the kinetic and mass matrices in the

Lagrangian are,

Kij = Udiag
(
f 2
a

)
UT, Mij = Vdiag

(
m2
a

)
VT , (5.39)

with the eigenvector proportionality relationship defining, U ∝ V. In the large

N limit in the initial basis fa,i ∝ ma,i. In this model, the kinetic terms initially

begin with the canonical normalisation factor of 1/2 present, where Kij andMij are

distributed so that after full canonical normalisation the degenerate perturbed mass

spectrum is,

M̃ij = δijΛ
2
ma , (5.40)

where Λ2
ma represents a general squared mass scale of the theory from non-perturbative

physics. This model is a generalisation of the original N-flation model [457] with

non-degenerate metric eigenvalues whilst retaining the trivial degenerate spectrum

of mass eigenstates. The maximum invariant field range is parametrically suppressed

compared to the previous model. The axion decay constant spectrum is realised as

the Marčhenko-Pastur distribution with a degenerate mass spectrum weighted at

the mass scale of the theory, defining the two parameter measures,

µf2
a
≡ µac

bulk = µac
MP, µm2

a
= µpm

Λ̃
m2
a

. (5.41)
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We consider this an atypical configuration of the general isotropic approach pre-

sented in Section 5.2.5. The canonical fields are distributed according to the mea-

sure,

φi = Rijθj , (5.42)

Rij = UikUkjdiag(fa) . (5.43)

5.2.4 II. Models With Random Matrix Mass States

Canonically Normalised Kinetic Basis

When we define our model in the canonically normalised kinetic basis, the axion

decay constants are generally defined as a vector of degenerate scalings used to

determine the nature of the canonical fields. Unlike the models in Section 5.2.3 the

mass spectrum is now non-trivial, where the resulting mass distribution depends

entirely on how we define the axion mass matrix before diagonalisation.

5.2.4.1 The Marčhenko-Pastur Isotropic Model

The initial axion mass matrix is defined under the null formalism, H0, absent of any

external perturbation or basis rotation before sampling the mass eigenstate sample

space basis. The total theoretical uncertainty of the model parameters are contained

in a single isotropic Y -matrix:

• We assume no covariance between the elements of the data vectors of the

masses, in the large N limit. The mass matrix population covariance matrix

is defined as ΣP = I. The empirical sample covariance mass matrix is defined

as M = P−1XXT, where Xij ∈ N (0, 1).

• There is no redefinition of the the sampled eigenspace via the absence of any

canonical normalisation perturbation, PN = I, before the mass eigenstates are

sampled. The LSDs of this model follow the historical universal limits for
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uncorrelated Wishart matrices.

Formulated from the work of Richard Easther and Liam McAllister to describe the

inflationary dynamics of assisted multi-field axion models [499], the theoretical un-

certainty of the Type IIB models superpotential is encoded entirely in the universal

nature of a symmetric random matrix, used to determine the axion mass terms. In

their work this matrix form is extracted from the universal features of the KKLT

compactification treatment for the complete superpotential in Type IIB theories.

Their approach is detailed in Appendix I. If we begin in the canonically normalised

kinetic basis then we define the model parameters to be,

Kij = δij, Mij = P−1XIXT = Vdiag
(
m2
a

)
VT , (5.44)

where the axion mass matrix is an isotropic Wishart matrix with trivial covariance.

In their model the distribution shaping parameter is defined using the ratio of the

number of axions to the total dimension of the moduli space, shown in Eq. (5.45),

defined by the Hodge numbers, h1,1 and h2,1. Using the fit shown in the left panel

of Fig. 3.3 we can assign a prior to this parameter,

βM =
h1,1

h1,1 + h2,1 + 1
∈ N

(
0.5, 0.1252

)
, (5.45)

as an indication of the typical values this could take.

The universal mass spectrum is an absolutely continuous measure defined by the

limiting Marčhenko-Pastur distribution of Eq. (4.67), unperturbed from canonical

normalisation for the square singular values of the individual axion mass scales,

µm2
a
≡ µac

bulk = µac
MP . (5.46)

The normalisation of Eq. (5.46) is fixed to some phenomenological defining scale,

through the spectrums standard deviation, σ2
MP ≡ Λ̄2

ma . Example normalised spectra

are displayed in both the left and right panels of Fig. 5.4 for a range of values of the
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distribution shaping parameter, βM, using both linear and logarithmic scales. The

axion decay constants are introduced as a degenerate spectrum of point masses, i.e.

µf2
a

= µpm

f̄2
a

, defined by a scalar value fixed to some fundamental scale of the theory,

i.e. f̄a ≈ MGUT. The fields are displaced by a scaling of equal magnitude so that

the canonical fields are distributed according to a rescaled uniform prior on the unit

circle as in Eq. (5.37), like the previous original models of N-flation in Section 5.2.3.

Depending on our choice of formalities, we could choose to retroactively introduce

non-degeneracy for the axion field metric which is a non-trivial imposing of the

canonical normalisation of the field metric in order to define a spectrum of decay

constants. In this case and following Ref. [499] the simplified mass spectrum is

formalised as an approximation of the full superpotential (see Appendix I) in the

canonically normalised kinetic basis such that,

lim
N→∞

1

σ2
ma

eig (Kij) = lim
N→∞

1

σ2
fa

eig (Mij) , (5.47)

where σ2
fa/σ2

ma
represents the natural hierarchy between PQ symmetry breaking and

shift symmetry breaking non-perturbative energy scales. In this model the canonical

fields are defined by the matrix product,

φi = Rijθj , (5.48)

Rij = Uikdiag(fa)kj . (5.49)

5.2.4.2 Finite Rank Spiked N-flation Mass Matrix

The axion mass matrix is defined under the alternative formalism, HA, with a finite

rank deformation from the population covariance matrix, absent of any external

perturbation or basis rotation before sampling the mass eigenstates.

• The initially defined sample eigenspace for the axion mass matrix contains both

signal and noise from possible strong correlations between random variables.
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Figure 5.4: Normalised eigenvalue spectra for the Marčhenko-Pastur RMT model,

along with associated probability density functions for the squared axion masses,

m2
a, presented with both linear and logarithmic scales in the left and right panels re-

spectively. Each panel shows five selected values of the spectrum shaping parameter

βM, approximately covering its defining interval βM ∈ (0, 1]. Left panel: The mass

distribution converges to the Marčhenko-Pastur limiting law as Nax →∞. Asymp-

totically the largest eigenvalue, which can fluctuate outside its defined compact in-

terval, is determined by the Tracy-Widom law in Eq. (D.4). Right panel: Probability

density functions for each of the associated distributions in the left panel displayed

on a logarithmic mass scale. Inset: As βM increases,1 the positive logarithmic dis-

placement of the upper bound is limited compared to the negative displacement of

the lower bound of the distribution.

The sample covariance mass matrix Mij, is initially perturbed by a singular

or finite rank perturbation to the identity population covariance matrix used

in the model in Section 5.2.4.1, where ΣP 6∝ I.

• The axion mass matrix is defined using the general form found in Eq. (4.109)

with σ some positive real number and P a linear transformation vector for the

population covariance matrix eigenvalues. The limiting spectrum is defined by

both a bulk probability measure with a finite number of spiked outliers, which

are subject to Gaussian fluctuations, like the measure form in Eq. (4.84).

• The mass spectrum probability measure is takes the decomposed form,

µM ≡ µac
MP +

R∑

i=1

µpm
spike , (5.50)
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where µac
MP converges almost surely to the absolutely continuous measure under

the null formalism. The summation component represents a series of separated

point mass measures forming the model spikes, representing statistical fluctu-

ations of extremal eigenvalues separated from the upper support of the bulk

measure. The value of R represents the rank of the perturbation to the pop-

ulation covariance matrix minus the total number of population eigenvalues

with a degeneracy greater than unity plus the number of groups of degenerate

values associated to the weight of the point masses.

The spectrum adopts the formalities of the original random matrix N-flation model

discussed in Section 5.2.4.1 from Ref. [499] and as detailed in Appendix I, with the

possibility of allowing for strong correlations between model parameters which gen-

erate sharp transitions in the fields mass eigenspectrum. Discrimination between the

null hypothesis of Section 4.3.1 and the finite rank alternative assumption, is strictly

concerned with the asymptotics of extremal eigenvalues and their perturbatively in

the limit of critically. Finite rank perturbations to the mass spectrum generate a

mass hierarchy between the spectrum bulk and a finite number or outliers. In this

model the kinetic metric is still assumed to be trivial where we only perturb the

limiting spectrum of the model in Section 5.2.4.1. In the canonically normalised

kinetic basis we define our model according to Eq. (5.44) where the mass matrix is

formed by drawing the matrix elements from a distribution with non-centred mean,

Ω = (�0,Σ), i.e. we break the moment requirements of Eq. (4.80). This generates a

mass hierarchy in the form of a bulk measure and a singular perturbed spike for the

largest mass. These models are analogous to the rank-one spiked models covered in

Section 4.3.2.2. They represent the presence of an enforced non-centrality spike, as

apposed to the complimenting case of defining finite spiked covariance. This pro-

cess relates to a specific case of non-central Wishart matrices [76, 746, 1017] with

rank-one non-centrality parameters. The axion mass matrix is formally defined by

the ensemble,

Mij ∼ W(P, I,Θ) , (5.51)



The Random Matrix Axiverse 272

where I is the identity scale matrix and Θ is a non-centrality matrix. When Θ is rank

one the largest axion mass is non-compactly supported defined in the supercritical

regime for the BBP phase transition of Section 4.3.2.2. To do this we relax the use

of Gaussian entries and draw each element of the mass matrix from a log-uniform

prior distribution,

log10 Xij ∈ [mmin,mmax]. (5.52)

The mass spectrum is now parameterised by two upper and lower distribution pa-

rameters, mmin and mmax. The ratio, mmin/mmax determines the region of criticality

the BBP phase transition susceptible eigenvalue and highest axion mass falls into,

which if separated from the bulk, also controls the magnitude of the rank one sepa-

rated point mass. An example limiting mass spectrum for this model is displayed in

the left panel of Fig. 5.5, showing both the rank one perturbation and the limiting

bulk spectrum defined by the Marčhenko-Pastur measure. If we suspect strong cor-

relations in multiple model parameters then the sharp transitions may have a finite

rank greater than unity, where several field masses will escape the spectral limits of

the Marčhenko-Pastur bulk. This can be modelled simply with a diagonal popula-

tion covariance where the prior placed on the diagonal elements possesses a sharp

enough tail to generate sufficient O(1) population covariance eigenvalues, ensuring

a finite number of elements fall inside the sub-critical regime. Various explicit forms

of the LSD are know for the case of rank one spiked models, in either the case of

spiked covariance or non-central ensembles [2, 434, 999, 1017, 1322],

CN[l]

2πi

∮

C

l(z)
∏

1≤j≤k≤N
(xk − xj)2

N∏

j=1

xP−Nj e−xj

z − xj
dz , (5.53)

which represents a contour integral representation of the joint eigenvalue density for

the complete set of eigenvalues, xk, where,

l(z) =





e(
δ

1+δ
z) , Spiked covariance ,

0F1 (P−N + 1,Nνz) , Non− centred ensemble ,
(5.54)
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with 0F1 a confluent hypergeometric function and the function, CN[l] a normalisation

constant and l(z) encapsulates the behaviour of the singular spiked eigenvalue. We

include this simply to highlight a neat example demonstrating the complicated na-

ture of defining an explicit spectral form when finite rank perturbations are present

in the model.

In a phenomenological context a simple example we could consider would be a

toy model, where Λ̄2
DE represents the defining mass scale which controls the non-

perturbative breaking of the field shift symmetries for a collection of quintessence

fields. These present as idiosyncratic noise in the total axion mass spectrum, collec-

tively providing sufficient late time DE. Assuming a large enough hierarchy between

the matrix bulk and isolated eigenvalues, directly related to the correlation strength

between model variables, a single axion mass could break from the bulk distribution

and fall into the mass ranges required for oscillating DM fields. If the correlation

strength is strong enough, driven by the features of the model then this could avoid

constraints between late-time ultralight DM fields today, such as those considered

in Ref. [710], whilst supplying a sizeable contribution to the total required DM

content. We will assume these models represent localised mass hierarchies so the

unknown underlying physics is the same, i.e. σ2
M = Λ̄2

DE, from the possible tower of

states, where fields with substantially large masses have been integrated out from

the effective theory. For mass hierarchies coming from different sectors of the axion

phenomenological landscape see the discussions in Section 5.2.6.

5.2.4.3 Full Rank Perturbed N-flation Mass Matrix

The axion mass matrix is defined under the alternative formalism, HA, with a full

rank deformation from the population covariance matrix, absent of any external

perturbation or basis rotation before sampling the mass eigenstates.

• The sample mass eigenspace is defined by a probability measure formed from

the multiplicative free convolution of the limiting eigenspaces for the initial
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Figure 5.5: Normalised eigenvalue spectra for the axion mass matrix defined with

spikes from eigenvalues defined in the supercritical regime of the BBP phase tran-

sition. Left panel: Example mass spectra for the model presented in Section 5.2.4.2

for a range of values of the distribution shaping parameter βM. The spiked eigen-

values, µpm
spike, repulsed from the bulk of the spectrum are enhanced by O(Nax) (right

inset). The bulk of the spectrum, µacMP, is defined by the Marčhenko-Pastur limiting

laws (left inset). Right panel: Example mass spectra for the model presented in

Section 5.2.5.2.3 for a range of values of the distribution shaping parameter βM.

The bulk of the perturbed mass spectrum is defined as µac
F found in Eq. (4.101)

inheriting two spiked values defined from both the kinetic and mass matrices. In

the limit βK,M = 1 the total distribution measure becomes an absolutely continuous

function with each of the spiked point masses absolved into the bulk support.

data vectors and the population covariance matrix which converges almost

surely to,

µM ≡ µac
� = µac

MP � µac
ΣP

, (5.55)

for an isotropic Y -matrix and the limiting spectral measure of a well defined

population covariance matrix.

We may also wish to allow for correlations between the random variable vectors

in the form of a prior placed on the population covariance matrix. This is a full

rank perturbation to the isotropic model discussed in Section. 5.2.4.1. Much like

the entries of the sample matrix itself, given the absence of specific information

about the true covariance matrix, we require restricted attention to a general class

of covariance estimators which we will generalise to a discussion of examples based
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on imposing both conjugate on non-conjugate priors. It is often problematic to

assume a pure noise approach to stochastic processes, where a general relaxation of

this assumption requires a definition of suitable population covariance estimators.

5.2.4.3.1 Conjugate Priors

Taking the ‘default ’ approach for covariance estimation for isotropic Y -matrices,

makes use of the conjugate prior on the covariance matrix, ΣP, which is distributed

according to a standard inverse-Wishart distribution found in Eq. (4.97). The initial

sample eigenspace for the axion mass matrix contains data vector corrections regu-

lated by this conjugate prior of the sample space distribution where the empirical

sample covariance mass matrix and kinetic matrix are defined as,

Kij = δij, Mij ≡ Y1Y2 = P−1XΣXT , (5.56)

with,

Xij ∈ N (0, 1); Σ ∼ W−1(I, ν) . (5.57)

The entries of the axion mass matrix are drawn according to the Fisher-Snedeco

distribution in Eq.(4.98). The limiting spectrum of the F -matrix mass matrix is,

µm2
a
≡ µac

bulk = µac
F , defined by the function found in Eq. (4.101). When Y1 ∝ I

then we recover the RMT N-flation model of Ref. [499] (see Appendix I). This mass

spectrum in this model is equivalent to the model found in Section 5.2.5.1. The

absolved decay constant spectra through canonical normalisation takes the form of

an inverse-Wishart perturbation due to the rotational invariance of the ensemble.

See Fig. 5.6 for example mass spectra and discussions in Section 5.2.5.1 for further

details on the form of the spectrum.
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Figure 5.6: Normalised mass spectra for the model presented in Section 5.2.5.1 for a

range of values of the distribution shaping parameters βK = βM. The multiplicative

free convolution of the absolved decay constants with the initial mass matrix causes

the sampled spectra to universally converge to a symmetric LSD on logarithmic

scales. The mass spectrum measure is defined by the absolutely continuous measure

function, µac
F defined in Eq. (4.101). Each spectra is fitted with a beta distribution

function according to the expression found in Eq. (G.6). The βM parameter regulates

the limiting distributions kurtosis, acting as a free compression operation, � (see

Section 4.4.2). In the limit βM → 0 the LSD approaches the limiting kurtosis of

the infinity divisible bounds for beta distributions, represented by the limit for a

semi-circular distribution.

5.2.4.3.2 Non-Conjugate Priors

Following a series of general covariance estimators motivated from models incorpo-

rating the separation strategy found in Ref. [66, 161] we can define the following

examples for limiting forms of correlated mass spectra:

• Isometric Y -matrix Population Covariance Matrix: If the population covari-

ance matrix for the sample covariance mass matrix is also an isometric Wishart

matrix then the resulting mass matrix represents a multiplicative free convo-

lution of two independent Wishart matrices. Using the separation strategy
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Figure 5.7: Normalised mass, decay constant and canonical field spectra for the

model presented in Section 5.2.5.1, for a single equal value of the distribution shaping

parameters βK = βM = 0.5. The upper panels display model spectra, fitted with

beta distribution functions according to the expression found in Eq. (G.6). The

vertical dotted lines represent the spectral mean, where the dashed lines represent

a 1σ translation from this value. In the lower left, lower middle and left central

panels we display the covariance between each of the simple axion cosmology model

parameters. The strongest covariance relationship comes from the decay constants

which act as a full rank perturbation to the initial mass matrix ensemble in the

geometric lattice basis. The reduced dependance between the other parameters

comes from the basis rotations moving into the mass eigenstate basis. The red

dashed lines represent the two-dimensional peak of the contours in each case.

decomposition, this is the equivalent as fixing the model standard deviations

to the null scenario, with the Wishart distribution drawing the mass matrix

correlations. The LSDs in these models are represented by combinatorial se-

quences which define the Fuss-Catalan distributions [952, 1047]. The mass
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spectrum is defined as, µac
m2
a
≡ µFC

s=2, where s = 2 is the second order mul-

tiplicative free convolution of Marčhenko-Pastur distribution measures. See

discussions in Appendix E for further details, as well as the spectral plots in

both the right panel of Fig. 5.8 and the right panel of Fig. 5.19.

• Log-Uniform Standard Deviation Priors: In the case of log-uniform priors

placed on the standard deviations by using the separation strategy with iden-

tity correlations, this model is analogous to canonically normalising the initial

mass spectrum with scale invariant values whilst maintaining the degenerate

scalings on the canonical axion fields like the methods found in Section 5.2.4.1.

The covariance matrix is assumed to be diagonal, i.e. formed using the sep-

aration strategy discussed in Section B.3, with a prior placed directly on the

eigenvalues of ΣP. If we assume the PQ symmetry breaking scales come from

uniformly distributed priors like those in Section 5.1.2 then the covariance

eigenvalues hold the equivalence of drawing,

σΣ ≡ f−1
a ∈ U

[
αM−1

Pl ; βM−1
Pl

]
, (5.58)

where α and β are suppression constants for the WGC and α & β. See the

right panel of Fig. 5.8 for an example mass spectrum plot in this model.

• Log-Gaussian Priors: Motivated by discussions in Ref. [66, 161], in the absence

of total scale invariance placed on the standard deviations, a natural substitute

is to assume a normal distribution for the logarithms of the entries of the

diagonal matrix in the decomposed population covariance matrix. If we assume

we also have the presence of correlations then the population covariance mass

matrix takes the form of the most general sample covariance matrix, with a

scaled inverse Wishart prior as found in Refs. [1008]. The mass matrix takes

the form [66],

Mij = P−1XδQδXT , (5.59)
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Figure 5.8: Left panel: Representation of the skew effect apparent when βK 6= βM

for arbitrarily normalised eigenvalues defined from matrices in the model presented

in Section 5.2.4.1. We demonstrate this using three examples each when βK < βM

(negative skew) and βK > βM (positive skew). Each example has both binned eigen-

value densities from direct sampling along with an approximated beta function fits

defined from Eq. (G.6). Right panel: Example normalised mass spectra for the

model presented in Section 5.2.4.1 for a range of priors on the population covariance

matrix. We demonstrate how some standard example models can be well approxi-

mated within the bounds of the Beta distribution function of Eq. (G.6) for skewed

spectra. Specifically the case of log-uniform priors on the standard deviations using

the separation strategy defined in Eq. (B.6) to define the mass matrix population

covariance matrix, shows an example where the need for explicit spectral functions

may be required.

where,

Q ∼ W−1(I, ν) log(δi) ∼ N (µ, σ) , (5.60)

as shown in the example plot in found in the right panel of Fig. 5.8.

5.2.5 III. Kinetically Aligned Mass Spectra

Geometric Lattice Basis

Beginning in the most general basis means defining our models in the geometric lat-

tice basis. In these models the spectra of both the axion decay constants and masses

are non-trivial. The decay constant spectrum depends entirely on how we define the

kinetic metric before diagonalisation, whilst the LSD of the masses depends both
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on the definition of the initial mass matrix and the initial form of the spiked kinetic

metric.

5.2.5.1 The Symmetric Isotropic Case

Both sample eigenspaces are initially defined under the null formalism, H0, where

the axion mass spectrum is perturbed multiplicatively by a full rank perturbation from

the canonical normalisation of the fields kinetic terms.

• We assume no covariance between the elements of the data vectors of both the

decay constants and masses, in the large N limit. The kinetic and mass matrix,

population covariance matrices are each defined as ΣP = I, i.e. we enforce the

equality hypothesis of null covariance. The empirical sample covariance kinetic

matrix is defined as Kij = P−1XXT, where Xij ∈ N (0, 1). The decay constant

spectra is determined by the measure function, µf2
a
≡ µac

bulk = µac
MP . The

kinetic matrix resides in the Wishart-Lagueue ensemble.

• After basis rotations the sample eigenspace for each parameter is defined by

only an absolutely continuous bulk measure component. This model relates

to the classical multiplicative perturbation model defined in Section 4.4.2. In

the sample basis for the axion masses the empirical sample covariance mass

matrix is M̃ij = P−1PXIXTP, where Xij ∈ N (0, 1) and P = δijfa,j. The mass

spectrum defined as µm2
a
≡ µac

bulk = µac
MP � µ

ac
IW = µac

F , as shown in Fig. 5.6.

The mass matrix resides in the Jacobi ensemble, specifically defined as a Fisher

matrix, representing a generalisation of the one-dimensional Fisher ratio.

Inspired by discussions surrounding models of kinetic alignment in well aligned mod-

els of axion field inflation, we assume the kinetic metric is now non-diagonal when we

begin in the geometric lattice basis. This model represents an extension to the mod-

els of N-flation in Section 5.2.4.1, where the Y -matrix mass matrix is now combined

with a non-degenerate decay constant spectrum, imposing a symmetric isotropic

construction, now defining it as an F -matrix. These models are a form of double
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Wishart model, residing in the general Jacobi ensemble, acting as an extension to

the N-flation matrix model where we not induce the non-trivial kinetic metric. The

kinetic field space metric is related to the Kähler metric in supergravity theories,

where a first order matrix model of random metrics based on considerations of the

complex Kähler geometry has been shown to be well approximated by a Wishart ma-

trix [532, 533]. This can also be found in more traditional approximations made on

the kinetic field space metric for non-trivial kinetic mixing [128, 131]. In this model

the kinetic metric is defined by an Y -matrix where the perturbed mass matrix is

well defined using the F -type ratio relation distributed according to a multivariate

F-distribution. Both the decay constants and masses have well defined LSDs, found

in Eq. (4.67), shown in Fig. 4.3 and Eq. (4.101), shown in Fig. 4.4 respectively.

The introduction of a perturbative measure term to the axion mass matrix in the

kinetic basis causes the moments of the universal distributions to be well bounded

on logarithmic scales. The LSD moments of the resulting mass spectrum are regu-

lated by the ratio of the two dimensional shaping parameters for each matrix. The

strength of the correlations between the physical parameters is determined by the

nature of the inverse decay constant factors, which take the role of the models pop-

ulation covariance matrix eigenvalues, as displayed in the example ensemble found

in Fig. 5.7.

5.2.5.1.1 Unbroken Symmetry (βK = βM)

If we assume the ratio of distribution shaping parameters is unity for the decay

constants and mass eigenstates in the initial basis, then after the perturbation from

canonical normalisation, the mass spectrum universally converges to a distribution

well modelled by its first, second and forth centralised moments on logarithmic

scales, i.e. it is skew-symmetric. Changing the value of βk = βm alters the kurtosis

of the resulting mass distribution where the distribution remains skew symmetric

about the normalised mean scale of the spectral masses. See Fig. 5.6 for a range of

example probability density plots for different values of βk = βm. These distribu-
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tions can be well approximated by a three-parameter family of continuous Pearson

distributions, which we approximate and fit by a series of Beta distribution functions

to the examples in Fig. 5.6.

5.2.5.1.2 Broken Symmetry (βK 6= βM)

When βk 6= βm the third centralised moment of the LSD for log10(ma) is sufficiently

perturbed to induce a non-negligible skew factor to the resulting mass spectrum.

When βk > βm the distribution is positively skewed, when βk < βm the resulting

distribution is negatively skewed. These distributions can be well approximated by

a four-parameter family of continuous distributions. See the left panel of Fig. 5.8

for probability density plots for example mass spectra along with beta distribution

function fits.

5.2.5.2 Spiked Kinetic Alignment

The sample mass eigenspace is defined either under the null or alternative formalism,

H0/HA and then perturbed multiplicatively by a full rank perturbation from a kinetic

metric formed from either the null or alternative formalism. The resulting mass

spectrum measure contains an absolutely continuous measure component plus either

finite number of a point mass measures separated above or below the spectrum support

or both.

These matrices are referred to and generalised as spiked Fisher matrices, where

the covariance matrix of either one or both of the sample covariance ratio matrices

contains a finite perturbation from triviality [155, 331, 332, 435, 666, 751, 1326]

and are common place in numerous classical multivariate statistical tests. Once

again, much like the general spiked Wishart matrix, explicit representation of these

models is a tricky task, where approximated measure decomposition offers the logical

approach for model scanning. In the case of rank 1 spiked multivariate F -matrices

the join eigenvalue distribution (unordered) can be expressed in various ways such
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as zonal polynomials [748] or contour integral representations [1017].

5.2.5.2.1 Spiked Mass Spectrum

If we choose to model the canonically normalised mass spectrum with possible strong

correlations then repulsed eigenvalues could have significant effects with model phe-

nomenology. This model initially defines,

Kij = P−1XIXT, Mij = P−1XΣMXT , (5.61)

where, ΣM 6∝ I. In the limit N < P the sample eigenspace is defined by a bulk

measure with a finite number of point mass measure mass states. In the limit

N = P the probability measure recovers the multiplicative convoluted measure µM̃ =

µbulk
MP � µbulk

P ≡ µac
F , with the largest eigenvalues subject to statistical fluctuations

about the upper limit of the measure support. When spikes are present the mass

spectrum is defined as, µM̃ ≡ µF + µpm
λ+

, which represents a simple perturbation

of the model in Section 5.2.4.1. In the right panel of Fig. 5.5 we demonstrate the

normalised mass spectra for a range of values of βM, where the singular repulsed

eigenvalues are of the order, O(Nax).

5.2.5.2.2 Spiked Decay Spectrum

The eigenvalues of the kinetic mixing matrix fix the effective decay constant scales

of the model, where previous models consider the case of field alignment occurring

precisely if one of the associated eigenvalues becomes large [297, 367, 773]. This in

the context of our RMT models, is emulated when the eigenvalues which define the

effective decay constants from the covariance matrix, fall in the BBP supercritical

regime. Consider then the following toy model where we first assume the mass

spectrum is initially constructed isotropically, allowing for correlations in the decay
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constant scales where,

Kij = P−1XΣKXT, Mij = P−1XIXT . (5.62)

We can either fix a prior on ΣK or draw the elements of the sub-matrices, X for Kij,

according to Eq. (5.52) with ΣK = I, where we have a rank 1 perturbation to the null

case. This relates to the use of either centred or non-centred Wishart ensembles for

the initial data vectors. The mass spectrum is described by a standard Marčhenko-

Pastur bulk with a perturbation placed on the smallest field mass in the initial

basis. After canonical normalisation this becomes a point mass measure from the

initial outlying decay constant. This eigenvalue in the spectrum, is now negatively

logarithmically displaced from the bulk, µac
F . Of course depending on statistical

fluctuations a point mass decay constant could perturb a mass state eigenvalue

which remains inside the bulk supports if the magnitude of the initial perturbation

is small.

5.2.5.2.3 Double Spiked Point Mass Spectrum

This is the generalisation of the model in Section 5.2.4.2 which involves a rotation of

a spiked mass matrix, perturbed from the canonical normalisation of a spiked decay

spectrum. The outlying eigenvalue in each spectrum retains its separation from

the spectral bulk where its separation is logarithmically perturbed either positively

or negatively with respect to the bulk separated from the change of basis with a

non-trivial metric. The spectrum in this model adopts the features of the models in

both Section 5.2.5.2.1 and Section 5.2.5.2.2, where the mass matrix takes the general

form,

M̃ = Σ
1/2
1 Ỹ1Σ

1/2
1 Σ

1/2
2 Ỹ2Σ

1/2
2 . (5.63)

This model can be formulated in two ways, either with the use of a central Wishart

ensemble where both Σ1,Σ2 6∝ I, or assuming the null hypothesis combined with

a non-central Wishart ensemble matrix for both Y1 and Y2. The resulting mass
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spectrum contains at least two point mass measures, µpm
spike,+ and µpm

spike,−, coming

from the spiked mass matrix and kinetic metric respectively. The decay constant

spectrum is defined in Eq. (5.50), where the mass spectrum is,

µM̃ ≡ µac
F +

R∑

i=1

µpm
spike,+ +

Q∑

i=1

µpm
spike,− . (5.64)

The value of R represents the rank of the perturbation to the population covariance

matrix of the mass matrix minus the total number of population eigenvalues with

degeneracy greater than unity plus the number of groups of degenerate values. The

value of Q is the same for the spiked eigenvalues of the kinetic metric. In the limit

βK = βM = 1 the spikes are absolved in the bulk of the spectrum where the spectrum

matches the mass spectrum of the model in Section 5.2.5.1. See the right panel of

Fig. 5.5 for example density plots for the mass spectrum distribution for various

values of βK = βM.

5.2.5.3 Correlated Kinetic Alignment

The sample decay constant and mass eigenspace are defined under the alternate

formalism, HA, where either one or both of the sample matrices has a full rank,

non-trivial population covariance matrix.

• Constructed in a form closely resembling the examples presented in Section 5.2.5.2,

we now allow for the definition of a full rank population covariance matrix with

all eigenvalues in the supercritical regime of the BBP phase transition for either

the kinetic and mass matrices or a combination of both.

• These examples represent the largest spread in the axion mass spectrum due

to the possibility of including uncertainty in the initial mass spectrum, the

correlations between mass matrix variables, the decay constant spectrum and

the correlations between kinetic matrix variables. Like the case of finite rank

data correlations, the mass matrix in the kinetic basis is represented by a
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general sample covariance matrix of the form found in Eq. (4.93).

In the limit that either of Q and R represent a full rank sum in Eq. (5.64), we can

define numerous combinations of models which can be constructed in this general

way. The mass matrix takes the form of a sample canonical correlation matrix, more

relevant for the type of modelling found in canonical correlation analysis (CCA)

[671]. Generally the explicit LSD of the joint distribution for the eigenvalues of

F -type matrices is only well defined in the Gaussian case. In a more general setting

we must fall back on the nature of the universal convergence of the asymptotic

results of free probability to draw inferences in these models. Any combination of

the population covariances estimators covered in Section 5.2.4.3.2 could be used for

either matrix. The LSD of the axion masses in these models represent the general

logarithmic ‘Gaussianisation’ of the spectrum, under certain configurations, where

the number of convolutions causes the spectra to converge towards normality. In

the case that both the kinetic matrix and mass matrix are initially defined with full

rank data correlations between variables, the decay constant spectrum is defined as

the absolutely continuous measure function, µK = µMP � µΣK . The mass spectrum

is also represented by an absolutely continuous measure function defined in the

canonically normalised kinetic basis as, µM̃ = µMP � µΣM � 1/µK. In the case

of finite rank spikes, also present in either spectrum, we simply substitute in the

additional point mass functions like the models covered in Section 5.2.5.2, where the

matrices represent spiked forms of the most general sample covariance matrices.

5.2.6 Multi-Modality for Extended Sectors of Axion Physics

A very natural extension to the models presented above is to introduce a multi-

modal axion mass spectrum measure, motivated by the incorporation of distinct

sectors of axion physics appearing in the low energy effective theory. Doing so would

correspond to performing a decomposition of the axion kinetic and mass matrix to

take a block-diagonal form. This situation would elevate the point mass functions
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above to be replaced by absolutely continuous measure functions based on physical

model considerations. These probability measures are closely related to mixture

models of parametric probability density functions [1104, 1394]. Traditionally these

appear as weighted sums of Gaussian component densities [1103], which are also well

adapted to Bayesian frameworks [838, 1093]. We must then also naively introduce

a further level for the hyperparameters, representing extended draws for the mean

scales of each sub-matrix appearing in Eq. (5.65). Phenomenologically these types

of models would be well suited to exploring the complete ultralight sector of ad

hoc models of a string axiverse landscape, possibly addressing solutions to several

paradigm issues at once, such as inflation and DM cosmology, which naturally require

a very large separation in the order of magnitude of defining parameters for the model

scales. The limiting distributions of the axion parameters are well described using

free probability theory in the models presented above, where correlations and or

perturbations are allowed between or to the entries, whilst still retaining universal

spectral forms [1150, 1151]. Suppose we now expand the space such that we have n

axionic sectors, an example phenomenological block diagonal mass matrix would be

defined by the direct sum,

M = M1

GUT

⊕
DM

M2 ⊕ · · · ⊕ Mn

DE

, (5.65)

where it is always possible to perform a linear transformation to the basis in which

the extended diagonal of M represents the complete axion mass spectrum of the

model. Such random block matrices commonly occur in data modelling when con-

sidering large data structures in which the number of observables (axions) is suffi-

ciently greater than the number of strata (axionic sectors) or Nax � n in Eq. (5.65).

The LSD closely related to the previously mentioned mixture models, determining

the full eigenstpectrum of some random non-diagonal block matrices falls under

the discipline of operator valued free probability theory, which we leave as a topic

beyond the scope of the work covered here [1205].
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5.2.7 Initial Conditions for the Canonical Fields

5.2.7.1 Effective Axion Decay Constants

The role of the axion decay constants, for our purposes, will be to fix the natural

initial field displacements, in order to analyse features such as the axion relic density

from vacuum realignment [13, 458, 1073] (see Chapter 7). Expanding the potential

to the mass term alone, the dimensionful scales that control the evolution and relic

densities are the initial displacements of the canonical fields. In all cases we set our

initial conditions on the axion fields as,

φini
i = Fijϑj , (5.66)

for some (random) matrix Fij, where ϑ represents a random vector of elements in

the range [0, π], which is expected for an initially massless field with a discrete shift

symmetry and symmetric potential. We set the initial conditions on ϑi to uniformly

sample the field space in some basis. We do this in the basis where the ϑi form a

cubic lattice, adhering to the discussions in Section 5.1.1.1. We uniformly sample

in this cubic basis, since this is operationally very simple. However, we note as

also detailed in Section 5.1.1.1 this is not a uniform sampling of the field space in

the ‘charge basis ’ defined by the charge matrix, Q, an integer matrix whose entries

reside in a charge lattice in the more generalised simplified cosine potential,

V (θ) =
∑

X,i

ΛX

[
1− cos

(
QXi θi

)]
. (5.67)

We leave investigations of this interesting question, which is intimately related to

the notions of alignment and charge quantisation for future work. Other discussions

of this point, and sampling of initial conditions in general, see Refs. [128, 130, 499,

500, 915].
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Figure 5.9: Probability density plots for the initial axion field displacements de-

fined in each basis outlined in Eq. (5.14), Eq. (5.69) and Eq. (5.70) for 5000 iterations

using Nax = 75. Upper panels: Zero centred mean, gaussian distributions used for

the elements of the kinetic matrix Kij (isotropic Y -matrix in Section 5.2.4.1). Lower

panels: Non-zero centred mean, non-Gaussian distributions are used for the elements

of the kinetic matrix Kij (finite ranked spiked matrix model in Section 5.2.4.2). The

highlighted (black rectangle) values demonstrate the enhancement of the spectral

width in the spiked matrix in the initial basis. As the spectrum is rotated through

canonical normalisation the spectra converge to universal forms where the two mod-

els eventually harmonise.

5.2.7.2 Sample Basis Scalings

We define the matrix Fij for two different possibilities for the cubic basis we can ini-

tialise our sampling in. These correspond to the geometric lattice and the canonically

normalised kinetic basis from Section 5.1.1.2. Consider the set of transformations

that turn the initial fields, θ, into the canonically normalised quantities, φ, which in

index notation defines,

φi
Mpl

= Vijdiag(fa)jkUklθl . (5.68)

In general we should expect that in the cubic basis both Kij and Mij are off-

diagonal, and so ϑi = θi. On the other hand, it could be the case that the cubic
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basis is the same basis as the one in which Kij is diagonal. In that case, it is natural

to set ϑi = Uijθj. We allow for both possibilities in our numerical explorations, such

as those conducted in Chapter 7, as defined relative to each RMT model above.

For completeness of discussion, we still seek to define a measure on the initial field

displacements that is somewhat equivalent to the usual notion of a ‘decay constant’.

We define such a measure by the following vector for the most general case of basis

rotations,

ϕ̃i := |Vijdiag(fa)jkUkl〈ϑ〉l| , (5.69)

where 〈ϑ〉 is the vector of π/2 values representing the average of ϑ. For the case of

the cubic basis with diagonal Kij, we define our measure as,

ϕi = |Vijdiag(fa)jk〈ϑ〉k| . (5.70)

The overall scale of our initial conditions is set by the eigenvalues of Kij giving

the elements fa. However, rotations can shift these values on to different canonical

fields, allowing for a general N-flation type enhancement by the pythagorean sum

(see Fig. 5.1 and Fig. 5.2). The initial field conditions defined from fa for φ, ϕ̃

and ϕ are shown in Fig. 5.9. In the upper and lower left panels we show the initial

field displacements of the general form, φ = faθ, for both example isometric and

spiked models where the bulk of the spectrum is initially limited to sub Planck scale

values (upper and lower left panels). The value of φ is defined using Eq. (5.66),

where Fij = diag(
√

2f 2
a )ij such that, φi = diag(

√
2fa)ij〈ϑ〉j. In the upper panels

we see that the initial field displacements quickly converge to a negatively skewed

distribution on a logarithmic scale, when using an isometric Y -matrix for Kij (see

Section 5.2.4.1). Selecting a new basis identified by a further rotation acting on Fij
does not alter the initial field displacements, where we observe a degeneracy across

all values of βK. When a spiked Wishart matrix is used for Kij (see Section 5.2.4.2)

the repulsed eigenvalues shown for φ, ‘enhances’ the potential initial field conditions

when selecting a new basis for sampling (see discussions in Ref. [750]). Rephrased,
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this shows the convergence of the spectra via the unitary rotation perturbations as

‘slower’ in this model, maintaining features of the initial matrix spectra for Kij. The

spectra for each choice of basis is distinct in its output as shown in the central and

right lower panels. In the basis for ϕ for lower values of βK we maintain the hard

edge of the non-rotated spectra (lower left panel) with values of βK → 1 providing

larger probability densities for field displacement transcending the MPl limit. The

two models universally converge when finally selecting ϕ̃ as the choice of basis.

5.2.8 Random Supergravity and the Superpotential Hessian

5.2.8.1 The Hessian Matrix

It is worth quickly contrasting the RMT models presented above for random axion

cosmology, using the effective axion field equations, to the case of scalar parameters

drawn from RMT models found in the context of random supergravity and sample

vacua from the viewpoint of random Gaussian potentials. The generic final stage

of defining the axion states in some general string model, is a minimisation of the

superpotential of the form in Eq. (3.28), in order to search for metastable de Sitter

vacua. This is an extremely difficult issue when the dimensionality of the problem is

large. In previous studies found in the literature there have been excellent attempts

to construct models utilising RMT in order to obtain a spectrum of scalar masses

coming from a non-supersymmetric vacuum, in a generic four-dimensional N = 1

supergravity theories [873]. These random supergravity theories [125, 127, 290, 909]

make use of the ability to map across features of the second order derivates of the

superpotential, following the work of Ref. [429], to particular well known random

matrix ensembles, in particular the GOE/GUE and LOE/LUE ensembles [909].

Consider a set of critical points, K which satisfy the critical point equation,

∂aV |K = eK
(
Da(Fb)F̄ b − 2FaW̄

)
= 0 , (5.71)
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defined using the supergravity potential found in Eq. (3.28), where Da denotes the

appropriate Kähler and geometrical covariant derivative [909]. The superpotential

Hessian matrix at these points is defined as [909],

H =



∇2
ab̄
V ∇2

abV

∇2
āb̄
V ∇2

ābV


 , (5.72)

=



Z c̄
aZ̄b̄c̄ − FaF̄b̄ −Rab̄cd̄F̄

cF d̄ UabcF̄
c − ZabW

Ūāb̄c̄F
c̄ − Z̄āb̄W Z̄c

āZbc − F̄āFb −Rbācd̄F̄
cF d̄


 + (5.73)

1
(
F 2 − 2|W |2

)
, (5.74)

where Zab = DaFb and Uabc = DaDbFc. For generic compactification models possess-

ing many moduli, the spectrum could approach the limits where it can be suitably

defined using classical random matrix ensembles. The eigenvalues of the Hessian ma-

trix in Eq. (5.72) define the squared physical masses of the canonically normalised

scalar fields. The general metastability requirement of either Minkowski or de Sitter

critical points fixes the ensemble requirement,

m2
min > 0 . (5.75)

The vacuum statistics which have often had a focus on slow-roll inflation, have been

extensively studied with the use of random Gaussian fields [5, 127, 174, 226, 228, 502,

558, 921–924, 1254, 1323, 1372]. The spectrum of example Hessian configurations

in Eq. (5.72) have been calculated to various degrees of perturbatively with respect

to the GOE/GUE ensemble using the principles of Gaussian random landscapes.

5.2.8.2 An Ensemble Approximation to Random Supergravity

In Ref. [909] both the superpotential and Kähler potential are described by random

functions, where the matrix in Eq. (5.72) is constructed using a random matrix

model formed from perturbative free convolution operations using a series of matri-
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ces residing in the GOE/GUE and LOE/LUE ensembles. See Ref. [290] for discus-

sions where these limits might not hold in explicit flux compactifications. Consider

the case of the free convolution Hessian spectrum defined in Ref. [909], defined ac-

cording to the constituent parts, H = HSUSY + Hpure + HK(4) + HK(3) + HShift. It

was shown these terms can be well approximated by the free additive convolution,

H ≡Wigner�Wishart�Wishart, where the critical points in this ensemble relate

to unstable saddle-points. The ensembles found in models of random supergravity

often contain a large portion of negative eigenvalues. Metastable de Sitter vacua are

therefore generally expected to be a rare occurrence in the use of random potentials,

where we must rely on the statistical fluctuations of an atypical system configura-

tions, along with an often complicated assessment of stability. There are however

ways in which these spectra can be addressed to relieve these tensions for more gen-

eral cases of stabilised spectra, i.e. the scale of the F-terms compared to the scale of

the supersymmetric masses [909]. In the context of our simplified models for axion

cosmology, the mass spectrum of Ref. [909] would most likely require an additional

additive free convolution operation of a further Wishart matrix to define the low-

est order perturbative model with consistent sampling from some positive definite

spectrum. We have of course offered no physical motivates for such a model but

use this to highlight the potential structure of models which involve additive convo-

lutions of different ensembles in the invariant sector of RMT, required for positive

definite spectra. We leave the fascinating results of random Gaussian landscapes

and random supergravity as a topic beyond the scope of any work covered here.

5.3 The M-theory Stochastic Superpotential

Suppose now we wish to model a matrix space, not from the universality of statisti-

cal models formed on the grounds of maximised information entropy using classical

matrix ensembles, with respect to some weighted polynomial, but from data vectors

constructed using theoretical variables directly. Each multivariate model in Sec-
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tion 5.2 consisted of a series of statistical parameters assigned to fixing the shape

of the models LSD. Now we turn to the case of expanding the superpotential in the

M-theory axiverse, introduced in Section 3.3.5 in order to define the form of the ax-

ion mass matrix and the properties of the LSD for the fields. As with any approach

to the considering a randomised approach to a complex landscape there are a series

of general terms which come with theoretical uncertainty we must account for. For

the axion fields in the M-theory landscape these are:

• The superpotential W (Φi) - This is an arbitrary holomorphic function of su-

perfields that is invariant under the gauge symmetries of the theory with mass

dimension three. The superpotential describes and encodes non-gauge inter-

actions between chiral multiplets.

• The Kähler potential K(Φi, Φ̃
j∗) - A supergauge invariant function of the chiral,

antichiral and vector superfields with mass dimension two which gives rise to

chiral kinetic terms and gauge interactions.

• Gauge kinetic functions Fαβ(Φi) - A dimensionless holomorphic function of

chiral superfields which describes kinetic mixing between abelian components

of the relevant gauge groups, as well as giving rise to non-renormalisable cou-

plings of the gauge supermultiplets to the chiral supermultiplets.

For general supergravity we need to explore the the non-perturbative superpotential

generated by instanton solutions representing our source of how to understand the

ultralight scalar sector, which can be expanded to reveal a spectrum of ultralight

degrees of freedom forming the string axiverse.

5.3.1 The Random Matrix Axiverse in M-theory

5.3.1.1 M-theory Moduli Stabilisation

Recapping and continuing the discussions in Section 5.2, axions generically arise in

large numbers in numerous string compactification models as Kaluza-Klein modes
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of antisymmetric tensor fields, often forming a tower of ultra-light scalar states

defined by the complicated topology of such theories, which can manifest realistic

models of four-dimensional high-energy physics. The shift symmetries stemming

from the higher-dimensional gauge invariance of these antisymmetric tensors leave

the resulting scalar tower massless to all perturbative orders. We must then turn

to specific details of the moduli stabilisation techniques and any possible present

non-perturbative instanton solutions, in order to understand the properties of the

massive spectrum of ALPs, embedded in testable relativistic supergravity quantum

field theories. To do this we will now discuss a random matrix model approach [1221],

based on the explicit realisation of the string axiverse found in G2 compactified M-

theory, outlined in detail in Refs. [28, 29, 31], with its low energy theory, described

approximated by an effective eleven-dimensional supergravity theory.

It has been shown in the case of M-theory models compactified on manifolds with G2

holonomy, the moduli can be stabilised in a number of ways. One example consists

of models using fluxes of warped geometries to provide suitable moduli sector stabil-

isation, demonstrating vacua similar to those found in Calabi-Yau flux vacua of type

IIA models [21, 26, 117, 186, 401]. Despite the successes of realising a consistent

compactified theory, the visible sector phenomenology is generally not of great in-

terest due to the large mass scales fixed by the formalities of the theory, determined

by the scale of supersymmetry breaking. This issue can be hierarchically suppressed

however if we consider M-theory models compactified with a distinct absence of

fluxes, via a non-perturbative superpotential generated by strong gauge dynamics

in a hidden sector [25]. In these models, under certain conditions for the hidden

sectors, supersymmetry is spontaneously broken in a metastable de Sitter vacuum

at significantly lower scales, defining phenomenologies generally more relevant for

realistic approaches to embedding supersymmetric GUTs [22, 27, 28, 31, 179].

To look at the resulting spectrum we will begin by reviewing some results for the

G2 Minimal Supersymmetric Standard Model (MSSM), used to define the various

relevant potentials highlighted in the beginning of this section, before moving on to
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look at how the ultralight spectrum of axionic scalars are stabilised in the theory,

resulting in the low energy axiverse scenario. The minimalist approach in the zero-

flux sector of the model, which realises a four-dimensional effective theory with

N = 1 supersymmetry, is defined by a hidden sector with at least two non-abelian

asymptotically free gauge groups, SU(Q) × SU(P + 1), with hidden sector squark

superfields fields, Φ and Φ̃ charged under the SU(P+1) symmetry. In the framework

of four-dimensional supergravity, the superpotential is a holomorphic function of the

scalar sector of the moduli superfield,

zi = ti + isi , (5.76)

where the real components, ti denote the axion fields and the imaginary, si denote

the geometric moduli. The general form of the Kähler potential in Planck units to

leading order is [26, 244],

K = −3 ln
(
4π

1/3V7

)
+ K̃hid(si)φ̄φ , (5.77)

where φ represents the scalar component of the squark superfields, V7 is the volume

of the hidden G2 manifold X and is a homogeneous function of the moduli si, of

degree 7/3 in units of the eleven-dimensional Planck length, l11, where the positive

real numbers of the microscopic parameters specifically follow,

V7 =
N∏

i=1

(si)
αi ≡ Vol(X)/l711 , (5.78)

∑

i

αi =
7

3
. (5.79)

The sum in Eq. (5.79) is a constant determined purely by the geometry of the extra

spacetime dimensions, which is equal to unity in Calabi-Yau compactifications [33].

The second term in Eq. (5.77) is an adiabatic variant which is generally O(1) and

a homogeneous function of the moduli of degree zero. Defining the axion decay

constants by an analysis of the form of the moduli sector, we will for simplicity,
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assume that the Kähler potential is dominated only by a single term, taking the

generic form,

K = −3 ln

(
N∏

i=1

(si)
αi

)
. (5.80)

The constants of the potential which determine the values of the moduli at the

minimum can be determined for specific considerations of G2 manifold structure. It

was shown in Ref. [22] a minimisation of the scalar potential for the moduli can be

achieved when all moduli are stabilised with VEVs of the approximate order,

〈si〉 '
MPl

10
, (5.81)

which rectifies the issues surrounding low scale supersymmetry breaking, whilst sup-

plying a sufficiently small cosmological constant. The small cosmological constant

determines that the F -terms of the hidden sector meson fields are in general much

greater than that of the moduli. The scale of the scalar field masses in the super-

gravity theory is fixed by the relation,

m3/2 =
〈Fφ〉√
3MPl

= e
K/2MPl

|W |
M2

Pl

. (5.82)

Once supersymmetry has been broken the scale of the gravitino, m3/2, is typically

used to fix the scales of the scalar sector. At this stage the moduli posses masses

such that the lightest modulus field is fixed to the order [34],

m2
Xo = O(1)m2

3/2 . (5.83)

In order to replicate successful predictions for standard cosmological thermal his-

tories without spoiling the formalities of Big-Bang Nucleosynthesis, it is expected

that the lightest modulus field must have decayed before approximately 10−2 sec-

onds after the end of inflation [33, 34]. This fixes a lower bound for the moduli as

[519, 780, 1338],

m2
Xo & 30 TeV . (5.84)
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This requirement that all the moduli must have decayed away before Big-Bang Nu-

cleosynthesis as to avoid excessive matter domination through the energy oscillations

of the moduli avoiding the possibility of over closing the Universe is known as the

cosmological moduli problem [150, 381, 412]. The standard methods to avoid this

issue are achieved with thermal inflation models [884, 961, 1087]. An upper bound

can be formed considering the relic abundance of the axions proportional to the

gravitino scale required for a suitable DM component. This has been shown to only

occur when m3/2 . 100 TeV [31] which defines, the phenomenological gravitino mass

bound to be,

30 TeV . m3/2 . 100TeV . (5.85)

An important feature of the Kähler potential is the general assumption it leads to

a non-trivial Kähler metric, charactering the spectrum of the low energy sector,

Kij ≡
∂2K

∂zi∂z̄j
, (5.86)

which in the case of the general effective descriptions already discussed in the previ-

ous RMT models in Section 5.2, is directly related to the kinetic mixing matrix, and

is a homogeneous function of degree minus two. When we relax the assumption the

moduli dependent kinetic terms are defined by complicated functions the simplest

form parametrising the non-trivial Kähler metric is,

Kij =
aij
sij

, (5.87)

where ai are topological constants and si represent the VEVs of the moduli fields

as before. We will assume the moduli VEVs can be parameterised by maximal and

minimal values we expect the scales of the theory to define, which we denote as

smax and smin. The results of moduli stabilisation in M-theory show that the moduli

VEVs should range between the approximate limits,

〈si〉 ∼ (10→ 100) , (5.88)
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in units of the string scale [22, 28, 29]. It is then natural to assume that our choice

of prior should be a uniform distribution,

P (si) = U(smin, smax) , (5.89)

where we fix smin ≈ 10 and smax ≈ 100.

5.3.1.2 Diagonal Kähler Metrics

5.3.1.2.1 A Model for Dark Radiation

Sampling a general metric constructed in the manner of Eq. (5.87), analogous to

the techniques found in Section 5.2, does not contain positive real values due to

the asymmetry of its elements. When the moduli are randomly assigned between

these two limits, analysing the positive real components via the absolute value of

the eigenvalue distribution shows this is nothing more than an inverted case of the

decay spectrum considered for field alignment in Section 5.2.5.2.2. We will make

no assumptions on the topological structure of the manifold, which then fixes the

constants,

ai = aj = 1 . (5.90)

The non-centred mean of the distributed moduli VEVs defines a susceptibility for

a single sharp transition for the smallest eigenvalue to be repulsed far from the

bulk spectrum. This is demonstrated for a range of values for the fixed maximum

and minimum moduli VEVs in the right panel of Fig. 5.10. The alignment of the

eigenvalues for the metric in Eq. (5.87) in the eigendecomposition basis, lifts the

bulk of the decay constant spectrum scales to values parametrically larger than

the mean of the distributed moduli VEVs, the repulsed eigenvalue sitting below

the mean scale. It is possible to make a further simplification to the form of the

Kähler metric in Eq. (5.87) without any loss of generality in order to derive traceable

results and recover the requirement of only real positive eigenvalues for the axion
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decay constants. It was shown in Ref. [24] that a large number of axionic degrees of

freedom can actually suppress the presence of dark radiation, relieving constraints in

string axiverse models [87], by shifting the general number dependance of the moduli

over to the visible sector couplings, where the dark radiation is now surpassed by

Standard Model radiation. Following the discussions of Ref. [24] the general kinetic

terms of the moduli theory, with mixing regulated by the Kähler metric, which

determines the nature of the visible sector enters the Lagrangian as,

L =
1

2
Kij∂µsi∂µsj +

1

2
Kij∂µti∂µtj. (5.91)

After canonical normalisation of each kinetic term in Eq. (5.91) the Kähler metric is

expanded as a function of the moduli fields. The general decay width of the modulus

to axionic field channel, Γ(si → tjtj), using the canonically normalised fields is,

Γax =
1

32π

N∑

i=1




N∑

j=1

1√
Kdiag
ii

∂ lnKdiag
ii

∂sj
Ujk




2

m3
Xk

M2
Pl

. (5.92)

The internal manifold conditions in both Eq. (5.78) and Eq. (5.79) can be translated

as conditions placed on the decay width coefficients appearing in Eq. (5.92). The

suppression of dark radiation occurs when a non-generic relation between the moduli

mass mixing matrix is realised, where the eigenvalues of the Kähler metric satisfy,

√
Kdiag
ii ∝ Uij . (5.93)

Here Kdiag
ii represents the diagonal form of the Kähler metric and Uij is an orthogonal

rotation matrix. This suggests it is preferential to initially define the Kähler metric

in the form,

Kij ≡ Kdiag
ii = diag

(
ai
si

)
' diag.

(
1

si

)
, (5.94)

using the assumptions made on the Kähler metric parameters.
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Figure 5.10: Left panel: Example axion decay constant spectra defined using

the Kähler metric defined in Eq. (5.94) which can be modelled by the prior fit in

Eq. (5.96) for various values of the minimum and maximum moduli VEVs param-

eters, smin and smax. Right Panel: Example spectra of the axion decay constant

modulus defined using the non-diagonal Kähler metric in Eq. (5.87) formed with

uniform priors for the moduli VEVs. The non-centred mean leads to perturbed

eigenvalues from the bulk which give a non-positive spectrum for the squared values

of the axion decay constants as the matrix is not defined in the form of a sample

covariance matrix.

5.3.1.2.2 The Spectrum of Decay Constants

When the moduli VEVs are distributed between the expected limits from moduli sta-

bilisation, the normalised axion decay constants are now approximately distributed

between,

fa,i =
√

2ai/si ∼ (10−2 − 10−1) , (5.95)

in units of the string scale. The logarithms of the axion decay constants are modelled

by a truncated exponential curve of the form,

P (fa) =
∏

(fa)× C0 ∗ e−(C2∗(fa−C1)+C3) , (5.96)

where the coefficients are fixed by the variance of the moduli VEVs. The truncations

are regulated by the boxcar function,

∏
(fa) = Θ(fa − fmin

a )−Θ(fa − fmax
a ) , (5.97)
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where fmin
a ≤ fa ≤ fmax

a for fmin
a ≡ √2smin with fmax

a ≡ √2smax and Θ(x) is the

Heaviside step function which fully defines the prior on the effective decay constants

in the model. In the left panel of Fig. (5.10) we display several example spectra

under these assumptions for the axion decay constants, drawn from diagonal metrics

defined using different value ranges of the smin and smax moduli parameters.

5.3.1.3 The M-Theory Random Matrix Mass Spectrum

5.3.1.3.1 Higher Order Instanton Corrections

We can now move on to the sector of the supergravity theory which defines the

form of the axion mass matrix. When the model is considered at energies below

the confinement scales of the non-abelian asymptotically free gauge groups, the

non-perturbative superpotential is defined as,

W = M3
Pl

(
Aφaeib1F1 + Beib2F2

)
, (5.98)

a = 2/P1; b1,2 = 2π/P1,2 , (5.99)

with φ the meson superfield of the hidden sector, along with A and B representing

normalisation constants for a given manifold. The remaining constants come from

the dual Coxeter numbers of the hidden sector gauge theory, P1,2 ∈ Z+, proportional

to one loop beta function coefficients of the two gauge groups. The tree-level gauge

kinetic functions, F1 and F2, are linear combinations of the moduli superfields in

Eq. (5.76). These are defined such that the three-cycles for the hidden sector gauge

fields are localised to fall inside an identical homology class. This assumption allows

for the definition,

Fhid ≡ F1 = F2 =
N∑

i=1

Nizi =
N∑

i=1

Ni (ti + isi) , (5.100)

where we have Nax axion zero-modes formed from the three-form fields of the eleven-

dimensional supergravity theory. The integer constants, Ni, are determined from
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the topology of the submanifolds which support the hidden sector gauge groups

and span the homology class of the three-cycles. The previous components can be

used at this point to conduct the laborious task of defining and characterising the

full low energy spectrum of the supergravity theory, comprising of both the visible

matter and hidden sectors [22, 30]. Instead we will divert and greatly simplify this

analysis by using statistical sampling for the defining model parameters, considered

as stochastic terms in order to investigate a spectrum of axions. If a series of higher

order corrections are added to the superpotential defined in Eq. (5.98), then following

Ref. [31] and absolving any previous Planck scale factors the newly defined standard

factorised form of the superpotential is,

W = Aφa1eib1F1 + Beib2F2 +
∞∑

k=3

CkeibkFk , (5.101)

where φ1 is a holomorphic composite field made of hidden sector matter fields. The

order one constants Ck are introduced through the high dimensional PQ symme-

tries. The first two terms come from the same strong gauge dynamics considered in

Eq. (5.98), where the equivalent exponent gauge kinetic term factors now represent

the process of defining a single linear combination of terms, representing the axion

field required to be stabilised in the process of compactification, which occurs at the

order defined in Eq. (5.85). The remainder of the axion spectrum is present through

the infinite sum generated by higher order instanton effects which define the mass

scales to be exponentially suppressed relative to those found in Eq. (5.85), where

the spectrum is expected to contain a significant ultralight component. The summa-

tion can be truncated at the order of the number of independent axions due to the

superfluous non-perturbative sources which can contribute to the Kähler potential,

such as membrane instantons or gaugino condensates in order to break the high-

dimensional gauge shift symmetries. The higher order b3,4 terms in the summation

are the instanton integers,

bk = 2πI; I ∈ Z+ , (5.102)
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defined under the assumption each of these terms are generated purely by membrane

instantons. The associated scales involved in the stabilisation of both the moduli

and axions is used to determine the spectrum of ultra-light axions which are free to

be stabilised by the sub-leading non-perturbative effects. In the low energy sector of

the four-dimensional effective supergravity theory all the moduli superfields possess

the required PQ symmetries. Performing an integration over the the moduli and

heavy axion combinations determines the spectrum of axions where the relevant

effective superpotential takes the form,

Winst =

Ninst∑

i=1

Λ̃3
i e
ibiFi , (5.103)

with each term defined by the non-perturbative defining mass scales, Λ̃i. The only

terms we need to concern ourselves with are the correctional terms, the membrane

instanton integers defined in Eq. (5.102) and the gauge kinetic functions found in

Eq. (5.100). Let us reparameterise the generalised volume of the corresponding

three-dimensional submanifolds, relevant for the axions, supporting the hidden sec-

tor gauge theories required for compactification in eleven-dimensional Planck units,

V iX ≡ Im(Fk) =
Nax∑

k=1

Nk
i sk =

1

2π

Nax∑

k=1

Ñk
i sk . (5.104)

The Ñk
i terms represent the normalised values which regulate the properties of the

moduli. The F-term potential in N = 1 supergravity is defined as,

VF = eK
(
KijDW

Dzi
DW

Dzj
− 3|W |2

)
, (5.105)

where K is the Kähler potential and Kij is the inverse of the Kähler metric defined

in Eq. (5.86), where each index runs over the N chiral superfields of the theory.

The form of the periodic potentials arise from the interference of the instanton

superpotential and the superpotential from other supersymmetry breaking sources,

W0.
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5.3.1.3.2 The Expanded Effective Superpotential

Assuming that the scale of supersymmetry breaking is,

F ∼ DW0

Dzi
, (5.106)

this gives rise to the following form of the potential,

V ≈ F

(
Nax∑

i=1

∂

∂zi

Ninst∑

j=1

Λ̃3
je
ibjFj

)
+ c.c. ,

which can be re-expressed using the periodic axion instanton potential,

V ≈
Nax∑

i=1

Ninst∑

j=1

2F Λ̃3
jbjN

i
j

MS

e−bj
∑Nax
k Nk

j sk cos

(
Nax∑

k=1

bjN
k
j tk

)
. (5.107)

The form of the potential in Eq. (5.107) allows us to present a special type of RMT

model motivated by the M-theory axiverse arguments above. As we will see shortly,

the matrix structure of the expanded superpotential in the M-theory framework can

be constructed in a similar manner to the statistical RMT models, guaranteeing

well defined vacua with an absence of tachyonic states for the axion masses. The M-

theory axion mass matrix is defined as the quadratic order bare term in the Taylor

polynomial of Eq. (5.107),

Mij =
Nax∑

k=1

Ninst∑

r=1

4F Λ̃3
rbrN

k
r

M3
S

e−br
∑nax
m Nm

r smbrN
i
rbrN

j
r , (5.108)

which takes the factorised form,

Mij =
Nax∑

r=1

4F Λ̃3
rCr

M3
S

e−SrÑ i
rÑ

j
r , (5.109)

where,

Ñ j
i = biN

j
i , (5.110)
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Cr =
Nax∑

k

Ñk
r , (5.111)

Sr =
Nax∑

m

Ñm
r sm , (5.112)

and each Ñ j
i are rectangular matrices of dimension Nax × Ninst, purely controlled

by the axion population size and the number of instanton terms. The form of the

mass matrix in Eq. (5.109) allows us to re-parameterise its structure in the form of a

general covariance matrix, represented by a normalised product of two rectangular

matrices,

Mij =
1

Nax

RikRkj , (5.113)

with the contracted sub-matrix structure,

Rik =

√
1

Nax


2

√
F Λ̃3

rCr
M3

S


 e−Sr/2Ñ i

r , (5.114)

where each index runs over, i, j = 1, . . . ,Nax and k = 1, . . . ,Ninst. Note that as Rik

is a rectangular matrix of dimension Nax×Ninst, where the instanton sources defining

the higher order correction summation to the superpotential must satisfy Ninst ≥

Nax, this implies the traditional distribution shaping parameter, βM must follow

βM ≤ 1. For convenience we normalise the scale of the spectrum by introducing

a rescaling of the model parameters so that all the physical model parameters are

now considered as dimensionless variables,

F → F

M2
H

, (5.115)

Λ̃i →
Λ̃i

MS

, (5.116)

Mij →
Mij

M2
H

, (5.117)

(5.118)
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Figure 5.11: Probability density plots for various spectra representing the three-

cycle volumes along with Gaussian function fits, each for different values of the

average three-cycle volume, 〈VX〉, generated using the corresponding values of

Ñmax ≈ 0.343 → 0.8 with an axion population size, Nax = 10. The moduli

VEVs are uniformly distributed between 10 to 100 in units of the string scale,

P (si) = U(10, 100). The probability density of retrieving the required GUT unifica-

tion value, VX ' 25 (red dashed line), is enhanced for values of Ñmax ≈ 0.6.

where the defining mass scales and coefficients regulating the axion mass matrix are

taken as the approximate terms,

Λ̃i ≡ Λ ≈ O(1) , (5.119)

F ' 5.4× 10104
(
m3/2TeV−1

)
. (5.120)

The large value of F is only present and imposed by our choice of units and nor-

malisations. The mass scales in the mass matrix,Mij, are measured in units of MH

for the ultralight scalar sector of cosmology, where the scale of the quantities which

define the value of F , come naturally from a general perspective on high energy

supersymmetry/string theory physics. These choices are made to account for the
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fact that non-perturbative scales are expected to show up around the string scale,

possessing a certain element of discretion.

5.3.1.3.3 A Series of Simple Stochastic Variables

The supersymmetry breaking order parameter is approximated using general dimen-

sional analysis to be,

F ∼ m3/2MPl

M2
H

, (5.121)

where the gravitino mass is assumed to at least O(1) TeV from naturalness argu-

ments, as shown in the arguments of Eq. (5.85). To simplify things in practice, we

will use a single variable scale parameter,

FΛ3 ∼ O(10105) . (5.122)

Using Eq. (5.85) and absolving the uncertainly of the non-perturbative physics,

which becomes relevant around the string scale, we can define a uniform prior on

the theoretical uncertainty,

log10

(
FΛ3

)
∈ U [100; 115] . (5.123)

The final form of the axion mass matrix as a product of stochastic variables is,

Mij =
N∑

r=1

4F Λ̃3
rCre

−SrÑ i
rÑ

j
r , (5.124)

where the moduli and axion fields are expressed with respect to the string scale and

the membrane instanton integers are now normalised to be fixed to unity (bi = 2π).

This simplified model of the axiverse mass spectrum is defined using the following

variable parameters:

• Supersymmetry order scale - FΛ3 - Fixed according to the arguments of nat-

uralness and the theoretical freedom found in the phenomenological scales of
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Eq. (5.85).

• Moduli VEVs - si - Uniformly distributed values fixed around the stabilised

values of the order found in Eq. (5.81). These are used to fix the scales of

decay constants via the simplified form of Kähler metric as demonstrated in

the left panel of Fig (5.10).

• Dimensional matrix - Ñ i
j - Statistical matrices with random entries which rep-

resent a parameterisation of the massless fluctuations of the metric associated

to the extra spacetime dimensions. Ideally this should be formulated in order

to maximise the probability to reproduce successful grand unification coupling

via the required coupling constant found in Eq. (5.127).

A significant factor which must be accounted for in our treatment of a randomised

M-theory axiverse, whilst defining the general scales of the theory, is the problematic

elements of modulus decay. When the moduli are initially displaced, before they

have decayed away, our entire treatment of the axiverse effective theory presented

above is not valid, specifically since the Kähler metric in Eq. (5.86) is a dynamical

quantity. For our simple treatment to hold, we must consider all axions still in

slow-roll in their potential ,after the lightest modulus field X0 has decayed. This

fixes the upper bound on the axion masses as,

ma < ΓX0 ≈ O(1)
m3
X0

M2
Pl

, (5.125)

where mX0 ≈ 30 TeV as defined in Eq. (5.84). This translates to the highest axion

mass in the fully stabilised framework limit to be of the order,

ma ' 10−15 eV . (5.126)

The spectrum of Eq. (5.124) is easy to treat due to the universal nature of the

mass eigenstates on logarithmic scales. Analogous to the nature of products of

positive random variables, stemming from statistical staples such as the law of large
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Figure 5.12: Left panel: Example M-theory RMT model eigenvalue spectra rep-

resenting axion masses, ma constructed using different variance values, σÑ , when

using Gaussian priors defined in Eq. (5.129) on the elements of Ñ i
j along with Gaus-

sian prior fits. Changing the value of σÑ has the effect of shifting the mean scale

of the spectrum across the ultralight sector. Right panel: Example M-theory RMT

model eigenvalue spectra representing axion masses, ma constructed using different

mean values, ¯̃N when using Gaussian priors defined in Eq. (5.129) on the elements

of Ñ i
j along with Gaussian prior fits. Decreasing the value of ¯̃N has the effect of

both reducing the spread of the spectrum whilst increasing the mean value.

numbers, along with numerous other eponymous laws, a Mote-Carlo analysis of

the mass matrix shows the limiting spectrum of the M-theory RMT axiverse is

approximately log-normally distributed. This is demonstrated in Fig. 5.12, Fig. 5.13,

Fig. 5.14 and Fig. 5.15 along with Gaussian fits for each case. Indeed the form of the

matrix stricture in Eq. (5.124), representing a Wishart/Gram type matrix ensures

we have positive eigenvalues. These converge such that the LSD is well described

by the first two centralised moments, which are regulated by both the scales of the

model and the theoretical uncertainly placed on the stochastic variables which form

Eq. (5.124). The axion mass spectrum is therefore fully defined by considering the

theoretical uncertainty placed on the model parameters defined above in the form

of statistical priors.
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5.3.1.3.4 Simple Physical Considerations for Spectral Moments

Given the form of the universal spectral convergence, we only need to consider the

first two centralised moments of the mass spectrum, namely the scale of the mean

and the expected degree of spread linked to the variances of the stochastic variables

defining Eq. (5.124). Since we are considering M-theory models which represent

GUTs in their low energy limits, at least one of the gauge kinetic functions of

Eq. (5.104) must give rise to the expected value of the grand unification coupling

constant. Supersymmetric theories with gauge coupling unification predict a single

visible sector generalised volume to reproduce the required value of αGUT expressed

via the relationship,

VGUT ≈ α−1
GUT ≈ 25 . (5.127)

Drawing inspiration from previous RMT models we can define two example priors

on the elements of Ñk
i as,

P (Ñk
i ) = U(0, Ñmax) , (5.128)

P (Ñk
i ) = N (N̄ , σN) . (5.129)

In the left and right panels of Fig. 5.12 we demonstrate various example spectra

when using the priors defined in Eq. (5.129) to regulate the moduli VEVs. When

the distributions are uniform this translates across to fixing a prior directly on the

average value of three-cycle volume distribution,

〈VX〉 =
NaxÑmax〈s〉

4π
, (5.130)

which we can solve given the toy example values of Nax = 10 and 〈s〉 = 50 and using

Eq. (5.95), with 〈VX〉 = 25 which gives,

Ñmax ' 0.57119866428 . (5.131)
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Figure 5.13: M-theory RMT model eigenvalue spectra representing axion masses,

ma for different values of the spectrum shaping parameter βM. The mass spec-

tra converge to an approximate log-normal distribution defined by the function in

Eq. (5.132) which have been fitted to each example spectrum in the mass eigenstate

basis. Each spectrum is constructed using a fixed value of the average three-cycle

volume, 〈VX〉 = 25 required for GUT scale unification. The spectra are constructed

using 10000 iterations in the case of an axion population size, Nax = 10.

In Fig. 5.11 we show the enhanced probability density for retrieving values of VX ≈

25 when using Ñmax ≈ 0.6. Increasing the value of Ñmax serves to increase the spread

of the distributions for VX , at values centred around VX � 25, which are too high

for the requirements of a suitable GUT coupling constant. In each panel in Fig. 5.12

we construct the probability density plots for the axion mass spectrum using 10000

points in the parameter space. In Fig. 5.13 we show the effect of varying βM for

fixed values of 〈VX〉 and the effective shift this produces. As βM → 0 it shifts the

mass spectrum to be centred around higher mass scales whilst also decreasing the

spread of the masses. In these configurations we see axion masses covering many

orders of magnitude, which is a key result common in many string axiverse models.

Of course these brief examples only give a very simplistic picture of the scales and
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Figure 5.14: Single example mass spectrum and decay constant spectrum for

the M-theory RMT model using a fixed value of the spectrum shaping parameter

βM = 1. Left panel: The mass spectrum converges to an approximate log-normal

distribution shown by the Gaussian fit on the logarithms of the mass states. The

value of Ñmax is fixed to 0.8 ensuring the mass spectrum is centred close to the

phenomenological mass scales of FDM, µ(ma) ≈ 10−20.5 eV. Right panel: Example

decay constant spectrum using the Kähler construction of Eq. (5.94) with the values

smin = 10 and smax = 100. Central panel: Density plot normalised to unity, repre-

sented by the logarithmic colour bar on the far right, representing the correlation

between the axion decay constants and the masses in the M-theory RMT model.

Due to the simplified construction of the matrix defining the axion decay constants

the correlation is limited, shown by the minor skew about the mean mass scale

represented by the red dashed line.

form of the spectrum we find using this type of stochastic analysis. The number of

model variables leads to a general mass spectrum well understood by the function,

P (m2
a) =

1√
2πσ2

exp

[− log10(ma/m̄a)
2

2σ2

]
. (5.132)

This is nothing more than a log-normal continuous probability distribution, repre-

senting the Gaussian type convergence of the logarithm of the axion masses. The

values of m̄a and σ are fixed according to linear combinations of the parameters
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Figure 5.15: Example mass spectra in M-theory RMT axiverse as found in Fig. 5.14

normalised to shift the mean scale to unity. We demonstrate the nature of univer-

sal convergence of the mass spectra in this model to be well described by its first

two centralised moments. The logarithm of the spectrum is fitted with a Gaussian

density fit (Eq. (5.142)), a Beta distribution function (Eq. (G.6)) and GLD distri-

bution using the method of L-moments (Eq. (H.2)). All of these converge when

modelling the peak and tails of the distribution, representing a redundancy in using

more complicated distribution families which can model the higher moments.

discussed above. We can assume that any theoretical uncertainty of our model is

convergent and encoded in this simple two-parameter family prior, which lends itself

nicely to generalisations of priors using random matrix models.

5.4 Unimodal Priors for the String Axiverse

5.4.1 Algebraic High-Dimensional Matrices

The main narrative of this work will ultimately not concern itself with a specific

detailed treatment of the LSD for each class of matrix model we have introduced.

Given the form of each matrix, we can of course derive explicit results for the density

functions associated to either the axion mass eigenstates or decay constant spectra.
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These generally consist of using more sophisticated techniques such as saddle point

analysis [418, 419], for extremal values or algebraic methods to asses the LSD of

invariant ensembles [1092]. This is well enforced using the theory of free probability

covered in Section 4.4 and our use of rotationally invariant ensembles in the initial

basis of the field equations. In particular the polynomial methods in Ref. [1092]

make use of the transforms defined in Section 4.1.6.1, as interconnected bivariate

polynomials in order to understand a class of algebraic matrices. We have already

covered a particular example of this in Chapter 5.2.8, namely the decomposed RMT

Hessian found in Ref. [909], demonstrating the ability to effectively implement con-

volutions incorporating well defined spectral functions, under the manipulation and

definition of polynomials via the relevant Stieltjes transforms (Eq. (C.1)) [1092].

For details of the possible complexity of such functions along with alternative meth-

ods to define explicit functions and the general ability to define positive density

spaces, which highlight the fascinating relationship between combinatorial number

sequences and measure densities, see the discussions in Appendix E. A matrix is

algebraic if it satisfies the condition that the Stieltjes transform (Eq. (C.1)) of its

LSD function is algebraic, whilst also satisfying a bivariate polynomial equation,

Lmz(m, z) [1092]. If we satisfy the general solution Lmz(mµ(z), z) = 0, then we

can define an algebraic random matrix with a limiting measure which falls inside a

family of algebraic distribution functions.

Given that all the moments of an algebraic probability distribution exist, then they

can be numerated efficiently. Specifically the moments of all order should exist if

the distribution is compactly supported. For any of the non-commutative canonical

operations introduced in Section 4.4.2, associated to free asymptotics, any alge-

braic random matrix along with a matrix possessing unitary invariance will always

produce a further algebraic random matrix. The most general case of any sam-

ple covariance matrices we consider are therefore always algebraically representable.

The algebraic densities are associated to the liming deterministic Borel measures

in the large N limit. In Ref. [1092] they associate these operations to produce
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algebraic probability distributions which form a semi-group. This semi-group con-

sists of bounded functions which implicitly encode free convolution operations into

polynomial functions. Rather nicely though for our simple examples we consider,

the limiting moments converge sufficiently when we perform a change of scale to

model our variables, from linear to logarithmic, defined in Eq. (5.22), Eq. (5.23) and

Eq. (5.24). The discussions above represent powerful tools and vital results in order

to form strong statements on the resulting limits of complex systems. These results

can however, remain computationally bulky when we wish to apply them to a large

region on the parameter space for various phenomenological analyses across multi-

ple models. We can for the purposes of a simple evaluation, using Bayesian type

methods, approximate the explicit algebraic LSD a stage further with well known

families of statistical distributions controlled by a number of shaping parameters.

Working with the general Lebesgue decompositional form of the limiting measure

function, we assume only the presence of point masses and an absolutely continu-

ous functional bulk for the eigenvalues. We can best approximate where necessary,

depending on the model, the form of the statistical fluctuations and positions of

the point masses representing model spikes, with the relevant functions, i.e. Tracy-

Widom or Gaussian etc. The bulk in each of our models possesses a unique mode,

where the LSD is strictly monotonically increasing/decreasing, below/above some

singular functional peak. In order to best understand the space we are operating

in, at least quantitatively, we can analyse the nature of the distribution moments of

the unimodal spectra in Section 5.1.2, Section 5.2 and Section 5.3 in order to asses

the degree of asymmetry about the defining physical scales and the nature of any

outliers in the distribution tails.

5.4.2 Classification of Spectral Moments

The unimodal models of the RMT axiverse each possess well defined limiting distri-

butions, whose explicit forms can be constructed from many of the successful results
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spanning the field of RMT. Specifically for the axion mass spectra, both the Class

I and Class III models are well defined by the nature of LSDs. Class I is simply a

uniform prior function, under the assumptions to model scale invariance. Class III

converges sufficiently quickly to be well modelled by two moments, the phenomeno-

logical scale, and spread from the theoretical uncertainty, sufficiently modelled using

a Gaussian prior. Class II and the RMT axiverse possess more flexibility in how

we configure the initial matrices and subsequently the approximated LSD priors.

The CLTs of RMT do however allow us to make rather bold assumptions based

on the convergence of moments and the universal forms which arise on logarithmic

scales. We are therefore assigning a simplified best fit model to limiting form of µac

in each of the introduced models. The nth centralised moment about the mean of a

continuous univariate distribution is defined as,

µn = E [(X − E)n] =

∫ +∞

−∞
(x− µ)nf(x)dx . (5.133)

In order to render the moments as scale invariant quantities we must consider the

standardised moments, where the superscript, n is replaced with a normalisation

factor, n = k = µk/σk, that ensures the moments are homogeneous functions of degree

k. Now defined as dimensionless quantities, these represent the standard approach

taken to compare the resulting shapes of distribution functions. By definition the

first and second order standardised moments are zero and one respectively. We

can also define the higher order moments of the considered function, the third and

fourth standardised population moments which are expressed as a measure of the

Fisher-Pearson skewness and kurtosis respectively,

√
β1 = Skew [X] = E

[(
X − µ
σ

)3
]

=
µ3

σ3
=

E
[
(X − E)3]

(
E
[
(X − E)2])3/2

=
κ3

κ
3/2
2

, (5.134)

β2 = Kurt [X] = E

[(
X − µ
σ

)4
]

=
µ4

σ4
=

E
[
(X − E)4]

(
E
[
(X − E)2])2 =

κ4

κ
4/2
2

, (5.135)
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Figure 5.16: Pearson limit curves for the moment ratios for skew and kurtosis

define in Eq. (5.134) and Eq. (5.135) respectably. The impossible region is defined

by the function line, β2 = β2
1 − 1 = 0. Each two parameter distribution family

are represented by a data point in the space. We display a series of well defined

symmetric distributions defined by two parameters or less which sit on the line,

β1 = 0. The Pearson family types which require a parameterisation of three variables

define a series of contour limits in the space. These limits then define bounded

regions in the β1, β2 plane corresponding to the four parameter distribution families.

where κi are the ith cumulants. The kurtosis is bounded from below by the squared

skewness relation,

µ4

σ4
≥
(µ3

σ3

)2

+ 1 , (5.136)

with the lower limits fixed by the Bernoulli distribution and its upper value un-

bounded. It is common to normalise the kurtosis coefficients by defining the excess

kurtosis,

βexc
2 = β2 − 3 , (5.137)

where the normalisation value of 3 comes from the standard result coming from a

Gaussian distribution. The coefficients β1 and β2 are often referred to as the Pearson
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moment coefficients of skewness and kurtosis respectively. In general the higher order

moments are not sufficiently suppressed in order to ignore their presence. Let us

consider the model presented in Section 5.2.5 as a toy example. Assuming a non-

trivial kinetic matrix and mass matrix, when we impose the symmetric constraint,

βK = βM then β1 becomes a sufficiently negligible parameter, and the distribution

of the axion parameter logarithms are well accounted for with the first, second and

forth standardised moments. When the symmetry is broken, βK 6= βM then β1 is

sufficiently perturbed from zero and must be accounted for, incorporating standard

errors. The decay constant spectra are generally defined by well known limiting

distribution laws under some assumption placed on the covariance matrix used for

the kinetic matrix, such as isotropy or a particular prior on the data covariance.

The mass spectrum is not well defined in such a way. There is normally a form of

additive and/or multiplicative convolution of the limiting spectral functions to define

the mass eigenstates. When the dimensions of the sub-matrices for the kinetic and

mass matrix are equal, the mass spectrum is approximated using a three parameter

family of distributions, consisting of predominately platykurtic density functions.

The correct measure of kurtosis guides the distribution peak but more importantly

enforces the outliers are correctly modelled, which is important given the potential

sensitivity field masses can have on the considered phenomenology. In general the

empirical fit of most spectra when compared to a convergent function under the

assumptions of Gaussianity will break the Dyson-Finucan condition [420], i.e. cross

the density function twice in the given interval corresponding to a poor fit for the

peak and tails. In the RMT axiverse we will, in general, not expect to realise the

simplistic limit where Eq. (5.137) equates to zero, within standard errors, and so

more freedom in the prior shape makes sense on these grounds.

5.4.2.1 The Pearson Density System

As the total spectrum or spectral bulk of any of the RMT distributions constitute

unimodal continuous probability functions these can then be well understood using
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the Pearson classification system for parametric families of distributions. This is

appealing as a process of model simplification on the grounds that the choice of priors

on the axion space directly effects the centralised moments, which posses a direct

correspondence to the distribution (hyper)parameters. Normalising the first and

second distribution moments, the limiting distributions can be categorised according

to the two moment ratios found in Eq. (5.134) and Eq. (5.135). The systematic

basis for this classification depends on the solutions of Eq. (5.138). Although the

matching of specific functions is in general somewhat more involved [80, 1031], the

classical approach is more than sufficient for a general classification and definition

of a suitable function to approximate the models probability measure. Any Pearson

density is defined as a solution to the differential equation [1028–1030, 1032],

f ′(x)

f(x)
=
P (x)

Q(x)
=

x− a
A0 + A1x+ A2x2

, (5.138)

where the moment-parameter relations are defined as,

A1 = a = − µ3 (µ4 + 3µ2
2)

10µ4µ2 − 18µ3
2 − 12µ2

3

= −
√
µ

2
β1(β2 + 3)

10β2 − 18− 12β2
1

, (5.139)

A0 = − µ2(4µ2µ4 − 3µ2
3)

10µ4µ2 − 18µ3
2 − 12µ2

3

= − µ2(4β2 − 3β2
1)

10β2 − 18− 12β2
1

, (5.140)

A2 = − (2µ2µ4 − 3µ2
3 − 6µ3

2)

10µ4µ2 − 18µ3
2 − 12µ2

3

= − (2β2 − 3β2
1 − 6)

10β2 − 18− 12β2
1

. (5.141)

The root solutions of the relevant polynomials classify twelve distinct families of dis-

tributions, covering a large region of the two dimensional skew-kurtosis parameter

space as shown in Fig. 5.16. In Fig. 5.16 we display this two dimensional moment

space along with the limiting values of the two (point), three (line) and four (area)

parameter density families familiar in statistical analysis, using the Pearson coordi-

nate system, defining six types of function we could select.

Using the symmetry properties of the 30,108 distinct Hodge pairs from the Kreuzer-

Skarke list, for the four-dimensional reflexive polytopes that were briefly covered in

Section 3.3.6 as a proxy prior, we can demonstrate the possible behaviour of the
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Figure 5.17: Hodge fountain for the distributions of the topological invariant

Hodge numbers h1,1 and h2,1 using the Euler number and additive height. The mir-

ror symmetry is realised at Euler number, χ = 0. Each of the banded segments

superimposed denotes the manifest forms of the distributions for the spectra of

log10(ma) using the model in Section 5.2.5 when the distribution symmetry parame-

ters are defined as equal. The selected distributions represent unimodal bounded for

the kurtosis of well defined functions. The sum of the shaded regions approximate

the total fraction of the spectra which related to symmetric functions about their

mean.

universal convergence of the axion mass spectrum. We do this by plotting moment

ratio classification for the standard Pearson families in the limit β1 ' 0. In Fig. 5.17

we show the approximate fraction of symmetric density functions by plotting the

Euler characteristic against the logarithm of the total moduli dimension (minus

the dilaton) using a sum of the topological invariants, forming a Hodge fountain.

Superimposed are various approximated mass distributions we can associate to the

model symmetry condition limit, βK = βM which fall within the bounds of certain

well defined platykurtic, mesokurtic and leptokurtic density functions defined by two

parameters or less, up to standard errors on the kurtosis coefficient. The platykurtic
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region crosses well into the positive domain of the Euler number where gaussianity or

the mesokurtic region is found around βK = βM & 0.85. This indicates a majority

of the LSD functions will congregate inside the limits requiring nparams > 2 for

our choice of approximate distribution. This is shown exactly in Fig. (5.18), using

the method of moments to approximate the first four moments of ten-thousand

spectra datasets for various ratios of βK/βM. When the magnitude of separation

between βK and βM is large the distributions saturate inside the Type I region

and converge asymptotically towards a limiting boundary point of a semi-circular

distribution. As the ratio approaches unity, the distributions approach the gamma

function contour boundary, where we see statistical fluctuations into the Type VI

region. As the symmetry property is realised between the two shaping parameters

the spectra converges towards the limit β1 = 0, between the approximate bounded

points representing a logistic and Semi-Circular distribution. In the large N limit

most spectra are well bounded by the log-normal contour, where the finite sampling

is generally responsible for data point fluctuations into the Type IV region. It’s

clear from Fig. (5.18) the RMT axiverse can be well modelled by the family of

Beta distributions, where the priors of the distribution functions directly relate

to the hyperparameters of the normalised parameter space, a manifestation of the

bounded nature of the spectral radii for the eigenvalues. See Appendix G for a

formal definition of the Beta function parameterisation and a short summary of the

defining features of the general family of Beta functions. Using the standard Beta

distribution, Beta(ξ, χ), defined in Eq. (G.4), confined to the limiting normalised

support, λ ∈ [0, 1], we can recover the following well-defined function limits which

relate to previously discussed specific cases:

1. Beta(1,1) - Uniform distribution ∼ Scale invariant prior.

(a) No points of inflection, βex
2 = −6/5

(b) Relevant for discussions found in Section 5.1.2.

2. Beta(3/2,3/2) - Semi-elliptic distribution ∼ Wigner semi-circular limit.



The Random Matrix Axiverse 323

(a) Singular point of inflection, βex
2 = −1

(b) Relevant for discussions found in Section 5.2 for spectral limits where

βM→0.

3. Beta(> 2,> 2) - Bell shaped distribution ∼ Unimodal Pearson Type I function.

(a) Dual points of inflection, excess kurtosis - βex
2 ≥ −6

7

(b) Relevant for discussions found in Section 5.2 relating to the bulk com-

ponent of the spectral measures. Also when the parameters α, β � 1

the functions converge to the limits of the distributions discussed in Sec-

tion 5.3.

4. Beta(∞,∞) - Degenerate function ∼ Point mass representing a Dirac delta

spike at the mean of distribution support.

(a) Excess kurtosis - βex
2 → 0

(b) Relevant for discussions found in Section 5.2 for the spiked outliers of

correlated spectral eigenvalues.

These functions represent a good first order approximation of the measure proba-

bility functions defined from the convolution operations in Section 5.2, associated

to perturbed random matrices. Indeed it is sometimes not possible to define the

Voiculescu transform in Eq. C.4 explicitly, where the technical analysis can become

very tricky. The Beta distributions also share a strong relation to features of free

probability such as infinite divisibility (see Appendix F) [195, 672], within the limits

defined above, containing the affine transformations of both Wigner’s semicircle law

and the free Poisson law [672]. To ensure the distributions moments are well ac-

counted for we can compare the spectral fits to a family of distributions well known

for its flexibility in modelling the first four distribution moments. The generalised

lambda distribution (GLD) family offers an effective way to model functions which

could exhibit both heavy-tails and skewness. See Appendix H for a detailed intro-

duction to the GLD family of functions. For both the RMT M-theory model and
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the statistical RMT axiverse we show comparisons for the the use of prior function

approximations for the model mass spectrum in Fig. 5.15 and Fig. 5.19 respectively.

The most extreme case of maximal kurtosis for standard symmetric densities occurs

when βK = βM = 1. We find the best fit using the method of L-moments for a GLD

function and shown in the left panel of Fig. 5.19. The closest limiting Pearson dis-

tribution which provides a good fit is given by a Hyperbolic secant function, which

provides a good account of the spectral peak. The Gaussian function represents an

approximate space in the Beta function parameterisation, which offers a fairly suffi-

cient first order approximation of the limiting spectrum. Likewise in the right panel

of Fig. 5.19, we show how Beta distributions can sufficiently match GLD L-moments

modelling, for both the logarithmic spectra of the well defined Marčhenko-Pastur

(Eq. (4.67)) and first order Fuss-Catalan (Eq. (E.9)) functions, used to define exam-

ples of possible axion decay constant spectra. Finally in Fig. 5.15 we show the CLT

type convergence of the stochastic variables spectra, which converges sufficiently so

that each of the considered functions are almost indistinguishable for the M-theory

mass spectra, when using a L-moments GLD function, Beta function and Gaussian

function. With this process we have encoded the minimal information and model

uncertainly in the freedom to choose a series of simple distribution shaping parame-

ters, which can account for the first four moments of the models limiting spectrum.

For simplicity and a unified approach when accounting for each class of model we

propose a further general simplification.

5.4.3 Unifying the Model Classes

We have seen in the previous section that the convergence of the mass spectrum

is more generally such that we require a four-parameter family of distributions to

model the LSD of the axion masses effectively. If we assume in general the decay

constant spectra can be defined using some model with the null hypothesis, or well

defined covariance estimations, the functional space is explicit from the limiting laws
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Figure 5.18: Pearson window for valid values of the distribution skew and kurtosis

moments. The impossible region is defined by the line function, β2 = β2
1 − 1 = 0.

Each two parameter distribution family is represented by a fixed data point in

the space. The three parameter families define the contour limits, where the four

parameter families define the shaded area regions bounded from the three parameter

family contours. The overlaid points relate to spectra datasets for different mass

spectra found using the model of Section 5.2.5 for various ratios of the distribution

shaping parameters, βK and βM. For most values of this ratio the resulting mass

distribution can be well modelled by either a Beta function of the first or second

kind.

of RMT. We then only need to make a simplistic approximation for the axion masses

in this case. The complexity of the distribution family used to describe the axion

mass spectra when considering fixing priors for the axion phenomenology defines

the number of hyperparameters of the effective model.

5.4.3.1 Resorting to Normality

The simplest case we can consider, which uses each of the model class frameworks,

involves reducing the dimensions of the distribution parameter space to its minimum.
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Figure 5.19: Comparative fits for example mass and decay constant spectra using

both simplistic priors as well as the GLD determined using various methods. Left

panel: Normalised mass spectra from the model outlined in Section 5.2.5 for the

case where βK = βM = 1. The GLD defined by using the method of L-moments

(Eq. (H.2)) provides the best fit to the distribution peaks and tails. The worst fit is

the Gaussian function (Eq. (5.142)) which provides a good first order approximation

but misses several characteristic features of the LSD for the axion masses. Right

panel: Logarithmic spectra for both the Marčhenko-Pastur density spectra and first

order multiplicative convolution of two Marčhenko-Pastur spectra representing the

decay constant distributions arbitrarily normalised to two separated scales. Each

spectrum is fitted with both a Beta function fit and a GLD function determined

by the method of L-moments which to a first order approximation are sufficiently

similar.

By isolating our analysis to consider just the mean scale of the spectrum along with

its spread or variance, we replace the dependance of the complete model shape

parameters with two independent vague proper priors on the location and scale of

the distribution. The simplest case in terms of conducting an analysis to model

these two features, is with the use of a Gaussian distribution,

f(x|µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (5.142)

For the case of the epistemic priors in Section 5.1.2 we can use the nature that the log-

flat prior must contain phenomenological upper and lower bounds defining the ULA

parameter space. When these are fixed we can assume that as σ → ∞ this dilutes

the strength of the prior approximating the uninformative scale invariance of the log-
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flat prior via a series of super-weak priors which extend far beyond the limits of the

ultralight sector. For the RMT axiverse, consider specifically the case of a symmetric

mass distribution, such as those found in Fig. 5.6, modelled by a Beta function

where α ' β in Eq. (G.4). Specifically complete convergence occurs in the limit

α = β →∞ it can be shown that the LSD of the Beta function converges point-wise

to the case of a probability density function of a standard normal random variable.

Which using Scheffé’s theorem for some random variable, determines the distribution

converges to the standard normal distribution. Under the general assumption then

that βK ' βM which may come from defining priors such as those found in the

N-flation model and Eq. (5.45), assuming an independence for these variables. If we

also factor in the possibility to define priors on the population covariance matrix,

we can assume in general the Beta functions we would expect to find, as a fit to our

mass spectra, would be of the form Beta(> 2, > 2), for some unimodal function with

an absence of a heavy tail. We can then assume a normal distribution would act as a

good first order approximation to a large range of mass spectra we would encounter.

The M-theory RMT axiverse is trivial, as the logarithm strongly converges to the

case of a LSD which closely resembles a normally distributed variable. Using this we

can provide a well motivated case for the use of a very simplistic, coherent approach,

incorporating each of the discussions of Section 5.1.2, Section 5.2 and Section 5.3 for

the spectrum of the axion mass eigenstates. This is a very simplistic assumption in

order to capture a quantitive analysis of the large field population limits behaviour

by taking the normal distribution limit. This will be the process we adopt in the

following chapter, in order to demonstrate the first of our results chapters, detailing

constraints on the spectra covered in this chapter by considering the phenomenology

of BH superradiance.



Augmenting the Axiverse

328



Chapter 6

Black Hole Spin Constraints on

the Mass Spectrum and Number

of Axion-like Fields

“The treatment of the perturbations of the Kerr spacetime in this

chapter has been prolixius in its complexity. Perhaps, at a later time,

the complexity will be unravelled by deeper insights. But meantime, the

analysis has led us into a realm of the rococo: splendorous, joyful, and

immensely ornate.”

The Mathematical Theory of Black Holes

Subrahmanyan Chandrasekhar

6.1 Black Hole Superradiance

6.1.1 Singularities in Spacetime

Given the potential complexity that may arise from the study of model dependant

axions or ALPs, when attempting to constrain the overall picture of the parameter

space, as ultralight scalars appearing in the low energy sector of GUTs, a valuable

329
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insight and probe of their underlying physics could come from the phenomena known

as BH superradiance [106, 107, 286, 317, 810, 1361, 1378]. Note, that in order to

conform to the practises found in the superradiance literature, we shall now refer

to the axion mass parameter using the standard, µax notation, for the duration of

this chapter. Axions with masses spanning the ultra-light sector, especially those

approaching the energy scales associated to FDM models (µax ∼ 10−15eV−10−20eV)

are very challenging to tackle with lab based searches. The Penrose process [1044]

describes how infalling bosonic waves in the presence of a rotating BH, can emerge

with additional energy as compared to the energy they possess upon entry of the

BHs horizon. This astrophysical process is an exact analogy to other superradiant

processes in physics, such as Cherenkov radiation [446, 639, 1149]. The process is

powerful as it relies predominantly on the gravitational interactions between the

field and the BH, suppressing the need to understand fully, potentially complicated

properties such as matter field couplings or the field’s cosmological energy density,

in order to probe its potential existence in the accessible parameter space. In this

way, such a probe for the presence of axion physics can be thought of as model

independent, and a vital window into understanding the low energy phenomenology

of string theory models with large numbers of ALPs, fundamental to the formulation

of their low energy sectors.

If such bosonic fields are confined around a BH by a mirror, then wave amplifica-

tion can continue indefinitely leading to Press and Teukolsky’s “black hole bomb”

scenario [1076, 1077]. Massive bosonic fields present in the Kerr spacetime form a

series of hydrogenic-like bound states, analogous to that represented in Fig. 2. In

this case, the potential barrier is provided by the particle mass playing the role of the

mirror, leading to a natural realisation of the BH superradiance process for massive

bosons in orbits around astrophysical BHs. See Ref. [286] for an extensive review of

superradiance and its applications to BHs. There is no doubt, BHs are one of the

most fascinating products of the cosmological landscape, offering a powerful theo-

retical and observational portal into non-perturbative dynamics of complex gravita-
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tional physics. They can be understood as classical solutions to relativistic metrics

of gravity theories, possessing highly non-trivial properties and solutions which pre-

dict very interesting physical characteristics [157, 321, 600, 601, 676–680, 682, 683].

Their complex nature however may, in-fact, lend itself to a conventionally simple

approach to probing the landscape of the string axiverse at the perturbative level of

their effective theory, covering many orders of magnitude in the cosmological axion

parameter space.

The very first initial physical intuition which can be tied to the understanding of

BH dynamics covers several centuries, which saw the developing ideas and concepts

associated to universal laws of gravitational forces, light and classical bodies in

geometrical spaces. It was not until the introduction of Einstein’s seminal work on

the geometrical significance of space and time and its ties to gravitational physics,

that BHs really became defined as familiar objects in the scientific community [511–

514]. As an intellectual pursuit, BHs have a copious history in early 20th century

physics literature, they were initially conceived as exotic theoretical solutions to

vacuum field equations for uncharged spherically-symmetric non-rotating systems.

This initial solution to the spacetime geometry, with metric of the generic form

ds2 = gαβdx
αdxβ, from Einstein’s newly proposed theory of general relativity, was

presented by Karl Schwarzschild in 1916, the so called Schwarzschild solution [1164].

The Schwarzschild metric solution, with coordinates (t, r, θ, φ) and BH mass MBH,

is defined by the element,

ds2
Schw = −

(
1− 2MBH

r

)
dt2 +

dr2

1− 2MBH/r
+ r2

(
dθ2 + sin2 θdφ2

)
, (6.1)

used to describe the gravitational field surrounding massive spherical bodies. These

solutions would subsequently be re-addressed and expanded upon in the following

year by Johannes Droste [480] as well as in the works of David Hilbert [706] and

Hermann Weyl [1349]. Approaching the end of the Great War, Gunnar Nordström

showed the previously mentioned understanding held for BHs also held for charged
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spherically-symmetric non-rotating systems [990], independently expanding on work

conducted in 1916 by Hans Reissner [1099]. It would however take until the 1930’s

for the defined mathematical constructs of BH physics to be tied precisely to the

physical contexts of astrophysical systems. Initial works in the first half of the decade

by Lev Davidovich Landau [1] and Subrahmanyan Chandrasekhar [333], theorised

BH solutions to be chronological limits to the evolutionary nature of massive stars,

collapsing to form spacetime singularities. In these works a limit was placed on the

maximum mass of a stable white dwarf star, often referred to as the Chandrasekhar

Limit, a continuation of previous studies conducted by Wilhelm Anderson [78] and

Edmund Clifton Stoner [504, 1056], commencing in 1929 for polytrope models of

stars of uniform density in hydrostatic equilibrium. These works introduced the

notions of a standardised thinking regarding BHs as physical objects and not just

exotic mathematical rigour. A vital piece of literature outlining this change of

thought came at the turn of the decade when Oppenheimer and Snyder showed that

the spherical gravitational collapse of physical systems would produce a BH [1001].

6.1.1.1 Gravitational Waves and Black Hole Masses

Ever since the seminal works highlighted above, research into the physics of BH

systems has flourished, now serving as generic probes to extremal limits of theoretical

constructs in UV complete theories of general relativity and quantum mechanics

[1042]. One astrophysical mechanism of note is the observational understanding

behind gas dynamics and stellar kinematics of galactic nuclei, where there is a

firm understanding that galactic structures host SMBHs with masses spanning the

approximate range in units of the solar mass M�,

SMBHs : MBH ∼ 106M� − 109M� . (6.2)

These seemingly inconceivable galactic engines actually could serve as the smoking

gun to scalar physics and DM candidates operating on the smallest scales. The
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historic Advanced Laser Interferometry Gravitational-Wave Observatory (LIGO)

observations of gravitational waves from the binary coalescence of astrophysical BHs

has ushered in a new era of interest in BH physics [8]. The ultraluminous X-ray

sources which participated in this detection, constitute stellar objects born in the

collapse of massive stars, and can have masses of the order several hundred times

that of our sun,

Stellar Mass BHs : MBH ∼M� − 102M� . (6.3)

The recent observations of such binary BHs dynamics greatly enhanced our under-

standing of the nature, lifetime and formation of these objects. Gravitational wave

data can be used to infer the mass and spin of the two BHs in the binary. LIGO has

the prospects to detect the existence of many hundreds of such events, accurately

determining the mass and spin distribution of BHs. The future of BH superradiance

constraints derived from LIGO, the growing global network of GW observatories,

and future space-based missions (e.g. Ref. [68]), are extremely promising to serve

as a probe of fundamental physics [110, 167, 287, 317, 670].

Currently to date, stellar mass candidates and SMBHs represent the only two classes

of observed BH. The current missing link of BH physics which needs demystifying,

corresponds to candidates traversing the two previously defined regimes, so called

intermediate mass BHs (IMBHs),

IMBHs : MBH ∼ 102M� − 105M� . (6.4)

These BHs are sometimes considered as the seeds for SMBHs under early universe

dynamics. They are objects hypothesised to exist in dwarf galaxies and could even

wander into more massive galaxy halo structures. The elusive nature of IMBHs

comes from the absence of accretion events or traditional dynamical signatures

present in these environments. A large portion of the axion superradiance win-

dow in Eq. (6.6) corresponds to the physics of these IMBH candidates, which would
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act as probes to the approximate limits on the axion mass,

1× 10−16 eV . µax . 7× 10−14 eV . (6.5)

The most promising realisation of detecting BHs in this space comes from the pro-

posed space based gravitational wave observatories such as the Laser Interferometer

Space Antenna (LISA) [947] (see Fig. 6.2).

6.1.1.2 Black Hole Hair and Spacetime Metrics

One of the critical postulates of BH physics, which generalises the metric solu-

tions found in Table 6.1, is the No-hair Theorem for static BH solutions in four

spacetime dimensions [325, 742, 743]. This physical conjecture states that any BH

solution to the Einstein-Maxwell field equations of general relativity for gravity and

electromagnetism are characterised by a three-dimensional externally observable pa-

rameter space. This space consists of the BH mass, MBH, electric charge, QBH and

spin angular momentum, JBH. The simplest solutions to the Einstein field equations

correspond to the Schwarzschild metric, for a general stationary vacuum, describing

a non-rotating BH with zero charge (i.e. QBH = JBH = 0). These in general will not

correspond to the most realistic situation for modelling astrophysical BHs formed

during the evolutionary epochs of large scale structure formation. The relevant pro-

cesses for formation of observed astrophysical BHs are induced by either a form of

gravitational collapse or accretion, ensuring we must consider a non-zero angular mo-

mentum component (JBH 6= 0). The generalisation of the non-rotating Schwarzschild

solution to a rotating uncharged axially-symmetric BHs with a quasi-spherical event

horizon is given by the Kerr metric [783]. The solutions for uncharged BH metrics

can be further generalised to the case of non-neutral backgrounds with an existing

charge. Kerr-Newman BHs represent the most general case of asymptotically flat

solutions in Einstein-Maxwell theories [977]. These solutions are stable for mass-

less perturbations [316, 445]. Finally the Reissner-Nordström solutions provide the
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Table 6.1: Simple grid parameterisation of possible BH background metric solu-

tions for various configurations of the quantities used to describe a BH under the

assumption of the no-hair theorem. The work conducted in this chapter is only

concerned with Neutral-Rotating BHs described using the Kerr spacetime.

Black Hole Background Metrics
Neutral (QBH = 0) Charged (QBH 6= 0)

Stationary (JBH = 0) Schwarzschild [1164] Reissner-Nordström [991]
Rotating (JBH 6= 0) Kerr [783] Kerr-Newman [977]

required description of gravitational fields for non-rotating, spherically symmetric

BHs possessing a charge [991, 1099, 1348].

It is generally expected that the measured charge of a BH we may wish to consider

would be small, where the physical interpretation and significance in relation to

modelling astrophysical systems is more debatable than the remaining two defining

members of the BH parameter space. Examples of this consist of neutralisation of an

initial non-vanishing electric charge via highly ionised environments [146], whereby

the presence of plasma around an astrophysical BH will often fix the considered

effective charge to zero. It is also important to note however, BHs may acquire

charges from several different mechanisms. Examples consist of primordial charges

from the formation of systems via the collapse of charged compact stars [1095] or

stable (Wald) charges acquired from the rotational spin of a BH system in an external

magnetic field [1315].

6.1.1.3 Gravitational Engines as Phenomenological Probes

Only recently has the first visual reproduction and fruitful validation of the existence

of BHs been produced, constructed from observations made using the very long

baseline interferometry array of the Event Horizon Telescope [48–53]. As shown in

Fig 6.1, the core of the Messier 87 galaxy is shown to house a SMBH, M87*, which

is surrounded by a transparent emission region. This dark shadow effect is revealed

using the warping of gravitational light and photon capture at the event horizon.

The shadow observed in Fig. 6.1 is consistent with those expected from Kerr BH
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Figure 6.1: M87* SMBH at the centre of the Messier 87 galaxy as imaged by the

Event Horizon Telescope [48–53]. The BH presents a dark shadow (central spot),

which is larger than the BH event horizon, caused by the gravitational warping

of light and photon capture at the event horizon. Image credit: Event Horizon

Telescope, https://www.eso.org/public/images/eso1907a/.

solutions. We shall review the potentially interesting consequences of obtaining

detailed measurements for M87* and what conclusions this could lead to for models

of the axiverse and DM physics in Section 6.4.7.

For the individual axion field stellar and SMBHs are able to probe axions physics

in the field mass range,

10−20 eV . µax . 10−10 eV , (6.6)

which constitutes a significantly large portion of the ultralight sector mass space.

These approximate limits come from the current smallest/largest observed measure-

ments of astrophysical BH systems and/or the theoretical gravitational bounds on

such structures. If BH measurements increase in accuracy over the coming years,

then strong exclusions placed on this window would provide a very interesting infer-

ence on the tuning required for the underlying geometries of the string landscape,

https://www.eso.org/public/images/eso1907a/
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Figure 6.2: The BH-scalar condensate coupling, α = µaxMBH. The solid black line

represents the unity limit for non-relativistic and relativistic regimes. The dashed

line corresponds to α = 0.5, the approximate limit in which the analytical approxi-

mation for the instability rate is valid. Dotted lines correspond to frequency ranges

for monochromatic gravitational wave emission from the scalar cloud accessible to

current and future GW observatories [4, 68, 69, 456, 523, 879, 1147].

or the properties the full multi-field potential may require in order to describe ob-

servational signatures in the low energy sector.

Considering the points above we can suitably adopt the formalities of considering

an uncharged rotating BH, utilising the Kerr metric as our description of the ax-

ion fields background geometry. The ability to constrain ultralight bosonic fields

from BH-scalar condensate systems come in the form of two phenomena. It may

be possible to identify the presence of scalar clouds in the vicinity of BHs as emis-

sion sources of monochromatic gravitational waves (GWs). The signal frequency,

fax ∼ µax/π, with boson mass, µax, could be detected by either ground or space-
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based GW observatories and proposes to be an exciting methodology to enhance

constraints on the mass bounds for bosonic fields. This subject has been extensively

discussed in Refs. [106, 168, 178, 288]. The second phenomenon of interest, and the

primary subject of the work presented in this chapter, is the spin down of astrophys-

ical BHs. If the superradiance rate is faster than any other astrophysical process

affecting the BH mass, MBH, and dimensionless spin, a∗, then the BH superradiance

process can efficiently reduce these quantities. This occurs when the boson Compton

wavelength is of the order of the gravitational radius of the BH. Thus, if a massive

boson exists, then astrophysical BHs possessing particular values in the (MBH, a∗)

Regge plane (which, according to the no-hair theorems, gives a complete description

of spinning BHs) should be absent in future experimental observations. The Regge

plane shall be introduced in Section 6.2.3. The masses and spins of a large number

of astrophysical BHs have been measured, often incorporating either X-ray reflec-

tion spectroscopy or continuum-fitting methods (see Table 6.2 and Table 6.3 for BH

parameter measurements and corresponding references). These measurements can

be used to probe the possible existence of massive bosons [284, 1379]. Constraints

from BH superradiance also apply to a wide range of particle physics models, in-

cluding a possible mass for the photon or the graviton [283, 1012] (and indeed to

the photon plasma mass near the BH), as well as to exotic particles, such as massive

vector (Proca) fields [167], massive spin-two fields [809] along with ALPs and other

massive scalars [106–108].

These represent powerful and generic exclusions, which currently leave many axion

models of interest unconstrained. Stellar BHs are too heavy to place constraints on

the QCD axion [1036, 1335, 1353], possessing a decay constant far below the Planck

scale [108]. FDM of the order µax ≈ 10−22 eV [722, 728, 914, 1078, 1152], with its

novel effects on the formation of galaxies, is too light to make predictions about the

spin distribution of SMBHs with MBH . 109M�, that inhabit the centres of galaxies.

Finally, the axion mass scale associated to GUTs in M-theory (µax ≈ 10−15 eV [31])

sit inside the desert of IMBHs probes. There is hope, however, since each of these
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models is only a small logarithmic distance from the BH superradiance constrained

regions, while as we have covered, axion models typically have a spectrum spanning

many orders of magnitude [107, 1221]. All previous studies of BH superradiance

constraints on bosons have focused on the range of excluded masses assuming the

existence of a single new bosonic field. In this chapter we will explore, for the

first time, what constraints can be drawn on the properties of axion mass distribu-

tions from BH superradiance. To do this we must begin with the properties of the

spacetime surrounding BHs susceptible to axion induced scalar field instabilities.

6.1.2 The Kerr Black Hole Spacetime

6.1.2.1 The Rotating Invariant Line Element

One of the most remarkable features of BH superradiance is the realisation that it

is not required to formulate a fastidious understanding of the intricate and complex

nature of the Kerr geometry, in order to probe the phenomenological consequences

of axion field perturbations at the horizon and how these ultimately effect the evo-

lutionary dynamics of a rotating BH system. For any rotating spacetime there is

no realisation of the famous Birkhoff theorem for spherically symmetric solutions of

the vacuum field equations for a neutral, non-rotating system. A rotating BH does

however possess a series of very powerful uniqueness theorems which directly tie the

physical significance of the Kerr solutions to unique exact solutions for stationary

rotating BHs. The Kerr solution is the asymptotic metric used to describe systems

which have settled from their initial dynamical production. Therefore formally, the

spectroscopy of the superradiant system is defined using the Kerr metric for a neu-

trally charged astrophysical system with a non-zero angular momentum component.

There are several choices of coordinate systems used to represent the invariant line

element of the Kerr geometry. The most convenient are the Boyer-Lindquist coordi-

nates, typically used to minimise the number of off-diagonal elements in the metric.

Asymptotically (r → ∞) the form of the metric approaches the form in Eq. (6.1),
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Figure 6.3: Behaviour of a Kerr BH horizons in three-dimensional and two-

dimensional Cartesian Kerr-Schild coordinates, for fixed values of the dimensionless

spin parameter, a∗ approaching the limit for a non-rotating BH. The solid black line

represents the ergoregion defined using Eq. (6.12), which is minimally perturbed

in the non-relativistic spin limit, a∗ < 1, where these two regions approach the

Schwarzschild solution limit. The dashed blue and cyan lines represent the outer

and inner horizons respectively defined using Eq. (6.10). The two hypersurfaces of

the event horizon and the ergosphere meet at the co-latitude pole of 0 degrees. The

x-axis is the radial distance from the black hole in polar coordinates.

whereby if the BH rotational parameter, a, is taken to its zero limit then we fully re-

produce the standardised Schwarzschild curvature coordinates. This is represented

visually in Fig. 6.3, which displays the relevant topologically spherical horizons for

a non-relativistic rotating BH in two-dimensional and three-dimensional polar coor-

dinates. The real geometrical property of interest in Fig. 6.3 and a new conceptual

property of rotating BHs is the ergosphere, represented by the black line/surface.

Before we define the distinctive properties of this region of the BH spacetime, let

us formally define the invariant line element and positional coordinates of the geo-

metrical horizons. The (3+1)-dimensional spacetime region outside the horizon of a

rotating Kerr BH is described by the invariant line element for a stationary space-

time, which using the standard Boyer-Lindquist coordinates (t, r, θ, φ) and metric
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signature [−,+,+,+], takes the form,

ds2
Kerr = −

(
1− 2MBHr

Σ
−
)
dt2 − 4MBHar sin2 θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2

+
(r2 + a2)2 − a2∆ sin2 θ

Σ
sin2 θdφ2 ,

(6.7)

with MBH the mass of the BH and a = JBH/MBH, the angular momentum per unit

mass (JBH). The metric possesses the following metric functions,

Σ = r2 + a2 cos2 θ , (6.8)

∆ = r2 + a2 − 2MBHr , (6.9)

r± = MBH ±
√
M2

BH − a2 . (6.10)

The zero solutions of Eq. (6.9) correspond to the singularities of the metric compo-

nents which define two horizons, an inner Cauchy horizon at r−, with the larger root

at r+ defining the outer physical event horizon. The interior of the BH is defined

by the region, r < r+. The area of the horizon is, A+ = 8πMBHr+, which when

differentiated as a function of the angular momentum, produces an expression for

the angular velocity of the horizon for an observer at spacial infinity with respect

to the BH,

ΩH =
a

2MBHr+

. (6.11)

6.1.2.2 The Ergoregion of the Black Hole Spacetime

The defining property of Kerr BHs, and the previously expressed region of interest

is defined by the surface external to the outer horizon, known as the ergosurface.

The ergosurface is defined by the static limit roots (i.e. no static observer is allowed

beyond this limit), gtt = 0, with the radius coordinates,

rergo = MBH +
√
M2

BH − a2 cos2 θ . (6.12)
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The region defined between the event horizon and ergosurface is the ergoregion. The

geometrical invariant properties of this region correspond to the region of spacetime

in which the time-translation Killing vector, ξ = ∂t or ξµ = (1, 0, 0, 0), becomes

spacelike. Any stationary axisymmetric spacetime which processes a timelike killing

vector external to this region, undergoes a transition to spacelike behaviour inside

the ergoregion of the BH. This is understood as an observer contained inside being

forced to co-rotate with the BH, due to this spacelike nature. The local light cones

in this region observe a tilt, transforming the timelike vectors such that they obtain

rotational components, forbidding any stationary physical trajectories inside the

ergosphere.

The characteristic limits of each BH horizon as a function of the dimensionless

spin are displayed in the panels of Fig. 6.4. As the spin of the BH approaches the

extremal limit, a∗ = 1, the inner and outer horizons coincide. As the BH spin

approaches the static Schwarzschild solution, a∗ → 0, the ergosurface and outer

horizon coincide. The region between the outer horizon and ergosurface defines

the ergoregion. Inside the ergoregion the vector ξµ, in the time coordinate basis

becomes spacelike, ξµξνgµν = gtt > 0. This property allows for a Killing energy in

the presence of a BH to be negative inside the ergoregion, leading to the superradiant

amplification of the infalling waves associated to the bosonic field.

6.1.3 Axions as Perturbative Catalysts for Superradiant

Instabilities

6.1.3.1 A Separable Solution

The presence of the axion field on the Kerr spacetime solution outside the BHs

event horizon can be considered as a perturbation problem for the stability of the

BH evolution. These perturbations can be described by a single master equation,

incorporating a spin-weight parameter, representing scalar (s = 0), neutrino (s =
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Figure 6.4: Behaviour of a Kerr BHs defining horizons in three-dimensional space

and in the xz-plane for fixed values of the dimensionless spin parameter, a∗, ap-

proaching the limit for an extremal BH. The solid black line/surface represents the

ergoregion defined using Eq. (6.12), the dashed blue and cyan lines/surfaces repre-

sent the outer and inner horizons respectively defined using Eq. (6.10). In the limit

that the BH is extreme (a∗ = 1) the inner and outer horizons coincide. The two

hypersurfaces of the event horizon and the ergosphere meet at the co-latitude pole

of zero degrees. In the non-relativistic spin region these two regions approach each

other in the Schwarzschild limit. The x-axis is the radial distance from the BH in

polar coordinates.
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1/2), electromagnetic (s = 1) and gravitational (s = 2) perturbations [1256, 1257],

[
(r2 + a2)2

∆
− a2 sin2 θ

]
∂2ψ

∂t2
+

4MBHar

∆

∂2ψ

∂t∂φ
+

[
a2

∆
− 1

sin2 θ

]
∂2ψ

∂φ2

−∆−s
∂

∂r

(
∆s+1∂ψ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
− 2s

[
a (r −MBH)

∆
+
i cos θ

sin2 θ

]
∂ψ

∂φ

− 2s

[
MBH (r2 − a2)

∆
− r − ia cos θ

]
∂ψ

∂t
+
(
s2 cot2 θ − s

)
ψ = 4πΣT . (6.13)

This equation for ψ represents a perturbing field with source term, T . For the scalar

axion case, consider the example vacuum formed by fixing, s = 0 and T = 0, with

a test linearised massive spin-0 scalar field, ψ = Ψ0. The dynamics of an axion field

in the vicinity of the Kerr spacetime obey the general Klein-Gordon wave equation,

(gµν∇µ∇ν − µ2
ax)Ψ0(t, r) = 0 , (6.14)

with Kerr metric gµν , and associated covariant derivatives, ∇µ. It has been shown

linearised perturbations to the Kerr spacetime described under the formalism of a

master equation in Eq. (6.13), reduces to the form of the metric in Eq. (6.7), for

the case of spin-0 test scalar field. Although the phenomenon of such instabilities

can be studied for bosons of various spins, i.e. massive vectors [168, 498, 569], the

procedure does fortunately significantly simplify somewhat in the case of axionic

fields. This is due to the properties of Eq. (6.14), which for massive spin-0 fields,

exhibit well known separable solutions in Boyer-Lindquist coordinates [282, 324],

suppling a satisfactory level of analytical tractability to these perturbative solutions.

The background spacetime is assumed to be stationary, allowing for a Fourier domain

analysis of the test scalar which can be expressed using the separable ansatz,

Ψ0 =
∑

l,m

e−iωt+imψSlm(θ)Rlm(r) + h.c. , (6.15)

with a frequency ω. The values of l and m are defined in Section 6.2.1.2. For

the perturbation function, rather conveniently the Klein-Gordon wave equation fol-
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lows a separation of variables via spheroidal harmonics, and can be expressed by

two coupled ordinary differential equations (ODEs), with an infinite discrete set of

complex eigenfrequencies ωlmn, of the form in Eq. (6.77). Using the Teukolsky for-

malism [1256] the separated ODEs for the radial and angular components, Rlm(r)

and Slm(θ) respectively are defined as,

1

sin(θ)

d

dθ

(
sin(θ)

dS

dθ

)[
a2(ω2 − µ2

ax) cos2(θ)− m2

sin2(θ)
+ Λlm

]
Slm(θ) = 0 ,

(6.16)

∆∂r(∂rR) + (ω2(r2 + a2)2 − 4argrmω + a2m2 −∆(µaxr
2a2ω2 + l(l + 1))R(r) = 0 .

(6.17)

The first ODE in Eq. (6.16) is the oblate spheroidal angular wave equation which

determines the angular component, Slm(θ) of the scalar eigenfunction. The angular

solutions of Eq. (6.16), Slm, are the spin-weighted spheroidal harmonics, eimψS ≡

Slm(aω, θ, ψ), which generalise spheroidal wave functions for spin-0 fields, where the

θ dependance is understood via the spheroidal functions,

Slm = Sml

(
cos(θ), aM2

BH

√
ω2 − µ2

ax

)
. (6.18)

In the non-rotating or non-relativistic limit the spheroidal harmonics reduce to the

spherical harmonics, Slm → Ylm. These are required to be regular at the pole

boundaries, θ = 0 and θ = π, which is expressed via the orthonormality condition,

∫ π

0

|S2| sin θdθ = 1 . (6.19)

These boundary conditions single out a discrete family, {Klm}, of angular eigenvalues

defining the coupling or separation constant, which characterises the details of the

massive scalar. The angular eigenvalues can either be found using an expansion in

the limit that for spin-weighted spherical harmonics, aω and aµax → 0, where the
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expansion of Klm is described by the linearised sum,

Λlm = l(l + 1) +
∞∑

k=1

ck[a
2(µ2

ax − ω2)]k , (6.20)

with expansion coefficients ck. The exact solutions of which can be found in Ref. [208].

The function inside the sum defines the so called spheroidicity, where in the non-

rotating limit we can define the truncated angular separation constant as,

Λlm → l(l + 1) +O(a2ω2) . (6.21)

Generic spin considerations and higher orders of k require numerical solutions. These

angular eigenvalues can also be found via methods such as Leavers’ continued frac-

tion method [840] or Hughes’ spectral decomposition method [727]. A rescaling of

the radial function whilst introducing the function,

ψlm =
√
r2 + a2Rlm , (6.22)

along with a definition of the Regge-Wheeler tortoise coordinate, which maps the

interval (r+,∞) to (−∞,∞),

dr∗ =
(r2 + a2)

∆
dr , (6.23)

with ∆ defined in Eq. (6.9) and,

r∗ = r +
2M

r+ − r−

(
r+ ln

∣∣∣∣
r − r+

2M

∣∣∣∣− r− ln

∣∣∣∣
r − r−

2M

∣∣∣∣
)
, (6.24)

allowing for a redefinition of the radial Teukolsky equation in Eq. (6.17). A separa-

tion of the angular dependance for field modes of the form,

ψ = R(r)e−iωt , (6.25)
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now define a series of equations expressed in the form of a Schrödinger like wave

equation,

d2ψlm
dr∗2

=
[
ω2 − V (r, ω)

]
ψlm , (6.26)

with the effective potential defined as,

V (r, ω) =
4rgramω − a2m2

(r2 + a2)2
+

∆

(r2 + a2)
(µax +

l(l + 1) + (µax + ω2)a2

r2 + a2

+
3r2 − 4rgr + a2

(r2 + a2)2
− 3∆r2

(r2 + a2)3
) . (6.27)

The value of rg represent the gravitation radius and is defined in Eq. (6.74).

6.1.3.2 The Weak-Field Analytical Approximation for Scalar Induced

Superradiance

We require solutions to Eq. (6.17), with boundary conditions defining an outgoing

solution tending to zero at spacial infinity and purely incoming waves at the event

horizon. Formally these solutions to the radial equation, which are required to

characterise the nature of the axion induced instability can be found in three distinct

regimes. Each of these are defined by the nature of the interaction of the test scalar

and the Kerr geometry, which is regulated by the gravitational coupling of the scalar-

BH system. This is expressed by the ratio of the axion field mass and BH mass,

µaxMBH. The three regimes correspond to nature of this ratio with respect to unity,

I : µaxMBH � 1 , (6.28)

II : µaxMBH ∼ 1 , (6.29)

III : µaxMBH � 1 . (6.30)

The limits in Eq. (6.28) and Eq. (6.30) are susceptible to analytic methods, via

matched asymptotic expansions and WBK methods respectively. When µaxMBH

approaches the maximal superradiance limit of unity, it is required to solve the
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radial mode function ODE’s eigenvalue problem using numerical techniques. At the

horizon, non-singular solutions of the radial equation satisfy the boundary conditions

for an incoming wave as well as an outgoing wave at spacial infinity. These boundary

conditions correspond to the modifications to the radial solutions in the defined

limits,

lim
r∗→−∞

→ Rlm(r) ∼ e−ik+r∗ , (6.31)

lim
r∗→∞

→ Rlm(r) ∼ 1

r
ei
√

(ω2−µ2
ax)r∗ , (6.32)

where k+ ≡ ω−mΩH. The wave is therefore confined around the BH in the bounds,

0 < ω < µax , (6.33)

representing the understanding that massive scalar fields can naturally provide the

mirror required to realise the superradiance process in an astrophysical context.

In the low energy limit, defined in Eq. (6.28), the radial equation is amenable to the

method of matched asymptotics. This stems from the nature that for significantly

small values of the scalar coupling, which indicate the scalars Compton wavelength

is much shorter than the BHs Schwarzschild radius, we obtain solutions compara-

ble to the radial wave function of the Schrödinger equation with an r−1 potential.

These analytic solutions for small values of the coupling can be found using approx-

imate solutions at large and small radii in terms of hypergeometric functions, where

matching techniques are used at an intermediate radius to obtain the superradiance

rates to leading order in α (Eq. (6.85)) [433]. In this limit analytical methods utilise

the fact that the radial mode functions, Rlm(r), can be approximated in asymptotic

regimes by known analytical functions. For each region the equations can be re-

duced to the form of a confluent hypergeometric function. Considering regions far

from the BH outer horizon adhering to r � rg, whilst also ensuring we are in the
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µaxMBH � 1 regime, allow the ODE in Eq. (6.17) to be approximated as,

d2

dr2
(rR) +

[
ω2 − µ2

ax +
2MBHµ

2
ax

r
− l(l + 1)

r2

]
rR(r) = 0 , (6.34)

where the axion momentum is given by,

k2 ≡ µ2
ax − ω2 . (6.35)

Solutions can then be extracted by defining,

ν ≡ µ2
axMBH

k
= n+ l + 1 + δν , (6.36)

where the value of δν represents a small complex number which describes the devia-

tion away from the pure hydrogenic spectrum. When the axion momentum satisfies

k2 > 0, we are presented with a series of quasi-bound state solutions. This equa-

tion is the same form of the Schrödinger equation which governs the electron in the

hydrogen atom (see Fig. 2). The solution to Eq. (6.34) can be expressed as,

R(r) = (2kr)le−krU

(
l + 1− α

rgk
, 2(l + 1), 2kr

)
, (6.37)

where U(a, b, z) is the confluent hypergeometric function of the second kind and α

is defined in Eq. (6.85). In the region where r � rg, Eq. (6.17) is solved analytically

and takes the approximate solution,

z(z + 1)
d

dz

[
z(z + 1)

dR

dz

]
+
[
P 2 − l(l + 1)z(z + 1)

]
R(r) = 0 , (6.38)

with the defined parameter values,

z =
r − r+

r+ − r−
, (6.39)

P =
2r+(ω −mω+)

r+ − r−
. (6.40)
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The form of the equation in Eq. (6.38) presents a solution infalling at the horizon,

R(r) =

(
r − r+

r − r−

)−iP
2F1

(
−l, l + 1, 1 + 2iP,

(
r − r−
r+ − r−

))
, (6.41)

where 2F1 is the Gauss hypergeometric function. Enforcing the condition that

µaxMBH � 1 the two approximate solutions in Eq. (6.37) and Eq. (6.41) have

an overlap in their respective regions of validity. Matching the lowest terms for r

in Eq. (6.37) with the asymptotic form of Eq. (6.41), determines solutions for the

imaginary component of the frequency encapsulating the superradiance rate, de-

fined as the small imaginary component of the energy of the free field solution on

the Kerr background. The nature of these scalar instability rates are well researched

covering both the frequency [433, 467, 1396] and time domains [468]. Comparing

the large r behaviour of the near-region solution, with the small r behaviour of the

far-region solution yields the allowed values of the small imaginary component of

the frequency, denoted as ωI . The instability rate in the or µaxMBH � 1 limit or

small mass approximation is found to be [433],

Γnlm = 2µaxr+ (mΩH − µax) (µaxMBH)4l+4 Cnlm , (6.42)

where,

Cnlm =
24l+2(2l + n+ 1)!

n!(n+ l + 1)2l+4

[
l!

(2l + 1)!(2l)!

]2

×
l∏

j=1

[
j2

(
1− a2

M2
BH

)
+ 4r2

+ (µax −mΩH)2

]
.

(6.43)

For the fundamental mode, the rate can be approximated as,

MBHΓ011 = 1/48 (a/MBH − 2µaxr+) (MBHµax)9 . (6.44)

Making use of Eq. (6.42), the superradiance rates for scalar fields scale according to
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the approximate proportionality relationship,

Γnlm ∝ α4l+4µax , (6.45)

which is maximised close to the superradiance boundary. The approximate limits

for the analytical superradiance rates have been shown to span the region,

MBHωI ∼
(
10−14 − 10−7

)
. (6.46)

The key features of a superradiant instabilities are represented by wave function

solutions, peaked far outside of the ergoregion, with a small complex component

defining the BH spin-down rate, which must satisfy the superradiance condition to

indicate the presence of an instability. The fastest growing mode occurs for Γ011,

i.e. a nodeless mode with principle quantum number, n̄ = 2, with the superradi-

ance rates significantly suppressed as the orbital mode number, l is increased, and

linearly suppressed for non-fundamental nodes. The maximum superradiance rates

are found for the maximised, Lz, momentum mode, which occurs when the values

of l and m reproduce the condition, l = m, where m determines whether the super-

radiance condition in Eq. (6.71) is satisfied. The hierarchies in the time scales of

the considered modes is approximated as [286],

Γn,l+1,m+1

Γn,l,m
∼ (MBHµax)4 . (6.47)

In Fig. 6.5 we show the superradiance rates for a range of modes and spins as a

function of the axion-BH coupling, µaxMBH, derived using Eq. (6.42). The heavy

suppression of rates when m < l by potentially many orders of magnitude is dis-

played in the superradiance rate solutions found in Fig. 6.6. The value of Γnlm has

a limited dependance on the overtone mode, n. When the BH possesses significant

spin, higher order overtone modes for larger values of l = m can present greater

superradiance rates as compared to the fundamental overtone mode. Analytically
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Figure 6.5: Imaginary component of the bound-state frequency, MBHωI , repre-

senting the superradiance instability rate, Γnlm, as a function of the dimensionless

coupling, α = µaxMBH. The superradiance rates presented are for each of the

orbital/azimuthal quantum numbers, l = m = 1 to 5 for various values of the di-

mensionless BH spin, a∗, approaching the extremal relativistic limit (a∗ = 1). The

functions presented were determined using the weak-field analytical approximations

found in Eq. (6.42).

this is apparent for l = m = 4 (see the inset of Fig. 6.6) where it has also been

shown to occur for l = m = 3 when considering numerical solutions [1381]. We

shall assume from now on any discussions will focus on the limiting case for mode

solutions which only satisfy l = m. We now have the ability to understand the

evolution of the axion field which is defined by the characteristic eigenfrequencies

corresponding to the instability timescales for the unstable modes of the system.

6.1.3.3 Numerical Solution in the Strong-Coupling Regime

When analysing the region of the parameter space where α ∼ 1, solutions for the

unstable modes can be found using a numerical analysis of the wave equation [315,

467, 578]. In particular see Refs. [467, 840] for details on the stages quoted below.
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Figure 6.6: Imaginary component of the bound-state frequency, MBHωI repre-

senting the superradiance instability rate, Γnlm, as a function of the dimensionless

coupling, α = µaxMBH. The superradiance rates presented are for the fundamental

and higher order overtone modes n = 0 to 4 for various configurations satisfying ei-

ther l = m or l > m. The red lines correspond to the fundamental overtone modes,

n = 0 which become subdominant for values of l = m ≥ 4 (see inset). The functions

presented were determined using the weak-field analytical approximations found in

Eq. (6.42).

The radial function R(r) is now assumed to take the following form of the infinite

series,

R(r) = (r − r+)−iσ(r − r−)iσ+χ−1eqr
∞∑

n=0

an

(
r − r+

r − r−

)n
, (6.48)

where,

σ =
2r+(ω − ωc)
r+ − r−

, (6.49)

q = ±
√
µ2 − ω2 , (6.50)

χ =
µ− 2ω2

q
. (6.51)
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A substitution of Eq. (6.48) into Eq. (6.17) obtains the three term relation for the

expansion coefficients an for n > 0, n ∈ N,

α0a1 + β0a0 = 0 , (6.52)

αnan+1+βnan + γnan−1 = 0 , (6.53)

where,

αn = n2 + (c0 + 1)n+ c0 , (6.54)

βn = −2n2 + (c1 + 2)n+ c3 , (6.55)

γn = n2 + (c2 − 3)n+ c4 . (6.56)

The values of the constants c1, c2, c3 and c4 are expressed as functions dependant on

the parameters, ω, σ,m as well as the angular eigenvalues, Λlm (Eq. (6.20)), where,

c0 = 1− 2iω − 2i

b

(
ω − am

2

)
, (6.57)

c1 = −4 + 4i (ω − iq(1 + b)) +
4i

b

(
ω − am

2

)
− 2(ω2 + q2)

q
, (6.58)

c2 = 3− 2iω − 2(q2 − ω2)

q
− 2i

b

(
ω − am

2

)
, (6.59)

c3 =
2i(ω − iq)3

q
+ 2(ω − iq)2b+ q2a2 + 2iqam− Λlm − 1− (ω − iq)2

q
2qb (6.60)

+
2i

b

(
(ω − iq)2

q
+ 1

)(
ω − am

2

)
, (6.61)

c4 =
(ω − iq)4

q2
+

2iω (ω − iq)2

q
− 2i (ω − iq)2

bq

(
ω − am

2

)
. (6.62)

with,

b =
√

1− a2 . (6.63)

The three factor recurrence relation can be solved in terms of a continued fraction

if we take the assumption that the factor, an+1/an → 0 as n → ∞, obtaining the
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relation,

(an+1)

(an)
= − (γn+1)

(βn+1) + (αn+1)
(
αn+2

αn+1

) = − (γn+1)

(βn+1−)

(αn+1) (γn+2)

(βn+2−)

(αn+2) (γn+3)

(βn+3−)
. . . .

(6.64)

Rearranging Eq. (6.52) and noting,

a1

a0

=
−β0

α0

, (6.65)

whilst substituting n = 0 into Eq. (6.64) gives the condition for the eigenvalue

equation of the bound state eigenfrequencies which take the form found in Eq. (6.77),

β0 −
α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
. . . = 0 . (6.66)

This represents the discrete set of complex values, solved using numerical method

techniques to find the exact solutions for the spectrum of complex eigenfrequencies

of the scalar field. When α surpasses unity, WKB methods are formulated to eval-

uate the rate, presenting an exponential suppression proportional to α where the

approximate rate proportionality is Γnlm ∝ e−3.7α [106, 1396]. See Refs. [315, 578]

for an initial study incorporating Leaver’s continued fraction method for numerical

calculations and Dolan’s work [467], for an extensive study of the expanded param-

eter space, providing numerical solutions using a three-term recurrence relation and

the continued fraction method.

6.2 The Dynamics of Black Hole Superradiance

We explored in the previous section how in the limit ωm � 1 and µaxm � 1,

Eq. (6.17) is susceptible to analytic methods. For a particular axion bound state,

when the superradiance condition is satisfied, then providing the instability rate

dominates over relevant astrophysical timescales, wave modes will extract energy

and angular momentum from the BH. The generic effective action for Nax real scalar



Black Hole Spin Constraints on the Mass Spectrum and Number of
Axion-like Fields 356

fields Ψi with masses µax,i takes the form,

Seff =

∫
d4x
√−g

Nax∑

i=1

(
−1

2
∇µΨi∇µΨi −

1

2
µ2

ax,iΨ
2
i

)
, (6.67)

where ∇µ is the covariant derivative on the spacetime determined by the metric g.

As we have discussed for astrophysical spinning BHs the metric, g is assumed to be

the Kerr metric, which we take as the background field geometry. The superradiant

process leads to a time dependence in the BH mass and spin, but the structure

of the metric does not change due to backreaction. It is known for single field

superradiance processes that the backreaction of the scalar condensate on the Kerr

geometry is small [285]. This is because, although the cloud can obtain a large

mass, it is distributed over a large volume compared to the BH, (see discussions

below surrounding Eq. (6.91)) leading to a low scalar energy density (and thus a

low source of curvature) in the cloud. Concerns that backreaction is a more severe

problem with large numbers of fields as opposed to the single field solution can be

alleviated by considering the properties of the scalar cloud itself. The gravitational

backreaction is a function of MCloud/MBH, where MCloud is the total mass in the scalar

cloud. There is a maximum value of MCloud independent of the number of axion

fields, which is determined by the BH mass, initial spin, MBH(a∗), and irreducible

mass after all possible spin has been extracted in a superradiant cycle, MBH(a∗ = 0).

For Nax fields, there cannot be an extraction of any more total mass than if only a

single field was present, and for resonant modes the cloud size is of the same order

of magnitude for all the fields, therefore gravitational backreaction is not enhanced

to a greater severity than the single field case. Non-linearities coming from axion

interactions, on the other hand, can increase with the number of fields, which we

shall discuss in Section 6.3. Neglecting the presence of self-interactions, each field

Ψi evolves independently on the fixed background. In this separable limit, the total
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Figure 6.7: Timescale ratios for the superradiance rates determined for an axion

with a mass µax = 10−11.5 eV. These rates are compared with a typical BH astro-

physical timescale, here taken to be τSalpeter (Eq. (6.108)). Each cusp represents the

analytical limit beyond which Eq. (6.71) is satisfied. The limit to the right of the

cusp (soldid line) represents the ratio defining the nature of the timescales where

superradiance is apparent. The red volume defines the limit in the two dimensional

BH mass-spin parameter space where superradiance occurs within the defined as-

trophysical timescale used to map the Regge plane isocontour limits, such as those

found in Fig. 6.8.

rate of the superradiant process is given simply by the sum of the single field rates,

ΓTot
nlm =

Nax∑

i=1

Γinlm , (6.68)

which simplifies the combinatorics of the superradiance phenomenon for multiple

bosonic fields and the process of deriving constraints from BH spin measurements.
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6.2.1 The Astrophysics of Black Hole Superradiance

6.2.1.1 The Gravitational Atom

Astrophysical BHs with a mass, MBH and spin JBH = aMBH, are susceptible to the

previously discussed superradiant instabilities, whereby they undergo an extraction

of energy and angular momentum [106, 286], being spun down to form very large

gravitationally bound states comprising of a scalar cloud consisting of exponentially

large axion population numbers. Axions states bound in this way are understood

as a gravitational atom, where superradiant instabilities are strongest when the

Compton wavelength of the field, λax = h̄/µaxc, is comparable to the Schwarzschild

radius of the BH, rs = 2GNMBH/c2. For stellar mass BHs (r�s ) and SMBHs (r106�
s )

this approximates to the bounds,

λax '
(

10−10 eV

µax

)(
MBH

M�

)
r�s , (6.69)

λax '
(

10−16 eV

µax

)(
MBH

106M�

)
r106�
s , (6.70)

respectively, the effects of which non-linearly deviate as the field mass deters from

these values. The general condition for mode amplification of the scalar field requires

the angular velocity of the BH horizon to exceed the angular phase velocity of the

wave mode, in turn defining the superradiance condition,

ω

m
< ΩH , (6.71)

where m is the spherical harmonic quantum number. An example of this is shown

in Fig. 6.7 for a singular mode and fixed axion mass. The cusp (denoted by a red

point) of each calculated curve defines the limit where the superradiance condition

fails to hold in the dimensionless spin plane for a fixed BH mass. Tracing the cusps

through the BH mass dimension yields the Regge Plane boundaries for the selected

mode, used to generate field constraints based on BH spin measurements, which
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will be discussed in Section 6.2.3. The green and red separated volumes define the

region in which superradiance occurs within relevant timescales (i.e. Eq. (6.110)).

The effective angular velocity of the BH as a function of the dimensionless rotation

spin parameter is,

ΩH =
a∗

2rg(1 +
√

1− a2
∗)
, (6.72)

where the BHs dimensionless spin is defined as,

a∗ =
a

rg
≡ JBH

GNM2
BH

, (6.73)

which is limited by the bounds, 0 ≤ |a∗| < 1, in Boyer-Lindquist coordinates. The

gravitational radius of the BH is,

rg ≡ GNMBH . (6.74)

The volume of the axion cloud is considered to be constant, simulating the evolution

of the density means simulating the evolution of the number density of axions.

6.2.1.2 The Kinematical Evolution of the Scalar Cloud

The growth rate of the system depends on details of the scalar field binding. The

kinematic equations for the occupation numbers for different levels Ni, is [106],

dNi

dt
= ΓijNj + ΓijkNjNk... , (6.75)

where Γij = δijΓi. In the case where the superradiance condition is met and max-

imised, superradiance sets in and the number of axions, N , in the scalar condensate

close to the BH is exponentially amplified via the dominant mode, l = m = 1, which

in the linearised limit is represented by the growth rate,

dN

dt
= ΓSRN . (6.76)
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From this point forward we shall assume a normalisation for our units, such that

we are working in Planck units, c = ~ = GN = 1, defining the equivalence relation,

rg ≡MBH. The Kerr-Klein-Gordon system discussed in Section 6.1.3 admits quasi-

bound states with complex eigenfrequencies,

ωnlm = ωR + iωI , (6.77)

where {ωR, ωI} ∈ R. Using Eq. (6.71) Kerr BHs present a critical frequency for

superradiant scattering,

ωc ≡ mΩH , (6.78)

which defines the stability thresholds for the scalar modes,

ωnlm > mΩH → Stable , (6.79)

ωnlm < mΩH → Unstable . (6.80)

For values of ωnlm satisfying 0 < ωnlm < ωc, the imaginary component can be

either negative or positive defining the superradiant regime representing either the

spinning up or down of the BH respectively. Scalar modes in the presence of the Kerr

BH spacetime with a scalar mass µax, contain a natural confinement mechanism,

expressed in Eq. (6.33), bounded from escaping via their potential which is detailed

in Eq. (6.27). Modes satisfying these conditions will grow exponentially in time

according to a rate equation, identifying the presence of a time-dependant instability

in the Kerr spacetime. When ωnlm = ωc, the imaginary component of the frequency

drops out allowing for the formation of bound states representing scalar clouds acting

as an effective quasi-stable hair solution.

Aside from regions within a significant proximity to the BH, the gravitational po-

tential is well approximated by the function proportionality, ∝ r−1, where the spher-

ically symmetric properties of the potential to leading order allow for a separation

of variables of the field evolution in the background, reproducing a Schrödinger
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type wave-equation (as discussed in Section 6.1.3). The equation for the separated

radial wave function (Eq. (6.17)) is the equivalent of that of the Scalar Coulomb,

thereby presenting hydrogenic wavefunctions. To leading order the energy levels

for the bound states are well approximated by the spectrum of the hydrogen atom

in the non-relativistic limit. When the superradiance condition is saturated the

eigenfrequencies take the approximate form,

ωnlm ≡ ωR ' µax

(
1− α2

2(n+ l + 1)2
+ δωnlm

)
≈ µax , (6.81)

where δωnlm represents higher order correctional terms [209], which can be found

expressed up to fifth order in Ref. [178],

δωnlm '
(
− α4

8n̄4
+

(2l − 3n̄+ 1)α4

n̄ (l + 1/2)
+

2a∗mα5

n̄l (l + 1/2) (l + 1)

)
. (6.82)

The orbitals and quasi-bound state solutions are indexed by the overtone (n), or-

bital multi-pole (l) and azimutal (m) quantum numbers, which in general satisfy

l ≤ n̄− 1 and |m| ≤ l, forming the discrete sets, {n, l,m}, used to quantise the su-

perradiant behaviour. The principle quantum number present in the denominators

of the leading order correctional terms in Eq. (6.81) is defined by,

n̄ = n+ l + 1 . (6.83)

Before the superradiance condition is saturated the superradiance rate for the ex-

ponential growth of the field is,

Γnlm = τ−1
SR ≡ Im(ωnlm) . (6.84)

We will only consider solutions using the non-relativistic approximation for Γnlm,

which are determined using Eq. (6.42). Superradiance requires evolving modes to

co-rotate with the BH which satisfy, m > 0. The previously introduced dimension-

less coupling or gravitational fine structure constant of the gravitational BH-scalar
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condensate system is,

α = rgµax ≡ µaxMBH , (6.85)

in Planck units. As the superradiance process is maximally efficient when the

Compton wavelength of the axion is just below that which is required to saturate

Eq. (6.71), this suggests an approximate maximal scalar coupling of,

r+

λax

' α

l
' 1

2
. (6.86)

This limit is shown by the delimited dotted line boundary in Fig. 6.2 as a func-

tion of the axion parameter space, which also details potential regions of the axion

mass parameter space open to investigation for BH masses spanning the stellar and

supermassive limits. In the non-relativistic regime the BH-scalar coupling can be

approximated to [286],

α ' 0.02

(
MBH

3M�

)( µax

10−12 eV

)
. (6.87)

The depletion of the spin of the BH with minimum mass valid for exclusion defines

superradiance is sufficiently quick to form a maximally filled scalar-cloud in the

defined BH characteristic timescale,

ΓnlmτBH ≥ logNmax . (6.88)

The value of Nmax represents the final occupation number of the axion cloud after

the BH spins down by an O(1) fractional shift, ∆a∗ [109],

Nmax '
GNM

2
BH∆a∗
m

. (6.89)

The axion cloud which forms after it has completed a full superradiant cycle, powered

by the rotational energy of the BH, has a radial profile with eigenfunctions which
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peak at the approximate average distance [106],

rc,n̄ '
(
n̄2

α2

)
rg . (6.90)

For the maximally efficient 2p-axion cloud state, the topology of the cloud is well

approximated by a toroidal structure, its radii expressed via the Bohr radius (r0) of

the cloud [1118]. Specifically the major radius is expressed as,

〈r〉 = 5r0 =
5

µaxα
' 330

( α

0.03

)−1 ( µax

10−5 eV

)
cm , (6.91)

with an outer minor radius,

∆r '
√

5r0 ≡
〈r〉√

5
. (6.92)

Comparing this with event horizon defined in Eq. (6.10) shows that in the α � 1

limit the condensate cloud is localised in a region far from the horizons of the BH,

where it is accepted that curvature effects can be removed from consideration when

looking at the evolution of the system. The evolution of the BH system is therefore

well approximated in the quasi-linear regime, which can generalised trivially to the

case of multiple axions due to their independent evolution on the Kerr spacetime.

6.2.2 Multi-Field Superradiant Evolution in the Quasi-Linear

Regime

6.2.2.1 Dissipative Energy Channels

Sequential to the formational phase of a BH, superradiant evolution can begin via

quantum fluctuations of the vacuum, where each of the quantised superradiant lev-

els begins to grow exponentially with their corresponding superradiance rates. The

standard approach to quantifying this evolution through observational spin signa-

tures is understood through the so called Regge Plane formed using BH mass-spin
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measurements. The fastest-growing level which satisfies the superradiance condition

always dominates the initial superradiant evolution, until it has extracted enough

spin so that the superradiance condition is no longer satisfied. The BH energy loss

through mass reduction is minimal compared to the shift in angular momentum due

to the extent of the scalar cloud. This can be approximated using Eq. (6.89) as

[109, 286],

∆MBH ' µaxNmax '
αMBH∆a∗

m
. (6.93)

Once the growth of the dominant level has stopped the BH can spend a significant

portion of its lifetime on a Regge trajectory (dashed lines in Fig. 6.8, defined in

Section 6.2.3), separating higher mode instability bounds [109]. The rate at this

stage is dominated by two-axion to one-graviton annihilations [106],

τreg '
|Γl−1

SR /Γl+1
SR |1/2

(NBoseΓa)
, (6.94)

where NBose is defined in Eq (6.121) and Γa is the annihilation rate for a single pair

of axions defined as [109],

Γa ' 10−10

{(
α/l

0.5

)p
+O

(
α/l

0.5

)p+1
}
GN

r3
g

. (6.95)

The exponent factors are p = 17 for l = 1 and p = 4 + 11 for l ≥ 2. Axions

do not carry any conserved charge and therefore allow for gravitational wave emis-

sion processes that do not conserve axion number. Kinematically the one-graviton

annihilation of two axions is naturally forbidden in flat space due to energy and mo-

mentum conservation concerns. The leading order process in flat space would indeed

be a more familiar process of two-axions annihilating to two-gravitons, with an am-

plitude proportional to M−2
Pl . However, by taking into account the properties of the

Kerr metric where the BH spacetime breaks translational invariance, leads to one-

graviton annihilations, a process which can occur at the same order of perturbation
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theory as axion traditions between different states in the surrounding cloud1 (am-

plitude proportional to M−1
Pl ). A key observational feature of this unusual process is

that the wavelength of emitted radiation is not parametrically longer than the size of

the emitting source. This renders the standard quadrupole approximation as invalid

when searching for signatures. For more details see Refs. [106, 107, 109, 111, 1379].

In particular see the discussion in Section 3.1 of Ref. [106].

The trajectory of the BH on the Regge plane can be understood from the basic

intuition that as the higher modes of the BH begin to spin down the BH, it is

perturbed from the Regge trajectory where the negative component of the eigenfre-

quency for the previous mode dominates the evolution, spinning up the BH. This

process is apparent until a significant portion of the scalar density in the cloud is

reduced from the previously dominant level. At this point the BH traverses the

Regge plane towards the successive superradiant boundary, repeating the process

until the timescales considered are too large for superradiance to occur.

If non-linearities are taken into account level mixing can increase the time spent on

the superradiance condition boundary via perturbations of the gravitational poten-

tial around the BH. There are numerous dissipative channels which can occur in

the scalar cloud, such as processes involving the annihilation of axions into gravi-

tons or unbound axions [106, 108]. These features form the general umbrella of

features probable via GW detections. The potential to probe these signatures and

the sensitivities of various leading experiments is detailed in Fig. 6.2. The scalar

cloud will generally become maximally occupied before annihilation processes begin

in the non-relativistic limit for the case of string axions with fa & fGUT
a . In the

non-linear sector further complications to the evolutionary trajectory of the BH can

come from the bosenova phenomena, introducing intermediate stages comprising of

bursts of GWs stemming from the partial collapse of the axion cloud, with phases

spinning down the BH before the superradiance condition is finally saturated. We

1As pointed out in Ref. [106] a close analogue in physics is the one-photon annihilation of a
positron with an atomic electron [531].
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will discuss these concerns in Section 6.3.

6.2.2.2 Evolution of the Scalar Cloud in the Quasi-Linear Regime

Given the hierarchy of timescales between the superradiant instability and the GW

emission from non-linearities when compared to the dynamical time scale of the BH,

it is possible to study the systems evolution in the quasi-adiabatic approximation

under certain conditions, which we now generalise for the case of Nax fields [285,

286, 288] using the real and imaginary factors of the complex eigenfrequencies in

Eq. (6.77). The total scalar energy flux from the superradiance process through the

horizon is [285],

Ė = 2MCloud

Nax∑

g=1

ωI,g , (6.96)

where MCloud represents the total mass of the scalar cloud. With a disregard for

accretion the evolution of the system is described by the following set of equations,

−ĖCloud = ṀBH , (6.97)

−Ė = ṀBH + ṀCloud , (6.98)

−m ˙ECloud/
Nax∑
g=1

ωR,g = J̇BH , (6.99)

−mĖ/
Nax∑
g=1

ωR,g = J̇BH + J̇Cloud , (6.100)

where ECloud is the total energy of the scalar cloud with angular momentum, JCloud.

The scalar cloud extracts mass and spin until reaching a saturation point. The final

angular momentum of the BH is defined as,

JBH,F =
4mM3

BH,F

∑Nax

g=1 ωR,g

m2 + 4M2
BH,F

∑Nax

g=1 ω
2
R,g

. (6.101)
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The final mass of the BH after the phase of superradiant evolution is defined by

Eq. (6.99), where the variations in the defining BH parameters are related by,

δJBH =
m∑Nax

g=1 ωR,g
δMBH . (6.102)

This defines the final mass of the BH as,

MBH,F = MBH,I −
∑Nax

g=1 ωR,g

m
(JBH,I − JBH,F) , (6.103)

the subscripts I and F denoting the initial and final states respectively. The true

evolution of the full system is of course a vastly complicated picture, where non-

linearities must be accounted for and the detailed properties of each BH system

adopted suitably. In particular for SMBHs their mass is generally accumulated

via accretion which requires very significant perturbations in order to match the

evolutionary traits of their stellar counterparts. In the quasi-linear regime above

we can still derive strong conclusions of the properties of ultralight scalars in the

presence of astrophysical BHs, via measurements of their spin in order to produce

conservative constraints. The universal understanding that BHs with spin close to

the extremal limit will lose angular momentum on scales vastly shorter than standard

astrophysical timescales, leads to model independent constraints on the parameter

space of ALPs. In future endeavours this will be improved by the possibility of

observing many BHs with parameter measurements corresponding to their expected

traversal over the mass-spin Regge plane.
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Figure 6.8: Isocontour exclusion bounds in the BH mass-spin Regge plane for an

axion mass, µax = 10−11.5 eV, probing the stellar BH parameter space. The limits

(black outline) for the instability threshold are obtained by fixing the superradiant

instability time scales for each value of the orbital/azimuthal quantum numbers, l =

m = 1 to 5 equal to the timescale of a typical BBH system shown in Eq. (6.106). The

extended limits come from considering superradiant instability timescales shorter

than τSalpeter (orange, Eq. (6.108)) and τHubble (yellow, Eq. (6.107)). The red/black

data points denote mass and spin estimates of the stellar BHs from X-ray/BBH

sources presented in Tabel 6.2.

6.2.3 The Black Hole Mass-Spin Regge Plane

6.2.3.1 Axion Constraints from Astrophysical Black Hole Spin

Measurements

A fundamental prediction stemming from the generic understanding of superradi-

ant instabilities for bosonic fields is the existence of exclusion thresholds in the BH

Regge, or two-dimensional BH mass-spin plane. Estimates of the instability time

scale, τSR, partnered with reliable spin measurements for BHs, can be used to im-

pose stringent constraints on the allowed masses of ultralight bosons. These bounds

on the parameters of the fields follow from the requirement that in principle as-
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Figure 6.9: Isocontour exclusion bounds and calculated total exclusion probabil-

ities in the BH mass-spin Regge plane from superradiant instabilities with a single

axion field with a mass, µax, spanning the limits in Eq. (6.105). The shaded regions

represent instability thresholds shorter than the time scale τSalpeter in Eq. (6.108),

for each value of the dominant orbital/azimuthal quantum numbers, l = m = 1 to

5. The blue data points are mass-spin estimates of stellar X-ray and BBH systems.

The orange points correspond to mass-spin estimates of SMBHs from X-ray reflec-

tion spectroscopy. The exclusion probability function (black line) is calculated using

the statistical model in Appendix J using the BHs compiled in both Table 6.2 and

Table 6.3, which is given as a function of the axion mass spanning both the stellar

and supermassive regimes.

trophysical spinning BHs should on average remain stable over their cosmological

lifetimes. A superradiant instability time scale which acts faster than core system

processes such as accretion, form observational bounds on the expected regions of

the two-dimensional parameter space measurement data should fall within. Follow-

ing the process of superradiant evolution, a large number of BH observations should

trace out the superradiance condition boundaries, mapping the Regge trajectories

given the existence, of the as yet unidentified fields. For axions the shape of the

gaps in the Regge plane are extremely sensitive to variations in the superradiant
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growth rate with the scalar mass. This is demonstrated with the non-linear evolu-

tion of the isocontour instability bounds in Fig. 6.9. A BH must be absent from

observational measurements given the existence of an ultralight boson if its spin is

measured above the relevant level curves for different orbital states of the quantised

modes for the field. The bounds for bosonic fields with spin are wider than those for

ALPs, so the potentially large systematic errors in BH spin measurements could act

as a current restriction on using these methods when considering the case of spin-0

fields. The accessible axion mass window we can consider is fixed by the heaviest

SMBH with accurate recorded spin measurements, the lower bound defined by the

lightest measured stellar mass BH, some O(1) multiplicity of the Chandrasekhar

mass. The current lower and upper bounds on BH masses from X-ray spectroscopy

and emission data span the approximate region,

5M� .MBH . 5× 108M� , (6.104)

which defines the relevant approximate axion mass window as,

10−20 eV . µax . 10−10 eV . (6.105)

The isocontours defining the exclusion bounds are a function of the instability

timescale and the boson mass. As the axion mass decreases the instability ex-

clusion contours reduce in size. This corresponds to tighter instability regions which

require larger spins for more massive BHs.

6.2.3.2 Characteristic Timescales of Black Hole Evolution

Taking into account accretion and GW emissions can also slightly reduce the bounds

in the Regge plane [285]. The timescales associated to the astrophysical processes

of relevance alter when considering different compact object systems. For rapidly

spinning BH candidates in X-ray binary systems or binary BH (BBH) mergers,
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identified as detectable GW sources by LIGO, the strongest constraints can be

imposed when considering the typical timescales associated to a binary systems

lifetime as other astrophysical processes such as accretion are generally sub-leading.

A typical cosmological lower bound approximation for the lifetime of a binary system

is,

τBH ∼ 106 yrs . (6.106)

The most conservative limits come from exclusion regions constructed using the

Hubble time,

τHub ∼ 1010 yrs . (6.107)

As opposed to stellar binary objects, the relevant superradiance timescales for AGN,

to maximally grow the scalar cloud for each quantised level come from accretion mod-

els. Therefore a statistical analysis of the exclusion limits over the whole BH mass

region defined in Eq. (6.104) requires us to use a characteristic timescale derived

from accretion considerations. The time scale for mass growth increases exponen-

tially with an e-folding time given by a fraction, f−1
Edd, of the Salpeter time scale,

where fEdd is the Eddington ratio for mass accretion. The accretion time scale is

estimated using the Salpeter time for a BH radiating at its Eddington limit,

τSalpeter =
σT

4πmp

∼ 4.5× 107 yrs , (6.108)

where σT represents the Thompson cross section and mp the proton mass [1177].

In order to regulate and model the accretion time, the following parameters are

introduced [288],

τSalpeter = 4.5× 108 yrs
η

fEdd(1− η)
, (6.109)

where η, the thin-disk radiative efficiency, is a function of the spin related to a

specific energy at the innermost stable circular orbit (ISCO). The value of fEdd

represents the Eddington ratio for mass accretion. We select a typical value for the

efficiency, η = 0.1, and the most conservative value of fEdd = 1, modelling the effects



Black Hole Spin Constraints on the Mass Spectrum and Number of
Axion-like Fields 372

of accretion. This fixes the fiducial superradiant instability timescale as,

τSR = 45Myrs . (6.110)

Other possibilities include increasing the bounds on fEdd, where τBH ∼ 0.1τSalpeter,

in order to account for the possibility of super-Eddington accretion [168, 407]. Some

astrophysical observations suggest the timescales could be much longer such as re-

cent results for M87* which give, ṀBH/ṀEdd ∼ 2.0× 10−5 [52], implying τBH is much

larger than the value in Eq. (6.110). A redefinition of fEdd is equivalent to consid-

ering a subpopulation of degenerate mass fields (see Section. 6.4.4) or considering

different astrophysical processes to define the characteristic timescale of the BH.

Such considerations are a limitation in the heuristic logistics of encapsulating the

behaviour of the total BH spectrum and as such we follow the most conservative

limit defined above in Eq. (6.110).

An individual treatment of the instability timescales, derived from the properties of

the accretion disc stability for each BH candidate, can be used to tighten constraints

on the fields mass exclusion bounds [317]. As the timescale limits for the superradi-

ant instability are increased the limits for each mode, l = m will begin to saturate

to the limits set by the boundaries of the superradiance condition. This effect is

most prominent for higher order modes in the spin axis of the Regge plane, allowing

for enhancements in the possibility to constrain ultralight bosons using observations

of BHs with spins a substantial fraction of the extremal limit. In Fig. 6.8 this is

shown in the example exclusion window for a fixed axion mass of µax = 10−11.5 eV,

in the stellar mass BH parameter space for each of the instability timescales defined

in Eq. (6.106), Eq. (6.107) and Eq. (6.108). As the considered timescale increases,

the saturation of the mode bounds following the limit of the superradiance condition

in Eq. (6.71) sees the greatest enhancement for l = m = 5. The red data points

represent the X-ray binary system BHs in Table 6.2. The black data points are the

primary and secondary sources involved in the BBH coalescence events (GW150914,
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GW151226 and GW170104) over several LIGO detection runs searching for GWs.

Extremal BHs such as NGC 4051 impose constraints on each of the l = m = 1, 2

and 3 modes, demonstrating how accurately measured rapidly spinning BHs can be

used to constrain significant portions of the axion mass parameter space. The case

of a singular axion with a mass, µax ≈ 10−11.5 eV is tightly constrained by known X-

ray binary sources as detailed in Fig. 6.8, with the poor measurements from LIGO

data open to a far greater uncertainty if treated separately. Fig. 6.9 details the

exclusion bounds we will subsequently define in the next section for the treatment

of a single axion covering the full region of the axion mass window in Eq. (6.105),

along with the full stellar BH and SMBH data collected in Table 6.2 and Table 6.3.

The primary axis presents the Regge exclusion bounds for an instability time scale

τSR = 45Myrs, as a function of the axion mass, µax. The blue/orange data points

are the stellar/SM BHs in Table 6.2. The secondary axis displays the probability

exclusion function formulated from the statistical model in Appendix J and will be

used to formulated results in the case of multiple fields as discussed in Section 6.4.

The exclusion functions ‘well ’ corresponds to the absence of any well defined IMBH

candidates. Well defined mass and spin measurements for BHs covering the approx-

imate region defined in Eq. (6.4), could fill the currently inaccessible portion of the

parameter space required to unify the limits from the stellar and supermassive sec-

tors, providing very strong constraints on the full ultralight sector of axions. This

region is also relevant to probe fundamental masses for axions, associated to GUT

and supersymmetric models in string/M- theory.
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6.2.4 Spin Measurements of Binary Systems and Active

Galactic Nuclei

6.2.4.1 Astrophysical Measurements of Black Hole Systems

The identification of compact systems has undergone a steady increase over the

past several decades with a number of X-ray binary sources and active galactic

nuclei (AGN) now providing well defined, reinforced measurements for the masses

and spins of these systems. Currently the main sources of error for catalogued BHs

come from the systematic errors when modelling the emissions of the accreting disc

for the system. Both stellar BH and SMBH measurements come from analysing

the X-ray spectrum of the accretion disk for identified compact sources. Assuming

that general relativity holds true as a valid description of the spacetime region

outside the BH horizon and the ISCO of the accretion disk possesses a monotonic

function potential, then estimates on the spin of BHs can be made. In principle

most BH candidates with well defined parameter estimates come from either thermal

continuum fitting of the inner accretion disk or inner disk reflection modelling in

order to determine the size of the ISCO. Further to this BH spin data has recently

been collected via the observations made in several BBH mergers by LIGO [10, 12,

522], as part of the first detections of GWs. Currently such observations, generally

contain large errors on both the mass and spin of the BHs when compared to existing

X-ray binary system records. The resultant BHs formed from such astrophysical

events cannot be included in considerations made when constraining the masses of

ultralight bosons, given their observational timescale is less than typical instability

timescales by definition in their identification. Generally though future generation

ground based detectors are still expected to produce large error measurements on

BHs identified in this way and so impose a strong limitation on the accuracy of

measurements used for constraints. Improvements in observatory sensitivity with

space operated missions such as LISA [801], will open up the potential for a large

catalogue of accurate BH measurements capable of probing a large portion of the
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cosmologically significant sector for axion-like fields. A large exclusion in the fully

accessible space could also lead to tight constraints on how the total axion population

or sub-populations may be distributed when seeking realisations of desirable effective

models in the context of cosmology.

6.2.4.2 A Data Set of Black Hole Candidates

We consider a generous sample set of BHs, consisting of only those with detailed

mass and spin errors available, using comparable measurement methodologies. Each

BH chosen in our analysis has both upper and lower bounds on their mass and spin,

each with well defined quoted uncertainties in order for us to suitably approximate

their errors as multivariate functions, as detailed in Appendix J. In both Table 6.2

and Table 6.3 we present all the stellar BH and SMBH candidates, which form the

dataset used to derive constrains on the mass spectrum and number of axion-like

fields in Section 6.4 from well known BH sources, along with associated references.

For a review of compiled stellar BH data see Refs. [933, 943, 1289] and for SMBHs

see Refs. [280, 1101, 1102, 1289]. We currently exclude M87*, the SMBH pictured in

Fig. 6.1 in the formation of our data set due to uncertainties in the current analysis

of its parameters [52]. We don’t expect this will effect the quantitate picture for the

constraints placed on multi-field models but we will present some initial results in

Section 6.4.7 using fiducial mass-spin priors.

6.3 The N-Radiance Regime

6.3.1 Axion Self-Interactions and the Bose Supernova

Phenomenon

In order to fix the region of validity for any constraints, we shall first quickly focus

on the non-linearities of the superradiance process. As the axion cloud continues to
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Table 6.2: Stellar BHs used to apply constraints on axion masses and values of

Nax for various model mass spectra. Stellar BHs are selected with reliable mass

and spin measurements and associated errors are quoted with their CIs and their

corresponding references. Stellar BH measurements are sourced from both X-ray bi-

nary systems via X-ray continuum-fitting methods and BBH mergers from detected

coalescence events at LIGO. Where two methods have been stated we use averaged

posterior values for each. For review material and collections of stellar BHs see

Refs. [943, 948, 1289].

Stellar object Method Mass Spin C.L C.L Ref.

GW150914 (Primary) EOBNR+IMRPhenom 36.2+5.2
−3.8 0.32+0.47

−0.29 90% 90% [10]
GW150914 (Secondary) EOBNR+IMRPhenom 29.1+3.7

−4.4 0.48+0.47
−0.43 90% 90% [10]

GW151226 (Primary) EOBNR+IMRPhenom 14.2+8.3
−3.7 0.49+0.37

−0.42 90% 90% [10]
GW151226 (Secondary) EOBNR+IMRPhenom 7.5+2.3

−2.3 0.52+0.43
−0.47 90% 90% [10]

GW170104 (Primary) Eff+Full precession 31.2+8.4
−6.0 0.45+0.46

−0.40 90% 90% [11]
GW170104 (Secondary) Eff+Full precession 19.4+5.3

−5.9 0.47+0.46
−0.43 90% 90% [11]

Cygnus X-1 Continuum (KERRBB2) 14.8+1.0
−1.0 ≥ 0.983 1σ 3σ [1002]/[619]

XTE J1550-564 Continuum (KERRBB2) 9.10+0.61
−0.61 0.34+0.37

−0.34 1σ 90% [1003]/[1216]
A 0620-00 Continuum (KERRBB2) 6.61+0.25

−0.25 0.12+0.19
−0.19 1σ 1σ [310]/[618]

4U 1543-475 Continuum (KERRBB) 9.4+1.0
−1.0 0.8+0.1

−0.1 1σ 1σ [744]/[1176]
GRO J1655-40 Continuum (KERRBB) 6.30+0.50

−0.50 0.7+0.10
−0.10 95% 1σ [1175]/[630]

GRS 1915+105 Continuum (KERRBB2) 10.1+0.6
−0.6 ≥ 0.95 1σ 1σ [1213]/[932]

LMC X-1 Continuum (KERRBB2) 10.91+1.41
−1.41 0.92+0.05

−0.07 1σ 1σ [1006]/[617]
LMC X-3 Continuum (KERRBB2) 6.98+0.56

−0.56 0.25+0.13
−0.16 1σ 1σ [1004]/[1217]

M33 X-7 Continuum (KERRBB2) 15.65+1.45
−1.45 0.84+0.05

−0.05 1σ 1σ [1005]/[871]

grow the self-interactions amongst the bosons become relevant, where the process

enters the non-linear regime. In the non-linear regime the effective action of the

axion field is traditionally described using the Sine-Gordon potential description, as

apposed to the generic case of the expanded action in Eq. (6.67),

Seff =

∫
d4x

[
−1

2
∂µφ∂

µφ− µ2
axf

2
a

(
1− cos

(
φ

fa

))]
. (6.111)

When the expectation value of the axion field is small we recover the effective de-

scription of Eq. (6.67), where we need only consider the leading order mass term

present. As the field amplitude increases to the point where it satisfies the the

field amplitude condition |φ| ∼ fa, non-trivial self-interactions become more pro-

nounced. When the fields attractive self-interactions supersede the gravitational

binding energy, the superradiant cloud collapses [106, 810, 955, 1378–1381], before

it can extract sufficient amounts of angular momentum akin to a bosenova event in



Black Hole Spin Constraints on the Mass Spectrum and Number of
Axion-like Fields 377

Table 6.3: Selected SMBH system candidates used to apply constraints on axion

masses and values of Nax for various model mass spectra. SMBHs are selected with

reliable mass and spin measurements along with associated errors are quoted with

their both their CIs and corresponding references. SMBH systems all are observed

AGN using X-ray reflection spectroscopy. Where two methods have been stated we

have used averaged posterior values for each. For review material and collections of

compiled AGN data see Refs. [280, 1100–1102, 1289].

Supermassive object Method Mass Spin C.L C.L Ref.

Mrk 335 Reflection (Suzaku) 14.20+3.70
−3.70 0.83+0.09

−0.13 1σ 90% [1054]/[1318]
Fairall 9 Reflection (Suzaku) 255.0+56.0

−56.0 0.52+0.19
−0.15 1σ 90% [1054]/[872]

Mrk 79 Reflection (Suzaku) 52.40+14.40
−14.40 0.70+0.1

−0.1 1σ 90% [1054]/[583]
NGC 3783 Reflection (Suzaku) 29.80+5.40

−5.40 ≥ 0.98 1σ 90% [1054]/[280]
MCG-6-30-15 Reflection (Suzaku) 2.90+1.80

−1.60 ≥ 0.98 1σ 90% [936]/[279]
NGC 7469 Reflection (Suzaku) 12.20+1.40

−1.40 0.69+0.09
−0.09 1σ 90% [1054]/[1019]

Ark 120 Reflection (Suzaku) 150.0+19.0
−19.0 0.64+0.19

−0.11 1σ 90% [1054]/[1318]
Mrk 110 Reflection (Suzaku) 25.10+6.10

−6.10 ≥ 0.89 1σ 90% [1054]/[1318]
NGC 4051 Reflection (Suzaku) 1.91+0.78

−0.78 ≥ 0.99 1σ 90% [1054]/[1020]

Bose-Einstein condensates due to Feshbach resonances [472].

6.3.1.1 Additional Dissipative Kinematics

In this regime we can incorporate the axion self-interactions as an effective dissipa-

tive factor contribution to the growth rate of Eq. (6.76),

dN

dt
= ΓSRN − ΓNLN . (6.112)

where ΓNLN represents an approximation of all initial contributions to non-linear

channels i.e. axion-graviton annihilations etc. The growth rate of the superradiant

cloud continues to dominate, perturbing the spherical harmonic solutions signifi-

cantly enough to enter further into the nonlinear regime. As this growth continues

the self-organised criticality [955] of the dynamical system is reached, where the

stability of the cloud breaks down. At this stage the hydrogenic wave function so-

lutions are no longer valid, resulting in a bosenova. This occurs when the gradient

quantum pressure of the axion cloud fails to withstand the attractive forces from

the increased self-interactions in the cloud. In the quasi-linear regime where the
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Figure 6.10: Contour bounds for the analytical approximations representing the

requirements to account for the non-linear regime for the fundamental mode of

the axion cloud system with the BH candidate LMC X-1 in the axion mass and

decay constant parameter plane. The orange contour bounds represent the possibil-

ity of highly non-linear effects occurring when using the approximations defined in

Eq. (6.122). The QCD axion approximation (red dashed line) is determined using

Eq. (6.147).

non-linearities can be treated perturbatively, the factorised total rate equation is,

dN

dt
= ΓSRN − Γλ4N − ΓNovaN , (6.113)

where we have introduced a fictitious dominate rate, ΓNova, which represents the

dominant self-interaction terms which approximate the presence of a bosenova. We

have factorised out the highly suppressed subdominant non-linear channels inside,

Γλ4 . The approximate shutdown of the superradiant instability occurs when the

scattering processes realises,

ΓSRN ' Γλ4N + ΓNovaN , (6.114)
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Figure 6.11: Contour bounds on the fractional suppression factor of Eq. (6.124) as

a function of the axion mass and decay constant highlighting when a bosenova event

occurs before the fundamental superradiant mode has extracted the total allowed

spin forming a maximally occupied scalar cloud for the case of the stellar mass BH

candidate LMC X-1. The QCD axion approximation (red dashed line) is determined

using Eq. (6.147).

which for our example we can approximate to,

ΓSRN ≈ ΓNovaN . (6.115)

We can approximate the region of validity for negligible self-interaction processes

by using the field description in the non-relativistic limit, where the axion field is

expressed as a waveform function ansatz of a slowly varying variable ψ,

φ =
1√
2µax

(
e−iµaxtψ + eiµaxtψ∗

)
. (6.116)
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Placing Eq. (6.116) into the action in Eq. (6.111) and considering only the quartic

interaction as the leading term for axion self-interactions gives the effective action,

Seff =

∫
d4x

(
iψ∗∂tψ −

1

2µax

∂iψ∂iψ
∗ − α

r
ψ∗ψ +

(ψ∗ψ)2

16f 2
a

)
, (6.117)

where αr−1 is the Newtonian gravitational potential of the BH. The self-interaction

regime becomes apparent when the final terms for the self-interaction and potential

energy become comparable [106],

α

r
' ψ∗ψ

8f 2
a

. (6.118)

As detailed in Ref. [106], performing an integration over Eq. (6.118) allows the

non-linear regime to be defined in terms of the mass of the axion scalar cloud,

MCloud

MBH

&
2l4

α2

f 2
a

M2
Pl

. (6.119)

Analytically this has been shown to occur for values of the axion decay constant

which satisfy [109],

fa . 2× 1016 Gev
1√
n̄

( α

0.4n̄

) 3
2

(
∆a∗
0.1

) 1
2
(

5

c0

) 1
2

, (6.120)

where, ∆a∗ represents the shift of the BH spin from the superradiant spin-down

and the numerical constant c0, is determined by numerical simulations [810, 1381].

This limit corresponds to a critical value for the number density of the axions in the

cloud defined as [109],

NBose ≈ 1078c0

(
n̄4

α3

)(
MBH

10M�

)2(
fa
MPL

)2

. (6.121)

Given the high non-linearity of these systems, they are in general best understood

using numerical simulations. In these simulations the critical bosenova occupation

number is parameterised by a dimensionless fraction, which has been shown to occur
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when [1381],

ε ≡ MCloud

MBH

' 10−4 . (6.122)

The maximal occupation number of the number of bosons in the cloud, defined in

Eq. (6.89) can be approximated as,

NMax ≈ 1076

(
∆a∗
0.1

)(
MBH

10M�

)2

, (6.123)

which defines the fractional suppression factor on the superradiance rate used to

approximate the value of ΓNova in Eq. (6.113),

NNova =

(
NBose

NMax

)
≈ 102c0

(
0.1

∆a∗

)(
fa
MPL

)2(
n4

α3

)
. (6.124)

Taking into account both the number densities in Eq. (6.123) and Eq. (6.124) the

superradiant evolution equation defined in Eq. (6.88) is modified to include the

analytically derived approximation for the shutdown of the BH spin down phase,

due to the non-linear features of the system. This means we now evaluate the rate

equation [109],

ΓSRτbhNNova ≥ logNBose , (6.125)

where the suppression factor, NNova represents how an increase in the self-coupling

strength generates an increase in the effective overall time it takes the cloud to

extract spin as it experiences a series of bosenova cycles.

6.3.1.2 LMC X-1: A Specific Example

To explore the limits of when this phenomena becomes relevant we will calculate the

approximate non-linear regime occurrence for the isolated stellar BH candidate LMC

X-1 below. We formulate this example as a toy model to define the two dimensional

space in which non-linear effects become important, as shown in the contour bounds

of Fig. 6.10. Using Eq. (6.122) as a baseline, the non-linear regime can be determined
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using decay constants of the approximate order ∼ O(1016) GeV for the heaviest

axions susceptible to superradiance. Lower axion masses have relaxed constraints

on the scale of the decay constants whilst undergoing a complete superradiant cycle,

allowing for a total disregard of non-linearities to first order.

In terms of a possible bosenova, we recover a similar picture exploring the limits

in which we find a total absence of any bosenova. This is displayed in Fig. 6.11

showing the fractional suppression factor of Eq. (6.124) as a function of the axion

mass and decay constant where a bosenova occurs before the fundamental mode

has extracted the total allowed spin. Again the highest probable axion masses show

the potential occurrence of a bosenova around, fa ∼ 1016 GeV and lowest masses

have associated decay scales of the order fa ∼ 1014 GeV. Superradiance can also

be shut off by other complex non-linear effects such as level mixing, or perturbed

by axion emission due to annihilations [106, 108, 1379]. Returning to the linearised

description, the interaction tensor can used to calculate these rates, e.g. for axion

emission via the general φφφ → φ process. The inclusion of axion self-interactions

which play an important role in BH superradiance, in principle can be understood,

by expanding the instanton potential to higher orders using the RMT effective model

for the axiverse which could lead to some well defined distribution for the quartic

interaction tensor,

Lint = λijklφiφjφkφl . (6.126)

We are unaware of any study of the distribution of λijkl in RMT, and thus the

treatment of interactions is beyond the scope of the present constraints detailed in

Section 6.4. For sparse charge matrices the flavour changing, non-diagonal, entries

in λijkl will be rare. The level-mixing will be enhanced if the λijkl are non-diagonal

and allow for the scattering of axions of different flavours. Decays from one flavour

into another will have a similar effect of additional cooling of the cloud, such as

the axion photon coupling considered in Ref. [106]. The bosenova critical size NBose,

could also decrease in such a case due to the increased phase space for the scattering.
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How these and other non-linear effects compete with the basic increase of the BH

superradiance rate and increased probability of mass outliers at large Nax is unclear.

6.3.1.3 The Weakly Self-Interacting Regime

Using the single instanton, dilute gas potential, as a description of a single field,

it can be shown that the ratio of emission via the quartic interaction compared to

graviton emission due to annihilations is given by [106],

Pλ
PGrav

≈ 10−2α4MCloud

MBH

(
MPl

fa

)4

. (6.127)

The overall strength of the interactions, and their importance relative to gravity, are

controlled solely by the axion decay constants, fa. The decay constant distributions

for multiple fields were derived using the RMT axiverse in Chapter 5. Distributions

with a high probability of small decay constants will have non-linearities dominated

by self-interactions, while for a high probability of large decay constants the pure-

gravity results can be applied. Since we consider BH superradiance dominated

by gravity, our results should be understood as applicable strictly with the use of

distributions dominated by large fa, which is often predicted in string models.

Taking the single-field results of Ref. [108] as a guide, along with the intuition gained

from the simplified analysis shown in Fig. 6.10 and Fig. 6.11, we define the linearised

N-Radiance regime with negligible non-linear features and suppressed superradiance

rate mode mixings to be valid when our model conforms to the approximate bounds,

fa & 1014−16 GeV . (6.128)

In the context of string models, the results presented in Section 6.4 should apply well

to small volume compactifications [758], whereas self-interactions will be expected

to play an important role in the Large Volume Scenario [364]. Any constraints we

present in the following sections will hold for the general case of ultralight spin-0
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Figure 6.12: Constraints on the masses of ULAs, µax, for singular fields determined

by the total probability of exclusion calculated using the methodology in Appendix J

via Eq. (J.1). Exclusion bounds are presented in the 68% and 95% CIs as a function

of µax with orange/red lines representing the upper and lower limits of the 68%/95%

intervals. These probability limit functions are determined using the BH data given

in Table 6.2.

string ALPs with masses inside the limits of Eq. (6.105) and decay constants above

the approximate super-GUT scale bounds of Eq. (6.128).

6.4 Superradiance Constraints on Axion-Like

Particles

6.4.1 A Single Axion-Like Field

We will begin the presentation of our results by computing the single field limits to

validate the consistency of the statistical methodology found in Appendix J, when

approaching the multi-field case by comparing with previous results found in the lit-

erature. We will also see the single-field case well approximates the factorised limits

of the multi-field setup. The statistical methods used in order to derive constraints

on the axion parameter space using recorded BH spin measurements are covered in
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Figure 6.13: Constraints on the masses of ULAs, µax, for singular fields determined

by the total probability of exclusion calculated using the methodology in Appendix J

via Eq. (J.1). Exclusion bounds are presented in the 68% and 95% CIs as a function

of µax with orange/red lines representing the upper and lower limits of the 68%/95%

interval. These probability limit functions are determined using the SMBH data

given in Table 6.3.

detail in Appendix J, where we demonstrate an example calculation of the exclusion

probability function, Pex(µax). Using the model in Appendix J and treating the ax-

ion mass as a free parameter allows us to determine Pex(µax) over the approximate

bounds of Eq. (6.104). The exclusion bounds for a single axion field using the full

data in Table 6.2 and Table 6.3 are presented in Fig. 6.9, superimposed over the

fully accessible Regge plane susceptible to axion instabilities with the associated BH

data points used. The instability bounds are found when superradiance is effective

over the characteristic accretion timescale defined in Eq. (6.110). We are in fact

perfectly consistent when treating the stellar BH and SMBH limits in Fig. 6.9 as

individual data sets, where we can factorise the results for a single axion field with

mass µax, into results for the two distinct BH mass regimes. In the combined data

set the exclusion probability continues to remain finite over a range of intermediate

axion masses due to the large mass errors on the lightest SMBHs considered. The

distinct absence of any IMBH data measurements to date, determines the regions
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of the mass parameter space where the Pex(µax) > 0.68 (1σ exclusion) limits do not

overlap between the two datasets, allowing for their separability.

6.4.2 Constraints on Axion Masses from Stellar Mass Black

Holes

The exclusion probability function for the stellar mass BH data set of Table 6.2 is

shown in more detail in Fig. 6.12, determining both the 68% and 95% CI bounds.

The high quality of the measurements of X-ray binary sources, and the larger quan-

tity on candidates, lead to a smoother exclusion function. At the 95% CI the stellar

BHs exclude axions with masses,

7.0× 10−14 eV . µax . 2.2× 10−11 eV , (6.129)

and at the 68% CI exclude,

6.0× 10−14 eV . µax . 2.7× 10−11 eV . (6.130)

6.4.3 Constraints on Axion Masses from Supermassive Black

Holes

For SMBHs the exclusion probability derived from the data is shown in Fig. 6.13,

again shown with derived 68% and 95% CI bounds. The data is generally of poorer

quality than the stellar data, with certain systems containing significantly larger er-

rors on mass estimates. It is also much sparser, with fewer SMBHs in the considered

data set. The sparseness of the data leads to oscillatory features in the exclusion

probability, driven by the shape of the BH superradiance contours found for each of

the radial modes of the axion cloud, with the exclusion functions oscillations driven

by the logarithmic separation of individual BH points. This causes the probabil-
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ity exclusion function to oscillate between the 95% CI when transitioning between

certain BHs, particularly prominent for the constraints coming from ARK 120 and

Fairall 9. This uncertainly is represented by the faded red lines in Fig. 6.13, where

we expect increased accuracy in data measurements and identification of further

SMBH candidates would dissolve these limits and ensure consistency in the total

bound. In particular the largest considered candidate, Fairall 9, drives the non-

monotonic nature of the function at low axion masses. The large mass errors lead to

a non-zero exclusion probability extending to large axion masses. Taking the outer

edge of the 95% CI region, the SMBHs exclude axions with masses in the range,

7.2× 10−20 eV . µax . 1.0× 10−16 eV , (6.131)

with the outer 68% limits,

4.6× 10−20 eV . µax . 1.3× 10−16 eV . (6.132)

Our exclusions for the stellar BH and SMBH datasets are consistent with previ-

ous results for axion mass constraints found in Refs. [108, 317], after accounting

for the differences in the data sets and methodology used. In particular compar-

ing to Ref. [108], our choice to include BBH coalescence events with large masses

when partnered with their large uncertainties push the constraints to incorporate

lower masses, increasing the current lower bound on the axion mass exclusion limits,

which could be tightened with future improvements to observational measurements.

Finally to ensure consistency with the N-Radiance regime defined in Section 6.3,

we expand the single field constraints into the two-dimensional axion mass, decay

constant plane implementing the statistical procedure in Appendix J for the case of

the toy model BH LMC X-1, considered in Section 6.3.1.2. These constraints are

found by deriving bounds using Eq. (6.125) instead of Eq. (6.88) used for the single

field limits placed on just the axion mass, where we find results consistent with

those found in Ref. [109]. The LMC X-1 constraints on the two-dimensional axion
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Figure 6.14: Example constraints in the axion decay constant, fa, and axion mass,

µax, plane from BH candidate LMC X-1. The contour bounds representing the

constrained region in the two-dimensional plane are presented with 1σ, 2σ and 3σ

limits. The bounds are calculated using Eq. (6.125) with superradiance timescales

defined according to the limit in Eq. (6.110). The yellow and orange dot-dashed

lines represent the analytical limits determined using Eq. (6.120). The red dashed

line represents the approximate mass of the QCD axion using the chiral potential

(Eq. (6.147)), which intercepts the Planckian limit for the lowest axion mass which

can be constrained when considering the WGC.

parameter space from spin measurements are shown in Fig 6.14. The analytical

limits represent the bounds formed using Eq. (6.120) which are not sensitive to the

functional shape of the radial mode contours.

6.4.4 A Degenerate Axion Mass Population

We can now begin our considerations of models with multiple axion fields present,

using the simplest case. The degenerate case, such as those found in the models

detailed in Section (5.2.3), is trivial to treat for any value of Nax, as by definition
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Figure 6.15: Isocontour exclusion regions for degenerate mass axion populations

with Nax = O(100 → 105) in the stellar BH parameter-space. The limits for the

instability threshold are obtained by fixing the superradiant instability time scales

for each value of the orbital/azimuthal quantum numbers, l = m = 1 to 5 equal to

τSalpeter defined in Eq. (6.108) using a fixed axion mass of µax = 10−12.75eV. Large

values of Nax effectively correspond to greater superradiance instability timescales

considering a single field. The green data points are mass-spin estimates of X-ray

binary stellar BH candidates. The blue data points are primary and secondary

sources from BBH coalescence detections at LIGO.

each axion has an identical mass, µax, and thus superradiance dynamics. Since the

rate is additive in Nax, when the fields follow the limits in Eq. (6.128), we can define

the degenerate total superradiance rate as,

ΓTot
SR = NaxΓSR . (6.133)

Using the relation, τBHΓTot
SR = 1 is equivalent to observing the single field case with

a characteristic timescale rescaled as,

τNax = NaxτBH . (6.134)
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Figure 6.16: Isocontour exclusion regions for degenerate mass axion populations

with Nax = O(100 → 105) in the stellar BH parameter-space Regge plane. The limits

for the instability threshold are obtained by fixing the superradiant instability time

scales for each value of the orbital/azimuthal quantum numbers, l = m = 1 to 5

equal to τSalpeter defined in Eq. (6.108) using a fixed axion mass of µax = 10−18.5eV.

The orange data points are the mass-spin estimates of AGN SMBH candidates

detailed in Table 6.3.

Thus, for the degenerate case the exclusion probabilities are trivial to compute

for any value of Nax, where the contour bounds simply expand as the number of

degenerate fields, Nax increases. The rescaling of Eq. (6.88) pushes each of the

radial mode contours towards the saturation point, a∗ = 0. This effect is shown

in both BH mass regimes in Fig. 6.15 and Fig. 6.16 on the Regge plane windows

with a degenerate population of axions with masses for various orders of the axion

population size, Nax = O(1→ 10000).

6.4.5 Constraints on a Degenerate Population

For the case of stellar BHs we fix the axion mass to be, µax = 10−12.75 eV, and for

SMBHs, µax = 10−18.5 eV. It is clear from each example that an increase in Nax
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Figure 6.17: Constraints on masses of ULAs, µax, via the total exclusion proba-

bility in the 68% and 95% CIs for large numbers, Nax, of degenerate fields. Upper

panels: Dashed red lines represent the shift of the lower bounds in the 95% CI,

which decreases as Nax increases. The exclusion probability functions showing the

Nax type enhancement for the stellar BH data set are calculated using Eq. (6.133).

can lead to an exclusion on µax where there was not one in the case of a single field

(purple limits). As the instability thresholds sweep through the Regge plane, as a

function of the axion mass, the wider instability limits possess the ability to catch

lighter BHs in their exclusion bounds. It is also possible to find an exclusion from

BHs with lower spins, which may have avoided all radial mode contours, where it

takes Nax & O(105) to shift the dominant l = m = 1 mode ∆a∗ ≈ O(0.1). Higher

modes experience a greater enhancement from the presence of multiple fields. The

l = m = 5 mode in the stellar example presented in Fig. 6.15, shifts ∆a∗ ≈ 0.3 for

Nax & O(105). This difference is suppressed for SMBHs as the axion mass decreases.

Both the l = m = 1 and l = m = 5 modes receiving an approximate contour shift

∆a∗ ≈ 0.25 for Nax & O(105), as shown in Fig. 6.16.

To quantify the effect these enhancements have on the field constraints we present

the exclusion probabilities Pex(µax), for various values of log10 (Nax) for each BH mass
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Figure 6.18: Constraints on masses of ULAs, µax, via the total exclusion proba-

bility in the 68% and 95% CIs for large numbers, Nax, of degenerate fields. Upper

panels: Dashed red lines represent the shift of the lower bounds in the 95% CI,

which decreases as Nax increases. The exclusion probability functions showing the

Nax type enhancement for the SMBH data set are calculated using Eq. (6.133). In-

set: Oscillatory behaviour of the exclusion probability due to higher values of the

orbital/azimuthal quantum numbers passing over low mass SMBHs.

regime, repeating the procedure used to generate both Fig. 6.12 and Fig. 6.13, which

are displayed in Fig. 6.17 and Fig. 6.18 respectively. The example contours in both

Fig. 6.15 and Fig. 6.16 always increase in the direction of smaller values of MBH, with

an effective “lag”, and so the constraints detailed in both Fig. 6.17 and Fig. 6.18 only

broaden relative to the single field case for smaller axion masses. For SMBHs, where

the higher harmonics play a role in the exclusion, the oscillations in the exclusion

probability at high mass in the absence of sufficient BH data point densities, are also

mildly affected. This is shown in the inset of the left panel of Fig. 6.18. Extremely

large values of Nax quench the oscillations from the instability bounds of the higher

order modes, saturating the upper bounds on the constraints. In general we find

that the 95% excluded regions for µax, for the case of a degenerate population of

axions change by less than an order of magnitude compared to the results for a
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single field when Nax . 105. This shows that any increase in the superradiance rate

for multiple fields, i.e. the rate sum found in Eq. (6.68), can be virtually neglected

to leading order when computing the multi-field exclusion probability bounds for

sufficiently non-interacting fields, even in the most extreme cases presenting a very

large population of degenerate mass superradiant fields. Given the extreme number

of axions, along with the singular nature of the mass spectrum required for any

significant effect, we can assume from now on that superradiance rate mixing and

multi-field effects defining modifications to the contour bounds in the Regge plane

offer highly suppressed contributions.

6.4.6 A Non-degenerate Axion Mass Population

For a non-degenerate population with masses defined from a models matrix eigenval-

ues, spectral correlations must be accounted for. In the following section we detail

the considerations which must be made in this case and the simplifications we make

to our mass distribution prior.

6.4.6.1 Correlated Eigenstates

Individual eigenvalue statistics naturally stem from our understanding of gap prob-

abilities, providing insight into the fine structure of the spectrum of study [46, 505,

754, 939]. The following points are important for the analysis conducted and the

results presented in the following section (Section 6.4.6 and specifically the results

displayed in Fig. 6.25). The features of RMT covered in both Section 4.1 and Sec-

tion 4.3.1 allow us a nice picture of the limiting density functions we may wish to

use when assigning priors to parameters in our models. In the context of random

ensemble modelling there are two types of correlation we must account for however.

The first concerns density correlation functions which can be approached on either

global or local scales. The second, and those relevant to the discussions here, are the

correlations involving individual eigenvalue statistics. These are often represented
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using spectral features such as their distribution or spacing. A common approach

to evaluating these features of local correlations are gap probabilities, that is the

investigation that a certain interval is void of any eigenvalues. Consider a general

joint probability density function for N eigenvalues,

∫ λ+

λ−

dλ1 . . .

∫ λ+

λ−

dλNP (λ) = 1 , (6.135)

for some choice of random matrix ensemble we may wish to consider to model the

axion parameter space. The values of λ+ and λ− represent the eigenvalue supremum

and infimum supports which determine the domain of the eigenvalues whilst fixing

the limits of integration.

As we have covered, the results of classical RMT and the nature of the matrix

eigenvalues understood through methods such as the log gas formalism incorporate

the Vandermonde determinant. This term represents the probabilistic nature it is

unlikely to find two eigenvalues in close vicinity of each other. Let us also define

the eigenvalue hierarchy, λ− ≤ λα ≤ λβ ≤ λ+ for two eigenvalues, sitting inside the

eigenvalue domain. For particular spectral statistics (individual eigenvalue prob-

abilities or correlations etc.) it is common practise to study these characteristics

through the case that all eigenvalues fall inside the domain [λα, λβ] (denoted Ṕ ),

which is understood as [827],

Ṕ (λα, λβ) =

∫ λβ

λα

dλ1 . . .

∫ λβ

λα

dλNP (λ) . (6.136)

The alternative consideration of the problem is therefore the gap probability asso-

ciated to a gap of eigenvalues (denoted P̀ ) in the equivalent domain,

P̀ (λα, λβ) =

∫

(λ−,λα)∪(λβ ,λ+)

dλ1 . . .

∫

(λ−,λα)∪(λβ ,λ+)

dλNP (λ) . (6.137)

Eigenvalue correlations determine that the relationship between these two expres-

sions is non-trivial in the case of a spectrum. The point that must be stressed here
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is that,

P̀ (λα, λβ) 6= 1− Ṕ (λα, λβ) , (6.138)

when N > 1. Using Eq. (6.138) we can at best make the approximation, P̀ (λα, λβ) ≈

1− Ṕ (λα, λβ) when N is of the order of a ‘few ’. Such correlations are defined to be

local objects. Considering eigenvalues which present a global separation as suitably

screened we can make the rough approximation of a small sample as uncorrelated.

As N increases the local statistics become ever more significant in our evaluation of

the join density function in Eq. (6.135). Beyond such an approximation the highly

correlated eigenvalues must certainly be accounted for when utilising a RMT model

directly with a large number of fields.

The probability of selecting individual eigenvalues in RMT models utilising a LSD as

a prior is therefore heavily dependant this correction. The study of gap probabilities

is central to the topic of extreme eigenvalues (i.e. λ+ or λ−) where the distribution

of a particular eigenvalue (say P (λ+)) follows by differentiation of P̀ (λ+). We have

touched on these topics and example studies in Section 4.1.6.1 and Appendix D.

Gap probabilities have been tackled with several established techniques, such as

Fredholm eigenfunctions [590, 940], linear differential equations [505] and Painlevé

transcendental equations [1266]. Indeed once we have an understanding of the spec-

tral correlations (point correlation function in Eq. (4.14) and Eq. (4.16)) often repre-

sented in terms of a kernel (Eq. (4.12)) generated by (skew)-orthogonal polynomials

(Eq. (4.10)) we can in principle define the gap probabilities (see Section 4.1.4.1). A

calculation of these of gap probabilities then lead us to distributions for individual

eigenvalues or spacings as required. Once dealing with the first gap probability a

common step is to then focus on the gap probability generating function for all

subsequent gaps [380, 423–425].

Results have been obtained for the statistical probabilities concerning multiple eigen-

values using Wishart-Laguerre matrices such as the examples (lowest eigenvalue to

second order and higher) found in Ref. [395]. Results regarding the spectral density
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of eigenvalues and gap probabilities in the Wishart-Laguerre ensembles relevant to

the models discussed in Chapter 5 can be found in the following. See Ref. [827]

for explicit results in both the correlated and uncorrelated cases (alternative and

null cases in our definitions respectivly). See also Refs. [47, 1355, 1356, 1358, 1359]

and Ref. [506] for results for gap probabilities in the correlated and uncorrelated real

Wishart-Laguerre ensemble with various considerations for the kernels involved. The

specific details of these calculations will depend on our choice of β̃, with real ensem-

bles often proving to be more technically challenging in specific regards. This is cer-

tainly true when correlations among the matrix elements are introduced [552, 1357].

Given these technical challenges presented by correlated ensembles with real entries

we will relax any consideration of local correlations and gap probabilities in the

following section. It must be stated this type of assumption that the eigenvalues

of some random matrix model can be selected by independent draws using the

ensembles LSD for a non-trivial value of Nax is in principle incorrect. To simplify

our analysis however we will adopt the assumption that our prior on the axion

masses follows the approximation discussed in Section 5.4.3 and that our draws for

multiple fields are uncorrelated. We are therefore placing constraints only on modal

functions representative of the types of liming spectra we could find in RMT models

(analogous to Poissonian type spectra) which asymptotes toward the type of prior

motivated in Ref. [107], with an assumption of statistical independence between

the axion masses. The following constraints should therefore be interpreted as not

representative of direct constraints to be placed on the number of fields determined

from the eigenstates of some random matrix ensemble model of the axiverse.

The effect of the ensemble local spectral correlation functions on the exclusion

bounds would be an interesting extension in future work and is not represented in the

integrals calculated below. A basic consideration of the local eigenvalue repulsion

could have the effect of probabilistically pushing a subsequent mass eigenstate either

in or out of the excluded regions of interest. This may therefore lead to different ex-

clusion bounds when conducting a direct analysis of RMT models and the number of
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fields they would typically exclude. The general results for anti-correlation between

gap-probabilities [939] could give interesting results in this regard. Our masses are

assumed to be represented by a sequence of real points determined by some fully

factorised function rather than those which emerge from RMT calculations directly,

offering a simple first order approximation of such an analysis.

6.4.6.2 Simplified Factorised Probabilities

There are two effects which regulate BH superradiance constraints when dealing

with an axion mass distribution. The first is the effect of rate addition, and the

second is the effect of an overlap between the mass distribution and the exclusion

probability. The results of the previous section have detailed how that even for the

extreme case of degenerate masses, this effect is virtually negligible in the exclusion

probability for µax, in the limits we are operating in. Rate addition will be even

more negligible for non-singular mass distributions of finite width, where off-resonant

superradiance rates are non-linearly suppressed. This leaves the probability overlap

as the dominant effect when considering a mass distribution of finite width.

With the effect of rate addition neglected, the exclusion probability for a mass

distribution is trivial to construct from the exclusion probability for a single mass

from the overlap integral. We use the probability that a model is allowed (Pal), since

this trivially accounts for the combinatorics, and the excluded probability (Pex) is

in turn found trivially from this. Let the expression,

Pal(µax|Nax = 1) = 1− Pex(µax|Nax = 1) , (6.139)

be the probability that a given axion mass is allowed, assuming just one axion field.

We then have that in a given model M, with one axion, the probability that some

parameters θ are allowed is,

Pal(θ,Nax = 1|M) =

∫
dµaxp(µax|θ,M)Pal(µax|Nax = 1) , (6.140)
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where dµaxp(µax|θ,M) is the probability distribution for the field mass µax in the

model. The allowed regions for a single axion were evaluated numerically in Sec-

tion 6.4.1, where the integral in Eq. (6.140) can be evaluated numerically given

p(µax|θ,M). The above trivially generalises to the case of Nax fields via the expo-

nentiation,

Pal(θ,Nax|M) =

[∫
dµax p(µax|θ,M)Pal(µax|Nax = 1)

]Nax

. (6.141)

The exclusion probability for a non-degenerate population of axion fields in a given

model is then found via the simple relationship,

Pex(θ,Nax|M) = 1− Pal(θ,Nax|M) . (6.142)

Given the previously derived exclusion functions, we now only need to define the

nature of the mass spectrum via the universality of the effective models previously

introduced, in order to constrain the number of fields we could expect in the ultra-

light sector.

6.4.6.3 The M-theory Axiverse: the QCD Axion, GUTs, and FDM

We can reduce the dimensionality of the parameter space, and simply the nature

of the priors placed on the LSD function of the axion mass matrix by considering

the unified approach for the three model classes defined in Chapter 5, using the

methods detailed in Section 5.4.3. The log-normal distribution (Eq. (5.132)), cen-

tred on a particular mean mass scale µ̄ax, with some variance σ2, provides a useful

benchmark, covering each different type of model. For small σ, recall it resembles a

degenerate spectrum, like the models in Section 5.2.3. For large σ the spectra are

approximately log-flat, representing the epistemic priors of Section 5.1.2, given the

limiting nature of the upper and lower bounds which define the ultralight sector.

Finally any intermediate values of σ are statistically similar to eigenvalue distribu-
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tions found in both the RMT axiverse (Section 5.2) and M-theory random matrix

model (Section 5.3). Therefore by adopting the combined approach introduced in

Section 5.4.3, we now parameterise our constraints in terms of a distribution fully

determined by its first two centralised moments, its limiting shape now fully log-

arithmically symmetric about some phenomenologically characterising mean scale.

In Fig. 6.25 we present the 95% CI excluded region defined in the (σ,Nax) model

hyperplane, using the log-normal distribution across a range of central values. For

low-energy concerns we will focus on the case of reproducing the three previously

covered phenomenological scenarios of interest which we recall here for convenience,

realised approximately from this simple model for the random matrix and M-theory

axiverse.

As we have previously covered, the M-theory formulation of the low energy axiverse

with successful GUT scale unification predicts the existence of an axion with an

associated mass scale,

µax,GUT ≈ 10−15 eV , (6.143)

which arises from fixing a single modulus to give the correct GUT scale coupling,

αGUT ' 1/25, associated to a three-cycle with a volume, VX ' 25 in string units.

We explore this possibility by fixing the log-normal spectral mean to,

log10 µ̄
GUT
ax = −15 . (6.144)

The FDM model [722, 728, 914, 1078, 1152] covered in Section 2.8.3 posits that DM

composed of axions with mass,

µax,FDM ≈ 10−22 eV , (6.145)

and possesses certain desirable properties that could lead to it being favoured over

standard cold DM by observations of galactic structure. This scale is the lower

bound on standard FDM models currently not probed by superradiance effects (see
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Figure 6.19: Probability of exclusion represented as a function of the dimensionless

variance, σ, defining the mass spectra in the RMT axiverse for Nax = (100 → 103).

These constraints are for the scenario in which the mean of the mass spectra is fixed

according to Eq. (6.145) in order to maximise the probability of drawing a desired

axion mass associated to models of FDM, as detailed in Section 6.4.6.3. In the limit

σ � 1 the total probability for Nax = 1→∞ converges to zero as the spread crosses

the bounds probable by BH spin measurements. The behaviour in the limit σ � 1

is determined by the accuracy of the available BH mass-spin measurements.

discussions in Section 6.4.7). We model this by fixing the log-normal spectral mean

to,

log10 µ̄
FDM
ax = −22 . (6.146)

The QCD axion [1036, 1335, 1353] mass is given by,

µax,QCD ≈ 6× 10−10 eV

(
1016 GeV

fa

)
. (6.147)

In order to realise the QCD axion in M-theory, some light eigenstate in the “pure

M-theory” spectrum should receive its mass dominantly from QCD instantons. Fur-

thermore, the VEV of this field should be not far displaced from θ = 0, to provide

a valid solution to the strong-CP problem. These two conditions together require
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Figure 6.20: Probability of exclusion as a function of the dimensionless variance, σ

defining the mass spectra in the M-theory axiverse for Nax = (100 → 103). Left panel:

These constraints represent the scenario in which the mean of the mass spectra is

fixed according to Eq. (6.143) in order to maximise the probability of drawing a

desired axion mass associated to models of GUT in the M-theory axiverse. Right

panel: These constraints represent the scenario in which the mean of the mass

spectra is fixed using Eq. (6.149) in order to maximise the probability of drawing a

desired axion mass associated to models of the QCD axion of the Standard Model.

In the limit σ � 1 the total probability for Nax = 1 → ∞ converges to zero as

the spread crosses the bounds probable by BH spin measurements. The behaviour

in the limit σ � 1 is determined by the accuracy of the available BH mass-spin

measurements.

that there is at least one eigenstate in the pure M-theory spectrum with [31],

µax . µax,low ≈ 10−14 eV , (6.148)

where µax,low represents an upper bound mass scale fixed by the theory. We model

this by fixing µ̄ax and σ such that µax,low is within 95% of the probability at the

lower end of the distribution after Nax draws. This fixes µ̄ax(σ,Nax) in terms of the

standard error functions (erfc),

Naxerfc

[
− log10(µax,low/µ̄ax)√

2σ2

]
= 0.1 . (6.149)

Using the intuition above, one linear combination of axions receives its mass from

QCD instantons. We therefore must remove one axion from the M-theory distribu-
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Figure 6.21: Exclusion bounds for the allowed number of fields, Nax, as a function

of the distribution width, σ, represented by 68% (dotted line), 95% (solid line) and

99.7% (dashed line) limits. Each example represents the phenomenological models

defined by Eq. (6.143) (GUT), Eq. (6.145) (FDM), and Eq. (6.149) (QCD). Regions

above the contours are excluded. The red region represents the intersection of the

95% exclusion bounds which excludes Nax & O(30) for σ ∼ O(1) for each of the

three examples.

tion and replace it with the QCD axion. The total probability that the QCD axion

in the M-theory random matrix axiverse is allowed based on BH superradiance data

is thus,

Pal(σ,Nax) = P
{∫

dµax p[µax|σ, µ̄ax(σ,Nax)]Pal(µax|Nax = 1)

}Nax−1

, (6.150)

where,

P = Pal(µax,QCD|Nax = 1) . (6.151)

Constraints on the distribution parameters of each of these benchmark models are

displayed in Fig 6.19, the left panel of Fig 6.20 and right panel of Fig 6.20 for the

FDM, GUT and QCD scenarios respectively. While none of these models are ruled

out for a single axion, in all cases the exclusion probability starts to become signif-
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Figure 6.22: Constraints on the masses of ULAs in the bounds of Eq. (6.105) plus

the additional limits from M87* approaching the FDM domain using Eq. (6.155)

and Eq. (6.156). The singular field bounds are determined by the total probability

of exclusion calculated using the methodology in Appendix J via Eq. (J.1), as in

Fig. 6.9. The external lower axis represents the approximate mass bounds of known

BHs plus UMBHs, neutron stars (NS) and stellar (S) objects, used to probe specific

bosonic field mass bounds. The upper axis represents the generalised volume of the

corresponding three-dimensional submanifolds in eleven-dimensional Planck units

defined in Eq. (5.104), related to the geometrical axion mass scales of M-theory in

the lower axis. The black dotted line defines the geometrical axion mass scale and

generalised volume associated to gauge coupling unification and the visible sector.

Finally the inset colourbar represents the associated axion decay constant scale for

the QCD axion determined by the relationship to its mass defined in Eq. (6.147).

icant for non-zero distribution widths and for large numbers of fields. In all cases,

a clustering or multi-component structure to the effective singular phenomenologi-

cal field shows the maximum allowed value of Nax increases only for very large σ.

For large σ the distribution is effectively log-flat over the ultralight sector of axion

cosmology, with respect to the data exclusions, where increasing the width simply

reduces the probability of producing an overlap.

The GUT model has a small exclusion probability at zero width due to the large

mass errors on the lightest SMBHs (NGC 4051 and MCG-6-30-15). The GUT

model is excluded at better than 95% CI for all widths, σ < O(100), for Nax & 100.
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The FDM model is excluded at better than 95% CI for all widths 1 . σ . 103 if

Nax & 100. The QCD axion model is the least constrained by the data. The mass of

the QCD axion with fa & 1017 GeV is not excluded itself by BH superradiance, nor

is the light mass µax,low, required from the M-theory part of the spectrum. There is a

small range of intermediate widths where the distribution does overlap the excluded

region, excluding 0.2 . σ . 4 if Nax & 102 at 95% CI while σ & 4 is allowed for

all Nax < 103 considered. A combined picture of these the bounds representing

the 68%, 95% and 99.7% CIs is shown in Fig. 6.21 in the (σ,Nax) plane. The red

bounded region represents the intersection of the 95% exclusion bounds for the each

of the scales in Eq. (6.143), Eq. (6.145), and Eq. (6.149). For O(1) values of the

distribution spread, fixed by σ, each of these phenomenological models is excluded

for spectra consisting of Nax & O(30).

In Fig. 6.22 we display each of these phenomenological models in the context of

the full constrains on ULAs. The lower limit on the bounds stops at the boundary

of ultramassive BHs (UMBHs) with masses & 1010 M�. The upper bound on the

constraints enters the domain of the QCD axion as represented by the colourbar

spectrum for sub-Plankian decay constants and masses determined by the relation-

ship in Eq. (6.147). We should proceed with caution however when considering the

constraints on the lightest possible QCD axion masses as these are associated to

astrophysical mass scales of neutron stars and stellar mass objects. Using the sta-

tistical methodology in Appendix J we find the approximate upper bound on the

phenomenological QCD axion decay constant at the 68% CI as,

fQCD
a . 3× 1017 GeV . (6.152)

Finally when considering the M-theory models presented in Section 5.3, the ultra-

light bosonic masses stemming from the real components of the moduli superfields

and the extra-dimensional compactification process are proportional to the gener-

alised volumes of the corresponding three-dimensional submanifolds. Using the mod-
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els detailed in Refs. [28, 29, 31] we can place approximate bounds on the volumes of

the threecycles which may be motivated in these phenomenological supersymmetric

models. Using the bounds displayed in Fig 6.22 we can roughly exclude volumes

in the ranges 23.75 & VX & 21.85 and 29.25 & VX & 25.75 related to the field

mass bounds defined in Eq. (6.132) and Eq. (6.130) respectively. Using the missing

constraints which stem from absent IMBH measurements we can place bounds on

the volume of the three-dimensional submanifold which supports the visible sector

and therefore ultimately bounds on the grand unification coupling constant in these

models (see Eq. (5.127)) as distinguished by the orange and red dashed lines for

the 68% and 95% exclusion limits respectively. These are loosely constrained at the

68% CI to the bounds,

23.75 . VX . 25.75 , (6.153)

1

23.75
. αGUT .

1

25.75
, (6.154)

representing a possible realisation of the G2-MSSM unification coupling window.

6.4.7 FDM Probes Via Superradiant Instabilities of M87*

6.4.7.1 The Event Horizon Telescope and 21cm Observations

Returning full circle to the illustrious efforts to capture the first image of a BH,

displayed in Fig. (6.1), also provides an interesting insight into the possible future

of BH observational data on axion models. The analysis below is a small extension

to the work found in Ref. [1219]. Our analysis in the previous sections chose to

include well defined SMBH data from Suzaku reflection fitting techniques. Recents

attempts have been made to place bounds on the non-dimensional spin parameter

of M87*, which can be partnered with the detailed mass bound placed on the BH
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Figure 6.23: Constraints on the masses of ultralight FDM axions, µFDM
ax , for sin-

gular fields determined by the total probability of exclusion calculated using the

methodology in Appendix J via Eq. (J.1). Exclusion bounds are presented in the

68% and 95% CIs as a function of µax with orange/red lines representing the upper

and lower limits of the 68%/95% intervals. These probability limit functions are

determined using the single BH M87* (Fig. 6.1), with the mass and spin of the BH

defined using Eq. (6.155) and Eq. (6.156) respectively. The shaded green regions

represent example FDM bounds from global 21cm signal observations, defined by

the upper (dotted line) and lower (dashed line) limits of Eq. (6.157).

during the imaging process. The current mass bound on M87* is [52],

MM87∗

BH = (6.5± 0.7)× 109M� , (6.155)

with other previous efforts producing similar bounds [591, 994, 1317]. Recently it

has shown through considerations of the warped spacetime region surrounding the

BH and its observed twisted light suggest the spin of M87* is,

aM87∗

∗ = 0.9± 0.1 , (6.156)

This is also in agreement with other independent analyses which have found the spin
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to be bounded or closely following these limits [147, 463, 464, 529, 969, 988, 1241].

In particular the recent analysis conducted by the Event Horizon Telescope, partner-

ing the mass measurements in Eq. (6.155) has currently concluded an approximate

estimate of |aM87∗
∗ | & 0.5 [52, 976] for the spin of the BH. Constraining the spin

from the imaging process is difficult, as the the radius of the measured photon ring

in Fig. 6.1 is not dependent on the value of the spin, apart from in the case of an

extremal BH. The initial assessments of the nature of the spin of M87* do how-

ever, suggest it appears to possess sufficient spin in order to potentially produce

interesting constraints on ultralight axionic DM.

Recently it has been claimed that the global 21cm signal [263], which represents

strong evidence that the Universe was undergoing reionisation at redshift zre ≈ 17,

places a lower bound on the FDM mass [861, 1155],

µax,FDM & (5 − 8)× 10−21 eV . (6.157)

Likewise Ref. [912] shows how a dynamical analysis of a central star cluster in the

formation of Eridanus-II could constrain the FDM axion mass to values as high as,

µax,FDM & (0.6 − 1.0)× 10−19 eV , (6.158)

with the complete window falling between 10−21 eV . µax . 10−20 eV, which is

generally affected by narrow band resonances. These result are extremely interesting

since, if they are to place confidence in their accuracy, it significantly shrinks the gap

between FDM bounds from BH superradiance and structure formation. In the con-

text of the present work, if FDM is realised from a mass distribution, then respecting

the reionisation bound and BH superradiance demands an extremely narrow distri-

bution with a small number of light fields. If the gap between FDM constraints

from BH superradiance and reionisation is closed, either by the measurement of

spins of the most massive SMBHs, or improvements on the lower limit to zre, then

FDM with no self-interactions will be completely excluded. Rescuing FDM from
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Figure 6.24: Constraints on the masses and decay constants (self-coupling) of

ultralight FDM axions, µFDM
ax , for singular fields determined by the total probability

of exclusion calculated using the methodology in Section 6.3.1.1 and Section 6.3.1.2.

The shaded blue bounds represent the 68% exclusion bounds, with the green and

orange regions representing the 95% and 99.7% limits respectively for the three

heaviest BHs, Ark 120, Fairall 9 and M87*. The right axis represents the limits on

the quartic coupling of ULAs, λ ≡ µ2
ax/f2

a . The bounds stop for lower values of fa

where the axion cloud undergoes a bosenova before extracting sufficient spin from

the BH.

BH superradiance constraints in such a case would require self interaction strengths

corresponding to decay constants fa . 1016 GeV. Low decay constants open the

door to new FDM phenomenology [431, 699, 850], but this may become increasingly

hard to realise in small-volume string compactifications.

6.4.7.2 Constraints on Fuzzy Dark Matter

As an initial analysis of how accurate measurements of M87* could place strong

bounds on the mass of a FDM particle, we use the methods of Appendix J and the

same approach taken in Section 6.4.1 to calculate the bounds on the axion mass

from superradiance and M87* in the weakly interacting limit. Using the fiducial
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prior on the spin defined in Eq. (6.156) and the mass measurements from the Event

Horizon Telescope in Eq. (6.155), the calculated constraints are shown for the case

of a single field in Fig. 6.23. The structure of the exclusion function comes from the

lobes of each l = m mode, with only the l = m = 1 and l = m = 2 modes placing

bounds above the 95% CI. The shaded green regions represent the limits on FDM

defined in Eq. (6.157). The magnitude of the mass of M87* is significant compared

to the heaviest BHs considered in our data set for the previously derived results.

This generates a mass hierarchy where the single field constraints also dip below the

68% CI like in the case of stellar BHs and SMBHs. The full probability exclusion

function calculated using the SMBHs detailed in Table 6.3 along with M87* is shown

in Fig. 6.22. Using the results from M87* we can loosely place bounds on FDM,

disregarding the function dip between the l = m = 1 and l = m = 2 mode bounds,

2.0× 10−21 eV . µax . 1.3× 10−20 eV , (6.159)

in the 68% CI and,

2.5× 10−21 eV . µax . 8.0× 10−21 eV , (6.160)

in the 95% CI. In Fig. 6.24 we present the bounds from M87* in the interacting

limit for the decay constants and field masses using the bosenova limits and the

methods detailed in Section 6.3.1.1 and Section 6.3.1.2. The lower bound on the

axion decay constant is defined when the bosonic self-coupling is strong enough to

cause a bosenova, which occurs around, fa ∼ 1015 GeV for the heaviest BHs we

consider. This relates to a quartic coupling exclusion of,

1068 . λ(1015 eV/µax)2 . 1073 . (6.161)
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The example bounds in Fig 6.24 from Ark 120 are,

Ark 120





6.1× 10−20 eV . µax . 1.6× 10−19 eV ,

1.5× 1015 GeV . fa .MPl ,

and from Fairall 9 are,

Fairall 9





4.1× 10−20 eV . µax . 5.7× 10−20 eV ,

5.6× 1015 GeV . fa .MPl .

The FDM self-coupling bounds, which are partnered with the bounds in Eq. (6.159),

from M87* are,

2.0× 1015 GeV . fa .MPl . (6.162)

Increased accuracy in the measurements of M87* along with an identification of

further SMBHs with masses of the same order or higher offers an intriguing future

prospect for constraints on FDM models.

6.5 Discussion and Conclusions on Black Hole

Superradiance

We have shown in this chapter how BH superradiance can place strong constraints

on the possible existence of light bosonic fields with small self-interactions, and

in particular on the number of axion-like fields present in effective models of the

axiverse. Many authors have considered these constraints for the case of a single

new light field. The excluded ranges of the axion mass from our analysis are,

7× 10−14 eV . µax . 2× 10−11 eV ,

7× 10−20 eV . µax . 1× 10−16 eV ,

2× 10−21 eV . µax . 1× 10−20 eV .
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Figure 6.25: Summary of results displaying contours for the 95% exclusion regions

using a log-normal axion mass distribution, as a function of the width, σ, and number

of fields, Nax, for various central mass mean scales, µ̄ax. Regions above the contours

are excluded. Certain ranges of σ correspond closely to RMT and M-theory mass

spectra, and can also be used to approximate the log-flat or degenerate spectrum.

For 1 . σ . 20, Nax & 30 is excluded for an extremely wide range of central masses.

Constraints neglect axion self-interactions and apply approximately in the limit of

large decay constants, fa & 1014 GeV.

A model with multiple axions is excluded if just one field lies in the above ranges.

We have studied this possibility, and used BH superradiance to exclude certain

distributions of axion masses, representing both finite width spectra which are loga-

rithmically symmetric and non-symmetric about the mean distributions scale. The

constraints quickly become more severe with larger numbers of axion-like fields due

to the increased probability of drawing an outlying field with a mass susceptible

to superradiance constraints. This allows us to place constraints on the number of

axion-like fields, Nax we could expect to see in the ultralight sector of cosmology.

Models for axions coming from string theory and M-theory typically involve many

axion-like fields. These fields have their masses determined by microscopic quantities

related to the geometry of the compact space. Their masses, however, are expected
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to follow particular statistical distributions independently of the microscopic details.

We have considered different distributions ranging from log-flat to log-normal, us-

ing BH superradiance to bound both the parameters of the distribution, and more

significantly, the number of light axions within those distributions.

Constraints on Nax from a process such as BH superradiance, which relies only on

the existence of the vacuum fluctuations of the given field, are extremely powerful

and could potentially be used in this context to bound the dimensionality of phe-

nomenologically consistent moduli spaces in string/M- theory. Only a small num-

ber of fields should obtain masses anywhere in the BH superradiance region from

10−10 eV . µax . 10−20 eV, which can be accommodated with a single very wide

distribution σ & 30, or bimodal distributions containing only very light or relatively

heavy axions, forming the natural occurrence of mass hierarchies. Our analysis has

neglected axion self-interactions and complications from non-linearities, which can

shut off or significantly suppress the BH superradiance process if they are strong.

We also have not considered partnering these limits with other constraints, for ex-

ample those coming from the allowed relic abundance as discussed in the following

chapter. The present work in this chapter is more model-independent, since it does

not rely on any cosmological assumptions, and applies to any model for light scalars

with sufficiently small self-interactions, allowing for the formation of a maximally

occupied axion-scalar cloud.



Chapter 7

The Spectrum of the Axion Dark

Sector

“I have seen the dark universe yawning Where the black planets roll

without aim, Where they roll in their horror unheeded, Without

knowledge, or lustre, or name.”

Nemesis

Howard Phillips Lovecraft

7.1 The Dark Universe

In this chapter we present a stochastic analysis using both frequentist sampling

and Bayesian methods to assess axion field evolution under the assumption their

defining cosmological parameter scales are determined by a selection of the mod-

els introduced in Chapter 5. We will address their potential to provide multi-field

solutions to the two defining paradigms of the dark sector of the standard cosmol-

ogy. We shall then, refer liberally to the dark sector of axion cosmology as axion

contributions to the approximate 95% of the total energy density of the Universe

we have no direct observational or leading theoretical framework for. This could

be either as an effective DM fluid component or an effective quintessence like field,

413
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each contributing either a minor fraction or O(1) contribution to their respective

dark sectors. Specifically we will look at calculating the background cosmological

(quasi-)observables when these models contain a large number of fields. Each of the

cosmological (quasi-)observables we need to consider relate to the particular cos-

mology we wish to realise via the relic density of a collective population of fields.

In order to introduce an effective dark fluid component comprised of nax fields we

can define two principle types of cosmology to explore. From this point on through-

out this chapter we shall refer to the number of axion fields using the lower-case

notation, nax, as a reference to the number of fields we sample in our model.

7.1.1 Axion Cosmologies

Each cosmological realisation is defined via the fixed contributions found in Sec-

tion 1.4.2 to the total energy density at the present time:

• N-ULA DM Cosmology - We denote the effective DM fluid density as ΩDM,

coming from a population of axions in the low energy phenomenology. The

total matter density parameter is defined by the summation,

Ωm = Ωb + ΩDM , (7.1)

where we decompose the total energy density of the universe into four compo-

nents,

Ω = Ωb + ΩDM + ΩΛ + Ωr . (7.2)

In order to realise standard models of concordance cosmology discussed in

Chapter 1, in Section 7.2 we initially look for values of ΩDM falling inside the

the rough observationally suggested bounds,

0.2 . ΩDM . 0.4 , (7.3)
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in order to probe the statistical nature of our effective models. We will then

address proper constraints via observables subsequently in Section 7.3.

• N-Quintessence Cosmology - We denote the effective DE density as ΩDE com-

ing from the vacuum energy of a collective population of axions. In this setting

we fix ΩΛ = 0, decomposing the total density of the universe into the three

components,

Ω = ΩDE + Ωm + Ωr . (7.4)

Just as before, to probe our statistical models we look for values of ΩDE falling

in the the rough experimentally suggested bounds,

0.6 . ΩDE . 0.8 , (7.5)

required to reproduce valid effective cosmic acceleration at the current time.

The general field of axion phenomenology possesses a wide range of methodolo-

gies used to constrain many orders of magnitude for the field scalings defining the

effective field theory, a substantial portion we explored via superradiance in Chap-

ter 6. Perhaps one of the most significant results for ultralight phenomenologies

considers the total fraction, axions in the dark sector can contribute to the present

cosmological energy density as their masses approach the Hubble scale today. In

Ref. [710] it was shown that axion fields in the spectrum are heavily constrained in

the approximate mass bound,

10−32 eV . ma . 10−25.5 eV . (7.6)

Defining the ULA dark sector density as ΩULA and the total dark sector density

as ΩDS, then considering the mass region in Eq. (7.6), the maximum allowed axion

contributions are limited at the 95% CI to [710],

ΩULA

ΩDS

≤ 0.05 , (7.7)
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ΩULAh
2 ≤ 0.006 . (7.8)

These constrains come from probing axionic contributions to the dark sector via the

construction of an eight-dimensional observable parameter space used to explore

model degeneracies via CMB and LSS data. We shall use the observable constrains

to factorise each of the cosmologies we are considering above to abide by the fol-

lowing approximate mass bounds for fields present in the spectrum. Under these

considerations if axions are to account for the total DM, the axions entering the

cosmic horizon should have field oscillations onset in the epoch of radiation domi-

nation. This requires at least one axion with a mass larger than the Hubble rate at

matter-radiation equality which fixes the following empirical spectrum mass limit,

ma & 10−27 eV . (7.9)

The energy-density of fields above this limit, given the standard instanton form for

the potential, will scale as non-relativistic matter throughout the matter dominated

era, fixing each field in the spectrum as a potential plausible DM candidate. The

observational bounds in Eq. (7.6) fix axions in our empirical models behaving as DE

to be limited to masses defined by the upper bound,

ma . 10−32 eV . (7.10)

7.1.2 Late Time Evolution and Initial Model Conditions

We will focus mainly on the case of late time effective cosmic acceleration and dis-

regard the nuances behind fine tuning and models of early DE. In order to output

dark sector densities for our defined effective random matrix models, we numeri-

cally solve the equations of motion, defined in Eq. (2.89), for nax axion fields with

fixed initial conditions, evolving the solutions forward in time using a time stepped

numerical procedure. The field equations considering the standard cosmology can
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be found throughout Chapter 1. We rescale each of the canonical fields in Planck

units where our cosmic time, t, is the independent variable measured in units of the

present day Hubble constant,

MH =
H0

h
= 2.13× 10−33 eV = 100 Km s−1 Mpc−1 . (7.11)

This scale naturally sets the normalisation scale for axion masses in our stochastic

spectra, each parameterised in units of MH . It also fixes the scales for the remain-

ing cosmological density parameters, Xi appearing in the Friedmann constraint in

Eq. (2.87) which are expressed in terms of their density today as ΩXih
2. The initial

and final conditions for our cosmological evolution are fixed using the photon tem-

perature as a cosmic clock. The total energy density for the full relativistic degrees

of freedom, ρr is,

ρr =
π2

30
g?(T )T 4 , (7.12)

where g?(T ), defined in Eq. (1.74), counts the total relativistic degrees of freedom

(e.g. Ref. [818]). We fix the point in which we sample the constituent density

components from the CMB temperature [541],

TCMB = 2.725 K . (7.13)

This normalises the cosmic scale factor to,

a(TCMB) ≡ a(tToday) = 1 , (7.14)

found by integration of the Friedmann constraint. Any analysis of the density com-

ponents is simplified by considering the scales where we can treat the total relativistic

degrees of freedom as a constant. To account for this the axion field equation so-

lutions must begin after neutrino decoupling. The fits in Ref. [1329] determined by

Eq. (1.73) and Eq. (1.74), suggest this occurs at the approximate initial value for
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the temperature,

Ti ≈ 23 keV , (7.15)

as shown in Fig. 1.4. This corresponds to the approximate initial value of the comic

scale factor,

a(ti) ≈ 10−8 . (7.16)

After this time, the radiation energy density evolves as,

ρr(a) = 3M2
HM

2
Pl

Ωrh
2

a4
, (7.17)

where at the current time we have,

Ωrh
2 = ρr(TCMB)/(3M2

HM
2
Pl) = 4.16× 10−5 . (7.18)

Assuming radiation domination at Ti this fixes the initial physical time as,

ti = (a2
i /2)(Ωrh

2)−0.5 . (7.19)

The effective cosmological constant is set with the fixed initial physical density ΩΛh
2.

The total baryonic and DM density evolves as,

ρm(a) = 3M2
HM

2
Pl

Ωmh
2

a3
, (7.20)

where the minimum value for Ωmh
2 is defined by the physical baryon density [37],

Ωbh
2 = 0.022 . (7.21)

Recalling that in the homogeneous limit, the energy-momentum tensor for the axions

is described by a perfect fluid with the components T 0
0 = −ρ and T ij = Pδij, each

expressed in Eq. (2.94) and Eq. (2.95). The pressure of the matter, radiation,

and cosmological constant terms in our system of equations are determined by the
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equations of state, Pi = wiρi, using the fixed values wr = 1/3, wm = 0 and wΛ = −1

for each of the relevant components. The total pressure is then used to fix the nature

of expansion at the current time, appearing in the acceleration equation,

Ḣ +H2 =
ä

a
= −1

3

∑

i

(ρi + 3Pi) , (7.22)

with an accelerating universe required to satisfy the condition ä > 0. We determine

if a realisation of the axiverse allows for an accelerating universe via the summation

in Eq. (7.22). For each individual axion mass satisfying the oscillatory condition,

H & ma the axion field velocity remains negligible via Hubble friction. In the limit

the field mass can be entirely neglected, the attractor solution is φ̇ = 0, fixing the

initial conditions for the fields.

7.1.3 Bounds on the Axion Masses

This assumption also sets an upper limit for the axion masses that we can consider

for consistency at any given initial temperature. Demanding that each of our initial

masses follow the bound, ma < 3H(Ti), fixed by neutrino decoupling, we find the

approximate upper limit for the largest axion mass in the spectrum as,

ma . 4× 10−19 eV . (7.23)

The upper bound on the axion mass is also closely related to the baryon Jeans scale,

and considerations regarding cosmological structure formation and reionisation. If

we were to extend our initial starting point to higher temperatures, and thus incor-

porate higher axion masses into the spectrum, we are required to model the evolution

of g? above neutrino decoupling (Fig. 1.4). We shall exclude this possibility for a

number of reasons. The exact content of the particle bath is not known beyond

scales surpassing orders a few TeV where above ≈ O(1) MeV (BBN), the Universe

need not have been radiation dominated, and there is currently no observational
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necessity to assume this is the case. In string/M- theory models, we also generally

expect a non-thermal cosmology at early times, dominated by the energy density of

moduli coherently displaced by vacuum fluctuations during inflation. The matter

dominated phase is known to alter the relic densities of axions that begin oscillating

during that period [31, 149].

Furthermore, the period of moduli displacement, before the moduli have decayed,

breaks down our treatment of the axiverse where our effective theory is not a valid

description, since the Kähler metric and therefore effective kinetic matrix is dynam-

ical. For simplified effective field theories to hold, as a valid approach to axiverse

cosmology, we must consider each axion in the spectrum to still be in slow-roll after

the lightest modulus field X0 has decayed. This defines the ultralight domain for

axions in the dark sector,

n−1
ax 2.13× 10−33 eV . ma . 4× 10−19 eV , (7.24)

where n−1
ax is a suppression factor determining the nature of ultralight and irrelevant

hyperlight fields in N-quintessence models. Axions which violate the bounds in

Eq. (7.24) are removed from the spectrum for a consistent treatment of the ultra-light

axiverse dark sector. Numerically, we locate axions in the spectrum violating these

bounds, and ensure our initial conditions set the realignment energy density of these

fields to remain at zero. Theoretically this form of analysis can be realised assuming

a large quantity of entropy production and/or a short period of inflation caused by

the modulus-dominated epoch prior to BBN. This will dilute the population of heavy

axions that begun oscillating prior to BBN. Such scenarios are relatively natural in

the context of a string/M- theory cosmology with many moduli [31, 557, 770, 839].

A more problematic, but theoretically motivated realisation to this issue comes

from any heavier axions decaying rapidly prior to BBN, where they contribute to

fixing the correct radiation content and baryon density. Axion decays through the

canonical two photon coupling are comparatively slow (see e.g. Ref. [946]), and
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decays before BBN require ma & 1 keV. For axions respecting our bounds to decay,

we would require much larger than expected couplings and rapid decay channels and

so this should be seen as a potential but unlikely channel to consider the ultralight

sector only. Alternatively, we could assume a gapped spectrum with any axions

violating our bounds taken to have their masses lifted to a much higher scale to

allow for decays through standard channels. Another mechanism to remove any

heavy axions which we have previously discussed and demonstrated in Fig. 2.4 is

a regulation of the density dissipation via a multi-instanton potential [765] which

causes the misalignment population to redshift faster than standard a−3 scalings due

to the non-quadratic potential minimum. Whether or not the appearance of such a

multi-instanton potential occurs naturally in string/M- theory models is not clear,

operating currently as an interesting effective analytical device for field evolution.

The upper bound in Eq. (7.24) far exceeds any axion masses probed by our simple

DM constraints and the hyperparameters for each class of model we consider, thus

our model of the defined Universe sits above a few keV, not requiring a full treatment

for heavy axions. We only make use of a constant value for the relativistic degrees

of freedom, g?, which does not affect our results.

Despite the construction of the axion mass matrix guaranteeing positive definiteness

mathematically, and thus mass eigenstates satisfying m2
a > 0, the huge spread in

the elements of the mass matrix in the M-theory random matrix model can lead to

numerical precision errors. These errors represent the existence of tachyonic states

in our model, m2
a < 0. We have not been able to overcome this issue of numerical

precision within the confines of our code so we remove these tachyonic states from

the spectrum just as we remove the heavy states, where they do not contribute to

the energy density in the effective model. Fortunately, the negative eigenvalues are

guaranteed to be those for which the true values are smallest in absolute value. Since

the true eigenvalue is ma � H0 and the field displacements φini
i ∼ O(MPl), even

with the correct (positive) eigenvalue these states would not contribute significantly

to the spectrum, and so removing them also does not affect our results.
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7.1.4 Axion Field Oscillations

In our analysis each realisation of the Universe begins to evolve once we define each

of our initial conditions for the fields, where cosmic expansion causes the value of

H to decrease monotonically. When any individual field from our initial sampled

spectrum satisfies the condition ma & H, the field begins to roll towards its potential

minimum defining the initialisation of coherent oscillations for the system. These

solutions satisfy,

φ(a > aosc) = φ(aosc)

(
a

aosc

)− 3/2

cos(mat) , (7.25)

where aosc, the cosmic scale factor when the field begins to oscillate, occurs at ap-

proximately H(aosc) ≈ ma. As H decreases further, the time scale of the oscillation

induces very small time steps in our numerical integrator of the order (∼ m−1
a ),

much smaller than the dynamical evolutionary time, tdyn ≈ H. This is computa-

tionally prohibitive to integrate directly given the logarithmic hierarchical nature of

the axion mass distribution. Although the axion field oscillates, the energy density

does not, and therefore obeys the simple scaling solution,

ρa(a > aosc) = ρ(aosc)
(aosc

a

)3

. (7.26)

The pressure of the field oscillates with a frequency P ∼ cos(2mat), which leaves

us with a time-averaged equation of state 〈wa〉 = 0, and so we can safely neglect

this for our purposes. See Refs. [82, 229, 785, 1070] for non-trivial concerns over

these pressure terms. The dynamical time scale in our integration is fixed to be

of the order the Hubble scale today, MH (Eq. (7.11)). In order to be able to inte-

grate models with ma � MH , we approximate the axion evolution for time scales

t > tosc. The method we choose is simply to set wa(t > tosc) = 0, where the energy

density for heavy axions evolve and scale exactly as a−3, at late times. An example

alternative method uses a change of co-ordinates in the axion phase space, detailed
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and implemented in Ref. [1283]. We define tosc by allowing the equation of state

in the full solution to oscillate (cross zero) a fixed number of times denoted by the

parameter, ncross. We then define tosc using ncross. This is an accuracy parameter

in our numerical procedure, with larger values of ncross leading to more accurate,

but considerably slower, numerical computations. We find our results for derived

quasi-observables converge above ncross = 3, so we fix ncross = 5 in the examples

and constraints discussed in this chapter. Care must be taken, however, as using

sufficiently large values of ncross, while improving the numerical integration accuracy,

this can incorrectly assign DM axions to the DE density for the quasi-observables.

Fig. 7.1 shows the effect of this procedure for the collective equation of state for

example multi-field evolutions involving nax = 10 axions, both for DM and DE

cosmologies in different RMT models. The dashed and dotted lines detail our ap-

proximations, where we show the effect on the collective equation of state for the

axion population when we restrict the individual equations of state for each field

to a fixed number of oscillatory crossings. The amplitude of the total equation of

state is damped from the oscillatory effects for multiple fields, with non-degenerate

scalings in the population, oscillating between the values of ≤ 1 and ≥ −1. In the

limit nax = 1 the equation of state amplitude maximises, continuing to oscillate

between -1 and 1.

7.1.5 Computing the Model Quasi-Observables

Our quasi-observables are defined using the parameter vector,

χ̄ = (Ωm, zeq, ä, h) . (7.27)

We compute in physical time, t, up to some final maximum time tf ≈ O(10) and

output a fixed number of log-spaced time steps. We then begin by locating z = 0

in the output variables. If z = 0 has not been reached in ten Hubble times (which

may occur for extreme cosmologies) our analysis outputs default quasi-observables
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Figure 7.1: Evolution of the collective axion equation of state, ωa, as a function of

the cosmic scale factor, a(t), for axions behaving as either the total DM or total DE

densities in selected different RMT models. MP-DM refers to the model presented in

Section 5.2.4.1 and LF-DE the model presented in Section 5.2.5.2.3. Each example

shows the full evolution along with the restricted evolution where the value of ncross

represents the numerical precision of the field evolution considered, where the fields

are fixed to their time averaged equation of state after a fixed number of crossings.

which lead to very low likelihoods (in particular, failing the acceleration cut). This

is equivalent to a cut on the valid age of the Universe. Having located z = 0,

computing h is trivial as it is given by the Friedmann constraint evaluated at z = 0.

Computing the other variables relies on the separation of axions into fields behaving

as DM or DE-like based on ncross. The split at z = 0 trivially gives the total matter

density, Ωm = Ωb + ΩDM. The acceleration is computed from the total pressure and

density using,

ä = −a
3

∑

i

(ρi + 3Pi) , (7.28)

where the index i runs over both the axions and the ordinary cosmological compo-

nents. The pressure for the axions with a number of crossings less than ncross are

computed directly from the fields using Eq. (2.95), while for those with crossings
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greater than ncross we fix Pi = 0. We then finally compute the value of zeq. At all

values of z the axions are split into the energy density components, ρDM and ρDE,

by selecting fields that have and have not passed the ncross criterion. We are also in

possession of the radiation energy density ρr(z) and baryon energy density ρb(z) at

every value of the cosmic redshift. We locate zeq by simply finding numerically the

point where the condition ρDM + ρb = ρr is satisfied. The value of ρDE is truncated

in the definition of equality. We also find equality using the list of output times,

rather than using interpolative functions. The location of equality depends on the

number accuracy of the output times used. In our numerical examples we consider

1000 equidistant log-spaced times steps between tini = 8× 10−15 and tf .

7.1.6 Epistemic priors on the Dark Axiverse

We begin our results by considering the analytical statistical straw-man model, fol-

lowing the epistemology of the axiverse. This model was discussed in Section 5.1.2

and serves as a baseline which to compare our physically motivated models moving

forward. The epistemic priors on the parameter space are defined by beginning in

the mass eigenstate basis where both Kij andMij are diagonal, where we only need

to define the priors on the eigenvalues directly, enforcing statistical independence.

The parameter space, represented by a N-dimensional hypercube, is fixed by the

scale limit parameters, kmin, kmax, mmin and mmax which are used to define each

phenomenology. In a Bayesian sense these could also be associated with a corre-

sponding hyperprior used to regulate the physics of scale cut-offs, i.e. heavy tail

priors to suppress values of kmax reproducing trans-Planckian decay constants. We

don’t consider this possibility here and fix the scale limits by hand at the level of

the hyperparameters.

The fixed bounds kmin and kmax in Eq. (5.27) are associated to lower and upper

bounds on general symmetry breaking scales. The upper and lower bounds, mmin

and mmax represent the fraction of the ULA mass window suited for extracting fields
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Table 7.1: The full range of parameters used in the study in this chapter, including

the cosmological input parameters along with the model dependant RMT parameters

and theoretical M-theory stochastic variable parameters. Our cosmological density

and parameter data comes from the Planck 2015 TT+lowP likelihood’s found in

Ref. [37] with our CMB temperature defined using COBE data in Ref. [541].

Parameter Definition Prior/Value Eq./Ref.

nax Number of axion fields O(1− 100) -
fa Axion decay constant O(10−4MPl −MPl) Eq. (2.83)
ma Axion mass O(10−35eV − 10−15eV) Eq. (7.24)
θi Initial field misalignment U [0, π] Eq. (5.29)
φi Initial axion field conditions Fijθj Eq. (5.66)

φ̇i Initial field derivative 0 Eq. (2.99)
Fij Decay constant matrix Model dependent Eq. (5.66)
a Cosmic scale factor [10−8 → 1] -
H0 Present day Hubble rate hMH Eq. (1.86)
MH Hubble mass scale, 100 km s−1 Mpc−1 2.13× 10−33 eV Eq. (2.87)

MPl Reduced Planck mass, 1/
√

8πG 2.435× 1027 eV -
ΩDM Axion DM density parameter [0, 1] -
ΩDE Axion DE density parameter [0, 1] -

Planck 2015 TT+lowP Parameters

Used as quasi-observable data
h Present day Hubble rate 0.6731± 0.0096 Ref. [37]
Ωm Total matter fraction 0.315± 0.013 Ref. [37]
zeq Redshift of matter-radiation equality 3393± 49 Ref. [37]

Fixed in a given model
Ωbh

2 Physical baryon density (all) 0.022 Ref. [37]
Ωch

2 Physical DM density (DE models) 0.12 Ref. [37]
ΩΛh

2 Physical DE density (DM models) 0.31 Ref. [37]
TCMB CMB temperature (COBE, all) 2.725 K Ref. [541]

RMT Models

σ2
K Kinetic matrix distribution scale [10−4MPl,MPl] Eq. (7.36)/Eq. (7.44)
σ2
M Mass matrix distribution scale [10−2MH , 1017MH ] Eq. (7.37)/Eq. (7.45)
βK,M Sub-matrix dimension parameter [0.01, 1.00] Eq. (7.38)
f̄ MP RMT model equal field condition scale [10−9MPl, 5MPl] Eq. (7.80)/Eq. (7.77)
kmin Non-central spiked RMT model kinetic matrix element lower bound −5.0 Eq. (7.56)
kmax Non-central spiked RMT model kinetic matrix element upper bound [−3.0, 0.0] Eq. (7.62)
mmin Non-central spiked RMT model mass matrix element lower bound −5.0 (DE), 4.0 (DM) Eq. (7.66)/Eq. (7.58)
mmax Non-central spiked RMT model mass matrix element upper bound [−1.0, 8.5] Eq. (7.63)/Eq. (7.53)

M-theory Model

F/(M2
H) SUSY order parameter, m3/2MPl 5.4× 10104(m3/2/1 TeV) Eq. (5.120)

m3/2 Gravitino mass O(10) TeV Eq. (5.85)
Λ Instanton Mass scale, string units [10−5,1] Eq. (5.116)
s Averaged value for Moduli VEVs, string units U [10, 100]/N (s̄, σs) Eq. (5.88)/(5.129)

Ñmax Instanton Index Parameter [0.6,1.6] Eq. (5.128)
a0 Axion decay constant scale 1 Eq. (5.90)

behaving as either type of our defined cosmologies, stemming from non-perturbative

physics considerations. In Fig. 7.2 we show kernel density estimations (KDEs) for

the probability densities retrieved using N-quintessence models defined by epistemic

priors with the following baselines,

nax = O(1→ 100) , (7.29)

log10(eig(Kij)/MPl) ∈ U [−4.0,−0.5] , (7.30)

log10(eig(Mij)/MH) ∈ U [−2.0, 2.0] . (7.31)
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Figure 7.2: KDE plot for the axion DE density parameter, ΩDE, with nax = O(1→
100) with log-flat priors on both the axion scale parameters, m2

a and f 2
a , sampled in

the window detailed in Eq. (7.29), Eq. (7.30) and Eq. (7.31). Using the approach of

least information with epistemic priors typically requires a large number of fields,

nax ' O(50), to reach the energy densities required for accelerated expansion today,

defined by the approximate bounds in Eq. (7.5).

Correspondingly, Fig. 7.3 shows the KDEs for various numbers of axions acting as

multi-component DM using the fixed baselines,

nax = O(1→ 10) , (7.32)

log10(eig(Kij)/MPl) ∈ U [−4.0,−0.5] , (7.33)

log10(eig(Mij)/MH) ∈ U [6.0, 16.0] . (7.34)

The results presented in Fig. 7.2 are representative of the general idea a large number

of fields should contribute to the vacuum energy to obtain the required quintessence

field density we observe today, where in the absence of alignment, each field is

deemed ‘safe ’ in regards to initial displacements and weakest force considerations.

We find the recovery of realistic cosmologies for axion population sizes with at least

nax ≈ O(10), in order to return values of ΩDE sitting in the rough window defined
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Figure 7.3: KDE plot for the axion DM density parameter, ΩDM with nax = O(1→
10) with log-flat priors on both the axion scale parameters, m2

a and f 2
a sampled in

the window detailed in Eq. (7.32), Eq. (7.33) and Eq. (7.34). Using too many

fields quickly comes to dominate the energy density today. Using the approach of

least information with epistemic priors typically requires a smaller number of fields,

nax ' O(5), to peak the probability of returning the energy densities required for

the correct DM density, defined by the approximate bounds in Eq. (7.3).

in Eq. (7.5). The probability to reproduce a particular contribution saturates to

approximately uniform around O(20−40) fields, this value regulated by the highest

and lowest mass we allow in the spectrum. We therefore expect that late time

acceleration will statistically be driven by at least nax & O(10) fields in the spectrum.

For axion DM, Fig. 7.3 shows us how a minor increase in the field population size

can quickly lead to a domination of matter density at the current time. The initial

statistical drawing of more field displacements allows for a chance to realise a period

of inflationary evolution (see Fig. K.1) when utilising a mass window in which the

highest possible mass is allow to exceed the bound in Eq. (7.23). We find that for

nax = 5 the density peaks closest to the limits outlined in Eq. (7.3). Interestingly

the single field case for both examples demonstrates how an approach of least infor-

mation on the field scalings, limits the probability of realising each of the dark sector
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requirements. In the DE case no realisations reproduced the required density for

an accelerating universe, indicating the requirements for specific tunings or further

physics. In the DM case, the profile peaks at values ΩDM . O(0.1) with a limited

number of realisations contributing an O(1) contribution to the total DM density

we expect.

The information presented in both Fig. 7.2 and Fig. 7.3 gives an indication of how

a population of multiple axions could statistically enhance our ability to generate

the required values of ΩDM and ΩDE. In general our RMT models we consider are

representative of localised scale windows, fixed by the bounded nature of the spec-

trum, its limits determined by convolution operations of positive definite probability

density spaces in the sample basis for the mass eigenstates. This can be seen as a

N-flation type spectrum of fields, clustered together enhancing the density in ei-

ther type of evolution, their physics determined separately to other sectors of axion

physics/phenomenologies. We fix the approximate population size to sample our

models with to nax ' O(10), serving as a good common ground between both types

of cosmology which we now explore further.

7.2 Constraints on the Random Matrix Axiverse

In this first results section, we present a snapshot investigation of a population of

axions in the dark sector who’s mass eigenstates are controlled by either an isomet-

ric, finite rank perturbed or full rank perturbed Y -matrix, in the mass eigenstate

basis. When we preserve mass isometry after the basis rotations the axion decay

constants are approximated as degenerate scalings. In the case of perturbed mass

matrix models we impose symmetric construction conditions, where the decay con-

stants are defined by either an isometric (model in Section 5.2.5.1) or rank-one

perturbed (model in Section 5.2.5.2.3) kinetic matrix as well as the associated mass

matrix. We also explore the case of the M-theory random matrix axiverse model

introduced in Section 5.3. The examples explored and presented in the figures found
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Figure 7.4: Contour density plots for the axion DM density parameter, ΩDM in the

σ2
M, nax = O(1→ 10) plane, demonstrated for different discrete fixed values of the

initial field displacement scaling parameter, f̄ . High scalings of f̄ generally produce

too much DM when using a small number of fields in the ultralight sector. When

this scale is lowered we generate contour degeneracies in this plane reproducing the

approximate required values defined in Eq. (7.3). For example when f̄ = 0.05MPl

we have the approximate relationship, 17 − log10(σ2
M) ' nax/2 using the presented

bounds. For ultralight fields the DM density quickly fades off as the scale of f̄

approaches the GUT scale.

in Section 7.2.1, Section 7.2.2 and Section 7.2.3 (Fig. 7.5 through 7.10), each contain

data for 2500 example realisations representing randomised axiverse cosmology. Our

contour density plots are constructed using 50 × 50 gridded scans in the multidi-

mensional parameter space, with gaussian filtering and cubic spline interpolation.

The M-theory examples in Section 7.2.4 use 10 × 10 (Fig. 7.12 and Fig. 7.14) and

20 × 20 (Fig. 7.13) gridded scans with cubic spline interpolation, consisting of 10

samples at each point, giving a total of 1000 and 4000 cosmologies respectively.
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Figure 7.5: Probability density plots for nax = O(1 → 100) with fixed values of

σ2
M according to the approximation in Eq. (7.35). In each example we use the fixed

parameter values βM = 0.5 and f̄ = 1. The statistical convergence of the mod-

els eigenvalues generates an approximate degenerate contribution from each field.

When the value of nax converges to the large N limit we recover the approximate

relationship σ2
Mnax ≡MH where the dominate source the the statistical fluctuations

comes from the initial values for the field displacement.

7.2.1 Isometric Y -Matrix Model

In Fig. 7.4 , Fig. 7.5 and Fig. 7.6 we present our first example cosmologies using the

RMT model of the axiverse with the minimal parameterisation, for both DE and DM

realisations. We assume the symmetry breaking scales of the fields are degenerate,

at some fixed scale, f̄ representative of some fundamental scale of the theory, where

the field masses are encoded in a random isometric Y -matrix. The axion cosmology

is defined by the model outlined in Section 7.1. The axion matrix eigenvalues have a

bounded spectral width governed by the Marčhenko-Pastur distribution law. When

the sub-matrix dimensions are suitably rectangular, i.e. βK = βM . 0.5, this

generates a configuration where the fields provide almost degenerate contributions

to the total energy density up to variations in both the initial fields misalignment and
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Figure 7.6: Approximate degeneracy for values of βM ∈ (0, 1] for the axion DE

density parameter ΩDE using nax = 20 axions. We also use the fixed parameter

values σ2
M = 0.05 and f̄ = 1 for each example. When the number of fields is

limited, the effect of the spectrum approaching degeneracy (βM → 0) only has a

limited effect of enhancing the probability of producing values in the approximate

limits of Eq. (7.5).

statistical fluctuations from our choice of basis, due to the absence of any treatment

required when dealing with a non-trivial distribution for Kij. The normalised scale

of the mass distribution, defining the nature of the fields, fixed by the first raw

moment σ2
M, acts as a free scaling parameter to switch between each type of dark

sector cosmology defined in Section 7.1.1.

7.2.1.1 Isometric Y -Matrix Dark Matter

In Fig. 7.4 we display contour density planes for different mass distribution scales,

against the axion population size discretised over several values for the initial field

condition scaling. We demonstrate the emergence of axion DM density domination

at the present time with large initial field displacement scalings, f̄ ≈MPl, when the



The Spectrum of the Axion Dark Sector 433

field population is nax & 1. See Appendix K for a visual example of the evolution

of the cosmological densities in these configurations. In each of our RMT models

the form of the mass matrix is such that a population of axions behaving as the

total DM requires initial field oscillations onset, at a scale where requirements on

the heaviest axion mass in the population set the order of the total mass scale,

σ2
M � MH . This is regulated by the fluctuations of extremal eigenvalues defining

the spectral radii, which follow universal laws, such as those discussed Appendix D.

The equal field scale conditions f̄ , along with the uniform sampling of θ, restrict the

total number of axions nax allowed in the population at any given mass scale. Only

when we set nax ≈ 1, do we recover the potential to find values of ΩDM consistent

with expectations presenting an approximate degeneracy along the total mass scale

interval we consider. Larger population numbers feel both the linear sum of field

density contributions along with the convergence of the initial misalignments in our

prior sampling to their averaged value 〈θ〉 ≈ π/2, showing a large region of parameter

space returning values of ΩDM & 0.8.

We find a significant increase in the possibility of larger population sizes returning

values in the limits of Eq. (7.3) by relaxing the scaling of the initial field displace-

ments to f̄ = O(0.1MPl), as demonstrated in the lower panels. The degeneracy

relationship between the number of fields allowed in the population and the mass

distribution scale becomes more apparent in the second and third panels. As ex-

pected larger values of nax quickly return values of ΩDM far in excess of what is

required, as the mass distribution scale is increased. Our simple example highlights

this when f̄ = 0.1MPl, where mass distributions with σ2
M ≈ 1012 require a popula-

tion size, nax ≈ 10. Distributions with σ2
M ≈ 1017 generally require nax ≈ 1. The

lower panels show a shift in the preferred values of σ2
M as we reduce the scaling for

the initial field displacements.
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Figure 7.7: Contour density plots for two-dimensional slices of the model parameter

space for each parameter in the correlated F -matrix model of Section 5.2.5.1. The

mass spectrum is determined explicitly using Eq. (4.101). Upper-triangle panels:

Example contours for excluded regions of parameter space for the axion DM density

parameter, ΩDM using the intervals outlined in Eq. (7.36), Eq. (7.37) and Eq. (7.38)

along with the fixed values found in Eq. (7.40), Eq. (7.41), Eq. (7.42) and Eq. (7.43).

Lower-triangle panels: Example contours for excluded regions of parameter space

for the axion DE density parameter, ΩDE using the intervals outlined in Eq. (7.44),

Eq. (7.45) and Eq. (7.46) along with the fixed values found in Eq. (7.48). Eq. (7.49),

Eq. (7.50) and Eq. (7.51).

7.2.1.2 Isometric Y -Matrix Dark Energy

It is easy to find parameters of the simplified Y -matrix model that give rise to suffi-

cient DE as the requirements more trivial to handle. Our Y -matrix DE cosmologies



The Spectrum of the Axion Dark Sector 435

begin with the approximation that the mass scale at which axion field oscillation

begins follow the simple limiting constraint, 〈m2
a〉 . M2

H . We allow for a maximi-

sation of the initial field displacements by fixing f̄ = MPl as well as constraining

the shape of the distribution by setting βM = 0.5. When searching for a population

of non-oscillating fields about the Hubble scale today we approximate the value of

the first raw moment of the distribution σ2
M, with a large number of fields driving

a phase of acceleration via the simplified fraction,

σ2
M ≈

σ2
MH

nax

≈ 1

(5→ 100)
≈ (0.2→ 0.01) . (7.35)

The value of σ2
MH

represents a mean scale for the distribution fixed at the scale found

in Eq. (7.11). In Fig. 7.5 we display the probability densities for nax = O(1→ 100),

for corresponding values of σ2
M determined by Eq. (7.35). Seemingly larger values

of nax tailor the potential for desirable values of ΩDE, suppressing the uncertainty

coming from the uniform prior on the initial misalignment the fields can be drawn

with. A population size of nax = 100 returns a high probability of reproducing

cosmologies with values of ΩDE contained in the window of Eq. (7.5). As nax →

O(100), once again the initial field misalignments in the population converge to their

averaged value 〈θ〉, where the linear combination of the field density contributions

cause the probability density of the DE density parameter to converge towards

the modal value. Decreasing the value of nax increases the chance of returning

cosmologies failing the acceleration criterion, ä > 0 at z = 0 used in Section 7.3.2,

an N-flation type statistical enhancement very simple to quantify in this case.

Using the relationship in Eq. (7.35) we address the role of the final parameter in this

model, βM, regulating the shape of the distribution. The density plots in Fig. 7.6

show the spread of ΩDE values for fixed values of βM, distributed about σ2
MH

n−1
ax =

20−1. We highlight the approximate degeneracy across our five fixed values of βM.

We could take the statistical sampling of βM to be controlled by different functional

forms, i.e. uniform distribution or Gaussian sampling motivated by the previously
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Figure 7.8: Density heat maps for the axion DM density parameter, ΩDM for values

of βK,M ∈ (0, 1] as a function of the remaining model parameters, nax, kmax andmmax.

We limit the values of the number of fields in the population to be, nax = [1 − 30]

axions, along with varied limits on both the decay constants parameterised by kmax

and the masses parameterised by mmax. Restricting our examples to the case of high

decay constants quickly saturates the Universe with DM (middle panel). Likewise a

spectrum of almost degenerate mass states quickly dominates as DM when the mass

scale in increased (right panel). We also find a general degeneracy across all mass

spectra shapes.

mentioned Type IIB dimensionality [499] (left panel of Fig. 3.3). Only extremal

values representing outliers or values close to the boundary for any of these priors

will induce limited variations to the spread of ΩDE as compared to the benchmark

case of βM = 0.5. Each value retains a mean value of ΩDE ≈ 0.65. It appears in a

simplified sense that randomised figurations require statistical enhancements from

a large number of fields, if the fields are to sit below the Hubble scale. The shape of

the distribution and priors placed on them generates a limiting effect when a large

number of fields are included. We should expect the dimension of the axion mass

matrix using random matrix methods for DE sectors to be in general much larger

than for DM sectors in order to produce sufficient vacuum energy today.
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7.2.2 Full Rank Perturbed F -Matrix Model

We now focus on the case of logarithmically symmetric mass spectra models (βK =

βM), generated from perturbations stemming from basis normalisation, along with

non-trivial scalings on the field decay constants. These models have equal limiting

probabilities to draw outlying fields, both positive and negatively logarithmically

displaced from the distribution mean. In Fig. 7.7 we display contour density plots

for intervals of the two-dimensional parameter space, representing two-dimensional

hyperplane slices of the parameter hypercube required to scan over all parameter

configurations.

7.2.2.1 Perturbed F -Matrix Dark Matter

For DM cosmologies, the model parameters we allow to run are scanned over the

following intervals,

log10(σ2
K) ∈ [−4.0,−1.0] , (7.36)

log10(σ2
M) ∈ [12.00, 17.0] , (7.37)

βK,M ∈ [0.01, 1.00] , (7.38)

nax ∈ [1, 20] . (7.39)

When we fix parameter dimensions to define a hyperplane we use the following fixed

values for the parameter static baselines,

log10(σ2
K) = −2.60 , (7.40)

log10(σ2
M) = 5.70 , (7.41)

βK,M = 0.5 , (7.42)

nax = 20 . (7.43)
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The top row of parameter hyperplanes detail the banding effects of the DM density

whilst increasing the first raw moment distribution scale of our kinetic matrix, σ2
K.

As seen in the upper left hyperplane the probability density of axion DM domination

widens as the distribution scale of the initial mass matrix, σ2
M, leaves the lower

DM mass limit. Indeed it is expected that the limited spectral width in these

models is such that we should not expect large amounts of freedom to reposition

ourselves in the parameter space before traversing into the bounds of the contours

with non-desirable quantities of DM. The limited width of the purple and mauve

bands indicate the freedom we have to centre the decay constant spectra with fixed

mass matrix scales. The gradient of the bands corresponds to the fact that in

general we should not expect far-in excess the quantities of DM required when

considering axion populations at the mass scale limit detailed in Eq. (7.23), unless

we compensate the construction of the distribution scales for Kij. In order to realise

multi-component DM with nax & O(10), the decay constants should be fixed to

sub-GUT scales. For string like axions with GUT or trans-GUT decay constants,

the contour bands convergence, producing values of ΩDM . 0.9 for nax . 5, as

shown in the upper right hyperplane. Correspondingly the hyperplane below details

the convergence in the same regard as the scale of the non-perturbative physics

responsible for fixing the first raw moment of the mass matrix. The bands widen

when considering a larger number of fields nax ≈ O(10), at lower mass scales in

the approximate regions (purple and mauve) for fixed σ2
K. Likewise at lower values

of σ2
K we see a widening in the regions when nax ≈ O(10). The simplicity of the

matrix structure we use will provide very comparable results between the isometric

and perturbed models. These approximate comparisons can be visualised in the

middle right hand hyperplanes of Fig. 7.7 and the hyperplane second from top in

Fig. 7.4. This is expected, as averaging the field contributions with nax & O(10)

gives comparable results when using the equal initial field conditions for the field

VEVs in the N-flation type model of Section 5.2.4.1 which is also partnered with

the random scanning from rotations and sampling for the misalignments.
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7.2.2.2 Perturbed F -Matrix Dark Energy

The DE configurations reside in the lower left triangle of hyperplanes in Fig. 7.7.

Unlike models of DM cosmology the requirement to generate fields still fixed from

Hubble friction, understood by the lower limiting mass bound in Eq. (7.24), once

again defines the approximate scale of the mass scaling parameter σ2
M ≈MH . This

time however quintessence like fields have a susceptibility to draw non-maximised

decay constants. The DM parameters allowed to run are scanned over the following

intervals,

log10(σ2
K) ∈ [−2.0, 0.0] , (7.44)

log10(σ2
M) ∈ [−2.0, 1.0] , (7.45)

βK,M ∈ [0.01, 1.00] , (7.46)

nax ∈ [1, 100] , (7.47)

Once again we fix parameter dimensions to define a hyperplane by using the following

fixed parameter values for the static baselines,

log10(σ2
K) = −0.60 , (7.48)

log10(σ2
M) = −1.65 , (7.49)

βK,M = 0.5 , (7.50)

nax = 20 . (7.51)

In the upper left, lower left and lower central hyperplanes we show the relationship

between the axion population size and the scale of each matrix argument in the

effective Lagrangian found in Eq. (5.12). In general we do require scaling parameters

of the order, σ2
K ≈ MPl and σ2

M ≈ MH (upper left panel), with the regions of

parameter space with either σ2
K . 0.1MPl or σ2

M . 0.1MH quickly suppressing the

total DE density unless the population size is increased to nax ≈ 40 to compensate,

representing the lowest number of axions required in order to linearly scale the
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solutions (lower left and central panels). The upper and left central hyperplanes show

the preference for the incorporation of the full tail of the distributions corresponding

to values of βK,M → 1, as the defining decay and mass scales of the distributions

are increased. The increased chance of drawing outliers enhanced to select preferred

scales.

The reduction of the spectral width for the decay constants and mass eigenstates

generates a degeneracy in the contours for values of βK,M . 0.5 for fixed parameter

scales, prominently shown in the upper central panel. The preferential defining

shape of the sub-matrices is dependant on the distribution scales, where the model

maximises the potential to draw suitable quintessence fields. In the left central

panel we see the recovery of a full degeneracy across all spectra shapes when the

initial field displacement conditions are insufficient for any form of significant axionic

DE presence at the current time. Finally, the lower right hyperplane shows the

relationship between the shape of the distribution and the axion population size.

Fixed population sizes present a degeneracy with distribution shape parameters,

βK,M . 0.5. The contour curvature as nax → O(100) corresponds to a spreading

of the mass spectrum, increasing the probability density of lighter fields. It could

however also correspond to the inclusion of heavier oscillating late time DM like

fields at z = 0, as the tails of the distributions are sampled for large nax.

7.2.3 Full Rank Perturbed F -Matrix with Rank One Noise

Model

Contour density plots for the axion DM density parameter, ΩDM in the σ2
M, nax =

O(1→ 10) plane, demonstrated for different discrete fixed values of the initial field

displacement scaling parameter, f̄ .

High scalings of f̄ generally produce too much DM when using a small number

of fields in the ultralight sector. When this scale is lowered we generate contour

degeneracies in this plane, reproducing the approximate required values defined in
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Figure 7.9: Contour density plots for the axion DE density parameter, ΩDE in

the βK,M, nax = O(1→ 100) plane, demonstrated for different discrete fixed values

regulating the upper bound on the axion decay constants, kmax. High scalings from

larger values of kmax generally furnish these models with sufficient DE in the bounds

defined in Eq. (7.5). When βM approaches the rectangularisation limit of unity

a larger number of fields are preferred to counteract the statistical spread of the

distribution as shown in top panel.

Eq. (7.3). For example when f̄ = 0.05MPl we have the approximate relationship,

17 − log10(σ2
M) ' nax/2 using the presented bounds. For ultralight fields the DM

density quickly fades off as the scale of f̄ approaches the GUT scale.

The full rank perturbed F -Matrix with rank one noise model examples, introduced

in Section 5.2.5.2.3, can be used to investigate potential differences in our example

cosmology outputs from the O(nax) enhanced eigenvalues present in each of our

physical quantities in this model when compared to the limiting eigenvalues of the

previous models. It is worth noting by construction our examples will see very little

variation compared to the full rank perturbed Y -matrix models due to an absence of

extended large correlated signals, coming from the order of magnitude of our axion

population numbers we select and our choice to use spectral signal generated from
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Figure 7.10: Contour density plots for the axion DE density parameter, ΩDE in

the βK,M, nax = O(1→ 100) plane, demonstrated for different discrete fixed values

regulating the upper bound on the axion mass states, mmax. Axion masses surpassing

the limit of MH quick provide too much DE. When the spectrum sit around or just

below this scale once again a larger number are preferred when βM approaches the

rectangularisation limit of unity. This is shown in the two middle panels sufficiently

reproducing values of ΩDE falling in the bounds of Eq. 7.5.

non-central Wishart ensembles. These models do ensure the presence of outlying

eigenvalues with every realisation. We leave the study of large population numbers

where our largest eigenvalues could obtain significant enhancements in the form of

both large singular decay constants and a widening of the spectral width, through

enhanced data correlations of the mass distribution to future study. We limit the

number of parameters we consider in our examples in this model by fixing the values

of our lower bounds on our distributions, controlled by the baselines kmin and mmin

throughout. The values of 〈fa〉 and 〈ma〉 are scaled by changing the values of kmax

and mmax accordingly.
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7.2.3.1 Full Rank Perturbed F -Matrix with Rank One Noise Dark

Matter

We are interested in the role of a spectrum of large decay constants in the low

mass axion window for DM cosmologies, which we explore using the possible effects

of enhanced correlated eigenvalues in both spectra. Our parameter intervals are

defined as,

kmax ∈ [−2.5, 0.0] , (7.52)

mmax ∈ [4.5, 8.5] , (7.53)

βK,M ∈ [0.01, 1.00] , (7.54)

nax ∈ [1, 30] , (7.55)

with the following static baselines,

kmin = −5.0 , (7.56)

kmax = −1.0 , (7.57)

mmin = 4.0 , (7.58)

mmax = 6.0 , (7.59)

nax = 20 , (7.60)

βK,M = 0.5 . (7.61)

The values in Eq. (7.56) are chosen to fix the lowest scale of 〈fa〉 fixing the bulk

of the spectrum to sub-GUT values when kmax is at its lowest value. The upper

limit of kmax corresponds to the decay constant scale, 〈fa〉 = O(0.1MPl). Our

lower limit on mmin in Eq. (7.58) is to ensure we have fields oscillating with masses

ma & 106MH . The maximum fixed value of mmax corresponds to fields drawn from

a mass distribution centred around 〈ma〉 ≈ O(107MH), with the upper limit mmax

giving a mass distribution scale, 〈ma〉 ≈ O(109MH).
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In Fig. 7.8 we display heat density maps representing the two-dimensional param-

eter space for each model parameter against values of βK,M, defined in the interval

in Eq. (7.54). In each of the panels we find a reproduction of the approximate de-

generacy across all values of βK,M, mimicking the results presented in the panels in

Fig. 7.7. It is clear that this model can offer little deviation from models without

significantly strong correlated signal eigenvalues for DM cosmologies, given we need

in general a low number of fields at the mass scales we are considering. In the middle

panel we see the clustered heat density reproduced for large values of ΩDM as we

scale the distribution of fa towards MPl, once again indicating a preference to incor-

porate values of fa ≈MPl in the model. The left hand panel shows a measure of the

likelihood, at fixed physical parameter scales, to find acceptable quantities of DM

as the population size increase via the speckled nature of the probability densities.

7.2.3.2 Full Rank Perturbed F -Matrix with Rank One Noise Dark

Energy

In both Fig. 7.9 and Fig. 7.10 we introduce a small step into the three-dimensional

parameter space for ΩDE contour densities. We initially focus on the configuration

where the scales of our dimensional quantities are determined by the relationship,

mmin = kmin and mmax = kmax. This ensures that our rotated mass spectrum is

centred about, 〈ma〉 = MH with a spectral width determined by the value we fix

for kmax. Our parameters which we allow to run are scanned over the following

intervals,

kmax ∈ [−3.0, 0.0] , (7.62)

mmax ∈ [−1.0, 0.5] , (7.63)

βK,M ∈ [0.01, 1.00] , (7.64)

nax ∈ [1, 100] , (7.65)
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with the following parameter values for the models fixed baselines,

kmin = mmin = −5.0 , (7.66)

kmax = mmax = 0.0 , (7.67)

nax = 20 , (7.68)

βK,M = 0.5 . (7.69)

The panels of Fig. 7.9 display the contour densities for βK,M against nax for stacked

decay constant distribution scales, emphasising the previously determined preference

for high scale decay constants to provide sufficient ΩDE, when using mass centred

distributions about MH . Lower vales of kmax slowly recover the degeneracy across

all values of βK,M providing little DE density. For kmax = 0.0, as the population

number nax increases significantly, a preference is made for the inclusion of the full

tail of the mass spectrum where βK,M → 1, maximising the spread of mass values

the fields can take. Values of kmax minimally offset from this value require βK,M → 0

to ensure a large population of fields have approximately degenerate and sufficient

mass values (≈MH), in order to furnish our cosmologies with a sufficient DE density.

Correspondingly the panels of Fig. 7.10 present contour density plots for βK,M

against nax for stacked mass distribution scales, offset with respect to the scale

〈ma〉 ≈MH fixed by mmax. Each configuration uses a fixed distribution of high scale

decay constants (Eq. (7.67)). It is clear in the upper panel that distributions offset

towards the upper mass limit in Eq. (7.10) quickly produce high probability densities

for cosmologies with axion DE domination. Scales centred about 〈ma〉 ≈ MH in-

crease the width of the contour bands with acceptable values of ΩDE (green and light

green). Large population sizes (nax ≈ O(100)) at this scale make a preference for a

wider bulk for the mass distribution with values of βK,M → 1, a feature consistent

with the previous models behaviour. Mass scales offset below MH (mmax = −0.5)

give a preference for βK,M → 0, whilst also requiring large population sizes. A

further increase in the offset below the mass scale of MH recovers approximate de-
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generacies across all values of βK,M, with significantly reduced probability densities

for the required values of ΩDE.

7.2.4 The M-theory Random Matrix Model

We now turn to investigating cosmologies returning the required values of ΩDM and

ΩDE drawn from the random matrix M-theory landscape, where we fix the number

of fields in our examples to nax = 10 throughout, and focus on the remaining model

parameters and their effects on the distribution moments. In order to account for

gauge couplings consistent with the known elementary particles we chose to sample

average values for the three-cycle volume inside the interval,

〈VX〉 = [25− 60] . (7.70)

In Fig. 7.12, Fig. 7.13 and Fig. 7.14 we make use of narrow prior windows incorpo-

rating Gaussian distributions in our sampling (see Section 7.2.4.3).

7.2.4.1 M-theory Random Matrix Dark Matter

For our initial look at how axions in the M-theory axiverse model could give rise

to DM, we begin by fixing the average value of the three-cycle volume distribution

〈VX〉, to maximise the probability density of retrieving axions with masses in the

ultralight DM window within the bounds of Eq. (7.24), which we do by selecting

the following values,

〈VX〉 = {45, 50, 55, 60} . (7.71)

The two panels in Fig. 7.11 present the probability density for the axion DM density

parameter ΩDM, on both linear and logarithmic scales for each selected average value

of 〈VX〉 in Eq. (7.71). In the upper panel of Fig. 7.11 we show the high probability

of returning values of ΩDM . 0.05. The lower panel of Fig. 7.11 details the spread of

these values logarithmically, with a minor peak in the probability density to return
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Figure 7.11: Probability densities for the fractional percentage of axion DM recov-

ered, measured with the axion DM density parameter, ΩDM in the M-theory random

matrix model presented in both linear and logarithmic scales.. Each example con-

figuration uses the parameter set 〈VX〉 = {45, 50, 55, 60}, for the average average

values for the three-cycle volume. Generally without the use of very narrow priors

on the model variables the model produces negligible quantities of axion DM.

values of ΩDM = O(10−2). The low quantities of DM arise from the M-theory

mass spectrum consistent with axiverse models spanning many decades, naturally

giving a significantly lower percentage of cosmologies with values of ΩDM falling

in the window of Eq. (7.3), especially for cosmologically unconstrained masses as

compared to the localised scale statistical RMT models of the string axiverse with

far more localised bounded spectra. The spread of the axion masses is such that

we can tune the moments of the distribution using the average three-cycle volume

values, 〈VX〉 = 45 and 〈VX〉 = 60. For this example we find an increase in the

number of cosmologies with values of ΩDM falling inside the required window, go

from ≈ 33−1 to ≈ 11.75−1.
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Figure 7.12: Contour density plot for the axion DM density parameter, ΩDM,

found by using narrow priors for the moduli VEV, s, and instanton index parameter
¯̃N . There is a very minor correlation between the two parameters where inside the

transitional region of Ñ ≈ 1.02 − 1.06 which generates DM inside the bound in

Eq. (7.3).

7.2.4.2 M-theory Random Matrix Dark Energy

Initial searches for axions with the properties of DE in the M-theory model show

that there is no satisfactory mass distribution which returns reasonable probabilities

of producing values of the DE density parameter, ΩDE, falling inside the bounds of

Eq. (7.5). This feature arises due to the nature of the axion decay constants in

the model which are typically too small, fa ∼ a/si ∼ 10−2MPl, as regulated by the

expected values of the moduli VEVs under the conditions of the compactification

model. The DE density could be increased significantly by using a much larger

number of axions or utilising the alignment mechanism to effectively enhance the

decay constants. Our assumptions however, on the diagonal form of the kinetic

matrix to reduce tensions from dark radiation constraints in Eq. (5.94) does not

allow for the inclusion of any such an alignment mechanism. Therefore, we postpone
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Figure 7.13: Contour density plots for the axion DM parameter, ΩDM for βM found

by using narrow priors on the instanton index parameter ¯̃N . The correlation between

these parameters is extremely small, with statical fluctuations in the approximate

transitional region, Ñ ≈ 1.00 − 1.08, generating DM which falls inside the bounds

of Eq. (7.3).

an enhanced look into the possibility of sampling the M-theory axiverse models for

DE as a topic of interest for future work, utilising a more detailed investigation of

the properties of the Kähler metric in these models.

7.2.4.3 A Finely Tuned M-theory Random Matrix Toy Model

In order to paint a better picture of the potential of the dark sector in the current in-

carnation of the M-theory random matrix model, despite the previously highlighted

issues, we now consider a toy model with narrow prior probability densities placed

on the associated hyperparameters. In particular, if the priors on the moduli VEV,

s, and the instanton index parameter, Ñ j
i , which control the volume function are

narrow, our M-theory mass distributions will generically only spread over a few or-
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Figure 7.14: Contour density plot for the axion DE parameter, ΩDE, found by

using narrow priors for Ñ along with an enhancement factor on decay constant, fa.

The parameters are generally well correlated with small regions displaying flections

reproducing DE inside the bounds in Eq. (7.5). The axion decay constants are

generally required to be enhanced by O(10) in these limits to produce sufficient DE.

ders of magnitude instead of the many decades of the axiverse we would typically

expect when incorporating the full theoretical uncertainty of the stochastic model

parameters. As a result, the axion dark sector density parameters, ΩDM and ΩDE

will also be concentrated around particular values. This configuration allows us to

study correlations between mean values of the M-theory model parameters in a rela-

tively simple manner. We restrict the sampling of the parameters by fixing the prior

distributions for s and Ñ j
i to be drawn from Gaussian distributions, N (µ, σ). We

limit the width of the prior sampling by fixing the distribution standard deviation

for s and Ñ to,

σs = 1 , (7.72)

σÑ = 0.01 , (7.73)
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respectively. For the case of DM cosmologies, we simulate cosmologies for a range of

mean values of s and Ñ j
i as shown in the contours of Fig. 7.12. The contour density

plot shows a trend of hyperbolic constraint as expected, from the relation VX ∼

s×N . We find a minor correlation for Ñ ≈ 1.02−1.06 and the values of s̄ considered,

which reproduce the correct DM content. Our example cosmologies where we allow

for variations in βM, are given in Fig. 7.13. We see a general degeneracy across

the distribution shaping parameter and the values of Ñ . The transitional region is

approximately, Ñ ≈ 1.00−1.08 where the DM relic abundance statistically fluctuates

across this region, generating the weaving effect in the contours. The model is very

sensitive to the value of Ñ for DM, a widening of the prior on this parameter

representing the statistical suppression of correctly generating DM in the M-theory

random matrix axiverse.

Finally when considering the DE cosmology case, consider a toy model which gives

us an insight on how much enhancement the decay constants could require in the

M-theory model. We study this effect by parametrising the decay constant enhance-

ment factor as,

f̃ =
f ′a
fa

, (7.74)

where f ′a represents an enhanced decay constant scale. In Fig. 7.14 we explore

the correlations between the values of this enhancement and Ñ . There is a fairly

strong correlation between the two parameters, reproducing a very minor band of

cosmologies producing the correct DE density. The value of Ñ can only be reduced

when the decay constants are largely enhanced. We find that we would require an

enhancement factor potential related to field alignment, necessary to accomplish

the observed DE, is of the order fa ∼ [10 − 100]. For both toy models reproduc-

ing DM and DE we find a narrow banding of valid parameters from the moduli

sector indicating the requirement for significant fine tuning to produce acceptable

cosmologies.
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7.3 A Bayesian Hierarchical Network of the

Axion Dark Sector

7.3.1 The Structure of the Network

The second section of our dark sector results consist of several brief examples treating

the string axiverse as a hierarchical Bayesian network, as detailed in Appendix B.2,

following previous examples and similar methods used to address issues in inflation

[1080], Type Ia supernovae data analysis [896, 897, 902, 1127], spatially localised

features in the CMB [527] and details surrounding cosmic shear [62] etc. A generic

example Bayesian network for axion cosmology is shown in Fig. 7.15, a generalisation

of the generic structure shown in Fig. B.1, with various levels for the observables,

parameters and hyperparameters of the model. We implement the Bayesian network

using MCMC techniques. For this purpose we use the affine-invariant ensemble

sampler [616] implemented in emcee [549]. The resultant cosmological parameters

of interest are defined by the parameter vector,

~p = (Ωrh
2,Ωmath

2,ΩΛh
2) . (7.75)

In principle the cosmological parameters are determined stochastically from the

hyperparameters of a higher level distribution, though in practice here we take these

as fixed Dirac delta distributions, determined by the model under consideration. The

standard matter density Ωmat = Ωb + Ωc, contains ordinary CDM and baryons, and

the total matter density includes in addition the contribution from axions that have

begun oscillations,

Ωm = Ωmat + Ωosc
a . (7.76)

The axion model parameters fixed by the theory are {mi} and {φi}. Given the

complete set of model parameters the quasi-observables are found deterministically

by solving the equations of motion for the system of axions.
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The level 1 (L1) theory hyperparameters stochastically determine the model param-

eters {φi} and {mi}. The model selection (theory L2) fixes the model, the number

of axions, and the prior distributions for the L1 hyperparameters. The theoretical

modelling from L1 to the model parameters accounts for treating the axion potential

as a pure mass matrix, and the fixing the moduli. Theoretical modelling and cuts

going from L1 to the quasi-observables includes a cut on the maximum field mass

ma, and the choice of cosmological model. The quasi-observables are the fractional

densities in each part of the dark sector, the Hubble parameter, the redshift of

matter-radiation equality, and the acceleration of the cosmic scale factor. In princi-

ple we could consider also the evolution of the background quantities with redshift.

For simplicity we apply Gaussian likelihoods to Ωm, h, and zeq, assuming the Planck

(2015) TT+lowP results [37] presented in Table 7.1. We assign axions to the total

matter or effective quintessence density according to whether the fields equation of

state has begun oscillating or not. We also apply a cut demanding our Universe

should be accelerating, where ä > 0.

Our treatment of the quasi-observables should be considered only as giving approxi-

mate constraints on the considered models. Our models can have non-trivial effects

on the equation of state for DE, w(z), and for ultralight DM axions, also on struc-

ture formation and the CMB power spectrum [710], which we do not account for

in constraints placed on simplified quasi-observables with Gaussian likelihoods. In

ordinary ΛCDM, Ωm, zeq, and h are not independent. However, in axion mod-

els a change in the equation of state at late times can alter these relationships by

the creation of additional matter-like axion density after zeq. Our use of zeq as an

independent quasi-observable from the matter density and h, serves as an approxi-

mation of the constraints found in Ref. [710], which disfavour large energy densities

of ULAs that begin oscillating after equality. We ignore covariance between the

quasi-observables for the same reason that dependences are not the same in axion

models as in ΛCDM. Our quasi-observables we present are a simplified example. A

more advanced compression of the CMB, BOA and growth data appropriate for DE



The Spectrum of the Axion Dark Sector 454

{mi} {�i} ~p

⌦DM ⌦DE zeqä
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Figure 7.15: A Generic Bayesian Network for Axion Cosmology detailing the

schematic relationship between the model parameters and hyperparameters. The

arrows indicate the direction of dependence, with dashed arrows indicating stochas-

tic dependence, and solid arrows indicating deterministic dependence. The red nodes

represent the quasi-observables, green nodes the model parameters and white nodes

the higher order level hyperparameters.

models is given by the treatments in Refs. [121, 1388]. In these, the CMB data are

compressed into a vector of measurements for the matter densities, matter power

spectrum amplitude, and the angular size of the sound horizon, including covariance

considerations.

7.3.2 Constraints on the String Axiverse

All the constraints shown in the following configurations hold the number of axions in

the population fixed at nax = 20. Numerical accuracy settings are defined according

to the discussions in Section 7.1. All emcee walkers are initialised from the priors,
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where the chains are ran in order to converge according to the spectral method of

Ref. [485].

7.3.2.1 Bayesian Isometric Y -Matrix Constraints

7.3.2.1.1 Bayesian Isometric Y -Matrix Dark Energy

The first set of example constraints we show make use of the simplest random matrix

model both in construction and in numerical computational terms, the isotropic Y -

Matrix model of Section 5.2.4.1, which we initially tailor to provide DE. We fix the

matter density to Ωmath
2 = 0.148, including dust-like CDM and baryons. The L1

hyperparameters have the following priors (fixed L2 parameters),

f̄ ∈ U [0.0, 5.0] , (7.77)

σM ∈ U [0.0, 10.0] , (7.78)

βM ∈ U [0.01, 1.00] . (7.79)

After applying Gaussian likelihoods to h, zeq and Ωm, and a cut for ä > 0, we deter-

mine the constraints shown in Fig. 7.17. The mass parameter and f̄ are constrained

to values consistent with those previously explored and required for sufficient DE

density. The cut on acceleration with the requirement Λ = 0 leads to a maximum

allowed value of distributions first raw moment, σM. This model shows no prefer-

ence on the shape of the distribution through βM. With a linear prior on σM, near

MH , the width of the mass distribution is not important. The degeneracies of this

model are demonstrated in Fig. 7.16. We show random samples drawn with different

values of (f̄ , σM) with the distribution shape fixed, βM = 0.5 and demonstrate how

the quasi-observable distributions shift. The models moving along the degeneracy

direction give accelerated expansion and consistent values of ΩDE, which change

relatively little. Perpendicular to this direction, the DE density is too low if the

mass is too large (oscillations begin before z = 0) or the decay constant is too low
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ä

f̄

Mpl
=0.6 :

σM
MH

=0.3

f̄

Mpl
=1 :

σM
MH

=0.25

f̄

Mpl
=0.2 :

σM
MH

=0.1

f̄

Mpl
=0.3 :

σM
MH

=1.2

Figure 7.16: Degeneracies in the Y -matrix RMT model for DE. We show random

samples form four locations in the (f̄ , σM) plane at fixed βM = 0.5, marked in

Fig. 7.17. Along the degeneracy direction the quasi-observable distributions do

not change much. Across this direction, models are disfavoured, with the quasi-

observables distributions moving in opposite directions on either side.

(field displacement too small). This has a knock-effect of making the acceleration

parameter negative in these models.

7.3.2.1.2 Bayesian Isometric Y -Matrix Dark Matter

Next, we consider the computationally more challenging but physically more inter-

esting case of the Marčhenko-Pastur model assigned to DM. The model is more

computationally challenging than the DE model due to the required switch in the

equations of motion and tracking of any axion field oscillations before the switch (an

average run of our numerical code for this model takes O(20s) in wall-clock time).

We fix the (non-axion) matter density to the baryon density, Ωbh
2 = 0.022, and we

fix the physical cosmological constant density to ΩΛh
2 = 0.31 (this gives the central
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Figure 7.17: Constraints on the isotropic Y -matrix model parameters for DE

cosmologies. The contours represent 1σ and 2σ in the posterior distribution after

imposing likelihoods and cuts on the quasi-observables. Demanding acceleration

with Λ = 0 gives the bound σM < 0.9 and MH = 1.9 × 10−33 eV (95% C.L.) from

requiring the total equation of state w < −1/3 with the fields in slow roll at z = 0.

Planck value for ΩΛ = 1−Ωm when h = 0.673). The L1 hyperparameters have fixed

priors,

log10 f̄ ∈ U [−9.0,−1.0] , (7.80)

log10 σM ∈ U [0.0, 8.0] , (7.81)

βM ∈ U [0.01, 1.00] . (7.82)

The posterior distributions for these priors are shown in Fig. 7.18. The constraint on

the matter density parameter, Ωm, fixes a direction in the two-dimensional (f̄ , σM)

space. The constraint on zeq leads to a minimum allowed value of σM. Interestingly,

this model shows a mild preference for βM = 0.5. The preference for βM = 0.5 is

possibly driven by the preference for a not-too-wide mass distribution. Preventing
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Figure 7.18: Constraints on the isotropic Y -matrix model parameters for DM

cosmologies. The contours represent 1σ and 2σ in the posterior distribution after

imposing likelihoods and cuts on the quasi-observables. Fixing zeq with only baryons

as additional matter leads to the constraint log10 σM > 6.6 ⇒ σM > 4 × 10−27 eV

(95% C.L.) from requiring the fields to be oscillating with w = 0 prior to this epoch.

We find a mild preference for β = 0.5, as shown in the lower middle and upper left

middle panels.

the occurrence of axions with ma < H(zeq) selects against βM = 1 and a wide

distribution. There is no strongly preferred mass for DM above this scale, and

so βM → 0 is disfavoured to keep the distribution from becoming singular. The

minimum value of f̄ depends on the maximum value of σM, fixed by obtaining the

relic density.

In both the above considered Marčhenko-Pastur models we observe a constraint on

the characteristic axion mass and decay constant. The location of the constraint

on the mass is fixed by the quasi-observables, and the problem under consideration,

either by the condition on ä for h ≈ 0.7 for axion DE, or by the conditions on zeq

and Ωm for axion DM. The modal value of f̄ in the Marčhenko-Pastur model is
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determined by the required energy density of the axions, and is thus dependent on

our fixed parameter nax = 20. In the DE example, the modal value (after binning

on the linear prior) is f̄ = 0.3MPl, reduced from the naive extremal value f̄ = MPl

in a single axion model by the ‘N-flation ’ type enhancement 1/
√
nax effect (for

constraints on axions as quintessence see Ref. [1198]). There is a similar effect in

the DM example, where f̄ is lowered from the value expected for single field ultralight

DM with a simple m2φ2 model for the DM relic density (e.g. Ref. [911]). A model

with varying nax would display a degeneracy in the two-dimensional (f̄ , nax) plane.

7.3.2.2 Bayesian Dark Matter from the M-theory Random Matrix

Axiverse

The M-theory axiverse, with it’s suppressed higher order distribution moments and

approximate log-normal mass distribution (Section 5.3) which in general possesses a

very wide spread, means that the constraints must be read carefully (in a preliminary

investigation, we found the same considerations apply to the case of strong finite

correlations and spiked matrix models.). The constraints on the the M-theory model

parameters for the case of a uniform distribution placed on s and Ñ are shown

in Fig. 7.19. The constraints on the M-theory model primarily derive from not

over-producing DM. With decay constants typically of order the GUT scale, axions

with masses ma & 10−18 eV typically provide too much DM density (‘anthropically

constrained ’ [107]). This leads to minimum values of smin and smax, with large

moduli giving large instanton actions, low axion masses, and correspondingly lower

relic densities. There is also a lower bound on Ñ , which sets the scale of the instanton

charges, and also leads to lower axion masses. The vast majority of the M-theory

DM models within the 2σ allowed region in Fig. 7.19 produce a cosmology with

quasi-observables,

(h,Ωm, zeq) ≈ (0.57, 0.06, 520) , (7.83)
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Figure 7.19: Constraints on M-theory random matrix model for DM cosmologies

with represented by 1σ and 2σ contours in the posterior distribution after imposing

likelihoods and cuts on the quasi-observables. One sided constraints on parameters

are driven by the simultaneous requirements of not overproducing DM and main-

taining an accelerating Universe at z = 0. The constraints are one-sided due to the

best-fit region being very narrow, with a plateau in the likelihood away from this

region where the axion density drops to zero. The value of zeq is fixed by the baryons

alone, and acceleration is guaranteed by the inclusion of a cosmological constant.

with ä > 0 provided by the cosmological constant, and the matter density provided

by the baryons. While this is a bad fit to the data, it is a better fit than a model with,

for example, total DM domination at z = 0, ä < 0, and zeq ≈ 105, which results if

heavy axions overclose the Universe by providing too much DM. This is not to say

that there are not examples of M-theory models that do provide a good fit to the

data. For example, it is easy to find a model in our chains with hyperparameters,

(log10 FΛ3, smin, smax, Ñ , βM) ≈ (105, 26, 54, 0.7, 0.9) , (7.84)
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and quasi-observables,

(h,Ωm, zeq) ≈ (0.7, 0.3, 3000) . (7.85)

We have checked that this general trend also applies in the alternative Gaussian

priors on s and Ñ , and also using the alternative quasi-observable Ωdh
2, for the

axion DM instead of the total matter content including baryons.

This one-sided behaviour in the constraints, and with many samples being poor fits,

can be understood by considering the results of grid-based sampling in a simplified

model. We took the Gaussian priors model for s and Ñ , holding σs = 1 and

σN = 0.01 fixed whilst varying s̄ ∈ [20, 21] and N̄ ∈ [0.5, 0.55], with nax = 20.

We sampled each point in parameter space ten times, and interpolated the average

quasi-observables on a linear grid. Fig. 7.20 shows the results of this sampling. The

contours show the location of x̄ ± 2σx for quasi-observable x, and the location of

ä > 0. We see that there is only a very narrow region of parameter space where the

quasi-observables all have values near the means, complimentary to the behaviour

explored in Section 7.2.4.3. For small N̄ the likelihood goes to zero due to the cut

on ä. On the other hand, for large N̄ the likelihood plateaus. As the axion DM

density drops to zero, the baryon contribution leads to minimum values of zeq and

h. Thus the whole region of parameter space with large N̄ is equally disfavoured,

and has large prior volume. This leads to a one-sided constraint on parameters

driven by ä > 0, which is in turn driven by the requirement of not overproducing

DM and having zeq too large. These observations highlight some limitations of our

methodology when applied to a model with high-dimensional parameter space and

a very small prior volume in the best-fit region. It also highlights how our use of

quasi-observables does not equally disfavour all possibilities away from the best-fit.
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Figure 7.20: Grid sampling details for the M-theory RMT model for the DM ex-

ample. Solid (dashed) contours show the mean (±2σ) values of the quasi-observables

on a grid based sampling of (N̄ , s̄) for nax = 20. For small N̄ , ä < 0 leading to zero

likelihood (cut), while for large N̄ , ä > 0. For large N̄ the axion density goes to zero,

but the likelihood plateaus due to the inclusion of the baryons and the cosmological

constant.

7.4 Discussion and Conclusions on the Axion Dark

Sector

The existence of a dark sector of particles largely decoupled from the Standard

Model is necessary to explain the phenomenon of DM, and could also play a role

in the accelerated expansion of the Universe as DE. String theory and M-theory

predict the existence of a complex, multi-component dark sector containing (among

other things) many axion fields. Making definite predictions in such a landscape of

possibilities seems at present an almost impossible task. However, statistical tools

have enabled us to explore these possibilities. Already we have discussed and briefly

explored in the context of inflationary theory, the successes of random matrix models

as useful simplifications, owing to the nature of universality, applied to the study of
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BH superradiance.

In this chapter we have investigated random matrix models for the axion dark sector,

with sampled axion masses and initial field values, the quantities which determine

the resulting energy densities contributions to the effective DM and DE. By treating

these as a series of quasi-observables we have been able to constrain the parameters

of the several random matrix model approaches to the string axiverse. This is to

date, the first use of random multi-field models applied to the problem of dark

sector cosmology, where we have incorporated the adaptable framework of Bayesian

networks to perform a Monte Carlo investigation of this scenario.

We have chosen to investigate axion models for DM and DE as factorised sec-

tors. A model for axion DM and DE together requires a mass splitting at least

of O(H(zeq)/MH) ∼ 106 so as not to generate too much energy density from light

states [710]. Such a hierarchy cannot be generated in the models we have considered

easily. The structure of the matrices we have assumed is that all the stable axions

acquire their masses from similar sources. That is, the elements of the matrices are

all drawn from the same distributions. There are no separate sectors, which would

occur for matrices with mixed distributions and for block-diagonal matrices such

as those discussed in Section 5.2.6. In our models, the only effect that can lead to

hierarchies in the mass spectrum is the existence of large eigenvalues, typically from

strong correlations, and we have not found this to be sufficient to allow axions to

simultaneously provide DM and DE without extensive fine tuning. The strength

and circumstances surrounding the required data correlations to realise both sectors

could be an interesting direction for future investigation. A further similar interest-

ing extension of our work would be to consider a hierarchical model, constraining

the {mi} and {φi} distributions separately for DM and DE. With this information

one could design block-diagonal random matrix models for an entirely axionic dark

sector, spanning a much larger mass range. In a high energy physics context, such

a model could be realised if part of the axion sector was protected from the leading

order instanton effects and received masses only at some higher order.
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Hierarchies can also be generated in multi-axion models with non-trivial poten-

tials [394], where isocurvature perturbations (see below) can also be suppressed.

This highlights another major simplification and limitation of our work, the use of

only the mass term in the potential. While it is technically trivial to replace the mass

term with some general function (such as the instanton expansion), computationally

it is more challenging. Firstly, by this simplification it is necessary to impose after

oscillations (for a non-quadratic minimum, one cannot use wa = 0), and secondly

by the possibility of meta-stable minima leading to dynamics on widely separated

timescales.

We have found, in the case of DM models, data-driven lower bounds on axion

mass distributions set by the matter density and zeq. Low mass scales for axions

find theoretical and phenomenological motivation also. Theoretically, as discussed,

the mass scale ma ≈ 10−15 eV, emerges from fixing the GUT scale unified gauge

coupling, αGUT ≈ 1/25, in the M-theory compactifications [31], with a similar ap-

proximate relation in string models [728]. Generation of ultralight masses has been

discussed extensively recently, in string theory and supersymmetry [659], in QCD-

related theories [408], and through use of discrete symmetries [796]. Constraints on

the axion parameter space in the context of Peccei-Quinn symmetry breaking scales

for ULA CDM, in both standard and non-standard cosmologies has been explored

in Ref. [1302] and Ref. [1303] respectively. Ultralight DM has distinctive effects on

cosmic structure formation that allow it to be distinguished from CDM, and it rep-

resents a frontier of DM research [728, 911]. The ‘anthropic window ’ of the axion

parameter space for ultralight masses constituting the total DM has been analysed

in Ref. [1301]. The idea of “catastrophic boundaries” [261] in the multiverse may

lead to a preference for universes ‘on the edge ’ of such a frontier.

Phenomenologically, axion masses in the range we have constrained [approximately

H0 . ma . H(zeq)], and up to 10−23 eV, are probed by the CMB power spectrum

and large scale structure [710, 711, 1283]. Higher masses in the range 10−22 eV .

ma . 10−20 eV are motivated by their interesting effects on galaxy formation [728,
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911, 914, 1152, 1160], and are probed by high redshift galaxy formation [267, 377,

1144, 1153] and the Lyman-alpha forest flux power spectrum [104, 741]. Still more

massive axions in the range 10−20 eV . ma . 10−18 eV can be probed purely grav-

itationally by the 21cm power spectrum [910]. Constraints from quasi-observables

cannot make contact to such detailed constraints as discussed above. To even begin

such a task would require the perturbation theory of multi-axion models. While

technically trivial, this is a computationally challenging task that we have not cur-

rently investigated. As well as axion mass distributions, we have computed the

distributions of decay constants, fa, from the eigenvalues of the kinetic matrix.

The WGC [100] can be used to place bounds on combinations of axion decay con-

stants and masses, and broadly speaking can be said to constrain the existence of

trans-Planckian values for fa (without the alignment mechanism). Overcoming this

apparent constraint is a prime motivation for the introduction of multi-field models

of axion inflation, and has in part motivated this work exploring the case of DM

and DE.

We have held nax fixed in our example Bayesian Network constraints. It would be

interesting to explore in a future work how imposing the (weak or strong forms of the)

WGC as a prior could lead to a lower bound on the value of nax required, by providing

the correct energy densities in a given DM or DE model. In the case of N-flation

(and related models), the necessary minimum number of fields has been argued to be

in conflict with entropy bounds in de Sitter space [365], and a similar conclusion for

axion DE or DM could have profound implications. Our random matrix approach

provides a more versatile, and realistic, approach to the distributions. Our Bayesian

forward model is able to quantify and extend the estimates outlined in Ref. [765]

for the mass and decay constant distributions. Ref. [520] consider the observables

for DE models more thoroughly, such as the angular diameter distance to the CMB,

and improvements from future BOA measurements by the Square Kilometre Array.

It would be interesting to include these in our methods incorporating Bayesian

methodologies.
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The only concrete axiverse construction we have used to inform our random matrix

models has been the M-theory model of Ref. [31]. An explicit axiverse model has also

been realised in Type IIB [351] as covered in Section 3.3.4, where the models for N-

flation and N-quintessence have also been constructed [353], and our methodology

could easily be applied to these models also. We note however, that in the case

where these models can have a low string scale, Ms ∼ 1012 GeV, the DM abundance

from vacuum realignment of light axions will be hard to achieve. Our discussions

in this chapter have been set entirely in the late Universe, in particular during

radiation domination post-BBN and we have made no explicit connection between

our models and inflationary theory. This neglects the very important constraints

on axion DM coming from isocurvature perturbations (e.g. Ref. [557, 1304]). High

scale inflation, in particular with observably large tensor-to-scalar ratio, typically

generates large amplitude number density perturbations in axions, which contribute

to the CMB power spectrum acoustic peaks such as to shift their phase, inconsistent

with observations [819, 1061]. The Hubble scale during inflation is constrained, for

the QCD axion with typical fa, to be HI . 108 GeV.

The requirements on HI are significantly loosened for ULAs, with isocurvature per-

turbations becoming negligible for ma . 10−26 eV [916, 917]. The constraints be-

come multiplicatively worse, however, in the case of multiple axion fields [887]. In

Ref. [31] it was shown that the M-theory axiverse requires HI . 1010 GeV. The

adaptability of the Bayesian networks approach means that including the isocur-

vature amplitude as a quasi-observable and HI as a model parameter is another

easily tackled problem. Such an investigation would clarify the prior dependence

in the results of Ref. [887]. The study of random matrix multi-axion models has

been popular for some time in inflationary theory. While inflation is well-motivated

by cosmological observations, it is unlikely to be possible to determine the theory

precisely due to the limited information available. The study of DM, on the other

hand, offers far greater prospects for precision measurement [711], and so by study-

ing multi-axion models in the late Universe, we might discover more about physics



The Spectrum of the Axion Dark Sector 467

beyond the Standard Model. In this chapter we have been able to present the first

exploration of a random matrix multi-axion models for DM and DE, using statis-

tical methods to place bounds on the axion mass and decay constant distributions

determined from selected models in the random matrix axiverse.



Overall Conclusions and Future

Directions

Sic Parvis Magna.

The motto of Sir Francis Drake

Time and Space

In this thesis we have addressed selected issues surrounding the statistical treatment

of models incorporating a simplified effective field theory of ALPs [107, 1231], mo-

tivated from the landscape of string theory [184, 235, 387, 461, 625, 629, 800, 1063–

1065, 1262, 1344, 1366, 1399]. Superstring theories currently offer the most likely

approach to realising a successful quantum theory of gravity, capable of reproducing

a complete treatment of each fundamental force of nature. The scale of this land-

scape [112, 260, 428] offers many fascinating solutions to theoretical tensions and

traditional, currently unexplained paradigms, through the vast nature of well de-

fined four-dimensional solutions. These frameworks currently offer our bests hopes

of traversing from the mathematical curiosity of a ten/eleven-dimensional spacetime

to the physical universe we observe [25, 129, 308, 417, 427, 429, 475, 481, 625, 642,

659, 660, 758, 873, 874, 893, 909, 1013, 1222, 1364]. One of the most important and

diverse features of string models is the nature of their moduli [26, 33, 150, 381, 412]

and the possible extensive sector of ultralight scalars which may be apparent in the

four-dimensional limit of these theories. The scope of this thesis in regards to these

468
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factors was two-fold. The first was to address the issues of modelling the statistical

spaces associated to the treatment of a large number of fields in a simplified man-

ner. This was done through the use of universality in the landscape using RMT

[138, 641, 939, 1279] and the limiting results of well known classical ensembles [901].

The second was to use these tools to determine inferences from phenomenological

features in the four-dimensional theory, stemming from the unique roles axion fields

may play due to their symmetry properties and defining scales. A focus was then

placed on these in the case of multiple fields using the simplified results determined

from a RMT [128, 131, 499] approach to the effective field equations [1219, 1221].

In particular the key points we covered in each chapter are now detailed here below.

In Part I we introduced the foundational basis of the Standard Model of Concor-

dance Cosmology, which forms our theoretical playbook for a simplified probing the

Universe and its evolution over cosmic scales. Indeed, the introduced FLRW metric

[846, 1114–1116, 1316], representing a homogenous and isotropic universe allows for

the ability to incorporate the addition of test fields in a palatable manner. After

reviewing the standard assumptions of zero curvature we detailed how Einstein’s

field equations from his general theory of relativity [513] for such a universe, lead

to a specific form of the Friedmann expressions applicable to the constituent energy

components of the Universe. We covered all relevant parameters for a simple ef-

fective description of an expanding universe, incorporating matter, radiation and a

cosmological constant, noting specific features such as invariant distance, redshift at

matter-radiation equality and the relevant equations of state, a common dimension-

less parameterisation of the diagonal components of the stress-energy tensor when

using a perfect fluid approximation. Of particular note in the description of the

cosmic expansion is the Raychaudhuri equation, which using the aforementioned

parameters, allows us to define the temporal evolution of the cosmic fluid compo-

nents. To conclude the chapter we covered the problematic paradigms which plague

the standard model of concordance cosmology today. Large scale structural issues

such as the flatness problem, horizon problem, primordial fluctuations associated
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to large scale structure and magnetic monopoles turn to significant epochal modi-

fications in the very early Universe, such as cosmic inflation. Most striking maybe

from the outside perspective to our current view of cosmology is the inability to

define approximately 95% of the energy density of the observable universe. This

unified enigma defines an erroneous dark universe, incompatible with the current

theoretical abilities of well defined particle physics solutions to shed light on both

the mysterious gravitationally observed DM and DE.

Turning to Chapter 2 we continued to review a further standard approach to mod-

elling fundamental physics, this time the theoretical pillar of the Standard Model

of particle physics [15, 958, 1052]. We reviewed the form of the Standard Model

Lagrangian, the matter constituents, gauge group representations and several of the

large enigmas which don’t possess satisfactory solutions within the specific gauge

group representation of the strong, weak and electromagnetic interactions. The most

relevant to the bulk of the work covered in this thesis, is the strong CP problem,

stemming from the U(1)A axial problem. Reviewing the leading solution to this

issue, typically introduces an extended symmetry, used to dynamically relax the

problematic QCD θ parameter to a CP conserving minimum, through the introduc-

tion of the QCD axion field. Historically this Peccei-Quinn solution [1034, 1035]

offered an array of possible realisations through minimal extensions to the Stan-

dard Model, where we covered the primary forms categorised as, visible (PQWW)

[1035, 1036, 1335, 1353] and invisible (KSVZ and DFSZ) [438, 789, 1182] models of

the axion. The effective field theory of the invisible axion models sparked a great

interest in the study of axions in the cosmological setting due to the field’s stabil-

ity over cosmic timescales and the form of its non-perturbative potential, defining

the field’s dimensionful scales. The dilute instanton gas approximation founded

the ability to provide a minimal analytical treatment using a solution of a mas-

sive pseudoscalar boson, apparent in the low energy spectrum. It had previously

been shown this instanton potential is always minimised at the CP conserving limit

[1288]. We continued to introduce the features of this possible ultralight component
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which we referred to as the cosmological axion. Considering non-thermal produc-

tion mechanisms, specifically vacuum realignment, axions sitting in certain regions

of the parameter space can contribute an O(1) fraction of the required DM density

today. If symmetry breaking occurs before or during the end of the inflationary

epoch, the field is homogenised over our Hubble volume, defining the axion phe-

nomenology as dependent to first order on a simple, three-dimensional parameter

space (Eq. (2.85)). Combining this with the discussions of the previous chapter

we showed how these fields evolve in an expanding FLRW universe, determined by

the fields mass, where the field initially remains fixed due to Hubble friction. The

homogeneous energy-density of these ultralight fields evolves through the coherent

oscillatory nature of the field’s equations, which are described via those of a damped

harmonic oscillator, offering the exciting possibility to act both as an effective DM

and/or DE component. Finally we drew attention to the specific roles these diverse

phenomenological utilities offer in terms of solutions to the cosmological paradigms

of inflation [647], DM and DE. The closing remarks of this chapter consisted of brief

points regarding the issues, details and methods behind the detection of these fields

through various compelling probes on both cosmic and laboratory scales.

The final chapter of Part I concerned itself with elements of superstring theory, a

focus placed on particular compactification scenarios which lead to the plethoric phe-

nomenological sector known as the string axiverse. Initially we covered the historical

factors which excite many theorists to consider this framework as a front-running

model of quantum gravity. We detailed a simple understanding of how these the-

ories bring forward generic complexities, in the form of extra dimensions required

to ensure consistency in the removal of quantum anomalies, along with ever-present

moduli which must be stabilised. To connect these models to our four-dimensional

landscape requires compactification, the general geometrical process of reducing a

topological space into a compact space. This potentially brings with it critical phe-

nomenological consequences. This was demonstrated using a simple example of KK

reduction [763, 802, 803], utilising the five-dimensional action of a real massless
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scalar. Expanding upon these concepts we moved to the process of ten-dimensional

compactification required for the critical dimension of the superstring. In particular

a focus was placed on Type IIB theories [144, 369], showing the forms of the generic

Kähler potential, superpotential and effective supergravity action which come about

from this perturbative sector of the superstring theory space (Fig 3.2). To account

for the stabilisation of the Kähler moduli we briefly discussed two methodologies,

namely the KKLT and LVS models. The LVS framework offers an attractive solution

by demonstrating an ability to explicitly reproduce the string axiverse when the flux

compactification process generates states which are parametrically lighter in the low

energy spectrum than the field corresponding to the del Pezzo divisor modulus [351].

Next we introduced the overarching picture of the string axiverse and the nature of

its spectrum in the low energy sector, through the general presence of p-form gauge

fields [657, 911] and the topological diversity of complex extra-dimensional man-

ifolds. Concluding the discussions in this chapter, we highlighted and contrasted

the key aspects, forms, features and phenomenological potential of several explicit

axiverse constructions, namely M-theory [31], Type IIB [351] and the geometrical

landscape of the Kreuzer-Skarke axiverse [427], formulated using the list of cate-

gorised Calabi-Yau threefolds and associated four-dimensional reflexive polytopes

[825]. We also discussed issues regarding the realisation of light axions and subse-

quently an axiverse in regards to supersymmetric AdS vacua and tachyonic moduli

[364].

Part II of this thesis was focused on the statistical principles of universality, encap-

sulated in the mathematical field of RMT. We began with the introduction of the

paradigm universality and spectral statistics of LSDs and probability measure spaces

associated to classical matrix ensembles. We very loosely associated these models

to the conjecture of the string axiverse and the effective field equations for multiple

scalar fields [5, 125, 127, 127, 174, 226, 228, 290, 429, 502, 558, 873, 909, 921–

924, 1254, 1323, 1372]. To tackle these issues we introduced the Bayesian method-

ologies [1080, 1221, 1270] relevant for hierarchical modelling and to define a (hy-
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per)parameterisation of our models for the axiverse. In order to model the physical

parameters of the axion fields, loosely related to the notions of minimal informa-

tion [1178], we introduced key elements of canonical RMT, focusing on the use

of rotationally invariant ensembles. Next we moved onto the specific case of high-

dimensional random data matrices with positive (semi)definite spectra, namely those

residing in the Wishart-Laguerre ensemble. To do this we looked at the standard

forms of sample covariance matrices under both the null and alternative hypothe-

sis, introducing the limiting features defined in numerous historical results in the

field, such as the Marčhenko-Pastur bulk measure density [901] and universality of

the spectral edge statistics of the infimum and supremum eigenvalues [1268, 1269].

Under the alternative hypothesis [754], these statistics are subject to perturbative

formalisms, where we covered a seminal result, the BBP phase transition phenom-

ena [142], defining the nature of so called spiked models [232, 233, 954, 1321]. These

finite rank operations were generalised to the case of full rank perturbations to draw

traceable results via the use of well defined limits concerning correlated or non-

isotropic Wishart matrices [76, 746, 1017, 1037]. Firstly we drew attention to the

Fisher sample covariance matrix [856, 920, 1165], the standard form of covariance

estimation for isotropic Wishart type matrices via the use of a conjugate prior on

the population covariance matrix. Secondly we focused on how to generalise these

models to the case of full rank perturbations [313]. To do this we looked at clas-

sical ensembles via the non-commutative generalisation of measure spaces via the

principle of asymptotic freeness [1204, 1308, 1310], ensuring the incorporation of tra-

ditional invariant ensembles. Free convolution operations were introduced to model

particular configurations, where specific requirements on the parameters of classi-

cally perturbed models would ensure the fields mass spectrum is both non-tachyonic

and non-singular.

Motivated by the focus of defining results in these potentially vastly complex spaces,

we adopted the CLTs of canonical matrix ensembles. These we presented in the pre-

vious chapter, where sufficiently complex systems can obey universal laws that do
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not depend significantly on the underlying microscopic mechanisms of that system

[138, 493–495, 497, 497, 641, 939, 1279, 1351, 1352, 1360]. This allowed us to tra-

verse from the apparent vast and intricate landscape of explicit compactified string

models to a significantly simplified description, using the paradigm of effective field

theory. We used the assumption that we can operate at the level of the effective

multi-field action, for classes of periodic potentials in arbitrary dimensions, repre-

senting a minimal addition to the traditional Standard Model components. Our

arguments considered the case of using the simplest approach to the multi-field po-

tential, so called well-aligned theories [128, 131], in which the effective description

allows for an expansion around the potential minimum, generating a Lagrangian

described to first order by two non-explicit matrix arguments [1221]. We adopted

this description from the enigmatic theories of the string axiverse by using sample

covariance matrices to model these two arguments, used to define the positive pa-

rameters of the effective theory, in order to sample the space representing the axion

cosmology. These methods are already well established in the context of inflation-

ary theory [128, 131, 499], where random matrix models have proven to be a useful

simplification, owing to the universality of the models LSD. We then used these

to attempt to drive inferences which may constrain string theoretic considerations

from the structure of the low-energy theory. We introduced three different classes

of model to approach this, based on simplistic statistical models and priors on the

axion decay constants and masses. The first class, epistemic priors on the param-

eter space, motivated in principle by the original conjecture of the string axiverse.

The second made use of high-dimensional forms for the statistical uncertainty, using

assumptions made on the initial basis we began our analysis. Each model we consid-

ered made some assumption on the form of the axion field kinetic metric and mass

matrix in the initial basis we started in. We then detailed the forms of the possible

spectra in terms of Lebesgue decomposed measures [190] and convolution operations

[191, 219, 1204, 1311, 1313], for each possible model. In terms of the axion mass

spectrum these consisted of isotopic models, finite rank perturbed spiked models and
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full rank perturbed correlated models. Each of these were shown to have traceable

results and clearly defined probability measures which could be used to model the

axion parameter space. The final class of model we investigated was a special case

of using a random matrix approach to the M-theory axiverse, where we replaced the

statistical approach from the previous classes with matrix entries formulated from

stochastic parameters associated to the model’s variables, the priors on these related

to theoretical uncertainty in the model. Performing an analysis using a diagonal ap-

proximation of the models Kähler metric, with the mass matrix defined from the

expanded superpotential structured in the form of a sample covariance matrix, we

found the mass spectrum converged to normally distributed variables over logarith-

mic scales. Finally we applied a simplistic fit to each of these models using Pearson

density functions [1028–1030, 1032], specifically Beta density functions, focusing on

approximations for the first four distribution moments. We rounded off discussions

by suggesting a simplification to incorporate the approximate features of each class

of model. This was done by only considering the universal forms of perturbed mass

spectra, sufficiently described by two moments relating to some fixed mean scale

and distributional spread. We then applied this approach in the first of our results

chapters.

The concluding part of this thesis compiled together two chapters which made use of

the RMT effective models in Chapter 5, in order to explore possible inferences or con-

straints on the axion parameter space via two distinct phenomenological sectors. The

first of these [1219] considered BH superradiance [106, 107, 286, 317, 810, 1361, 1378],

used to determine constraints on the field’s parameter space through the Penrose

process [1044]. We began by introducing this process in the context of the rotating

Kerr BH spacetime [783], where axions can act as perturbative catalysis for superra-

diant instabilities when partnered with both stellar and supermassive astrophysical

BHs. We covered the specific regimes in which results have been derived in the litera-

ture, where we focused in particular on the weak-field or non-relativistic approxima-

tion [433], in order to ensure computational simplicity in the analytical expressions
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determining the superradiance rates. Beginning with the case of a single field, we

found that in the limit of sufficiently suppressed interactions, defined by ensuring ax-

ion decay constants of the order, fa &MGUT, BH spin measurements can be used to

define two factorised exclusion regions from the Regge mass-spin plane [106]. Using

a generous data set of known BH spins and masses [10, 12, 280, 522, 943, 948, 1100–

1102, 1289, 1289] we were able to constrain the axion mass in the case of a single

field to,

7× 10−14 eV . ma . 2× 10−11 eV , (7.86)

from stellar mass BH observational measurements, and,

7× 10−20 eV . ma . 1× 10−16 eV , (7.87)

2× 10−21 eV . ma . 1× 10−20 eV , (7.88)

from supermassive BH observational measurements. We also showed various phe-

nomenological inspired constraints such as 2.0 × 1015 GeV . fa . MPl for the

self-coupling of ultralight DM, fa . 3 × 1017 GeV for the QCD axion and 23.75 .

α−1
GUT . 25.75 for the grand unification coupling constant in M-theory models. We

also detailed in the limit of weak self-interaction, in the case of an atypical degener-

ate spectrum of fields, even large numbers of fields did not perturb the single field

constraints significantly. Using this we adopted the single field methodologies to

trivially generalise our constraints to the case of a population of fields. A model

incorporating possible large numbers of axions is excluded if just a single field lies

in one of the constrained ranges in Eq. (7.86), Eq. (7.88) and Eq. (7.88)[108, 317].

Using the ability to factorise the stellar and supermassive sectors we defined our con-

straints via an integral over the probability products of drawing a field from a given

effective field theory model and the probability that a given mass is constrained by

the BH superradiance process.

We considered the possibility of using these BH superradiance constraints to exclude

certain examples of simplified spectra representative of the previously discussed ax-
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iverse distributions for the axion masses. This under the assumption of statistical

independence in our model for the masses. The constraints become more severe

with larger numbers of axion-like fields due to the increased probability of drawing

an outlier. We adopted the approach of using the first two distribution moments

through the unified approach detailed in Chapter 5, to show that only a small num-

ber of fields should be allowed to obtain masses surrounding the BH superradiance

susceptible region. Constraints on the ultralight sector were shown to generally van-

ish in the limit of very large distribution variances. Constraints in these models on

the allowed values of Nax from processes such as BH superradiance, which rely only

on the existence of field vacuum fluctuations, are in principle extremely powerful.

Interesting extensions in the future would be to see how these could possibly shape

the bounds on the dimensionality or geometric features of phenomenologically con-

sistent moduli spaces in string/M- theory. We have seen from this simple analysis

that the benchmark value of,

Nax & 30 , (7.89)

is generally excluded with our simplified priors fixed to some scale in the ultra-

light sector of axion cosmology. Comparing and contrasting these constraints with

possible limits on the hodge numbers using explicit values from minimised poten-

tials in the Kreuzer-Skarke axiverse would offer a fascinating future extension. Also

the analysis we demonstrated made a distinct neglect of the possible effects of ax-

ion self-interactions, which can shut down the BH superradiance process via highly

non-linear phenomena, such as level mixing or bosenova events [106, 810, 1381]. An

obvious extension in future work would be to expand this analysis into the two-

dimensional parameter space for both the axion decay constants and masses. Axion

mixing in the form of scattering events may also offer interesting observational sig-

natures in future gravitational wave based experiments. Along with these options

using the superradiance constraints in conjunction with other phenomenological con-

siderations could help shape the constrained regions of the axion parameter space.

It would be interesting in this regard to combine this work with the analysis in
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the following chapter to combine calculations for the axion masses, the axion de-

cay constants, relic density, and self-interaction potential etc. The work covered in

this chapter was generally more model-independent, with a limited focus placed on

cosmological assumptions, detailing a general model of light scalars with sufficiently

small self-interactions.

The second results chapter looked at the dark sector of axion physics [1221], fo-

cusing on the possible existence of a largely decoupled sector of ultralight scalars

which may explain the nature of DM and/or DE. This multi-component dark sec-

tor could contain many fields, whereby using the simple effective RMT models, we

were able to compute a spectrum of axion masses and initial field values in order

to determine the resulting energy densities of axionic DM and DE. As making dis-

tinct and definite predictions in such a vast landscape of possibilities is a tricky task

[318, 319, 363, 390, 657, 662, 687, 688, 1131], often utilising numerous cosmological

parameters, we have made use of statistical tools in order to make first footings

into constraints on this space. We started by introducing the relevant cosmological

model framework in order to evolve the axion fields over time, detailing simplifi-

cations to help with the numerical practicalities. By using a few selected simple

quasi-observables [40] we have been able to constrain the parameters of the random

matrix models. In particular we split the analysis via two different methods. The

first, a snapshot indicating the general results in each of the model classes and their

potential to reproduce satisfactory DM or DE cosmologies. The second made use

of the the adaptable framework of Bayesian networks to perform a Monte Carlo

investigation of these scenarios. We generally found in the scenarios for DM mod-

els, data-driven lower bounds on axion mass distributions set by the matter density

and zeq. We also found motivations for low mass scales for a population of axions

through phenomenological results. Generally speaking future considerations for our

constraints from quasi-observables should include extended considerations such as

perturbation theory. We also considered the implications of the introduced spectrum

of axion decay constants. General considerations of the WGC can place bounds on
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combinations of axion decay constants and masses, which broadly speaking, can

provide inferences on the ability to constrain the existence of super-Planckian val-

ues (excluding aligned potentials). Overcoming this apparent constraint is a prime

motivation for the introduction of multi-field models of axion inflation, which is a

strong motivation as to why we investigated modelling multi-component DM and

DE. Our examples ensured the number of fields remained fixed in the presented

results. Future Bayesian network constraints could incorporate a possible extension

through the removal of this limitation. We argued a random matrix approach to the

effective field equations provided a more versatile and realistic approach to mod-

elling the required parameter distributions. The discussions in this chapter were

all considered under the assumption of an analysis entirely in the late Universe, in

particular during the epoch of radiation domination, post-BBN, where we had an

explicit disconnection in these models to inflationary theory. We presented here the

first simplified results using a random matrix approach to multi-axion models, in

order to probe the possible DM and DE relic densities from a population of fields,

fixed to some spectrum defining scale, using statistical methods to constrain spe-

cific axion mass and decay constant distributions. In order to extend this work it

would be interesting to explore the nature of field alignment along with the use

of non-canonical multi-instanton potentials [774, 1071], to facilitate the decay of

problematic heavy axion fields that otherwise provide energy densities which are

too large. Along with this, an extension to the Bayesian network space through the

addition of extended model (hyper)parameters associated to observables such as the

angular diameter distance to the CMB or BOA measurements would give a more de-

tailed analysis. Other considerations could also be made to model variables such as

the supersymmetry breaking scale or the Hubble scale during inflation which could

provide interesting results when incorporating multiple fields. There is no doubt, a

vast amount of work must be done, in numerous areas surrounding these subjects, in

order to best define where in the landscape our best hopes lie in the initial identifica-

tion of either the axion or an ALP. The inauguration of these fields into the particle
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Figure 7.21: The Vision of the Empyrean: The Empyrean Heaven, representative

in the study of ancient cosmogony as the highest heaven occupied by the aether.

Classically regarded as a place of divinity, observed in notable works such as Dante’s

Paradiso, the conceptual metaphysical origins used to define the highest heaven

translate to our modern understanding and cosmological endeavours regarding the

aspiration to quantify the higher dimensions of spacetime. For the theoretical par-

ticle cosmologist the metaphorical ‘Empyrean’ of UV-completion currently seems

to be hidden amongst a colossal phenomenological, geometrical and mathematical

landscape. Image credit: Taken from https://fineartamerica.com/featured/

the-vision-of-the-empyrean-gustave-dore.html.

https://fineartamerica.com/featured/the-vision-of-the-empyrean-gustave-dore.html
https://fineartamerica.com/featured/the-vision-of-the-empyrean-gustave-dore.html
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landscape could represent the first steps in the formal theoretical synergy between

the Standard Model of particle physics and its much needed extensions, breaking

the current theoretical and experimental impasse. It would also represent an indi-

cation of the presence of extra-dimensional physics, a vital mathematical formality

in our current best approaches to defining the true quantum nature of the Universe.

The defining scales for these fields can significantly alter their role in the cosmic

puzzle, constraining these parameters a logical first task in providing direction to

a minor fraction of the arduous process of piecing together the nature of the true

theory of quantum gravity. A very general and first order approach, such as the

ones conducted here in this thesis, is the analysis of the universal forms the spectra

for these parameters. We have introduced spectra under the general model frame-

work of the random matrix axiverse, utilising several of the key seminal results of

RMT to greatly simplify statistical priors and ultimately our results. Axion physics

offers a hugely rewarding framework, related to both physics on the smallest scales

and as possible solutions to the most grandiose cosmological paradigms. Using this

simplified framework we have been able to make initial footings into various possible

features of multi-axion cosmology. An explicit understanding of the role of axions

naturally arises from a complete categorisation of the true nature of spacetime and

its foundational components,

“Now that the very name ‘space’ seemed a blasphemous libel for this

empyrean ocean of radiance in which they swam. He could not call it

‘dead’; he felt life pouring in at every moment.”

Out of the Silent Planet

C.S. Lewis

potentially hidden in one of the numerous beautiful mathematical amalgamations

representing theories currently seeking to unify everything we have ever questioned

on the frontier of particle physics and cosmology. The identity, scale and nature

of the true fundamental integrants, the most pressing of open questions, what and

where are they?
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Appendix A

The Expanded Standard Model

Lagrangian

A.1 The Equation

The complete expanded form of the Standard Model Lagrangian representing a

local, completely renormalisable, quantum field theory obeying Lorentz and gauge

invariance is,

LSM = −1
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The equation above can be roughly factorised into sections concerned with gluon

interactions, bosonic interactions, weak force interactions, ghosts associated to the

Higgs sector and Faddeev-Popov ghosts. For specific definitions and a good overview

of the parameters in Eq. (A.1) see Ref. [160]. See also Refs.[582, 1052, 1161, 1243]

for discussions surrounding the Standard Model parameters and their interactions.



Appendix B

Bayesian Statistical Modelling

B.1 Bayes Theorem

Here we discuss the basic context of high dimensional graphical models and asso-

ciated measure spaces susceptible to hyper-parameterisation or hyperparameter op-

timisation. There are traditionally speaking considered to be two opposing schools

of statistical reasoning forming the historical umbrellas of frequentist or Bayesian

approaches. The Bayesian school of thought [1270] is the naturally adopted frame-

work in a cosmological setting, where we are forced to accept and account for the

obvious consideration that both the true underlying theory is vastly complex and

uncertain. Observationally we are also plagued to only have a single reference frame,

as observers, our personal realisation of the Universe we find ourselves in, explicitly

a one time deal.

In order to evaluate the probability associated to a given model, described by a

series of parameters ~θ, whilst assuming we possess some suitable sampled data D,

we define the following values of interest. The probability of the theory, P (~θ) is

referred to as the statistical prior. The probability of the data given the theory is

the likelihood. Finally the probability of the data, P (D) is a normalisation factor

found by marginalisation. The relationship between all of these quantities is defined

486



Bayesian Statistical Modelling 487

by Bayes’ theorem,

P
(
~θ|D

)
=
P
(
D|~θ

)
P
(
~θ
)

P (D)
. (B.1)

The marginal normalisation or evidence term is often defined as a a simple integral

normalisation term or partition function,

P (D) =

∫
dθP (D|θ)P (θ) . (B.2)

A joint probability distribution in this setting is defined as,

P (~θ,D) = P (D, ~θ)P (~θ) . (B.3)

Our primary inputs to define are the likelihood process and prior distribution func-

tion. The prior is our main focus represented by the properties of the measure space

for the eigenvalues of our matrix ensembles. The true distributional structure of

some compactification model residing in the string landscape is a potentially a Go-

liath task, often combined with very specific model features. Independent concerns

may deviate from how we formulate a more general and simplified understanding.

Generating a consistent formalism for adaptable but self-consistent prior functions

is something that is of particular interest when dealing with available cosmological

data and what inferences that could be found in order to lead how we may shape

more specific models. This shaping comes from incorporating Bayes’ theorem in a

special type of high dimensional graphical model adopting the statistical language

above, known as a Bayesian hierarchical network [295]. These probabilistic graph-

ical models rely on a global factorisation of the joint probability distribution for a

set of random variables into a product of local conditional probability distributions.
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B.2 Hierarchical Modeling

Consider a model M, where the hyperparameters of M represent the parameters

of the relevant prior distributions of the model, the hyperpriors are therefore a

natural extension using the singular values of the models hyperparameters. These

models are often constructed as high dimensional probabilistic models, visualised

using an acyclic graph with a fixed number of nodes which represent the model

parameters. The graphs edges correspond to the systems stochastic or deterministic

dependencies (see discussions in Section 7.3.1 and Fig. 7.15). Typically speaking at

each node sits an assigned random variable, surrounded by a plate, which indicates

the number of variables, each defined using the same hyperparameters. When the

data is of variable size the plate must be repeated. A simple example of this is

visually represented in Fig. (B.1) which concerns the conditional probability,

P (x, α, β, γ) = P (x|α, β, γ) · P (α, β, γ) . (B.4)

These types of models represent a flow of information where we initially formulate

nested sets of conditional dependencies between model parameters. We allow for

the treatment of each parameter and hyperparameter as a random variable in the

network. When the network is initialised we truncate the network at the highest

order of the hyperparameters and fix singular terms in order to define the networks

dependancies in order to generate data for the lowest level of the model parameters.

The standard prior taken on the grounds of an uninformative analysis using Bayesian

methods is the Jeffery’s prior, represented by the proportionality relationship with

the Fisher information matrix,

P (~θ) =

√
det I(~θ) . (B.5)

String models suggest such natural priors can arise through physical motivations
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a b c

x

Hyperparameter	vector

Figure B.1: Graphical representation of a generic model detailing the standard rel-

evant layers. The hyperparameter vector defines the values of the hyperparameters

which determine the nature of the model variables αi, βi and γi, which can repre-

sent either initial conditions or a series of stochastic variables which appear in the

model Lagrangian. The dashed dotted box represents the stage of data compression

using functional encoders. Each of these have a, b and c IID variables, where the

surrounding plates represent a repetition or sampling process. Finally x represents

a deterministic variable or observable we wish to draw conclusions on.

and could be useful given several scale invariant aspects of the landscape. Although

not strictly a Jeffery prior, on the grounds of ensuring the correct normalisation, we

have discussed these epistemic priors on axion parameter spaces in Section 5.1.2.

We have argued however modality is a more naturally arising prior for randomised

high-dimensional arguments present in the effective field theory.

Currently the full use of Bayesian networks are heavily constrained in a practical

sense to focus their analysis on a very small number of fields, or more commonly,

the case of the addition of a singular field [444]. The process of tracking the flow of

information in models is a very tricky procedure when models have a large number

of free parameters. The development and processing of future algorithms will allow

for simplified models to draw stronger conclusions on the relations between these
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parameters in terms of dependencies and the ability to integrate out nodes which

the information content shows are safe to avoid. This is also vital on the grounds

of including multiple fields, which gives an Nax factor enhancement to scale of the

problem. See Refs. [318, 319, 363, 390, 657, 662, 687, 688, 1131] and references

therein for relevant discussions. It is best then currently, to focus on methodologies

which are useful in scenarios where multiple fields are present. Although these

methods offer a much more simplified and uninformed approach, we can still draw

interesting conclusions from these models. In this thesis we will focus on the case of

a large number of fields and so we will assume we sit at the effective global minimum

of the information we pass into our system of equations, disregarding any tracking of

the nature of where and how that information my have been lost. In the context of

generating consistent and traceable priors these methods are particularly adaptable,

where we can turn to the mathematics of random matrices and numerous relevant

associated universal properties.

B.3 General Approaches to Variances and

Correlations

The choice of prior placed on the covariance matrix is a ubiquitous issue prevalent

in modern statistics. Usually driven by the covariance estimation of multivariate

random vectors, the formalities are particularly challenging in the high dimensional

regime. We can still take inspiration on how to understand model formulation from

Bayesian methods of matrix estimation and shrinkage priors based on reference

prior models. There is a general consensus in the literature that the covariance

matrix estimator should be understood under some form of decomposition, instead

of the classical approach taken in Eq. (4.97). The preference on the decomposition

structure is less clear, often incorporating factors of the standard deviations or

variances, the prior placed on these a further level of hesitancy in the problem.
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There are a number of ways of accounting for the problems detailed above found

in the literature. These consist of, but are far from limited to, non-conjugate ref-

erence priors such as scaled inverse Wishart [778, 970, 1008], hierarchical half-t

[723], Wishart [350], Cholesky-factor [1200], shrinkage priors [1324], reference priors

[1373], matrix logarithms [718] and separation-formalism priors [161, 595, 723]. A

common general approach which is most relevant to our discussions when dealing

with this issue prevalent in extensions incorporating a Bayesian type analysis, is

a decomposition of the variance components, known as the separation strategy or

variance-correlation strategy [161]. The primary motivations for the use of the sep-

aration strategy is a flexibility and directness in modelling information in terms of

standard deviations and correlations between data rather than a spectral decompo-

sition of the full covariance matrix, Σ.

B.3.1 The Separation Strategy

A general argument is that it is often hard to deal with an unknown covariance

matrix because the number of parameters increases very quickly as the dimension

of the matrix increases. These parameters are also constrained by the complicated

condition that the covariance matrix must be non-negative definite. The decomposed

form of the covariance matrix in Eq. (4.59) using these methods is,

Σ = ΞQΞ , (B.6)

where, Ξ = diag(δi). We can associate this type of model in equivalent to perturba-

tive models of isometric matrices in various limits such as,

Y =
√
PXΣXT

√
P where Σ ≡ ΞQΞ ∝ I , (B.7)

Y ≡
√
PXΞQΞXT

√
P where

√
P ∝ I , (B.8)



Bayesian Statistical Modelling 492

assuming equivalent prior dependancies. We need not restrict Q to be a correlation

matrix (see Ref. [1008]) but only that it is strictly positive definite, if we wish to

not over-parameterise the model.

B.4 Probability and Measurable Spaces

In particular a remarkable olive branch in mathematics ensures well defined points

representing measures on a statistical manifold formed from non-commutative oper-

ations, gives us a safe space to operate in, a striking contrast from classical statistical

analogues, which was the focus of Section 4.4. We quote now, without derivation,

a series of points beyond the scope of this thesis, tied into the concepts of measure

theory, which provide interesting context to how the statistical spaces we will cov-

erer in the following chapter could be understood in a wider picture. Information

geometry [981] represents the interdisciplinary field that formulates an amalgama-

tion of various methods of differential geometry and probability theory. Usually

its applications are more relevant to machine learning [444], in order to study the

spaces where each point is a hypothesis about some state or model. A statistical

model [934] is a family M, of probability measures on a measurable space Ω. The

hyperparameters we initialise our model with are mapped to the probability density

functions priors on the measurable space via M. Consider a statistical manifold

space, X which defines a measure, (X,S, µ) on X. We can also define a suitable

classical probability space, (Ω,B, P ), which represents a probability space on Ω = X

with sigma-algebra1 representing the set of events, B = S and probability P = µ,

on the measurable space (Ω,B). The map P : B → [0, 1] is the probability function.

When µ(Ω) = 1 we define a probability measure. If we fix the sigma-algebra we

define the general infinite-dimensional statistical manifold, S(X) each point repre-

senting a Borel measurable function2 from Ω to X. The Borel sigma-algebra B on a

1A sigma-algebra or σ-algebra in the context of this work represents a definition of the measur-
able sets relevant to valid priors in our modelling.

2Formally we will reference the LSD functions for our choice of ensembles as Borel probability
measures, again the technicalities beyond the scope of this thesis but quoted to reference specific
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topological space is the smallest sigma-algebra containing all open sets. It is then

often common practise to work in a finite dimensional setting defined by considering

a limited set of probability distributions related by some continuously varying pa-

rameter. This parameter selects the relevant measures. Although beyond the scope

of this thesis, these principles will be relevant for how we understand the limiting

distributions for eigenvalues in the context of RMT.

mathematical features they represent in the study of free probability, e.g. see Refs. [190, 750, 1206].



Appendix C

Matrix Operations

C.1 Matrix Transforms

One example of the potential these models have comes with the understanding of how

the LSD behaves for a class of general high-dimensional Wishart matrices, forming

one of the defining cornerstones of RMT analysis. Specifically the origins of which

are found in the seminal work of Vladimir Marčhenko and Leonid Pastur in 1967

[901] which we will address in Section 4.3.1.1, detailing how the limiting probability

measure on the eigenspace of large random matrices is convergent and minimally

dependant of the choice of the distribution of choice for the matrix entries. We

are actually concerned with conditional factors placed on the distribution moments

rather than the specificity of the distribution used for the undefined degrees of

freedom encoded in the random matrix. Let us introduce some of the defining

matrix transformations which will prove vital in understanding and defining the

nature of the LSD away from classical constructions. See Refs. [138, 939, 1279]

for details and formal definitions of any of the operations quoted below. First the

Cauchy transform and respectively its functional inverse of the LSD, µ on R+ which

494
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is defined as the limiting analytic self-map,

Gµ(z) =

∫

R

1

z − xdµ(x) z ∈ C+ , (C.1)

Fµ(z) =
1

Gµ(z)
. (C.2)

The negative definition of Eq. (C.1) defines the Stieltjes transform, mµ(z) ≡ −Gµ(z).

The η-transform for any positive measure on the positive real line is,

ηµ(z) =
mµ(−1/z)

z
, (C.3)

defining a strictly monotonically decreasing function. The Voiculescu transform is

[202],

φµ(z) = F−1
µ (z)− z . (C.4)

The R-transform is the free analog of the log-moment generating function in classical

probability theory, used for its additive properties, defined in the domain, C+ and

is related to the Stieltjes transform [193],

Rµ(z) = m−1
µ (−z)− 1

z
. (C.5)

The S-transform is the free analog of the Mellin transform in classical probabil-

ity theory, used for its multiplicative properties and is defined in terms of the η-

transform,

Sµ(z) = −z + 1

z
η−1
µ (z + 1) . (C.6)

The relevance of these transformations [1280] will become clear, as they provide

a vital combinatorial description when assessing the distributions of the product

or additions of free random variables in Section 4.4. They represent the ability

to explicitly define a measure function given a particular model realisation. For

example the famous Marčhenko-Pastur law we will introduce in Section 4.3.1.1 in

Eq. (4.67), has a well defined S-transform SµMP
(z) = 1/1 + βz.



Appendix D

The Tracy-Widom Limiting Laws

D.1 Extremal Spectral Functions

One of primary results from the literature states that for any sample covariance

matrix constructed under the null covariance assumption, the largest eigenvalue

converges almost surely to a limiting distribution. These limiting distributions are

the Tracy-Widom laws, dependant on the invariance of the ensemble. Generally we

have for a white-Wishart matrix, W, when N,P→∞,

λmax(W)− µN,P

σN,P
→ Fβ̃ , (D.1)

where Fβ̃ represents a family of different Tracy-Widom cumulative distribution func-

tions parameterised under the standard β̃ ensembles of the threefold way in RMT.

The Tracy-Widom functions are formulated in terms of solutions to the nonlinear

second-order ordinary Painlevë II differential equation. This behaviour was first

shown for the GUE by Kurt Johansson in Ref. [753] and again by Iain Johnstone for

the GOE in Ref. [754]. Each of these distributions relates the statistical properties

of the largest normalised eigenvalues of a given random Hermitian matrix. It was

shown under a N
2/3 scaling that for each of the GOE (β̃ = 1) [1269], GUE (β̃ = 2)
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Figure D.1: Left panel: Tracy-Widom limiting probability measures defined in

Eq. (D.3), Eq. (D.4) and Eq. (D.5) for the normalised singular eigenvalues defining

the spectral supremum of each possible choice of real, complex, or quaternion matrix

entries for the classical Gaussian ensembles. Right panel: Example sample spectra

for the largest eigenvalues from 25000 matrix simulations from the GOE ensemble

for various values of the dimensionality parameter, β.

[1268] and GSE (β̃ = 4) the general edge universality follows,

Fβ̃(s) = lim
N→∞

FN,β̃(2σ
√
N + σN

− 1/6s) , (D.2)

where the family of functions are explicitly defined as,

F2(s) = exp

(
−
∫ ∞

s

(x− s)q2(x)dx

)
, (D.3)

F1(s) = exp

(
−1

2

∫ ∞

s

q(x)dx

)
[F2(s)]

1/2 , (D.4)

F4(2
− 2/3s) = cosh

(
−1

2

∫ ∞

s

q(x)dx

)
[F2(s)]

1/2 . (D.5)

The value of q(s) represents the unique solution of the Painlevë II differential equa-

tion,

q′′(s) = sq(s) + 2q(s)3 + α , (D.6)

assuming the following boundary conditions,

q(s) ∼ Ai(s), s→ +∞ , (D.7)
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with the Airy special function, Ai(s). The left panel of Fig. D.1 shows the limiting

laws of order 1, 2 and 4 for each of the largest eigenvalues of the GOE, GUE and GSE

ensembles respectively. The right panel shows examples of numerical simulations for

the eigenvalues defining the spectral radii of the GOE ensemble for various ratios of

shaping parameter, β.



Appendix E

Combinatorial Sequences and the

Fuss-Catalan Distributions

E.1 The Fuss-Catalan Numbers

A subject with very close ties to free probability theory, the construction of ma-

trix ensembles and the asymptotic characteristics of positive density spaces is the

study of combinatorial moment sequences. In order to briefly highlight the poten-

tial complications of modelling the explicit asymptotical level density functions for

perturbed systems we quickly review the explicit formulation of some specific com-

pact measures supported on, R+. Sequences can often be formed as an approach to

generalising the famous limiting laws for classical ensembles. For example a gener-

alised set of matrix ensembles for positive definite hermitian matrices comes from

the free multiplicative powers/roots of the Marčhenko-Pastur distribution, know as

the Fuss-Catalan distributions [148, 1047].

These distributions have a range of associations to quantum systems and the mod-

elling of quantum states in areas such as entanglement and multi-particle systems

[952, 1400]. The asymptotic behaviour of the squared singular values for the fixed

set of probability measures have moments associated to the Fuss-Catalan numbers
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[105, 951] to a given order, s. The combinatorics of the Fuss-Catalan numbers

are linked to the binomial coefficients and serve as a representation of the legal-

permutations for the arrangement of a series of values or objects. The Fuss-Catalan

numbers are generated by the sequence of terms,

FCs(n) =
1

sn+ 1



sn+ n

n


 . (E.1)

To an arbitrary order, s, the LSD functions can be found as follows. For each index

s it is possible to show that the following equation can be satisfied [1047],

∫ Ks

0

xnµFC
s (x)dx = FCs(n) , (E.2)

for all,

Ks =
(s+ 1)s+1

ss
. (E.3)

The function µFC
s (x) is representative of the positive probability measure density

function for the eigenvalues of matrix products of the form,

Xij(s) =
(
Ykj(1)Ykj(2)...Ykj(s)

)† (Yik(1)Ykl(2)...Yyz(s)

)
. (E.4)

Performing an inverse Mellin transform on the function, µFC
s (x) and incorporating

Euler’s gamma function via the Gauss-Legendre formula we arrive at a form for the

density which contains products of gamma functions with shifted arguments [1047].

The nuance here, in this formulation, is that the form of this function actually allows

for the Mellin transform to undergo a further representation in terms of a Meijer

G-function,

µFC
s (x) =

1√
2π

s(s−
3
2)

(s+ 1)(s+
1
2)
Gs,0
s,s


z

∣∣∣∣
α1, . . . , αp

β1, . . . , βq


 . (E.5)
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The form of the Meijer G-function defines the function parameters,

αj =
1 + j − s

s
, (E.6)

βj =
j − 1− s
s+ 1

. (E.7)

This generalisation of the positive density spaces generated by the standard LSDs

of isotropic Wishart matrices detailed in Section 4.3.1 asymptotically defines the

combinatorial Fuss-Catalan probability distributions,

µFC
s (x) =

[
µMP

1 (x)
]�s

, (E.8)

defined in the context of free convolution operations. The function µMP
1 (x) is the

standard Marčhenko-Pastur probability measure function found in Eq. (4.67). The

explicit form of the second order free convolution measure is [870, 1046, 1047],

µFC
s=2(x) =

3
√

2
√

3

12π

3
√

2
(
27 + 3

√
81− 12x

)2/3 − 6 3
√
x

x2/3 3

√(
27 + 3

√
81− 12x

) . (E.9)

Simplifying Eq. (E.5) the Fuss-Catalan distributions to arbitrary order are defined

as [1047],

µFC
s (x) =

s∑

k=1

Λk,sx
k
s+1
−1

sFs−1

([
{α}sj=1

]
,
[
{β}k−1

j=1 , {γ}
s
j=k+1

]
;

ss

(s+ 1)s+1x

)
,

(E.10)

α = 1− 1 + j

s
+

k

s+ 1
; β = 1 +

k − j
s+ 1

; γ = 1 +
k − j
s+ 1

, (E.11)

where sFs−1 is a hypergeometric function and x represents the space of eigenvalues

bounded by the upper and lower spectral limits for the model parameters. The

values of Λk,s represent the model coefficients,

Λk,s = s−
3
2

√
(s+ 1)

2π

(
s

s
(s+1)

(s+ 1)

)k [
Γk−1
j=1γ

(
j−k
s+1

)] [
γsj=k+1γ

(
j−k
s+1

)]
[
Γsj=1γ

(
j+1
s
− k

s+1

)] . (E.12)
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The Fuss-Catalan numbers are actually a special limit of a larger family of combi-

natorial sequences.

E.2 The Raney Numbers

This space of positive measures can be expanded in a more general setting using

the Raney lemma [1047, 1090], where the number of the Raney sequences of order

P and fixed length Pn + 1, is defined by the Fuss-Catalan numbers in Eq. (E.1).

These Raney numbers are defined as,

RP,R(n) =
R

(Pn+R)



Pn+R

n


 (E.13)

with the relation, FCp−1(n) = RP,1(n). These sequences have been shown to de-

scribe the moments of probability measure functions, µR
R,P with compact support

on the positive real interval [951]. These are related to the previously defined Fuss-

Catalan densities when R = 1, where µR
s+1,1 ≡ µFC

s . This complete set of positive

density measures are parameterised by the inequality, 0 < R ≤ P , as displayed

in Fig. E.1. Repeating the general treatment above for the definition of the Fuss-

Catalan functions, it is possible to form a generalisation of Eq. (E.5), i.e. applying

an inverse Mellin transformation for specific parameters defines a representation of

the Raney distributions in terms of the hypergeometric functions, which is expressed

as the rather cumbersome summation [1047],

µR
P,R (χ) =

P∑

J=1

Ω (P ,R;J )χ( (R−1+J )
P −1)PFP−1

(
γ1, γ2;

(P − 1)P−1

PP χ

)
,

(E.14)

γ1 =
[
1 + βJ , {1 + βJ − αI}PI=2

]
, (E.15)

γ2 =

[{
1 +
J − I2

P

}J−1

I2=1

,

{
1 +
J − I3

P

}P

I3=J+1

]
, (E.16)
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α1 = 0 ; αI =

(R−P − 1 + J
P

)
for I = 2, . . . ,P , (E.17)

βJ =
(R−P + I)

(P − 1)
for J = 1, . . . ,P , (E.18)

Ω (P ,R;J ) =
R√
2π

P(R−P− 1
2)

(P − 1)(R−P+ 3
2)

(
(P − 1)(P−1)

PP

) (R−P−1+J )
P

1

Γ
(

(P−R+1−J )
P

) [C1] [C2]

[C3]
,

(E.19)

C1 =
J−1∏

I1=1

Γ

(II − J
P

)
; C2 =

P−J∏

I2=1

Γ

(I2

P

)
, (E.20)

C3 =
P∏

I3=2

Γ

(
(R−P + I3)

P − 1
− (R−P − 1 + J )

P

)
, (E.21)

where we can associate χ to either a positive space of mass-eigenstates or decay

constants, defined in the interval,

µR
P,R ∈ [0, PP/(P − 1)P−1] . (E.22)

The functional support is determined by the convergence of the hypergeometric

series, PFP−1. Particular combinations of P and R reduce to well known ensemble

limits, as detailed in Fig. E.1. Using these relations we have the intriguing possibility

to define specific relations between these limits by a translation of the defining

parameters, which can be used to single out a specific models. For example the

semi-circle distribution
(
µR

2,2

)
is related to the Marčhenko-Pastur function,

(
µFC

1

)
,

as defined by the general relation [1047],

µR
P,R(x) = xµR

P,1(x) = xµFC
p−1(x) . (E.23)

These general densities represent quantities often too complex to generate and scan

in a more Bayesian sense for phenomenological models, where we need to fall back

on simpler more general characterisations of distribution moments as discussed in

Section 5.4. These functions do however represent a fascinating relationship between

various model spectra and act as a powerful demonstration of universality amongst



Combinatorial Sequences and the Fuss-Catalan Distributions 504

0 1 2 3 4

P
0

1

2

3

4

R Pos
iti

ve
Den

sit
y

Bou
ndry

δ MP FC

WSC

R >
P

Figure E.1: Raney density function space defined by Eq. (E.13), with specific lim-

iting density functions generated at the coordinates (P ,R) used to define the Raney

numbers in Eq. (E.14). The green shaded region relates to the set of non-negative

probability measures. The boundary defines the generalisations of the semi-circular

distribution. The delta function positioned at (1, 1) (black circle) corresponds to the

mass distribution in Section 5.2.3 which under the translation P + 1 generates the

mass spectrum in Section 5.2.4.1 (blue circle). The orange circle relates to discussions

in Section 5.2.4.3.2. Finally the red circle could relate to spectral forms associated

to shifted distributions of the superpotential Hessian as discussed in Section 5.2.8.

Reproduced from Refs. [952, 1047].

numerous non-trivial examples of ensembles found in perturbative constructions.

Specifically in our general form of model construction we are concerned with the

free convolution relationships [951, 1047],

µR
P+RQ,R = µR

P,R � µ
R
1+Q,1 , (E.24)

[
µR

1+P,1
]�s

= µR
1+sP,1 , (E.25)

for all R,Q,P > 0, which define the ability to place priors on model components

associated to well defined limits of the Raney space shown in Fig. E.1.
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Elements of Measure Spaces

F.1 Free Operations

Further free operations related to the discussions found in Section 4.4 are defined

as,

• � - Additive free deconvolution: For the case of a unique probability measure

µ, we can define the additive free convolution operation as µ = ξ � ν, where

ξ represents the resultant measure from the additive free convolution defined

above [94, 1133, 1134].

• � - Multiplicative free deconvolution: For the case of a unique probability

measure µ, we can define the multiplicative free convolution operation as µ =

ξ � ν, where ξ represents the resultant measure from the multiplicative free

convolution defined above [94, 1133, 1134].

• � - Free compression: As discussed in Ref. [996], the compressive convolu-

tion represents the operation µX → N
P
� µ for a measure, µ for the weakly

converging distribution of a matrix, A. Introducing the parameter, α ∈ (0, 1]

defines the R-transform, Rα�µ(z) = Rµ(αz) and inverse Cauchy transforma-

tion, G−1
α�µ(y) = G−1

µ (αy) + 1/y − 1/αy.
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In the following section we detail a few features of measure spaces related to these

operations which indicates the ability to associate any measure we could produce

(given specific symmetry restrictions etc.) as a parametrisable and well defined

function residing in a measure or distribution family [673], with suitable features

such as regularity and modality. Just as a Gaussian distribution distribution may

appear as a specific limit in a wider family, the limiting laws of RMT could belong

or be closely represented by a family formed from convoluted measures.

F.2 Infinite Divisibility

Any probability measure defined on R, the analytical subordination for free convo-

lution powers defines the freely infinitely divisibility of a measure, for all n ∈ Z+, if

there is a well defined probability measure which satisfies,

µ = µ�nn ≡ µn � · · ·� µn , (F.1)

under the repetition on n free additive convolutions and µ�nn defines a class of free

infinitely divisible measure functions. These are analogous to classical cases it is

possible to define free Levy processes and free infinite divisibility [195, 1049] with

respect to free convolution operations. This is a powerful relation, especially when

considerations of the bijection it represents between classically and freely infinitely

divisible probability measures are considered, the so called Bercovici-Pata bijection

[203]. This is the CLT relation between free random variables and classical coun-

terparts, i.e. Wigner’s semicircle law is the free analogue relation to the Gaussian

law and the Marčhenko-Pastur distribution the free analogue of the Poisson limit

theorem, which possesses an interesting relation to kurtosis [93], and as bijection

preserves cumulants provides a direct relation between moments. A stronger crite-

rion from free infinite divisibility is free regularity. Any measure on R is free regular

when its free convolution power µ�nn is fully analytic on [0,∞). Other key aspects
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represent the unimodality of the resulting measures.

For any symmetric probability measure function, we can say it is infinity divisible

for any integer, n ∈ Z+ where again a further measure, µn defines the convoluted

sum,

µ = µn �β µn �β · · ·�β µn . (F.2)

For the information plus noise model other more traditional free operations, such as

free multiplicative convolution have been used to construct measure spaces [1091].

It is typically considered the operand measure is the Marčhenko-Pastur distribution,

with the perturbing function a discrete measure density [833]. Perhaps more interest-

ingly operations using free deconvolution were discussed in Refs. [1132, 1133] provid-

ing insight into the fascinating ability to backtrace results from non-commutative

operations, also allowing for further definitions of noise profiles such as coloured

noise.

F.3 Spectral Noise

Ensuring that the matrix X in the information plus noise model converges almost

surely to a compactly supported probability measure µX, then we can define,

µM � µMP = (µX � µMP)� µσ2I , (F.3)

where µMP is the Marčhenko-Pastur measure defined in Eq. (4.67) and µσ2I is the

atomic measure of additional noise, which typically reproduces Gaussian fluctua-

tions. It is then possible to deconvolve Eq. (F.3) in order to express the measure of

the final matrix,

µM = ((µX � µMP)� µσ2I)� µMP , (F.4)
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whilst also defining a measure for the isolated information,

µX = ((µM � µMP)� µσ2I)� µMP . (F.5)

The fluctuations of eigenvalues in the isolated measure components representing

the presence of spikes is primarily regulated by the choice made for the matrix

ensemble. See Ref. [313] for details regarding the IID case and frameworks outside

of free probability. The support of the resultant measure also corresponds to the

characteristics of the perturbing measure where we can assume a traceable safety

in the nature of the new support when the support of ν has a finite union of closed

disjoint intervals [312, 313]. The nature of the measure at the hard and soft edges

has also be shown to be a continuous density function for each respective model

[218, 476, 1189].



Appendix G

Beta Distribution Functions

G.1 Family Parameterisations

The Beta family of distributions can be defined by the parameterisation,

FBeta(x; γ, κ, ξ, χ) =
xξ−1(1− (1− κ)(x/γ))ξ−1

γξβ(ξ, χ)(1 + κ(x/γ))ξ+χ
, (G.1)

where, 0 < x < b/(1− c) and,

β(ξ, χ) =
Γ(ξ)Γ(χ)

Γ(ξ + χ)
, (G.2)

using the Gamma function, Γ. This represents a special limit of the extremely

versatile generalised Beta distribution [57],

FBeta (y; γ, κ, ξ, χ) = GBeta (y;α = 1, γ, κ, ξ, χ) . (G.3)

The beta and inverted beta distributions or beta distributions of the first and second

kind are defined by the functions,

Beta(x) =
xξ−1(1− x)χ−1

β(ξ, χ)
, (G.4)
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Beta′(x) =
xξ−1(1 + x)−ξ−χ

β(ξ, χ)
, (G.5)

which are recovered in the limit of κ = 0 and κ = 1 for the FBeta function in

Eq. (G.1) respectively. The standard normalised Beta distribution is defined by the

support, x ∈ [0, 1]. When the mean and variance are not normalised the function

must adopt two further parameters defining the four-parameter Beta function family

or collection of Type I Pearson distributions,

Beta(x) =
(x− ξ)ξ−1(χ− x)χ−1

β(ξ, χ)(χ− ξ)ξ+χ−1
. (G.6)

The values of ξ and χ will correspond to the upper and lower limits of the largest

and smallest eigenvalues, which translate across to the standard location and scale

parameters of the function, parameterised by ξ and χ−ξ respectively. The skewness

of the Beta distribution is defined as,

√
β1 =

2 (χ− ξ)√ξ + χ+ 1

(ξ + χ+ 2)
√
ξχ

, (G.7)

and the excess kurtosis is,

βex
2 =

6
[
(ξ − χ)2 (ξ + χ+ 1)− ξχ (ξ + χ+ 2)

]

[ξχ (ξ + χ+ 2) (ξ + χ+ 3)]
. (G.8)

The geometry of the distribution function relates to the parameter of the RMT

models, regulated by both ξ and χ. In the limit, ξ = χ the distribution is symmetric

about the mean where we can define the linearity relationship,

βK ≡ C1ξ , (G.9)

βM ≡ C2χ . (G.10)

The constants C1 and C2 represent a proportionality scaling factor relating to distri-

bution shaping parameter to the Beta distribution parameters. When the distribu-
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tion is symmetric the constants equate.



Appendix H

Generalised Lambda Distributions

H.1 A Flexible Framework for Spectral Moments

A very flexible and commonly used distribution framework for modelling logarithmic

asymmetric random variables due to the possible presence of significant heavy-tails

or skewness is the family of GLDs [378, 563, 776, 1085]. This family of distributions is

an extension of the Tukey lambda distribution family [674, 1277]. The GLD is a four

parameter family with a focus placed on its extreme flexibility and ability to model

the moments of a statistical distribution. There are a wide range of generalised

flexible distribution families (normal inverse Gaussian [163], generalised hyperbolic

distribution [162], Johnson translation [1211, 1232] etc), most of which possessing

properties of infinite divisibility. The GLD is defined by a quantile function such that

its parameters can be estimated even when its moments do not exist. This feature of

the GLD family gives a specific flexibility to accurately represent various shapes of

defined density functions, where particularly they are capable of mapping unimodal,

monotone, U-shape and S-shape functions to a high degree of accuracy. The general

efficiency of these spectra is determined by how to categorise, determine and fit

the relevant empirical moments to their theoretical counterparts (i.e. L-moments

[716], maximum likelihood functions [989] etc). Although certain limits of the mass
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distributions will correspond to well known distributions, particularly well known

point limits residing in the family of Pearson Types discussed in Section 5.4, the

general modelling of most spectra will correspond to an (excess) kurtosis and skew

approximated to increased accuracy by the use of a series of continuous functions in

this space.

H.2 The Freimer-Kollia-Mudholkar-Lin

Parameterisation

Under the Freimer-Kollia-Mudholkar-Lin (FKML) parameterisation [563], the pa-

rameters of interest of the GLD are defined by the quantile function which is the

given inverse of its cumulative distribution function (CDF),

F−1(p|λ1, λ2, λ3, λ4) = λ1 +
1

λ2

[
pλ3 − 1

λ3

− (1− p)λ4 − 1

λ4

]
, (H.1)

where p represents a probability weight, p ∈ [0, 1]. The GLD probability function is

then defined as,

fλ(F
−1(p|λ1, λ2, λ3, λ4)) =

λ2

p(λ3−1) + (1− p)(λ4−1)
. (H.2)

The empirical moments can be found using the following relationships to the λ

parameters which define the probability density of the GLD,

µ = ν1 , (H.3)

σ2 =
ν2 − ν2

1

λ2
2

, (H.4)

√
β1 =

ν3 − 3ν1ν2 + 2ν3
1

(ν2 − ν2
1)3/2

, (H.5)

β2 =
ν4 − 4ν1ν3 + 6ν2

1ν2 − 3ν4
1

(ν2 − ν2
1)2

, (H.6)
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where the ν functions are functions of the shaping parameters for the higher moments

of the distribution,

ν1 =
1

(1 + λ3)λ3

− 1

(1 + λ4)λ4

, (H.7)

ν2 =
1

(1 + 2λ3)λ2
3

+
1

(1 + 2λ4)λ2
4

− 2ζ(1 + λ3, 1 + λ4)

λ3λ4

, (H.8)

ν3 =
1

(1 + 3λ3)λ3
3

− 1

(1 + 3λ4)λ3
4

− 3ζ(1 + 2λ3, 1 + λ4)

λ2
3λ4

+
3ζ(1 + λ3, 1 + 2λ4)

λ3λ2
4

,

(H.9)

ν4 =
1

(1 + 4λ3)λ4
3

+
1

(1 + 4λ4)λ4
4

− 4ζ(1 + 3λ3, 1 + λ4)

λ3
3λ4

(H.10)

+
6ζ(1 + 2λ3, 1 + 2λ4)

λ2
3λ

2
4

− 4ζ(1 + λ3, 1 + 3λ4)

λ3λ3
4

, (H.11)

where the function, ζ is,

ζ(x, y) =

∫ 1

0

Γ(x−1)(1− Γ)(y−1)dΓ , (H.12)

representing a standard Euler integral of the first kind.



Appendix I

The Random Matrix Type IIB

Superpotential

I.1 The N-flation Matrix Model

In this Appendix we briefly review the original arguments of Ref. [499], which pro-

vide a solid context as to how universal spectral forms arise in specific models of flux

compactification, as discussed in Section 3.3.4. Here we detail the context behind

the appearance of the Marčhenko-Pastur models in KKLT [758] compactifications

of Type-IIB string theory. The unique parameter, βM in this model is the total

dimension of the moduli space, defined in Eq. (5.45). As previously highlighted the

original model for N-flation explored the required trans-Planckian displacements for

axion inflation models by considering Nax � 1 decoupled fields each with identi-

cal masses that served to drive a period of inflation through the assisted inflation

mechanism [457, 859]. The fields have periodic potentials, as expressed in Eq. (5.9),

where the scales Λn can be significantly lower that the UV cutoff scale of the theory

due to dimensional transmutation. The fields with identical masses undergo a com-

mon initial displacement φ′ as they continue to roll in unison, providing an effective

single field displacement of the order
√
Naxφ

′.
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Further expanding on these concepts the work of Ref. [499] incorporated the princi-

ples of RMT in a more general framework where the axion masses are now defined

using a distinct spectral measure. In their framework the form of the matrix used to

determine a spectrum of axion masses is only dependant on the basic structure the

matrix possesses, which can be understood using the supergravity potential found

in Eq. (3.28).

I.2 A Simplified Superpotential

The KKLT superpotential from non-perturbative effects which are generated from

the associated moduli and axions is,

Wi = Λ̃ie
−2πρie2πiφi ≡ Cie

2πiφi , (I.1)

where Ci are constants when the moduli are fixed at their minimum. A Taylor expan-

sion about the origin at φi = 0, along with the F-flatness conditions DAW |φi=0 = 0,

defines the mass matrix from the quadratic order terms of the Lagrangian,

Mij = (2π)2eK
(
KABDACiDBCj − 3CiCj

)
, (I.2)

where the simplified potential is now represented in the form,

V (φ) = φiMijφ
j . (I.3)

Note that i, j = 1, . . . , N run over the Kähler moduli, where the terms A,B =

1, . . . , N + L run over the dilaton, complex moduli and Kähler moduli. After the

kinetic terms are bought into their canonical form (see Section 5.1.1), the mass

matrix is then expressed as,

M̃ij = (2π)2 e
K

fifj
Uk
i

(
KABDACkDBCl − 3CiCj

)
U l
j . (I.4)
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Despite the complex form of M̃ij in Eq. (I.4), it can be shown that the characteristics

of the N-flation model can be extracted simply from the eigenvalues of a general

random matrix with IID entries, which under the arguments of universality are

assumed to be Gaussian in nature. Numerically and semi-analytically it was shown

that regardless of the input distributions for K, fi, U
k
i , Ci, DACi, and KAB, the

complicated structural form of the mass matrix above can be simplified by assuming

that the leading contribution to M̃ij takes the general following form,

M̄ij = BiABAj , (I.5)

where the contracted sub-matrix BiA is defined as,

BiA = 2π
ek/2

fi
UK
i ZAk , (I.6)

with ZAk a matrix constructed of Kähler covariant derivatives. The approximation

made in Eq. (I.5) is subject to the arguments that the matrix BiA should be a

N × (N + L) dimensional isotropic matrix constructed solely from statistical IID

variables with zero mean and unitary variance. The spectral properties of a matrix

of this form are well known from the Marčhenko-Pastur limiting law of RMT as

discussed in Section 5.2.4.1.



Appendix J

Superradiance Statistical Model

J.1 Black Hole Mass-Spin Data Coordinates

We model any BH data using the collected candidates in Table 6.2 and Table 6.3 via

two-dimensional multivariate gaussian distributions, where x = MBH and y = a∗.

There are Nd data points di comprising the data set {di}. For each point in the data

set the values of MBH and a∗ and their associated errors form centred data values

(x̄, ȳ) with errors (σx, σy). We are interested in the probability that a given model,

M, is excluded given the data, {di}: Pex(M|{di}). Since a single data point in the

disallowed region would exclude the model, Pex(M|{di}) is given by the probability

that any single data point is above the BH superradiance isocontour boundaries

for each value of l. For a large number of data points, this is a relatively tricky

combinatorial problem. However, the probability is normalised such that,

Pex(M|{di}) = 1− Pallowed(M|{di}) . (J.1)

Now we can simply use the binomial theorem (or a simple probability tree) to

highlight that Pallowed(M|{di}) is simply the cumulative probability that all data
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points simultaneously fluctuate below the isocontour boundary limits,

Pallowed(M|{di}) =
∏

i

Pallowed(M|di) , (J.2)

where Pallowed(M|di) is simply the volume of the bivariate Gaussian function con-

tained outside the isocontour boundary denoted by the function y = f(x). In order

to evaluate Pallowed(M|di) in a numerically efficient manner, we introduce two sim-

plifying assumptions. Firstly, we assume each point is modelled under the null

formalism where there is zero covariance between x and y, i.e. the covariance ma-

trix of the error bounds is isotropic. Secondly, the error on the two-dimensional

data can be evaluated using an effective one dimensional error [886, 913]. These

two simplifications allow us to use the standard Gaussian error function to evaluate

Pallowed(M|di), rather than the more numerically expensive integral under the curve.

The shape of the BH superradiance isocontours y = f(x), which only have support

over finite x, requires this procedure to be evaluated in two separate regimes.

J.2 Effective One-Dimensional Errors

When the contour is defined, we fix the contour as y = f(x) and evaluate the

effective one dimensional error in y, Σy, as,

Σ2
y = σ2

y + f ′(x̄)2σ2
x . (J.3)

When the contour is not defined for a given value of x, we must instead use the

inverse function x = g(y) and evaluate the effective error in x, Σx, as,

Σ2
x = σ2

x + g′(ȳ)2σ2
y . (J.4)

This procedure for the effective errors is represented visually with example BHs in

Fig. J.1. Since any defined functions are given numerically, the inverse function and
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Figure J.1: Visual representation of the statistical model methodology using two

example stellar BHs, GRO J1655-40 and M33 X-7 (see Table 6.2) with instability

bound function for an axion mass, µax = 10−12.75 eV. Each data point is shown with

1σ, 2σ and 3σ error contour levels. Effective errors are calculated by projection onto

either the x or y axis (crossed points) depending on whether the BH falls inside the

instability bounds where f(x) is defined.

its derivative are trivial to evaluate given the original function. A complication does

arise since g(y) is multivalued, taking two possible values g1 and g2 for a single y.

We choose to evaluate the derivative g′(ȳ) at the nearest part of the contour (i.e.

the value gi which minimises x̄− g(ȳ)), and evaluate the error function between the

two values g1 and g2. This approximation only affects Pallowed(M|di) for values close

to unity, while Pex(M|{di}) is dominated by the smallest values of Pallowed(M|di)

contained well within the contours where f(x) has support and is single valued.

The use of the effective errors in, Eq. (J.3) and Eq. (J.4), assumes that, for a given

data point, the functions f(x) and g(y) are smooth at the mean value over the

range of the chosen errors. When a BH data point with large errors sits close to
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a cusp in the contours the exclusion probability computed from the effective error

is smaller than the true answer. Cusps in the total contour are caused by the

meeting of individual contours with different l = m mode values, each of which

are smooth. A more exact procedure would thus be to compute the probability

individually for each l = m contour, and then compute the cumulative probability

using a product over each value of l = m. This would increase the number of

likelihood evaluations by lmax×Nd, and for speed of computation we do not perform

this more accurate calculation. The more accurate calculation would give larger

exclusion probabilities (reducing the overall effective size of BH errors), and so the

approximate computation is more conservative in the sense that it does not give

overly strong exclusions.



Appendix K

Outlying Cosmologies

K.1 Axionic Cosmic Densities

In this appendix we provide a picture of the evolution of the cosmological densi-

ties in the context of example cosmologies which would not pass the cuts outlined

in Section 7.3. In Fig. K.1 we show the cosmological evolution for three example

configurations using the isometric Y -matrix model for a population of axions be-

having as DM. We allow the equal field condition scaling parameter f̄ to approach

the upper bound, f̄ →MPl (blue line). The large value for f̄ causes the population

of axions to collectively “inflate” the Universe for a period (10−4 . a . 10−1) with

the collective energy density overshooting the expected value of zeq before it has

entered the scaling regime behaving as non-relativistic matter. The evolution of the

collective axion field density as DM begins to scale accordingly at an approximate

time of z ≈ 0 with a value of zeq far too early in the cosmic history. Such cosmologies

return axion DM domination with ΩDM ≈ 0.9999 at the current time.

Decreasing the scale of f̄ to 0.1MPl (cyan line) causes the axions to account for the

correct total DM density at the current time where ΩDM = 0.2528. The reduced

initial field conditions cause the axions to enter the correct scaling regime with a

significantly reduced redshift. The inset of Fig. K.1 shows the value of zeq falling

522



Outlying Cosmologies 523

�0.04 �0.02 0.00 0.02 0.04

�0.04

�0.02

0.00

0.02

0.04

⇢
⇥ eV

4
⇤

Figure K.1: Evolution of the collective axion density, ρax, using nax = 20, where

the mass eigenstates are drawn from the isometric Y -matrix model. We highlight the

effect of using different initial field condition scales set by f̄ where values of f̄ → 1

returning cosmologies which don’t fulfil the criterion for acceptable values of zeq by

collectively “inflating” the universe. In this particular example when f̄ = 0.1 MPl,

the total matter density scales in order to provide the correct value of zeq as shown

in the inset, the oscillatory nature of the function from the oscillating fields with

lighter masses.

within acceptable bounds (crossing of black (ρb + ρax) and red (ρr) lines). Further

decreasing f̄ = 0.01MPl (green line) corresponds to an example configuration in

which the total matter density is insufficient for the Universe to reach redshift zero

within ten Hubble times according to our numerical configurations. The lowest value

of z reached corresponded to an axion DM density parameter value of ΩDM = 0.0119.

In Fig. K.2 we show potential configurations which do not pass the acceleration

criterion, ä > 0 or give dominant contributions to the critical density at z = 0

for isometric Y -matrix model cosmologies. The axion density is set by the initial

field displacement and axion mass, m2
aφ

2. Without a sufficient scaling of the initial
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Figure K.2: Evolution of the collective axion density, ρax, for nax = 20 fields re-

producing example DE cosmologies with mass eigenstates drawn from the isometric

Y -matrix model. We highlight the effect of using different scales for f̄ , where insuf-

ficient values of f̄ lead to outlying cosmologies which do not satisfy the acceleration

criterion, ä > 0. This is shown in the inset where the quintessence fields begin to

scale as matter components for values of the cosmic scale factor too small to provide

sufficient DE at a(t) ' 1.

field displacements (light blue and green line), the axion masses need to be higher

to account for the acceptable amount of DE density. However, this generally causes

the axion to start oscillating earlier following the condition ma ≤ H, which returns

smaller values of ΩDE. Increasing the value of the scaling f̄ in this configuration

would satisfy an accelerating universe with sufficient DE density. The increased

value of f̄ = 0.1MPl enhances the final DE density at z = 0 returning a value of

ΩDE = 0.1979. Finally the configuration (blue line) with f̄ = 1.0MPl is sufficient for

an effective DE cosmology returning a value of ΩDE = 0.7732.
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[78] W. Anderson. Über die grenzdichte der materie und der energie. Zeitschrift

für Physik, 56(11):851–856, Nov 1929. ISSN 0044-3328. doi: 10.1007/

BF01340146. URL https://doi.org/10.1007/BF01340146.

[79] B. Andreas and G. Curio. Extension Bundles and the Standard Model. JHEP,

07:053, 2007. doi: 10.1088/1126-6708/2007/07/053.

[80] A. Andreev, A. Kanto, and P. Malo. Simple approach for distribution selec-

tion in the pearson system. WorkingPaper W-388, Helsingin kauppakorkeak-

oulu, 2005.

https://doi.org/10.1214/aoms/1177730882
https://doi.org/10.1214/aoms/1177730882
https://doi.org/10.1214/aoms/1177704248
https://doi.org/10.1007/BF01340146


Bibliography 534

[81] I. Antoniadis, C. P. Bachas, and C. Kounnas. Four-Dimensional Superstrings.

Nucl. Phys., B289:87, 1987. doi: 10.1016/0550-3213(87)90372-5.

[82] A. Aoki and J. Soda. Detecting ultralight axion dark matter wind with laser

interferometers. 2016.

[83] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio. Tenth-Order QED

Contribution to the Electron g-2 and an Improved Value of the Fine Structure

Constant. Phys. Rev. Lett., 109:111807, 2012. doi: 10.1103/PhysRevLett.109.

111807.

[84] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio. Tenth-order electron

anomalous magnetic moment: Contribution of diagrams without closed lep-

ton loops. Phys. Rev. D, 91(3):033006, Feb. 2015. doi: 10.1103/PhysRevD.

91.033006.

[85] T. Aoyama, T. Kinoshita, and M. Nio. Revised and Improved Value of the

QED Tenth-Order Electron Anomalous Magnetic Moment. Phys. Rev., D97

(3):036001, 2018. doi: 10.1103/PhysRevD.97.036001.

[86] P. APIAN. volume 18th ed. Antverpiae, Apud Ioannem VVithag-

ium, 1564. URL http://catalog.hathitrust.org/api/volumes/oclc/

781861973.html.

[87] M. Archidiacono, E. Giusarma, S. Hannestad, and O. Mena. Cosmic dark

radiation and neutrinos. Adv. High Energy Phys., 2013:191047, 2013. doi:

10.1155/2013/191047.

[88] M. Archidiacono, S. Hannestad, A. Mirizzi, G. Raffelt, and Y. Y. Y. Wong.

Axion hot dark matter bounds after Planck. JCAP, 1310:020, 2013. doi:

10.1088/1475-7516/2013/10/020.

[89] P. Arias, J. Jaeckel, J. Redondo, and A. Ringwald. Optimizing Light-Shining-

through-a-Wall Experiments for Axion and other WISP Searches. Phys. Rev.,

D82:115018, 2010. doi: 10.1103/PhysRevD.82.115018.

http://catalog.hathitrust.org/api/volumes/oclc/781861973.html.
http://catalog.hathitrust.org/api/volumes/oclc/781861973.html.


Bibliography 535

[90] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, and A. Ring-

wald. WISPy Cold Dark Matter. JCAP, 1206:013, 2012. doi: 10.1088/

1475-7516/2012/06/013.

[91] F. Arias-Aragon and L. Merlo. The Minimal Flavour Violating Axion. JHEP,

10:168, 2017. doi: 10.1007/JHEP10(2017)168.

[92] Aristotle. Metaphysics. The Internet Classics Archive, 350BCE. URL http:

//classics.mit.edu/Aristotle/metaphysics.html.

[93] O. Arizmendi and V. Prez Abreu. On the non-classical infinite divisibility of

power semicircle distributions. Communications on Stochastic Analysis, 4,

06 2010. doi: 10.31390/cosa.4.2.03.

[94] O. Arizmendi, P. Tarrago, and C. Vargas. Subordination methods for free

deconvolution. arXiv e-prints, art. arXiv:1711.08871, Nov 2017.

[95] N. Arkani-Hamed, A. G. Cohen, and H. Georgi. Electroweak symmetry

breaking from dimensional deconstruction. Phys. Lett., B513:232–240, 2001.

doi: 10.1016/S0370-2693(01)00741-9.

[96] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson. The Littlest

Higgs. JHEP, 07:034, 2002. doi: 10.1088/1126-6708/2002/07/034.

[97] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire, and

J. G. Wacker. The Minimal moose for a little Higgs. JHEP, 08:021, 2002.

doi: 10.1088/1126-6708/2002/08/021.

[98] N. Arkani-Hamed, H.-C. Cheng, P. Creminelli, and L. Randall. Extra natural

inflation. Phys. Rev. Lett., 90:221302, 2003. doi: 10.1103/PhysRevLett.90.

221302.

[99] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S. Mukohyama. Ghost

condensation and a consistent infrared modification of gravity. JHEP, 05:

074, 2004. doi: 10.1088/1126-6708/2004/05/074.

http://classics.mit.edu/Aristotle/metaphysics.html
http://classics.mit.edu/Aristotle/metaphysics.html


Bibliography 536

[100] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa. The String landscape,

black holes and gravity as the weakest force. JHEP, 06:060, 2007. doi:

10.1088/1126-6708/2007/06/060.

[101] C. Armendariz-Picon. Could dark energy be vector-like? JCAP, 0407:007,

2004. doi: 10.1088/1475-7516/2004/07/007.

[102] C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt. Essentials of k

essence. Phys. Rev., D63:103510, 2001. doi: 10.1103/PhysRevD.63.103510.

[103] E. Armengaud et al. Axion searches with the EDELWEISS-II experiment.

JCAP, 1311:067, 2013. doi: 10.1088/1475-7516/2013/11/067.

[104] E. Armengaud et al. Constraining the mass of light bosonic dark matter

using SDSS Lyman-α forest. 2017.

[105] D. Armstrong. Generalized Noncrossing Partitions and Combinatorics of

Coxeter Groups. arXiv Mathematics e-prints, art. math/0611106, Nov 2006.

[106] A. Arvanitaki and S. Dubovsky. Exploring the String Axiverse with Precision

Black Hole Physics. Phys. Rev., D83:044026, 2011. doi: 10.1103/PhysRevD.

83.044026.

[107] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-

Russell. String Axiverse. Phys. Rev., D81:123530, 2010. doi: 10.1103/

PhysRevD.81.123530.

[108] A. Arvanitaki, M. Baryakhtar, and X. Huang. Discovering the QCD axion

with black holes and gravitational waves. Phys. Rev. D, 91(8):084011, Apr.

2015. doi: 10.1103/PhysRevD.91.084011.

[109] A. Arvanitaki, M. Baryakhtar, and X. Huang. Discovering the QCD Axion

with Black Holes and Gravitational Waves. Phys. Rev., D91(8):084011, 2015.

doi: 10.1103/PhysRevD.91.084011.

[110] A. Arvanitaki, M. Baryakhtar, S. Dimopoulos, S. Dubovsky, and R. Lasenby.



Bibliography 537

Black hole mergers and the QCD axion at Advanced LIGO. Phys. Rev. D,

95(4):043001, Feb. 2017. doi: 10.1103/PhysRevD.95.043001.

[111] A. Arvanitaki, M. Baryakhtar, S. Dimopoulos, S. Dubovsky, and R. Lasenby.

Black Hole Mergers and the QCD Axion at Advanced LIGO. Phys. Rev.,

D95(4):043001, 2017. doi: 10.1103/PhysRevD.95.043001.

[112] S. Ashok and M. R. Douglas. Counting flux vacua. JHEP, 01:060, 2004. doi:

10.1088/1126-6708/2004/01/060.

[113] A. Ashoorioon, H. Firouzjahi, and M. M. Sheikh-Jabbari. M-flation: Inflation

From Matrix Valued Scalar Fields. JCAP, 0906:018, 2009. doi: 10.1088/

1475-7516/2009/06/018.

[114] A. Ashoorioon, H. Firouzjahi, and M. M. Sheikh-Jabbari. Matrix Inflation

and the Landscape of its Potential. JCAP, 1005:002, 2010. doi: 10.1088/

1475-7516/2010/05/002.

[115] A. Ashtekar and J. Lewandowski. Quantum theory of geometry. 1: Area

operators. Class. Quant. Grav., 14:A55–A82, 1997. doi: 10.1088/0264-9381/

14/1A/006.

[116] A. Ashtekar and J. Lewandowski. Background independent quantum gravity:

A Status report. Class. Quant. Grav., 21:R53, 2004. doi: 10.1088/0264-9381/

21/15/R01.

[117] P. S. Aspinwall and R. Kallosh. Fixing all moduli for M-theory on K3xK3.

JHEP, 10:001, 2005. doi: 10.1088/1126-6708/2005/10/001.

[118] S. J. Asztalos et al. Squid-based microwave cavity search for dark-matter ax-

ions. Phys. Rev. Lett., 104:041301, Jan 2010. doi: 10.1103/PhysRevLett.104.

041301. URL https://link.aps.org/doi/10.1103/PhysRevLett.104.

041301.

[119] M. Atiyah and E. Witten. M theory dynamics on a manifold of G(2) holon-

https://link.aps.org/doi/10.1103/PhysRevLett.104.041301
https://link.aps.org/doi/10.1103/PhysRevLett.104.041301


Bibliography 538

omy. Adv. Theor. Math. Phys., 6:1–106, 2003. doi: 10.4310/ATMP.2002.v6.

n1.a1.

[120] J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart,

P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, S. C. C.

Ting, S. L. Wu, and Y. Y. Lee. Experimental observation of a heavy particle

j. Phys. Rev. Lett., 33:1404–1406, Dec 1974. doi: 10.1103/PhysRevLett.33.

1404. URL https://link.aps.org/doi/10.1103/PhysRevLett.33.1404.
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[510] A. Einstein. Ist die trägheit eines körpers von seinem energieinhalt

abhängig? Annalen der Physik, 323(13):639–641, 1905. doi: 10.1002/

andp.19053231314. URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/andp.19053231314.

[511] A. Einstein. Die Feldgleichungen der Gravitation. Sitzungsberichte der

Königlich Preußischen Akademie der Wissenschaften (Berlin), Seite 844-

847., 1915.

[512] A. Einstein. On the General Theory of Relativity. Sitzungsber. Preuss. Akad.

Wiss. Berlin (Math. Phys.), 1915:778–786, 1915. [Addendum: Sitzungsber.

Preuss. Akad. Wiss. Berlin (Math. Phys.)1915,799(1915)].

[513] A. Einstein. The Foundation of the General Theory of Relativity. An-

nalen Phys., 49(7):769–822, 1916. doi: 10.1002/andp.200590044,10.1002/

andp.19163540702. [Annalen Phys.354,no.7,769(1916)].

[514] A. Einstein. Cosmological Considerations in the General Theory of Relativity.

Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1917:142–152, 1917.

[515] N. El Karoui. High-dimensionality effects in the markowitz problem and other

quadratic programs with linear constraints: Risk underestimation. Ann.

http://www.sciencedirect.com/science/article/pii/S0370269310005526
http://www.sciencedirect.com/science/article/pii/S0370269310005526
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19053231314
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19053231314


Bibliography 582

Statist., 38(6):3487–3566, 12 2010. doi: 10.1214/10-AOS795. URL https:

//doi.org/10.1214/10-AOS795.

[516] J. Ellis. The Future of High-Energy Collider Physics. In 38th International

Symposium on Physics in Collision (PIC 2018) Bogotá, Colombia, September
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aléatoire. Nucl. Phys. A, 25:447–458, June 1961. doi: 10.1016/0029-5582(61)

90176-6.

[590] M. Gaudin. Sur la loi limite de l’espacement des valeurs propres d’une matrice

ale?atoire. Nuclear Physics, 25:447 – 458, 1961. ISSN 0029-5582. doi: https://

doi.org/10.1016/0029-5582(61)90176-6. URL http://www.sciencedirect.

com/science/article/pii/0029558261901766.

[591] K. Gebhardt, J. Adams, D. Richstone, T. R. Lauer, S. M. Faber, K. Gültekin,

J. Murphy, and S. Tremaine. The Black Hole Mass in M87 from Gemini/NIFS

Adaptive Optics Observations. ApJ, 729(2):119, Mar 2011. doi: 10.1088/

0004-637X/729/2/119.

https://link.aps.org/doi/10.1103/PhysRev.70.572.2
https://link.aps.org/doi/10.1103/PhysRev.70.572.2
https://doi.org/10.1063/1.2035028
https://doi.org/10.1063/1.2035028
http://www.sciencedirect.com/science/article/pii/0029558261901766
http://www.sciencedirect.com/science/article/pii/0029558261901766


Bibliography 591

[592] M. Gell-Mann. Symmetries of baryons and mesons. Phys. Rev., 125:1067–

1084, 1962. doi: 10.1103/PhysRev.125.1067.

[593] M. Gell-Mann. A Schematic Model of Baryons and Mesons. Phys. Lett., 8:

214–215, 1964. doi: 10.1016/S0031-9163(64)92001-3.

[594] M. Gell-Mann, R. J. Oakes, and B. Renner. Behavior of current di-

vergences under SU(3) x SU(3). Phys. Rev., 175:2195–2199, 1968. doi:

10.1103/PhysRev.175.2195.

[595] A. Gelman. Prior distributions for variance parameters in hierarchical mod-

els (comment on article by browne and draper). Bayesian Anal., 1(3):515–

534, 09 2006. doi: 10.1214/06-BA117A. URL https://doi.org/10.1214/

06-BA117A.

[596] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data

Analysis. Chapman and Hall/CRC, 2nd ed. edition, 2004.

[597] H. Georgi and S. L. Glashow. Unity of all elementary-particle forces. Phys.

Rev. Lett., 32:438–441, Feb 1974. doi: 10.1103/PhysRevLett.32.438. URL

https://link.aps.org/doi/10.1103/PhysRevLett.32.438.

[598] H. Georgi, D. B. Kaplan, and L. Randall. Manifesting the invisible ax-

ion at low energies. Physics Letters B, 169(1):73 – 78, 1986. ISSN 0370-

2693. doi: https://doi.org/10.1016/0370-2693(86)90688-X. URL http:

//www.sciencedirect.com/science/article/pii/037026938690688X.

[599] P. D. F. Gernot Akemann, Jinho Baik. Oxford University Press, USA,

2015. URL https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/

9780198744191.001.0001/oxfordhb-9780198744191.

[600] G. W. Gibbons and S. W. Hawking. Action Integrals and Partition

Functions in Quantum Gravity. Phys. Rev., D15:2752–2756, 1977. doi:

10.1103/PhysRevD.15.2752.

https://doi.org/10.1214/06-BA117A
https://doi.org/10.1214/06-BA117A
https://link.aps.org/doi/10.1103/PhysRevLett.32.438
http://www.sciencedirect.com/science/article/pii/037026938690688X
http://www.sciencedirect.com/science/article/pii/037026938690688X
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780198744191.001.0001/oxfordhb-9780198744191
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780198744191.001.0001/oxfordhb-9780198744191


Bibliography 592

[601] G. W. Gibbons and S. W. Hawking. Cosmological Event Horizons, Ther-

modynamics, and Particle Creation. Phys. Rev., D15:2738–2751, 1977. doi:

10.1103/PhysRevD.15.2738.

[602] S. B. Giddings, S. Kachru, and J. Polchinski. Hierarchies from fluxes in string

compactifications. Phys. Rev., D66:106006, 2002. doi: 10.1103/PhysRevD.

66.106006.

[603] G. Giesen, J. Lesgourgues, B. Audren, and Y. Ali-Haimoud. CMB pho-

tons shedding light on dark matter. JCAP, 1212:008, 2012. doi: 10.1088/

1475-7516/2012/12/008.

[604] G. F. Giudice, R. Rattazzi, and A. Strumia. Unificaxion. Phys. Lett., B715:

142–148, 2012. doi: 10.1016/j.physletb.2012.07.028.

[605] A. Giveon, M. Porrati, and E. Rabinovici. Target space duality in string

theory. Phys. Rept., 244:77–202, 1994. doi: 10.1016/0370-1573(94)90070-1.

[606] S. L. Glashow. Partial Symmetries of Weak Interactions. Nucl. Phys., 22:

579–588, 1961. doi: 10.1016/0029-5582(61)90469-2.

[607] S. L. Glashow and S. Weinberg. Breaking chiral symmetry. Phys. Rev. Lett.,

20:224–227, 1968. doi: 10.1103/PhysRevLett.20.224.

[608] S. L. Glashow and S. Weinberg. Natural Conservation Laws for Neutral

Currents. Phys. Rev., D15:1958, 1977. doi: 10.1103/PhysRevD.15.1958.

[609] F. Gmeiner and G. Honecker. Mapping an Island in the Landscape. JHEP,

09:128, 2007. doi: 10.1088/1126-6708/2007/09/128.

[610] F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lust, and T. Weigand. One

in a billion: MSSM-like D-brane statistics. JHEP, 01:004, 2006. doi: 10.

1088/1126-6708/2006/01/004.

[611] H. Goldberg. Constraint on the Photino Mass from Cosmology. Phys.



Bibliography 593

Rev. Lett., 50:1419, 1983. doi: 10.1103/PhysRevLett.103.099905,10.1103/

PhysRevLett.50.1419. [,219(1983)].

[612] J. Goldstone, A. Salam, and S. Weinberg. Broken Symmetries. Phys. Rev.,

127:965–970, 1962. doi: 10.1103/PhysRev.127.965.

[613] Yu. A. Golfand and E. P. Likhtman. Extension of the Algebra of Poincare

Group Generators and Violation of p Invariance. JETP Lett., 13:323–326,

1971. [Pisma Zh. Eksp. Teor. Fiz.13,452(1971)].

[614] E. Gonzalez, G. Kane, K. D. Nguyen, and M. J. Perry. Quark and lepton

mass matrices from localization in M-theory on G2 orbifold. 2020.

[615] J. Goodman. Repulsive dark matter. New Astron., 5:103, 2000. doi: 10.

1016/S1384-1076(00)00015-4.

[616] J. Goodman and J. Weare. Ensemble Samplers with Affine Invariance.

Comm. Appl. Math. and Comp. Sci., 5:65–80, 2010.

[617] L. Gou, J. E. McClintock, J. Liu, R. Narayan, J. F. Steiner, R. A. Remillard,

J. A. Orosz, S. W. Davis, K. Ebisawa, and E. M. Schlegel. A Determination

of the Spin of the Black Hole Primary in LMC X-1. ApJ, 701:1076–1090,

Aug. 2009. doi: 10.1088/0004-637X/701/2/1076.

[618] L. Gou, J. E. McClintock, J. F. Steiner, R. Narayan, A. G. Cantrell, C. D.

Bailyn, and J. A. Orosz. The Spin of the Black Hole in the Soft X-ray

Transient A0620-00. ApJLett, 718:L122–L126, Aug. 2010. doi: 10.1088/

2041-8205/718/2/L122.

[619] L. Gou et al. Confirmation Via the Continuum-Fitting Method that the Spin

of the Black Hole in Cygnus X-1 is Extreme. Astrophys. J., 790(1):29, 2014.

doi: 10.1088/0004-637X/790/1/29.

[620] P. Graf and F. D. Steffen. Thermal axion production in the primordial quark-



Bibliography 594

gluon plasma. Phys. Rev., D83:075011, 2011. doi: 10.1103/PhysRevD.83.

075011.

[621] P. W. Graham and S. Rajendran. New Observables for Direct Detection of

Axion Dark Matter. Phys. Rev., D88:035023, 2013. doi: 10.1103/PhysRevD.

88.035023.

[622] P. W. Graham, D. E. Kaplan, S. Rajendran, and P. Saraswat. Displaced

Supersymmetry. JHEP, 07:149, 2012. doi: 10.1007/JHEP07(2012)149.

[623] P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A. Lindner, and K. A.

van Bibber. Experimental Searches for the Axion and Axion-Like Par-

ticles. Ann. Rev. Nucl. Part. Sci., 65:485–514, 2015. doi: 10.1146/

annurev-nucl-102014-022120.

[624] P. W. Graham, D. E. Kaplan, and S. Rajendran. Cosmological Relaxation

of the Electroweak Scale. Phys. Rev. Lett., 115(22):221801, 2015. doi: 10.

1103/PhysRevLett.115.221801.

[625] M. Grana. Flux compactifications in string theory: A Comprehensive review.

Phys. Rept., 423:91–158, 2006. doi: 10.1016/j.physrep.2005.10.008.

[626] E. Grant. volume 18th ed. Isis, Vol. 78, No. 2., 1987. URL pp.152-173.

[627] E. Grant. De caelo, Commentaries on Aristotle’s, pages 247–

251. Springer Netherlands, Dordrecht, 2011. ISBN 978-1-4020-9729-4.

doi: 10.1007/978-1-4020-9729-4 138. URL https://doi.org/10.1007/

978-1-4020-9729-4_138.

[628] M. B. Green and J. H. Schwarz. Anomaly cancellations in supersymmetric

d = 10 gauge theory and superstring theory. Physics Letters B, 149(1):117

– 122, 1984. ISSN 0370-2693. doi: https://doi.org/10.1016/0370-2693(84)

91565-X. URL http://www.sciencedirect.com/science/article/pii/

037026938491565X.

pp. 152-173
https://doi.org/10.1007/978-1-4020-9729-4_138
https://doi.org/10.1007/978-1-4020-9729-4_138
http://www.sciencedirect.com/science/article/pii/037026938491565X
http://www.sciencedirect.com/science/article/pii/037026938491565X


Bibliography 595

[629] M. B. Green, J. H. Schwarz, and E. Witten. Superstring Theory.

Volume 2: Loop Amplitudes, Anomalies and Phenomenology. 1988.

ISBN 9780521357531. URL http://www.cambridge.org/us/academic/

subjects/physics/theoretical-physics-and-mathematical-physics/

superstring-theory-volume-2.

[630] J. Greene, C. D. Bailyn, and J. A. Orosz. Optical and infrared photometry of

the micro-quasar gro j1655-40 in quiescence. Astrophys. J., 554:1290, 2001.

doi: 10.1086/321411.

[631] G. Grilli di Cortona, E. Hardy, J. Pardo Vega, and G. Villadoro. The QCD

axion, precisely. JHEP, 01:034, 2016. doi: 10.1007/JHEP01(2016)034.

[632] T. W. Grimm and J. Louis. The Effective action of N = 1 Calabi-Yau

orientifolds. Nucl. Phys., B699:387–426, 2004. doi: 10.1016/j.nuclphysb.

2004.08.005.

[633] D. Grin, T. L. Smith, and M. Kamionkowski. Axion constraints in non-

standard thermal histories. Phys. Rev., D77:085020, 2008. doi: 10.1103/

PhysRevD.77.085020.

[634] S. Groot Nibbelink, O. Loukas, and F. Ruehle. (MS)SM-like models on

smooth Calabi-Yau manifolds from all three heterotic string theories. Fortsch.

Phys., 63:609–632, 2015. doi: 10.1002/prop.201500041.

[635] D. J. Gross, R. D. Pisarski, and L. G. Yaffe. Qcd and instantons at finite tem-

perature. Rev. Mod. Phys., 53:43–80, Jan 1981. doi: 10.1103/RevModPhys.

53.43. URL https://link.aps.org/doi/10.1103/RevModPhys.53.43.

[636] D. J. Gross, J. A. Harvey, E. Martinec, and R. Rohm. Heterotic string. Phys.

Rev. Lett., 54:502–505, Feb 1985. doi: 10.1103/PhysRevLett.54.502. URL

https://link.aps.org/doi/10.1103/PhysRevLett.54.502.

[637] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm. Heterotic String

http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/superstring-theory-volume-2
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/superstring-theory-volume-2
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/superstring-theory-volume-2
https://link.aps.org/doi/10.1103/RevModPhys.53.43
https://link.aps.org/doi/10.1103/PhysRevLett.54.502


Bibliography 596

Theory. 1. The Free Heterotic String. Nucl. Phys., B256:253, 1985. doi:

10.1016/0550-3213(85)90394-3.

[638] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm. Heterotic String

Theory. 2. The Interacting Heterotic String. Nucl. Phys., B267:75–124, 1986.

doi: 10.1016/0550-3213(86)90146-X.

[639] M. Gross and S. Haroche. Superradiance: An essay on the theory of collective

spontaneous emission. Physics Reports, 93(5):301 – 396, 1982. ISSN 0370-

1573. doi: https://doi.org/10.1016/0370-1573(82)90102-8. URL http://

www.sciencedirect.com/science/article/pii/0370157382901028.

[640] T. Guhr and B. K. lber. A new method to estimate the noise in financial

correlation matrices. Journal of Physics A: Mathematical and General, 36

(12):3009–3032, mar 2003. doi: 10.1088/0305-4470/36/12/310. URL https:

//doi.org/10.1088%2F0305-4470%2F36%2F12%2F310.

[641] T. Guhr, A. Muller-Groeling, and H. A. Weidenmuller. Random matrix

theories in quantum physics: Common concepts. Phys. Rept., 299:189–425,

1998. doi: 10.1016/S0370-1573(97)00088-4.

[642] S. Gukov, C. Vafa, and E. Witten. CFT’s from Calabi-Yau four folds.

Nucl. Phys., B584:69–108, 2000. doi: 10.1016/S0550-3213(01)00289-9,10.

1016/S0550-3213(00)00373-4. [Erratum: Nucl. Phys.B608,477(2001)].

[643] G. S. GURALNIK. The history of the guralnik, hagen and kibble de-

velopment of the theory of spontaneous symmetry breaking and gauge

particles. International Journal of Modern Physics A, 24(14):2601–2627,

2009. doi: 10.1142/S0217751X09045431. URL https://doi.org/10.1142/

S0217751X09045431.

[644] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global conservation

laws and massless particles. Phys. Rev. Lett., 13:585–587, Nov 1964. doi:

http://www.sciencedirect.com/science/article/pii/0370157382901028
http://www.sciencedirect.com/science/article/pii/0370157382901028
https://doi.org/10.1088%2F0305-4470%2F36%2F12%2F310
https://doi.org/10.1088%2F0305-4470%2F36%2F12%2F310
https://doi.org/10.1142/S0217751X09045431
https://doi.org/10.1142/S0217751X09045431


Bibliography 597

10.1103/PhysRevLett.13.585. URL https://link.aps.org/doi/10.1103/

PhysRevLett.13.585.

[645] S. Gurrieri, J. Louis, A. Micu, and D. Waldram. Mirror symmetry in gen-

eralized Calabi-Yau compactifications. Nucl. Phys., B654:61–113, 2003. doi:

10.1016/S0550-3213(03)00045-2.

[646] F. Gursey, P. Ramond, and P. Sikivie. A Universal Gauge Theory Model

Based on E6. Phys. Lett., 60B:177–180, 1976. doi: 10.1016/0370-2693(76)

90417-2.

[647] A. H. Guth. Inflationary universe: A possible solution to the horizon and flat-

ness problems. Phys. Rev. D, 23:347–356, Jan 1981. doi: 10.1103/PhysRevD.

23.347. URL https://link.aps.org/doi/10.1103/PhysRevD.23.347.

[648] A. H. Guth. Eternal inflation and its implications. J. Phys., A40:6811–6826,

2007. doi: 10.1088/1751-8113/40/25/S25.

[649] A. H. Guth. Eternal inflation and its implications. Journal of Physics A:

Mathematical and Theoretical, 40(25):6811–6826, jun 2007. doi: 10.1088/

1751-8113/40/25/s25. URL https://doi.org/10.1088%2F1751-8113%

2F40%2F25%2Fs25.

[650] A. H. Guth and S. H. H. Tye. Phase transitions and magnetic monopole

production in the very early universe. Phys. Rev. Lett., 44:631–635, Mar

1980. doi: 10.1103/PhysRevLett.44.631. URL https://link.aps.org/doi/

10.1103/PhysRevLett.44.631.

[651] F. Haake. Superanalysis for Random-Matrix Theory, pages 481–567.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-05428-

0. doi: 10.1007/978-3-642-05428-0 11. URL https://doi.org/10.1007/

978-3-642-05428-0_11.

[652] W. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim, and L. Pastur. A new

https://link.aps.org/doi/10.1103/PhysRevLett.13.585
https://link.aps.org/doi/10.1103/PhysRevLett.13.585
https://link.aps.org/doi/10.1103/PhysRevD.23.347
https://doi.org/10.1088%2F1751-8113%2F40%2F25%2Fs25
https://doi.org/10.1088%2F1751-8113%2F40%2F25%2Fs25
https://link.aps.org/doi/10.1103/PhysRevLett.44.631
https://link.aps.org/doi/10.1103/PhysRevLett.44.631
https://doi.org/10.1007/978-3-642-05428-0_11
https://doi.org/10.1007/978-3-642-05428-0_11


Bibliography 598

approach for mutual information analysis of large dimensional multi-antenna

channels. IEEE Transactions on Information Theory, 54:3987–4004, 2008.

[653] J. S. Hagelin, G. L. Kane, and S. Raby. Perhaps Scalar Neutrinos Are the

Lightest Supersymmetric Partners. Nucl. Phys., B241:638–652, 1984. doi:

10.1016/0550-3213(84)90064-6.

[654] Z. Haiman, J. J. Mohr, and G. P. Holder. Constraints on quintessence from

future galaxy cluster surveys. Astrophys. J., 553:545, 2000. doi: 10.1086/

320939.

[655] I. Halperin and A. Zhitnitsky. Anomalous effective lagrangian and θ de-

pendence in qcd at finite Nc. Phys. Rev. Lett., 81:4071–4074, Nov 1998.

doi: 10.1103/PhysRevLett.81.4071. URL https://link.aps.org/doi/10.

1103/PhysRevLett.81.4071.

[656] I. E. Halperin and A. Zhitnitsky. Axion potential, topological defects and

CP odd bubbles in QCD. Phys. Lett., B440:77–88, 1998. doi: 10.1016/

S0370-2693(98)01085-5.

[657] J. Halverson and P. Langacker. TASI Lectures on Remnants from the String

Landscape. PoS, TASI2017:019, 2018. doi: 10.22323/1.305.0019.

[658] J. Halverson and D. R. Morrison. On gauge enhancement and singular limits

in g2 compactifications of m-theory. Journal of High Energy Physics, 2016

(4):100, Apr 2016. ISSN 1029-8479. doi: 10.1007/JHEP04(2016)100. URL

https://doi.org/10.1007/JHEP04(2016)100.

[659] J. Halverson, C. Long, and P. Nath. Ultralight axion in supersymmetry and

strings and cosmology at small scales. Phys. Rev., D96(5):056025, 2017. doi:

10.1103/PhysRevD.96.056025.

[660] J. Halverson, C. Long, and B. Sung. Algorithmic universality in F-

theory compactifications. Phys. Rev., D96(12):126006, 2017. doi: 10.1103/

PhysRevD.96.126006.

https://link.aps.org/doi/10.1103/PhysRevLett.81.4071
https://link.aps.org/doi/10.1103/PhysRevLett.81.4071
https://doi.org/10.1007/JHEP04(2016)100


Bibliography 599

[661] J. Halverson, C. Long, and B. Sung. On the Scarcity of Weak Coupling in

the String Landscape. JHEP, 02:113, 2018. doi: 10.1007/JHEP02(2018)113.

[662] J. Halverson, B. Nelson, and F. Ruehle. Branes with Brains: Exploring

String Vacua with Deep Reinforcement Learning. JHEP, 06:003, 2019. doi:

10.1007/JHEP06(2019)003.

[663] W. Hampel et al. Gallex solar neutrino observations: results for gallex iv.

Physics Letters B, 447(1):127 – 133, 1999. ISSN 0370-2693. doi: https://doi.

org/10.1016/S0370-2693(98)01579-2. URL http://www.sciencedirect.

com/science/article/pii/S0370269398015792.

[664] X. Han, G. M. Pan, and B. Zhang. The Tracy-Widom law for the Largest

Eigenvalue of F Type Matrix. arXiv e-prints, art. arXiv:1506.00089, May

2015.

[665] X. Han, G. Pan, and Q. Yang. A unified matrix model including both CCA

and F matrices in multivariate analysis: the largest eigenvalue and its appli-

cations. arXiv e-prints, art. arXiv:1606.04417, Jun 2016.

[666] X. Han, G. Pan, and B. Zhang. The tracy?widom law for the largest eigen-

value of f type matrices. Ann. Statist., 44(4):1564–1592, 08 2016. doi:

10.1214/15-AOS1427. URL https://doi.org/10.1214/15-AOS1427.

[667] D. Hanneke, S. F. Hoogerheide, and G. Gabrielse. Cavity Control of a Single-

Electron Quantum Cyclotron: Measuring the Electron Magnetic Moment.

Phys. Rev., A83:052122, 2011. doi: 10.1103/PhysRevA.83.052122.

[668] S. Hannestad and E. Mrtsell. Cosmological constraints on the dark energy

equation of state and its evolution. Journal of Cosmology and Astroparticle

Physics, 2004(09):001–001, sep 2004. doi: 10.1088/1475-7516/2004/09/001.

URL https://doi.org/10.1088%2F1475-7516%2F2004%2F09%2F001.

[669] S. Hannestad, A. Mirizzi, G. G. Raffelt, and Y. Y. Y. Wong. Neutrino and

http://www.sciencedirect.com/science/article/pii/S0370269398015792
http://www.sciencedirect.com/science/article/pii/S0370269398015792
https://doi.org/10.1214/15-AOS1427
https://doi.org/10.1088%2F1475-7516%2F2004%2F09%2F001


Bibliography 600

axion hot dark matter bounds after WMAP-7. JCAP, 1008:001, 2010. doi:

10.1088/1475-7516/2010/08/001.

[670] O. A. Hannuksela, R. Brito, E. Berti, and T. G. F. Li. Probing the existence

of ultralight bosons with a single gravitational-wave measurement. 2018.

[671] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation

analysis: An overview with application to learning methods. Neural Com-

putation, 16(12):2639–2664, 2004. doi: 10.1162/0899766042321814. URL

https://doi.org/10.1162/0899766042321814.

[672] T. Hasebe. Free infinite divisibility for beta distributions and related ones.

arXiv e-prints, art. arXiv:1305.0924, May 2013.

[673] T. Hasebe and K. Szpojankowski. On free generalized inverse gaussian dis-

tributions. Complex Analysis and Operator Theory, Apr 2018. ISSN 1661-

8262. doi: 10.1007/s11785-018-0790-9. URL https://doi.org/10.1007/

s11785-018-0790-9.

[674] C. Hastings, F. Mosteller, J. W. Tukey, and C. P. Winsor. Low moments for

small samples: A comparative study of order statistics. Ann. Math. Statist.,

18(3):413–426, 09 1947. doi: 10.1214/aoms/1177730388. URL https://doi.

org/10.1214/aoms/1177730388.

[675] W. K. Hastings. Monte carlo sampling methods using markov chains and

their applications. Biometrika, 57(1):97–109, 1970. ISSN 00063444. URL

http://www.jstor.org/stable/2334940.

[676] S. W. Hawking. Gravitational radiation from colliding black holes. Phys.

Rev. Lett., 26:1344–1346, 1971. doi: 10.1103/PhysRevLett.26.1344.

[677] S. W. Hawking. Black hole explosions. Nature, 248:30–31, 1974. doi: 10.

1038/248030a0.

https://doi.org/10.1162/0899766042321814
https://doi.org/10.1007/s11785-018-0790-9
https://doi.org/10.1007/s11785-018-0790-9
https://doi.org/10.1214/aoms/1177730388
https://doi.org/10.1214/aoms/1177730388
http://www.jstor.org/stable/2334940


Bibliography 601

[678] S. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys., 43:

199–220, 1975. doi: 10.1007/BF02345020,10.1007/BF01608497. [,167(1975)].

[679] S. W. Hawking. Black Holes and Thermodynamics. Phys. Rev., D13:191–197,

1976. doi: 10.1103/PhysRevD.13.191.

[680] S. W. Hawking. Breakdown of Predictability in Gravitational Collapse. Phys.

Rev., D14:2460–2473, 1976. doi: 10.1103/PhysRevD.14.2460.

[681] S. W. Hawking and T. Hertog. A Smooth Exit from Eternal Inflation? JHEP,

04:147, 2018. doi: 10.1007/JHEP04(2018)147.

[682] S. W. Hawking and D. N. Page. Thermodynamics of Black Holes in anti-De

Sitter Space. Commun. Math. Phys., 87:577, 1983. doi: 10.1007/BF01208266.

[683] S. W. Hawking and R. Penrose. The Singularities of gravitational collapse

and cosmology. Proc. Roy. Soc. Lond., A314:529–548, 1970. doi: 10.1098/

rspa.1970.0021.

[684] S. W. Hawking, T. Hertog, and H. S. Reall. Trace anomaly driven inflation.

Phys. Rev., D63:083504, 2001. doi: 10.1103/PhysRevD.63.083504.

[685] H. Hayashi, R. Tatar, Y. Toda, T. Watari, and M. Yamazaki. New

aspects of heteroticf-theory duality. Nuclear Physics B, 806(1):224 –

299, 2009. ISSN 0550-3213. doi: https://doi.org/10.1016/j.nuclphysb.

2008.07.031. URL http://www.sciencedirect.com/science/article/

pii/S0550321308004264.

[686] H. Hayashi, R. Tatar, Y. Toda, T. Watari, and M. Yamazaki. New Aspects

of Heterotic–F Theory Duality. Nucl. Phys., B806:224–299, 2009. doi: 10.

1016/j.nuclphysb.2008.07.031.

[687] Y.-H. He. Deep-Learning the Landscape. 2017.

[688] Y.-H. He. The Calabi-Yau Landscape: from Geometry, to Physics, to

Machine-Learning. 2018.

http://www.sciencedirect.com/science/article/pii/S0550321308004264
http://www.sciencedirect.com/science/article/pii/S0550321308004264


Bibliography 602

[689] Y.-H. He, V. Jejjala, and L. Pontiggia. Patterns in Calabi?Yau Distri-

butions. Commun. Math. Phys., 354(2):477–524, 2017. doi: 10.1007/

s00220-017-2907-9.

[690] A. Heavens. Weak lensing: Dark Matter, Dark Energy and Dark Gravity.

Nuclear Physics B Proceedings Supplements, 194:76–81, Oct 2009. doi: 10.

1016/j.nuclphysbps.2009.07.005.

[691] A. Hebecker, S. C. Kraus, D. Lust, S. Steinfurt, and T. Weigand. Fluxbrane

Inflation. Nucl. Phys., B854:509–551, 2012. doi: 10.1016/j.nuclphysb.2011.

08.025.

[692] J. J. Heckman and C. Vafa. Flavor Hierarchy From F-theory. Nucl. Phys.,

B837:137–151, 2010. doi: 10.1016/j.nuclphysb.2010.05.009.

[693] B. Heidenreich, C. Long, L. McAllister, T. Rudelius, and J. Stout. Instanton

Resummation and the Weak Gravity Conjecture. 2019.

[694] L. Heisenberg and A. Refregier. Cosmology in massive gravity with effective

composite metric. JCAP, 1609(09):020, 2016. doi: 10.1088/1475-7516/2016/

09/020.
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[1047] K. A. Penson and K. Życzkowski. Product of Ginibre matrices: Fuss-Catalan

and Raney distributions. Phys. Rev. E, 83(6):061118, Jun 2011. doi: 10.1103/

PhysRevE.83.061118.

[1048] A. A. Penzias and R. W. Wilson. A Measurement of Excess Antenna Tem-

perature at 4080 Mc/s. ApJ, 142:419–421, July 1965. doi: 10.1086/148307.
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