

King’s Research Portal

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Reader, A., Corda, G., Mehranian, A., da Costa-Luis, C. O., Ellis, S., & Schnabel, J. (in press). Deep Learning
for PET Image Reconstruction. Transactions on Radiation and Plasma Medical Sciences.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 29. Dec. 2024

https://kclpure.kcl.ac.uk/portal/en/publications/85d33194-d529-416e-ba4c-e22799514b95

> PAPER IDENTIFICATION NUMBER 1 <

1



Abstract— This article reviews the use of a sub-discipline of

artificial intelligence (AI), deep learning, for the reconstruction of

images in positron emission tomography (PET). Deep learning can

be used either directly or as a component of conventional

reconstruction, in order to reconstruct images from noisy PET

data. The review starts with an overview of conventional PET

image reconstruction and then covers the principles of general

linear and convolution-based mappings from data to images, and

proceeds to consider non-linearities, as used in convolutional

neural networks (CNNs). Direct deep-learning methodology is

then reviewed in the context of PET reconstruction. Direct

methods learn the imaging physics and statistics from scratch, not

relying on a priori knowledge of these models of the data. In

contrast, model-based or physics-informed deep-learning uses

existing advances in PET image reconstruction, replacing

conventional components with deep-learning data-driven

alternatives, such as for the regularisation. These methods use

trusted models of the imaging physics and noise distribution, while

relying on training data examples to learn deep mappings for

regularisation and resolution recovery. After reviewing the main

examples of these approaches in the literature, the review finishes

with a brief look ahead to future directions.

Index Terms— artificial intelligence, machine learning, deep

learning, image reconstruction, positron emission tomography.

I. INTRODUCTION

RTIFICIAL intelligence (AI) is now having a widespread

impact on many and diverse fields, including inverse

problems [1]. AI is wide ranging, and generally concerns

algorithms for learning tasks of varying complexity (from

autonomous driving through to filtering out spam emails). A

specific sub-discipline of AI is referred to as deep learning [2],

which usually involves artificial neural network (ANN)

mappings of inputs to outputs. Example inputs could be raw

data from sensing devices, and example outputs could be

classifications, processed results or images enhanced for

particular tasks. The reasons for referring to these mappings as

deep learning, as part of AI, are that i) the mappings usually

involve a cascaded series of operators (with their own inputs

and outputs) known as layers, giving the notion of depth, and

ii) the operators use parameters which are learned from

example training datasets. In the training datasets, for the case

Manuscript received 30th April 2020, revised 23rd July 2020. This work was

supported by the Wellcome/EPSRC Centre for Medical Engineering [WT
203148/Z/16/Z]; the King’s College London and Imperial College London

EPSRC Centre for Doctoral Training in Medical Imaging [EP/L015226/1] and

Smart Medical Imaging [EP/S022104/1].

of supervised learning, example inputs are paired with their

corresponding desired outputs. For unsupervised learning, the

training data may consist of example inputs only (for learning

of latent representations of the data [3]), or of unpaired example

inputs and example outputs [4]. A further category, that of self-

supervised learning [5] [6], needs only input data examples and

instructions on how to create labels (rather than providing

labels) thus reducing the need for human interaction with the

learning process. In the context of paired inputs and outputs

(whether supervised one to one pairings, or an unsupervised

pair of distributions of data), the mapping learned between the

domains can then be subsequently used on entirely new, never

before seen input data, in order to predict the output.

Conversely, in the context of unsupervised learning for a single

dataset, the learned mapping can be used to generate or

reconstruct images which are restricted to lie within a limited

subspace / manifold / domain, corresponding to the same

subspace from which the training data were sampled [7].

While ANNs have been applied to reconstruction in emission

tomography from as early as 1991 [8], it was only with various

technical advances in optimisation capabilities (made available

in deep learning toolboxes such as TensorFlow, originating

from Google, and PyTorch, originating from FaceBook) and the

demonstrated success of deep learning in other fields (such as

object recognition from ImageNet data in 2009 [9]) that

eventually, from ~2017, deep learning reached the world of

medical image processing [10] and reconstruction in emission

tomography. The earliest examples for medical image

reconstruction, from 2016, include application to magnetic

resonance imaging (MRI) [11], with in particular the seminal

work of Zhu et al. [12], also applied to MRI data. Using deep

neural networks for reconstruction of MR images directly from

k-space data, they also demonstrated preliminary reconstruction

results for positron emission tomography (PET) sinogram data.

From ~2018 onwards, AI methods exploiting deep networks

specifically for PET image reconstruction were increasingly

proposed [13, 14]. As would be expected, AI methodology has

also been applied to reconstruction in other radiation-imaging

modalities such as CT and SPECT (e.g. [15],[16]). While this

present review will focus on AI for PET reconstruction, many

of the approaches are largely also applicable to SPECT, and

even CT, thanks to the high flexibility of the mappings that can

A. J. Reader, G. Corda, C. da Costa-Luis, S. Ellis and J. A. Schnabel are

with the School of Biomedical Engineering and Imaging Sciences, King's
College London, London, UK. Email: andrew.reader@kcl.ac.uk. A. Mehranian

was with the School of Biomedical Engineering and Imaging Sciences, King's

College London, London, UK.

Deep Learning for PET Image Reconstruction

Andrew J. Reader, Guillaume Corda, Abolfazl Mehranian, Casper da Costa-Luis, Sam Ellis and

Julia A. Schnabel, IEEE Senior Member

A

mailto:andrew.reader@kcl.ac.uk

> PAPER IDENTIFICATION NUMBER 1 <

2

be trained according to the supplied data in each case.

There have now been a number of reviews on AI, machine

learning and deep learning for inverse problems and medical

imaging reconstruction (e.g. [1, 17-19]), including potential

issues [20]. However, as indicated, this paper presents a review

of the current state of progress of deep learning within image

reconstruction for the specific modality of PET. The format of

the paper is as follows. Section II reviews the basic principles

of conventional or model-based PET image reconstruction.

Section III describes the key paradigm shift for PET

reconstruction when deep learning is applied, giving a tutorial

and overview of deep learning methodology. Section IV briefly

overviews four major ways that deep learning can be exploited

within PET image reconstruction, and sections V – VII consider

a selection of these in more detail. Finally, section VIII

summarises the review and offers future perspectives.

II. BASICS OF MODEL-BASED PET RECONSTRUCTION

This section briefly covers the basics of conventional PET

image reconstruction, but more comprehensive reviews are of

course available (e.g. [21-24]).

A. Basic principles

Image reconstruction for PET involves estimating

representation parameters for the spatiotemporal distribution of

a radiotracer’s concentration in the field of view (FOV) of a

PET scanner. For 2D or 3D (spatial only) imaging, the model

of the tracer distribution 𝑓(𝒓) is typically a simple linear model

parameterised by 𝒙:

𝑓(𝒓; 𝒙) = ∑ 𝑥𝑗𝑏𝑗(𝒓)
𝐽

𝑗=1
 (1)

where the basis functions 𝑏𝑗(𝒓) are usually pixels or voxels, and

a parameter vector 𝒙 ∈ ℝ𝐽 specifies the coefficients, or

amplitudes, for each basis function 𝑏𝑗(𝒓). Throughout this

review article the J-dimensional vector 𝒙 will be taken to

represent a 2D or 3D reconstructed image, with the assumption

that pixels or voxels are used for equation (1). While the model

is nearly always linear, in general it can also be non-linear, with

a key example being consideration of the spatiotemporal (4D)

distribution of the radiotracer, as used in direct reconstruction

of radiotracer kinetic parametric maps or 4D images [25][26].

With a chosen model of the radiotracer distribution, the next

step is to model how the PET scanner would acquire data from

this distribution. This concerns modelling the mean of the

acquired noisy PET data, based on a given parameter vector 𝒙.

In nearly all cases, a linear model of the data mean is used as

follows:

𝒒(𝒙) = 𝑨𝒙 + 𝝆 (2)

where 𝑨 ∈ ℝ𝐼×𝐽 is the PET system matrix (also known as the

forward model, or system model) and I and J are the number

of sinogram bins and the number of voxels of the PET image

respectively, and  is the model of the mean scatter and

randoms background. With the object model (1) and the

imaging model (2), we then consider the noise model for the

data. For PET, the Poisson model is used, as discrete photon

counts are recorded:

𝑚𝑖~Poisson {𝑞𝑖} (3)

where 𝑞𝑖 is the model of the mean number of coincidences in

the ith line of response (LOR) (or sinogram bin).

Next, it is necessary to define an objective function which

indicates how well the parameters x of the model for (1)

correspond to the actual measured data, modeled by (2) and (3).

The goal of image reconstruction is then to find the parameter

vector x, for (1), which when forward modeled with equation

(2), best agrees with the acquired noisy measured data (3),

according to a chosen objective (or cost) function as follows:

𝒙 = argmin
𝒙

 𝐷𝑃𝐸𝑇(𝑨𝒙 + 𝝆; 𝒎) (4)

where DPET is a function that gives some measure of the

distance (discrepancy) between the model of the mean, 𝒒(𝒙),

and the measured data 𝒎, and so is a measure of data fidelity

for any given candidate x. For PET, the objective function of

choice is the Poisson log likelihood, for which an 𝒙 should be

found which maximises the likelihood of 𝒙, given the measured

data 𝒎. When expressed as a distance measure, the negative of

the Poisson log likelihood is used (negative, as the Poisson log

likelihood needs to be maximised):

𝐷𝑃𝐸𝑇(𝒒(𝒙); 𝒎) = − ∑(𝑚𝑖log𝑞𝑖(𝒙) − 𝑞𝑖(𝒙))

𝐼

𝑖=1

 (5)

A robust way of seeking the extremum of (5) is the maximum

likelihood expectation maximization (ML-EM) algorithm [27,

28], where one ML-EM update is given by:

𝒙𝑛+1 =
𝒙𝑛

𝑨𝑇𝟏
𝑨𝑇 (

𝒎

𝑨𝒙𝑛 + 𝝆
) (6)

where 𝟏 ∈ ℝ𝐼 and 𝒙𝑛 is initialised by uniform values. In

equation (6) (and elsewhere in this article) products and

quotients of vectors are element wise, with matrix-vector

products using the conventional definition, following the

notation introduced by Barrett et al. [29].

B. Regularisation by analysis / encoding

Since the measured data are noisy, minimising (5) (e.g.

through use of (6)) results in typically noisy estimates of the

radiotracer distribution via (1), as most often voxel basis

functions are chosen. For very noisy data, “night sky”

reconstructions are obtained. Therefore, regularisation is used

to seek noise-compensated representations of the radiotracer

distribution. This is usually achieved by including a penalty

term 𝑅(𝒙) in the objective function:

𝒙 = argmin
𝒙

 𝐷𝑃𝐸𝑇(𝒒(𝒙); 𝒎) + 𝛽𝑅(𝒙) (7)

where the hyperparameter  controls the strength of

regularisation relative to fidelity to the measured data. The

penalty term 𝑅(𝒙) can be any of a wide range of priors,

> PAPER IDENTIFICATION NUMBER 1 <

3

designed to encourage solutions which agree with our prior

belief regarding the radiotracer distribution. If 𝒙 does not agree

well with our prior belief, 𝑅(𝒙) tends to be large, and vice versa.

A common choice is to expect the neighboring voxel values in

𝒙 to be similar, so that 𝑅(𝒙) is some function of the voxel-value

differences between neighboring voxels. A common example

is:

𝑅(𝒙) =
1

4
∑ ∑ 𝑤𝑗𝑙(𝑥𝑗−𝑥𝑙)

𝐽

𝑙=1

𝐽

𝑗=1
 (8)

where () is a potential function, such as a quadratic (for which

the helpful normalization of ¼ is already placed in (8)), so that

any differences between voxel values result in an increased

value of R, thereby penalising choices of x which have largely

varying neighbouring values, often the result of fitting closely

to the noise in the data m. The weights (𝒘 ∈ ℝ𝐽×𝐽, although

usually limited to a small patch neighbourhood) allow guidance

from anatomical images such as MRI [30]. We make an

advance observation that, in the context of what will follow

later in this review, priors such as (8) are mathematically

convenient, or handcrafted / designed priors, and not directly

evidence or data based. To build a more general version of

equation (8), the following vector can be considered:

𝒛 = (𝑯𝒙) (9)

where 𝑯 ∈ ℝ𝐽×𝐽 is a matrix, which would be a finite difference

operator to mimic equation (8), and 𝒛 is some “coded”

representation of 𝒙 obtained by the overall transform , and then

𝑅(𝒙) = 𝟏𝑇𝒛 (10)

where 1 ∈ ℝ𝐽 , to achieve a summation of the contents of 𝒛.

 The approach to regularisation given by (7), with the

example of (8), can be referred to as analysis regularisation.

Effectively any candidate object representation 𝒙 is analysed by

being transformed by an operator (such as 𝑯, followed by ),

whereby the operator or transform is designed such that the

output 𝒛 should be small valued for candidate 𝒙 solutions which

agree with our prior beliefs. Here, “small valued” means that

the sum of 𝒛 should be small, which can be achieved, for

example, by 𝒛 being sparse (i.e. only a limited number of non-

zero elements). Hence if 𝑯 is a gradient operator, or, as another

example, a wavelet transform, then solutions of 𝒙 which have

limited gradients (e.g. piecewise smooth objects), or limited

wavelet coefficients (e.g. images which are readily

compressible) are encouraged respectively. In the latter case, it

can be noted that natural and noise-free images are more readily

compressed than noise-ridden images. This approach is used

within compressed sensing methods in MRI [31], where the

reconstructed image is required to be sparse in some transform

domain, a strongly informative regularisation which permits

fewer k-space samples to be acquired.

 Analysis regularisation can be achieved in PET imaging

using a MAP-EM algorithm, such as that of De Pierro [32],

which is a convergent algorithm for priors such as (8), provided

that the potential function () is convex. The iterative update

of an image estimate 𝒙𝑛, when the prior is of the form of (8)

with a quadratic potential function is:

𝑥𝑗
𝑛+1 =

2𝑥𝑗
𝐸𝑀

(1−𝛽𝜈𝑗𝑥𝑗
𝑆𝑀)+√(1−𝛽𝜈𝑗𝑥𝑗

𝑆𝑀)
2

+4𝛽𝜈𝑗𝑥𝑗
𝐸𝑀

 (11)

where 𝒙𝐸𝑀 corresponds to the ML-EM update of 𝒙𝑛 (equation

(6)), 𝒔 = 𝑨𝑇𝟏 (the sensitivity image) and

𝜈𝑗 =
∑ 𝑤𝑗𝑙

𝐽
𝑙=1

𝑠𝑗
 (12)

with

𝑥𝑗
𝑆𝑀 =

1

2 ∑ 𝑤𝑗𝑙
𝐽
𝑙=1

∑ 𝑤𝑗𝑙(𝑥𝑗
𝑛 + 𝑥𝑙

𝑛)
𝐽

𝑙=1
 (13)

being effectively a weighted, potentially edge-constrained,

smooth of the current estimate xn. Note that equation (13) does

not explicitly contain the potential function as a quadratic

potential has been used in this example, based on the update

from [33].

To finish this brief review of analysis regularisation, one

more important case worth mentioning in the context of

conventional PET reconstruction is the simple case of using a

prior image for a quadratic penalty:

𝑅(𝒙) = ∑ (𝑝𝑗−𝑥𝑗)
2𝐽

𝑗=1
 (14)

where 𝒑 is a prior image from which the estimate of 𝒙 should

not deviate too far. Whilst proposed very early on by Levitan

and Herman for MAP-EM reconstruction [34], and while not at

all frequently used in conventional PET reconstruction, this

analysis regularisation method has however found great utility

when deep learning is applied to PET reconstruction, as will be

discussed later. Using the penalty of (14), an iterative update of

𝒙𝑛 can be found by a simple combination of the prior image

𝒑 and the standard EM update image (found from (6)):

𝑥𝑗
𝑛+1 =

2𝑠𝑗𝑥𝑗
𝐸𝑀

(𝑠𝑗−𝛽𝑝𝑗)+√(𝑠𝑗−𝛽𝑝𝑗)
2

−4𝛽𝑥𝑗
𝐸𝑀𝑠𝑗

 (15)

where similarity to the update of (11) is notable, with

equivalence arising only if ∑ 𝑤𝑗𝑙
𝐽
𝑙=1 = 1 and 𝒙𝑆𝑀 = 𝒑.

C. Regularisation by synthesis / generators

 A second major way of introducing our prior expectations

about what 𝒙 should look like is to instead express 𝒙 as the

output of some operator, where the operator is designed so as to

only generate candidate 𝒙 vectors which agree with our prior

beliefs. A simple linear example is to use a matrix containing

basis vectors, such that the output 𝒙 is synthesised by

summation of these basis vectors:

𝒙 = 𝑩𝒛 (16)

where in this context 𝒛 is now a vector of coefficients, which

can be viewed as a coded or latent representation of 𝒙. The

> PAPER IDENTIFICATION NUMBER 1 <

4

matrix of basis vectors, 𝑩, can also be referred to as a dictionary

containing atoms. We can achieve regularising constraints on

the output 𝒙 in 3 main ways: i) enforcing non-negative values

for 𝒛 (crucial if 𝑩 is full rank), ii) explicitly using a reduced set

of basis vectors in 𝑩, by limiting the dimensions of 𝒛 to be

smaller than the dimensions of 𝒙, or iii) using a complete set of

basis vectors in 𝑩, or even an overcomplete dictionary of basis

vectors whilst requiring 𝒛 to be a sparse vector (e.g. by use of a

norm of 𝒛 as a penalty). The first approach is the most simple,

and has been used in PET, as the popular ML-EM method of

equation (6) naturally gives non-negative solution vectors.

Hence ML-EM can be rewritten to directly estimate the latent

code (coefficients) vector 𝒛:

𝒛𝑛+1 =
𝒛𝑛

𝑩𝑇𝑨𝑇𝟏
𝑩𝑇𝑨𝑇 (

𝒎

𝑨𝑩𝒛𝑛 + 𝝆
) (17)

with the final reconstruction given by (16). Example choices for

𝑩 include MR-derived basis functions based on similarity

between MR voxel values, or ones derived by time-activity

curve (TAC) similarity between voxels, found by the kernel

method. Hence (17) with an image model of (16) is often called

kernel EM (KEM) [35-37]. Any positive-valued 𝒛 vector will

always deliver an image of positive-valued weighted sets of

MR-anatomy or TAC inspired basis vectors / dictionary atoms,

eliminating the possibility of noisy “night sky” reconstructions.

A purely temporal version of (17) for 4D PET reconstruction

[38], involves alternating estimation of not only 𝒛, but also

estimation of a compressed, limited-dimensional, 𝑩.

D. Drawbacks

We now observe three potentially undesirable aspects with

the aforementioned conventional model-based approaches to

PET image reconstruction.

1) Noisy data

 Since the data are noisy, choosing to fit parameter estimates

𝒙 to noisy data 𝒎 yields noisy reconstructed images, suggesting

that even the very starting point of a data-fidelity objective

function such as (4) is not really what is desired.

2) Need for regularisation

Compensating for the first problem by regularisation with a

function 𝑅(𝒙) (as in (7)) involves user-specified / hand-crafted

prior assumptions (such as (8)), in terms of what is, and what is

not, acceptable for the image properties. Even if we do have a

good prior, how strong should it be () in comparison to data

fidelity? How can we make such selections? This is an active

area of research (e.g. [39, 40]). Also, regularisation by means

of synthesis/basis function methods usually involves similar

sub-optimal user-specified representations, with comparable

issues of hyperparameter selection.

3) Modelling assumptions

The methods described all presuppose accurate and precise

knowledge of the model of the mean of the data, through the

forward model matrix 𝑨, and also knowledge of the noise

distribution of the data vector 𝒎.

All of these potential concerns can be addressed by the use of

AI, or more specifically deep learning, for PET image

reconstruction. For reference, the conventional model-based

approach to image reconstruction, as outlined in this section, is

shown schematically in Figure 1.

Fig. 1. Work flow overview for conventional model-based PET image

reconstruction. Note that explicit consideration of the ground truth t does not

enter into the process at any point. This omission is the key reason why AI is
able to offer a radically different approach, by making use of either the actual

ground truth (e.g. via simulations) or an estimate of the truth (e.g. higher-count

reference data).

III. THE AI PARADIGM SHIFT AND THEORY

This section now considers the key paradigm shift when

using AI approaches for PET image reconstruction, and reviews

methodology for direct deep-learning reconstruction from PET

data. A key concept is that of learning how to reconstruct a high

quality image from a noisy dataset, through the use of training

data.

A. Basic principles

The AI approach is a fundamental shift in focus in

comparison to the conventional model-based framework

outlined in the previous section. In broad terms the key is this:

we no longer define the noisy measured data 𝒎 as the target in

the objective function (4), but instead we use a high quality

desirable reference 𝒕 as the target in a new objective function.

Thus, instead of fitting parameters 𝒙 to noisy data 𝒎, and then

trying to compensate for noise in the data by R(x), with an AI

approach we instead choose to estimate a mapping, F, that takes

us from 𝒎 to an estimate of 𝒙 corresponding to what we would

actually want. Ideally, we would want the ground truth

radiotracer distribution 𝒕 that had given rise to 𝒎, or, lacking

that, a very high-statistical quality reconstructed image.

This is achieved by learning a reconstruction operator, or

mapping, F, using example training data. The mapping is

parameterised by a vector , which would ideally take us

directly from the noisy data 𝒎 to what we desire, 𝒕. Such a

> PAPER IDENTIFICATION NUMBER 1 <

5

mapping would implicitly need to account for the entire physics

of the imaging process and the noise distribution of the data, all

within F. Of course, the mapping will also need to generalise

well for any new dataset m, being able to map an unseen dataset

to the unknown ground truth. This places importance on the

training data being diverse and extensive enough to adequately

represent the domain of possible future input datasets.

 During training of the mapping it is of course unreasonable

to expect to find a single mapping that will always directly

deliver the ground truth t from a given noisy input m, and so an

objective function is required, which seeks to match the

mapping of m (through F) to the target t as closely as possible

to within some tolerance, or loss.

In the context of deep learning, the parameters of the

mapping are optimised so as to minimise a loss function, given

by:

𝜽̂ = argmin
𝜽

∑ 𝐷𝑁𝐸𝑇(𝐹(𝒎𝑛; 𝜽); 𝒕𝑛)𝑁
𝑛=1 (18)

where the mapping F is parameterised in some way by a vector

of parameters , such that when the mapping is applied to one

of the n=1…N input datasets in the training data, e.g. mn, the

mapping generates an output which should be close to tn (see

Figure 2). The key aspect to the loss function DNET for the

mapping (often a network) is that it needs to be defined over

many such example training dataset pairs (inputs mn, each

paired with desired outputs tn) that adequately cover the domain

of potential future inputs. This means the training seeks just one

single mapping F, which will best fit each and every example

training noisy dataset mn to its corresponding high quality

reference tn. During training, often a separate validation dataset

is used to monitor performance for data unseen by the

optimisation. For example, if the loss function, when evaluated

on the validation data, starts to increase, this is indicative of

overfitting to the training data, and so the training process can

be halted.

Fig. 2. The AI paradigm for direct PET reconstruction: we find (or learn) one

mapping F which maps each data vector m to a desirable target vector t.

Supervised learning of the mapping needs example pairs of inputs and expected

outputs (called targets or labels), which form the training data for the learning

process. More advanced methods [4] learn how to map from one distribution to

the other distribution, evading the need for paired data vectors.

The expectation, when training is complete, is that a new

supplied input measured dataset m will be mapped using F to

predict the unknown ground truth for the new dataset:

𝒙 = 𝐹(𝒎; 𝜽̂) (19)

We expect therefore generalisation to unseen, future data, on

the assumption that the unseen data comes from the same

domain as the training data. The challenge of dealing with new

data that is outside the domain of the training data is known as

domain adaptation, an active area of research [41].

B. Linear direct mapping: a fully-connected layer

The simplest case would be to find a purely linear mapping:

𝒙 = 𝑭𝜽ℓ̂
𝒎 (20)

where the mapping F is now just a matrix 𝑭 ∈ ℝ𝐽×𝐼, (see Figure

3) and we have added a subscript 𝜽ℓ̂ to denote that this matrix

depends on the trained parameter vector. The extra subscript ℓ

denotes what we will refer to from now on as a layer, described

further below. This matrix mapping can be regarded as a single

layer network – whereby each output value 𝑥̂i is just a weighted

sum of the input values in m, with the weights (neurons) given

by the ith row of matrix 𝑭. (As a brief aside, we note that a

simple non-linear function can, optionally, be applied to each

output element in the vector - this will be considered further

below). It may seem like an ambitious task to estimate , and we

can see that we would likely need many training pairs of 𝒎 and

𝒕 in order to find an 𝑭 that will be able to generalise for unseen

input vectors 𝒎. In fact, for the typical scale of 2D and 3D PET

image reconstruction, we would need to estimate anywhere

from millions to trillions of parameters! But given, for example,

the existence of linear PET image reconstruction methods such

as filtered backprojection (FBP) [42, 43], backproject then filter

(BPF) [44], or better still the Moore-Penrose pseudo inverse via

singular value decomposition (SVD) [45] [46], it is evident that

linear mappings do exist that can achieve good quality

reconstructions of 𝒙 from 𝒎. Likewise in MR, the default

inverse Fourier transform is a good starting point for a linear

operator. The advantage, again, is that a learned reconstruction

operator would not only account for the imaging physics, but

would implicitly also include a data-trained noise-reduction

strategy. This is in contrast to FBP (where an empirically

chosen filter cut off is needed), or in contrast to a pseudoinverse

(where the modulation or truncation of the inverse of the

singular value spectrum is similarly empirically chosen to

compensate for noise).

In the context of deep learning, a matrix like that in (20) is

known as a fully-connected layer (FC layer), or a dense layer

(since every single input value can affect every single output

value). The use of the word layer (inspired by the neuroanatomy

of the cerebral cortex) arises from the fact that, as we will see

later, we may use more than one single mapping in a sequence–

we can cascade a series of mappings more generally. Each extra

mapping is a layer, and when we have multiple layers we have

a deep network, hence the term deep neural network. Use of

> PAPER IDENTIFICATION NUMBER 1 <

6

such multiple layers typically arises when a non-linear function

is introduced between layers, but even using a series of purely

linear operators certainly is not trivial, as will be discussed later.

A final note here is to mention that some conventions refer

to the input or output of a given single operator as a layer.

However, here (similar to [47] and [48]) we use the word layer

to refer to the operator itself, but according to the context, one

can loosely use the word layer in reference to the output of the

operator as well.

Fig. 3. Direct linear mapping approach. Top: the matrix 𝑭 is trained to map

data 𝒎 to the ground truth or reference 𝒕. Bottom: when the trained 𝑭 is

presented with a new dataset 𝒎, a given output value is obtained by a weighted
sum of the input vector elements in m, where the weights for a given output

element i are contained along a row i of the matrix 𝑭. This reveals the link to
neural networks, for which the above case is termed a fully-connected layer
(which in general allow a bias to be added to each output, with subsequent

optional application of a non-linear function).

C. Convolution direct mapping: a convolutional layer

Before considering more complex mappings, we will now

consider a simple but very instructive example of a mapping

that is not only linear, but also shift-invariant – convolution. To

motivate this simple example, we will now consider the input

measured data m to be purely a noisy version of t (i.e. using

modelling equations (1), (2) and (3), but now taking A = I, so

that no sinogram is now needed). We will then seek a single

convolution kernel, such that when convolved with the noisy

data m (which is now regarded as a noisy image in this

instance), gives a best fit to the high quality reference t. This

could be written as equation (20), with the requirement that 𝑭

now be a circulant matrix (i.e. achieving convolution). More

explicitly:

 𝒙 = 𝑪𝜽ℓ̂
𝒎 (21)

where the circulant matrix 𝑪 contains a unique 2D or 3D kernel,

defined by parameters 𝜽ℓ̂, such that the kernel is duplicated and

shifted in successive columns of the matrix 𝑪. This mapping

would correspond to a layer which is called a convolutional

layer, with, in this simple case, just one kernel.

Figure 4 illustrates the capabilities of learning just one single

convolution kernel for a purely linear and shift-invariant (LSI)

mapping. Results are shown for optimising the parameters of a

single kernel for two different example applications. The first

is to denoise, i.e. to match m to t using a least-squares loss

function (usually referred to as the mean square error (MSE)

loss function in the machine learning literature). The results in

this case are as expected – for noisier input measured data, a

broader trained kernel is obtained in order to achieve denoising,

and for less noisy data a narrower kernel is obtained, as less

denoising is required. The second example is using a kernel to

sharpen an image, removal of blurring – again, the results show

optimisation of the kernel to be effective in deblurring.

Fig. 4. Three examples of a direct convolution (linear shift-invariant) mapping

approach, with data-driven learning of a single kernel to try and map m to t. For
noisier data (row 2), more neighbourhood averaging is needed to denoise, and

so a broader kernel was learned. For the different task of deconvolution (row

3), a sharpening kernel was learned, to try and match t.

D. Convolution with a non-linearity: feature maps

The convolution mapping can be extended to include a non-

linearity afterwards, which can be sometimes regarded as a

separate layer. The non-linearity is simply application of a non-

linear function, which we will call (), element by element, on

each pixel or voxel value of the output vector of the convolution

(where the output is often referred to as a feature map). It is

called an activation function, as it often serves to suppress

values in the output, and let others pass through (as activated

values). So, for a single layer convolutional network we would

have:

𝒙 = 𝜎ℓ(𝑪𝜽ℓ̂
𝒎) (22)

If we choose 𝜎ℓ() to be a rectified linear unit (abbreviated as

ReLU [49]), it sets any negative values to zero, retaining all

positive values as they are. Figure 5 shows examples of the

utility of applying this non-linearity, which in the figure is

shown in the thresholded column. The thresholded feature maps

show, for example, edges, or a tumour location. Hence the non-

linearity can give even more useful feature maps of specific

interest, with background aspects removed. For the case of

> PAPER IDENTIFICATION NUMBER 1 <

7

ReLU, the non-linearity amounts to thresholding, deleting

background information, and keeping desired features. Many

other non-linear activation functions exist, including, for

example, leaky ReLU (LReLU, attenuating rather than

removing negative values), sigmoid (for constraining outputs to

be from 0 to 1) and hyperbolic tangent (tanh, for constraining

outputs to be from -1 to +1). Furthermore the use of an offset or

scalar bias value 𝑏 just prior to an activation such as ReLU,

allows adjustment of the level of thresholding without changing

the activation function ():

𝒙 = 𝜎ℓ(𝑪𝜽ℓ̂
𝒎 + 𝑏𝜽ℓ̂

)
 (23)

where the bias is a single trainable offset scalar parameter, the

single value of which is now included into the overall vector of

parameters for the layer, 𝜽ℓ̂.

Given the utility of convolution with a bias and activation for

delivering a feature map, we note that for a given input image,

it would be useful to obtain more than just one single feature

map. This is already shown in Figure 5, where we have 3

different feature maps arising from one image. This involves

generating more than one output, by using more than one kernel

in a convolutional layer. So starting from (23) we can use

multiple kernels in this one single convolutional layer, to obtain

multiple outputs – one for each kernel:

𝒙 = 𝜎ℓ ([

𝑪𝜽ℓ̂

1

⋮
𝑪𝜽ℓ̂

𝐾
] 𝒎 + 𝒃𝜽ℓ̂

)

(24)

where the output vector 𝒙 is now K times larger (i.e. there are

as many output images as there are kernels). This corresponds

to the number, k=1…K, of convolution matrices applied to 𝒎.

Note further that we have a unique scalar bias value for each

kernel, represented in equation (24) by a single vector 𝒃, and

that this vector and each of the kernels all depend on the overall

set of parameters, 𝜽ℓ̂, for this layer.

Figure 5 illustrates equation (24) for the choice of just three

kernels – which in this figure are purely handcrafted to show

the flexibility of different kernels. In deep learning however,

the kernels are randomly initialised, and the training process

adapts the kernel values to obtain the feature maps necessary to

make the outputs ultimately serve to match the target (i.e. to

minimise the loss function).

Finally, we note that often we require just one image output,

whereas using multiple kernels in a layer delivers multiple

outputs. These multiple outputs are referred to as channels. We

can easily join these channels together into one single output by

applying one more convolutional layer, with just one kernel (to

give just one output), but with the single kernel having multiple

channels (one for each of the input channels to the layer). This

adds together the feature maps as follows:

𝒙 = [𝑪
𝜽ℓ+1̂

1,1 … 𝑪
𝜽ℓ+1̂

1,𝐾
]𝜎ℓ ([

𝑪
𝜽ℓ̂

1,1

⋮

𝑪
𝜽ℓ̂

𝐾,1
] 𝒎 + 𝒃𝜽ℓ̂

)

(25)

where we use a second superscript to denote the channel number, with the first
superscript kept for the kernel number. There are as many channels for this one

kernel in this second layer (labelled ℓ +1) as there are kernels (hence outputs)

from the first layer (labelled ℓ). A simple choice is to use single pixel or voxel
kernels for each of the channels of the single kernel, so that the final output is

just a weighted sum of the feature maps from the previous layer (as was

illustrated in figure 5).

Fig. 5. Demonstration of a two-layer convolutional mapping, with a non-linearity included (non-linear shift-invariant). The input image is convolved with three

different kernels (each having just one channel, as there is only one input image), giving three convolved outputs. Each convolution output is then, in effect,
thresholded by adding some positive or negative offset (a bias) (a single unique value for each convolved output), then setting negatives to zero (e.g. by a ReLU

activation). These three resulting feature maps are then summed with differing weights to deliver a final output image, where in the example shown a 3-channel

kernel is used to achieve this, with the last channel being the example of a zero kernel which can remove that feature. The number of inputs to a convolutional layer
determines the number of channels needed by a kernel in the layer, and the number of kernels used determines the number of outputs from the layer.

> PAPER IDENTIFICATION NUMBER 1 <

8

E. Deep networks: mappings with multiple layers

We now more explicitly consider using a series, or cascade, of

mappings, to form a deep network. To start with, we could take

the purely linear mapping of equation (20) as a series of matrix

operators, a series of layers, each layer defined by a set of

parameter values, so for ℓ = 1 … 𝐿 FC layers we would have:

𝒙 = 𝑭𝜽𝐿̂
⋯ 𝑭𝜽ℓ̂

⋯ 𝑭𝜽2̂
𝑭𝜽1̂

𝒎 (26)

forming a deep neural network, with the overall complete set of

parameters of the mapping given by , composed of all the

parameters for each of the layers. More generally we have, at a

given layer ℓ, an intermediate, latent or hidden vector of results

(i.e. not visible at the input or output), 𝒛ℓ, given by

𝒛ℓ = 𝑭𝜽ℓ̂
𝒛ℓ−1 (27)

for ℓ = 1 … 𝐿, with the final output being 𝒙 = 𝒛𝐿 and with the

first input being 𝒛0 = 𝒎. Construction of the number and size

of these mappings refers to the architecture of the network. At

first sight, for such a purely linear model, it can seem that (20)

and (26) are completely equivalent when appropriate choices of

parameters are made. However, the precise architecture does

profoundly matter (e.g. sizes of matrices used), in terms of

model constraints, number of summations and products

involved, and ease of training of the parameters. As a first

example, we could use the form of equation (26) to learn a

diagonalisation of a linear mapping which is comparable to a

truncated version of the SVD-inverse, using a series of 3 matrix

layers. A further illustrative example is that of the discrete

Fourier transform (DFT), which can also be represented by

(20), whereas a linear rearrangement of this purely linear

transform into a fast Fourier transform (FFT), which could be

written as (26), has a profound impact on processing speed.

Of course, convolutions can also be cascaded into a series,

increasing depth of the mapping. We could have

𝒙 = 𝑪𝜽𝐿̂
⋯ 𝑪𝜽ℓ̂

⋯ 𝑪𝜽2̂
𝑪𝜽1̂

𝒎
 (28)

Just as equation (26) was not trivial due to the capability of

varying the size of the matrices in the series of layers, so also

(28) should not be regarded as trivial – it is possible to use stride

to vary the size of the latent output vector at each layer (the

feature map sizes), thereby imposing constraints on the model,

as will be discussed further below. We note here that such a

series of convolutions allows the concept of receptive field to

be understood – a pixel or voxel in the input m can reach or

affect a voxel in the output image or map, according to the

overall reach of successive application of a series of

convolution kernels. So rewriting (27) for convolution,

generally, at a given layer ℓ we would have:

𝒛ℓ = 𝑪𝜽ℓ̂
𝒛ℓ−1

 (29)

Recalling that we might also generate more than one output

feature map at a given layer ℓ by using more than one kernel in

a convolutional layer, we can write:

𝒛ℓ = [

𝑪𝜽ℓ̂

1

⋮
𝑪𝜽ℓ̂

𝐾
] 𝒛ℓ−1 (30)

where the output 𝒛ℓ would now be K times the size of the input

vector 𝒛ℓ−1, according to the number, k=1…K, of convolution

matrices applied to 𝒛ℓ. If we use the model of (30), then to add

on another convolutional layer, it will need to operate on more

than one output image – we will have a multi-channel input

𝒛ℓ−1, and so we need a kernel for each of these inputs present

in 𝒛ℓ−1 – this gives rise to the need for a multi-channel kernel.

Combining the idea of multiple kernels, with each being multi-

channel, we have the overall LSI mapping of:

𝑾𝜽𝓵̂
= [

𝑪
𝜽𝓵̂

1,1 ⋯ 𝑪
𝜽𝓵̂

1,𝐶

⋮ ⋱ ⋮

𝑪
𝜽𝓵̂

𝐾,1 ⋯ 𝑪
𝜽𝓵̂

𝐾,𝐶
] (31)

for channels c=1…C, and kernels k=1…K, at layer ℓ. It is easy

to note from (31) that when using multi-channel kernels, the

mapping adds together the outputs for each channel of the

kernel, so that again each single kernel, whether multi-channel

or not, still gives just one output image to present to the next

layer.

We finish this section by noting that we can cascade these

multi-kernel, multi-channel mappings:

𝒙 = 𝑾𝜽𝐿̂
⋯ 𝑾𝜽𝓵̂

⋯ 𝑾𝜽2̂
𝑾𝜽1̂

𝒎 (32)

and since we often desire the output size of 𝒙 to be a single

image, usually the very last layer 𝑾𝜽𝐿̂
 is a multi-channel single

kernel (e.g. with each kernel being just a delta function). This

is in order to synthesise a single output image from multiple

input feature maps from the penultimate layer, equivalent to just

a weighted sum of these input channels, where the weights are

learned.

A simple linear autoencoder [50] can take the form of (32), by

downsampling in early layers (i.e. using a convolution stride

greater than 1) and increasing the number of kernels (feature

maps), and then upsampling in later layers (through use of

fractional stride) and reducing the number of feature maps. In

the context of an autoencoder, the goal is to match the input and

output, requiring the mapping to pass through a latent space

bottleneck (e.g. as a midpoint layer in (32)) which should

capture features (high feature dimension via a high number of

kernels) with only limited spatial information (high level of

downsampling). Noise is unlikely to be represented in this

compressed latent representation space. This will be considered

further later in this section when the case of a convolutional

encoder-decoder mapping is covered.

F. Convolutional neural networks (CNNs)

The multi-layer convolution mapping can be extended to

include non-linearities between layers. Firstly, a general layer

can be given by:

> PAPER IDENTIFICATION NUMBER 1 <

9

𝒛ℓ = 𝜎ℓ(𝑾𝜽ℓ̂
𝒛ℓ−1 + 𝒃ℓ)

 (33)

where the bias is such that it is a single trainable offset scalar

parameter for each kernel, such that the argument of the

activation function in (33) is explicitly given by:

𝑾𝜽𝓵̂
𝒛ℓ−1 + 𝒃ℓ = [

𝑪
𝜽𝓵̂

1,1 ⋯ 𝑪
𝜽𝓵̂

1,𝐶

⋮ ⋱ ⋮

𝑪
𝜽𝓵̂

𝐾,1 ⋯ 𝑪
𝜽𝓵̂

𝐾,𝐶
] 𝒛ℓ−1 + [

𝑏𝜽𝓵̂

1

⋮
𝑏𝜽𝓵̂

𝐾
] (34)

We can of course use a series, cascade or stack of convolutional

layers, and create what is known as a convolutional neural

network (CNN) [51] [52], as shown, for example, in Figure 6.

Figure 6 gives an example CNN trained to map low-dose PET

images to higher dose equivalents. Yet, as should be clear from

figures 5 and 6, CNNs can in fact have wide ranging uses, even

such as mapping ML-EM reconstructions to MAP-EM

reconstructions, for accelerated reconstruction (Rigie et al.

[53]). Mappings based on (34), with only convolutional layers,

are known as fully convolutional networks (FCNs). However,

convolutional and FC layers can be used together in a general

CNN.

A final important note for this section is the universal

approximation theorem (UAT) [54]. In general, for a deep

neural network we have:

𝒛𝓵 = 𝜎𝓵(𝑿𝜽𝓵̂
𝒛𝓵−1 + 𝒃𝑙)

 (35)

where the matrix 𝑿 can be any matrix, whether representing

multiple multi-channel convolutions, or a fully general linear

mapping. It has been shown that exploiting the non-linearity

between layers allows many practical and useful mappings to

be approximated well, if sufficient layers are used. This is a

very important result, meaning that essentially any useful image

processing mapping can in theory be replaced by a sufficiently

well-trained deep network, offering complete flexibility in

terms of inputs and desired outputs.

Fig. 6. Example CNN, based on [55], composed of 3 convolutional layers, designed to map low-dose PET images to full-dose PET images. Here, there are 4 input

channel images: a T1-weighted MR, 2 different PET reconstructions of the same low-dose PET data (one with, one without resolution modelling (RM)), and a
post-processed PET reconstruction (non-local means). These 4 inputs are fed into three convolutional layers. The final convolutional layer is composed of a multi-

channel single kernel, to synthesise just one output image intended to predict the full-dose PET image.

G. Encoders, decoders, generative models and GANs

Deep learning can be used for representation learning (or

feature learning) whereby a network learns how to represent

input information in a different way, which is useful to a desired

task. Viewed this way, a deep network is just a change of

representation of the input information, either lossless, or

indeed discarding information irrelevant to the desired task of

the mapping. Image reconstruction itself can be regarded as a

change of representation of the very same information

contained in the data – just represented in the form of an image

instead of measured data. In this context, there are three

important classes of deep networks that are explicitly identified

as encoders, decoders, and generators. Strictly speaking any

arbitrary layer or series of layers of a deep network can be

regarded as any of these three classes, as it depends on the task

and our interpretation of the representation at a particular stage

or layer in a network, in terms of how we interpret the kinds of

vectors (feature maps) going into, and out of, one or more

layers.

An encoder transforms an input vector to a different

representation or feature vector, often referred to as a latent

space, which might be a more compact form, or a more useful

representation. So we have, for example

𝒛 = 𝐸(𝒎; 𝜽𝐸̂) (36)

where E is the encoding operator learned from training data,

which in general is a non-linear operator specified by possibly

many layers of encoder parameters, 𝜽𝐸̂, corresponding to a

cascade of mappings, each of which is given by the form of

equation (35).

 Preferably the encoded latent representation should not lose

any information of interest, but should provide a representation

which is more useful, such as being more compressed (lower

dimensionality), semantically rich or in a form which simplifies

the desired task which is to be performed on the input. In the

context of PET imaging, an input vector may be sinogram data

or already directly interpretable as an image. A trivial untrained

> PAPER IDENTIFICATION NUMBER 1 <

10

linear example of an encoder would be use of a number of rows

of the DFT analysis matrix, often called the Fourier encoding

matrix in the context of MR imaging. This encodes (analyses)

an input image into coefficients in k-space, for a set of

sinusoidal functions of various spatial frequencies (k). If we

were only interested in images of low spatial resolution, then a

compact, limited (sparse) number of non-zero k-space

coefficients can of course encode spatially-extensive images

with densely populated non-zero pixel values. More generally

however, an encoder mapping is learned from training data

rather than mathematically designed, and is also non-linear. The

non-linearity of the encoder can be considered as either

activating or eliminating various encoding analysis operators,

in a fashion that depends on the particular input data. This can

also be seen as partitioning the input domain, and having

conventional linear encoders for different regions of the input

domain [56].

A decoder transforms from a (coded or latent) representation

into something that we might choose to identify directly as

having explicit meaning or utility (so no longer “coded”), such

as an image, although again, this is somewhat arbitrary,

depending on our interpretation. A general decoder could be

denoted:

𝒙 = 𝐷(𝒛; 𝜽𝐷̂) (37)

where D is the overall, generally non-linear decoding operator,

specified by the possibly many layers of decoder parameters,

𝜽𝐷̂ (which would in general have been learned from training

data). Similar to the encoder, this decoding operator could be

given by a cascade of mappings, each of which is given by the

form of equation (35).

A trivial untrained linear example would be the inverse DFT,

which decodes a spectrum by using the k-space coefficients as

the amplitudes of sine and cosine basis functions to synthesise

an output. With the simple linear example of the DFT encoder

and inverse DFT decoder, we could again consider using a

compressed latent space representation of an image or signal,

by only retaining or using a subset of the k-space coefficients.

Using a random subset of k-space would correspond to one

example of compressed sensing MR imaging, as a case of

sparse coding. More generally though, the decoder mapping is

non-linear, and so can be broadly considered as using a set of

learned representation basis vectors which are chosen according

to the input code vector.

In the context of PET image reconstruction, dictionary

learning is another good example of a decoder mapping. The

goal in dictionary learning methods is to learn an image

representation set of basis functions (learnable either from the

data in hand, prior data, and/or data from another modality), and

express the reconstructed image as a weighted sum (a synthesis)

of those learned basis functions. The latent space is the set of

coefficients for the basis functions, and these should either be

non-negative or sparse, to ensure that only key signal is retained

and that data noise cannot survive the representation. An

example is the work of Tahaei et al. [57].

Figure 7 illustrates the principle: we seek a different, but

useful, latent space, encoded representation of an image or

sinogram data. This is such that, for example due to its

compactness (reduced dimensionality or sparseness), in this

latent representation space noise cannot be represented, but

only information useful to the imaging task (e.g. clean, noise-

free PET images). Also, tasks can be accomplished in simpler

way in this latent space, and/or manipulations of data made

easier (just as, by analogy, analysis and manipulations are

sometimes easier in the Fourier domain than the space or time

domain). With a coded description found in this clean latent

representation space, we can then use a generator or decoder

network to produce an end-point image corresponding to that

representation. Of course, since the latent space should be

designed to encode only the desired image features, the

generated image will be composed only of such features.

 A decoder can however be used in a more general sense, as

we could freely design or randomly create our own latent space

vectors, input these to a decoder, and so generate random sets

of meaningful signals or images. Hence the decoder can be used

as a standalone generator, or a generative model. For the DFT

example, this corresponds to designing or randomly choosing

values in k-space, then applying an inverse DFT to generate

images containing those spatial frequencies. Of course, random

choices of spatial frequencies would lead to quite random

output images. However, deep mapping decoders trained on

useful image sets allow far more powerful and meaningful

representations of images (beyond the simplicity of the Fourier

basis vectors), such that randomly coded inputs result in new,

never seen before, image samples drawn from highly complex

high-dimensional probability density functions. Another simple

example would be the kernel EM method, with its use of

equation (16) – random positive values for 𝒛 could be used,

generating many different images, but all constrained to be

within the manifold of objects composed from the dictionary of

basis functions in 𝑩.

 Just as designation of an encoder, latent space and decoder

are all open to our interpretation, so also the demarcations

between the encoder, latent space and decoder are open to our

interpretation. Consequently there are infinitely many encoder

operators, latent spaces and decoders available for any given set

of images. This can be seen by considering the very simple case

of linear encoders and decoders: there are infinitely many

linearly independent basis vectors that could be chosen for the

encoder/decoder matrices (e.g. whether learned from data via

principal or independent component analysis (PCA, ICA), or

just mathematically devised such as the DFT).

Any given latent space and generator pairing models a

probability density function, in the J-dimensional output image

space. By using many example images to train an encoder,

latent space and decoder such that the input matches the output

(an autoencoder), we can find a latent space, or better still a

probability density function in the latent space (as done by a

variational autoencoder [58]), such that random sampling of

latent space vectors will map, via the decoder, to produce the

distribution in the desired sub-space / manifold of expected

object vectors 𝒙.

We can also provide non-random input vectors to generators,

such as images or sinograms, in which case the generator

becomes what is known as a conditional generator (Figure 8).

For example, sinogram data or a provisional image can be

supplied to the network, and a high quality sample predicted

> PAPER IDENTIFICATION NUMBER 1 <

11

from that conditional information. (In such cases, it is helpful

to regard the conditional input information as first being

encoded to a latent space, from which the generator then

generates an image). When input images are used, this means

that even very simple denoising mappings can in effect be

regarded as conditional generators – they map a fixed input

image to a fixed point in the output manifold. In contrast, of

course, a fully-fledged trained generator should, with random

inputs, be able to always output meaningful images, populating

the entire manifold of useful images based on the training data.

Training of generative models can be enhanced, to deliver

more realistic results (i.e. more closely resembling samples

from the training data), through use of a discriminator. So-

called generative adversarial networks (GANs) train a second

network, a discriminator, to impose improved performance of

the generator network [7]. Discriminators improve the

performance of a generator by learning to discriminate between

real samples from the training data (drawn from the real

probability density function in the manifold of the space of x),

and samples from the generator. The output of the discriminator

is used as a penalty in the training loss function for the

generator: if the discriminator can recognize a generated sample

as being a generated one (a fake sample), this penalises the loss

function for the generator, such that it has to train better to seek

a lower loss. The generator and discriminator are trained in an

alternating manner, to reach a point whereby the generator can

produce samples for which the discriminator only has 50%

success rate in correctly classifying a synthetic sample as real

or as synthesised. GANs have been applied in the context of

MR reconstruction [59], and very recently for PET

reconstruction ([60], considered later in this review) as well as

for post-reconstruction processing of PET images [61, 62] [55].

In summary, generators can be regarded as standalone

decoders, or as synthesisers, in the form of a deep neural

network which takes as direct input the latent space

representation. The parameters of the generator are usually

learned from unlabeled training data examples. These networks

ideally should be able to generate all feasible reconstructed

images of interest with appropriate probabilities based on the

training samples.

We finish this section by mentioning the popular U-Net deep

architecture [63]. This architecture very much follows the form

of an encoder and decoder, but the critical difference is that

there are skip connections included, which allow each

downsampling section of the encoder mapping to be skipped,

with feature maps at each downsampling stage being

transferred directly as channel inputs to the respective

upsampling (decoder) stage. Figure 9 shows an example of this

network. The use of skip connections allows higher resolution

feature maps to be directly included for consideration as extra

channel inputs for the decoder, and in effect serve to increase

the expressive potential of the overall network. The approach

has proven highly successful in the original application area of

image segmentation, and PET image reconstruction methods

have since also made use of U-Nets, which when supplied with

input images can be regarded also as conditional generator

networks. Nonetheless, improvements have subsequently been

proposed, such as deep convolutional framelets, to overcome

some of the limitations with U-Nets [64, 65].

Fig. 7. Principles of an encoder (transform / analysis / compressing) operator

and a decoding (generator / synthesis / decompression) operator, in this example
case for mapping from fully 3D sinograms, to a latent space, and then out to a

3D PET image. This would correspond to the case of a direct mapping for PET

reconstruction, to be covered later in this review. It is important to note that a
decoder or generator can be used in isolation as an image generator for any

given input vector (latent space or code vector).

Fig. 8. Generators and conditional generators (GANs are a special case, where

the generator has been trained with the assistance of a discriminator,

encouraging outputs to look comparable to real data examples). Any network
or mapping can in principle be regarded as a generator, in that an input will be

mapped to an output, through a (possibly only notional) latent space. Hence

generators can even be regarded as including the encoder as well. Conditional
GANs, when conditioned on specific input data or images, can be regarded as

encoding the input, then generating an output, e.g. using a CNN or U-Net. As

such, any image denoising operator can be viewed as a conditional generator
(or conditional GAN if trained in conjunction with a discriminator), and are

usually easier to implement than fully-fledged generative models (which are

required to generate meaningful output sample images when given random
inputs, or random latent space values).

> PAPER IDENTIFICATION NUMBER 1 <

12

Fig. 9. An example of a U-Net architecture, in this case composed of a

convolutional downsampling encoder (using stride 2 convolutions to

downsample by a factor of 2) and a convolutional upsampling decoder (using
fractional stride of 0.5 to upsample by a factor of 2). Crucially there are skip

connections between each stage of down/up sampling, enabling greater levels

of representation capacity, or expressivity, of the network.

H. Optimisation and generalisation

From a conventional perspective, the highly-parameterised

non-linear deep networks just described would be highly

challenging to optimise. We finish this section by noting that

the algorithmic technology, based on backpropagation, for

seeking to minimise loss functions such as (18) has become

available via toolboxes such as TensorFlow and PyTorch, using

gradient-based algorithms centered on stochastic gradient

descent (SGD). We refer to excellent reviews of these

optimisation topics [66], regarding them as enabling

technologies, permitting the design and practical training of

deep non-linear networks.

While it is already a significant endeavour to minimise a loss

function with a highly non-linear parameterisation, there is also

the further challenge of reducing the generalisation error – i.e.

how well the trained network performs when tested on new,

never seen before test data. This is a major research area, with

existing strategies including regularisation of the loss function

(e.g. norms of the parameters, to stop them becoming too large

in uniquely fitting the training data only), dropout (i.e.

randomly switching off a fraction of the parameters in a given

FC or convolutional layer to stop them memorizing training

data), data augmentation (i.e. artificially enlarging the domain

of the training data by manipulating and processing existing

training data), and transfer learning. Transfer learning concerns

using networks previously trained for other tasks and data, and

applying these to a new task. For PET this has been done in a

post-reconstruction context, using a pretrained VGG network

[67] to assist in PET denoising [68], and the VGG network has

also been used in PET reconstruction, as will be mentioned

below. Domain adaptation, similar to transfer learning, involves

performing the same task but on different source domain data,

such as for example data from different scanners [69] or from

different PET centers. In the context of PET image

reconstruction, generalisation error reduction can be regarded

as improving domain adaptation. The case of performing the

same task on different domains has already been progressing at

a rapid rate, for example in the context of MR brain

segmentation from different centers [70].

IV. OVERVIEW OF DEEP LEARNING IN PET RECONSTRUCTION

There are at least four key ways in which to exploit the potential

of deep learning mappings within PET image reconstruction,

compared and summarised in Table I. One specific case which

will not be covered in this article is that of post-reconstruction

processing (e.g. [62, 71]), as this no longer involves the

reconstruction process. In this section we provide a brief

overview of five key current approaches, before exploring four

of them in greater detail in sections V-VIII of the review.

A. Deep learning for direct reconstruction

The first approach is a full end-to-end mapping, a direct

reconstruction method, which uses a deep network to map from

raw sinogram data 𝒎 directly to an end-point reconstructed

image estimate 𝒙. This is represented simply by (as covered in

section III):

𝒙 = 𝐹(𝒎; 𝜽̂) (38)

Hence every aspect of the image reconstruction (the physics,

imaging model and statistics) needs to be learned by the deep

mapping, which can require a large quantity of training data. In

principle, these approaches avoid modelling errors, and once

trained result in fast and potentially highly accurate

reconstructions. Key examples will be covered in more detail in

section V below, but they tend to be characterised by relatively

high training data needs, with high (even prohibitively so at

present) computational demands for fully 3D reconstruction.

B. Deep learning for image generation: synthesis

regularisation

A second approach is to use deep learning only as an image

constraint, requiring that an estimate of the image be

represented by a deep mapping generator:

𝒙 = 𝐹(𝒛; 𝜽) (39)

with all other components of the image reconstruction task

corresponding to the conventional ones described earlier in

section II. The core idea of equation (39) is to require that any

image estimate 𝒙 be the output of a deep network F operating

on some input code vector, 𝒛. A simple example is for the input

code 𝒛 to be a current noisy image, with the generator F only

needing to be a denoiser, thereby regarding it as a conditional

generator. Notably this allows considerable flexibility for

integrating sophisticated denoisers into PET image

reconstruction, including fully 3D reconstruction. These

approaches will be covered in more detail in section VI below.

C. Deep learning for analysis regularisation

A third approach is to use a deep network inside a conventional

prior or penalty function, as just a component of an otherwise

conventional image reconstruction method using an analysis

regularisation strategy. For example, any of the deep object

models from a synthesis strategy (e.g. image generation / image

synthesis / denoising) can be used, but instead of imposing these

as hard constraints, the analysis prior stipulates that a

reconstructed image 𝒙, while being optimised to agree with the

measured data 𝒎 (e.g. through the Poisson log likelihood),

should not deviate too far from a deep denoised version of the

image. This is less constraining than the synthesis approach

[72], just as MAP-EM methods are, for example, less

> PAPER IDENTIFICATION NUMBER 1 <

13

constraining than KEM methods (see previous sections II.B and

II.C).

D. Deep learning for the entire prior: unfolded methods

A fourth approach is to use deep learning for the entirety of

the penalty or prior, thereby completely discarding any analytic,

intuitive or handcrafted component. This means there is no

chosen potential function and no explicit analysis operator, but

instead the entire prior, including any effective potential

function, is deep learned. To achieve this, iterative

reconstruction algorithms can be unrolled, or unfolded into a

series of modules or blocks, such that each and every iterative

update is explicitly an update operator in a long cascaded series

of blocks (using the gradient of the data fidelity term and the

gradient of the penalty term). This long chain of processing

blocks gives a deep overall mapping network, for which deep

learning can be used to find the mapping which corresponds to

where the gradient of the penalty is required. The overall

network combines trainable components, (the gradient of the

unknown penalty) and fixed operator components – i.e. the

data-consistency update, usually derived from the gradient of

the Poisson log likelihood for PET reconstruction. This

approach can be viewed simply as interleaving partial or

complete reconstruction operators with deep denoising

operators, in repeated blocks. Each such block performs a

number of MAP-EM image reconstruction updates (from just

one, up to possibly even a completely converged

reconstruction), using an analysis regularisation based on a

prior image. The prior image is a deep-learned denoised version

of the previous reconstruction estimate. A deep network, which

usually depends on the overall block number, is used to denoise

the outcome of the reconstruction operator, in order to provide

an updated denoised prior image for the next block. These

unfolded networks will be considered in detail in section VII

below, and notably are generally practical for fully 3D

reconstruction.

E. Deep learning for preprocessing and post-processing

As mentioned, deep learning for post-reconstruction

processing (or even for pre-processing of the raw sinogram

data), is not under consideration in this review. In both cases,

the approach is typically to upgrade low-dose PET data or

images to high-dose equivalents, lowering noise and enhancing

spatial resolution. There have now been numerous methods for

post-reconstruction deep learned denoising in PET (e.g. [62, 71]

[73, 74]).

A noteworthy exception, which can be viewed as

reconstruction (or possibly post-processing) is the use of

backprojected images, whereby the raw PET data (sinograms or

list-mode data) are first backprojected into a 3D image array

prior to application of a reconstruction algorithm to recover the

quantitative radiotracer distribution. Exploiting backprojected

images dates back a long time in PET (e.g. [44] [75]), and more

recently the backprojection can also exploit time-of-flight

(TOF) information, to produce histo-images (distinct from the

original proposal of [76] which has a histo-image for each

view). Such TOF-backprojected images are excellent

candidates for deep-learned mappings such as CNNs, as

recently demonstrated with promising results [77].

TABLE I

SUMMARY OF CONVENTIONAL AND DEEP LEARNING BASED PET RECONSTRUCTION, DISTINGUISHED ACCORDING TO THE WAY THE OBJECT (IMAGE), DATA MEAN

AND DATA NOISE ARE EACH MODELLED, AS WELL AS THE TYPE OF REGULARISATION AND ALGORITHMIC PRACTICALITIES

METHOD

Model of

object

𝑓(𝒓; 𝒙)

Model of noise

 𝐷𝑃𝐸𝑇(𝒒(𝒙); 𝒎)

Model of

mean of data

 𝒒(𝒙)

Regularisation

𝑅(𝒙)
Algorithm

Training data

needs

Generalisation

capabilities

Memory

needs

Execution

speed

FBP

(conventional)

None Gaussian Radon / x-ray

transform
None

One step

No training

history,

acquisition data
only

Low
(suited to

fully 3D)

Fast

ML-EM

(conventional)

Voxels

Poisson
Factorised

system model

Iterative

N/A

Slow

MAP-EM

(conventional)

 E.g. Quadratic,
guided, TV, Huber

Synthesis

(deep learned)

Learned None

Low
~10-100

datasets

Training data,

with updates

from acquisition
data

Analysis

(deep learned)

Voxels

Penalty for
difference from

learned object

model

Unrolled

(deep learned)

Learned penalty
function

Variable

(suited to

fully 3D)

Direct

(deep learned)

Learned One step
High

~1000-100000

datasets

Limited by

training data

High
(less suited

to fully 3D)

Fast

> PAPER IDENTIFICATION NUMBER 1 <

14

V. DIRECT DEEP LEARNING PET IMAGE RECONSTRUCTION

METHODS

In this section direct deep learning methods are considered in

more detail, with Table II summarising a comparison of key

contributions. In particular there are two pioneering examples

of direct methods for PET image reconstruction, which have

however only been applied to small 2D slices (128×128): the

methods of AUTOMAP [12] and DeepPET [14]. Subsequent

examples of direct reconstruction include Liu et al. [78] and

Whiteley et al. [79] (which notably included multi-slice

reconstruction), and more recently a version of DeepPET with

a discriminator added on [60].

A. Direct: fully-connected (FC) layers with CNNs

Section III introduced FC layers and CNNs, and it should be

clear that we are at liberty to combine these mappings

sequentially, making a deeper network composed of both FC

and convolutional layers. For example, a FC layer could be used

to learn a mapping comparable to the inverse of the Radon

transform (see previous equation (20) and discussion), and then

a series of convolutional layers (a CNN) can be applied to the

output of the FC layer in order to denoise via use of a more

compressed representation. This is the approach of the direct

deep learning method proposed by Zhu et al. in 2018, called

AUTOMAP (automated transform by manifold approximation)

[12], shown in Figure 10. AUTOMAP was proposed mainly for

MR image reconstruction, but was also demonstrated for PET

reconstruction. It has inspired other researchers to develop

comparable methodology for PET (e.g. [79]).

The AUTOMAP architecture first reformats the complex

MRI k-space data into a vector of real numbers only (for PET,

this stage can be considered as just reshaping a PET sinogram

into a column vector), followed by two FC layers (each with a

tanh activation) to learn a mapping comparable to the inverse

DFT in the case of MR, or comparable to an inverse of the

Radon transform in the case of PET. This is followed by

reshaping back to a 2D image, ready for input to the CNN. The

CNN in AUTOMAP is used to denoise by seeking to represent

the image as a sparse collection of features found from the

convolutional layers. Sparse features can be learned by the use

of ReLU activation layers within the CNN used by

AUTOMAP, (rather than by a bottleneck). This imposes a

limited latent space for a compressed representation, occupying

a limited manifold of the J-dimensional object space, mainly

modelling real object features rather than noise features.

AUTOMAP reported good results for variously

undersampled MRI reconstructions, although the PET

reconstruction results were less convincing, with visual quality

inferior to ordinary Poisson OSEM [80]. This was likely due to

the use of single slice rebinned [81] input sinograms,

precorrected for attenuation as input to AUTOMAP, and the

fact that AUTOMAP had been trained with MR images which

had undergone only a simple 2D Radon transform followed by

introduction of Poisson noise. Hence the learned object

manifold was for T1w MR images rather than [18F]FDG-PET,

and there was also a mismatch in the imaging model between

the simulated training data and the test real data. Both of these

limitations would have compromised the potential performance

of the network.

TABLE II

DIRECT DEEP LEARNING METHODS FOR RECONSTRUCTION

Name

Architecture

[total parameters]

Loss function / optimiser

(max epochs)
Training data inputs and targets

Number of training dataset

pairs

AUTOMAP

Zhu et al. [12]
2 FC layers (with tanh) and CNN (3

or 4 layers, 2 with ReLU)

[~800 million parameters]

MSE with L1 penalty
/ RMSprop (100)

Input: undersampled k-space data
(128×128)

Target: Fully sampled T1w MRI

images (128×128)

50,000

DeepPET

Häggström et al.
[14]

Convolutional encoder-decoder:

total of 31 C layers (with batch
normalisation (BN) and ReLU

between all C layers)

[>60 million parameters]

MSE

/ Adam (150)

Input: 2D noisy sinograms

(269×288)
Target: Ground truth PET images

(128×128)

203,305

DPIR-Net

Hu et al.
[60]

Convolutional encoder-decoder:

total of 35 C layers (with BN and
ReLU)

[>60 million parameters]

Discriminator: 8 C layers with BN
and ReLU, 1 FC with LReLU and 1

FC with no ReLU

Wasserstein GAN +

VGG* + MSE / Adam
(100)

Input: 2D noisy sinograms

(269×288)
Target: Ground truth PET images

(128×128)

37,872

DirectPET

Whiteley et al.

[79]

Encoding Segment: 3 C layers

Radon Inversion Layer Segment: 28

FC layers + Refinement and Scaling
segment: residual CNN with 23 C

layers of 64 kernels

[~385 million]

VGG* + MAE + MS-

SSIM / Adam (1000)

Input: 16 2D sinograms normal or

at 50% count level (400×168×16)

Target: 16 2D image slices,
normal reconstructions of 100%

counts

(400×400×16)

2,048

 FC layer: fully-connected layer
C layer: convolutional layer

*VGG: perceptual loss
based on VGG network

[67]

> PAPER IDENTIFICATION NUMBER 1 <

15

Fig. 10. Schematic of the AUTOMAP architecture [12], which starts with two

main FC layers (each with tanh activation) followed by a CNN with three

convolutional layers. This architecture was designed for MRI reconstruction,
but was also demonstrated for PET reconstruction from sinogram data.

B. Direct: convolutional encoder-decoder

The principles of an encoder, latent space and decoder have

been applied to direct PET image reconstruction by Häggström

et al. with their DeepPET architecture [14], as shown in Figure

11. This convolutional encoder decoder (CED) was the second

main proposed direct architecture for direct PET image

reconstruction. Instead of using FC layers to map from a

sinogram to the object space, the CED approach uses

convolutional downsampling to transform progressively from

the sinogram domain towards a learned latent space

representation which has only very limited spatial sampling but

is instead extremely rich in the number of features (latent

variables). This latent space representation is then upsampled

progressively in the decoder part of the network, in order to

express the latent space information in the form of a PET image.

The input sinograms are precorrected, and so the network

needs to learn a non-Poisson noise distribution. Häggström et

al. report the benefits as greatly accelerated image

reconstruction (up to 100 times faster), de novo learning of the

imaging physics and the data noise distribution, thereby

obviating any modelling assumptions in either regard.

Whilst the results reported are of high quality for the

simulated data case, as would be expected due to a match in the

imaging model used for training data and that used for the

supplied test simulated data, the real data results (particularly

for the brain data) still leave room for improvement. There is a

need for high quality (ideally ground truth) reference data to go

hand in hand with the measured data, in order to train the

network correctly for real PET data.

An adversarial version of this kind of network was proposed

by Liu et al. [78], with the key differences being the use of a U-

Net (as a conditional generator) instead of the CED, and the

addition of an adversarial / discriminator network.

Subsequently an extended version of the CED DeepPET with a

discriminator added on was also proposed by Hu et al. [60].

Fig. 11. Schematic of the convolutional encoder decoder (CED) architecture used by DeepPET for direct PET image reconstruction [14] and extended by inclusion

of a discriminator by DPIR-Net [60]. PET scan information expressed in the sinogram domain is progressively transformed by simultaneous reduction of spatial
sampling and increasing of the number of feature maps, until a feature-rich latent space representation is obtained. This latent representation is decoded back out

to an image-space representation of the same information, by increasing the spatial sampling and reducing the number of feature maps.

> PAPER IDENTIFICATION NUMBER 1 <

16

VI. DEEP LEARNING FOR REGULARISATION WITHIN

CONVENTIONAL RECONSTRUCTION

Recall that conventional model-based reconstruction, covered

in section II, used regularisation via analysis or synthesis, but

that one of the drawbacks was the use of handcrafted or

mathematically-convenient analysis or synthesis methods.

Upgrading from a handcrafted prior to a data-driven one is a

simple route for deep learning to bring benefits into

conventional image reconstruction. The approaches reviewed in

this section retain all the standard model-based reconstruction

components (i.e. our knowledge of the imaging physics and

statistics), but just use deep learning for where we are less

certain and are in need of data/evidence-based prior information

- the regularisation component.

Generators can be used in an otherwise conventional image

reconstruction framework, either in a synthesis capacity

(whereby only images which are outputs of a generator can be

used to optimise the reconstruction objective function) or in an

analysis capacity (whereby transformation of the image by a

network into a latent space should result only in a sparsely-

coded description).

A. Regularisation by deep-learned synthesis / generative

models

There are three main approaches to a deep-learned synthesis

model. The first is to estimate an input code vector 𝒛 for a fixed

deep network F [82], to deliver an image such that a

reconstruction objective function (e.g. Poisson likelihood) is

optimised. The second is to use a potentially arbitrary input

code 𝒛, whether random noise or a prior image, and estimate the

network parameters in order to optimise the

reconstruction objective function. Thirdly, one could seek to

estimate both  and also 𝒛 in a simultaneous or alternating

manner. A simple example is for the input code 𝒛 to be a

current noisy image, with the generator F only needing to be a

denoiser, thereby regarding it as a conditional generator.

We will start with the case of estimating a code vector 𝒛

directly, which when mapped through an operator produces the

image vector x. Recall from the introduction that the kernel

method (KEM, equations (16) and (17)) was a synthesis method

of regularisation. This synthesis approach was in fact the

motivation behind the work of Gong et al [82], who, instead of

using a linear set of basis functions B, used a pretrained CNN

as the generative mapping (fixed choice of for a fixed

mapping F), imposing the following model for the radiotracer

distribution’s parameter vector x (see again equation (1)):

𝒙 = 𝐹(𝒛; 𝜽𝑭𝑰𝑿) (41)

where the goal is to estimate the representation parameter code

vector 𝒛 such that when it is mapped through the fixed generator

CNN F, an image x is delivered which is consistent with the

data. However, of course, the constraints of the CNN

representation will mean that the forward model of x will not

be entirely consistent with the data, due to both the CNN’s

constraints and the fact that the data contains noise. The

estimation of 𝒛 is purely by use of a constrained maximum-

likelihood objective function, using equation (5) (the Poisson

log likelihood):

𝒙 = argmax
𝒙

𝐿(𝒙|𝒎)

 𝑠. 𝑡. 𝒙 = 𝐹(𝒛; 𝜽𝐹𝐼𝑋)
(42)

where L is the Poisson log likelihood, given by the negative of

equation (5). Given the constraint in (42), that a non-linear

CNN mapping must generate the solution vector x, we can no

longer use the conventional EM algorithm which assumes a

linear forward model operating on the representation parameter

vector. Using the approach of an augmented Lagrangian, Gong

et al. first convert the constrained maximisation problem of (42)

into a penalised unconstrained problem instead. This results in

integrating conventional reconstruction methodology into the

broader algorithmic framework of the alternating direction

method of multipliers (ADMM).

The first step of the method is a conventional MAP-EM

problem to find an update of the image x, using a quadratic

penalty with a prior image (cf. equation (14)) 𝐹(𝒛𝑛) obtained

by the CNN operating on the current estimate of the code vector

𝒛𝑛:

𝒙𝑛+1 = argmax
𝒙

𝐿(𝒙|𝒎) −
𝜌

2
‖𝒙 − (𝐹(𝒛𝑛; 𝜽𝐹𝐼𝑋) − 𝝁𝑛)‖2 (43)

where 𝝁 is initially zero, and  relates to the strength of the

penalty. Equation (43) is solved by a conventional MAP-EM

algorithm such as equation (15) given earlier. The latent code

𝒛𝑛 is subsequently updated to seek to match this new image

estimate:

𝒛𝑛+1 = argmin
𝒛

𝜌

2
‖𝐹(𝒛; 𝜽𝐹𝐼𝑋) − (𝒙𝑛+1 + 𝝁𝑛)‖2 (44)

Equation (44) is solved by non-linear least squares (the authors

used a first-order approximation of the gradient of the objective

function (44) with respect to 𝒛). Finally 𝝁𝑛 is updated by

𝝁𝑛+1 = 𝝁𝑛 + 𝒙𝑛+1 − 𝐹(𝒛𝑛+1; 𝜽𝐹𝐼𝑋) (45)

where in effect 𝝁 is an image showing the data-unique

features which had not been expressed by the CNN, as it

corresponds to the discrepancy between the new reconstructed

image estimate 𝒙𝑛+1 (based on agreement with the data) and the

constrained output of the CNN operating on the code vector

𝐹(𝒛𝑛+1).

The ADMM approach then reverts back to equation (43) to

repeat the series of three updates. It can be seen that in effect,

after the first iteration, 𝝁 increases the penalty in the MAP-EM

image reconstruction stage to encourage the image x to agree

more with the CNN output (which is good if it denoises, but bad

if it loses true image features). In a similar manner, for the

update of the latent code 𝒛, the effect of 𝝁 is now to emphasise

importance of the data-unique features which had not been

successfully represented in the previous iteration. It requires the

network output to agree more with the data-based

reconstruction, emphasising regions of the image where there

> PAPER IDENTIFICATION NUMBER 1 <

17

had been disagreements. Where the data contains features

which are not readily expressed by the network F, extra

penalties occur, to seek to reduce the discrepancy of network

output with the data.

Gong et al. report improved lesion contrast, for a given noise

level, compared to post-reconstruction CNN denoising (see

Figure 12), which perhaps is not surprising, as post-

reconstruction CNN denoising no longer demands agreement

with the original raw data, whereas the CNN representation

method does.

The same authors extended their work, inspired by the “deep

image prior” (DIP) [83] to use instead a fixed input vector 𝒛,

defined to be, for example, the patient’s MR image (the original

DIP used random noise), and then trained a conditional

generative CNN mapping F, such that the parameters of the

network map the fixed 𝒛 to the current reconstructed image

[13]. The algorithm follows a similar framework to that just

described in equations (43) to (45), with the key difference

being that instead of updating the latent code vector 𝒛 in

equation (44), Gong et al. now update the network parameters

instead:

𝜽𝑛+1 = argmin
𝜽

𝜌

2
‖𝐹(𝒛𝐹𝐼𝑋; 𝜽) − (𝒙𝑛+1 + 𝝁𝑛)‖2 (46)

Equation (46) is solved by training a deep CNN to map the fixed

prior 𝒛𝐹𝐼𝑋 (the subject’s MR image) to match the current MAP-

EM update 𝒙𝑛+1, with an emphasis (given by 𝝁) in regions

where the CNN had previously failed to represent features in

the data-based reconstruction x. The crucial point to note is that

the method does not use any training data, and can be viewed

as unsupervised deep learning. Gong et al. compared the

method to using a CNN penalty method, as shown in figure 13,

where it can be seen that PET-unique regions are more clearly

defined in the deep image prior method. The method was

subsequently extended to 4D image reconstruction for the

Patlak model [84]. In the context of dynamic PET image

reconstruction, Yokota et al. used U-Nets as representations of

parametric images, with random 𝒛 inputs [85], thereby placing

more demand on the network training. Furthermore, a GAN

approach, which enhances the generator, has also been

proposed [86].

Table III provides a representative summary of methods for

synthesis-based deep learning methods in the literature. The

limitations of these methods are that the hyperparameters,

mainly , need selecting for the components of the ADMM

optimisation. However performance is intended to be

independent of , given the original objective function (42) is

purely an unpenalised maximum likelihood with just an object

model constraint.

B. Regularisation by deep-learned analysis

A more flexible (less constrained) approach to using deep

generators in reconstruction is via a regularisation analysis

framework. This allows a balance between data-fidelity

expressed at the pixel/voxel level and a penalty for deviation

from a constrained, learned object model. An example would

be a quadratic penalty:

𝑅(𝒙) = ∑ ([𝐹(𝒙𝑛; 𝜽𝐹𝐼𝑋)]𝑖−𝑥𝑗)
2𝐽

𝑗=1
 (47)

where in (47) F would be a denoiser, or a conditional generator.

Alternatively, the prior can stipulate that the reconstructed

image should not deviate too far from a sparse-coded image:

𝑅(𝒙) = ∑ ([𝐹(𝒛𝑛; 𝜽𝐹𝐼𝑋)]𝑖−𝑥𝑗)
2𝐽

𝑗=1
 (48)

where, depending on the architecture of the mapping, it may

also be necessary to explicitly require sparsity of the code

vector 𝒛, by adding a penalty for highly populated code vectors

which deliver a large norm:

𝑅(𝒙) = ∑ ([𝐹(𝒛; 𝜽)]𝑖−𝑥𝑗)
2𝐽

𝑗=1
+ ‖𝒛‖ (49)

A penalty comparable to (49) was the approach used by Xie et

al. [87]. In these formulations it is noted that a conventional

potential function, such as a quadratic as shown in (14), is still

used, as was the case in Kim et al. [88]. Otherwise, all other

image reconstruction components remain conventional in

definition. Gong et al. also used a CNN penalty as an example

method to compare with in their work using the deep image

prior [13], as was shown in Figure 13.

> PAPER IDENTIFICATION NUMBER 1 <

18

Fig. 12. Example results of using the CNN representation method (“Iterative CNN”) compared to post-reconstruction CNN denoising (which does not involve

consistency with the data) [82]. For a given standard deviation (STD) in the liver region, the contrast recovery (CR) in the lesion in the lung is better when using a

CNN representation of the image. Both CNN methods outperform the 3 conventional methods, by lowering image noise in the liver region by up to a factor of 2.

TABLE III

SYNTHESIS REGULARISATION DEEP LEARNING METHODS FOR PET RECONSTRUCTION

Name
Architecture

[total parameters]
Loss function / optimiser

(max epochs)
Training data inputs and targets

Number of training

dataset pairs

CNN

Representation

Gong et al. [82]

Modified U-Net: 3 encoding

blocks (C+BN+ReLU), 3

decoding blocks (C+BN+ReLU),
2 C+BN+ReLU in bottleneck,

skip connections (sum residual

and current image) instead of
concatenating (add residual as a

new channel)

[~1.4 million parameters]

MSE / Adam (1500) Input: 3D low-count reconstructions

Brain data: (128×128×91),

Lung data: (128×128×49)
Target: 3D high-count

reconstructions

Brain data: (128×128×91),
Lung data: (128×128×49)

Brain: 15

Lung: 5

Deep Image Prior

Gong et al. [13]

Modified U-Net: 3 encoding

blocks (2 C+BN+LReLU), 3

decoding blocks (2

C+BN+LReLU), 2

C+BN+LReLU in bottleneck,

skip connections instead of

concatenating

[~2 million parameters]

MSE / L-BFGS

(20 epochs per ADMM
iteration, 100 ADMM

iterations in total)

Input: 3D anatomical prior (MRI)

(192×192×128)
Target: An EM iteration (3D)

(192×192×128)

1

Xie et al. 2019
[86]

GAN: Generator: Modified U-
Net: 3 encoding blocks (with 1 C

layer), 3 decoding blocks (with 1
C layer) and a self-attention

module and 2 C layers at

bottleneck
[~1.5 million parameters]
Discriminator: 6 C layers with

self-attention module in between
3rd and 4th layer

Generator: MSE + Binary
Cross-Entropy

Discriminator: Binary
Cross Entropy / Optimiser

not specified

(400)

Input: 3D low-count image
(128×128×5)

Target: High-count middle slice
(128×128×1) + Label Real/Fake

image

20

Yokota et al. [85] 3 U-Nets combined in parallel

[~4 million parameters for 1 U-

Net]

MSE / Adam

(20,000)

Input: noise

Target: spatial factors i.e.

homogeneous tissues with kinetic

parameters (128×128×3)

1

> PAPER IDENTIFICATION NUMBER 1 <

19

Fig. 13. Example results [13] for the deep image prior (DIPRecon), offering

improved lesion contrast compared to the kernel method (KEM with MRI) and

a CNN penalty method.

VII. UNROLLING OR UNFOLDING ITERATIVE RECONSTRUCTION

WITH DEEP LEARNING

The direct deep learning methods previously described in

section V do not make any use of the imaging system model A,

nor the statistical-noise model described in Section I. Instead,

large quantities of training data are needed to learn these from

scratch (see Table II). This is potentially advantageous, as it

avoids modelling errors, but arguably it is wasteful, discarding

years of progress in modelling expertise and reconstruction

algorithm development. Furthermore, by excluding these

models, there is potential for the direct methods to perform

potentially inexplicable mappings, which may limit confidence,

especially for unexpected (out of domain) inputs to the network.

In contrast, the deep learning regularisation methods covered

in section VI do make use of existing models, exploiting deep

learning only for image regularisation. However, these

approaches still retain the mathematically-convenient potential

functions which operate on these images for the regularising

penalty. The choice of potential function is not motivated by the

data, but only by convenience.

There has been increasing work in physics-informed AI /

deep learning (e.g. [89]), and image reconstruction is no

exception. The goal here is to combine the power of the AI

paradigm with our existing knowledge of the imaging physics

and statistical modeling, seeking a hybrid new image

reconstruction methodology that exploits the best of AI with the

best of our understanding of imaging physics and

reconstruction. This has the further advantage of using AI only

for the parts of the reconstruction process for which we are not

confident– such as precisely how to regularise, and to what

strength, leaving the imaging system physics model and noise

model to be what we are confident and know they should be.

This has the advantage of interpretability, important for clinical

imaging such as PET. The methods of Section VI have taken

steps towards this, but as mentioned, do retain a convenient

handcrafted potential function. The methods in this section will

now also replace the potential function via deep learned

mappings, based on unrolling conventional iterative

reconstruction.

Figure 14 shows the general framework for three of the key

methods which will be covered in detail below. The first

proposal of turning an iterative reconstruction method into an

unfolded deep network was in fact by Gregor and LeCun, as

early as 2010 [90]. Examples for medical imaging

reconstruction include, from the world of MRI, the work of

Hammernik et al. [91] (named a variational network). However,

this section will focus on PET image reconstruction.

A. EM-Net and MAPEM-Net

We first consider the method of Gong et al., named EM-Net

[92], which writes a general MAP-EM iterative update as

follows:

𝒙𝑛+1 = 𝒙𝑛 − 𝛼 [𝑨𝑇 (𝑰 −
𝒎

𝑨𝒙𝑛 + 𝝆
) + 𝛽𝑅′(𝒙𝑛)] (47)

where  is the update step size, the first term in the square

parentheses is the negative of the gradient of the Poisson log-

likelihood data-fidelity term, and 𝑅′ is the gradient of 𝑅,

evaluated at 𝒙𝑛. EM-Net replaces 𝑅′ by a deep network, to

obtain:

𝒙𝑛+1 = {𝒙𝑛 − 𝛼𝑛
𝒙𝑛

𝑨𝑇𝑰
[𝑨𝑇 (𝑰 −

𝒎

𝑨𝒙𝑛 + 𝝆
)

+ 𝐹(𝒙𝑛; 𝜽)]}
+

(48)

where the step size  is learned and iteration (n) dependent, and

a non-negativity constraint is imposed. Just one same trained U-

Net is used for F for all iterations, to learn the gradient of the

unknown penalty function. The training of this single mapping

F, and the step sizes, was based on a MSE loss function which

required the last iterative output, 𝒙𝑁, for noisy data, to match

the last iterative output from a reconstruction from high count

reference data. However, Gong et al. subsequently reported that

direct replacement of the gradient of the prior by a CNN may

be too smooth to capture its required high spatial frequency

components, and hence they proposed MAPEM-Net [93],

another unfolded method.

 The approach of MAPEM-Net is to extend the constrained

ML problem (equation (42), as was used for a deep learned

image generator / CNN representation) to be now a constrained

MAP problem instead:

𝒙 = argmax
𝒙,𝒛

𝐿(𝒙|𝒎) − 𝛽𝑅(𝒛)

 𝑠. 𝑡. 𝒙 = 𝒛
(49)

Following a similar ADMM algorithmic approach to that

covered in the earlier section for synthesis deep learned

regularisation ((43)-(45)), the following updates are obtained:

𝒙𝑛+1 = argmax
𝒙

𝐿(𝒙|𝒎) −
𝜌

2
‖𝒙 − (𝒛𝑛 − 𝝁𝑛)‖2 (50)

𝒛𝑛+1 = argmin
𝒛

𝜌

2
‖𝒛 − (𝒙𝑛+1 + 𝝁𝑛)‖2 + 𝛽𝑅(𝒛) (51)

𝝁𝑛+1 = 𝝁𝑛 + 𝒙𝑛+1 − 𝒛𝑛+1 (52)

> PAPER IDENTIFICATION NUMBER 1 <

20

Updates (50) and (52) compare directly with updates (43) and

(45), but with 𝒛 replacing 𝐹(𝒛). The update for 𝒙, as before in

(43), is readily achieved by one or more iterations of MAP-EM.

However, the key change is for the 𝒛 update, equation (51),

which now includes a penalty 𝑅(𝒛), and Gong’s

implementation opts for replacing the entirety of update (51) by

an iteration-dependent deep network acting to denoise the

MAP-EM output, to obtain:

𝒛𝑛+1 = 𝐹𝑛(𝒙𝑛+1) (53)

The resulting algorithm is therefore very simple. One or more

MAP-EM updates are performed for (50) (Gong et al. chose just

two updates), then the result is denoised via a deep network

(Gong et al. used an iteration-dependent U-Net for (53)). This

denoised image is then used as the prior image for the quadratic

penalty in the next set of one or more MAP-EM updates (for

solving problem (50) again). It is important to note that while

equation (50) uses an L2 norm (quadratic) penalty, nonetheless

the prior being used in the reconstruction, 𝑅(𝒛), is completely

learned and so is very unlikely to correspond to a quadratic

potential.

The approach is shown schematically later on in Figure 14,

in a framework enabling comparison to two rival methods.

B. FBSEM-Net

The unrolled method of Mehranian and Reader [94] is derived

from the forward-backward splitting (FBS) algorithm [95] for

solving the penalised Poisson log-likelihood. First, for a current

estimate 𝒙𝑛−1, the denoising (regularisation) update is given by:

𝒙𝑅𝑒𝑔
𝑛 = 𝒙𝑛−1 − 𝛾𝛽𝑅′(𝒙𝑛−1) (54)

which is a gradient descent towards the minimum of 𝑅 with a

step size of 𝛾. The actual update of the current image estimate

is then given by:

𝒙𝑛 = argmax
𝒙

𝐿(𝒙|𝒎) −
1

2𝛾
‖𝒙 − 𝒙𝑅𝑒𝑔

𝑛 ‖
2
 (55)

which is a proximal mapping (just as used elsewhere, e.g.

equation (50) for MAPEM-Net) associated with the Poisson

log-likelihood 𝐿 with 𝛾 as a regularisation hyperparameter that

limits the degree of data fidelity of 𝒙 to 𝒎 by requiring

proximity to 𝒙𝑅𝑒𝑔
𝑛 . Note the difference in (55) compared to (50)

is the absence of the residual image (Lagrange multiplier) .

Following the approach of De Pierro [96], a separable

surrogate is then defined for the objective function in (55), so

that it can be rewritten as:

𝒙𝑛 = argmax
𝒙

∑ 𝑥𝑗,𝐸𝑀
𝑛 ln(𝑥𝑗) − 𝑥𝑗 −

1

2𝛾𝑠𝑗
(𝑥𝑗 − 𝑥𝑗,𝑅𝑒𝑔

𝑛)
2

𝑗

(56)

where 𝒙𝐸𝑀
𝑛 is given by the standard EM update (compare to the

earlier equation (6) in section II):

𝑥𝑗,𝐸𝑀
𝑛 =

𝑥𝑗
𝑛−1

𝑠𝑗

∑
𝑎𝑖𝑗𝑚𝑖

∑ 𝑎𝑖𝑘𝑥𝑘
𝑛−1

𝑘 + 𝜌𝑖𝑖
, 𝑠𝑗 = ∑ 𝑎𝑖𝑗

𝑖
 (57)

By setting the derivative of the surrogate objective function (56)

to zero, a closed-form solution is obtained [97]:

𝑥𝑗
𝑛+1

=
2𝑥𝑗,𝐸𝑀

𝑛

(1 − 𝛿𝑗𝑥𝑗,𝑅𝑒𝑔
𝑛) + √(1 − 𝛿𝑗𝑥𝑗,𝑅𝑒𝑔

𝑛)
2

+ 4𝛿𝑗𝑥𝑗,𝐸𝑀
𝑛

𝛿𝑗

=
1

𝛾𝑠𝑗

(58)

which compares with the MAP-EM update (15) given back

in section II. For FBSEM-Net, the gradient of the prior in (54)

is replaced by a CNN, and hence the whole update equation (54)

becomes a residual network (i.e. using a skip connection):

𝒙𝑅𝑒𝑔
𝑛 = 𝐹(𝒙𝑛−1) (59)

where the training of the deep network 𝐹, including the

training of 𝛾, is such that the end iteration after a series of

updates matches a high quality image (e.g. a large number of

iterations of ML-EM from high count data, or a lightly

regularised MAP-EM if the count level is not sufficiently high

in the reference data). Equation (59) compares closely to

equation (53) in the method of MAPEM-Net, but here a fixed

network 𝐹 is used, not changing from iteration to iteration.

These equations lead to a training framework which is also

shown in figure 14, and more specifically in figure 15. Figures

16 and 17 show example results from this approach for

simulated and real data respectively, including comparison with

post-reconstruction deep denoising via a U-Net. The learned

prior, which in the results shown also exploits an MR image as

an input channel to assist the deep denoiser, notably enhances

reconstructed image quality compared to conventional

reconstruction. More details are available in [94].

C. BCD-Net

The method called BCD-Net [98] was adapted to low-

statistics PET reconstruction by Lim et al. in 2018 [99, 100],

predating EM-Net, MAPEM-Net and FBSEM-Net. BCD-Net is

very similar to the aforementioned methods, again interleaving

a MAP-EM reconstruction (composed of just one or potentially

very many iterations) with a deep learned denoising of the

reconstruction update. The processed reconstruction is then

used as a prior in the next full MAP-EM reconstruction. This

iterative process continues, and the deep-learned processing of

the reconstruction depends on the overall iteration number.

BCD-Net first conducts an initial number of EM iterations to

get a current image estimate 𝒙𝑛, which is denoised by a block n

dependent CNN:

𝒛𝑛+1 = 𝐹𝑛(𝒙𝑛) (60)

Then this denoised image is used as a prior for a full MAP-

EM reconstruction:

> PAPER IDENTIFICATION NUMBER 1 <

21

𝒙𝑛+1 = argmax
𝒙

𝐿(𝒙|𝒎) −
𝜌

2
‖𝒙 − 𝒛𝑛+1‖2 (61)

The method then repeats, starting again from equation (60).

Specifically for BCD-Net, the method is proposed initially with

a simple 3 layer network, although is extendable in principle to

deeper architectures, such as a U-Net, as was considered by Lim

et al.

Table IV summarises the different deep architectures used by

the various unrolled methods, and table V summarises the key

similarities and differences between MAPEM-Net, FBSEM-

Net and BCD-Net. An advantage of the BCD-Net method,

compared to the other unrolled methods, is lower demand on

computational memory, as distinctly separate reconstruction

and denoising training at the block level is executed without the

need for a very deep single network to be in memory. In

contrast, the other unrolled methods involve backpropagation

through all blocks, which is memory intensive during training.

Fig. 14. General framework for three major unrolled methods for PET image reconstruction with integration of deep learning for the regularisation. The unrolled

series of updates is composed of n=1…N blocks. For BCD-Net, training is done at the block level, where the goal is to denoise an update to make it best match a
high quality (or true) reference. In contrast, both MAPEM-Net and FBSEM-Net conduct their training based on the very end image (last iteration), necessitating

backpropagation through all N blocks during training in order to update the parameters for the denoiser network. For MAPEM-Net, there are K=2 MAPEM updates

within a block, and training of each block-dependent denoiser Fn (depends on n) is such that the very last iteration matches the high quality reference (such as the
last iteration of MLEM from high quality data). For BCD-Net, K can vary from 1 to many iterates, and training is done for each individual block’s denoiser Fn,

such that the iteration at that stage matches the high quality reference- this avoids backpropagation through the whole series of blocks. For FBSEM-Net, K=1, and

training is such that the last iteration should match the high quality reference (e.g. high quality MLEM reconstruction, or MAP-EM with light regularisation from
higher count data). The “Prior” indicates a fixed image used in an L2 norm penalty for the MAPEM update.

Fig. 15. Explicit schematic of the FBSEM-Net method [94], where by a CNN with a skip connection, a “residual learning unit” is trained, along with the

hyperparameter for the fusion of the denoised image with the EM update (equation (58) expresses the fusion step explicitly).

> PAPER IDENTIFICATION NUMBER 1 <

22

Fig. 16. Example slices for 3D simulated [18F]FDG data for FBSEM-Net, trained to match high-count reference data, when using ~100 times less data along with
a T1w MR image for further information. FBSEM-Net is compared to conventional OSEM (no MRI benefit), without and with point spread function (PSF)

modelling, MAP-EM with MRI guidance, and to a post-reconstruction denoised reconstruction using a U-Net supplied with MRI information.

Fig. 17. Example results for real [18F]FDG data for FBSEM-Net, trained to match 30 minute reference data, when using 2 minute data along with a T1w MR image

for further information. FBSEM-Net is compared to conventional OSEM (no MRI benefit) and to a post-reconstruction denoised reconstruction using a U-Net

supplied with MRI information.

> PAPER IDENTIFICATION NUMBER 1 <

23

TABLE IV

UNROLLED PET RECONSTRUCTION WITH DEEP LEARNING: ARCHITECTURES

Name
Architecture

[total parameters]

Loss function /
optimiser

(max epochs)

Training data inputs and targets
Number of training

dataset pairs

EM-Net

Gong et al. [92]

1 modified U-Net shared for all

blocks: 3 encoding stages (2

C+BN+LReLU), 3 decoding stages (2

C+BN+LReLU), 2 C+BN+LReLU at

bottleneck, skip connections (add)

instead of concatenating

[~2 million parameters]

MSE / Adam

Input: last iteration after all blocks

Target: 3D high count reconstruction
(128×128×46)

16

MAPEM-Net

Gong et al. [93]
8 modified U-Nets, each composed of

3 encoding stages (2 C+BN+LReLU),

3 decoding stages (2 C+BN+LReLU),

2 C+BN+LReLU at bottleneck, skip

connections (add) instead of

concatenating

[~(8×2)=16 million parameters]

MSE / Details
not specified

Input: last iteration after all blocks
Target: 3D high count reconstruction

(128×128×105)

18

FBSEM-Net

Mehranian and

Reader [94]

1 shared CNN for all blocks: 3 C
layers each with BN+ReLU, 12

unrolled iterations

[~77,000 parameters]

MSE / Adam

(200)

Input: last iteration after all blocks
Target: 3D high count reconstruction

Cropped: (114×114×128)

(for (344×344×128))

35

BCD-Net

Lim et al. [100]

10 convolutional autoencoders, each

composed of 2 C layers and soft

thresholding operator in between

[~(10×4000)=40,000 parameters]

MSE / Adam

(500)

Input: current output from a block

Target: true activity image
(200×200×112)

4

TABLE V

COMPARISON OF KEY DISTINGUISHING FEATURES BETWEEN THE THREE UNROLLED METHODS: BCD-NET, MAPEM-NET AND FBSEM-NET

METHOD Initial

image

Network

different for
each block?

MAPEM updates

before update of
prior

Use of residual

image (μ) to modify
the denoised prior

Training loss Backpropagation

through EM update?

BCD-Net 10 EM

updates

Yes From 1 to many No Block level training to fit just

one (“true”) reference (MSE)

No

MAPEM-Net 2 EM

updates

Yes 2 Yes MSE for end image Yes

FBSEM-Net 10 EM

updates

No 1 No MSE for end image Not implemented (but

backprop through all
blocks)

VIII. SUMMARY AND FUTURE PERSPECTIVES

After briefly reviewing the core components of PET image

reconstruction and the foundations of deep learning, the various

ways of integrating the data-driven benefits of deep learning

into image reconstruction have been reviewed. Table I

summarised four core ways in which deep learning can be

integrated into the PET image reconstruction process.

Direct deep learned mappings from sinograms to images

abandon all prior knowledge of physics and the noise

distribution of the data, and seek instead to learn these from

scratch. This has the advantage of avoiding any inaccurate

modelling assumptions, but the disadvantage of entrusting these

models to purely what is included in the training data only.

However, if given sufficient training data, these should prove

to be powerful and rapid reconstruction methods, although

likely still computationally challenging for true fully 3D

reconstruction. It is notable from Table II that these methods,

demonstrated in 2D, tend to need training dataset sizes ranging

from tens of thousands to hundreds of thousands of image slices

(each paired with their measured data).

The synthesis approach uses deep learning for the object

model only, using a deep network as a representation, then

> PAPER IDENTIFICATION NUMBER 1 <

24

leaving the rest of the image reconstruction to follow

conventional approaches. However, this requires the final

reconstructed image to be the output of a network only, with the

potential advantages and disadvantages this may entail in terms

of what is, and is not, expressed. Alternative analysis methods

use these same or similar deep learned object models not as an

imposed representation, but instead as a means of analysis

regularisation, whereby the reconstructed image is penalised if

it deviates too far from the object representation model. This

could be included, for example, within a conventional L2

penalty term for a MAP reconstruction. The advantages of the

synthesis and analysis approaches compared to full direct deep

learning mappings include: demonstrated practicality for 3D

reconstruction, reduced need for training data (typically of the

order of tens of 3D images are used), and exploitation of

conventional image reconstruction knowledge that we can trust

(e.g. imaging physics, data corrections and the Poisson noise

model). However, their reconstruction speed will be

comparable to conventional iterative methods.

Going a step further, it is possible to completely learn the

regularisation, not even relying on a quadratic or similar

potential function to describe the penalty. For these approaches,

which make even fewer assumptions regarding even how to

regularise, it is necessary to unroll or unfold the iterative

algorithm, as was shown in figure 14. Such approaches have

similar training data needs to the synthesis/analysis group (of

the order of tens of 3D images), and similar execution times,

but can be demanding for computational memory during

training if they require backpropagation of gradients through all

the unrolled blocks. Notably, BCD-Net avoids that need,

potentially being a more practical method. Results in the

literature show promise for the use of unrolled methods, but

there is however now a need to compare performance between

these various approaches for the same sets of training and test

data (which should be as diverse as possible), preferably

robustly comparing to post-reconstruction deep learning

alternatives as well.

Likely future directions may include fully Bayesian deep

learning [101] for PET image reconstruction, whereby not just

MAP estimates are sought, but the entire posterior probability

distribution. This allows uncertainty in the deep learned

modelling itself to be expressed, which is useful for when high

quality images are produced that may nonetheless contain

uncertain features which need to be indicated to the radiologist,

or specified alongside any quantitative measures of interest.

The practicalities of using an image with a counterpart

uncertainty image may be challenging for translation to clinical

use.

Another major area of research is the need for ground truth

data or high quality reference data paired with the measured

data for conventional supervised learning. There will likely be

a lot of potential for seeking out improved ground truth

reference information, or even for development of self-

supervised deep learning for image reconstruction (e.g. [102]

for MRI). In these methods, rather than supplying targets /

labels, instead the algorithms are provided with the knowledge

of how to produce targets / labels, usually based on degradation

of supplied data (such as reduced sampling, or introduction of

noise) in order to recover the full input data. Furthermore,

another important development is that of cycle GANs [4],

which provide a powerful means of avoiding the need for

matched training pairs in deep mappings. Instead, these learn,

effectively unsupervised, how to map one distribution to

another distribution, allowing use of pools of inputs and targets,

unpaired. Cycle-consistent GANs, originally proposed in the

context of image-to-image translation, could prove immensely

useful in the image reconstruction context, as indeed is

beginning to be the case already for MRI [103].

This present review has focused strictly on methods which

involve raw PET data, primarily in the form of sinograms. As

acknowledged, there has however been significant work on

post-reconstruction deep learning for denoising and resolution

enhancement, and perhaps these simpler approaches are more

likely to be adopted at least in the shorter term. This is due to

their reduced memory requirements (use of images rather than

sinograms) and their apparently competitive performance with

full deep-learning reconstruction methods which use the raw

PET data. Recent work has shown that the relatively simple

post-reconstruction methods can fare very well indeed (see

again the findings with a post-reconstruction U-Net in [94], as

was shown in figures 16 and 17 in this present review). The

potential advantage of direct use of raw PET (sinogram) data

(whether in direct methods or unrolled methods) perhaps is still

in need of more convincing demonstration. Therefore methods

like that of Whiteley et al. with their use of TOF backprojected

images as the starting point for deep learning [77], do look

promising in the near future.

REFERENCES

[1] S. Arridge, P. Maass, O. Oktem, and C. B. Schonlieb, “Solving
inverse problems using data-driven models,” Acta Numerica, vol.

28, pp. 1-174, 2019.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436-44, May 28, 2015.

[3] D. P. Kingma, and M. Welling, “An Introduction to Variational

Autoencoders,” arXiv:1906.02691 [cs.LG], 2019.
[4] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-

image translation using cycle-consistent adversarial networks,”

Proceedings of the 2017 IEEE International Conference on
Computer Vision (ICCV), pp. 2242–2251, 2017.

[5] G. M. Lin, Q. X. Wu, L. Chen, L. D. Qiu, X. Wang, T. J. Liu, and

X. Y. Chen, “Deep unsupervised learning for image super-
resolution with generative adversarial network,” Signal Processing-

Image Communication, vol. 68, pp. 88-100, Oct, 2018.

[6] L. Chen, P. Bentley, K. Mori, K. Misawa, M. Fujiwara, and D.

Rueckert, “Self-supervised learning for medical image analysis

using image context restoration,” Med Image Anal, vol. 58, pp.

101539, Dec, 2019.
[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-

Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative

Adversarial Nets,” Advances in Neural Information Processing
Systems 27 (Nips 2014), vol. 27, 2014.

[8] C. R. Floyd, “An artificial neural network for SPECT image
reconstruction,” IEEE Trans Med Imaging, vol. 10, no. 3, pp. 485-

7, 1991.

[9] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li,
“ImageNet: A Large-Scale Hierarchical Image Database,” Cvpr:

2009 Ieee Conference on Computer Vision and Pattern Recognition,

Vols 1-4, pp. 248-255, 2009.
[10] C. P. M. Hatt, J. Qi and I. El Naqa, “Machine (Deep) Learning

Methods for Image Processing and Radiomics,” IEEE Transactions

> PAPER IDENTIFICATION NUMBER 1 <

25

on Radiation and Plasma Medical Sciences, vol. 3, no. 2, pp. 104-

108, 2019.
[11] Y. Yang, J. Sun, H. B. Li, and Z. B. Xu, “Deep ADMM-Net for

Compressive Sensing MRI,” Advances in Neural Information

Processing Systems 29 (Nips 2016), vol. 29, 2016.
[12] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen,

“Image reconstruction by domain-transform manifold learning,”

Nature, vol. 555, no. 7697, pp. 487-492, Mar 21, 2018.
[13] K. Gong, C. Catana, J. Y. Qi, and Q. Z. Li, “PET Image

Reconstruction Using Deep Image Prior,” Ieee Transactions on

Medical Imaging, vol. 38, no. 7, pp. 1655-1665, Jul, 2019.
[14] I. Haggstrom, C. R. Schmidtlein, G. Campanella, and T. J. Fuchs,

“DeepPET: A deep encoder-decoder network for directly solving

the PET image reconstruction inverse problem,” Med Image Anal,
vol. 54, pp. 253-262, May, 2019.

[15] D. Wu, K. Kim, and Q. Li, “Computationally efficient deep neural

network for computed tomography image reconstruction,” Med
Phys, vol. 46, no. 11, pp. 4763-4776, Nov, 2019.

[16] W. Shao, M. G. Pomper, and Y. Du, “A Learned Reconstruction

Network for SPECT Imaging,” IEEE Transactions on Radiation
and Plasma Medical Sciences, 2020.

[17] S. Ravishankar, J. C. Ye, and J. A. Fessler, “Image Reconstruction:

From Sparsity to Data-Adaptive Methods and Machine Learning,”
Proceedings of the Ieee, vol. 108, no. 1, pp. 86-109, Jan, 2020.

[18] K. Gong, E. Berg, S. R. Cherry, and J. Y. Qi, “Machine Learning in

PET: From Photon Detection to Quantitative Image
Reconstruction,” Proceedings of the Ieee, vol. 108, no. 1, pp. 51-68,

Jan, 2020.
[19] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler, “Image

Reconstruction Is a New Frontier of Machine Learning,” Ieee

Transactions on Medical Imaging, vol. 37, no. 6, pp. 1289-1296,
Jun, 2018.

[20] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen, “On

instabilities of deep learning in image reconstruction and the
potential costs of AI,” Proc Natl Acad Sci U S A, May 11, 2020.

[21] J. Y. Qi, and R. M. Leahy, “Iterative reconstruction techniques in

emission computed tomography,” Physics in Medicine and Biology,
vol. 51, no. 15, pp. R541-R578, Aug 7, 2006.

[22] A. J. Reader, and H. Zaidi, “Advances in PET image

reconstruction,” PET Clinics, vol. 2, pp. 173-190, 2008.

[23] A. J. Reader, “The promise of new PET image reconstruction,”

Physica Medica, vol. 24, no. 2, pp. 49-56, 2008.

[24] R. M. Lewitt, and S. Matej, “Overview of methods for image
reconstruction from projections in emission computed

tomography,” Proceedings of the IEEE, vol. 91, no. 10, pp. 1588-

1611, Oct, 2003.
[25] C. Tsoumpas, F. E. Turkheimer, and K. Thielemans, “A survey of

approaches for direct parametric image reconstruction in emission

tomography,” Medical Physics, vol. 35, no. 9, pp. 3963-3971, Sep,
2008.

[26] A. J. Reader, and J. Verhaeghe, “4D image reconstruction for

emission tomography,” Phys Med Biol, 2014.
[27] L. A. Shepp, and Y. Vardi, “Maximum likelihood reconstruction for

emission tomography,” IEEE Trans Med Imaging, vol. 1, no. 2, pp.

113-22, 1982.
[28] K. Lange, and R. Carson, “EM reconstruction algorithms for

emission and transmission tomography,” J Comput Assist Tomogr,

vol. 8, no. 2, pp. 306-16, Apr, 1984.

[29] H. H. Barrett, D. W. Wilson, and B. M. W. Tsui, “Noise Properties

of the Em Algorithm .1. Theory,” Physics in Medicine and Biology,

vol. 39, no. 5, pp. 833-846, May, 1994.
[30] A. Mehranian, M. A. Belzunce, F. Niccolini, M. Politis, C. Prieto,

F. Turkheimer, A. Hammers, and A. J. Reader, “PET image

reconstruction using multi-parametric anato-functional priors,”
Phys Med Biol, vol. 62, no. 15, pp. 5975-6007, Jul 6, 2017.

[31] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The

application of compressed sensing for rapid MR imaging,” Magn
Reson Med, vol. 58, no. 6, pp. 1182-95, Dec, 2007.

[32] A. R. De Pierro, “A Modified Expectation Maximization Algorithm

for Penalized Likelihood Estimation in Emission Tomography,”
IEEE Transactions on Medical Imaging, vol. 14, no. 1, pp. 132-137,

Mar, 1995.

[33] G. Wang, and J. Qi, “Penalized likelihood PET image reconstruction
using patch-based edge-preserving regularization,” IEEE Trans

Med Imaging, vol. 31, no. 12, pp. 2194-204, Dec, 2012.

[34] E. Levitan, and G. T. Herman, “A Maximum a Posteriori Probability

Expectation Maximization Algorithm for Image-Reconstruction in
Emission Tomography,” IEEE Transactions on Medical Imaging,

vol. 6, no. 3, pp. 185-192, Sep, 1987.

[35] P. Novosad, and A. J. Reader, “MR-guided dynamic PET
reconstruction with the kernel method and spectral temporal basis

functions,” Phys Med Biol, vol. 61, no. 12, pp. 4624-44, Jun 21,

2016.
[36] G. Wang, and J. Qi, “PET image reconstruction using kernel

method,” IEEE Trans Med Imaging, vol. 34, no. 1, pp. 61-71, Jan,

2015.
[37] J. Bland, A. Mehranian, M. A. Belzunce, S. Ellis, C. J. McGinnity,

A. Hammers, and A. J. Reader, “MR-Guided Kernel EM

Reconstruction for Reduced Dose PET Imaging,” IEEE Trans
Radiat Plasma Med Sci, vol. 2, no. 3, pp. 235-243, May, 2018.

[38] A. J. Reader, F. C. Sureau, C. Comtat, R. Trebossen, and I. Buvat,

“Joint estimation of dynamic PET images and temporal basis
functions using fully 4D ML-EM,” Physics in Medicine and

Biology, vol. 51, no. 21, pp. 5455-5474, Nov 7, 2006.

[39] M. Zhang, J. Zhou, X. Niu, E. Asma, W. Wang, and J. Qi,
“Regularization parameter selection for penalized-likelihood list-

mode image reconstruction in PET,” Phys Med Biol, vol. 62, no. 12,

pp. 5114-5130, Jun 21, 2017.
[40] A. J. Reader, and S. Ellis, “Bootstrap-Optimised Regularised Image

Reconstruction for Emission Tomography,” IEEE Trans Med

Imaging, Jan 14, 2020.
[41] M. Wang, and W. Deng, “Deep visual domain adaptation: A

survey,” Neurocomputing, vol. 312, pp. 135-153, 2018.
[42] J. G. Colsher, “Fully 3-Dimensional Positron Emission

Tomography,” Physics in Medicine and Biology, vol. 25, no. 1, pp.

103-115, 1980.
[43] P. E. Kinahan, and J. G. Rogers, “Analytic 3d Image-Reconstruction

Using All Detected Events,” IEEE Transactions on Nuclear

Science, vol. 36, no. 1, pp. 964-968, Feb, 1989.
[44] G. Chu, and K. C. Tam, “3-Dimensional Imaging in Positron

Camera Using Fourier Techniques,” Physics in Medicine and

Biology, vol. 22, no. 2, pp. 245-265, 1977.
[45] V. V. Selivanov, and R. Lecomte, “Fast PET image reconstruction

based on SVD decomposition of the system matrix,” Ieee

Transactions on Nuclear Science, vol. 48, no. 3, pp. 761-767, Jun,

2001.

[46] A. López-Montes, P. Galve, J. M. Udias, J. Cal-González, J. J.

Vaquero, M. Desco, and J. L. Herraiz, “ 3D PET Image with
Pseudoinverse Reconstruction,” Appli. Sci., vol. 10, pp. 2829, 2020.

[47] C. Bishop, “Pattern Recognition and Machine Learning,” 2006.

[48] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” MIT
Press, 2016.

[49] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural

Networks,” Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, vol. 15, pp. 315-

323, 2011.

[50] M. A. Kramer, “Nonlinear principal component analysis using
autoassociative neural networks,” AIChE Journal. , vol. 37, no. 2,

pp. 233–243, 1991.

[51] B. B. Y. Le Cun, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel “Handwritten Digit Recognition with a

Back-Propagation Network,” Proc. Advances in Neural Information

Processing Systems, pp. 396-404, 1990.

[52] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proc IEEE, vol. 86, pp.

2278-2323, 1998.
[53] D. Rigie, G. Schramm, T. Vahle, T. Shepherd, J. Nuyts, and F.

Boada, “Approximating MRI-Based Anatomically Guided PET

Reconstruction with a Convolutional Neural Network,” 2018 IEEE
Nuclear Science Symposium and Medical Imaging Conference

Proceedings (NSS/MIC), Sydney, Australia, pp. 1-3, 2018.

[54] K. Hornik, M. Stinchcombe, and H. White, “Multilayer
Feedforward Networks Are Universal Approximators,” Neural

Networks, vol. 2, no. 5, pp. 359-366, 1989.

[55] C. O. da Costa Luis, Reader A. J., “Micro-networks for robust MR-
guided low count PET imaging,” IEEE Trans Radiat Plasma Med

Sci, 2020.

[56] J. C. Ye, and W. K. Sung, “Understanding Geometry of Encoder-
Decoder CNNs,” Proceedings of the 36th International Conference

on Machine Learning, 2019.

> PAPER IDENTIFICATION NUMBER 1 <

26

[57] M. S. Tahaei, and A. J. Reader, “Patch-based image reconstruction

for PET using prior-image derived dictionaries,” Phys Med Biol,
vol. 61, no. 18, pp. 6833-6855, Sep 21, 2016.

[58] Y. C. Pu, Z. Gan, R. Henao, X. Yuan, C. Y. Li, A. Stevens, and L.

Carin, “Variational Autoencoder for Deep Learning of Images,
Labels and Captions,” Advances in Neural Information Processing

Systems 29 (Nips 2016), vol. 29, 2016.

[59] G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye, F. Liu,
S. Arridge, J. Keegan, Y. Guo, and D. Firmin, “DAGAN: Deep De-

Aliasing Generative Adversarial Networks for Fast Compressed

Sensing MRI Reconstruction,” IEEE Trans Med Imaging, vol. 37,
no. 6, pp. 1310-1321, Jun, 2018.

[60] Z. Hu, H. Xue, Q. Zhang, J. Gao, N. Zhang, S. Zou, Y. Teng, X. Liu,

Y. Yang, D. Liang, A. Zhu, and H. Zheng, “DPIR-Net: Direct PET
image reconstruction based on the Wasserstein generative

adversarial network,” IEEE Transactions on Radiation and Plasma

Medical Sciences, 2020.
[61] Y. Wang, B. T. Yu, L. Wang, C. Zu, D. S. Lalush, W. L. Lin, X.

Wu, J. L. Zhou, D. G. Shen, and L. P. Zhou, “3D conditional

generative adversarial networks for high-quality PET image
estimation at low dose,” Neuroimage, vol. 174, pp. 550-562, Jul 1,

2018.

[62] S. Kaplan, and Y. M. Zhu, “Full-Dose PET Image Estimation from
Low-Dose PET Image Using Deep Learning: a Pilot Study,”

Journal of Digital Imaging, vol. 32, no. 5, pp. 773-778, Oct, 2019.

[63] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” Medical Image

Computing and Computer-Assisted Intervention, Pt Iii, vol. 9351,
pp. 234-241, 2015.

[64] J. C. Ye, Y. Han, and E. Cha, “Deep Convolutional Framelets: A

General Deep Learning Framework for Inverse Problems,” SIAM
Journal on Imaging Sciences, vol. 11, no. 2, pp. 991-1048, 2018.

[65] Y. Han, and J. C. Ye, “Framing U-Net via Deep Convolutional

Framelets: Application to Sparse-View CT,” IEEE Trans Med
Imaging, vol. 37, no. 6, pp. 1418-1429, Jun, 2018.

[66] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization Methods for

Large-Scale Machine Learning,” SIAM Review, vol. 60, no. 2, pp.
223–311, 2018.

[67] K. Simonyan, and A. Zisserman, “Very Deep Convolutional

Networks for Large-Scale Image Recognition,” International
Conference on Learning Representations, 2015.

[68] K. Gong, J. Guan, C. Liu, and J. Qi, “PET Image Denoising Using

a Deep Neural Network Through Fine Tuning,” IEEE Transactions
on Radiation and Plasma Medical Sciences, vol. 3, no. 2, pp. 153-

161, 2019.

[69] K. T. Chen, M. Schurer, J. Ouyang, M. E. I. Koran, G. Davidzon, E.
Mormino, S. Tiepolt, K. T. Hoffmann, O. Sabri, G. Zaharchuk, and

H. Barthel, “Generalization of deep learning models for ultra-low-

count amyloid PET/MRI using transfer learning,” Eur J Nucl Med
Mol Imaging, Jun 13, 2020.

[70] P. Novosad, V. Fonov, and D. L. Collins, “Accurate and robust

segmentation of neuroanatomy in T1-weighted MRI by combining
spatial priors with deep convolutional neural networks,” Hum Brain

Mapp, vol. 41, no. 2, pp. 309-327, Feb 1, 2020.

[71] Y. Wang, L. Zhou, B. Yu, L. Wang, C. Zu, D. S. Lalush, W. Lin, X.
Wu, J. Zhou, and D. Shen, “3D Auto-Context-Based Locality

Adaptive Multi-Modality GANs for PET Synthesis,” IEEE Trans

Med Imaging, vol. 38, no. 6, pp. 1328-1339, Jun, 2019.

[72] J. A. Fessler, “Optimization Methods for Magnetic Resonance

Image Reconstruction: Key Models and Optimization Algorithms,”

IEEE Signal Process Mag, vol. 37, no. 1, pp. 33-40, Jan, 2020.
[73] W. Lu, J. A. Onofrey, Y. Lu, L. Shi, T. Ma, Y. Liu, and C. Liu, “An

investigation of quantitative accuracy for deep learning based

denoising in oncological PET,” Phys Med Biol, vol. 64, no. 16, pp.
165019, Aug 21, 2019.

[74] L. Zhou, J. D. Schaefferkoetter, I. W. K. Tham, G. Huang, and J.

Yan, “Supervised learning with cyclegan for low-dose FDG PET
image denoising,” Medical Image Analysis, vol. 65, 2020.

[75] K. Erlandsson, A. J. Reader, M. A. Flower, and R. J. Ott Joint, “A

new 3d backprojection and filtering method for pet using all
detected events,” IEEE Transactions on Nuclear Science, vol. 45,

no. 3 PART 2, pp. 1183-1188, 1998.

[76] S. Matej, S. Surti, S. Jayanthi, M. E. Daube-Witherspoon, R. M.
Lewitt, and J. S. Karp, “Efficient 3-D TOF PET reconstruction using

view-grouped histo-images: DIRECT-direct image reconstruction

for TOF,” IEEE Trans Med Imaging, vol. 28, no. 5, pp. 739-51,

May, 2009.
[77] W. Whiteley, V. Panin, C. Zhou, J. Cabello, D. Bharkhada, and J.

Gregor, “FastPET: Near Real-Time PET Reconstruction from

Histo-Images Using a Neural Network,” IEEE NSS and MIC
Conference Record, 2019.

[78] Z. Liu, H. Chen, and H. Liu, “Deep learning based framework for

direct reconstruction of PET images,” MICCAI 2019, LNCS 11766,
pp. 48-56, 2019.

[79] W. Whiteley, and J. Gregor, “Efficient Neural Network Image

Reconstruction from Raw Data Using a Radon Inversion Layer,”
IEEE NSS and MIC Conference Record, 2019.

[80] C. Comtat, F. Bataille, C. Michel, J. P. Jones, M. Sibomana, L.

Janeiro, and R. Trebossen, “OSEM-3D reconstruction strategies for
the ECAT HRRT,” 2004 IEEE Nuclear Science Symposium

Conference Record, Vols 1-7, pp. 3492-3496, 2004.

[81] M. E. Daube-Witherspoon, and G. Muehllehner, “Treatment of axial
data in three-dimensional PET,” J Nucl Med, vol. 28, no. 11, pp.

1717-24, Nov, 1987.

[82] K. Gong, J. H. Guan, K. Kim, X. Z. Zhang, J. Yang, Y. Seo, G. El
Fakhri, J. Y. Qi, and Q. Z. Li, “Iterative PET Image Reconstruction

Using Convolutional Neural Network Representation,” Ieee

Transactions on Medical Imaging, vol. 38, no. 3, pp. 675-685, Mar,
2019.

[83] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep Image Prior,”

2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9446-9454, 2018.

[84] K. Gong, C. Catana, J. Y. Qi, and Q. Z. Li, “Direct Patlak
Reconstruction for Low Dose Dynamic PET Using Unsupervised

Deep Learning,” Journal of Nuclear Medicine, vol. 60, May 1, 2019.

[85] K. K. Yokota T, Sakata M, Kimura Y, Hontani H, “Dynamic PET
Image Reconstruction Using Nonnegative Matrix Factorization

IncorporatedWith Deep Image Prior,” Proceedings / IEEE

International Conference on Computer Vision. IEEE International
Conference on Computer Vision, 2019.

[86] Z. Xie, R. Baikejiang, K. Gong, X. Zhang, and J. Qi, “Generative

adversarial networks based regularized image reconstruction for
PET,” Proc. SPIE 11072, 15th International Meeting on Fully

Three-Dimensional Image Reconstruction in Radiology and

Nuclear Medicine, 2019.

[87] N. Xie, K. Gong, N. Guo, Z. Qin, Z. Wu, H. Liu, and Q. Li,

“Penalized-likelihood PET Image Reconstruction Using 3D

Structural Convolutional Sparse Coding,” arXiv preprint
arXiv:1912.07180, 2019.

[88] K. Kim, D. F. Wu, K. Gong, J. Dutta, J. H. Kim, Y. D. Son, H. K.

Kim, G. El Fakhri, and Q. Z. Li, “Penalized PET Reconstruction
Using Deep Learning Prior and Local Linear Fitting,” Ieee

Transactions on Medical Imaging, vol. 37, no. 6, pp. 1478-1487,

Jun, 2018.
[89] M. G. Poirot, R. H. J. Bergmans, B. R. Thomson, F. C. Jolink, S. J.

Moum, R. G. Gonzalez, M. H. Lev, C. O. Tan, and R. Gupta,

“Physics-informed Deep Learning for Dual-Energy Computed
Tomography Image Processing,” Sci Rep, vol. 9, no. 1, pp. 17709,

Nov 27, 2019.

[90] K. Gregor, and Y. LeCun, “Learning fast approximations of sparse
coding,” Proceedings of the 27th International Conference on

International Conference on Machine Learning, pp. 399-406, 2010.

[91] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson,

T. Pock, and F. Knoll, “Learning a variational network for

reconstruction of accelerated MRI data,” Magn Reson Med, vol. 79,

no. 6, pp. 3055-3071, Jun, 2018.
[92] K. Gong, D. Wu, K. Kim, J. Yang, G. El Fakhri, Y. Seo, and Q. Li,

“EMnet: An Unrolled Deep Neural Network for PET Image

Reconstruction,” Medical Imaging 2019: Physics of Medical
Imaging, vol. 10948, 2019.

[93] K. D. Gong, W.; Kyungsang, K.; Jaewon, Y.; Sun, T.; El Fakhri, G.;

Seo, Y.; Li, Q., “MAPEM-Net: an unrolled neural network for Fully
3D PET image reconstruction,” 15th International Meeting on Fully

Three-Dimensional Image Reconstruction in Radiology and

Nuclear Medicine, 2019.
[94] A. Mehranian, and A. J. Reader, “Model-based deep learning PET

image reconstruction using forward-backward splitting expectation

maximisation,” IEEE Transactions on Radiation and Plasma
Medical Sciences, 2020.

> PAPER IDENTIFICATION NUMBER 1 <

27

[95] P. L. Combettes, and J.-C. Pesquet, "Proximal Splitting Methods in

Signal Processing," Fixed-Point Algorithms for Inverse Problems in
Science and Engineering, H. H. Bauschke, R. S. Burachik, P. L.

Combettes, V. Elser, D. R. Luke and H. Wolkowicz, eds., pp. 185-

212, New York, NY: Springer New York, 2011.
[96] A. R. De Pierro, “On the relation between the ISRA and the EM

algorithm for positron emission tomography,” IEEE Transactions

on Medical Imaging, vol. 12, no. 2, pp. 328-333, 1993.
[97] E. Levitan, and G. T. Herman, “A Maximum a Posteriori Probability

Expectation Maximization Algorithm for Image Reconstruction in

Emission Tomography,” IEEE Transactions on Medical Imaging,
vol. 6, no. 3, pp. 185-192, 1987.

[98] I. Y. Chun, and J. A. Fessler, “Deep BCD-Net Using Identical

Encoding-Decoding CNN Structures for Iterative Image Recovery,”
Proceedings 2018 Ieee 13th Image, Video, and Multidimensional

Signal Processing Workshop (Ivmsp), 2018.

[99] H. Lim, Z. Huang, J. A. Fessler, Y. K. Dewaraja, and I. Y. Chun,
“Application of trained Deep BCD-Net to iterative low-count PET

image reconstruction,” IEEE Nuclear Science Symposium and

Medical Imaging Conference Proceedings (NSS/MIC), Sydney,
Australia, 2018.

[100] H. Lim, I. Y. Chun, Y. K. Dewaraja, and J. A. Fessler, “Improved

low-count quantitative PET reconstruction with an iterative neural
network,” IEEE Transactions on Medical Imaging, 2020.

[101] A. Kendall, and Y. Gal, “What uncertainties do we need in Bayesian

deep learning for computer vision?,” Advances in Neural
Information Processing Systems 30 (Nips 2017), pp. 5574-5584,

2017.
[102] B. Yaman, S. Hosseini, S. Moeller, J. Ellermann, K. Ugurbil, and

M. Akcakaya, “Self-Supervised Physics-Based Deep Learning MRI

Reconstruction without Fully-Sampled Data,” Proc IEEE Int Symp
Biomed Imaging, 2020.

[103] G. Oh, B. Sim, and J.-C. Ye, “Unsupervised Learning for

Compressed Sensing MRI Using CycleGAN,” Proc IEEE Int Symp
Biomed Imaging, 2020.

