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 

Abstract— This article reviews the use of a sub-discipline of 

artificial intelligence (AI), deep learning, for the reconstruction of 

images in positron emission tomography (PET). Deep learning can 

be used either directly or as a component of conventional 

reconstruction, in order to reconstruct images from noisy PET 

data. The review starts with an overview of conventional PET 

image reconstruction and then covers the principles of general 

linear and convolution-based mappings from data to images, and 

proceeds to consider non-linearities, as used in convolutional 

neural networks (CNNs). Direct deep-learning methodology is 

then reviewed in the context of PET reconstruction. Direct 

methods learn the imaging physics and statistics from scratch, not 

relying on a priori knowledge of these models of the data. In 

contrast, model-based or physics-informed deep-learning uses 

existing advances in PET image reconstruction, replacing 

conventional components with deep-learning data-driven 

alternatives, such as for the regularisation. These methods use 

trusted models of the imaging physics and noise distribution, while 

relying on training data examples to learn deep mappings for 

regularisation and resolution recovery. After reviewing the main 

examples of these approaches in the literature, the review finishes 

with a brief look ahead to future directions.  

 
Index Terms— artificial intelligence, machine learning, deep 

learning, image reconstruction, positron emission tomography.  

 

I. INTRODUCTION 

RTIFICIAL intelligence (AI) is now having a widespread 

impact on many and diverse fields, including inverse 

problems [1]. AI is wide ranging, and generally concerns 

algorithms for learning tasks of varying complexity (from 

autonomous driving through to filtering out spam emails). A 

specific sub-discipline of AI is referred to as deep learning [2], 

which usually involves artificial neural network (ANN) 

mappings of inputs to outputs. Example inputs could be raw 

data from sensing devices, and example outputs could be 

classifications, processed results or images enhanced for 

particular tasks. The reasons for referring to these mappings as 

deep learning, as part of AI, are that i) the mappings usually 

involve a cascaded series of operators (with their own inputs 

and outputs) known as layers, giving the notion of  depth, and 

ii) the operators use parameters which are learned from 

example training datasets.  In the training datasets, for the case 
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of supervised learning, example inputs are paired with their 

corresponding desired outputs. For unsupervised learning, the 

training data may consist of example inputs only (for learning 

of latent representations of the data [3]), or of unpaired example 

inputs and example outputs [4]. A further category, that of self-

supervised learning [5] [6], needs only input data examples and 

instructions on how to create labels (rather than providing 

labels) thus reducing the need for human interaction with the 

learning process. In the context of paired inputs and outputs 

(whether supervised one to one pairings, or an unsupervised 

pair of distributions of data), the mapping learned between the 

domains can then be subsequently used on entirely new, never 

before seen input data, in order to predict the output. 

Conversely, in the context of unsupervised learning for a single 

dataset, the learned mapping can be used to generate or 

reconstruct images which are restricted to lie within a limited 

subspace / manifold / domain, corresponding to the same 

subspace from which the training data were sampled [7].  

While ANNs have been applied to reconstruction in emission 

tomography from as early as 1991 [8], it was only with various 

technical advances in optimisation capabilities (made available 

in deep learning toolboxes such as TensorFlow, originating 

from Google, and PyTorch, originating from FaceBook) and the 

demonstrated success of deep learning in other fields (such as 

object recognition from ImageNet data in 2009 [9]) that 

eventually, from ~2017, deep learning reached the world of 

medical image processing [10] and reconstruction in emission 

tomography. The earliest examples for medical image 

reconstruction, from 2016, include application to magnetic 

resonance imaging (MRI) [11], with in particular the seminal 

work of Zhu et al. [12], also applied to MRI data. Using deep 

neural networks for reconstruction of MR images directly from 

k-space data, they also demonstrated preliminary reconstruction 

results for positron emission tomography (PET) sinogram data. 

From ~2018 onwards, AI methods exploiting deep networks 

specifically for PET image reconstruction were increasingly 

proposed [13, 14]. As would be expected, AI methodology has 

also been applied to reconstruction in other radiation-imaging 

modalities such as CT and SPECT (e.g. [15],[16]). While this 

present review will focus on AI for PET reconstruction, many 

of the approaches are largely also applicable to SPECT, and 

even CT, thanks to the high flexibility of the mappings that can 
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be trained according to the supplied data in each case. 

There have now been a number of reviews on AI, machine 

learning and deep learning for inverse problems and medical 

imaging reconstruction (e.g. [1, 17-19]), including potential 

issues [20]. However, as indicated, this paper presents a review 

of the current state of progress of deep learning within image 

reconstruction for the specific modality of PET. The format of 

the paper is as follows. Section II reviews the basic principles 

of conventional or model-based PET image reconstruction. 

Section III describes the key paradigm shift for PET 

reconstruction when deep learning is applied, giving a tutorial 

and overview of deep learning methodology. Section IV briefly 

overviews four major ways that deep learning can be exploited 

within PET image reconstruction, and sections V – VII consider 

a selection of these in more detail. Finally, section VIII 

summarises the review and offers future perspectives. 

II. BASICS OF MODEL-BASED PET RECONSTRUCTION 

This section briefly covers the basics of conventional PET 

image reconstruction, but more comprehensive reviews are of 

course available (e.g. [21-24]). 

A. Basic principles 

Image reconstruction for PET involves estimating 

representation parameters for the spatiotemporal distribution of 

a radiotracer’s concentration in the field of view (FOV) of a 

PET scanner. For 2D or 3D (spatial only) imaging, the model 

of the tracer distribution 𝑓(𝒓) is typically a simple linear model 

parameterised by 𝒙: 

 

𝑓(𝒓; 𝒙) = ∑ 𝑥𝑗𝑏𝑗(𝒓)
𝐽

𝑗=1
 (1) 

  
where the basis functions 𝑏𝑗(𝒓) are usually pixels or voxels, and 

a parameter vector 𝒙 ∈ ℝ𝐽 specifies the coefficients, or 

amplitudes, for each basis function 𝑏𝑗(𝒓). Throughout this 

review article the J-dimensional vector 𝒙 will be taken to 

represent a 2D or 3D reconstructed image, with the assumption 

that pixels or voxels are used for equation (1). While the model 

is nearly always linear, in general it can also be non-linear, with 

a key example being consideration of the spatiotemporal (4D) 

distribution of the radiotracer, as used in direct reconstruction 

of radiotracer kinetic parametric maps or 4D images [25][26].  

With a chosen model of the radiotracer distribution, the next 

step is to model how the PET scanner would acquire data from 

this distribution. This concerns modelling the mean of the 

acquired noisy PET data, based on a given parameter vector 𝒙. 

In nearly all cases, a linear model of the data mean is used as 

follows: 

𝒒(𝒙) = 𝑨𝒙 + 𝝆   (2) 

 

where 𝑨 ∈ ℝ𝐼×𝐽 is the PET system matrix (also known as the 

forward model, or system model) and I  and J  are the number 

of sinogram bins and the number of voxels of the PET image 

respectively, and  is the model of the mean scatter and 

randoms background. With the object model (1) and the 

imaging model (2), we then consider the noise model for the 

data. For PET, the Poisson model is used, as discrete photon 

counts are recorded:  

 

𝑚𝑖~Poisson {𝑞𝑖} (3) 

where 𝑞𝑖 is the model of the mean number of coincidences in 

the ith line of response (LOR) (or sinogram bin). 

Next, it is necessary to define an objective function which 

indicates how well the parameters x of the model for (1) 

correspond to the actual measured data, modeled by (2) and (3). 

The goal of image reconstruction is then to find the parameter 

vector x, for (1), which when forward modeled with equation 

(2), best agrees with the acquired noisy measured data (3), 

according to a chosen objective (or cost) function as follows: 

 

𝒙 = argmin
𝒙

 𝐷𝑃𝐸𝑇(𝑨𝒙 + 𝝆; 𝒎)      (4) 

 

where DPET is a function that gives some measure of the 

distance (discrepancy) between the model of the mean, 𝒒(𝒙), 

and the measured data 𝒎, and so is a measure of data fidelity 

for any given candidate x. For PET, the objective function of 

choice is the Poisson log likelihood, for which an 𝒙 should be 

found which maximises the likelihood of 𝒙, given the measured 

data 𝒎. When expressed as a distance measure, the negative of 

the Poisson log likelihood is used (negative, as the Poisson log 

likelihood needs to be maximised): 

𝐷𝑃𝐸𝑇(𝒒(𝒙); 𝒎) = − ∑(𝑚𝑖log𝑞𝑖(𝒙) − 𝑞𝑖(𝒙))

𝐼

𝑖=1

 (5) 

A robust way of seeking the extremum of (5) is the maximum 

likelihood expectation maximization (ML-EM) algorithm [27, 

28], where one ML-EM update is given by: 

 

𝒙𝑛+1 =
𝒙𝑛

𝑨𝑇𝟏
𝑨𝑇 (

𝒎

𝑨𝒙𝑛 + 𝝆
) (6) 

 

where 𝟏 ∈ ℝ𝐼 and 𝒙𝑛 is initialised by uniform values. In 

equation (6) (and elsewhere in this article) products and 

quotients of vectors are element wise, with matrix-vector 

products using the conventional definition, following the 

notation introduced by Barrett et al. [29]. 

B. Regularisation by analysis / encoding 

Since the measured data are noisy, minimising (5) (e.g. 

through use of (6)) results in typically noisy estimates of the 

radiotracer distribution via (1), as most often voxel basis 

functions are chosen. For very noisy data, “night sky” 

reconstructions are obtained. Therefore, regularisation is used 

to seek noise-compensated representations of the radiotracer 

distribution. This is usually achieved by including a penalty 

term 𝑅(𝒙) in the objective function:  

 

𝒙 = argmin
𝒙

 𝐷𝑃𝐸𝑇(𝒒(𝒙); 𝒎) + 𝛽𝑅(𝒙)    (7) 

where the hyperparameter  controls the strength of 

regularisation relative to fidelity to the measured data. The 

penalty term 𝑅(𝒙) can be any of a wide range of priors, 



> PAPER IDENTIFICATION NUMBER 1 < 

 

3 

designed to encourage solutions which agree with our prior 

belief regarding the radiotracer distribution. If 𝒙 does not agree 

well with our prior belief, 𝑅(𝒙) tends to be large, and vice versa. 

A common choice is to expect the neighboring voxel values in 

𝒙 to be similar, so that 𝑅(𝒙) is some function of the voxel-value 

differences between neighboring voxels. A common example 

is: 

 

𝑅(𝒙) =
1

4
∑ ∑ 𝑤𝑗𝑙(𝑥𝑗−𝑥𝑙)

𝐽

𝑙=1

𝐽

𝑗=1
 (8) 

 

where () is a potential function, such as a quadratic (for which 

the helpful normalization of ¼ is already placed in (8)), so that 

any differences between voxel values result in an increased 

value of R, thereby penalising choices of x which have largely 

varying neighbouring values, often the result of fitting closely 

to the noise in the data m. The weights (𝒘 ∈ ℝ𝐽×𝐽, although 

usually limited to a small patch neighbourhood) allow guidance 

from anatomical images such as MRI [30]. We make an 

advance observation that, in the context of what will follow 

later in this review, priors such as (8) are mathematically 

convenient, or handcrafted / designed priors, and not directly 

evidence or data based. To build a more general version of 

equation (8), the following vector can be considered: 

 

𝒛 = (𝑯𝒙)           (9) 

 

where  𝑯 ∈ ℝ𝐽×𝐽 is a matrix, which would be a finite difference 

operator to mimic equation (8), and 𝒛 is some “coded” 

representation of 𝒙 obtained by the overall transform , and then 

 

𝑅(𝒙) = 𝟏𝑇𝒛           (10) 

 

where 1 ∈ ℝ𝐽 , to achieve a summation of the contents of 𝒛. 

 The approach to regularisation given by (7), with the 

example of (8), can be referred to as analysis regularisation. 

Effectively any candidate object representation 𝒙 is analysed by 

being transformed by an operator (such as 𝑯, followed by ), 

whereby the operator or transform is designed such that the 

output 𝒛 should be small valued for candidate 𝒙 solutions which 

agree with our prior beliefs. Here, “small valued” means that 

the sum of 𝒛 should be small, which can be achieved, for 

example, by 𝒛 being sparse (i.e. only a limited number of non-

zero elements). Hence if 𝑯 is a gradient operator, or, as another 

example, a wavelet transform, then solutions of 𝒙 which have 

limited gradients (e.g. piecewise smooth objects), or limited 

wavelet coefficients (e.g. images which are readily 

compressible) are encouraged respectively. In the latter case, it 

can be noted that natural and noise-free images are more readily 

compressed than noise-ridden images. This approach is used 

within compressed sensing methods in MRI [31], where the 

reconstructed image is required to be sparse in some transform 

domain, a strongly informative regularisation which permits 

fewer k-space samples to be acquired.  

 Analysis regularisation can be achieved in PET imaging 

using a MAP-EM algorithm, such as that of De Pierro [32], 

which is a convergent algorithm for priors such as (8), provided 

that the potential function () is convex. The iterative update 

of an image estimate 𝒙𝑛, when the prior is of the form of (8) 

with a quadratic potential function is: 

𝑥𝑗
𝑛+1 =

2𝑥𝑗
𝐸𝑀

(1−𝛽𝜈𝑗𝑥𝑗
𝑆𝑀)+√(1−𝛽𝜈𝑗𝑥𝑗

𝑆𝑀)
2

+4𝛽𝜈𝑗𝑥𝑗
𝐸𝑀

    (11) 

 

where 𝒙𝐸𝑀 corresponds to the ML-EM update of 𝒙𝑛 (equation 

(6)), 𝒔 = 𝑨𝑇𝟏 (the sensitivity image) and 

𝜈𝑗 =
∑ 𝑤𝑗𝑙

𝐽
𝑙=1

𝑠𝑗
          (12) 

with 

𝑥𝑗
𝑆𝑀 =

1

2 ∑ 𝑤𝑗𝑙
𝐽
𝑙=1

∑ 𝑤𝑗𝑙(𝑥𝑗
𝑛 + 𝑥𝑙

𝑛)
𝐽

𝑙=1
 (13) 

 

being effectively a weighted, potentially edge-constrained, 

smooth of the current estimate xn. Note that equation (13) does 

not explicitly contain the potential function as a quadratic 

potential has been used in this example, based on the update 

from [33]. 

To finish this brief review of analysis regularisation, one 

more important case worth mentioning in the context of 

conventional PET reconstruction is the simple case of using a 

prior image for a quadratic penalty:  

 

𝑅(𝒙) = ∑ (𝑝𝑗−𝑥𝑗)
2𝐽

𝑗=1
 (14) 

 

where 𝒑 is a prior image from which the estimate of 𝒙 should 

not deviate too far. Whilst proposed very early on by Levitan 

and Herman for MAP-EM reconstruction [34], and while not at 

all frequently used in conventional PET reconstruction, this 

analysis regularisation method has however found great utility 

when deep learning is applied to PET reconstruction, as will be 

discussed later. Using the penalty of (14), an iterative update of 

𝒙𝑛 can be found by a simple combination of the prior image 

𝒑 and the standard EM update image (found from (6)):  

𝑥𝑗
𝑛+1 =

2𝑠𝑗𝑥𝑗
𝐸𝑀

(𝑠𝑗−𝛽𝑝𝑗)+√(𝑠𝑗−𝛽𝑝𝑗)
2

−4𝛽𝑥𝑗
𝐸𝑀𝑠𝑗

      (15) 

where similarity to the update of (11) is notable, with 

equivalence arising only if ∑ 𝑤𝑗𝑙
𝐽
𝑙=1 = 1 and 𝒙𝑆𝑀 = 𝒑. 

C. Regularisation by synthesis / generators 

 A second major way of introducing our prior expectations 

about what 𝒙 should look like is to instead express 𝒙 as the 

output of some operator, where the operator is designed so as to 

only generate candidate 𝒙 vectors which agree with our prior 

beliefs. A simple linear example is to use a matrix containing 

basis vectors, such that the output 𝒙 is synthesised by 

summation of these basis vectors:  

 

𝒙 = 𝑩𝒛            (16) 

 

where in this context 𝒛 is now a vector of coefficients, which 

can be viewed as a coded or latent representation of 𝒙. The 
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matrix of basis vectors, 𝑩, can also be referred to as a dictionary 

containing atoms. We can achieve regularising constraints on 

the output 𝒙 in 3 main ways: i) enforcing non-negative values 

for 𝒛 (crucial if 𝑩 is full rank), ii) explicitly using a reduced set 

of basis vectors in 𝑩, by limiting the dimensions of 𝒛 to be 

smaller than the dimensions of 𝒙, or iii) using a complete set of 

basis vectors in 𝑩, or even an overcomplete dictionary of basis 

vectors whilst requiring 𝒛 to be a sparse vector (e.g. by use of a 

norm of 𝒛 as a penalty). The first approach is the most simple, 

and has been used in PET, as the popular ML-EM method of 

equation (6) naturally gives non-negative solution vectors. 

Hence ML-EM can be rewritten to directly estimate the latent 

code (coefficients) vector 𝒛: 

 

𝒛𝑛+1 =
𝒛𝑛

𝑩𝑇𝑨𝑇𝟏
𝑩𝑇𝑨𝑇 (

𝒎

𝑨𝑩𝒛𝑛 + 𝝆
) (17) 

 

with the final reconstruction given by (16). Example choices for 

𝑩 include MR-derived basis functions based on similarity 

between MR voxel values, or ones derived by time-activity 

curve (TAC) similarity between voxels, found by the kernel 

method. Hence (17) with an image model of (16) is often called 

kernel EM (KEM) [35-37]. Any positive-valued 𝒛 vector will 

always deliver an image of positive-valued weighted sets of 

MR-anatomy or TAC inspired basis vectors / dictionary atoms, 

eliminating the possibility of noisy “night sky” reconstructions. 

A purely temporal version of (17) for 4D PET reconstruction 

[38], involves alternating estimation of not only 𝒛, but also 

estimation of a compressed, limited-dimensional, 𝑩. 

D. Drawbacks 

We now observe three potentially undesirable aspects with 

the aforementioned conventional model-based approaches to 

PET image reconstruction. 

 

1) Noisy data 

 Since the data are noisy, choosing to fit parameter estimates 

𝒙 to noisy data 𝒎 yields noisy reconstructed images, suggesting 

that even the very starting point of a data-fidelity objective 

function such as (4) is not really what is desired. 

 

2) Need for regularisation 

Compensating for the first problem by regularisation with a 

function 𝑅(𝒙) (as in (7)) involves user-specified / hand-crafted 

prior assumptions (such as (8)), in terms of what is, and what is 

not, acceptable for the image properties. Even if we do have a 

good prior, how strong should it be () in comparison to data 

fidelity? How can we make such selections? This is an active 

area of research (e.g. [39, 40]). Also, regularisation by means 

of synthesis/basis function methods usually involves similar 

sub-optimal user-specified representations, with comparable 

issues of hyperparameter selection.  

 

3) Modelling assumptions 

The methods described all presuppose accurate and precise 

knowledge of the model of the mean of the data, through the 

forward model matrix 𝑨, and also knowledge of the noise 

distribution of the data vector 𝒎.  

 

All of these potential concerns can be addressed by the use of 

AI, or more specifically deep learning, for PET image 

reconstruction. For reference, the conventional model-based 

approach to image reconstruction, as outlined in this section, is 

shown schematically in Figure 1. 

 
Fig. 1.  Work flow overview for conventional model-based PET image 

reconstruction. Note that explicit consideration of the ground truth t does not 

enter into the process at any point. This omission is the key reason why AI is 
able to offer a radically different approach, by making use of either the actual 

ground truth (e.g. via simulations) or an estimate of the truth (e.g. higher-count 

reference data). 

III. THE AI PARADIGM SHIFT AND THEORY 

This section now considers the key paradigm shift when 

using AI approaches for PET image reconstruction, and reviews 

methodology for direct deep-learning reconstruction from PET 

data. A key concept is that of learning how to reconstruct a high 

quality image from a noisy dataset, through the use of training 

data. 

A. Basic principles 

The AI approach is a fundamental shift in focus in 

comparison to the conventional model-based framework 

outlined in the previous section. In broad terms the key is this: 

we no longer define the noisy measured data 𝒎 as the target in 

the objective function (4), but instead we use a high quality 

desirable reference 𝒕 as the target in a new objective function. 

Thus, instead of fitting parameters 𝒙 to noisy data 𝒎, and then 

trying to compensate for noise in the data by R(x), with an AI 

approach we instead choose to estimate a mapping, F, that takes 

us from 𝒎 to an estimate of 𝒙 corresponding to what we would 

actually want. Ideally, we would want the ground truth 

radiotracer distribution 𝒕 that had given rise to 𝒎, or, lacking 

that, a very high-statistical quality reconstructed image. 

This is achieved by learning a reconstruction operator, or 

mapping, F, using example training data. The mapping is 

parameterised by a vector , which would ideally take us 

directly from the noisy data 𝒎 to what we desire, 𝒕. Such a 
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mapping would implicitly need to account for the entire physics 

of the imaging process and the noise distribution of the data, all 

within F. Of course, the mapping will also need to generalise 

well for any new dataset m, being able to map an unseen dataset 

to the unknown ground truth. This places importance on the 

training data being diverse and extensive enough to adequately 

represent the domain of possible future input datasets. 

 During training of the mapping it is of course unreasonable 

to expect to find a single mapping that will always directly 

deliver the ground truth t from a given noisy input m, and so an 

objective function is required, which seeks to match the 

mapping of m (through F) to the target t as closely as possible 

to within some tolerance, or loss. 

In the context of deep learning, the parameters of the 

mapping are optimised so as to minimise a loss function, given 

by: 

 

𝜽̂ = argmin
𝜽

∑ 𝐷𝑁𝐸𝑇(𝐹(𝒎𝑛; 𝜽); 𝒕𝑛)𝑁
𝑛=1    (18) 

 

where the mapping F is parameterised in some way by a vector 

of parameters , such that when the mapping is applied to one 

of the n=1…N input datasets in the training data, e.g. mn, the 

mapping generates an output which should be close to tn (see 

Figure 2). The key aspect to the loss function DNET for the 

mapping (often a network) is that it needs to be defined over 

many such example training dataset pairs (inputs mn, each 

paired with desired outputs tn) that adequately cover the domain 

of potential future inputs. This means the training seeks just one 

single mapping F, which will best fit each and every example 

training noisy dataset mn to its corresponding high quality 

reference tn. During training, often a separate validation dataset 

is used to monitor performance for data unseen by the 

optimisation. For example, if the loss function, when evaluated 

on the validation data, starts to increase, this is indicative of 

overfitting to the training data, and so the training process can 

be halted. 

 

 
Fig. 2.  The AI paradigm for direct PET reconstruction: we find (or learn) one 

mapping F which maps each data vector m to a desirable target vector t. 

Supervised learning of the mapping needs example pairs of inputs and expected 

outputs (called targets or labels), which form the training data for the learning 

process. More advanced methods [4] learn how to map from one distribution to 

the other distribution, evading the need for paired data vectors. 

 

The expectation, when training is complete, is that a new 

supplied input measured dataset m will be mapped using F to 

predict the unknown ground truth for the new dataset: 

 

𝒙 = 𝐹(𝒎; 𝜽̂)   (19) 

We expect therefore generalisation to unseen, future data, on 

the assumption that the unseen data comes from the same 

domain as the training data. The challenge of dealing with new 

data that is outside the domain of the training data is known as 

domain adaptation, an active area of research [41]. 

B. Linear direct mapping: a fully-connected layer 

The simplest case would be to find a purely linear mapping: 

 

𝒙 = 𝑭𝜽ℓ̂
𝒎   (20) 

 

where the mapping F is now just a matrix 𝑭 ∈ ℝ𝐽×𝐼, (see Figure 

3) and we have added a subscript 𝜽ℓ̂ to denote that this matrix 

depends on the trained parameter vector. The extra subscript ℓ 

denotes what we will refer to from now on as a layer, described 

further below. This matrix mapping can be regarded as a single 

layer network – whereby each output value 𝑥̂i is just a weighted 

sum of the input values in m, with the weights (neurons) given 

by the ith row of matrix 𝑭. (As a brief aside, we note that a 

simple non-linear function can, optionally, be applied to each 

output element in the vector - this will be considered further 

below). It may seem like an ambitious task to estimate  , and we 

can see that we would likely need many training pairs of 𝒎 and 

𝒕 in order to find an 𝑭 that will be able to generalise for unseen 

input vectors 𝒎. In fact, for the typical scale of 2D and 3D PET 

image reconstruction, we would need to estimate anywhere 

from millions to trillions of parameters! But given, for example, 

the existence of linear PET image reconstruction methods such 

as filtered backprojection (FBP) [42, 43], backproject then filter 

(BPF) [44], or better still the Moore-Penrose pseudo inverse via 

singular value decomposition (SVD) [45] [46], it is evident that 

linear mappings do exist that can achieve good quality 

reconstructions of 𝒙 from 𝒎. Likewise in MR, the default 

inverse Fourier transform is a good starting point for a linear 

operator. The advantage, again, is that a learned reconstruction 

operator would not only account for the imaging physics, but 

would implicitly also include a data-trained noise-reduction 

strategy. This is in contrast to FBP (where an empirically 

chosen filter cut off is needed), or in contrast to a pseudoinverse 

(where the modulation or truncation of the inverse of the 

singular value spectrum is similarly empirically chosen to 

compensate for noise).  

In the context of deep learning, a matrix like that in (20) is 

known as a fully-connected layer (FC layer), or a dense layer 

(since every single input value can affect every single output 

value). The use of the word layer (inspired by the neuroanatomy 

of the cerebral cortex) arises from the fact that, as we will see 

later, we may use more than one single mapping in a sequence– 

we can cascade a series of mappings more generally. Each extra 

mapping is a layer, and when we have multiple layers we have 

a deep network, hence the term deep neural network. Use of 
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such multiple layers typically arises when a non-linear function 

is introduced between layers, but even using a series of purely 

linear operators certainly is not trivial, as will be discussed later. 

A final note here is to mention that some conventions refer 

to the input or output of a given single operator as a layer. 

However, here (similar to [47] and [48]) we use the word layer 

to refer to the operator itself, but according to the context, one 

can loosely use the word layer in reference to the output of the 

operator as well.   

 

 
Fig. 3.  Direct linear mapping approach. Top: the matrix 𝑭 is trained to map 

data 𝒎 to the ground truth or reference 𝒕. Bottom: when the trained 𝑭  is 

presented with a new dataset 𝒎, a given output value is obtained by a weighted 
sum of the input vector elements in m, where the weights for a given output 

element i are contained along a row i of the matrix 𝑭. This reveals the link to 
neural networks, for which the above case is termed a fully-connected layer 
(which in general allow a bias to be added to each output, with subsequent 

optional application of a non-linear function). 

C. Convolution direct mapping: a convolutional layer 

Before considering more complex mappings, we will now 

consider a simple but very instructive example of a mapping 

that is not only linear, but also shift-invariant – convolution. To 

motivate this simple example, we will now consider the input 

measured data m to be purely a noisy version of t (i.e. using 

modelling equations (1), (2) and (3), but now taking A = I, so 

that no sinogram is now needed). We will then seek a single 

convolution kernel, such that when convolved with the noisy 

data m (which is now regarded as a noisy image in this 

instance), gives a best fit to the high quality reference t. This 

could be written as equation (20), with the requirement that 𝑭 

now be a circulant matrix (i.e. achieving convolution). More 

explicitly: 

 𝒙 = 𝑪𝜽ℓ̂
𝒎  (21) 

where the circulant matrix 𝑪 contains a unique 2D or 3D kernel, 

defined by parameters 𝜽ℓ̂, such that the kernel is duplicated and 

shifted in successive columns of the matrix 𝑪. This mapping 

would correspond to a layer which is called a convolutional 

layer, with, in this simple case, just one kernel. 

Figure 4 illustrates the capabilities of learning just one single 

convolution kernel for a purely linear and shift-invariant (LSI) 

mapping. Results are shown for optimising the parameters of a 

single kernel for two different example applications. The first 

is to denoise, i.e. to match m to t using a least-squares loss 

function (usually referred to as the mean square error (MSE) 

loss function in the machine learning literature). The results in 

this case are as expected – for noisier input measured data, a 

broader trained kernel is obtained in order to achieve denoising, 

and for less noisy data a narrower kernel is obtained, as less 

denoising is required. The second example is using a kernel to 

sharpen an image, removal of blurring – again, the results show 

optimisation of the kernel to be effective in deblurring. 

  

 
Fig. 4.  Three examples of a direct convolution (linear shift-invariant) mapping 

approach, with data-driven learning of a single kernel to try and map m to t. For 
noisier data (row 2), more neighbourhood averaging is needed to denoise, and 

so a broader kernel was learned. For the different task of deconvolution (row 

3), a sharpening kernel was learned, to try and match t. 
 

D. Convolution with a non-linearity: feature maps 

The convolution mapping can be extended to include a non-

linearity afterwards, which can be sometimes regarded as a 

separate layer. The non-linearity is simply application of a non-

linear function, which we will call (), element by element, on 

each pixel or voxel value of the output vector of the convolution 

(where the output is often referred to as a feature map). It is 

called an activation function, as it often serves to suppress 

values in the output, and let others pass through (as activated 

values). So, for a single layer convolutional network we would 

have: 

𝒙 = 𝜎ℓ(𝑪𝜽ℓ̂
𝒎)   (22) 

 

If we choose 𝜎ℓ() to be a rectified linear unit (abbreviated as 

ReLU [49]), it sets any negative values to zero, retaining all 

positive values as they are. Figure 5 shows examples of the 

utility of applying this non-linearity, which in the figure is 

shown in the thresholded column. The thresholded feature maps 

show, for example, edges, or a tumour location. Hence the non-

linearity can give even more useful feature maps of specific 

interest, with background aspects removed.  For the case of 
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ReLU, the non-linearity amounts to thresholding, deleting 

background information, and keeping desired features. Many 

other non-linear activation functions exist, including, for 

example, leaky ReLU (LReLU, attenuating rather than 

removing negative values), sigmoid (for constraining outputs to 

be from 0 to 1) and hyperbolic tangent (tanh, for constraining 

outputs to be from -1 to +1). Furthermore the use of an offset or 

scalar bias value 𝑏  just prior to an activation such as ReLU, 

allows adjustment of the level of thresholding without changing 

the activation function (): 

𝒙 = 𝜎ℓ(𝑪𝜽ℓ̂
𝒎 + 𝑏𝜽ℓ̂

)  
 (23) 

 

where the bias is a single trainable offset scalar parameter, the 

single value of which is now included into the overall vector of 

parameters for the layer, 𝜽ℓ̂. 

Given the utility of convolution with a bias and activation for 

delivering a feature map, we note that for a given input image, 

it would be useful to obtain more than just one single feature 

map. This is already shown in Figure 5, where we have 3 

different feature maps arising from one image. This involves 

generating more than one output, by using more than one kernel 

in a convolutional layer. So starting from (23) we can use 

multiple kernels in this one single convolutional layer, to obtain 

multiple outputs – one for each kernel:  

𝒙 = 𝜎ℓ ([

𝑪𝜽ℓ̂

1

⋮
𝑪𝜽ℓ̂

𝐾
] 𝒎 + 𝒃𝜽ℓ̂

)  

 

(24) 

 

where the output vector 𝒙 is now K times larger (i.e. there are 

as many output images as there are kernels). This corresponds 

to the number, k=1…K, of convolution matrices applied to 𝒎. 

Note further that we have a unique scalar bias value for each 

kernel, represented in equation (24) by a single vector 𝒃, and 

that this vector and each of the kernels all depend on the overall 

set of parameters, 𝜽ℓ̂, for this layer. 

Figure 5 illustrates equation (24) for the choice of just three 

kernels – which in this figure are purely handcrafted to show 

the flexibility of different kernels. In deep learning however, 

the kernels are randomly initialised, and the training process 

adapts the kernel values to obtain the feature maps necessary to 

make the outputs ultimately serve to match the target (i.e. to 

minimise the loss function). 

Finally, we note that often we require just one image output, 

whereas using multiple kernels in a layer delivers multiple 

outputs. These multiple outputs are referred to as channels. We 

can easily join these channels together into one single output by 

applying one more convolutional layer, with just one kernel (to 

give just one output), but with the single kernel having multiple 

channels (one for each of the input channels to the layer).  This 

adds together the feature maps as follows: 

 

𝒙 = [𝑪
𝜽ℓ+1̂

1,1 … 𝑪
𝜽ℓ+1̂

1,𝐾
]𝜎ℓ ([

𝑪
𝜽ℓ̂

1,1

⋮

𝑪
𝜽ℓ̂

𝐾,1
] 𝒎 + 𝒃𝜽ℓ̂

)  

 

(25) 

 
where we use a second superscript to denote the channel number, with the first 
superscript kept for the kernel number. There are as many channels for this one 

kernel in this second layer (labelled ℓ +1) as there are kernels (hence outputs) 

from the first layer (labelled ℓ). A simple choice is to use single pixel or voxel 
kernels for each of the channels of the single kernel, so that the final output is 

just a weighted sum of the feature maps from the previous layer (as was 

illustrated in figure 5). 

 
Fig. 5.  Demonstration of a two-layer convolutional mapping, with a non-linearity included (non-linear shift-invariant). The input image is convolved with three 

different kernels (each having just one channel, as there is only one input image), giving three convolved outputs. Each convolution output is then, in effect, 
thresholded by adding some positive or negative offset (a bias) (a single unique value for each convolved output), then setting negatives to zero (e.g. by a ReLU 

activation). These three resulting feature maps are then summed with differing weights to deliver a final output image, where in the example shown a 3-channel 

kernel is used to achieve this, with the last channel being the example of a zero kernel which can remove that feature. The number of inputs to a convolutional layer 
determines the number of channels needed by a kernel in the layer, and the number of kernels used determines the number of outputs from the layer. 
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E. Deep networks: mappings with multiple layers 

We now more explicitly consider using a series, or cascade, of 

mappings, to form a deep network. To start with, we could take 

the purely linear mapping of equation (20) as a series of matrix 

operators, a series of layers, each layer defined by a set of 

parameter values, so for ℓ = 1 … 𝐿 FC layers we would have: 

 

𝒙 = 𝑭𝜽𝐿̂
⋯ 𝑭𝜽ℓ̂

⋯ 𝑭𝜽2̂
𝑭𝜽1̂

𝒎   (26) 

 

forming a deep neural network, with the overall complete set of 

parameters of the mapping given by , composed of all the 

parameters for each of the layers. More generally we have, at a 

given layer ℓ, an intermediate, latent or hidden vector of results 

(i.e. not visible at the input or output), 𝒛ℓ, given by 

 

𝒛ℓ = 𝑭𝜽ℓ̂
𝒛ℓ−1   (27) 

 

for ℓ = 1 … 𝐿, with the final output being 𝒙 = 𝒛𝐿 and with the 

first input being  𝒛0 = 𝒎. Construction of the number and size 

of these mappings refers to the architecture of the network. At 

first sight, for such a purely linear model, it can seem that (20) 

and (26) are completely equivalent when appropriate choices of 

parameters are made. However, the precise architecture does 

profoundly matter (e.g. sizes of matrices used), in terms of 

model constraints, number of summations and products 

involved, and ease of training of the parameters. As a first 

example, we could use the form of equation (26) to learn a 

diagonalisation of a linear mapping which is comparable to a 

truncated version of the SVD-inverse, using a series of 3 matrix 

layers. A further illustrative example is that of the discrete 

Fourier transform (DFT), which can also be represented by 

(20), whereas a linear rearrangement of this purely linear 

transform into a fast Fourier transform (FFT), which could be 

written as (26), has a profound impact on processing speed. 

Of course, convolutions can also be cascaded into a series, 

increasing depth of the mapping. We could have 

𝒙 = 𝑪𝜽𝐿̂
⋯ 𝑪𝜽ℓ̂

⋯ 𝑪𝜽2̂
𝑪𝜽1̂

𝒎  
 (28) 

 

Just as equation (26) was not trivial due to the capability of 

varying the size of the matrices in the series of layers, so also 

(28) should not be regarded as trivial – it is possible to use stride 

to vary the size of the latent output vector at each layer (the 

feature map sizes), thereby imposing constraints on the model, 

as will be discussed further below. We note here that such a 

series of convolutions allows the concept of receptive field to 

be understood – a pixel or voxel in the input m can reach or 

affect a voxel in the output image or map, according to the 

overall reach of successive application of a series of 

convolution kernels. So rewriting (27) for convolution, 

generally, at a given layer ℓ we would have: 

 

𝒛ℓ = 𝑪𝜽ℓ̂
𝒛ℓ−1 

  (29) 

Recalling that we might also generate more than one output 

feature map at a given layer  ℓ by using more than one kernel in 

a convolutional layer, we can write:  

𝒛ℓ = [

𝑪𝜽ℓ̂

1

⋮
𝑪𝜽ℓ̂

𝐾
] 𝒛ℓ−1         (30) 

 

where the output 𝒛ℓ would now be K times the size of the input 

vector 𝒛ℓ−1, according to the number, k=1…K, of convolution 

matrices applied to 𝒛ℓ. If we use the model of (30), then to add 

on another convolutional layer, it will need to operate on more 

than one output image – we will have a multi-channel input 

𝒛ℓ−1, and so we need a kernel for each of these inputs present 

in 𝒛ℓ−1 – this gives rise to the need for a multi-channel kernel. 

Combining the idea of multiple kernels, with each being multi-

channel, we have the overall LSI mapping of:  

 

𝑾𝜽𝓵̂
= [

𝑪
𝜽𝓵̂

1,1 ⋯ 𝑪
𝜽𝓵̂

1,𝐶

⋮ ⋱ ⋮

𝑪
𝜽𝓵̂

𝐾,1 ⋯ 𝑪
𝜽𝓵̂

𝐾,𝐶
]      (31) 

 

for channels c=1…C, and kernels k=1…K, at layer ℓ. It is easy 

to note from (31) that when using multi-channel kernels, the 

mapping adds together the outputs for each channel of the 

kernel, so that again each single kernel, whether multi-channel 

or not, still gives just one output image to present to the next 

layer. 

We finish this section by noting that we can cascade these 

multi-kernel, multi-channel mappings:  

 

𝒙 = 𝑾𝜽𝐿̂
⋯ 𝑾𝜽𝓵̂

⋯ 𝑾𝜽2̂
𝑾𝜽1̂

𝒎   (32) 

and since we often desire the output size of 𝒙 to be a single 

image, usually the very last layer 𝑾𝜽𝐿̂
 is a multi-channel single 

kernel (e.g. with each kernel being just a delta function). This 

is in order to synthesise a single output image from multiple 

input feature maps from the penultimate layer, equivalent to just 

a weighted sum of these input channels, where the weights are 

learned.   

A simple linear autoencoder [50] can take the form of (32), by 

downsampling in early layers (i.e. using a convolution stride 

greater than 1) and increasing the number of kernels (feature 

maps), and then upsampling in later layers (through use of 

fractional stride) and reducing the number of feature maps. In 

the context of an autoencoder, the goal is to match the input and 

output, requiring the mapping to pass through a latent space 

bottleneck (e.g. as a midpoint layer in (32)) which should 

capture features (high feature dimension via a high number of 

kernels) with only limited spatial information (high level of 

downsampling). Noise is unlikely to be represented in this 

compressed latent representation space. This will be considered 

further later in this section when the case of a convolutional 

encoder-decoder mapping is covered. 

 

F. Convolutional neural networks (CNNs) 

The multi-layer convolution mapping can be extended to 

include non-linearities between layers. Firstly, a general layer 

can be given by:  
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𝒛ℓ = 𝜎ℓ(𝑾𝜽ℓ̂
𝒛ℓ−1 + 𝒃ℓ)  

 (33) 

 

where the bias is such that it is a single trainable offset scalar 

parameter for each kernel, such that the argument of the 

activation function in (33) is explicitly given by: 

 

𝑾𝜽𝓵̂
𝒛ℓ−1 + 𝒃ℓ = [

𝑪
𝜽𝓵̂

1,1 ⋯ 𝑪
𝜽𝓵̂

1,𝐶

⋮ ⋱ ⋮

𝑪
𝜽𝓵̂

𝐾,1 ⋯ 𝑪
𝜽𝓵̂

𝐾,𝐶
] 𝒛ℓ−1 + [

𝑏𝜽𝓵̂

1

⋮
𝑏𝜽𝓵̂

𝐾
]    (34) 

 

We can of course use a series, cascade or stack of convolutional 

layers, and create what is known as a convolutional neural 

network (CNN) [51] [52], as shown, for example, in Figure 6. 

Figure 6 gives an example CNN trained to map low-dose PET 

images to higher dose equivalents. Yet, as should be clear from 

figures 5 and 6, CNNs can in fact have wide ranging uses, even 

such as mapping ML-EM reconstructions to MAP-EM 

reconstructions, for accelerated reconstruction (Rigie et al. 

[53]). Mappings based on (34), with only convolutional layers, 

are known as fully convolutional networks (FCNs). However, 

convolutional and FC layers can be used together in a general 

CNN. 

A final important note for this section is the universal 

approximation theorem (UAT) [54]. In general, for a deep 

neural network we have:  

𝒛𝓵 = 𝜎𝓵(𝑿𝜽𝓵̂
𝒛𝓵−1 + 𝒃𝑙)  

 (35) 

 

where the matrix 𝑿 can be any matrix, whether representing 

multiple multi-channel convolutions, or a fully general linear 

mapping. It has been shown that exploiting the non-linearity 

between layers allows many practical and useful mappings to 

be approximated well, if sufficient layers are used.  This is a 

very important result, meaning that essentially any useful image 

processing mapping can in theory be replaced by a sufficiently 

well-trained deep network, offering complete flexibility in 

terms of inputs and desired outputs. 
 

 
Fig. 6.  Example CNN, based on [55], composed of 3 convolutional layers, designed to map low-dose PET images to full-dose PET images. Here, there are 4 input 

channel images: a T1-weighted MR, 2 different PET reconstructions of the same low-dose PET data (one with, one without resolution modelling (RM)), and a 
post-processed PET reconstruction (non-local means). These 4 inputs are fed into three convolutional layers. The final convolutional layer is composed of a multi-

channel single kernel, to synthesise just one output image intended to predict the full-dose PET image. 

G. Encoders, decoders, generative models and GANs 

Deep learning can be used for representation learning (or 

feature learning) whereby a network learns how to represent 

input information in a different way, which is useful to a desired 

task. Viewed this way, a deep network is just a change of 

representation of the input information, either lossless, or 

indeed discarding information irrelevant to the desired task of 

the mapping. Image reconstruction itself can be regarded as a 

change of representation of the very same information 

contained in the data – just represented in the form of an image 

instead of measured data. In this context, there are three 

important classes of deep networks that are explicitly identified 

as encoders, decoders, and generators. Strictly speaking any 

arbitrary layer or series of layers of a deep network can be 

regarded as any of these three classes, as it depends on the task 

and our interpretation of the representation at a particular stage 

or layer in a network, in terms of how we interpret the kinds of 

vectors (feature maps) going into, and out of, one or more 

layers. 

An encoder transforms an input vector to a different 

representation or feature vector, often referred to as a latent 

space, which might be a more compact form, or a more useful 

representation. So we have, for example 

 

𝒛 = 𝐸(𝒎; 𝜽𝐸̂)          (36) 

 

where E is the encoding operator learned from training data, 

which in general is a non-linear operator specified by possibly 

many layers of encoder  parameters, 𝜽𝐸̂, corresponding to a 

cascade of mappings, each of which is given by the form of 

equation (35). 

 Preferably the encoded latent representation should not lose 

any information of interest, but should provide a representation 

which is more useful, such as being more compressed (lower 

dimensionality), semantically rich or in a form which simplifies 

the desired task which is to be performed on the input. In the 

context of PET imaging, an input vector may be sinogram data 

or already directly interpretable as an image. A trivial untrained 
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linear example of an encoder would be use of a number of rows 

of the DFT analysis matrix, often called the Fourier encoding 

matrix in the context of MR imaging. This encodes (analyses) 

an input image into coefficients in k-space, for a set of 

sinusoidal functions of various spatial frequencies (k). If we 

were only interested in images of low spatial resolution, then a 

compact, limited (sparse) number of non-zero k-space 

coefficients can of course encode spatially-extensive images 

with densely populated non-zero pixel values. More generally 

however, an encoder mapping is learned from training data 

rather than mathematically designed, and is also non-linear. The 

non-linearity of the encoder can be considered as either 

activating or eliminating various encoding analysis operators, 

in a fashion that depends on the particular input data. This can 

also be seen as partitioning the input domain, and having 

conventional linear encoders for different regions of the input 

domain [56]. 

A decoder transforms from a (coded or latent) representation 

into something that we might choose to identify directly as 

having explicit meaning or utility (so no longer “coded”), such 

as an image, although again, this is somewhat arbitrary, 

depending on our interpretation. A general decoder could be 

denoted: 

 

𝒙 = 𝐷(𝒛; 𝜽𝐷̂)          (37) 

 

where D is the overall, generally non-linear decoding operator, 

specified by the possibly many layers of decoder parameters, 

𝜽𝐷̂ (which would in general have been learned from training 

data). Similar to the encoder, this decoding operator could be 

given by a cascade of mappings, each of which is given by the 

form of equation (35). 

A trivial untrained linear example would be the inverse DFT, 

which decodes a spectrum by using the k-space coefficients as 

the amplitudes of sine and cosine basis functions to synthesise 

an output. With the simple linear example of the DFT encoder 

and inverse DFT decoder, we could again consider using a 

compressed latent space representation of an image or signal, 

by only retaining or using a subset of the k-space coefficients. 

Using a random subset of k-space would correspond to one 

example of compressed sensing MR imaging, as a case of 

sparse coding. More generally though, the decoder mapping is 

non-linear, and so can be broadly considered as using a set of 

learned representation basis vectors which are chosen according 

to the input code vector.  

In the context of PET image reconstruction, dictionary 

learning is another good example of a decoder mapping. The 

goal in dictionary learning methods is to learn an image 

representation set of basis functions (learnable either from the 

data in hand, prior data, and/or data from another modality), and 

express the reconstructed image as a weighted sum (a synthesis) 

of those learned basis functions. The latent space is the set of 

coefficients for the basis functions, and these should either be 

non-negative or sparse, to ensure that only key signal is retained 

and that data noise cannot survive the representation. An 

example is the work of Tahaei et al. [57]. 

Figure 7 illustrates the principle: we seek a different, but 

useful, latent space, encoded representation of an image or 

sinogram data. This is such that, for example due to its 

compactness (reduced dimensionality or sparseness), in this 

latent representation space noise cannot be represented, but 

only information useful to the imaging task (e.g. clean, noise-

free PET images). Also, tasks can be accomplished in simpler 

way in this latent space, and/or manipulations of data made 

easier (just as, by analogy, analysis and manipulations are 

sometimes easier in the Fourier domain than the space or time 

domain). With a coded description found in this clean latent 

representation space, we can then use a generator or decoder 

network to produce an end-point image corresponding to that 

representation. Of course, since the latent space should be 

designed to encode only the desired image features, the 

generated image will be composed only of such features. 

 A decoder can however be used in a more general sense, as 

we could freely design or randomly create our own latent space 

vectors, input these to a decoder, and so generate random sets 

of meaningful signals or images. Hence the decoder can be used 

as a standalone generator, or a generative model. For the DFT 

example, this corresponds to designing or randomly choosing 

values in k-space, then applying an inverse DFT to generate 

images containing those spatial frequencies. Of course, random 

choices of spatial frequencies would lead to quite random 

output images. However, deep mapping decoders trained on 

useful image sets allow far more powerful and meaningful 

representations of images (beyond the simplicity of the Fourier 

basis vectors), such that randomly coded inputs result in new, 

never seen before, image samples drawn from highly complex 

high-dimensional probability density functions. Another simple 

example would be the kernel EM method, with its use of 

equation (16) – random positive values for 𝒛 could be used, 

generating many different images, but all constrained to be 

within the manifold of objects composed from the dictionary of 

basis functions in 𝑩. 

 Just as designation of an encoder, latent space and decoder 

are all open to our interpretation, so also the demarcations 

between the encoder, latent space and decoder are open to our 

interpretation. Consequently there are infinitely many encoder 

operators, latent spaces and decoders available for any given set 

of images. This can be seen by considering the very simple case 

of linear encoders and decoders: there are infinitely many 

linearly independent basis vectors that could be chosen for the 

encoder/decoder matrices (e.g. whether learned from data via 

principal or independent component analysis (PCA, ICA), or 

just mathematically devised such as the DFT). 

Any given latent space and generator pairing models a 

probability density function, in the J-dimensional output image 

space. By using many example images to train an encoder, 

latent space and decoder such that the input matches the output 

(an autoencoder), we can find a latent space, or better still a 

probability density function in the latent space (as done by a 

variational autoencoder [58]), such that random sampling of 

latent space vectors will map, via the decoder, to produce the  

distribution in the desired sub-space / manifold of expected 

object vectors 𝒙.  

We can also provide non-random input vectors to generators, 

such as images or sinograms, in which case the generator 

becomes what is known as a conditional generator (Figure 8). 

For example, sinogram data or a provisional image can be 

supplied to the network, and a high quality sample predicted 
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from that conditional information. (In such cases, it is helpful 

to regard the conditional input information as first being 

encoded to a latent space, from which the generator then 

generates an image). When input images are used, this means 

that even very simple denoising mappings can in effect be 

regarded as conditional generators – they map a fixed input 

image to a fixed point in the output manifold. In contrast, of 

course, a fully-fledged trained generator should, with random 

inputs, be able to always output meaningful images, populating 

the entire manifold of useful images based on the training data. 

Training of generative models can be enhanced, to deliver 

more realistic results (i.e. more closely resembling samples 

from the training data), through use of a discriminator. So-

called generative adversarial networks (GANs) train a second 

network, a discriminator, to impose improved performance of 

the generator network [7]. Discriminators improve the 

performance of a generator by learning to discriminate between 

real samples from the training data (drawn from the real 

probability density function in the manifold of the space of x), 

and samples from the generator. The output of the discriminator 

is used as a penalty in the training loss function for the 

generator: if the discriminator can recognize a generated sample 

as being a generated one (a fake sample), this penalises the loss 

function for the generator, such that it has to train better to seek 

a lower loss. The generator and discriminator are trained in an 

alternating manner, to reach a point whereby the generator can 

produce samples for which the discriminator only has 50% 

success rate in correctly classifying a synthetic sample as real 

or as synthesised. GANs have been applied in the context of 

MR reconstruction [59], and very recently for PET 

reconstruction ([60], considered later in this review) as well as 

for post-reconstruction processing of PET images [61, 62]  [55]. 

In summary, generators can be regarded as standalone 

decoders, or as synthesisers, in the form of a deep neural 

network which takes as direct input the latent space 

representation. The parameters of the generator are usually 

learned from unlabeled training data examples. These networks 

ideally should be able to generate all feasible reconstructed 

images of interest with appropriate probabilities based on the 

training samples. 

We finish this section by mentioning the popular U-Net deep 

architecture [63]. This architecture very much follows the form 

of an encoder and decoder, but the critical difference is that 

there are skip connections included, which allow each 

downsampling section of the encoder mapping to be skipped, 

with feature maps at each downsampling stage being 

transferred directly as channel inputs to the respective 

upsampling (decoder) stage. Figure 9 shows an example of this 

network. The use of skip connections allows higher resolution 

feature maps to be directly included for consideration as extra 

channel inputs for the decoder, and in effect serve to increase 

the expressive potential of the overall network. The approach 

has proven highly successful in the original application area of 

image segmentation, and PET image reconstruction methods 

have since also made use of U-Nets, which when supplied with 

input images can be regarded also as conditional generator 

networks. Nonetheless, improvements have subsequently been 

proposed, such as deep convolutional framelets, to overcome 

some of the limitations with U-Nets [64, 65]. 

 

 

 

 
Fig. 7.  Principles of an encoder (transform / analysis / compressing) operator 

and a decoding (generator / synthesis / decompression) operator, in this example 
case for mapping from fully 3D sinograms, to a latent space, and then out to a 

3D PET image. This would correspond to the case of a direct mapping for PET 

reconstruction, to be covered later in this review. It is important to note that a 
decoder or generator can be used in isolation as an image generator for any 

given input vector (latent space or code vector). 

 
 

 

 

 

 
Fig. 8. Generators and conditional generators (GANs are a special case, where 

the generator has been trained with the assistance of a discriminator, 

encouraging outputs to look comparable to real data examples). Any network 
or mapping can in principle be regarded as a generator, in that an input will be 

mapped to an output, through a (possibly only notional) latent space. Hence 

generators can even be regarded as including the encoder as well. Conditional 
GANs, when conditioned on specific input data or images, can be regarded as 

encoding the input, then generating an output, e.g. using a CNN or U-Net. As 

such, any image denoising operator can be viewed as a conditional generator 
(or conditional GAN if trained in conjunction with a discriminator), and are 

usually easier to implement than fully-fledged generative models (which are 

required to generate meaningful output sample images when given random 
inputs, or random latent space values). 
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Fig. 9. An example of a U-Net architecture, in this case composed of a 

convolutional downsampling encoder (using stride 2 convolutions to 

downsample by a factor of 2) and a convolutional upsampling decoder (using 
fractional stride of 0.5 to upsample by a factor of 2). Crucially there are skip 

connections between each stage of down/up sampling, enabling greater levels 

of representation capacity, or expressivity, of the network. 
 

H. Optimisation and generalisation 

From a conventional perspective, the highly-parameterised 

non-linear deep networks just described would be highly 

challenging to optimise. We finish this section by noting that 

the algorithmic technology, based on backpropagation, for 

seeking to minimise loss functions such as (18) has become 

available via toolboxes such as TensorFlow and PyTorch, using 

gradient-based algorithms centered on stochastic gradient 

descent (SGD). We refer to excellent reviews of these 

optimisation topics [66], regarding them as enabling 

technologies, permitting the design and practical training of 

deep non-linear networks.  

While it is already a significant endeavour to minimise a loss 

function with a highly non-linear parameterisation, there is also 

the further challenge of reducing the generalisation error – i.e. 

how well the trained network performs when tested on new, 

never seen before test data. This is a major research area, with 

existing strategies including regularisation of the loss function 

(e.g. norms of the parameters, to stop them becoming too large 

in uniquely fitting the training data only), dropout (i.e. 

randomly switching off a fraction of the parameters in a given 

FC or convolutional layer to stop them memorizing training 

data), data augmentation (i.e. artificially enlarging the domain 

of the training data by manipulating and processing existing 

training data), and transfer learning. Transfer learning concerns 

using networks previously trained for other tasks and data, and 

applying these to a new task. For PET this has been done in a 

post-reconstruction context, using a pretrained VGG network 

[67] to assist in PET denoising [68], and the VGG network has 

also been used in PET reconstruction, as will be mentioned 

below. Domain adaptation, similar to transfer learning, involves 

performing the same task but on different source domain data, 

such as for example data from different scanners [69] or from 

different PET centers. In the context of PET image 

reconstruction, generalisation error reduction can be regarded 

as improving domain adaptation. The case of performing the 

same task on different domains has already been progressing at 

a rapid rate, for example in the context of MR brain 

segmentation from different centers [70]. 

IV. OVERVIEW OF DEEP LEARNING IN PET RECONSTRUCTION  

There are at least four key ways in which to exploit the potential 

of deep learning mappings within PET image reconstruction, 

compared and summarised in Table I. One specific case which 

will not be covered in this article is that of post-reconstruction 

processing (e.g. [62, 71]), as this no longer involves the 

reconstruction process. In this section we provide a brief 

overview of five key current approaches, before exploring four 

of them in greater detail in sections V-VIII of the review. 

A. Deep learning for direct reconstruction 

The first approach is a full end-to-end mapping, a direct 

reconstruction method, which uses a deep network to map from 

raw sinogram data 𝒎 directly to an end-point reconstructed 

image estimate 𝒙. This is represented simply by (as covered in 

section III): 

𝒙 = 𝐹(𝒎; 𝜽̂)   (38) 

 

Hence every aspect of the image reconstruction (the physics, 

imaging model and statistics) needs to be learned by the deep 

mapping, which can require a large quantity of training data. In 

principle, these approaches avoid modelling errors, and once 

trained result in fast and potentially highly accurate 

reconstructions. Key examples will be covered in more detail in 

section V below, but they tend to be characterised by relatively 

high training data needs, with high (even prohibitively so at 

present) computational demands for fully 3D reconstruction. 

B. Deep learning for image generation: synthesis 

regularisation 

A second approach is to use deep learning only as an image 

constraint, requiring that an estimate of the image be 

represented by a deep mapping generator: 

𝒙 = 𝐹(𝒛; 𝜽)   (39) 

with all other components of the image reconstruction task 

corresponding to the conventional ones described earlier in 

section II. The core idea of equation (39) is to require that any 

image estimate 𝒙 be the output of a deep network F operating 

on some input code vector, 𝒛. A simple example is for the input 

code 𝒛 to be a current noisy image, with the generator F only 

needing to be a denoiser, thereby regarding it as a conditional 

generator. Notably this allows considerable flexibility for 

integrating sophisticated denoisers into PET image 

reconstruction, including fully 3D reconstruction. These 

approaches will be covered in more detail in section VI below. 

C. Deep learning for analysis regularisation 

A third approach is to use a deep network inside a conventional 

prior or penalty function, as just a component of an otherwise 

conventional image reconstruction method using an analysis 

regularisation strategy. For example, any of the deep object 

models from a synthesis strategy (e.g. image generation / image 

synthesis / denoising) can be used, but instead of imposing these 

as hard constraints, the analysis prior stipulates that a 

reconstructed image 𝒙, while being optimised to agree with the 

measured data 𝒎 (e.g. through the Poisson log likelihood), 

should not deviate too far from a deep denoised version of the 

image. This is less constraining than the synthesis approach 

[72], just as MAP-EM methods are, for example, less 
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constraining than KEM methods (see previous sections II.B and 

II.C).  

D. Deep learning for the entire prior: unfolded methods  

A fourth approach is to use deep learning for the entirety of 

the penalty or prior, thereby completely discarding any analytic, 

intuitive or handcrafted component. This means there is no 

chosen potential function and no explicit analysis operator, but 

instead the entire prior, including any effective potential 

function, is deep learned. To achieve this, iterative 

reconstruction algorithms can be unrolled, or unfolded into a 

series of modules or blocks, such that each and every iterative 

update is explicitly an update operator in a long cascaded series 

of blocks (using the gradient of the data fidelity term and the 

gradient of the penalty term). This long chain of processing 

blocks gives a deep overall mapping network, for which deep 

learning can be used to find the mapping which corresponds to 

where the gradient of the penalty is required. The overall 

network combines trainable components, (the gradient of the 

unknown penalty) and fixed operator components – i.e. the 

data-consistency update, usually derived from the gradient of 

the Poisson log likelihood for PET reconstruction. This 

approach can be viewed simply as interleaving partial or 

complete reconstruction operators with deep denoising 

operators, in repeated blocks. Each such block performs a 

number of MAP-EM image reconstruction updates (from just 

one, up to possibly even a completely converged 

reconstruction), using an analysis regularisation based on a 

prior image. The prior image is a deep-learned denoised version 

of the previous reconstruction estimate. A deep network, which 

usually depends on the overall block number, is used to denoise 

the outcome of the reconstruction operator, in order to provide 

an updated denoised prior image for the next block. These 

unfolded networks will be considered in detail in section VII 

below, and notably are generally practical for fully 3D 

reconstruction. 

E. Deep learning for preprocessing and post-processing 

As mentioned, deep learning for post-reconstruction 

processing (or even for pre-processing of the raw sinogram 

data), is not under consideration in this review. In both cases, 

the approach is typically to upgrade low-dose PET data or 

images to high-dose equivalents, lowering noise and enhancing 

spatial resolution. There have now been numerous methods for 

post-reconstruction deep learned denoising in PET (e.g. [62, 71] 

[73, 74]). 

A noteworthy exception, which can be viewed as 

reconstruction (or possibly post-processing) is the use of 

backprojected images, whereby the raw PET data (sinograms or 

list-mode data) are first backprojected into a 3D image array 

prior to application of a reconstruction algorithm to recover the 

quantitative radiotracer distribution. Exploiting backprojected 

images dates back a long time in PET (e.g. [44] [75]), and more 

recently the backprojection can also exploit time-of-flight 

(TOF) information, to produce histo-images (distinct from the 

original proposal of [76] which has a histo-image for each 

view). Such TOF-backprojected images are excellent 

candidates for deep-learned mappings such as CNNs, as 

recently demonstrated with promising results [77]. 

 

TABLE I 

SUMMARY OF CONVENTIONAL AND DEEP LEARNING BASED PET RECONSTRUCTION, DISTINGUISHED ACCORDING TO THE WAY THE OBJECT (IMAGE), DATA MEAN 

AND DATA NOISE ARE EACH MODELLED, AS WELL AS THE TYPE OF REGULARISATION AND ALGORITHMIC PRACTICALITIES 
 

METHOD  

Model of 

object 

𝑓(𝒓; 𝒙) 

Model of noise 

 𝐷𝑃𝐸𝑇(𝒒(𝒙); 𝒎) 

Model of 

mean of data 

 𝒒(𝒙) 

Regularisation 

𝑅(𝒙) 
Algorithm 

Training data 

needs 

Generalisation 

capabilities 

Memory 

needs 

Execution 

speed 

FBP 

(conventional) 

 
None Gaussian Radon / x-ray 

transform 
None 

One step 
 

No training 

history, 

acquisition data 
only 

Low 
(suited to 

fully 3D) 

Fast 

ML-EM 

(conventional) 

 

Voxels 

Poisson 
Factorised 

system model 

Iterative 

 

N/A 

Slow 

 

MAP-EM 

(conventional) 

 E.g. Quadratic, 
guided, TV, Huber 

 

Synthesis 

(deep learned) 

 
Learned None 

Low 
~10-100 

datasets 

Training data, 

with updates 

from acquisition 
data 

Analysis 

(deep learned) 

 

Voxels 

Penalty for 
difference from 

learned object 

model 

Unrolled 

(deep learned) 

 

Learned penalty 
function 

Variable 

(suited to 

fully 3D)  

Direct 

(deep learned) 

 

Learned One step 
High 

~1000-100000 

datasets 

Limited by 

training data 

High       
(less suited 

to fully 3D) 

Fast 
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V. DIRECT DEEP LEARNING PET IMAGE RECONSTRUCTION 

METHODS 

In this section direct deep learning methods are considered in 

more detail, with Table II summarising a comparison of key 

contributions. In particular there are two pioneering examples 

of direct methods for PET image reconstruction, which have 

however only been applied to small 2D slices (128×128): the 

methods of AUTOMAP [12] and DeepPET [14]. Subsequent 

examples of direct reconstruction include Liu et al. [78] and 

Whiteley et al. [79] (which notably included multi-slice 

reconstruction), and more recently a version of DeepPET with 

a discriminator added on [60]. 

A. Direct: fully-connected (FC) layers with CNNs  

Section III introduced FC layers and CNNs, and it should be 

clear that we are at liberty to combine these mappings 

sequentially, making a deeper network composed of both FC 

and convolutional layers. For example, a FC layer could be used 

to learn a mapping comparable to the inverse of the Radon 

transform (see previous equation (20) and discussion), and then 

a series of convolutional layers (a CNN) can be applied to the 

output of the FC layer in order to denoise via use of a more 

compressed representation. This is the approach of the direct 

deep learning method proposed by Zhu et al. in 2018, called 

AUTOMAP (automated transform by manifold approximation) 

[12], shown in Figure 10. AUTOMAP was proposed mainly for 

MR image reconstruction, but was also demonstrated for PET 

reconstruction. It has inspired other researchers to develop 

comparable methodology for PET (e.g. [79]). 

The AUTOMAP architecture first reformats the complex 

MRI k-space data into a vector of real numbers only (for PET, 

this stage can be considered as just reshaping a PET sinogram 

into a column vector), followed by two FC layers (each with a 

tanh activation) to learn a mapping comparable to the inverse 

DFT in the case of MR, or comparable to an inverse of the 

Radon transform in the case of PET. This is followed by 

reshaping back to a 2D image, ready for input to the CNN. The 

CNN in AUTOMAP is used to denoise by seeking to represent 

the image as a sparse collection of features found from the 

convolutional layers. Sparse features can be learned by the use 

of ReLU activation layers within the CNN used by 

AUTOMAP, (rather than by a bottleneck). This imposes a 

limited latent space for a compressed representation, occupying 

a limited manifold of the J-dimensional object space, mainly 

modelling real object features rather than noise features. 

AUTOMAP reported good results for variously 

undersampled MRI reconstructions, although the PET 

reconstruction results were less convincing, with visual quality 

inferior to ordinary Poisson OSEM [80]. This was likely due to 

the use of single slice rebinned [81] input sinograms, 

precorrected for attenuation as input to AUTOMAP, and the 

fact that AUTOMAP had been trained with MR images which 

had undergone only a simple 2D Radon transform followed by 

introduction of Poisson noise. Hence the learned object 

manifold was for T1w MR images rather than [18F]FDG-PET, 

and there was also a mismatch in the imaging model between 

the simulated training data and the test real data. Both of these 

limitations would have compromised the potential performance 

of the network.   
 

TABLE II 

DIRECT DEEP LEARNING METHODS FOR RECONSTRUCTION 

  

Name 

 

Architecture 

[total parameters] 

Loss function / optimiser 

(max epochs) 
Training data inputs and targets  

Number of training dataset 

pairs 

AUTOMAP 

Zhu et al. [12] 
2 FC layers (with tanh) and CNN (3 

or 4 layers, 2 with ReLU) 

[~800 million parameters] 

MSE with L1 penalty 
/ RMSprop (100) 

Input: undersampled k-space data 
(128×128) 

Target: Fully sampled T1w MRI 

images (128×128) 

50,000 

      

DeepPET 

Häggström et al. 
[14] 

Convolutional encoder-decoder: 

total of 31 C layers (with batch 
normalisation (BN) and ReLU 

between all C layers) 

[>60 million parameters] 
 

MSE 

/ Adam (150) 

Input: 2D noisy sinograms 

(269×288) 
Target: Ground truth PET images  

(128×128) 

203,305 

DPIR-Net 

Hu et al. 
[60] 

 

Convolutional encoder-decoder: 

total of 35 C layers (with BN and 
ReLU) 

[>60 million parameters] 

Discriminator: 8 C layers with BN 
and ReLU, 1 FC with LReLU and 1 

FC with no ReLU  

Wasserstein GAN + 

VGG* + MSE / Adam 
(100) 

Input: 2D noisy sinograms 

(269×288) 
Target: Ground truth PET images 

(128×128)  

 
 

37,872 

     

DirectPET 

Whiteley et al. 

[79] 

Encoding Segment: 3 C layers  

Radon Inversion Layer Segment: 28 

FC layers + Refinement and Scaling 
segment: residual CNN with 23 C 

layers of 64 kernels  

[~385 million] 

VGG* + MAE + MS-

SSIM / Adam (1000) 

Input: 16 2D sinograms normal or 

at 50% count level (400×168×16) 

Target: 16 2D image slices, 
normal reconstructions of 100% 

counts 

(400×400×16) 

2,048 

     

     

 FC layer: fully-connected layer 
C layer: convolutional layer 

 

*VGG: perceptual loss 
based on VGG network 

[67] 
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Fig. 10.  Schematic of the AUTOMAP architecture [12], which starts with two 

main FC layers (each with tanh activation) followed by a CNN with three 

convolutional layers. This architecture was designed for MRI reconstruction, 
but was also demonstrated for PET reconstruction from sinogram data. 

B. Direct: convolutional encoder-decoder  

The principles of an encoder, latent space and decoder have 

been applied to direct PET image reconstruction by Häggström 

et al. with their DeepPET architecture [14], as shown in Figure 

11. This convolutional encoder decoder (CED) was the second 

main proposed direct architecture for direct PET image 

reconstruction. Instead of using FC layers to map from a 

sinogram to the object space, the CED approach uses 

convolutional downsampling to transform progressively from 

the sinogram domain towards a learned latent space 

representation which has only very limited spatial sampling but 

is instead extremely rich in the number of features (latent 

variables). This latent space representation is then upsampled 

progressively in the decoder part of the network, in order to 

express the latent space information in the form of a PET image.  

The input sinograms are precorrected, and so the network 

needs to learn a non-Poisson noise distribution. Häggström et 

al. report the benefits as greatly accelerated image 

reconstruction (up to 100 times faster), de novo learning of the 

imaging physics and the data noise distribution, thereby 

obviating any modelling assumptions in either regard. 

Whilst the results reported are of high quality for the 

simulated data case, as would be expected due to a match in the 

imaging model used for training data and that used for the 

supplied test simulated data, the real data results (particularly 

for the brain data) still leave room for improvement. There is a 

need for high quality (ideally ground truth) reference data to go 

hand in hand with the measured data, in order to train the 

network correctly for real PET data. 

An adversarial version of this kind of network was proposed 

by Liu et al. [78], with the key differences being the use of a U-

Net (as a conditional generator) instead of the CED, and the 

addition of an adversarial / discriminator network. 

Subsequently an extended version of the CED DeepPET with a 

discriminator added on was also proposed by Hu et al. [60]. 

 

 

 
 

 
 

 

 
 

 

 

 

 

 

 

 
Fig. 11. Schematic of the convolutional encoder decoder (CED) architecture used by DeepPET for direct PET image reconstruction [14] and extended by inclusion 

of a discriminator by DPIR-Net [60]. PET scan information expressed in the sinogram domain is progressively transformed by simultaneous reduction of spatial 
sampling and increasing of the number of feature maps, until a feature-rich latent space representation is obtained. This latent representation is decoded back out 

to an image-space representation of the same information, by increasing the spatial sampling and reducing the number of feature maps. 

 
 

 



> PAPER IDENTIFICATION NUMBER 1 < 

 

16 

VI. DEEP LEARNING FOR REGULARISATION WITHIN 

CONVENTIONAL RECONSTRUCTION 

Recall that conventional model-based reconstruction, covered 

in section II, used regularisation via analysis or synthesis, but 

that one of the drawbacks was the use of handcrafted or 

mathematically-convenient analysis or synthesis methods. 

Upgrading from a handcrafted prior to a data-driven one is a 

simple route for deep learning to bring benefits into 

conventional image reconstruction. The approaches reviewed in 

this section retain all the standard model-based reconstruction 

components (i.e. our knowledge of the imaging physics and 

statistics), but just use deep learning for where we are less 

certain and are in need of data/evidence-based prior information 

- the regularisation component. 

Generators can be used in an otherwise conventional image 

reconstruction framework, either in a synthesis capacity 

(whereby only images which are outputs of a generator can be 

used to optimise the reconstruction objective function) or in an 

analysis capacity (whereby transformation of the image by a 

network into a latent space should result only in a sparsely-

coded description). 

A. Regularisation by deep-learned synthesis / generative 

models 

There are three main approaches to a deep-learned synthesis 

model. The first is to estimate an input code vector 𝒛 for a fixed 

deep network F [82], to deliver an image such that a 

reconstruction objective function (e.g. Poisson likelihood) is 

optimised. The second is to use a potentially arbitrary input 

code 𝒛, whether random noise or a prior image, and estimate the 

network parameters in order to optimise the 

reconstruction objective function. Thirdly, one could seek to 

estimate both  and also 𝒛 in a simultaneous or alternating 

manner. A simple example is for the input code 𝒛 to be a 

current noisy image, with the generator F only needing to be a 

denoiser, thereby regarding it as a conditional generator. 

We will start with the case of estimating a code vector 𝒛 

directly, which when mapped through an operator produces the 

image vector x. Recall from the introduction that the kernel 

method (KEM, equations (16) and (17)) was a synthesis method 

of regularisation. This synthesis approach was in fact the 

motivation behind the work of Gong et al [82], who, instead of 

using a linear set of basis functions B, used a pretrained CNN 

as the generative mapping (fixed choice of for a fixed 

mapping F), imposing the following model for the radiotracer 

distribution’s parameter vector x (see again equation (1)):  

 

𝒙 = 𝐹(𝒛; 𝜽𝑭𝑰𝑿)   (41) 

 

where the goal is to estimate the representation parameter code 

vector 𝒛 such that when it is mapped through the fixed generator 

CNN F, an image x is delivered which is consistent with the 

data. However, of course, the constraints of the CNN 

representation will mean that the forward model of x will not 

be entirely consistent with the data, due to both the CNN’s 

constraints and the fact that the data contains noise. The 

estimation of 𝒛 is purely by use of a constrained maximum-

likelihood objective function, using equation (5) (the Poisson 

log likelihood): 

 

𝒙 = argmax
𝒙

𝐿(𝒙|𝒎) 

 𝑠. 𝑡.       𝒙 = 𝐹(𝒛; 𝜽𝐹𝐼𝑋) 
(42) 

 

where L is the Poisson log likelihood, given by the negative of 

equation (5). Given the constraint in (42), that a non-linear 

CNN mapping must generate the solution vector x, we can no 

longer use the conventional EM algorithm which assumes a 

linear forward model operating on the representation parameter 

vector. Using the approach of an augmented Lagrangian, Gong 

et al. first convert the constrained maximisation problem of (42) 

into a penalised unconstrained problem instead. This results in 

integrating conventional reconstruction methodology into the 

broader algorithmic framework of the alternating direction 

method of multipliers (ADMM). 

The first step of the method is a conventional MAP-EM 

problem to find an update of the image x, using a quadratic 

penalty with a prior image (cf. equation (14)) 𝐹(𝒛𝑛) obtained 

by the CNN operating on the current estimate of the code vector 

𝒛𝑛: 

 

𝒙𝑛+1 = argmax
𝒙

𝐿(𝒙|𝒎) −
𝜌

2
‖𝒙 − (𝐹(𝒛𝑛; 𝜽𝐹𝐼𝑋) − 𝝁𝑛)‖2 (43) 

 

where 𝝁 is initially zero, and  relates to the strength of the 

penalty. Equation (43) is solved by a conventional MAP-EM 

algorithm such as equation (15) given earlier. The latent code 

𝒛𝑛 is subsequently updated to seek to match this new image 

estimate: 

 

𝒛𝑛+1 = argmin
𝒛

𝜌

2
‖𝐹(𝒛; 𝜽𝐹𝐼𝑋) − (𝒙𝑛+1 + 𝝁𝑛)‖2   (44) 

 

Equation (44) is solved by non-linear least squares (the authors 

used a first-order approximation of the gradient of the objective 

function (44) with respect to 𝒛). Finally 𝝁𝑛 is updated by 

 

𝝁𝑛+1 = 𝝁𝑛 + 𝒙𝑛+1 − 𝐹(𝒛𝑛+1; 𝜽𝐹𝐼𝑋)     (45) 

 

where in effect 𝝁 is an image showing the data-unique 

features which had not been expressed by the CNN, as it 

corresponds to the discrepancy between the new reconstructed 

image estimate 𝒙𝑛+1 (based on agreement with the data) and the 

constrained output of the CNN operating on the code vector 

𝐹(𝒛𝑛+1). 

The ADMM approach then reverts back to equation (43) to 

repeat the series of three updates. It can be seen that in effect, 

after the first iteration, 𝝁 increases the penalty in the MAP-EM 

image reconstruction stage to encourage the image x to agree 

more with the CNN output (which is good if it denoises, but bad 

if it loses true image features). In a similar manner, for the 

update of the latent code 𝒛, the effect of 𝝁 is now to emphasise 

importance of the data-unique features which had not been 

successfully represented in the previous iteration. It requires the 

network output to agree more with the data-based 

reconstruction, emphasising regions of the image where there 
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had been disagreements. Where the data contains features 

which are not readily expressed by the network F, extra 

penalties occur, to seek to reduce the discrepancy of network 

output with the data. 

Gong et al. report improved lesion contrast, for a given noise 

level, compared to post-reconstruction CNN denoising (see 

Figure 12), which perhaps is not surprising, as post-

reconstruction CNN denoising no longer demands agreement 

with the original raw data, whereas the CNN representation 

method does. 

The same authors extended their work, inspired by the “deep 

image prior” (DIP) [83] to use instead a fixed input vector 𝒛, 

defined to be, for example, the patient’s MR image (the original 

DIP used random noise), and then trained a conditional 

generative CNN mapping F, such that the parameters of the 

network map the fixed 𝒛 to the current reconstructed image 

[13]. The algorithm follows a similar framework to that just 

described in equations (43) to (45), with the key difference 

being that instead of updating the latent code vector 𝒛 in 

equation (44), Gong et al. now update the network parameters 

instead: 

 

𝜽𝑛+1 = argmin
𝜽

𝜌

2
‖𝐹(𝒛𝐹𝐼𝑋; 𝜽) − (𝒙𝑛+1 + 𝝁𝑛)‖2 (46) 

 

Equation (46) is solved by training a deep CNN to map the fixed 

prior 𝒛𝐹𝐼𝑋 (the subject’s MR image) to match the current MAP-

EM update 𝒙𝑛+1, with an emphasis (given by 𝝁) in regions 

where the CNN had previously failed to represent features in 

the data-based reconstruction x. The crucial point to note is that 

the method does not use any training data, and can be viewed 

as unsupervised deep learning. Gong et al. compared the 

method to using a CNN penalty method, as shown in figure 13, 

where it can be seen that PET-unique regions are more clearly 

defined in the deep image prior method. The method was 

subsequently extended to 4D image reconstruction for the 

Patlak model [84]. In the context of dynamic PET image 

reconstruction, Yokota et al. used U-Nets as representations of 

parametric images, with random 𝒛 inputs [85], thereby placing 

more demand on the network training. Furthermore, a GAN 

approach, which enhances the generator, has also been 

proposed [86]. 

Table III provides a representative summary of methods for 

synthesis-based deep learning methods in the literature. The 

limitations of these methods are that the hyperparameters, 

mainly , need selecting for the components of the ADMM 

optimisation. However performance is intended to be 

independent of , given the original objective function (42) is 

purely an unpenalised maximum likelihood with just an object 

model constraint.   

B. Regularisation by deep-learned analysis 

A more flexible (less constrained) approach to using deep 

generators in reconstruction is via a regularisation analysis 

framework. This allows a balance between data-fidelity 

expressed at the pixel/voxel level and a penalty for deviation 

from a constrained, learned object model. An example would 

be a quadratic penalty: 

 

𝑅(𝒙) = ∑ ([𝐹(𝒙𝑛; 𝜽𝐹𝐼𝑋)]𝑖−𝑥𝑗)
2𝐽

𝑗=1
 (47) 

 

where in (47) F would be a denoiser, or a conditional generator. 

Alternatively, the prior can stipulate that the reconstructed 

image should not deviate too far from a sparse-coded image:  

 

𝑅(𝒙) = ∑ ([𝐹(𝒛𝑛; 𝜽𝐹𝐼𝑋)]𝑖−𝑥𝑗)
2𝐽

𝑗=1
 (48) 

 

where, depending on the architecture of the mapping, it may 

also be necessary to explicitly require sparsity of the code 

vector 𝒛, by adding a penalty for highly populated code vectors 

which deliver a large norm: 

 

𝑅(𝒙) = ∑ ([𝐹(𝒛; 𝜽)]𝑖−𝑥𝑗)
2𝐽

𝑗=1
+ ‖𝒛‖ (49) 

A penalty comparable to (49) was the approach used by Xie et 

al. [87]. In these formulations it is noted that a conventional 

potential function, such as a quadratic as shown in (14), is still 

used, as was the case in Kim et al. [88]. Otherwise, all other 

image reconstruction components remain conventional in 

definition. Gong et al. also used a CNN penalty as an example 

method to compare with in their work using the deep image 

prior [13], as was shown in Figure 13.  
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Fig. 12. Example results of using the CNN representation method (“Iterative CNN”) compared to post-reconstruction CNN denoising (which does not involve 

consistency with the data) [82]. For a given standard deviation (STD) in the liver region, the contrast recovery (CR) in the lesion in the lung is better when using a 

CNN representation of the image. Both CNN methods outperform the 3 conventional methods, by lowering image noise in the liver region by up to a factor of 2. 
 

TABLE III 

SYNTHESIS REGULARISATION DEEP LEARNING METHODS FOR PET RECONSTRUCTION 
 

Name 
Architecture 

[total parameters] 
Loss function / optimiser   

(max epochs) 
Training data inputs and targets  

 
Number of training 

dataset pairs 

CNN 

Representation 

Gong et al. [82] 

Modified U-Net: 3 encoding 

blocks (C+BN+ReLU), 3 

decoding blocks (C+BN+ReLU), 
2 C+BN+ReLU in bottleneck, 

skip connections (sum residual 

and current image) instead of 
concatenating (add residual as a 

new channel) 

[~1.4 million parameters] 

MSE / Adam (1500) Input: 3D low-count reconstructions 

Brain data: (128×128×91),  

Lung data: (128×128×49) 
Target: 3D high-count 

reconstructions 

Brain data: (128×128×91),  
Lung data: (128×128×49) 

 

 

Brain: 15 

Lung: 5 
 

     

Deep Image Prior 

Gong et al. [13] 

Modified U-Net: 3 encoding 

blocks (2 C+BN+LReLU), 3 

decoding blocks (2 

C+BN+LReLU), 2 

C+BN+LReLU in bottleneck, 

skip connections instead of 

concatenating 

[~2 million parameters] 

 

MSE / L-BFGS 

(20 epochs per ADMM 
iteration, 100 ADMM 

iterations in total) 

Input: 3D anatomical prior (MRI) 

(192×192×128) 
Target: An EM iteration (3D) 

(192×192×128) 

1 

Xie et al. 2019 
[86] 

GAN: Generator: Modified U-
Net: 3 encoding blocks (with 1 C 

layer), 3 decoding blocks (with 1 
C layer) and a self-attention 

module and 2 C layers at 

bottleneck 
[~1.5 million parameters] 
Discriminator: 6 C layers with 

self-attention module in between 
3rd and 4th layer 

Generator: MSE + Binary 
Cross-Entropy 

Discriminator: Binary 
Cross Entropy / Optimiser 

not specified 

(400) 

Input: 3D low-count image 
(128×128×5) 

Target: High-count middle slice 
(128×128×1) + Label Real/Fake 

image 

 

20 

     

Yokota et al. [85] 3 U-Nets combined in parallel 

[~4 million parameters for 1 U-

Net] 

MSE / Adam 

(20,000) 

Input: noise 

Target: spatial factors i.e. 

homogeneous tissues with kinetic 

parameters (128×128×3) 
 

1 
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Fig. 13. Example results [13] for the deep image prior (DIPRecon), offering 

improved lesion contrast compared to the kernel method (KEM with MRI) and 

a CNN penalty method. 

 

VII. UNROLLING OR UNFOLDING ITERATIVE RECONSTRUCTION 

WITH DEEP LEARNING   

The direct deep learning methods previously described in 

section V do not make any use of the imaging system model A, 

nor the statistical-noise model described in Section I. Instead, 

large quantities of training data are needed to learn these from 

scratch (see Table II). This is potentially advantageous, as it 

avoids modelling errors, but arguably it is wasteful, discarding 

years of progress in modelling expertise and reconstruction 

algorithm development. Furthermore, by excluding these 

models, there is potential for the direct methods to perform 

potentially inexplicable mappings, which may limit confidence, 

especially for unexpected (out of domain) inputs to the network.  

In contrast, the deep learning regularisation methods covered 

in section VI do make use of existing models, exploiting deep 

learning only for image regularisation. However, these 

approaches still retain the mathematically-convenient potential 

functions which operate on these images for the regularising 

penalty. The choice of potential function is not motivated by the 

data, but only by convenience.  

There has been increasing work in physics-informed AI / 

deep learning (e.g. [89]), and image reconstruction is no 

exception. The goal here is to combine the power of the AI 

paradigm with our existing knowledge of the imaging physics 

and statistical modeling, seeking a hybrid new image 

reconstruction methodology that exploits the best of AI with the 

best of our understanding of imaging physics and 

reconstruction. This has the further advantage of using AI only 

for the parts of the reconstruction process for which we are not 

confident– such as precisely how to regularise, and to what 

strength, leaving the imaging system physics model and noise 

model to be what we are confident and know they should be. 

This has the advantage of interpretability, important for clinical 

imaging such as PET. The methods of Section VI have taken 

steps towards this, but as mentioned, do retain a convenient 

handcrafted potential function. The methods in this section will 

now also replace the potential function via deep learned 

mappings, based on unrolling conventional iterative 

reconstruction. 

Figure 14 shows the general framework for three of the key 

methods which will be covered in detail below. The first 

proposal of turning an iterative reconstruction method into an 

unfolded deep network was in fact by Gregor and LeCun, as 

early as 2010 [90]. Examples for medical imaging 

reconstruction include, from the world of MRI, the work of 

Hammernik et al. [91] (named a variational network). However, 

this section will focus on PET image reconstruction.  

A. EM-Net and MAPEM-Net   

We first consider the method of Gong et al., named EM-Net 

[92], which writes a general MAP-EM iterative update as 

follows: 

 

𝒙𝑛+1 = 𝒙𝑛 − 𝛼 [𝑨𝑇 (𝑰 −
𝒎

𝑨𝒙𝑛 + 𝝆
) + 𝛽𝑅′(𝒙𝑛)] (47) 

 

where  is the update step size, the first term in the square 

parentheses is the negative of the gradient of the Poisson log-

likelihood data-fidelity term, and 𝑅′ is the gradient of 𝑅, 

evaluated at 𝒙𝑛. EM-Net replaces 𝑅′ by a deep network, to 

obtain: 

 

𝒙𝑛+1 = {𝒙𝑛 − 𝛼𝑛
𝒙𝑛

𝑨𝑇𝑰
[𝑨𝑇 (𝑰 −

𝒎

𝑨𝒙𝑛 + 𝝆
)

+ 𝐹(𝒙𝑛; 𝜽)]}
+

 
(48) 

where the step size  is learned and iteration (n) dependent, and 

a non-negativity constraint is imposed. Just one same trained U-

Net is used for F for all iterations, to learn the gradient of the 

unknown penalty function. The training of this single mapping 

F, and the step sizes, was based on a MSE loss function which 

required the last iterative output, 𝒙𝑁, for noisy data, to match 

the last iterative output from a reconstruction from high count 

reference data. However, Gong et al. subsequently reported that 

direct replacement of the gradient of the prior by a CNN may 

be too smooth to capture its required high spatial frequency 

components, and hence they proposed MAPEM-Net [93], 

another unfolded method. 

 The approach of MAPEM-Net is to extend the constrained 

ML problem (equation (42), as was used for a deep learned 

image generator / CNN representation) to be now a constrained 

MAP problem instead: 

 

𝒙 = argmax
𝒙,𝒛

𝐿(𝒙|𝒎) − 𝛽𝑅(𝒛) 

 𝑠. 𝑡.       𝒙 = 𝒛 
(49) 

 

Following a similar ADMM algorithmic approach to that 

covered in the earlier section for synthesis deep learned 

regularisation ((43)-(45)), the following updates are obtained: 

 

𝒙𝑛+1 = argmax
𝒙

𝐿(𝒙|𝒎) −
𝜌

2
‖𝒙 − (𝒛𝑛 − 𝝁𝑛)‖2    (50) 

𝒛𝑛+1 = argmin
𝒛

𝜌

2
‖𝒛 − (𝒙𝑛+1 + 𝝁𝑛)‖2 + 𝛽𝑅(𝒛)   (51) 

𝝁𝑛+1 = 𝝁𝑛 + 𝒙𝑛+1 − 𝒛𝑛+1         (52) 
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Updates (50) and (52) compare directly with updates (43) and 

(45), but with 𝒛 replacing 𝐹(𝒛). The update for 𝒙, as before in 

(43), is readily achieved by one or more iterations of MAP-EM. 

However, the key change is for the 𝒛 update, equation (51), 

which now includes a penalty 𝑅(𝒛), and Gong’s 

implementation opts for replacing the entirety of update (51) by 

an iteration-dependent deep network acting to denoise the 

MAP-EM output, to obtain: 

 

𝒛𝑛+1 = 𝐹𝑛(𝒙𝑛+1)         (53) 

 

The resulting algorithm is therefore very simple. One or more 

MAP-EM updates are performed for (50) (Gong et al. chose just 

two updates), then the result is denoised via a deep network 

(Gong et al. used an iteration-dependent U-Net for (53)). This 

denoised image is then used as the prior image for the quadratic 

penalty in the next set of one or more MAP-EM updates (for 

solving problem (50) again). It is important to note that while 

equation (50) uses an L2 norm (quadratic) penalty, nonetheless 

the prior being used in the reconstruction, 𝑅(𝒛), is completely 

learned and so is very unlikely to correspond to a quadratic 

potential. 

The approach is shown schematically later on in Figure 14, 

in a framework enabling comparison to two rival methods. 

B. FBSEM-Net  

The unrolled method of Mehranian and Reader [94] is derived 

from the forward-backward splitting (FBS) algorithm [95] for 

solving the penalised Poisson log-likelihood. First, for a current 

estimate 𝒙𝑛−1, the denoising (regularisation) update is given by: 

 

𝒙𝑅𝑒𝑔
𝑛 = 𝒙𝑛−1 − 𝛾𝛽𝑅′(𝒙𝑛−1)           (54) 

 

which is a gradient descent towards the minimum of 𝑅 with a 

step size of 𝛾. The actual update of the current image estimate 

is then given by: 

 

𝒙𝑛 = argmax
𝒙

𝐿(𝒙|𝒎) −
1

2𝛾
‖𝒙 − 𝒙𝑅𝑒𝑔

𝑛 ‖
2
        (55) 

which is a proximal mapping (just as used elsewhere, e.g. 

equation (50) for MAPEM-Net) associated with the Poisson 

log-likelihood 𝐿 with 𝛾 as a regularisation hyperparameter that 

limits the degree of data fidelity of 𝒙 to 𝒎 by requiring 

proximity to 𝒙𝑅𝑒𝑔
𝑛 . Note the difference in (55) compared to (50) 

is the absence of the residual image (Lagrange multiplier) . 

Following the approach of De Pierro [96], a separable 

surrogate is then defined for the objective function in (55), so 

that it can be rewritten as: 
  

𝒙𝑛 = argmax
𝒙

∑ 𝑥𝑗,𝐸𝑀
𝑛 ln(𝑥𝑗) − 𝑥𝑗 −

1

2𝛾𝑠𝑗
(𝑥𝑗 − 𝑥𝑗,𝑅𝑒𝑔

𝑛 )
2

𝑗

 

(56) 
 

where 𝒙𝐸𝑀
𝑛  is given by the standard EM update (compare to the 

earlier equation (6) in section II): 

 

𝑥𝑗,𝐸𝑀
𝑛 =

𝑥𝑗
𝑛−1

𝑠𝑗

∑
𝑎𝑖𝑗𝑚𝑖

∑ 𝑎𝑖𝑘𝑥𝑘
𝑛−1

𝑘 + 𝜌𝑖𝑖
, 𝑠𝑗 = ∑ 𝑎𝑖𝑗

𝑖
 (57) 

 

By setting the derivative of the surrogate objective function (56) 

to zero, a closed-form solution is obtained [97]: 

 

𝑥𝑗
𝑛+1

=
2𝑥𝑗,𝐸𝑀

𝑛

(1 − 𝛿𝑗𝑥𝑗,𝑅𝑒𝑔
𝑛 ) + √(1 − 𝛿𝑗𝑥𝑗,𝑅𝑒𝑔

𝑛 )
2

+ 4𝛿𝑗𝑥𝑗,𝐸𝑀
𝑛

 

  
𝛿𝑗

=
1

𝛾𝑠𝑗
  

(58) 

 

which compares with the MAP-EM update (15) given back 

in section II. For FBSEM-Net, the gradient of the prior in (54) 

is replaced by a CNN, and hence the whole update equation (54) 

becomes a residual network (i.e. using a skip connection): 

 

𝒙𝑅𝑒𝑔
𝑛 = 𝐹(𝒙𝑛−1)          (59) 

 

where the training of the deep network 𝐹, including the 

training of 𝛾, is such that the end iteration after a series of 

updates matches a high quality image (e.g. a large number of 

iterations of ML-EM from high count data, or a lightly 

regularised MAP-EM if the count level is not sufficiently high 

in the reference data). Equation (59) compares closely to 

equation (53) in the method of MAPEM-Net, but here a fixed 

network 𝐹 is used, not changing from iteration to iteration. 

These equations lead to a training framework which is also 

shown in figure 14, and more specifically in figure 15. Figures 

16 and 17 show example results from this approach for 

simulated and real data respectively, including comparison with 

post-reconstruction deep denoising via a U-Net. The learned 

prior, which in the results shown also exploits an MR image as 

an input channel to assist the deep denoiser, notably enhances 

reconstructed image quality compared to conventional 

reconstruction. More details are available in [94]. 

C. BCD-Net  

The method called BCD-Net [98] was adapted to low-

statistics PET reconstruction by Lim et al. in 2018 [99, 100], 

predating EM-Net, MAPEM-Net and FBSEM-Net. BCD-Net is 

very similar to the aforementioned methods, again interleaving 

a MAP-EM reconstruction (composed of just one or potentially 

very many iterations) with a deep learned denoising of the 

reconstruction update. The processed reconstruction is then 

used as a prior in the next full MAP-EM reconstruction. This 

iterative process continues, and the deep-learned processing of 

the reconstruction depends on the overall iteration number. 

BCD-Net first conducts an initial number of EM iterations to 

get a current image estimate 𝒙𝑛, which is denoised by a block n 

dependent CNN: 

 

𝒛𝑛+1 = 𝐹𝑛(𝒙𝑛)        (60) 

 

Then this denoised image is used as a prior for a full MAP-

EM reconstruction: 
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𝒙𝑛+1 = argmax
𝒙

𝐿(𝒙|𝒎) −
𝜌

2
‖𝒙 − 𝒛𝑛+1‖2    (61) 

 

The method then repeats, starting again from equation (60). 

Specifically for BCD-Net, the method is proposed initially with 

a simple 3 layer network, although is extendable in principle to 

deeper architectures, such as a U-Net, as was considered by Lim 

et al.  

Table IV summarises the different deep architectures used by 

the various unrolled methods, and table V summarises the key 

similarities and differences between MAPEM-Net, FBSEM-

Net and BCD-Net. An advantage of the BCD-Net method, 

compared to the other unrolled methods, is lower demand on 

computational memory, as distinctly separate reconstruction 

and denoising training at the block level is executed without the 

need for a very deep single network to be in memory. In 

contrast, the other unrolled methods involve backpropagation 

through all blocks, which is memory intensive during training. 
 

 
 

 
Fig. 14. General framework for three major unrolled methods for PET image reconstruction with integration of deep learning for the regularisation. The unrolled 

series of updates is composed of n=1…N blocks. For BCD-Net, training is done at the block level, where the goal is to denoise an update to make it best match a 
high quality (or true) reference. In contrast, both MAPEM-Net and FBSEM-Net conduct their training based on the very end image (last iteration), necessitating 

backpropagation through all N blocks during training in order to update the parameters for the denoiser network. For MAPEM-Net, there are K=2 MAPEM updates 

within a block, and training of each block-dependent denoiser Fn (depends on n) is such that the very last iteration matches the high quality reference (such as the 
last iteration of MLEM from high quality data). For BCD-Net, K can vary from 1 to many iterates, and training is done for each individual block’s denoiser Fn, 

such that the iteration at that stage matches the high quality reference- this avoids backpropagation through the whole series of blocks. For FBSEM-Net, K=1, and 

training is such that the last iteration should match the high quality reference (e.g. high quality MLEM reconstruction, or MAP-EM with light regularisation from 
higher count data). The “Prior” indicates a fixed image used in an L2 norm penalty for the MAPEM update.

 
Fig. 15. Explicit schematic of the FBSEM-Net method [94], where by a CNN with a skip connection, a “residual learning unit” is trained, along with the 

hyperparameter for the fusion of the denoised image with the EM update (equation (58) expresses the fusion step explicitly).
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Fig. 16. Example slices for 3D simulated [18F]FDG data for FBSEM-Net, trained to match high-count reference data, when using ~100 times less data along with 
a T1w MR image for further information. FBSEM-Net is compared to conventional OSEM (no MRI benefit), without and with point spread function (PSF) 

modelling, MAP-EM with MRI guidance, and to a post-reconstruction denoised reconstruction using a U-Net supplied with MRI information.  
 

 
Fig. 17. Example results for real [18F]FDG data for FBSEM-Net, trained to match 30 minute reference data, when using 2 minute data along with a T1w MR image 

for further information. FBSEM-Net is compared to conventional OSEM (no MRI benefit) and to a post-reconstruction denoised reconstruction using a U-Net 

supplied with MRI information.  
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TABLE IV 

UNROLLED PET RECONSTRUCTION WITH DEEP LEARNING: ARCHITECTURES 
 

Name 
Architecture 

[total parameters] 

Loss function / 
optimiser    

(max epochs) 

Training data inputs and targets 
Number of training 

dataset pairs 

EM-Net 

Gong et al. [92] 

1 modified U-Net shared for all 

blocks: 3 encoding stages (2 

C+BN+LReLU), 3 decoding stages (2 

C+BN+LReLU), 2 C+BN+LReLU at 

bottleneck, skip connections (add) 

instead of concatenating 

[~2 million parameters] 

MSE / Adam 

 

Input: last iteration after all blocks 

Target: 3D high count reconstruction 
(128×128×46) 
 

 

16 

     

MAPEM-Net 

Gong et al. [93] 
8 modified U-Nets, each composed of 

3 encoding stages (2 C+BN+LReLU), 

3 decoding stages (2 C+BN+LReLU), 

2 C+BN+LReLU at bottleneck, skip 

connections (add) instead of 

concatenating 

[~(8×2)=16 million parameters] 

 

MSE / Details 
not specified 

Input: last iteration after all blocks 
Target: 3D high count reconstruction  

(128×128×105) 

18 

FBSEM-Net 

Mehranian and 

Reader [94] 

1 shared CNN for all blocks: 3 C 
layers each with BN+ReLU, 12 

unrolled iterations 

[~77,000 parameters] 

MSE / Adam 

(200) 

Input: last iteration after all blocks 
Target: 3D high count reconstruction 

Cropped: (114×114×128) 

(for (344×344×128)) 

35 

     

BCD-Net 

Lim et al. [100] 

10 convolutional autoencoders, each 

composed of 2 C layers and soft 

thresholding operator in between 

[~(10×4000)=40,000 parameters] 

 

MSE / Adam 

(500) 

Input: current output from a block 

Target: true activity image  
(200×200×112) 

 

 

4 

     

 

 
 

TABLE V 

COMPARISON OF KEY DISTINGUISHING FEATURES BETWEEN THE THREE UNROLLED METHODS: BCD-NET, MAPEM-NET AND FBSEM-NET 

METHOD Initial 

image 

Network 

different for 
each block? 

MAPEM updates 

before update of 
prior  

Use of residual 

image (μ) to modify 
the denoised prior  

Training loss Backpropagation 

through EM update? 

BCD-Net 10 EM 

updates 
 

Yes From 1 to many No Block level training to fit just 

one (“true”) reference (MSE) 

No 

MAPEM-Net 2 EM 

updates 
 

Yes 2 Yes MSE for end image Yes 

FBSEM-Net 10 EM 

updates 

No 1 No MSE for end image Not implemented (but 

backprop through all 
blocks) 

 

 

 

VIII. SUMMARY AND FUTURE PERSPECTIVES 

After briefly reviewing the core components of PET image 

reconstruction and the foundations of deep learning, the various 

ways of integrating the data-driven benefits of deep learning 

into image reconstruction have been reviewed. Table I 

summarised four core ways in which deep learning can be 

integrated into the PET image reconstruction process. 

Direct deep learned mappings from sinograms to images 

abandon all prior knowledge of physics and the noise 

distribution of the data, and seek instead to learn these from 

scratch. This has the advantage of avoiding any inaccurate 

modelling assumptions, but the disadvantage of entrusting these 

models to purely what is included in the training data only. 

However, if given sufficient training data, these should prove 

to be powerful and rapid reconstruction methods, although 

likely still computationally challenging for true fully 3D 

reconstruction. It is notable from Table II that these methods, 

demonstrated in 2D, tend to need training dataset sizes ranging 

from tens of thousands to hundreds of thousands of image slices 

(each paired with their measured data).  

The synthesis approach uses deep learning for the object 

model only, using a deep network as a representation, then 
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leaving the rest of the image reconstruction to follow 

conventional approaches. However, this requires the final 

reconstructed image to be the output of a network only, with the 

potential advantages and disadvantages this may entail in terms 

of what is, and is not, expressed. Alternative analysis methods 

use these same or similar deep learned object models not as an 

imposed representation, but instead as a means of analysis 

regularisation, whereby the reconstructed image is penalised if 

it deviates too far from the object representation model. This 

could be included, for example, within a conventional L2 

penalty term for a MAP reconstruction.   The advantages of the 

synthesis and analysis approaches compared to full direct deep 

learning mappings include: demonstrated practicality for 3D 

reconstruction, reduced need for training data (typically of the 

order of tens of 3D images are used), and exploitation of 

conventional image reconstruction knowledge that we can trust 

(e.g. imaging physics, data corrections and the Poisson noise 

model). However, their reconstruction speed will be 

comparable to conventional iterative methods. 

Going a step further, it is possible to completely learn the 

regularisation, not even relying on a quadratic or similar 

potential function to describe the penalty. For these approaches, 

which make even fewer assumptions regarding even how to 

regularise, it is necessary to unroll or unfold the iterative 

algorithm, as was shown in figure 14. Such approaches have 

similar training data needs to the synthesis/analysis group (of 

the order of tens of 3D images), and similar execution times, 

but can be demanding for computational memory during 

training if they require backpropagation of gradients through all 

the unrolled blocks. Notably, BCD-Net avoids that need, 

potentially being a more practical method. Results in the 

literature show promise for the use of unrolled methods, but 

there is however now a need to compare performance between 

these various approaches for the same sets of training and test 

data (which should be as diverse as possible), preferably 

robustly comparing to post-reconstruction deep learning 

alternatives as well. 

Likely future directions may include fully Bayesian deep 

learning [101] for PET image reconstruction, whereby not just 

MAP estimates are sought, but the entire posterior probability 

distribution. This allows uncertainty in the deep learned 

modelling itself to be expressed, which is useful for when high 

quality images are produced that may nonetheless contain 

uncertain features which need to be indicated to the radiologist, 

or specified alongside any quantitative measures of interest. 

The practicalities of using an image with a counterpart 

uncertainty image may be challenging for translation to clinical 

use.  

Another major area of research is the need for ground truth 

data or high quality reference data paired with the measured 

data for conventional supervised learning. There will likely be 

a lot of potential for seeking out improved ground truth 

reference information, or even for development of self-

supervised deep learning for image reconstruction (e.g. [102] 

for MRI). In these methods, rather than supplying targets / 

labels, instead the algorithms are provided with the knowledge 

of how to produce targets / labels, usually based on degradation 

of supplied data (such as reduced sampling, or introduction of 

noise) in order to recover the full input data. Furthermore, 

another important development is that of cycle GANs [4], 

which provide a powerful means of avoiding the need for 

matched training pairs in deep mappings. Instead, these learn, 

effectively unsupervised, how to map one distribution to 

another distribution, allowing use of pools of inputs and targets, 

unpaired. Cycle-consistent GANs, originally proposed in the 

context of image-to-image translation, could prove immensely 

useful in the image reconstruction context, as indeed is 

beginning to be the case already for MRI [103].  

This present review has focused strictly on methods which 

involve raw PET data, primarily in the form of sinograms. As 

acknowledged, there has however been significant work on 

post-reconstruction deep learning for denoising and resolution 

enhancement, and perhaps these simpler approaches are more 

likely to be adopted at least in the shorter term. This is due to 

their reduced memory requirements (use of images rather than 

sinograms) and their apparently competitive performance with 

full deep-learning reconstruction methods which use the raw 

PET data. Recent work has shown that the relatively simple 

post-reconstruction methods can fare very well indeed (see 

again the findings with a post-reconstruction U-Net in [94], as 

was shown in figures 16 and 17 in this present review). The 

potential advantage of direct use of raw PET (sinogram) data 

(whether in direct methods or unrolled methods) perhaps is still 

in need of more convincing demonstration. Therefore methods 

like that of Whiteley et al. with their use of TOF backprojected 

images as the starting point for deep learning [77], do look 

promising in the near future.  
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