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Automorphy lifting for residually reducible l-adic Galois

representations, II

Patrick B. Allen, James Newton, and Jack A. Thorne

August 6, 2020

Abstract

We revisit the paper [Tho15] by the third author, proving new automorphy lifting theorems for resid-
ually reducible Galois representations of unitary type in which the residual representation is permitted
to have an arbitrary number of irreducible constituents.
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1 Introduction

In this paper, we prove new automorphy lifting theorems for Galois representations of unitary type. Thus
we are considering representations ρ : GF → GLn(Ql), where GF is the absolute Galois group of a CM
field F , and ρ is conjugate self-dual, i.e. there is an isomorphism ρc ∼= ρ∨ ⊗ ε1−n, where c ∈ Aut(F ) is
complex conjugation. We say in this paper that such a representation is automorphic if there exists a regular
algebraic, conjugate self-dual, cuspidal automorphic representation π which is matched with ρ under the
Langlands correspondence. (See §1.1 below for a more precise formulation.)

We revisit the context of the paper [Tho15], proving theorems valid in the case that ρ is absolutely
reducible, but still satisfies a certain non-degeneracy condition (we say that ρ is “Schur”). The first theo-
rems of this type were proved in the paper [Tho15], under the assumption that ρ has only two irreducible
constituents. Our main motivation here is to remove this restriction. Our results are applied to the problem
of symmetric power functoriality in [NT19], where they are combined with level raising theorems to establish
automorphy of symmetric powers for certain level 1 Hecke eigenforms congruent to a theta series.
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We are also able to weaken some other hypotheses in [Tho15], leading to the following result, which
is the main theorem of this paper.

Theorem 1.1 (Theorem 6.1). Let F be an imaginary CM number field with maximal totally real subfield
F+, and let n ≥ 2 be an integer. Let l be a prime, and suppose that ρ : GF → GLn(Ql) is a continuous
semisimple representation satisfying the following hypotheses.

1. ρc ∼= ρ∨ε1−n.

2. ρ is ramified at only finitely many places.

3. ρ is ordinary of weight λ, for some λ ∈ (Zn+)Hom(F,Ql).

4. There is an isomorphism ρss ∼= ρ1 ⊕ · · · ⊕ ρd, where each ρi is absolutely irreducible and satisfies
ρci
∼= ρ∨i ε

1−n, and ρi 6∼= ρj if i 6= j.

5. There exists a finite place ṽ0 of F , prime to l, such that ρ|ssGFṽ0
∼= ⊕ni=1ψε

n−i for some unramified

character ψ : GFṽ0 → Q×l .

6. There exists a RACSDC representation π of GLn(AF ) and ι : Ql → C such that:

(a) π is ι-ordinary.

(b) rι(π)
ss ∼= ρss.

(c) πṽ0 is an unramified twist of the Steinberg representation.

7. F (ζl) is not contained in F
ker ad(ρss)

and F is not contained in F+(ζl). For each 1 ≤ i, j ≤ d, ρi|GF (ζl)

is absolutely irreducible and ρi|GF (ζl)
6∼= ρj |GF (ζl)

if i 6= j. Moreover, ρss is primitive (i.e. not induced

from any proper subgroup of GF ) and ρss(GF ) has no quotient of order l.

8. l > 3 and l - n.

Then ρ is automorphic: there exists an ι-ordinary RACSDC automorphic representation Π of GLn(AF ) such
that rι(Π) ∼= ρ.

Comparing this with [Tho15, Theorem 7.1], we see that we now allow an arbitrary number of
irreducible constituents, while also removing the requirement that the individual constituents are adequate
(in the sense of [Tho12]) and potentially automorphic. This assumption of potential automorphy was used
in [Tho15], together with the Khare–Wintenberger method, to get a handle on the quotient of the universal
deformation ring of ρ corresponding to reducible deformations. This made generalising [Tho15, Theorem
7.1] to the case where more than two irreducible constituents are allowed seem a formidable task: one would
want to know that any given direct sum of irreducible constituents of ρ was potentially automorphic, and
then perhaps use induction on the number of constituents to control the reducible locus.

The first main innovation in this paper that allows us to bypass this is the observation that by
fully exploiting the ‘connectedness dimension’ argument to prove R = T (which goes back to [SW99], and
appears in this paper in the proof of Theorem 5.1), one only needs to control the size of the reducible locus
in quotients of the universal deformation ring which are known a priori to be finite over the Iwasawa algebra
Λ. This can be done easily by hand using the ‘locally Steinberg’ condition (as in §3.3).

The second main innovation is a finer study of the universal deformation ring Runiv of a (reducible
but) Schur residual representation. We show that if the residual representation has d absolutely irreducible

constituents, then there is an action of a group µd2 on Runiv, and identify the invariant subring (Runiv)µ
d
2 with

the subring topologically generated by the traces of Frobenius elements (which can also be characterised as
the image P of the canonical map to Runiv from the universal pseudodeformation ring). This leads to a neat
proof that the map P → Runiv is étale at prime ideals corresponding to irreducible deformations of ρ.

We now describe the organisation of this paper. Since it is naturally a continuation of [Tho15], we
maintain the same notation and use several results and constructions from that paper as black boxes. We
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begin in §2 and 3 by extending several results from [Tho15] about the relation between deformations and
pseudodeformations to the case where ρ is permitted to have more than 2 irreducible constituents. We also
make the above-mentioned study of the dimension of the locus of reducible deformations.

In §4 we recall from [Tho15] the definition of the unitary group automorphic forms and Hecke
algebras that we use, and state the Tq = Rp type result proved in that paper (here p denotes a dimension
1, characteristic l prime of R with good properties, in particular that the associated representation to
GLn(FracR/p) is absolutely irreducible). In §5 we carry out the main argument, based on the notion of
connectedness dimension, which is described above. Finally, in §6 we deduce Theorem 1.1, following a
simplified version of the argument in [Tho15, §7] that no longer makes reference to potential automorphy.
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1.1 Notation

We use the same notation and normalizations for Galois groups, class field theory, and local Langlands
correspondences as in [Tho15, Notation]. Rather than repeat this verbatim here we invite the reader to refer
to that paper for more details. We do note the convention that if R is a ring and P is a prime ideal of R,
then R(P ) denotes the localisation of R at P and RP denotes the completion of the localisation.

We recall that Z+
n ⊂ Zn denote the set of tuples λ = (λ1, . . . , λn) of integers such that λ1 ≥ · · · ≥ λn.

It is identified in a standard way with the set of highest weights of GLn. If F is a number field and λ = (λτ ) ∈
(Z+
n )Hom(F,C), then we write Ξλ for the algebraic representation of GLn(F ⊗Q C) =

∏
τ∈Hom(F,C) GLn(C) of

highest weight λ. If π is an automorphic representation of GLn(AF ), we say that π is regular algebraic of
weight λ if π∞ has the same infinitesimal character as the dual Ξ∨λ .

Let F be a CM field (i.e. a totally imaginary quadratic extension of a totally real field F+). We
always write c ∈ Aut(F ) for complex conjugation. We say that an automorphic representation π of GLn(AF )
is conjugate self-dual if there is an isomorphism πc ∼= π∨. We use the acronym RACSDC to denote regular
algebraic, conjugate self-dual, cuspidal. If π is a RACSDC automorphic representation of GLn(AF ), and
ι : Ql → C is an isomorphism (for some prime l), then there exists an associated Galois representation
rι(π) : GF → GLn(Ql), characterised up to isomorphism by the requirement of compatibility with the local
Langlands correspondence at each finite place of F ; see [Tho15, Theorem 2.2] for a reference. We say that
a representation ρ : GF → GLn(Ql) is automorphic if there exists a choice of ι and RACSDC π such that
ρ ∼= rι(π).

One can define what it means for a RACSDC automorphic representation π to be ι-ordinary (see
[Tho15, Lemma 2.3]; it means that the eigenvalues of certain Hecke operators, a priori l-adic integers, are

in fact l-adic units). If µ ∈ (Zn+)Hom(F,Ql), we say (following [Tho15, Definition 2.5]) that a representation

ρ : GF → GLn(Ql) is ordinary of weight µ if for each place v|l of F , there is an isomorphism

ρ|GFv ∼


ψ1 ∗ ∗ ∗
0 ψ2 ∗ ∗
...

. . .
. . . ∗

0 . . . 0 ψn

 ,
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where ψi : GFv → Ql
×

is a continuous character satisfying the identity

ψi(σ) =
∏

τ :Fv↪→Ql

τ(Art−1
Fv

(σ))−(µτ,n−i+1+i−1)

for all σ in a suitable open subgroup of IFv . An important result ([Tho15, Theorem 2.4]) is that if π is
RACSDC of weight λ and ι-ordinary, then rι(π) is ordinary of weight ιλ, where by definition (ιλ)τ = λιτ .

2 Determinants

We first give the definition of a determinant from [Che14]. We recall that if A is a ring and M,N are A-
modules, then an A-polynomial law F : M → N is a natural transformation F : hM → hN , where hM : A-alg
→ Sets is the functor hM (B) = M ⊗A B. The A-polynomial law F is called homogeneous of degree n ≥ 1 if
for all b ∈ B, x ∈M ⊗A B, we have FB(bx) = bnFB(x).

Definition 2.1. Let A be a ring and let R be an A-algebra. An A-valued determinant of R of dimension
n ≥ 1 is a multiplicative A-polynomial law D : R→ A which is homogeneous of degree n.

If D is a determinant, then there are associated polynomial laws Λi : R→ A, i = 0, . . . , n, given by
the formulae

D(t− r) =

n∑
i=0

(−1)iΛi(r)t
n−i

for all r ∈ R ⊗A B. We define the characteristic polynomial A-polynomial law χ : R → R by the formula
χ(r) =

∑n
i=0(−1)iΛi(r)r

n−i (r ∈ R ⊗A B). We write CH(D) for the two-sided ideal of R generated by
the coefficients of χ(r1t1 + · · · + rmtm) ∈ R[t1, . . . , tm], for all m ≥ 1 and r1, . . . , rm ∈ R. We have
CH(D) ⊆ ker(D) ([Che14, Lemma 1.21]). The determinant D is said to be Cayley–Hamilton if CH(D) = 0,
equivalently if χ = 0 (i.e. χ is the zero A-polynomial law).

We next recall the definition of a generalized matrix algebra [BC09, Definition 1.3.1].

Definition 2.2. Let A be a ring and let R be an A-algebra. We say R is a generalized matrix algebra of
type (n1, . . . , nd) if it is equipped with the following data:

1. a family of orthogonal idempotents e1, . . . , ed with e1 + · · ·+ ed = 1, and

2. for each 1 ≤ i ≤ d, an A-algebra isomorphism ψi : eiRei →Mni(A),

such that the trace map T : R → A defined by T (x) =
∑d
i=1 trψi(eixei) satisfies T (xy) = T (yx) for all

x, y ∈ R. We refer to the data E = {ei, ψi, 1 ≤ i ≤ d} as the data of idempotents of R.

Construction 2.3. We recall the structure of generalized matrix algebras from [BC09, §1.3.2]. Let R be a
generalized matrix algebra of type (n1, . . . , nd) with data of idempotents E = {ei, ψi, 1 ≤ i ≤ d}. For each
1 ≤ i ≤ d, let Ei ∈ eiRei be the unique element such that ψi(Ei) is the element of Mni(A) whose row 1,
column 1 entry is 1, and all other entries are 0. We set Ai,j = EiREj for each 1 ≤ i, j ≤ d. Note that
Ai,jAj,k ⊆ Ai,k for each 1 ≤ i, j, k ≤ d, and the trace map T induces an isomorphism Ai,i ∼= A for each
1 ≤ i ≤ d. Via this isomorphism, we will tacitly view Ai,jAj,i as an ideal in A for each 1 ≤ i, j ≤ d. With
this multiplication, there is an isomorphism of A-algebras

R ∼=


Mn1(A) Mn1,n2(A1,2) · · · Mn1,nd(A1,d)

Mn2,n1
(A2,1) Mn2

(A) · · · Mn2,nd(A2,d)
...

...
. . .

...
Mnd,n1

(Ad,1) Mnd,n2
(Ad,2) · · · Mnd(A)

 . (1)

The following result of Chenevier allows us to use the above structure when studying determinants.
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Theorem 2.4. Let A be a Henselian local ring with residue field k, let R be an A-algebra, and let D : R→ A
be a Cayley–Hamilton determinant. Suppose there exist surjective and pair-wise non-conjugate k-algebra
homomorphisms ρi : R→Mni(k) such that D =

∏d
i=1(det ◦ρi), where D = D ⊗R k.

Then there is a data of idempotents E = {ei, ψi, 1 ≤ i ≤ d} for which R is a generalized matrix
algebra and such that ψi ⊗A k = ρi|eiRei . Any two such data are conjugate by an element of R×.

We note that the assumptions of Theorem 2.4 say that D is residually split and multiplicity-free, in
the sense of [Che14, Definition 2.19].

Proof. The existence of such a data of idempotents E = {ei, ψi, 1 ≤ i ≤ d} is contained in [Che14, Theo-
rem 2.22] and its proof. The statement that two such data are conjugate is exactly as in [BC09, Lemma 1.4.3].
Namely, if E ′ = {e′i, ψ′i, 1 ≤ i ≤ d} is another such choice, then since EndR(Rei) ∼= Mni(A) ∼= EndR(Re′i)
are local rings, the Krull–Schmidt–Azumaya Theorem [CR81, Theorem 6.12] (see also [CR81, Remark 6.14
and Chapter 6, Exercise 14]) implies there is x ∈ R× such that xeix

−1 = e′i for each 1 ≤ i ≤ d. By Skolem–
Noether, we can adjust x by an element of (⊕di=1eiRei)

× so that it further satisfies xψix
−1 = ψ′i.

We now show that the reducibility ideals of [BC09, Proposition 1.5.1] and their basic properties
carry over for determinants (so without having to assume that n! is invertible in A).

Proposition 2.5. Let A be a Henselian local ring with residue field k, let R be an A-algebra, and let
D : R → A be a determinant. Assume that D = D ⊗A k : R ⊗A k → k is split and multiplicity free. Write
D =

∏d
i=1Di, with each Di absolutely irreducible of dimension ni.
Let P = (P1, . . . ,Ps) be a partition of {1, . . . , d}. There is an ideal IP of A such that an ideal

J of A satisfies IP ⊆ J if and only if there are determinants D1, . . . , Ds : R ⊗A A/J → A/J such that
D ⊗A A/J =

∏s
m=1Dm and Dm ⊗A k =

∏
i∈Pm Di for each 1 ≤ m ≤ s. If this property holds, then

D1, . . . , Ds are uniquely determined and satisfy ker(D ⊗A A/J) ⊆ ker(Dm).
Moreover, let J be a two sided ideal of R with CH(D) ⊆ J ⊆ ker(D) and let Ai,j be the A-

modules as in Construction 2.3 for a choice of data of idempotents as in Theorem 2.4 applied to R/J . Then
IP =

∑
i,j Ai,jAj,i where the sum is over all pairs i, j not belonging to the same Pm ∈ P.

Proof. We follow the proof of [BC09, Proposition 1.5.1] closely. Choose a two sided ideal J of R with
CH(D) ⊆ J ⊆ ker(D), and data of idempotents E for R/J as in Theorem 2.4. We let Ai,j be as in
Construction 2.3, and define IP =

∑
i,j Ai,jAj,i where the sum is over all pairs i, j not belonging to the same

Pm ∈ P. Since another such choice of the data of idempotents is conjugate by an element of (R/J )×, the
ideal IP does not depend on the choice of E . To see that it is independent of J , first note that D further
factors through a surjection ψ : R/J → R/ ker(D). Under this surjection, the data of idempotents E is sent
to a data of idempotents for R/ ker(D), and tr(ψ(Ai,j)ψ(Aj,i)) = tr(Ai,jAj,i) since tr ◦ψ = tr.

We can now replace R with R/CH(D) and assume thatD is Cayley–Hamilton. Since CH(D) is stable
under base change, it suffices to show that IP = 0 if and only if there are determinants D1, . . . , Ds : R→ A
such that D =

∏s
m=1Dm and Dm ⊗A kA =

∏
i∈Pm Di for each 1 ≤ m ≤ s, and that if this happens,

then D1, . . . , Ds are uniquely determined. Fix a data of idempotents E = {ei, ψi, 1 ≤ i ≤ d} for R as in
Theorem 2.4, and let the notation be as in Construction 2.3. For each 1 ≤ m ≤ s, we set fm =

∑
i∈Pm ei.

Then 1 = f1 + · · ·+ fs is a decomposition into orthogonal idempotents.
First assume that IP = 0. Let D̃ denote the A-valued determinant on R/ ker(D) arising from D.

Fix x ∈ R, an A-algebra B, and y ∈ R⊗A B. If 1 ≤ i, j ≤ d do not belong to the same Pm ∈ P, then using
the algebra structure as in (1) and the fact that Ai,jAj,i = 0, we have eixejy =

∑
l 6=i eixejyel, and [Che14,

Lemma 1.12(i)] gives

D(1 + eixejy) = D(1 +
∑
l 6=i

eixejyel) = D(1 +
∑
l 6=i

xejyelei) = D(1) = 1.

By [Che14, Lemma 1.19], eixej ∈ ker(D) for all x ∈ R and all i, j that do not belong to the same Pm ∈ P.
We then have an isomorphism of A-algebras R/ ker(D) ∼=

∏s
m=1 fm(R/ ker(D))fm and [Che14, Lemma 2.4]

gives D =
∏s
m=1Dm, where Dm : R→ A is the composite of the surjection R→ fm(R/ ker(D))fm with the
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determinant D̃m : fm(R/ ker(D))fm → A given by x 7→ D̃(x + 1 − fm). It is immediate that Dm ⊗A kA =∏
i∈Pm Di for each 1 ≤ m ≤ s.

Now assume that there are determinants D1, . . . , Ds : R→ A such that D =
∏s
m=1Dm and Dm⊗A

k =
∏
i∈Pm Di for each 1 ≤ m ≤ s. The determinants Dm have dimension dm :=

∑
i∈Pm ni. The trace map

yields an equality ∑
1≤m 6=m′≤s

tr(fmRfm′Rfm) = IP .

So to show IP = 0, it suffices to show that tr(fmRfm′Rfm) = 0 for m 6= m′. For this, it suffices to show
that fm′ ∈ ker(Dm) for any m 6= m′, since this implies that fmRfm′ ∈ ker(Dl) for any 1 ≤ l ≤ s, hence

D(1 + tfmRfm′Rfm) =

s∏
l=1

Dl(1 + tfmRfm′Rfm) = 1.

For any idempotent f of R, we have the determinant Dm,f : fRf → A given by Dm,f (x) = Dm(x+
1− f). When f = fm,

Dm,fm ⊗A k =
∏
i∈Pm

Di,fm =
∏
i∈Pm

Di,ei

has dimension dm. Then [Che14, Lemma 2.4(2)] implies that Dm,1−fm has dimension 0, i.e. is constant and
equal to 1. So for any m 6= m′, the characteristic polynomial of fm′ with respect to Dm is

Dm(t− fm′) = Dm,fm(t)Dm,1−fm(t− fm′) = tdm .

Then fm′ = fdmm′ ∈ CH(Dm) ⊆ ker(Dm), which is what we wanted to prove. This further shows that for
each 1 ≤ m ≤ s, the determinant Dm is the composite of the surjections

R→ ⊕sl=1flRfl → fmRfm

with the determinant Dfm : fmRfm → A. Since any two choices of the data of idempotents are conjugate
under R×, each Dm is uniquely determined by D.

3 Deformations

Galois deformation theory plays an essential role in this paper. The set of results we use is essentially
identical to that of [Tho15], with some technical improvements. In this section we recall the notation used
in [Tho15], without giving detailed definitions or proofs; we then proceed to prove the new results that we
need. Some of the definitions recalled here were first given in [CHT08] or [Ger19], but in order to avoid
sending the reader to too many different places we restrict our citations to [Tho15].

We will use exactly the same set-up and notation for deformation theory as in [Tho15]. We recall
that this means that we fix at the outset the following objects:

� A CM number field F , with its totally real subfield F+.

� An odd prime l such that each l-adic place of F+ splits in F . We write Sl for the set of l-adic places
of F+.

� A finite set S of finite places of F+ which split in F . We assume that Sl ⊂ S and write F (S)
for the maximal extension of F which is unramified outside S and set GF,S = Gal(F (S)/F ) and
GF+,S = Gal(F (S)/F+). We fix a choice of complex conjugation c ∈ GF+,S .

� For each v ∈ S we fix a choice of place ṽ of F such that ṽ|F+ = v, and define S̃ = {ṽ | v ∈ S}.

We also fix the following data:

� A coefficient field K ⊂ Ql with ring of integers O, residue field k, and maximal ideal λ ⊂ O.
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� A continuous homomorphism χ : GF+,S → O×. We write χ = χ mod λ.

� A continuous homomorphism r : GF+,S → Gn(k) such that r−1(G◦n(k)) = GF,S . Here Gn is the
algebraic group over Z defined in [CHT08, §2.1]. We follow the convention that if R : Γ→ Gn(A) is a
homomorphism and ∆ ⊂ Γ is a subgroup such that R(∆) ⊂ G0

n(A), then R|∆ denotes the composite
homomorphism

∆→ G0
n(A) = GLn(A)×GL1(A)→ GLn(A).

Thus r|GF,S takes values in GLn(k).

If v ∈ Sl, then we write Λv = OJ(Iab
Fṽ

(l))nK, where Iab
Fṽ

(l) denotes the inertia group in the maximal abelian

pro-l extension of Fṽ. We set Λ = ⊗̂vΛv, the completed tensor product being over O. A global deformation
problem, as defined in [Tho15, §3], then consists of a tuple

S = (F/F+, S, S̃,Λ, r, χ, {Dv}v∈S).

The extra data that we have not defined consists of the choice of a local deformation problem Dv for each
v ∈ S. We will not need to define any new local deformation problems in this paper, but we recall that the
following have been defined in [Tho15]:

� “Ordinary deformations” give rise to a problem D4v for each v ∈ Sl ([Tho15, §3.3.2]);

� “Steinberg deformations” give rise to a problem DSt
v for each place v ∈ S such that qv ≡ 1 mod l and

r|GFṽ is trivial;

� “χv-ramified deformations” give rise to a problem Dχvv for each place v ∈ S such that qv ≡ 1 mod l and
r|GFṽ is trivial, given the additional data of a tuple χv = (χv,1, . . . , χv,n) of characters χv,i : k(v)×(l)→
k×.

� “Unrestricted deformations” give rise to a problem D�
v for any v ∈ S.

If S is a global deformation problem, then we can define (as in [Tho15]) a functor DefS : CΛ → Sets of
“deformations of type S”. By definition, if A ∈ CΛ, then DefS(A) is the set of GLn(A)-conjugacy classes of
homomorphisms r : GF+,S → Gn(A) lifting r such that ν ◦ r = χ and for each v ∈ S, r|GFṽ ∈ Dv(A). If r is

Schur (see [Tho15, Definition 3.2]), then the functor DefS is represented by an object Runiv
S ∈ CΛ.

3.1 An erratum to [Tho15]

We point out an error in [Tho15]. We thank Lue Pan for bringing this to our attention. In [Tho15, Proposition
3.15], it is asserted that the ring R1

v (representing the deformation problem D1
v for v ∈ R, defined under the

assumptions qv ≡ 1 mod l and r|GFṽ trivial) has the property that R1
v/(λ) is generically reduced. This is

false, even in the case n = 2, as can be seen from the statement of [Sho16, Proposition 5.8] (and noting the
identification R1

v/(λ) = Rχvv /(λ)). We offer the following corrected statement.

Proposition 3.1. Let R
1

v denote the nilreduction of R1
v. Then R

1

v/(λ) is generically reduced.

Proof. Let M denote the scheme over O of pairs of n × n matrices (Φ,Σ), where Φ is invertible, the
characteristic polynomial of Σ equals (X − 1)n, and we have ΦΣΦ−1 = Σqv . Then R1

v can be identified with
the completed local ring of M at the point (1n, 1n) ∈ M(k). By [Mat89, Theorem 23.9] (and since M is
excellent), it’s enough to show that ifM denotes the nilreduction ofM, thenM⊗O k is generically reduced.

Let M1, . . . ,Mr denote the irreducible components of M with their reduced subscheme structure.
According to [Tho12, Lemma 3.15], each Mi ⊗O K is non-empty of dimension n2, while the Mi ⊗O k are
the pairwise distinct irreducible components of M⊗O k, and are all generically reduced. Let ηi denote the
generic point of Mi ⊗O k. Then ηi admits an open neighbourhood in M not meeting any Mj (j 6= i).
Consequently we have an equality of local rings OM,ηi

= OMi,ηi , showing that OM,ηi
/(λ) is reduced (in

fact, a field). This shows that M⊗O k is generically reduced.
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We now need to explain why this error does not affect the proofs of the two results in [Tho15] which
rely on the assertion that R1

v/(λ) is generically reduced. The first of these is [Tho15, Proposition 3.17],
which states that the Steinberg deformation ring RStv has the property that RStv /(λ) is generically reduced.

The proof of this result is still valid if one replaces R1
v there with R

1

v. Indeed, we need only note that RStv is
O-flat (by definition) and reduced (since RStv [1/l] is regular, by [Tay08, Lemma 3.3]). The map R1

v → RStv
therefore factors through a surjection R

1

v → RStv .
The next result is [Tho15, Lemma 3.40, (2)], which describes the irreducible components of the

localization and completion of a ring R∞ at a prime ideal P∞. The ring R∞ has R1
v as a (completed) tensor

factor, and the generic reducedness is used to justify an appeal to [Tho15, Proposition 1.6]. Since passing
to nilreduction does not change the underlying topological space, one can argue instead with the quotient of

R∞ where R1
v is replaced by R

1

v. The statement of [Tho15, Lemma 3.40] is therefore still valid.

3.2 Pseudodeformations

In this section, we fix a global deformation problem

S = (F/F+, S, S̃,Λ, r, χ, {Dv}v∈S)

such that r is Schur. We write PS ⊂ Runiv
S for the Λ-subalgebra topologically generated by the coefficients of

characteristic polynomials of Frobenius elements Frobw ∈ GF,S (w prime to S). The subring PS is studied in
[Tho15, §3.4], where it is shown using results of Chenevier that PS is a complete Noetherian local Λ-algebra
and that the inclusion PS ⊂ Runiv

S is a finite ring map (see [Tho15, Proposition 3.29]).
In fact, more is true, as we now describe. Let B ∈ GLn(k) be the matrix defined by the formula

r(c) = (B,−χ(c)) ∈ Gn(k). Let ρ = r|GF,S , and suppose that there is a decomposition r = ⊕di=1ri with
ρi = ri|GF,S absolutely irreducible for each i. The representations ρi are pairwise non-isomorphic, because r
is Schur (see [Tho15, Lemma 3.3]). We recall ([Tho15, Lemma 3.1]) that to give a lifting r : GF+,S → Gn(R)
of r with ν ◦ r = χ is equivalent to giving the following data:

� A representation ρ : GF,S → GLn(R) lifting ρ = r|GF,S .

� A matrix B ∈ GLn(R) lifting B with tB = −χ(c)B and χ(δ)B = ρ(δc)B tρ(δ) for all δ ∈ GF,S .

The equivalence is given by letting ρ = r|GF,S and r(c) = (B,−χ(c)). Conjugating r by M ∈ GLn(R) takes

B to MB tM . Note that the matrix B defines an isomorphism χ⊗ ρ∨ ∼→ ρc.
We embed the group µd2 in GLn(O) as block diagonal matrices, the ith block being of size dimk ρi.

We assume that the global deformation problem S has the property that each local deformation problem
Dv ⊂ D�

v is invariant under conjugation by µd2; this is the case for each of the local deformation problems
recalled above. With this assumption, the group µd2 acts on the ring Runiv

S by conjugation of the universal
deformation, and we have the following result.

Proposition 3.2. 1. We have an equality PS = (Runiv
S )µ

d
2 .

2. Let p ⊂ Runiv
S be a prime ideal, and let q = p∩PS . Let E = FracRuniv

S /p, and suppose that the associated
representation ρp = rp|GF,S ⊗A E : GF,S → GLn(E) is absolutely irreducible. Then PS → Runiv

S is
étale at q and µd2 acts transitively on the set of primes of Runiv

S above q.

We first establish a preliminary lemma, before proving the proposition.

Lemma 3.3. Let R = Runiv
S /(mPS ), and let r : GF+,S → Gn(R) be a representative of the specialisation

of the universal deformation. Then, after possibly conjugating by an element of 1 + Mn(mR), r|GF,S has

(block) diagonal entries given by ρ1, . . . , ρd, and the matrix B defined above is equal to B. (Note we are not
asserting that the off-diagonal blocks of r|GF,S are zero.)

Proof. We let e1, e2, . . . , ed ∈ Mn(k) denote the standard idempotents decomposing r|GF,S into the block
diagonal pieces ρ1, . . . , ρd. We let A ⊂Mn(R) denote the image of R[GF,S ] under r. The idempotents ei lift
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to orthogonal idempotents ei in A with e1 + · · ·+ed = 1 and, after conjugating by an element of 1+Mn(mR)
we can assume that the ei are again the standard idempotents on Rn. Moreover, applying the first case of
the proof of [BC09, Lemma 1.8.2], we can (and do) choose the ei so that they are fixed by the anti-involution
? : A → A given by the formula M 7→ B(tM)B−1. This implies that the matrix B is block diagonal. We
have eiAei = Mni(R) (see [BC09, Lemma 1.4.3] and [Che14, Theorem 2.22]) and for each i 6= j we have
eiAej = Mni,nj (Ai,j), where Ai,j ⊂ R is an ideal [BC09, Proposition 1.3.8].

Since det ◦ r = det ◦ r, Proposition 2.5 shows that
∑
i 6=j Ai,jAj,i = 0. This implies that for each i

the map
R[GF,S ]→Mni(R)

given by
x 7→ eir(x)ei

is an algebra homomorphism, and we get an R-valued lift of ρi. By the uniqueness assertion in Proposi-
tion 2.5 the determinant of this lift is equal to det ◦ρi. Since ρi is absolutely irreducible, it follows from
[Che14, Theorem 2.22] that, after conjugating by a block diagonal matrix in 1 + Mn(mR), we can assume
that the map

x 7→ eir(x)ei

is induced by ρi, which is the desired statement.
Finally, we consider the matrix B. We have already shown that B is block diagonal. For 1 ≤ i ≤ d

we denote the corresponding block of B by Bi. It lifts a block Bi of B. By Schur’s lemma, we have Bi = βiBi
for some scalars βi ∈ 1 +mR. Since 2 is invertible in R we can find λi ∈ 1 +mR with λ2

i = β−1
i . Conjugating

r by the diagonal matrix with λi in the ith block puts r into the desired form.

Proof of Proposition 3.2. We begin by proving the first part. We again let R = Runiv
S /(mPS ). By Nakayama’s

lemma, it suffices to show that Rµ
d
2 = k. Indeed, the natural map (Runiv

S )µ
d
2/mPS (Runiv

S )µ
d
2 → Rµ

d
2 is injective

(i.e. (mPSR
univ
S )µ

d
2 = mPS (Runiv

S )µ
d
2 ), since if

∑
imixi is µd2-invariant, with mi ∈ mPS and xi ∈ Runiv

S , we

have
∑
imixi = 1

2d

∑
imi

∑
σ∈µd2

σxi which is an element of mPS (Runiv
S )µ

d
2 . Let r : GF+,S → Gn(R) be

a representative of the specialisation of the universal deformation satisfying the conclusion of Lemma 3.3.
Then R is a finite k-algebra and is generated as a k-algebra by the matrix entries of r, hence the matrix
entries of ρ = r|GF,S (because B = B). We recall the ideals Ai,j ⊂ R appearing in the proof of Lemma
3.3, which are generated by the block (i, j) matrix entries of ρ. The conjugate self duality of ρ is given

by tρ(δ) = χ(δ)B
−1
ρ((δc)−1)B, δ ∈ GF,S . Since B is block diagonal, we deduce that Ai,j = Aj,i. Since∑

i 6=j Ai,jAj,i = 0 we see that A2
i,j = 0 for i 6= j. We deduce that R is generated a k-module by 1 ∈ R and

products of the form

aP =
∏

(i,j)∈P

ai,j

where ∅ 6= P ⊂ {(i, j) : 1 ≤ i < j ≤ d} and ai,j ∈ Ai,j has action of µd2 given by ((−1)α1 , . . . , (−1)αd)ai,j =
(−1)αi+αjai,j . Suppose the action of µd2 on aP is trivial. Then for each 1 ≤ i ≤ d, i appears in an even
number of elements of P. A product a′j1,j2 = a1,j1a1,j2 lies in Aj1,j2 and the action of µd2 is given by
((−1)α1 , . . . , (−1)αd)a′j1,j2 = (−1)αj1+αj2a′j1,j2 . Since 1 appears in an even number of elements of P we can
‘pair off’ these elements and rewrite aP as a product

aP′ =
∏

(i,j)∈P′
a′i,j

where P ′ ⊂ {(i, j) : 2 ≤ i < j ≤ d} and the action of µd2 on a′i,j is given by the same formula as for ai,j .
Continuing in this manner, we deduce that aP is the product of an even number of elements of Ad−1,d, and
thus equals 0 since A2

d−1,d = 0.

The invariant subring Rµ
d
2 is equal to the k-submodule of R generated by

∑
σ∈µd2

σx where x runs

over a set of k-module generators of R (since 2 is invertible in k). It follows from the above calculation that

Rµ
d
2 = k.
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We now prove the second part. The diagonally embedded subgroup µ2 ⊆ µd2 acts trivially on Runiv
S ,

so we have an induced action of µd2/µ2. The first part together with [Sta17, Tag 0BRI] implies that µd2/µ2

acts transitively on the set of primes of Runiv
S above q. Let R = Runiv

S /p, and let rp : GF+,S → Gn(R) be a
representative of the specialisation of the universal deformation. By [Sta17, Tag 0BST], to finish the proof
if will be enough to show that if σ ∈ µd2, σ(p) = p, and σ acts as the identity on R, then σ ∈ µ2.

If σ ∈ µd2 corresponds to the block diagonal matrix g ∈ GLn(O), then these conditions imply that rp
and grpg

−1 are conjugate by an element γ ∈ 1 +Mn(mR). Since rp|GF,S ⊗ E = ρp is absolutely irreducible,
this implies that gγ−1 is scalar, and so g must also be scalar as l > 2, hence g ∈ µ2. This completes the
proof.

For each partition {1, . . . , d} = P1 t P2 with P1,P2 both non-empty, Proposition 2.5 gives an
ideal I(P1,P2) ⊂ PS cutting out the locus where the determinant det r|GF,S is (P1,P2)-reducible. We write

IredS =
∏

(P1,P2) I(P1,P2), an ideal of PS .

Lemma 3.4. Let p ⊂ Runiv
S be a prime ideal, and let q = p ∩ PS . Let A = Runiv

S /p, E = FracA. Then
ρp = rp|GF,S ⊗A E is absolutely irreducible if and only if IredS 6⊂ q.

Proof. If IredS ⊂ q, then I(P1,P2) ⊂ q for some proper partition (P1,P2). Then Proposition 2.5 implies that
det rp admits a decomposition det ◦rp|GF,S = D1D2 for two determinants Di : A[GF,S ] → Mni(A). Then
[Che14, Corollary 2.13] implies that ρp is not absolutely irreducible.

Suppose conversely that ρp is not absolutely irreducible. Let J(P1,P2) denote the image of I(P1,P2)

in A. We must show that some J(P1,P2) is zero. Let A denote the image of A[GF,S ] in Mn(A) under rp|GF,S .
According to [BC09, Theorem 1.4.4], we can assume that A has the form

A =


Mn1

(A) Mn1,n2
(A1,2) · · · Mn1,nd(A1,d)

Mn2,n1
(A2,1) Mn2

(A) · · · Mn2,nd(A2,d)
...

...
. . .

...
Mnd,n1

(Ad,1) Mnd,n2
(Ad,2) · · · Mnd(A)

 , (2)

where each Ai,j is a fractional ideal of E. Consequently A⊗A E has the form

A⊗A E =


Mn1(E) Mn1,n2(E1,2) · · · Mn1,nd(E1,d)

Mn2,n1
(E2,1) Mn2

(E) · · · Mn2,nd(E2,d)
...

...
. . .

...
Mnd,n1

(Ed,1) Mnd,n2
(Ed,2) · · · Mnd(E)

 , (3)

where each Ei,j = Ai,j ⊗A E equals either E or 0. Let fi ∈ Mn(E) denote the matrix with 1 in the (i, i)
entry and 0 everywhere else. If ρp is not absolutely irreducible then A⊗A E is a proper subspace of Mn(E),
so there exists i such that (A ⊗A E)fi ⊂ Mn(E)fi is a proper subspace. Since Mn(E)fi is isomorphic
as Mn(E)-module to the tautological representation En, this implies that the A ⊗A E-module En admits
a proper invariant subspace. After permuting the diagonal blocks, we can assume that this subspace is
En1+···+ns for some s < d (included as the subspace of En where the last ns+1 + · · ·+ nd entries are zero).
Otherwise said, the spaces Ei,j for i > s, j ≤ s are zero. If P1 = {1, . . . , s} and P2 = {s+ 1, . . . , d} then this
implies J(P1,P2) ⊗A E = 0 and hence (as A is a domain) J(P1,P2) = 0. This completes the proof.

Lemma 3.5. Let p ⊂ Runiv
S be a prime ideal, A = Runiv

S /p, E = FracA. Then rp ⊗A E is Schur and if
rp|GF,S ⊗AE is not absolutely irreducible, then rp is equivalent (i.e. conjugate by an element in 1+Mn(mA))
to a type-S lifting of the form rp = r1 ⊕ r2, where ri : GF+,S → Gmi(A) and m1m2 6= 0.

Proof. We argue, as in the proof of Lemma 3.4, using the image A ⊂ Mn(A) of A[GF,S ], which is a
generalized matrix algebra. Suppose given GF,S-invariant subspaces En ⊃ W1 ⊃ W2 such that W2 and
En/W1 are irreducible. We can assume that A has the form (2) and that this decomposition is block upper
triangular (perhaps with respect to a coarser partition than n = n1 + · · ·+ nd), and moreover than the first
block corresponds to W2, while the last block corresponds to En/W1. In particular, W2 and En/W1 are

10

https://stacks.math.columbia.edu/tag/0BRI
http://stacks.math.columbia.edu/tag/0BST


even absolutely irreducible. Note that there can be no isomorphism W c∨
2 (ν ◦ rp) ∼= En/W1; if there was,

then it would imply an identity of A-valued determinants, which we could reduce modulo mA to obtain an
identity {ρi} = {ρj} of sets of irreducible constituents of r|GF,S . Since these appear with multiplicity one,
this is impossible. This all shows that rp ⊗A E is necessarily Schur.

Now suppose that rp|GF,S ⊗A E is not absolutely irreducible. After permuting the diagonal blocks
of r, we can assume that there is some 1 ≤ m ≤ d such that Ai,j = 0 for i > m, j ≤ m. The existence of
the conjugate self-duality of rp implies (cf. [BC09, Lemma 1.8.5]) that Aj,i = 0 in the same range, giving a
decomposition rp|GF,S = ρ1⊕ ρ2 of representations over A. Since rp⊗AE is Schur the conjugate self-duality
of rp must make ρ1 and ρ2 orthogonal, showing that rp itself decomposes as rp = r1 ⊕ r2.

3.3 Dimension bounds

We now suppose that S admits a decomposition S = Sl t S(B) tR t Sa, where:

� For each v ∈ S(B) ∪R, qv ≡ 1 mod l and r|GFṽ is trivial.

� For each v ∈ Sa, qv 6≡ 1 mod l, r|GFṽ is unramified, and r|GFṽ is scalar. (Then any lifting of r|GFṽ is
unramified.)

We consider the global deformation problem

S = (F/F+, S, S̃,Λ, r, χ, {D4v }v∈Sl ∪ {DSt
v }v∈S(B) ∪ {D1

v}v∈R ∪ {D�
v }v∈Sa),

where r is assumed to be Schur. We define quantities dF,0 = d0 and dF,l = dl as follows. Let ∆ denote the
Galois group of the maximal abelian pro-l extension of F which is unramified outside l, and let ∆0 denote
the Galois group of the maximal abelian pro-l extension of F which is unramified outside l and in which
each place of S(B) splits completely. We set

d0 = dimQl ker(∆[1/l]→ ∆0[1/l])c=−1

and
dl = inf

v∈Sl
[F+
v : Ql].

Lemma 3.6. Suppose that dl > n(n− 1)/2 + 1. Let A ∈ CΛ be a finite Λ-algebra and let r : GF+,S → Gn(A)
be a lifting of r of type S. Then dimA/(IredS , λ) ≤ n[F+ : Q]− d0.

Proof. We can assume without loss of generality that A = A/(IredS , λ), and must show that dimA ≤ [F+ :
Q] − d0. Since A is Noetherian and we are interested only in dimension, we can assume moreover that A
is integral. Let E = Frac(A). Then (Lemma 3.5) we can find a non-trivial partition n = n1 + n2 and
homomorphisms ri : GF+,S → Gni(A) (i = 1, 2) such that r = r1 ⊕ r2.

Let E be a choice of algebraic closure of E. Our condition on dl means that we can appeal to [Tho15,
Corollary 3.12] (characterization of A-valued points of D4v for each v ∈ Sl). This result implies the existence
for each v ∈ Sl of an increasing filtration

0 ⊂ Fil1v ⊂ Fil2v ⊂ · · · ⊂ Filnv = E
n

of r|GFṽ ⊗A E by GFṽ -invariant subspaces, such that each Filiv /Fili−1
v is 1-dimensional, and the character

of Iab
Fṽ

(l) acting on this space is given by composing the universal character ψiv : Iab
Fṽ

(l) → Λ×v with the
homomorphism

Λv → Λ→ A→ E.

The direct sum decomposition of r leads to a decomposition r|GFṽ = r1|GFṽ⊕r2|GFṽ . Let F iv = Filiv ∩r1|GFṽ⊗A
E, and Giv = Filiv ∩r2|GFṽ ⊗A E. Then F •v and G•v are increasing filtrations of E

n1
and E

n2
, respectively,

with graded pieces of dimension at most 1. We write σv for the bijection

σv : {1, . . . , n1} t {1, . . . , n2} → {1, . . . , n}
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which is increasing on {1, . . . , n1} and {1, . . . , n2} and which has the property that σv({1, . . . , n1}) is the set
of i ∈ {1, . . . , n} such that the graded piece F iv/F

i−1
v is non-trivial.

Let Λv,1, Λv,2 denote the analogues of the algebra Λv in dimensions n1 and n2, respectively. The bi-
jection σv determines in an obvious way an isomorphism Λv,1⊗̂Λv,2 ∼= Λv. Applying again [Tho15, Corollary
3.12], we see that with this structure on A of Λv,i-algebra, each homomorphism ri|GFṽ : GFṽ → GLni(A) is

of type D4v (A). Similarly if we define Λi = ⊗̂v∈SlΛv,i then the collection of bijections (σv)v∈Sl determines
an isomorphism Λ1⊗̂OΛ2

∼= Λ.
We also define Λv,0 = OJIab

Fṽ
(l)K and Λ0 = ⊗̂v∈SlΛv,0. Then there are natural maps Λ0 → Λi

classifying the characters
∏ni
j=1 ψ

j
v : Iab

Fṽ
(l)→ Λ×v,i. Let χi = det ri|GF,S . We get a commutative diagram

Λ0⊗̂OΛ0
//

��

kJ∆/(c+ 1)K⊗̂kkJ∆/(c+ 1)K

��
Λ1⊗̂OΛ2

// A

,

where the map kJ∆/(c + 1)K⊗̂kkJ∆/(c + 1)K → A classifies the pair of A-valued characters (χ1, χ2) =
(χ−1

1 det r1|GF , χ−1
2 det r2|GF ) of the group ∆/(c+1). The natural map Λ0/(λ)→ kJ∆/(c+1)K is finite (and

dominant). (Note that det r1 and det r2 are unramified at places of S(B) ∪R ∪ Sa because of our choices of
deformation problem.)

We now use the existence of the places S(B). For each place v ∈ S(B), imposing the Steinberg
condition on r1 ⊕ r2 determines a relation χ1(Frobṽ)

n2 = χ2(Frobṽ)
n1 in A. Let E denote the quotient

of the group ∆/(c + 1) ×∆/(c + 1) by the Zl-submodule generated by the elements (n2 Frobṽ,−n1 Frobṽ)
(v ∈ S(B)). Then dimQl E [1/l] = dimQl(∆/(c+ 1)×∆/(c+ 1))[1/l]− d0, and we in fact have a commutative
diagram

Λ0⊗̂OΛ0
//

��

kJEK

��
Λ1⊗̂OΛ2

// A

.

We deduce that the map Λ ∼= Λ1⊗̂OΛ2 → A factors through the quotient Λ1⊗̂OΛ2⊗Λ0⊗̂OΛ0
kJEK of dimension

n[F+ : Q]− d0. Using finally that A is a finite Λ-algebra, we see that dimA must satisfy the same estimate.
This concludes the proof.

Definition 3.7. Let A ∈ CΛ, and let r : GF+,S → Gn(A) be a homomorphism of type S. We say that r is
generic at l if it satisfies the following two conditions:

� For each v ∈ Sl, the universal characters ψv1 , . . . , ψ
v
n : IabFṽ (l)→ A× are distinct.

� There exists v ∈ Sl and σ ∈ IabFṽ (l) such that the elements ψv1(σ), . . . , ψvn(σ) ∈ A× satisfy no non-trivial
Z-linear relation.

We say that r is generic if it is generic at l, A is a domain, and r|GF ⊗A Frac(A) is absolutely irreducible.

Lemma 3.8. There exists a countable collection of ideals Ii ⊂ Λ/(λ) (i = 1, 2, . . . ) with the following
properties:

1. For each i = 1, 2, . . . , we have dim Λ/Ii ≤ n[F+ : Q]− dl.

2. Suppose that A ∈ CΛ and r : GF+ → Gn(A) is a lifting of type S which is not generic at l. Then there
exists i ≥ 1 such that IiA = 0.

Proof. For each v ∈ Sl, let dv = [F+
v : Ql] and let σv,1, . . . , σv,dv ∈ Iab

Fṽ
(l) be elements which project to a

Zl-basis of the l-torsion-free quotient of this finitely generated Zl-module.
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For each 1 ≤ i < j ≤ n and v ∈ Sl, we define an ideal I(i, j, v) = (λ, ψiv(σv,k) − ψjv(σv,k))k=1,...,dv .
Then dim Λ/I(i, j, v) = n[F+ : Q] − dv and if p ⊂ Λ is a prime of characteristic l which does not contain
I(i, j, v), then the characters ψiv mod p and ψjv mod p are distinct.

Suppose given for each v ∈ Sl an n × dv matrix Av with integer entries, and with at least one
non-zero entry in each column. Then we define an ideal J((Av)v∈Sl) ⊂ Λ as the ideal generated by λ and
all the elements

n∏
i=1

ψiv(σv,j)
Av,i,j − 1 (v ∈ Sl, j = 1, . . . , dv).

Then dim Λ/J((Av)v∈Sl) = (n−1)[F+ : Q] and if p ⊂ Λ is a prime of characteristic l not containing any of the
ideals J((Av)v∈Sl), then there exists v ∈ Sl and 1 ≤ j ≤ dv such that the elements ψ1

v(σv,j), . . . , ψ
n
v (σv,j) ∈

(Λ/p)× satisfy no non-trivial Z-linear relation.
The lemma is completed on taking our countable collection of ideals Ii to consist of all the ideals

I(i, j, v) and J((Av)v∈Sl) defined above.

Combining the previous lemmas, we obtain the following result.

Lemma 3.9. Suppose that dl > n(n− 1)/2 + 1 and that A ∈ CΛ is a finite Λ-algebra such that dimA/(λ) >
sup(n[F+ : Q]−d0, n[F+ : Q]−dl). Let r : GF+,S → Gn(A) be a homomorphism of type S. Then we can find
a prime ideal p ⊂ A of dimension 1 and characteristic l such that, writing rp = r mod p : GF+ → Gn(A/p),
rp is generic.

Proof. Replacing A by A/(λ), we can assume that A is a finite Λ/(λ)-algebra. Let Ii (i = 1, 2, . . . ) be the
countable collection of ideals of Λ/(λ) defined in Lemma 3.8. Then dimA/IiA ≤ n[F+ : Q] − dl for each
i = 1, 2, . . . . Let I0 = IredS A; then Lemma 3.6 shows that dimA/I0 ≤ n[F+ : Q]− d0.

Applying [Tho15, Lemma 1.9], we can find a prime ideal p ⊂ A of dimension 1 (necessarily of
characteristic l) such that p does not contain any of the ideals I0, I1A, I2A, . . . . By construction, the
homomorphism rp is then generic.

4 Automorphic forms and Hecke algebras on unitary groups

4.1 Hecke algebras

We introduce automorphic forms on unitary groups and related Hecke algebras, using exactly the same
notation as in [Tho15, §4]. This means we start with the following data:

� An integer n ≥ 1, an odd prime l, and a totally imaginary CM number field L with totally real subfield
L+. We write Sl for the set of l-adic places of L+. We assume that L/L+ is everywhere unramified.

(We note that this implies that [L+ : Q] is even. Indeed, the quadratic character of (L+)×\A×L+/Ô×L+

cutting out L has non-trivial restriction to (L+
v )× for each v|∞ but is trivial on (−1)v|∞ ∈ (L+

∞)×.)

� A coefficient field K ⊂ Ql which contains the image of all embeddings L ↪→ Ql.

� A finite set S(B) of finite, prime-to-l places of L+ which all split in L. If n is even then we assume that
n[L+ : Q]/2 + |S(B)| is also even. We allow the possibility that S(B) may be empty. (Since [L+ : Q]
is even, we are really just asking that if n is even, then |S(B)| is even.)

We can then find a central simple algebra B over L equipped with an involution †, such that dimLB = n2,
Bop ∼= B ⊗L,c L, B is split outside S(B), B is a division algebra locally at places w|S(B) of L, and †|L = c.
We can moreover assume that the unitary group G over L+ defined by the formula (R an L+-algebra)

G(R) = {g ∈ (B ⊗L+ R)× | gg†⊗1 = 1}

has the property that G(L+ ⊗Q R) is compact and for each finite place v 6∈ S(B) of L+, GL+ is quasi-split
(hence unramified).

We consider automorphic forms on the group G. To define our Hecke algebras, we need to fix the
following additional choices:
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� A finite set R of finite places of L+, disjoint from Sl ∪ S(B) and split in L, and such that for each
v ∈ R, qv ≡ 1 mod l.

� For each v ∈ R, we fix a choice of n-tuple of characters χv,1, . . . , χv,n : k(v)× → O× which are trivial
mod $.

� A finite set T of finite places of L+ split in L, containing Sl ∪S(B)∪R. For each v ∈ T we fix a choice

of place ṽ of L lying above v, and set T̃ = {ṽ | v ∈ T}.

It is also convenient to fix a choice of order OB ⊂ B such that O†B = OB and for each place v of L+ which
splits v = wwc in L, OBw is a maximal order in Bw. We use this maximal order OB to extend G to a group
scheme over OL+ . If v ∈ T , then a choice of isomorphism OBṽ ∼= Mn(OFṽ ) determines an isomorphism
ιṽ : GO

F
+
v

→ ResOFṽ/OF+
v

GLn, and we fix such a choice.

Now suppose given an open compact subgroup U =
∏
v Uv ⊂ G(A∞L+) which satisfies the following

conditions:

� There exists a finite place v 6∈ Sl of L+ such that Uv contains no non-trivial elements of finite order.
(In other words, U is sufficiently small in the terminology of [Tho15]).

� If v 6∈ T is a finite place of L+ split in L, then Uv = G(OL+
v

).

� If v ∈ R, then Uv = ι−1
ṽ Iw(ṽ), where Iw(ṽ) ⊂ GLn(OFṽ ) denotes the standard Iwahori subgroup.

� If v is a finite place of L+ inert in L, then Uv is a hyperspecial maximal compact subgroup of G(L+
v ).

In this case we have defined in [Tho15, Definition 4.2] a Hecke algebra TTχ (U(l∞),O). It is a finite faithful
Λ-algebra, defined as an inverse limit of Hecke algebras which act on spaces of ordinary automorphic forms
on G with coefficients in O. According to [Tho15, Proposition 4.7], to any maximal ideal m ⊂ TTχ (U(l∞),O)
of residue field k, one can associate a continuous semi-simple representation ρm : GF,T → GLn(k), uniquely
characterized up to GLn(k) conjugacy by a formula for the characteristic polynomials of Frobenius elements
in terms of Hecke operators.

4.2 Deformation rings

We connect the Hecke algebras defined in the previous section to deformation rings only under the following
assumptions (1) – (3):

1. T has the form T = SltS(B)tRtSa, where Sa is a non-empty set of places of odd residue characteristic
which are absolutely unramified and not split in L(ζl). For every v ∈ Sl, [F+

v : Ql] > n(n− 1)/2 + 1.

2. U =
∏
Uv ⊂ G(A∞L+) is an open compact subgroup such that if v ∈ Sa, then Uv = ι−1

ṽ (ker(GLn(OLṽ )→
GLn(k(ṽ)))), and if v ∈ S(B), then Uv is the unique maximal compact subgroup of G(F+

v ). Since Sa
is non-empty, this forces U to be sufficiently small.

3. m ⊂ TTχ (U(l∞),O) is a maximal ideal of residue field k such that ρm : GF,T → GLn(k) satisfies the
following conditions:

� If v ∈ Sa, then ρm|GLṽ is unramified and ρm(Frobṽ) is scalar.

� If v ∈ Sl ∪R ∪ S(B), then ρm|GLṽ is the trivial representation.

� For each v ∈ S(B) ∪R, qv ≡ 1 mod l.

� Let ρm = ⊕di=1ρi denote the decomposition into simple constituents. Then each ρi is absolutely
irreducible, satisfies ρci

∼= ρ∨i ⊗ ε1−n, and if i 6= j then ρi 6∼= ρj . (Equivalently, the maximal ideal
m is residually Schur in the sense of [Tho15, Definition 4.8].)
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Then ([Tho15, Proposition 4.9]) ρm extends to a homomorphism rm : GL+,T → Gn(k) such that ν ◦ rm =
ε1−nδnL/L+ , and which is Schur. We can consider the global deformation problem

Sχ = (L/L+, T, T̃ ,Λ, rm, ε
1−nδnL/L+ , {R4v }v∈Sl ∪ {Rχvv }v∈R ∪ {RSt

v }v∈S(B) ∪ {R�
v }v∈Sa).

Then there are Λ-algebra homomorphisms PSχ → RSχ and PSχ → TTχ (U(l∞),O)m (see [Tho15, Proposition

4.13]). We define JSχ = ker(PSχ → TTχ (U(l∞),O)m).

Theorem 4.1. Let p ⊂ Runiv
S1 be a prime ideal of dimension 1 and characteristic l. Let A = Runiv

S1 /p, and
suppose that the following conditions are satisfied:

1. JS1R
univ
S1 ⊂ p.

2. The representation rp is generic, in the sense of Definition 3.7.

3. For each v ∈ R, rp|GLṽ is the trivial representation and if lN ||qv − 1 then lN > n. For each v ∈ S(B),
rp|GLṽ is unramified and rp(Frobṽ) is a scalar matrix.

4. rm|GL,S is primitive.

5. ζl 6∈ L, rm|GL+(ζl)
is Schur, and rm(GL,S) does not have a quotient of order l.

6. l > 3 and l - n.

Let Q ⊂ Runiv
S1 be a prime such that Q ⊂ p. Then JS1R

univ
S1 ⊂ Q.

Proof. Let q = p ∩ PS1 . We can assume, after twisting by a character, that FracRuniv
S1 /p = FracPS1/q.

(Apply [Tho15, Lemma 3.38] and [Tho15, Corollary 4.14].)
In the case that rm|GL,S has two irreducible constituents, the theorem follows on combining [Tho15,

Corollary 5.7] (existence of Taylor–Wiles primes under a subset of the hypotheses listed here) and [Tho15,
Corollary 4.20] (the assertion JS1R

univ
S1 ⊂ Q assuming existence of Taylor–Wiles primes and, in addition,

that rm|GL,S has two irreducible constituents).
The proof of [Tho15, Corollary 4.20] can easily be modified to allow rm|GL,S to have an arbitrary

number d of irreducible constituents: one just need replace the µ2
2 action there by the µd2 action on Runiv

S1
described in §3.2, and replace the appeal to [Tho15, Proposition 3.29] with an appeal to Proposition 3.2 of
this paper. We omit the details.

5 Propogation of potential pro-automorphy

In this section we use Theorem 4.1 (informally, R = T locally at generic primes) to prove our first automorphy
lifting theorem for l-adic Galois representations. The argument follows similar lines to [Tho15, §6]. The main
difference is that by making use of Lemma 3.9 we can make do under weaker assumptions. Especially, we
do not need an a priori bound on the dimension of the locus of reducible deformations inside Runiv

S1 .
Let us take up assumptions (1)–(3) of §4.2. Thus we have a CM field L, a unitary group G, and

a set S = T = Sl ∪ R ∪ S(B) ∪ Sa of finite places of L+ split in L. We have an open compact subgroup
U ⊂ G(A∞L+), a maximal ideal m of the Hecke algebra TS(U(l∞),O) of residue field k, a deformation problem

S1 = (L/L+, T, T̃ ,Λ, rm, ε
1−nδnL/L+ , {R4v }v∈Sl ∪ {R1

v}v∈R ∪ {RSt
v }v∈S(B) ∪ {R�

v }v∈Sa),

and a diagram of Λ-algebras
Runiv
S1 PS1oo //TT1 (U(l∞),O)m.

We can now state the main theorem of this section.

Theorem 5.1. Let r : GL+,S → Gn(O) be a lifting of rm of type S1 such that r|GL,S is ordinary of weight

λ, for some λ ∈ (Zn+)Hom(L,Ql). Suppose that the following conditions hold:
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1. rm|GL,S is primitive.

2. ζl 6∈ L, rm|GL+(ζl)
is Schur, and rm(GL,S) does not have a quotient of order l.

3. l > 3 and l - n.

4. Let dL,0, dL,l be as defined in §3.3. Then dL,0 > |R|n(n+ 1) + 2 and dL,l > sup(|R|n(n+ 1) + 2, n(n−
1)/2 + 1).

Then r|GL,S is automorphic of weight λ.

We assume the hypotheses of Theorem 5.1 for the rest of §5. Note that our assumption on dL,0 implies
that S(B) is non-empty. In particular, the conclusion of Theorem 5.1 implies, by local–global compatibility
at a place in S(B), that r|GL,S is absolutely irreducible.

Let us say that a soluble CM extension M/L is good if it is linearly disjoint from the extension of
L(ζl) cut out by rm|GL(ζl)

and every prime above Sl ∪ Sa ∪R splits in M . (Primes of S(B) are not required

to split, and indeed this possibility plays an important role in the proof, cf. [Tho15, Proposition 6.2].)

Lemma 5.2. Let M/L be a good extension. Then rm|GM is primitive, ζl 6∈ M , rm|GM+(ζl)
is Schur, and

rm(GM ) does not have a quotient of order l.

Proof. We take each property in turn. If M/L is good then rm(GM ) = rm(GL), so this image does not have
a quotient of order l. Since M/L is linearly disjoint L(ζl), we have ζl 6∈M .

To say that rm|GM+(ζl)
is Schur is to say that L 6⊂ M+(ζl) and, if ρ, ρ′ are two Jordan–Hölder

factors of rm|GM , then ρc ∼= ρ∨ ⊗ ε1−n and ρ 6∼= ρ′. Since rm(GM ) = rm(GL), the latter property is not
disturbed. We show that under our assumptions we in fact have M 6⊂ M+(ζl). It suffices to show that the
two extensions M/M+ and M+(ζl)/M

+ are linearly disjoint. Since these extensions arise from the linearly
disjoint extensions L/L+ and L+(ζl)/L

+ by compositum with M+, it is enough to check that the extensions
M+/L+ and L(ζl)/L

+ are linearly disjoint, or even that M+ ∩ L(ζl) = L+. This follows from the stronger
assertion that M ∩ L(ζl) = L.

Finally the condition that rm|GM is primitive depends only on the group rm(GM ) = rm(GL), so it
is inherited from the corresponding condition for rm.

If M/L is a good extension and X (resp. X̃) is a set of places of L+ (resp. L), then we write XM

(resp X̃M ) for the set of places of M+ lying above a place of X (resp. places of M lying above a place of

X̃). We write ΛM = ⊗̂v∈Sl,MOJIabMṽ
(l)nK for the Iwasawa algebra of M (so ΛL = Λ). There is a natural

surjective homomorphism ΛM → Λ. We can define a deformation problem

S1,M = (M/M+, TM , T̃M ,ΛM , rm|GM+ , ε
1−nδnM/M+ , {R4v }v∈Sl,M ∪{R1

v}v∈RM ∪{RSt
v }v∈S(B)M ∪{R

�
v }v∈Sa,M )

On the automorphic side, we can define an open compact subgroup UM ⊂ G(A∞M+) with the property
that UL = U ; see [Tho15, §4.5] for details. With this choice, it is possible to define a maximal ideal
mM ⊂ TTM (UM (l∞),O) with the property that rmM = rm|GM+ , and then there exists a commutative
diagram of ΛM -algebras

Runiv
S1 PS1
oo // TT1 (U(l∞),O)m

Runiv
S1,M

OO

PS1,M
oo

OO

// TTM1 (UM (l∞),O)mM

OO

(see [Tho15, Proposition 4.18]). Let JM = JS1,MPS1 . Then we have an inclusion JS1,MPS1 ⊂ JS1 . More
generally, if M1/M0/L is a tower of good extensions of L, then JM1

⊂ JM0
. We say that a prime ideal

p ⊂ Runiv
S1 is potentially pro-automorphic if there exists a good extension M/L such that JMR

univ
S1 ⊂ p.

Proposition 5.3. Let p ⊂ Runiv
S1 be a prime of dimension 1 and characteristic l which is potentially pro-

automorphic and generic. Suppose further that for each v ∈ R, the restriction rp|GLṽ is trivial. Then every
minimal prime Q ⊂ p is potentially pro-automorphic.
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Proof. The proof is the same as the proof of [Tho15, Proposition 6.2]. We need only replace the reference
there to [Tho15, Corollary 4.20] to Theorem 4.1 here.

Proof of Theorem 5.1. For any good extension M/L, the ring Runiv
S1 /(λ, JM ) is a finite Λ-algebra. Indeed,

Runiv
S1,M /(λ, JS1,M ) is a finite ΛM -algebra, and we can appeal to [Tho15, Lemma 4.16] and [Tho15, Proposition

4.17]. It follows from Lemma 3.9 that any quotient of Runiv
S1 /(λ, JM ) of dimension at least 1 + sup(n[L+ :

Q] − dL,0, n[L+ : Q] − dL,l) contains a generic, potentially pro-automorphic prime p of dimension 1 and
characteristic l.

Fix a choice of lifting runiv
S1 : GL+,S → Gn(Runiv

S1 ) representing the universal deformation. This induces

for each v ∈ R a homomorphism R1
v → Runiv

S1 , and we let JR denote the ideal generated by the images of

mR1
v
, v ∈ R. The ideal JR is independent of the choice of lifting, and for any quotient Runiv

S1 /I of characteristic

l, we have dimRuniv
S1 /(JR, I) ≥ dimRuniv

S1 /I − |R|n2, by [Mat89, Theorem 15.1] (note that R1
v/(λ) has

dimension n2 [Tho15, Proposition 3.15]). It follows that there exists a generic prime p ⊂ Runiv
S1 /(JR, JL) of

dimension 1 and characteristic l, since dimRuniv
S1 /(JR, JL) ≥ n[L+ : Q]−n2|R| > sup(n[L+ : Q]−dL,0, n[L+ :

Q] − dL,l) (here we are using assumption (4) in the statement of Theorem 5.1). By Proposition 5.3, any
minimal prime Q ⊂ p of Runiv

S1 is potentially pro-automorphic.

We now consider the partition of the set of minimal primes of Runiv
S1 into two sets C1, C2, consisting

of those primes which respectively are and are not potentially pro-automorphic. We have shown that C1 is
non-empty. We claim that C2 is empty. Otherwise, [Tho15, Lemma 3.21] implies the existence of primes
Q1 ∈ C1, Q2 ∈ C2 such that

dimRuniv
S1 /(Q1, Q2) ≥ n[L+ : Q]− |R|n− 2,

and hence

dimRuniv
S1 /(Q1, Q2, JR) ≥ n[L+ : Q]− |R|n− |R|n2 − 2 = n[L+ : Q]− |R|n(n+ 1)− 2.

The ring Runiv
S1 /Q1 (and hence each of its quotients) is finite over ΛL. Applying Lemma 3.9 and assumption

(4) once again, we see that Runiv
S1 /(Q1, Q2, JR) contains a generic, potentially pro-automorphic prime p′ of

dimension 1 and characteristic l. Applying Proposition 5.3 to p′, we deduce that Q2 is potentially pro-
automorphic, a contradiction.

Now let r : GL+,S → Gn(O) be a lifting of rm which is ordinary of weight λ and of type S1, as
in the statement of the theorem. This induces a homomorphism Runiv

S1 → O. Let Q be a minimal prime
contained inside the kernel of this homomorphism. Then there is a good extension M/L such that JM ⊂ Q,
and so the induced homomorphism Runiv

S1,M → O kills JS1,M , and the map PS1,M → O induced by r|GM,SM
factors through TTM1 (UM (l∞),O)mM . Using [Ger19, Lemma 2.6.4], [CHT08, Proposition 3.3.2], and [Tho15,
Lemma 2.7] (respectively a classicality statement in Hida theory, base change for the unitary group GM+ ,
and soluble descent for GLn(AM )) we deduce that the representation r|GL is automorphic of weight λ.

The following corollary was established in the course of the above proof.

Corollary 5.4. With hypotheses on rm as in Theorem 5.1, RS1 is a finite Λ-algebra.

6 The end

We are now in a position to state and prove the main theorem of this paper.

Theorem 6.1. Let F be an imaginary CM number field with maximal totally real subfield F+, and let
n ≥ 2 be an integer. Let l be a prime, and suppose that ρ : GF → GLn(Ql) is a continuous semisimple
representation satisfying the following hypotheses.

1. ρc ∼= ρ∨ε1−n.

2. ρ is ramified at only finitely many places.
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3. ρ is ordinary of weight λ, for some λ ∈ (Zn+)Hom(F,Ql).

4. There is an isomorphism ρss ∼= ρ1 ⊕ · · · ⊕ ρd, where each ρi is absolutely irreducible and satisfies
ρci
∼= ρ∨i ε

1−n, and ρi 6∼= ρj if i 6= j.

5. There exists a finite place ṽ0 of F , prime to l, such that ρ|ssGFṽ0
∼= ⊕ni=1ψε

n−i for some unramified

character ψ : GFṽ0 → Q×l .

6. There exists a RACSDC representation π of GLn(AF ) and ι : Ql → C such that:

(a) π is ι-ordinary.

(b) rι(π)
ss ∼= ρss.

(c) πṽ0 is an unramified twist of the Steinberg representation.

7. F (ζl) is not contained in F
ker ad(ρss)

and F is not contained in F+(ζl). For each 1 ≤ i, j ≤ d, ρi|GF (ζl)

is absolutely irreducible and ρi|GF (ζl)
6∼= ρj |GF (ζl)

if i 6= j. Moreover, ρss is primitive and ρss(GF ) has
no quotient of order l.

8. l > 3 and l - n.

Then ρ is automorphic: there exists an ι-ordinary RACSDC automorphic representation Π of GLn(AF ) such
that rι(Π) ∼= ρ.

Proof. The proof is similar to, and even simpler than, the proof of [Tho15, Theorem 7.1]. We can find a
coefficient field K ⊂ Ql and, after replacing ρ by a conjugate, assume that ρ = r|GF , where r : GF+ → Gn(O)
is a homomorphism such that r is Schur and ν ◦ r = ε1−nδnF/F+ . Similarly we can assume the existence

of a model ρ′ : GF → GLn(O) for rι(π) which extends to a homomorphism r′ : GF+ → Gn(O) such that
ν ◦ r′ = ε1−nδnF/F+ and such that r′ = r. In fact, r|GF+(ζl)

is Schur. Indeed, making use of assumption 7, we

just need to check that r(GF+(ζl)) meets both components of Gn. This is our assumption that F 6⊂ F+(ζl).
After making a preliminary soluble base change, we can assume that the following further conditions

are satisfied:

1. F/F+ is everywhere unramified, and each place of F+ dividing l or above which ρ or π is ramified
splits in F .

2. The place ṽ0 is split over F+. We write v0 = ṽ0|F+ .

3. For each place w of F at which ρ or π is ramified, or which divides l, the representation r|GFw is trivial.

4. For each prime-to-l place w of F at which ρ or π is ramified, we have qw ≡ 1 mod l, and if lN ||(qw− 1)
then lN > n. Moreover, ρ|GFw and ρ′|GFw are unipotently ramified.

We can find a finite set X̃0 of finite places of F satisfying the following conditions:

� X̃0 does not contain any place at which ρ or π is ramified, or any place dividing l.

� Let E/F (ζl) denote the extension cut out by ρ|GF (ζl)
. Then for any Galois subextension E/E′/F with

Gal(E′/F ) simple, there exists a place w ∈ X̃0 which does not split in E′.

� X̃0 contains an absolutely unramified place ṽ1 such that ρ(Frobṽ1) is scalar and qṽ1 6≡ 1 mod l.

Let X0 denote the set of places of F+ lying below a place of X̃0. We write v1 = ṽ1|F+ . If L/F is any Galois

CM extension which is X̃0-split, then the analogue of assumption (7) of the theorem (where F is replaced
by L and ρ by ρ|GL) is satisfied.

If L+/F+ is a Galois, totally real, X0-split extension and L = L+ · F , then L/F is Galois CM and

X̃0-split. We claim that we can find a soluble, totally real, X0-split extension such that the hypotheses
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of Theorem 5.1 are satisfied for r|GL+ . This will complete the proof: we deduce from Theorem 5.1 that
r|GL = ρ|GL is automorphic of weight λ and irreducible. The automorphy of ρ then follows by soluble
descent.

Let Ỹ0 denote the set of places ṽ 6= ṽ0, ṽ
c
0 of F dividing l or at which ρ or π is ramified, and

let Y0 denote the set of places of F+ lying below a place of Ỹ0. Then every place of Y0 splits in F and
Y0 ∩ (X0 ∪{v0}) = ∅. For any odd integer δ ≥ 1, we can find a cyclic totally real extension M0/F

+ of degree
δ which is X0 ∪ {v0}-split and such that each place v ∈ Y0 of F+ is totally inert in M0.

Let M1 be a totally real quadratic extension of F+ which is X0 ∪ {v0} ∪ Y0-split. We will take
L = F ·M0 ·M1. We claim that for a suitable choice of odd integer δ, this L will suffice for the application
of Theorem 5.1. More precisely, we will apply Theorem 5.1 to the homomorphism r|GL+ with the following
data:

� Sl is the set of l-adic places of L+.

� S(B) is the set of places of L+ lying above v0.

� R is the set of prime-to-l places of L+ lying above a place of Y0.

� Sa is the set of places of L+ lying above v1.

Let ∆ denote the Galois group of the maximal abelian pro-l extension of L unramified outside l, and let ∆0

denote the Galois group of the maximal abelian pro-l extension of L which is unramified outside l and which
is S(B)-split. Then ∆0 is naturally a quotient of ∆. Let us define

d0 = dimQl ker(∆[1/l]→ ∆0[1/l])c=−1

and
dl = inf

v∈Sl
[L+
v : Ql].

In order to complete the proof, we must show that the odd integer δ ≥ 1 can be chosen so that the inequalities

d0 > |R|n(n+ 1)/2 + 2

and
dl > sup(|R|n(n+ 1)/2 + 2, n(n− 1)/2 + 1)

are simultaneously satisfied. It follows from [Mai02, Proposition 19] that d0 = 2δ (see the proof of [Tho15,
Theorem 7.1] for more details). If δ is prime to the absolute residue degrees of all the places of Y0, then we
will have |R| ≤ 2|Y0| and dl ≥ δ. We will therefore be done if we can choose δ to satisfy

2δ > 2|Y0|n(n+ 1)/2 + 2

and
δ > sup(2|Y0|n(n+ 1)/2 + 2, n(n− 1)/2 + 1).

This is clearly possible, and concludes the proof.

We can use the same idea to prove the following finiteness result (compare [Tho12, Theorem 10.2]),
which plays a crucial role in some of the level raising arguments in [NT19].

Theorem 6.2. Let F be a CM field, let l be a prime, and let ι : Ql → C be an isomorphism. Let S be
a finite set of finite places of F+, containing the l-adic ones, and suppose that each place of S splits in F .
Choose for each v ∈ S a place ṽ of F lying above v, and let S̃ denote the set of the ṽ.

Let π be a RACSDC automorphic representation of GLn(AF ), and let K/Ql be a coefficient field
such that rι(π) can be chosen to take values in GLn(O), and extend it to a homomorphism r : GF+ → Gn(O)
such that ν ◦ r = ε1−nδnF/F+ . Suppose that the following conditions are satisfied:

1. π is ι-ordinary. For each place v ∈ Sl, r|GFṽ is the trivial representation.
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2. π is unramified outside S.

3. There exists a place v0 - l of S such that πṽ0 is an unramified twist of the Steinberg representation.
Moreover, qv0 ≡ 1 mod l and r|GFṽ0 is the trivial representation.

4. Let ρ = r|GF,S . There is an isomorphism ρss ∼= ρ1 ⊕ · · · ⊕ ρd, where each ρi is absolutely irreducible
and satisfies ρci

∼= ρ∨i ε
1−n. (In particular, r is Schur and therefore ρ is semisimple.)

5. F (ζl) is not contained in F
ker ad(ρss)

and F is not contained in F+(ζl). For each 1 ≤ i, j ≤ d, ρi|GF (ζl)

is absolutely irreducible and ρi|GF (ζl)
6∼= ρj |GF (ζl)

if i 6= j. Moreover, ρ is primitive and ρ(GF ) has no
quotient of order l.

6. l > 3 and l - n.

Define the global deformation problem

S = (F/F+, S, S̃,Λ, r, ε1−nδnF/F+ , {R4v }v∈Sl ∪ {R�
v }v∈S−(Sl∪{v0}) ∪ {R

St
v0}).

Then Runiv
S is a finite Λ-algebra.

Proof. Let R = S − Sl ∪ {v0}, S(B) = {v0}. If L/F is a CM extension, let SL denote the set of places of

L+ above S, S̃L the set of places of L above S̃, and define RL, R̃L etc. similarly. If L satisfies the following
conditions:

� r|L+ is Schur;

� For each place v ∈ RL, qv ≡ 1 mod l and r|GLṽ is the trivial representation;

� For each place v ∈ R and each place w|v of L+, the induced map R�
Lṽ
→ R�

Fṽ
factors through the

quotient R�
Lṽ
→ R1

Lṽ
,

then we can define the global deformation problem

SL = (L/L+, SL, S̃L,ΛL, r|GL+ , ε
1−nδnL/L+ , {R4v }v∈Sl,L ∪ {R1

v}v∈RL ∪ {RStv }v∈S(B)L),

and restriction from F+ to L+ determines a finite morphism Runiv
SL → Runiv

S . If moreover L satisfies the

conditions of Theorem 5.1, then Corollary 5.4 will imply that Runiv
SL is a finite ΛL-algebra, hence that Runiv

S
is a finite Λ-algebra. Such an extension L/F can be constructed in exactly the same manner as in the proof
of Theorem 6.1.

References
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