
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1002/jmri.26983

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Scannell, C. M., Veta, M., Villa, A. D. M., Sammut, E. C., Lee, J., Breeuwer, M., & Chiribiri, A. (2020). Deep‐
Learning‐Based Preprocessing for Quantitative Myocardial Perfusion MRI. Journal of Magnetic Resonance
Imaging, 51(6), 1689-1696. https://doi.org/10.1002/jmri.26983

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 28. Dec. 2024

https://doi.org/10.1002/jmri.26983
https://kclpure.kcl.ac.uk/portal/en/publications/8d1bbc49-0204-4136-a616-32f8e78a7340
https://doi.org/10.1002/jmri.26983


ORIGINAL RESEARCH

Deep-Learning-Based Preprocessing for
Quantitative Myocardial Perfusion MRI

Cian M. Scannell, MRes,1,2 Mitko Veta, PhD,3 Adriana D.M. Villa, MD, PhD,1

Eva C. Sammut, MD, PhD,1,4 Jack Lee, DPhil,1 Marcel Breeuwer, PhD,3,5 and

Amedeo Chiribiri, MD, PhD1*

Background: Quantitative myocardial perfusion cardiac MRI can provide a fast and robust assessment of myocardial perfusion
status for the noninvasive diagnosis of myocardial ischemia while being more objective than visual assessment. However, it cur-
rently has limited use in clinical practice due to the challenging postprocessing required, particularly the segmentation.
Purpose: To evaluate the efficacy of an automated deep learning (DL) pipeline for image processing prior to quantitative
analysis.
Study Type: Retrospective.
Population: In all, 175 (350 MRI scans; 1050 image series) clinical patients under both rest and stress conditions (135/10/30
training/validation/test).
Field Strength/Sequence: 3.0T/2D multislice saturation recovery T1-weighted gradient echo sequence.
Assessment: Accuracy was assessed, as compared to the manual operator, through the mean square error of the distance
between landmarks and the Dice similarity coefficient of the segmentation and bounding box detection. Quantitative per-
fusion maps obtained using the automated DL-based processing were compared to the results obtained with the manually
processed images.
Statistical Tests: Bland–Altman plots and intraclass correlation coefficient (ICC) were used to assess the myocardial blood
flow (MBF) obtained using the automated DL pipeline, as compared to values obtained by a manual operator.
Results: The mean (SD) error in the detection of the time of peak signal enhancement in the left ventricle was 1.49 (1.4)
timeframes. The mean (SD) Dice similarity coefficients for the bounding box and myocardial segmentation were 0.93 (0.03)
and 0.80 (0.06), respectively. The mean (SD) error in the RV insertion point was 2.8 (1.8) mm. The Bland–Altman plots
showed a bias of 2.6% of the mean MBF between the automated and manually processed MBF values on a per-myocardial
segment basis. The ICC was 0.89, 95% confidence interval = [0.87, 0.90].
Data Conclusion: We showed high accuracy, compared to manual processing, for the DL-based processing of myocardial
perfusion data leading to quantitative values that are similar to those achieved with manual processing.
Level of Evidence: 3
Technical Efficacy Stage: 1

J. MAGN. RESON. IMAGING 2019.

FIRST-PASS MYOCARDIAL PERFUSION IMAGING
with cardiac magnetic resonance imaging (MRI) has been

shown to be highly accurate for the detection of coronary artery

disease (CAD)1,2 and suitable for guiding the management of
patients with an intermediate risk of CAD.3,4 Visual interpreta-
tion of the images, however, is complex, time-consuming, and
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the accuracy of the results is dependent on the level of training
and experience of the operator, thereby limiting the adoption of
these techniques outside highly experienced centers.5

An alternative to the visual assessment is quantitative
perfusion analysis, which is made possible by the use of tracer-
kinetic modeling.6 Quantitative perfusion analysis can be
automated7,8 leading to fast, robust, and reproducible estimates
of myocardial perfusion.9 Quantitative analysis has been
validated against positron emission tomography (PET),10–12

fractional flow reserve,13 and microspheres.14,15 Sammut et al
have also recently demonstrated the independent prognostic
value of quantitative stress perfusion MRI in patients with
suspected CAD.16 The availability of automated and standard-
ized methods for quantitative analysis could facilitate the wider
adoption of first-pass myocardial perfusion imaging.

The quantitative analysis requires challenging image
processing.17 It is required to identify the left ventricular
blood pool to extract an arterial input function (AIF) to use
along with the myocardial tissue curves in the model fitting.
The segmentation of the myocardium is also desirable, as it
allows the analysis of values specifically in the region of inter-
est (ROI) and the computation of the myocardial perfusion
reserve (MPR), which is the ratio of perfusion values at stress
to the values at rest. The use of a segmentation also requires
fewer voxels to be fit to the model, which is more time-
efficient and allows the use of more advanced fitting algo-
rithms that take advantage of spatial information.18,19 Further
advanced analysis techniques involve the assessment of the
transmural gradient in contrast uptake across the myocar-
dium20 or the assessment of the temporal dyssynchrony of
first-pass perfusion,21 for which an ROI is necessary. The
identification of the right ventricular (RV) insertion points
would also be beneficial in order to divide the myocardial seg-
mentation into the standard American Heart Association
(AHA) segments22 and to relate perfusion abnormalities to
coronary territories.

Myocardial perfusion image series present unique chal-
lenges to automated segmentation approaches due to the
dynamic contrast-enhancement and the relatively low signal-
to-noise ratio (SNR). We propose that the automation of
these processing steps can be achieved by leveraging the
power of machine learning. In particular, deep learning has
produced impressive results in many computer vision tasks
such as image detection and recognition. Recently, deep
learning has also seen more attention in the field of medical
image analysis23 and specifically in cardiac MR image analysis
with fully convolutional neural networks (FCNs) being
applied to the segmentation of anatomical structures in a vari-
ety of different applications.24,25

In this work, we developed deep-learning models in
order to achieve the requisite preprocessing steps prior to
quantitative modeling. These steps were tested individually
and as part of the fully-automated pipeline.

Materials and Methods
Subjects
The dataset consisted of 175 subjects (64.3 � 10.3 years old;
136 male) with suspected CAD referred on a clinical basis to King’s
College London Cardiac MR Service at St Thomas’ Hospital (Guy’s
and St Thomas’ NHS Trust). The dataset was randomly split into
three sets of 135/10/30 for training/validation/testing. The full
demographic and clinical characteristics of the patients is reported in
the Supplementary Material, Table S1. The study was conducted in
accordance with the Declaration of Helsinki (2000) and was
approved by the National Research Ethics Service (15/NS/0030). All
patients provided written informed consent.

Imaging
All examinations were performed with a 3T system (Achieva TX,
Philips Healthcare, Best, The Netherlands) using a 32-channel car-
diac phased array receiver coil. Perfusion images were acquired in
three left ventricle (LV) short-axis slices (apical, mid-cavity, and
basal) at mid-expiration with a saturation-recovery gradient echo
method (repetition time / echo time 3.0/1.0 msec, flip angle 15�,
saturation-recovery delay 120 msec, 5-fold k-t sensitivity encoding
[k-t SENSE] acceleration with 11 training profiles, giving a net
acceleration of 3.8-fold, spatial resolution 1.2 × 1.2 × 10 mm3).
Stress images were acquired during adenosine-induced hyperemia
(140 μg/kg/min); 0.075 mmol/kg of bodyweight gadolinium (Gd)
extracellular contrast agent (gadobutrol, Gadovist, Bayer, Germany)
was injected at 4 mL/s followed by a 20-mL saline flush for each
perfusion acquisition. Each bolus of gadobutrol was preceded by a
diluted prebolus with 10% of the dose to allow quantification of
perfusion, according to published methods.26

Processing Pipeline
As shown in Fig. 1, the first step of the pipeline is to detect the
timeframe from the image series that corresponds to peak signal
enhancement in the LV. Using this image, a bounding box is
detected that encompasses the LV cavity and LV myocardium. The
cropped image series are then passed to the motion correction
scheme that we have described in detail in previous work.27 The
next step involves segmenting the motion-corrected and cropped
peak LV contrast-enhancement timeframe to generate a myocardial
mask and then the RV insertion points are detected. The AIF is
extracted from a region identified using a region-growing algorithm
starting from the position of highest signal inside the endocardial
boundary, as defined by the automated segmentation. The AIF along
with the voxelwise concentration curves extracted from the myocar-
dium are then used for perfusion quantification using tracer-kinetic
modeling. The RV insertion points are used to relate the quantitative
perfusion values to AHA 16-segment model. The full pipeline pro-
posed in this section is summarized in Fig. 1.

Each constituent component of the pipeline was evaluated
using a suitable metric. Furthermore, the quantitative perfusion
values achieved with the fully automated pipeline were then com-
pared to those achieved using the manual analysis from an expert
operator. This allows the assessment of the effectiveness of the whole
pipeline and demonstrates the feasibility of its unsupervised deploy-
ment in the clinic.
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Training Labels
The epicardial and endocardial borders were manually traced at the
time of peak LV enhancement using cvi42 software (Circle Cardio-
vascular Imaging, Calgary, Alberta, Canada) by an experienced oper-
ator (E.S., level 3 competency accreditation,28 with more than
5 years of experience in cardiac MRI). The RV insertion points were
subsequently marked. The timepoint was found by scrolling
through the timeframes in the viewer until a satisfactory frame was
reached and this timepoint was used for training the LV peak
enhancement classifier. The training labels for the bounding box
were obtained from the segmentation by computing the smallest
box that fits the entire myocardium and expanding it by 20 voxels
in each dimension. This analysis was repeated by a second experi-
enced operator (A.V., level 3 accredited28 with more than 5 years
of experience in cardiac MRI) for the test set to assess the inter-
observer variability rate.

Training Details
Each of the 175 patients in the dataset underwent perfusion imaging
under both rest and stress conditions in which three LV short-axis
slices were acquired yielding a total of 1050 (three imaging planes at
both rest and stress for each patient) individual image series. The
networks were trained individually for each of the four steps. Prior
to training, the images were interpolated to the required dimension,
as described in the individual sections, using bicubic interpolation.
All images were normalized to have intensity values in the range of
[0,1]. On-the-fly data augmentation was applied to the training
images, which consists of applying random amounts of translation,
rotation, scaling, intensity variation, and noise to the images. A
batch size of 32 was used in the training of all networks. L2

regularization on the parameters of the convolution kernels was used
with a weight of 0.001. The respective cost functions were optimized
using the Adam optimizer29 with a learning rate of 0.0001 until con-
vergence. Early stopping with a patience of 3000 iterations, assessed
using the validation accuracy, was used to determine convergence.

Peak LV Enhancement Detection
A convolutional neural network (CNN) was used to identify the
timeframe corresponding to peak contrast-enhancement in the
LV. The CNN takes each timeframe in the image series (256 × 256
voxels) along with the two preceding and two subsequent timeframes
as input and outputs as a single number that represents the probabil-
ity that that timeframe corresponds to the peak LV enhancement in
the series. The CNN consists of four convolutional layers followed
by two fully-connected layers and is similar to those previously
shown to be successful for image recognition tasks.30 Each con-
volutional layer uses 3 × 3 kernels and is followed by a 2 × 2 max-
pooling layer. It uses batch normalization and rectified linear unit
(ReLU) activations except for the output layer, which uses a
softmax activation, as shown in the Supplementary Material,
Table S2. Dropout is used with probability 0.5 in the fully-
connected layers. The model was trained by minimizing the cross-
entropy loss function.

In order to identify the time of peak LV enhancement in a
new image series, the trained classifier was applied individually to
each timeframe in the image series. This approach gives a probability
for each timeframe to be the peak LV enhancement image. The
timeframe with the highest probability is taken as the estimate. A
plot of the probability over time for an image series is shown in the
Supplementary Material, Fig. S1.

FIGURE 1: The flow chart representing the pipeline for automated myocardial perfusion quantification. The peak LV enhancement
frame in the image series is first identified. This timeframe is then cropped (motion correction is then applied), the myocardium
segmented, and RV insertion point determined. Perfusion is quantified using tracer-kinetic modeling in the myocardium and this is
combined with the RV insertion point to generate the bullseye plot.
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Bounding Box Detection
The architecture used to detect the bounding box is the same as that
used in the previous step except that the output is now four continu-
ous values rather than the class probabilities (a linear activation is
used for the four output units). The network takes the frame of peak
LV enhancement as input (256 × 256 voxels) and outputs the
parameters that define the bounding box. It is, however, known to
be challenging to train a network to directly detect the coordinates
of the corners of the bounding box.31 A solution to this problem
was inspired by the idea of region proposals used by the Faster
R-CNN architecture.32 That is, it first assumes that the object,
which in this case is the LV cavity and LV myocardium, is within a
75 × 75 voxel ROI centered around the center of the image. The
CNN then outputs how much to adjust this ROI so that it better
fits the area of interest. The output of the CNN is the displacement
of the center of the proposed ROI and scaling factors for the width
and height of the proposed ROI. An example image is shown in
Fig. 2, with the original proposed ROI and the identified deforma-
tion. The mean squared error between the computed transformation
of the proposed ROI and the true transformation required was opti-
mized. The CNN was trained using only the peak LV enhancement
timeframe from the basal slice and during testing is only applied to
the basal slice. Due to the shape of the LV and the planning of the
short axis, the bounding box computed on the basal LV slice also
applies to the mid-ventricular and apical slices.

Myocardial Segmentation
The myocardial segmentation utilizes the U-Net architecture,33

which is a fully convolutional network. The input to the network is
an image of size 96 × 96 voxels (the cropped and motion-corrected
peak LV enhancement frame) and the output is an image of the
same size which corresponds to the voxelwise classifications of the

myocardium. The architecture is summarized in the Supplementary
Material, Table S3. The cost function that was optimized was the
Dice similarity coefficient (DSC)34 between the detected segmenta-
tion and the human operator segmentation.

The final segmentation is taken as the largest connected compo-
nent of the binary mask. Failed segmentations are detected automati-
cally by assessing whether the segmentation achieves the expected
"closed-loop" shape of the myocardium. In the case of a failed segmen-
tation, a correction is attempted in a similar manner to Fahmy et al.25

As previously described, the nearby timeframes have very similar appear-
ances. Therefore, in the case of a failed segmentation, the segmentation
network is applied to all images within two timeframes of the detected
peak LV enhancement. The segmentation from the closest timeframe
that achieves the expected shape is taken as the segmentation.

Insertion Point Detection
The problem of detecting landmarks in medical images is known to
be challenging.35 This is due to the high noise levels, large variation
in the location of the landmark across subjects, and differences due
to subjective positioning of the landmarks by different operators.
This makes it extremely difficult to train a regression model to out-
put the coordinates of the landmark. An image-to-image approach
such as U-Net can be used to output a segmentation that contains
just the one voxel of the landmark location. However, such an
approach suffers from the class imbalance problem.

Our approach builds on the idea of supervised action classifiers,
as proposed by Xu et al.31 For each case, an action map is created that
represents for each voxel in the image the direction (left, right, up, or
down) towards the landmark. An example activation map is shown in
Fig. 3 (right). An FCN was then trained to detect which one of these
four partitions each voxel belongs to. The U-Net architecture is used
here and is the same as was used for the myocardial segmentation
except for the output activation, which is a softmax rather than a
sigmoid to reflect the fact that this is now a multiclass classification
problem. The cross-entropy loss function was optimized. From the
computed activation maps, regression lines were fit to the boundaries
of the partitions and the estimate of the RV insertion point was taken
as the intersection of these lines, as shown in Fig. 3 (left).

Evaluation
Each step of the pipeline was evaluated individually by computing a
relevant metric for each patient in the test set. For the peak LV
enhancement frame detection, the mean difference (in number of
timeframes) between the visually chosen timeframe and the detected
timeframe was used to evaluate the performance. For both the
bounding box detection and the myocardial segmentation steps, the
DSC between the outputs and those that were manually acquired is
reported. For the segmentation, the metric is compared to the inter-
observer variability rate found from repeated segmentations by differ-
ent operators. For the RV insertion points, the Euclidean distances in
terms of mm was used to measure the performance.

Perfusion Quantification
Quantitative perfusion analysis was performed on the test cases using
both the manually obtained labels and the deep-learning outputs.
The perfusion quantification used a two-compartment exchange
model6 for which the kinetic parameters were inferred using

FIGURE 2: The original proposed ROI (dotted line yellow
bounding box) for an example patient. The arrows indicate the
deformation output by the CNN to give the ROI for this patient
with the detected bounding box shown as the blue continuous
line bounding box.
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hierarchical Bayesian inference, as previously described.19 Bland–
Altman analysis was used to analyze the bias and limits of agreement
between the manual and automated analysis and the linear relation-
ship and intraclass correlation (ICC) between the obtained quantita-
tive values was assessed.

Results
Representative example cases, with a comparison between man-
ual and automated processing, are shown in Supplemental
Figs. S3–S7.

Peak LV Enhancement Detection
The accuracy of the classifier when applied individually to
images in the test set was 97.6%. When the peak LV
enhancement frame was chosen, as described in the

Methods section, the mean (standard deviation [SD]) dif-
ference in terms of timeframes (n = 60, 30 patients rest
and stress) was 1.48 (1.4). The maximum error was three
timeframes. It can be noted that even in this case the
detected timeframe is very similar to the manual choice
and is a reasonable choice for the peak LV enhancement
frame, shown in Supplementary Material Fig. S2.

Bounding Box Detection
The mean (SD) DSC between the detected and manually
selected bounding box for the test set (n = 60, 30 patients rest
and stress) was 0.93 (0.03).

Myocardial Segmentation
The mean (SD) DSC between the automated and manual
segmentations (n = 180, 30 patients with three imaging slices
rest and stress) was 0.80 (0.06). The lowest DSC recorded on
the test set was 0.69; this image with its corresponding man-
ual and automated segmentation is shown in Fig. S5d. The
segmentation of 5 out of 180 test images failed and they were
replaced with a successful segmentation computed using a
nearby timeframe. The mean (SD) DSC between the seg-
mentations of observer 1 and observer 2 was 0.83 (0.05).
Some example images from the different observers are shown
in Supplementary Material Fig. S8.

RV Insertion Point Detection
The mean (SD) Euclidean distance (in mm) between the auto-
mated and manually chosen RV insertion points (n = 360,
180 imaging slices × 2 insertion points) was 2.8 (1.8).

FIGURE 3: Left: the RV insertion point marked on an example
patient with the lines of slope � 1 that separate the regions of
the action map overlaid. Right: The resulting action map, with
the direction towards the landmark point shown for each pixel.

FIGURE 4: Left: Bland–Altman plots of the automatically processed vs. manually processed quantitative perfusion values averaged
over each of the 16 AHA segments. Blue and orange lines represent the bias and � 1.96 SD limits, respectively, with the shaded
regions being the 95% confidence intervals. Right: A scatterplot of the manually processed vs. the automatically processed
quantitative perfusion values averaged over each segment of the myocardium. The plotted line is the computed line of best fit with
no intercept (slope = 0.93).
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Perfusion Quantification
The automatically and manually processed test image series
resulted in a mean (SD) myocardial blood flow (MBF) of
0.93 (0.37) and 0.91 (0.39) mL/min/mL at rest (n = 90) and
2.04 (0.89) and 2.09 (1.26) under stress (n = 90), respec-
tively. These values are in line with the ranges previously
reported in the literature.7,8,36 The use of the RV insertion
points further allows the division of the myocardium from
the three acquisition slices into the AHA 16-segment model.
The Bland–Altman analysis showed a good agreement
between the automated and manual MBF values on a per-
segment basis (n = 960, 30 patients with rest and stress × 16
AHA segments) (Fig. 4, left) with the bias being 2.6% of the
mean MBF value. There was a strong correlation between the
MBF values automatically and manually processed with a
slope (with no intercept) on a per-segment basis of 0.93 with
an R2 of 0.76 (Fig. 4, right). The ICC was 0.89, 95% confi-
dence interval [0.87, 0.90].

Discussion
In this work we introduced an automated, deep-learning-
based preprocessing pipeline for the quantification of myocar-
dial perfusion MRI. The deep learning pipeline processes an
image series in a few seconds, compared to roughly 5 minutes
for a manual operator, allowing the full quantitative analysis
to be performed automatically in just a few minutes. Each
step of the pipeline was validated independently, with good
results reported. The accuracy of the segmentation was com-
parable to the interobserver agreement and the quantitative
analysis performed with the fully automated pipeline
yielded MBF values that were in line with those computed
with the manual interaction at each step. The fully auto-
mated pipeline was also successful in each image series
(180/180) in our test set, indicating the robustness of this
approach. As demonstrated by the similarity of the quanti-
tative perfusion values obtained with both the automated
and manual pipelines, the pipeline is not sensitive to the
errors seen in detecting the peak LV enhancement frame,
bounding box, and RV insertion points or segmenting the
myocardium.

Despite the increased challenges posed by first-pass perfu-
sion images, the average (SD) DSC reported is in a similar
range to that reported for the segmentation in a comparable
automated pipeline for T1 mapping (0.80 [0.06] vs. 0.85
[0.07]).25 It is also similar to the performance of the model Bai
et al24 developed when applied to a clinical dataset including
diseased patients.

There has been previous work reporting fully-
automated solutions for myocardial perfusion quantifica-
tion.7,8 However, neither of these solutions at present
provide a myocardial segmentation, which is the most
time-consuming manual task for the operator. The benefits

of automatically segmenting the myocardium include
reduced processing time in the quantification step, more
interpretable parameter maps, and direct statistics for the
ROI. The use of a myocardial segmentation has the poten-
tial to give a more objective diagnosis; for example, it
allows the computation of the extent of perfusion defect as
a percentage, which is a strong indicator of future events.
Furthermore, fitting the model parameters in only the
myocardium allows the use of spatial regularization18,19

and the computation of the differences in perfusion
between the endocardial and epicardial layers of the myo-
cardium and perfusion dyssynchrony measures.20,21

A possible alternative pipeline could have involved the
individual segmentation of each timeframe in the image
series. In theory, this approach would not require an explicit
motion correction step, as the segmentations for each time-
frame could be matched to each other. It is the success of
our recently validated motion correction scheme27 that
allows us to process just one timeframe. The benefits of this
approach include that it is not necessary to design a scheme
for matching points in different segmentations across differ-
ent timeframes to extract voxelwise concentration curves.
Moreover, it was significantly easier to gather high-quality
training data, as an observer was only asked to segment the
single frame at peak LV enhancement from each slice,
reducing the manual work by a factor of 100. This is likely
to be important for groups that want to reproduce the pipe-
line. It is also a significant consideration when acquiring
more data to use transfer learning to adapt the pipeline to
different acquisition parameters in the future. Our approach
is also likely to be more robust, as we have chosen only the
timeframe with the highest SNR and contrast to process.
The segmentation of all timeframes would also include
precontrast frames where there is very little signal in the
myocardium to guide the segmentation.

A further strength of this work is that it used a repre-
sentative clinical dataset for training, including a significant
proportion of diseased patients, so by default should be
applicable in the clinic on data acquired using similar
methods. Transfer learning techniques have already been
shown to be able to account for differences in the input
domain and we envisage a future application to extend the
pipeline to data acquired from different types of scanners at
different centers.24,25

In our study, the size of the dataset available was lim-
ited. In order to negate this problem, data augmentation was
employed. Online data augmentation was used with random
transformations added to the data before each iteration of
training. This helps the network to generalize better and to
learn a more robust representation of the myocardium. How-
ever, this only addresses the lack of training data; it would be
beneficial to further test the method on a larger dataset. A
further limitation is that the primary endpoint of the analysis,
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the quantitative perfusion values, does not have a ground-
truth available for validation and that we have only shown
that the quantitative values that are similar to those achieved
manually by an expert operator. This does not investigate the
diagnostic accuracy of these quantitative values, and thus fur-
ther work to establish the diagnostic accuracy of the auto-
mated pipeline is warranted.

In conclusion, we proposed a fast and automated
method for processing myocardial perfusion MR images prior
to quantitative analysis. This automates the time-consuming
and subjective processing tasks, such as myocardial segmenta-
tion, and performs on a par with the manual experts. We
anticipate that this will lead to increased adoption of quanti-
tative perfusion analysis in the clinic as well as opening up
new possibilities for research in the field.
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