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Abstract: 

Real-time magnetic resonance imaging (MRI)-guided electrophysiology (MR-EP) offers a 

number of potential advantages over conventional electroanatomic mapping (EAM) systems, 

including improved assessment of arrhythmia structural substrate using late gadolinium 

enhancement (LGE) scar imaging, navigation of catheters using dedicated tracking 

techniques and monitoring of ablation lesion formation with soft tissue visualisation. 

Registration errors due to changes in the volume, orientation, rhythm, cardiac or respiratory 

motion between the time of pre-procedural imaging and EAM, as is typical with image 

integration approaches, are also minimised during real-time MR-EP. Although the majority 

of real-time MR-EP studies published to date have focused on the atria, where significant 

challenges remain for accurate substrate evaluation, the full potential of substrate and lesion 

assessment afforded by such systems is likely to be realised in the context of ventricular 

tachycardia (VT) ablation.  

This thesis explores the use of a real-time MR-EP system for the assessment of structural and 

electrical substrate in the ventricle. Furthermore, the accuracy of the system is evaluated in 

the delivery of radiofrequency (RF) ablation lesions and online monitoring of lesions using 

dedicated imaging techniques. Chapters 1 and 2 review the literature on the electrophysiology 

of ventricular tachycardia and magnetic resonance imaging. Chapter 3 describes in detail the 

methods common to the data chapters including the animal model, imaging approaches and 

MR-EP workflow. In Chapter 4, a method of contrast delivery using a slow infusion of 

gadolinium (contrast steady-state) is used to enable LGE scar imaging over a prolonged 

period, thereby enhancing the spatial resolution of 3D sequences and improve the 

characterisation of structural substrate. A porcine ischaemia-reperfusion model is used to 
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compare post-contrast 3D sequences under consistent contrast conditions whilst the technique 

is also applied in a feasibility cohort of ischaemic cardiomyopathy patients.  

In Chapter 5, the contrast steady-state technique is then used to acquire high resolution 3D 

scar imaging in the porcine model with the real-time MR-EP system. The relationship 

between structural and electrical substrate with the system is assessed. In Chapter 6, the 

accuracy of the MR-EP system to deliver ablation lesions in target regions is evaluated and 

lesion sizes measured using temperature mapping (MR-thermometry and dosimetry) and a 

non-contrast sequence (gradient-echo with a long inversion time) are compared to gross 

pathological examination. Chapter 7 summarises the results and describes further studies to 

advance the field.  
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1 Ventricular tachycardia 

 
1.1 Introduction 
 
Ventricular tachycardia (VT) is an abnormal heart rhythm originating from the left or right 

ventricle and includes a spectrum of clinical disease that may occur in the presence or 

absence of structural heart disease ranging from benign, idiopathic premature ventricular 

complexes (PVC) to monomorphic or polymorphic VT (Tanawuttiwat et al. 2016). In the 

presence of structural heart disease, VT is a life-threatening cardiac arrhythmia and a major 

cause of sudden cardiac death, the incidence of which is estimated to range from 50-100 per 

100,000 in the general population (Rajat et al. 2012). Although the use of implantable 

cardioverter-defibrillators (ICDs) can reduce the risk of sudden cardiac death due to 

ventricular arrhythmias, recurrent ICD shocks can lead to psychological morbidity, reduce 

quality of life and have no impact on the underlying arrhythmogenic substrate (Poole et al. 

2008; Wissner et al. 2012).  

 

Anti-arrhythmic medications such as amiodarone can be used to suppress VT and reduce both 

appropriate and inappropriate ICD therapies (Santangeli et al. 2016) but have variable 

efficacy and are associated with significant adverse effects (Sapp et al. 2016). Catheter 

ablation using radiofrequency energy has emerged as a useful adjunct to ICD implantation 

and anti-arrhythmic medications in the management of VT. However, VT ablation remains 

limited by modest long-term success rates (Della Bella et al. 2013). Treatment failure can be 

due to the inability to deliver radiofrequency energy in a transmural fashion, difficulties in 

accessing regions of arrhythmogenic tissue and lack of robust procedural end-points. There 

are also significant procedural risks including vascular complications, cardiac tamponade, 

stroke and death. 



 15 

The aim of this thesis is to develop and evaluate a real-time magnetic resonance imaging 

(MRI)-guided electrophysiology (MR-EP) solution for VT ablation which has the potential to 

improve the safety and efficacy of catheter ablation. This chapter provides an overview of the 

current classification of ventricular tachycardia, pathophysiology, electroanatomic mapping 

techniques and ablation strategies.  

 

1.1.1 Idiopathic ventricular tachycardia 

Around 10% of ventricular arrhythmias occur in the absence of structural heart disease 

defined by imaging and coronary angiography and are termed ‘idiopathic’ (Pathak et al. 

2019). The mechanisms underlying idiopathic VT include abnormal automaticity, triggered 

activity and re-entry. Increased automaticity or spontaneous depolarisation of a focal region 

of tissue can result in extrasystoles which can precipitate tachycardia. Triggered activity can 

occur when oscillations in the transmembrane potential during or after repolarisation of the 

cardiac action potential is sufficient to breach the threshold potential and generate a 

spontaneous action potential. If repolarisation of the original cardiac action potential is 

interrupted resulting in a second spontaneous potential, this is referred to as an early 

afterdepolarisation (EAD) whilst a spontaneous potential occurring after the end of full 

repolarisation is referred to as a delayed afterdepolarisation (DAD). These ‘triggered events’ 

can also lead to extrasystoles and precipitate VT. The majority of idiopathic VT, particularly 

those related to the outflow tracts, are due to triggered activity secondary to DADs 

(Dukkipati et al. 2017). Re-entry requires the presence of alternate pathways of conduction 

where unidirectional block in one pathway may lead to circus movement or ‘re-entry’ 

between the conventional and alternate pathways, culminating in tachycardia. 

Idiopathic VT can be classified according to the anatomic site of origin. The most common 

location is in the right ventricular outflow tract (RVOT) which accounts for 80% of 
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idiopathic VTs. Other cardiac structures in close proximity including the left ventricular 

outflow tract (LVOT), aortic cusp and pulmonary artery can also give rise to outflow tract 

tachycardias. Similar to atrial fibrillation, where sleeves of myocardial tissue extending into 

the pulmonary veins can trigger ectopic beats, myocardial sleeves extending into the great 

vessels (aorta and pulmonary artery) may account for outflow tract VT.  

 

The conduction system accounts for 10-15% of idiopathic VT with involvement of the left 

anterior or posterior fascicle. Fascicular VT is usually due to re-entry with a zone of slow 

conduction in the interventricular septum. These tachycardias are highly sensitive to the 

administration of calcium-channel blockers such as verapamil which can rapidly terminate 

the arrhythmia. VT may also originate from intra-cavitary structures such as the papillary 

muscles accounting for 5-12% of all idiopathic VT (Dukkipati et al. 2017). The 

posteromedial LV papillary muscle is the most common location followed by the 

anterolateral papillary muscle and rarely the right ventricular papillary muscles. The mitral 

and tricuspid annuli can also be a sources of idiopathic VT.  

 

In general, catheter ablation can be offered with or without a trial of medical therapy in 

patients with symptomatic idiopathic VT and is associated with a relatively low risk of 

complications. For outflow tract VT, catheter ablation is highly efficacious with significant 

reductions in PVC burden and recurrence-free survival of >80% at 1-year in selected cases 

(Ling et al. 2014; Bogun et al. 2007). Fascicular VT ablation has comparable procedural 

efficacy with an initial success rate of 87% after the index procedure and 93.5% after 

multiple procedures (Creta et al. 2019). Catheter ablation of papillary muscle VT can be more 

challenging due to their complex structures, deep location of sites of origin, poor catheter 

stability and contact force during ablation (Doppalapudi et al. 2008).  
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1.1.2 Ventricular tachycardia in structural heart disease 
 
Ventricular tachycardia associated with structural heart disease (SHD) is a major cause of 

sudden death and ICDs can be used for primary and secondary prevention in selected patients 

to reduce this risk. Catheter ablation may be considered as an adjunctive therapy in patients 

with recurrent VT who cannot tolerate anti-arrhythmic medications or where they prove 

ineffective (Deyell et al. 2018). The most common anatomic substrate for VT associated with 

SHD is scar-related re-entrant VT post myocardial infarction (Josephson ME et al. 1978).  

 

Following a myocardial infarction, there may be three different types of tissue present: dense 

scar which is electrically unexcitable, normal myocardium and borderzone tissue. Infarct 

heterogeneity can occur due to variability in myocardial perfusion, restoration of blood flow 

after an infarct following primary percutaneous coronary intervention and subsequent 

remodelling during the healing phase of the infarct (Schmidt et al. 2007). The infarct 

borderzone region may contain a mixture of non-excitable scar tissue and surviving 

‘channels’ of myocardial tissue. These regions provide the substrate for VT as a combination 

of slow conduction and fixed anatomical block from dense scar produce non-uniform 

anisotropy and promote re-entry (Ashikaga et al. 2007) - Figure 1-1. In ischaemic scar, the 

substrate for VT is mainly detected in the endocardium but epicardial substrate may 

sometimes also be present (Hayashi et al. 2018).   
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Figure 1-1: Figure-of-eight re-entry circuit.  

Classical figure-of-eight re-entrant ventricular tachycardia circuit with an entrance, common isthmus and exit. The isthmus 
is bounded by two lateral lines of block which may be fixed or functional. Animal studies have demonstrated that conduction 
velocities are slowest at the inward curvature to the isthmus entrance, slightly faster at the outward curvature and almost 
normal in the central isthmus. The arrows denote the direction of electrical activation wavefronts. 
 
Not all patients with ischaemic scar develop VT - patients with larger regions of low voltage 

and electrogram fractionation (a sign of asynchronous activation in the region of the 

recording electrode) appear to have a greater risk of developing monomorphic VT (Haqqani 

et al. 2009). Furthermore, in patients post infarct with spontaneous VT, channels of surviving 

myocytes supporting VT are longer and have a reduced conduction velocity compared to 

channels that do not support VT (Nayyer et al. 2018; Nayyer et al. 2014). Non-ischaemic 

cardiomyopathies can also result in VT and can be more challenging to manage as substrate 

may be located in the endocardium, epicardium or in intramural myocardium (Nakahara et al. 

2010). In non-ischaemic dilated cardiomyopathy (DCM), the presence of myocardial 

replacement fibrosis can provide the substrate for re-entrant VT. The presence of mid wall 
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fibrosis on late gadolinium enhancement magnetic resonance imaging (LGE-MRI) is an 

independent risk factor for sudden cardiac death in this cohort (Gulati et al. 2013; Halliday et 

al. 2017). Other mechanisms for VT in DCM include enhanced automaticity, triggered 

activity and bundle-branch re-entry (Dukkipati et al. 2017). Frequently epicardial ablation 

may be required in addition to endocardial ablation in DCM, especially in the presence of 

inferolateral scars (Piers et al. 2013).  

 

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterised by fibro-fatty 

replacement of RV myocardium occurring classically in the RV free wall, outflow tract and 

RV apex forming the so-called ‘triangle of dysplasia.’ Scar-related re-entry is the main 

mechanism of VT in these patients and can present early during the natural history of the 

disease (Sen-Chowdhry et al. 2006). In patients with hypertrophic cardiomyopathy (HCM), 

sudden cardiac death may be caused by ventricular fibrillation or polymorphic VT. 

Monomorphic VT is rare but can be caused by the presence of myocardial scar. Due to the 

increased wall thickness in HCM, combined endo-epicardial approaches to catheter ablation 

may also be required to fully eliminate VT substrate (Dukkipati et al. 2011).  

 

Sarcoidosis is a systemic inflammatory disorder characterised by non-caseating granulomas 

and can affect the heart in around 25% of cases (Dukkipati et al. 2017). Ventricular 

tachycardia can occur due to re-entry, triggered activity or abnormal automaticity but the 

inflammatory substrate is often best managed early using immunosuppression with 

corticosteroids and/or anti-arrhythmic medications. In selected cases resistant to medical 

management, catheter ablation may be considered but is associated with poor efficacy 

(Papageorgiou et al. 2018).  
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In this thesis, substrate assessment with MRI and evaluation of the MR-EP system for 

electroanatomic mapping and ablation will be assessed in models of ischaemic 

cardiomyopathy and the remainder of the thesis will focus on VT in this context.  

 
 
1.2 Electroanatomical mapping 
 
1.2.1 Background and technical aspects  

Intra-cardiac electrophysiological mapping can be used to infer local tissue structural 

characteristics, which may reveal pro-arrhythmic substrate and also provide a direct 

assessment of arrhythmia mechanism. Catheters introduced percutaneously record local 

electrograms (EGM), their characteristics including timing, amplitude and location and are 

used for substrate assessment and arrhythmia diagnosis. The EGM represents local electrical 

activity and is the difference between signals recorded from two electrodes. A unipolar EGM 

is the signal detected between one electrode at the recording site and an indifferent electrode 

at a point of zero reference. The unipolar signal incorporates both near and far-field signal 

components as the signal is a representation of myocardial electrical activity spanning the 

distance between electrodes. A bipolar EGM is the signal detected between a pair of closely 

spaced recording electrodes (comprising the recording bipole) and is created through 

subtraction of two unipolar EGMs. As a result, bipolar EGMs are less influenced by larger 

amplitude far-field signals from surrounding myocardium and are useful to evaluate the local 

characteristics of abnormal tissue.  

 

As unipolar signals are comprised of both local and remote influences, they are more 

susceptible to far-field influences but are of greatest use in locating sites of earliest activation 

or exit points of re-entrant circuits as information on the direction of impulse propagation can 

be derived (de Groot et al. 2003). Bipolar signals, although less susceptible to far-field 
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effects, are influenced by multiple factors including the catheter orientation relative to the 

surface tissue (angle of incidence), recording electrode size, inter-electrode spacing, direction 

of activation wavefront, filtering techniques and tissue contact (Tschabrunn et al. 2016).  

 

These extrinsic factors can introduce artefacts during EGM recordings in several ways. Poor 

catheter contact can lead to low-amplitude EGMs leading to potentially misleading 

annotation of regions of normal myocardium as scar. Catheter stability is also important 

during EGM recordings - catheter motion can artificially lead to recording of fractionated 

EGMs (low amplitude EGMs with high frequency deflections). The presence of 

electromagnetic interference (e.g. as is present inside a MRI scanner) can also introduce high 

frequency noise and obscure the timing and morphology of the local EGM. Signal filtering is 

used in the electrophysiology laboratory to enhance segments of the frequency spectrum 

whilst rejecting undesirable aspects of the spectrum. A combination of high-pass and low-

pass filters with or without an optional notch filter can be used to reject electrical 

interferences from DC voltages, baseline drift and suppress line-related noise to optimise the 

quality of signal acquisition. The application of filtering can attenuate peak-to-peak signal 

amplitude depending on the filter settings and needs careful interpretation. Given the 

additional sources of electromagnetic interference present during MR-EP procedures, 

filtering techniques have required re-interpretation and adaptation to preserve EGM fidelity 

and reduce artifacts induced by MR sequences during mapping inside the MRI environment 

(Elbes et al. 2017).  

 

Residual electrical activity within regions of scar may manifest as abnormal EGMs due to the 

transverse uncoupling of myocytes due to fibrosis. Abnormal EGMs can be categorised as 

fractionated, isolated and late (Bogun et al. 2005). A normal ventricular EGM may contain 
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sharp biphasic or triphasic deflections with an amplitude ≥ 3mV and duration <70ms. In 

contrast, a fractionated potential exhibits multiple deflections (≥ 3 deflections) from the 

isoelectric line or continuous electrical activity without an isoelectric line and typically an 

amplitude ≤0.5mV with duration ≥133ms (Rostock et al. 2006). These may reflect non-

uniform activation of a mass of surviving myocardial bundles within a region of scar. An 

isolated or disassociated potential is defined as a potential distinct and separated from the 

local ventricular EGM by an isoelectric interval or very low amplitude noise and of a 

duration >20ms at a gain of 40-80mm/mV (Hsia et al. 2009). These may represent electrical 

activation from surviving myocardial bundles insulated by dense scar and poorly coupled to 

remaining myocardium. EGMs containing isolated potentials may have double or multiple 

potentials. A higher incidence of these late potentials have been recorded near a VT isthmus 

compared to the entrance or exit sites (Hsia et al. 2009) - Figure 1-2.  

 

Figure 1-1: Normal and abnormal electrograms.  

Example tracings of normal and abnormal electrograms. Recordings from surface leads (I, aVF, V1), intra-cardiac 
recordings from the left ventricle and right ventricular apex are shown. Normal EGM (A) with an amplitude of 7.8mV and 
duration 65ms. Isolated potential (B) is clearly visible and separated from the ventricular EGM by 210ms. A fractionated 
electrogram (C) with an amplitude of 0.37mV and duration of 192ms is seen. An abnormal local electrogram is present (D) 
with an amplitude of 0.7mV and duration 112ms. Adapted with permission from Bogun et al 2005). 

More recently, (Jais et al. 2012) have sought to define abnormal EGMs in a more precise 

manner incorporating data on the amplitude and timing of potentials in relation to the QRS, 
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local or far-field signals. Local abnormal ventricular activities (LAVA) were defined as 

sharp, high-frequency ventricular potentials, distinct from the far-field ventricular EGM 

occurring during or after the far-field ventricular EGM in sinus rhythm or before the far-field 

ventricular EGM during VT. Elimination of LAVAs during VT ablation was associated with 

improved VT-free survival in a cohort of patients with structural heart disease (Jais et al. 

2012).  

 

1.2.2 Electroanatomic mapping systems 
 

Local electrophysiological data acquired from recording catheters such as activation time, 

unipolar or bipolar voltage and the presence of abnormal electrograms can be displayed on 

3D shells of cardiac chambers using contemporary electroanatomic mapping (EAM) systems. 

These provide a static representation of time-dependent electrical activation and can be used 

to assess underlying substrate and guide catheter ablation. All EAM systems provide three 

basic functions (Knackstedt et al. 2008): 

 

1. Non-fluoroscopic localisation and display of catheter position in real-time 

2. Reconstruction of 3D surface anatomy of cardiac chambers from serial acquisition of 

catheter localisation data 

3. Annotation of reconstructed surface geometry with local electrophysiological data and 

location of ablation lesions 

 
The major systems which are widely used in current electrophysiology practice include 

CARTO® (Biosense Webster), PRECISIONTM (Abbott) and RHYTHMIATM (Boston 

Scientific). Catheter location in conventional EAM systems is triangulated using magnetic-

based sensing and/or impedance-based tracking. The CARTO system uses magnetic-sensor 

based tracking incorporating a magneto-sensor in the tip of the catheter which measures 
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magnetic field strength around it. Magnetic generators are located beneath the patient on the 

operating table and allows the triangulation of catheter tip position and orientation based on 

magnetic field strength at the catheter tip. Additional patches are applied on the patient’s 

back to record inadvertent patient movement and correct navigational error (Gepstein et al. 

1997; Kautzner et al. 2003; Maury et al. 2018).  

 

Localisation of catheters with the PRECISION system is based on measurements of electrical 

impedance. Skin patches are applied to the patient’s chest through which a high frequency, 

low amplitude current is delivered to create a voltage gradient along the x,y and z-axes. A 

catheter then measures impedance changes to compute its location in 3D space in relation to 

the reference. In order to compensate for respiratory changes, the position of each intra-

cardiac electrode is determined during a period of recording and correlated to changes in 

intra-thoracic impedance as detected by the skin patches. By monitoring surface impedance 

changes, the system can then adjust electrode position accordingly. The RHYTHMIA system 

uses a combination of magnetic-sensor based and impedance-based tracking for catheter 

localisation. The accuracy of these tracking techniques has been estimated at 0.5mm for 

magnetic-sensor based tracking and 0.6mm for impedance-based tracking (Maury et al. 

2018).  

 

Using the localisation data provided by catheters, sequential movements made by 

manipulating the catheter around the cardiac chamber of interest can be used to generate 3D 

surface geometry. Electrical information can be collected, if required, at each contact site 

during the collection of points for geometry. Pre-procedural imaging data from cardiac 

computed tomography (CT) or MRI can also be merged through image integration with the 

3D reconstructions of chamber geometry to refine the accuracy of anatomical maps as well as 
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reducing errors from geometry acquisition. Imaging-derived data on arrhythmogenic 

substrate (e.g. wall thinning on CT or LGE on MRI) may be integrated into the navigation 

system during VT ablation procedures to inform additional mapping in regions of interest as 

well as to guide epicardial access in those patients with relevant substrate (Yamashita et al. 

2016).  

 

The 3D reconstructed shell is annotated with local electrophysiological data during an EAM 

procedure - Figure 1-3. Local activation time of the wavefront of depolarisation can be 

depicted using colour-coded maps with each colour representing a fixed time frame in the 

depolarisation cycle. An animation can also be created with all conventional EAM systems to 

represent wavefront propagation thereby permitting an appreciation of the dynamic pattern of 

activation. The amplitude of unipolar or bipolar EGMs can also be represented as colour-

coded voltage maps which allow discrimination between dense scar, borderzone regions and 

normal myocardium. Conventionally, a bipolar voltage threshold of ≤0.5mV is used to 

represent dense scar, 0.5-1.5mV is used to represent borderzone tissue and regions with a 

bipolar voltage >1.5mV is classified as normal myocardium. These thresholds were originally 

defined using point-by-point, non-contact, force-sensing mapping catheters and validated in 

models of ischaemic cardiomyopathy (Reddy et al. 2003). Recent data suggests that normal 

bipolar voltage thresholds are likely to be catheter and patient-specific and strict voltage cut-

offs may not be truly reflective of scar biology, especially in regions of scar heterogeneity 

(Mukherjee et al. 2018).  

 

Depending on the EAM system used, additional maps can be generated to display EGM 

fractionation and pace-maps can be used to evaluate the degree of overlap between a paced 

beat from a given site and a spontaneous beat of tachycardia (Hsia et al. 2003). Acquisition of 
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points can also be performed automatically using multi-polar catheters and preset electrogram 

acceptance criteria, thereby precluding the need to manually check and annotate each point. 

Threshold settings for cycle length tolerance, signal-to-noise threshold and force permit the 

collection of high-quality data reproducibly and with accuracy, which in turn can reduce 

procedure times.  

 

Figure 1-2: Three dimensional electroanatomical maps 

Example of three dimensional electroanatomical maps (inferior view) acquired using the CARTO system (Biosense 
Webster). Local activation time (LAT) (A) and voltage maps (B) acquired in sinus rhythm showing the left ventricle in a 
patient with a large inferior infarct. Scar is denoted in green/red/blue and healthy tissue in purple on the voltage map (B). 
NB: Upper threshold for scar shown on the voltage map is 0.52mV whilst standard presentation for low voltage is 0.5 - 
1.5mV.  
 

1.2.3 Activation mapping 

In order to localise exit sites and determine possible ablation targets, it is desirable to perform 

EAM either during spontaneous or induced VT. If spontaneous VT is not readily seen, 

programmed electrical stimulation can be performed at the start of a mapping procedure in 

order to initiate VT. Induction is typically performed through pacing from the RV apex with 

a current strength at twice the capture threshold and a pulse width of 2ms. Premature extra-

stimuli with progressively shorter coupling intervals can then be delivered down to the 

ventricular effective refractory period (VERP). If stimulation from the RV apex fails to 

induce VT, the procedure can be repeated from a different pacing site (e.g. RVOT or the left 
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ventricle) or a non-selective beta agonist (e.g. isoprenaline) administered (Tschabrunn et al. 

2016). If the VT is sustained and haemodynamically tolerated, activation mapping can then 

be performed using a mapping catheter and a fixed timing reference, typically a dominant 

QRS deflection on the surface ECG or a diagnostic catheter positioned elsewhere within the 

heart, often in the right ventricle (in the case of left ventricular VT). The site of earliest 

activation, prior to the QRS onset during VT may represent an exit site from the zone of 

myocardium harbouring the diastolic pathway. If using a single electrode catheter, a pre-

systolic potential may be seen near an exit site and as the catheter is moved further into the 

associated scar (away from the exit site), this potential may be seen in the mid-diastolic phase 

of the tachycardia. Using a multi-electrode catheter, continuous electrical activity consistent 

with a re-entrant circuit may be demonstrated using the different recording electrodes during 

activation mapping of VT - Figure 1-4.  

 

Activation mapping of a macro-re-entrant VT is considered complete when the following 

criteria are fulfilled (Anter et al. 2016):  

• ≥90% of the tachycardia cycle length is mapped 

• A common channel ‘isthmus’ is identified 

• Sufficient mapping density in regions of slow conduction is acquired to limit 

interpolation between points to ≤ 3mm  

 



 28 

 

Figure 1-3: Activation map of ventricular tachycardia.  

Endocardial recordings made during activation mapping of ventricular tachycardia using a multi-electrode catheter. 
Continuous electrical activity is recorded throughout the tachycardia cycle length including in diastole representing the re-
entrant circuit. The bipolar voltage map with the mapping catheter positioned in the anteroseptum is shown on the right. 
Reproduced with permission from Tschabrunn et al. 2016.  

 
1.2.4 Entrainment mapping 

Following activation mapping, overdrive pacing can be performed at selected sites identified 

from the activation map in order to ‘entrain’ the tachycardia. Entrainment mapping can be 

performed during tachycardia in order to determine the mechanism of the arrhythmia and 

establish the relationship of an individual pacing site to the re-entry circuit and thereby 

identify the critical and non-critical parts of a circuit. Entrainment refers to continuous 

resetting of a re-entrant tachycardia through delivery of a series of consecutive beats in a 

pacing train where each pacing beat ‘resets’ the tachycardia - either through advancing or 

delaying the subsequent tachycardia beat. A re-entrant VT circuit will contain an ‘excitable 

gap’ whereby a wave of depolarisation will leave a region of tissue refractory to a further 
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stimulus for a given period of time prior to recovery. This is due to the refractory period of 

each point in the circuit being shorter than the time interval taken for the wavefront of 

depolarisation to propagate around the circuit once (Stevenson et al. 1997).  A critically 

timed pacing stimulus can therefore be programmed to enter and affect the tachycardia 

circuit.  

 

Following the application of a stimulus to a given site during VT, if the site has recovered 

and the stimulus is applied prior to the arrival of the next wavefront of depolarisation, the 

stimulus will capture the myocardium. This will lead to activation wavefronts that will travel 

in a direction which is orthodromic to the tachycardia wavefront and in an opposite direction 

(antidromic) to the tachycardia wavefront. The antidromic wavefront will collide with the 

head of the returning orthodromic wavefront from the tachycardia. However, the orthodromic 

wavefront generated from the pacing stimulus will traverse the circuit and reset the 

tachycardia. Following termination of pacing, the last paced beat will traverse the circuit at 

the pacing cycle length; depending on how far from a re-entrant circuit the pacing site lies, 

the returning orthodromic wavefront following the last paced beat will reach the pacing site 

in less than 30ms if within the circuit and in more than 30ms if outside the circuit.  

 

If the following features are present on pacing during tachycardia, it suggests that 

entrainment has occurred and proves re-entry as the mechanism of the tachycardia: 

 

• Constant fusion of complexes during pacing at a constant cycle length (the 

morphology of the paced complex is intermediate between that of a fully paced 

complex and a VT complex) 
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• Progressive fusion during pacing at different pacing rates (i.e. during pacing at faster 

rates, there is a progressive increase in the extent of myocardium activated from the 

pacing site ultimately leading to a fully paced complex) 

 

• Conduction block to an orthodromic site that terminates the tachycardia circuit which 

is followed by activation of that site by the paced wavefront from the opposite 

direction (Kumar et al. 2017) 

 

In order to determine the relationship of the pacing site relative to the VT circuit, the 

following electrophysiological parameters can be examined during or after entrainment: 

 

• Post-pacing interval (PPI) following entrainment 

• QRS configuration during entrainment 

• Stimulus-to-QRS interval (S-QRS) during entrainment 

 

The PPI after entrainment represents a measure of the proximity of the pacing site to the re-

entry circuit. A pacing site close to or within the re-entry circuit will give a PPI which is 

close to the tachycardia cycle length (TCL). If the pacing site is distant from the VT circuit 

and entrains the tachycardia (i.e. a bystander site), the PPI will be longer than the TCL by at 

least 30ms. Therefore, the difference between the PPI and TCL can be used to determine the 

likelihood an individual site is close to or within the circuit. In patients with post-infarct VT, 

ablation sites with a PPI-TCL during entrainment which was <30ms, had a higher likelihood 

of terminating VT (Stevenson et al. 1993). 
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The QRS configuration during entrainment is the result of the myocardial activation sequence 

from the pacing site. If the pacing site during entrainment is distant from the VT circuit, the 

QRS morphology will be altered and will be a product of the activation wavefront 

propagating from the pacing site and the activating wavefront coming out of the VT exit site 

(fused QRS). If the pacing site is within the re-entry circuit, pacing during VT will not 

change the surface QRS morphology, therefore there will be no fusion at the surface ECG 

level - this is referred to entrainment with concealed fusion. The ‘fusion’ may be detectable 

by local EGMs within the scar as a small mass of tissue is depolarised by the antidromic 

wavefront of the VT before collision with the orthodromic wavefront of the pacing stimulus 

(Kumar et al. 2017).  

 

The S-QRS interval is a representation of conduction time from the site of pacing to the VT 

circuit during entrainment with concealed fusion. If the pacing site is within the circuit, the 

time from the local EGM to surface QRS is also an indication of this conduction time, 

therefore the S-QRS interval during concealed fusion can be used to approximate the EGM-

QRS time during tachycardia. When pacing from a bystander site, the S-QRS time will not 

approximate the EGM-QRS interval (Stevenson et al. 1997). A S-QRS interval during 

entrainment with concealed fusion which is <70% of the TCL in a given pacing site has a 

higher likelihood of tachycardia termination during ablation and is likely to represent an 

isthmus site (Stevenson et al. 1997).  

 

Based on the above criteria, the different features of mapping sites from re-entrant circuits 

can be classified as isthmus sites, exit, inner and outer loop sites, adjacent and remote 

bystander sites. These are summarised in the flowchart below (Stevenson et al. 1997) - 

Figure 1-5: 
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Figure 1-4: Entrainment mapping 

During entrainment with concealed fusion, a PPI-TCL ≤ 30ms, S-QRS to EGM-QRS ≤ 20ms or S-QRS <70% of TCL is 
likely to represent an isthmus site. Sites where these criteria are not met may be classified as inner loop sites, outer loop, 
adjacent bystander and remote bystander sites as shown above. Reproduced with permission from Stevenson et al. 1997. 
 

In order to perform either activation or entrainment mapping, VT has to be hemodynamically 

tolerated or the use of mechanical circulatory support devices established in unstable VT. 

Currently, the majority of VTs induced in the electrophysiology laboratory are not 

hemodynamically tolerated and alternative substrate-based strategies have developed to 

identify critical sites for VT. 

 

1.2.5 Pace-mapping 

Pace-mapping is a surrogate of the activation map in sinus rhythm to locate the origin of VT. 

During pace-mapping, the QRS morphology during pacing at a given site is examined and 

compared to the QRS morphology obtained from a 12-lead ECG recorded during the clinical 

VT. The QRS morphology within each lead can be assessed and if the morphology in all 12 
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leads during the clinical VT matches that of the pacing site, this is considered an ‘excellent’ 

site for ablation. If the QRS morphology from the paced site only matches 10-11 out of 12 

leads, this is considered a ‘good’ site. The degree of matching between the paced QRS and 

12-lead ECG of the clinical VT can be assessed both qualitatively or through the use of 

automated algorithms incorporated into clinical EAM systems which express the degree of 

matching as a percentage value through a correlation calculation.  

 

An additional parameter that can be obtained during pace-mapping in sinus rhythm is 

measurement of the S-QRS interval. This technique has been proposed as a means to locate 

the exit site of a VT circuit. A S-QRS delay of ≥ 40ms may indicate a region of slow 

conduction away from the pacing site whilst a S-QRS delay ≥ 80ms represents marked delay. 

VT ablation sites are more likely to be found in regions of marked S-QRS latency although 

the sensitivity is moderate (Brunckhorst et al. 2003). 

 

If the pacing site is located close to the exit site of an isthmus, there will be an ‘excellent’ 

matched QRS morphology and a short S-QRS interval. If the pacing site is moved within the 

isthmus, the matched QRS morphology should remain ‘excellent’ but the S-QRS interval 

should become longer. There may then be a sudden transition point within the core of the 

isthmus when the matched QRS morphology becomes poor when pacing closer to the 

entrance site. This is due to the activation wavefront spreading more rapidly to the entrance 

zone when pacing closer to the entrance, followed by ventricular depolarisation. When 

pacing closer to the exit zone, the activation wavefront will spread more rapidly to the exit 

and depolarise the ventricle from a different site, leading to a significantly different QRS 

morphology (de Chillou et al. 2014).  
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Following identification of an exit/entrance zone, pace-mapping can be performed around 

adjacent sites in order to identify the lateral boundaries of the isthmus and an isochronal 

colour-coded pace-map of correlation between QRS morphologies and/or S-QRS intervals 

generated. Catheter ablation can then be guided by the location of the VT isthmus, aiming to 

transect this region (de Chillou et al. 2017). There are a number of factors that can reduce the 

precision of pace-mapping such as large inter-electrode distances within the mapping catheter 

which may lead to a larger region of myocardial depolarisation and therefore reduce the 

spatial resolution of the technique. High-output pacing may also increase the likelihood of 

far-field capture. A high pacing rate could lead to small alterations in QRS morphology and 

pacing at a rate close to that of the clinical VT cycle length is recommended (de Chillou et al. 

2017).  

 
1.2.6 Substrate mapping during sinus rhythm 

Activation and entrainment mapping require that VT is both inducible and haemodynamically 

tolerated as a pre-requisite. Given that the majority of clinical VTs induced result in 

haemodynamic compromise, substrate-based strategies in sinus rhythm to identify VT 

ablation targets may serve as an alternative approach. Abnormal electrical substrate evaluated 

during sinus rhythm comprising low amplitude peak-to-peak voltage and abnormal EGM 

characteristics (e.g. split, isolated late potentials, fractionated potentials and LAVA) have 

been used to identify the critical target sites of re-entrant VT. 

 

Both bipolar and unipolar peak-to-peak voltage may be attenuated by abnormal myocardium. 

Using a combination of animal studies in a model of ischaemic cardiomyopathy (Callans et 

al. 1999), limited human histopathological evaluation (Deneke et al. 2005) and statistical 

definitions of normal voltages derived from values >95th centile of amplitude distributions 

from patients without scar (Marchlinski et al. 2000), a bipolar voltage cut-off of <1.5mV has 
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been universally implemented to define abnormal myocardium. A cut-off <0.5mV has been 

used to define dense scar and values 0.5-1.5mV to define borderzone tissue or regions with 

intermediate degrees of fibrosis. These values were largely validated for transmural scar 

whilst patchy scar may be missed using these cut-offs. Adjusting the bipolar voltage cut-offs 

to higher values (e.g. 2.0mV or 2.5mV) may identify a more confluent area of scar which 

incorporates all abnormal signals (Santangeli et al. 2016). Similarly, when voltage mapping 

identifies a large area of scar, adjustment of the lower bipolar voltage cut-off to <0.5mV (e.g. 

0.1mV or 0.2mV) will help identify dense fibrosis and may facilitate delineation of 

conduction channels within the scar (Hsia et al. 2006).  

 

Bipolar voltage mapping has a limited field of view, however which can lead to difficulty in 

the identification of intramural or epicardial substrate. Unipolar voltage mapping, with a 

larger field of view, has been used to identify epicardial substrate which is more prevalent in 

patients with non-ischaemic cardiomyopathy. Using statistical distributions of normal signal 

amplitude from a cohort of healthy patients, a unipolar voltage of >8.27mV has been used to 

define normal myocardium within the LV endocardium (Hutchinson et al. 2011) and 5.5mV 

in the thinner free wall of the RV (Polin et al. 2011).   

 

Abnormal EGMs recorded from mapping sites may also represent the substrate for VT. These 

signals may result from poor cell-to-cell coupling of surviving tissue within regions of 

fibrosis and represent anisotropic ‘zig-zag’ conduction (Santangeli et al. 2016). As discussion 

in Section 1.2.1, abnormal EGMs may be classified as fractionated, split, late, or as LAVA. 

Different investigators have adopted substrate-based ablation strategies aimed at eliminating 

all abnormal EGMs (e.g. late potential abolition, LAVA elimination or scar homogenisation) 
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(Arenal et al. 2013; Vergara et al. 2012; Silberbauer et al. 2014; Jais et al. 2012; Di Biase et 

al. 2012) with variable success rates.  

 

There are a number of factors that may affect these strategies including sampling bias in 

regions of abnormal substrate, use of different mapping catheters with variations in recording 

electrode size and inter-electrode spacing and the direction of activation wavefront during 

recording of EGMs. These factors may affect the detection, location and characterisation of 

abnormal signals and impact on the chosen ablation strategy (Santangeli et al. 2016). 

Recently, in an elegant study, (Anter et al. 2018) used high-resolution mapping in a porcine 

infarct model to generate activation maps, assess EGM shape, amplitude and conduction 

velocity. All electrophysiological parameters used to assess substrate in sinus rhythm had a 

poor specificity and positive predictive value (PPV) in the identification of the VT isthmus. 

For example, a bipolar voltage <1.5mV had a sensitivity of 72%, specificity of 56% and PPV 

of only 24% in identifying a VT isthmus location. Of the different EGM abnormalities, the 

presence of LAVA had the best sensitivity (82%) but all types of abnormal EGMs had poor 

specificity (38%-64%) and PPV (28% - 48%) (Anter et al. 2018). Interestingly, regions of 

local conduction velocity slowing - termed steep activation gradients, had the best specificity 

(80%) and PPV (60%) for isthmus identification.  These data highlight the limitation of 

substrate-based strategies to target VT ablation sites and emphasise the importance of 

functional assessment to identify the vulnerable zones for re-entrant VT (Anter et al. 2018).  

 
 
1.2.7 Limitations 

There are several limitations of EAM as a means to assess VT substrate. Bipolar voltage is 

affected by several factors which are independent of the histological characteristics of the 

underlying tissue as discussed in Section 1.2.1. The assumption that low voltage means 
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histological scar is therefore not necessarily accurate. Given that catheters with smaller 

electrodes with reduced inter-electrode spacing may be able to distinguish surviving 

myocardial bundles with greater sensitivity (Tschabrunn et al. 2016), catheter-specific 

thresholds may be needed to better define abnormal substrate. EGM configuration and timing 

is also affected by activation wavefront - late potentials may be visible during RV pacing but 

not during sinus rhythm and vice versa (Josephson and Anter, 2015). The regions of 

myocardium designated as harbouring LAVAs may be larger when the wavefront of 

propagation is perpendicular versus parallel to the line of block along the boundary of an 

isthmus (Martin et al. 2019).  

 

Activation mapping, whilst being the gold standard for accurate characterisation of the VT 

circuit, is only possible in a small proportion of VTs due to haemodynamic instability. The 

use of haemodynamic support devices may facilitate activation mapping in otherwise 

unstable VT but their use can result in significant complications with unclear clinical benefits 

(Luni et al. 2019). Problems with entrainment mapping include an inability to capture 

myocardium with consequent increases in the pacing output delivered. This can lead to a 

larger volume of tissue capture and result in misleading calculation of isthmus location and 

dimensions. There are also inherent limitations to pace-mapping - pacing in sinus rhythm 

from a point source may not mimic the pattern of impulse propagation of scar-related re-

entrant VT. The presence of functional block may only be apparent during tachycardia and 

may be absent during pace-mapping. S-QRS measurements during pace-mapping may 

therefore not be directly comparable to S-QRS measurements during entrainment (Tung et al. 

2012).  
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The optimal mapping density within regions of scar in the ventricle remains unclear - a lower 

mapping resolution may underestimate the dimensions of VT target sites due to the 

interpolation of activation times in under-sampled areas (Anter et al. 2016). EAM is a time-

consuming procedure with mean procedural time of 3.5 ± 1.2 hours with a substrate 

modification protocol (Fernandez-Armenta et al. 2016); the addition of substrate mapping 

with different activation wavefronts or strategies to unmask slow conduction with 

extrastimulus pacing protocols (Acosta et al. 2018) can therefore be challenging to deliver in 

patients with a poor physiological reserve. Given the variety of mapping strategies, the 

process has significant operator-dependence with implications on the reproducibility of each 

technique.  

 
 
 
1.3 Catheter ablation for ventricular tachycardia in structural heart disease 

1.3.1 General considerations 

Ablation strategies typically use a combination of activation and entrainment mapping, if 

possible, pace-mapping and assessment of substrate to delineate target sites. If VT induction 

is performed, at least two sites are selected with two different cycle lengths and up to three 

extra-stimuli at progressively shorter coupling intervals to attempt to stimulate VT (Emami et 

al. 2019). The morphology, cycle length and stability of all induced VTs are recorded. 

Activation and entrainment mapping can then be performed if the tachycardia is stable. If 

programmed stimulation is not performed and a substrate-based strategy is selected, local 

EGMs are recorded with the peak-to-peak voltage and EGM morphology assessed. 

Additionally, pace-mapping can be performed if a 12-lead ECG of the clinical VT is 

available and measurement of S-QRS intervals can be made.  
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1.3.2 Ablation strategies 

Activation mapping can be used to identify the earliest site of electrical activation during 

tachycardia. This data is useful to localise VT exit sites along the border of scar and 

potentially record EGMs during diastole which could represent critical components of the 

circuit and are targeted for catheter ablation (Santengeli et al. 2016). Diastolic activation may 

also be present in bystander sites which are not part of the circuit. Entrainment mapping uses 

overdrive pacing to locate target sites with a PPI-TCL ≤ 30ms, S-QRS - EGM-QRS ≤ 20ms 

or S-QRS which is <70% of the VT cycle length as discussed in Section 1.2.4. These sites are 

more likely to signify the location of an isthmus and successfully terminate VT. Pace-

mapping is a surrogate of the activation map - sites with an ‘excellent’ match of the paced 

QRS morphology to the clinical VT may be targeted for ablation. An abrupt change in QRS 

morphology within the mid-isthmus can also be used to unmask target sites for catheter 

ablation as discussed in Section 1.2.5.  

 

Substrate-based ablation strategies can be classified into those that target the entire abnormal 

substrate and those that target discrete regions within scar that have been shown to be 

relevant to the inducible tachycardia through physiologic manoeuvres. Strategies that target 

the entire abnormal substrate include late potential or LAVA elimination and scar 

homogenisation whilst strategies that target limited regions of substrate include scar 

dechanneling, linear ablation and core isolation (Santengeli et al. 2016).  

Late potentials have been targeted for ablation by several investigators (Arenal et al. 2003; 

Nogami et al. 2008; Vergara et al. 2012) but the definition of these potentials have varied 

significantly between studies. Sampling bias is a major limitation of this technique whilst late 

potential elimination is not always possible even with extensive ablation. Far-field potentials 
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from remote sites may contribute to persistence of a signal despite adequate ablation in a 

given site (Santangeli et al. 2016).  

 

LAVAs first decribed by (Jais et al. 2012) are a more precise definition of abnormal EGMs 

that may be related to VT circuits, however they suffer from similar limitations to that of late 

potential ablation including sampling bias. The optimal pacing strategy to systematically 

record LAVAs also remains unclear (Santangeli et al. 2016). Scar homogenisation represents 

an extensive ablation strategy whereby all abnormal EGMs within scar defined using 

conventional bipolar voltage criteria are targeted for ablation - Figure 1-6. This approach has 

been shown to be superior to limited ablation of clinical VT in ischaemic cardiomyopathy 

within the randomised multi-centre VISTA study (Di Biase et al. 2015). Additionally, in 

patients with non-ischaemic cardiomyopathy, a scar homogenisation approach improved 

freedom from VT compared to limited substrate-based ablation, although the success rate was 

lower than that of patients with ischaemic cardiomyopathy (Gokoglan et al. 2016).  

 

The scar homogenisation approach may be difficult to achieve in patients with large 

substrates without sufficient physiological reserve for extensive ablation. The strategy also 

invariably targets bystander regions that do not participate in the VT circuit.  
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Figure 1-5: Scar homogenisation  

Bipolar endocardial voltage map in a patient who has received extensive ablation (scar homogenisation). Red regions 
indicate scar whilst purple represents healthy myocardium. Red dots represent regions where ablation has been applied. 
Representative EGMs from sites targeted for ablation are shown. Reproduced with permission from Di Biase et al. 2012.  
 
Limited substrate-based strategies such as linear ablation aim to create contiguous lesions 

from the scar borderzone to an anatomic structure. The strategy is reliant on the use of pace-

mapping to identify VT exit sites within the abnormal substrate. Linear ablation was first 

described by (Marchlinski et al. 2000) who reported encouraging success rates (75% at 

median 8 months follow-up) in a small cohort of patients with structural heart disease and 

was subsequently used in the SMASH-VT trial (Reddy et al. 2007). However, it can be 

challenging to achieve conduction block across a linear lesion due to the need to deliver 

transmural lesions. The strategy also requires the presence of fixed anatomic barriers near the 

relevant substrate (Santangeli et al. 2016).  

 

Scar dechanneling is another substrate-based strategy that aims to identify channels of slow 

conduction using high-output, unipolar pacing within low voltage regions. Alternatively, a 
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high-density voltage map can be acquired and regions of abnormal EGMs marked within the 

substrate to locate channels which may contain surviving myocardial bundles. Scar 

dechanneling involves ablating inter-connected channels within the substrate and has been 

shown to have a shorter duration of radiofrequency application and improved event-free 

survival in those patients where complete conducting channel elimination was possible 

(Berruezo et al. 2015).  

 

The ‘core isolation’ approach involves identification of a discrete region of interest within 

scar using conventional methods (e.g. voltage mapping, pace-mapping, abnormal EGM 

localisation, entrainment mapping). The critical region identified is then ablated with lesions 

surrounding the region of interest or extending to anatomical barriers. The demonstration of 

electrical unexcitability of the core region of interest serves as the procedural end-point. Core 

isolation has been associated with good VT-free survival whilst also limiting the ablation 

target size (Tzou et al. 2015). The end-point of electrical isolation of the target region also 

serves as a reproducible end-point beyond VT inducibility.  

 
 
1.3.3 Procedural end-points 

Traditionally, following the end of a VT ablation procedure, programmed stimulation is 

applied to evaluate if VT remains inducible. The probabilistic nature of programmed 

stimulation makes it difficult to apply in a reproducible fashion. The presence of oedema 

around an ablation lesion site may inhibit induction of VT immediately after an ablation 

procedure whereas days or weeks after a procedure, after oedema has resolved, VT may once 

again become inducible. In patients with structural heart disease, anti-arrhythmics such as 

amiodarone are frequently used prior to VT ablation - their use may suppress inducibility 

both up-front and at the end of an ablation procedure.  
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Despite its limitations, non-inducibility has been widely implemented as a procedural end-

point during VT ablation. Some investigators have used non-inducibility of the clinical VT as 

a minimum end-point whilst others have used non-inducibility of all VTs as a more 

comprehensive end-point. In a large observational cohort, non-inducibility of all VTs was 

associated with improved cardiac mortality, compared to inducibility of non-documented VT 

and non-inducibility of clinical VT at the end of a procedure (Della Bella et al. 2013). A 

meta-analysis of non-inducibility as an end-point in post-infarct VT ablation however found 

no significant association between rates of non-inducibility and recurrence at follow-up 

(Santengeli et al. 2014).  

 

Non-invasive programmed stimulation (NIPS) whereby programmed stimulation is 

performed via the ICD a few days after VT ablation has also been used to identify patients at 

increased risk of recurrence (Frankel et al. 2012). Although not technically a procedural end-

point, NIPS-positive patients might benefit from early repeat ablation and the use of this end-

point warrants further investigation (Santangeli et al. 2014).  

 

For substrate-based ablation, additional end-points have been investigated depending on the 

ablation strategy used. The efficacy of linear ablation lesions has been assessed using the 

end-point of electrical unexcitability (failure of capture) during high-output pacing along the 

ablation line and demonstration of a change in QRS morphology during pacing from each 

side of the ablation line (Santangeli et al. 2014). Alternative surrogate parameters that can be 

used to support demonstration of effective lesion delivery include assessment of catheter-

tissue contact using intra-cardiac echocardiography (ICE), monitoring of impedance and 

elimination of high-frequency potentials that may represent near-field activation (Santangeli 

et al. 2014). There is, however, no established electrophysiological end-point that best 



 44 

demonstrates completeness of linear lesions in the ventricle as the optimal pacing output 

required to demonstrate failure to capture within a region of pre-existing scar remains 

unknown. In addition, it is challenging to distinguish between block and severe conduction 

delay across a lesion line.  

 

Substrate-based strategies that aim to eliminate all abnormal EGMs have used a combination 

of demonstration of elimination of all abnormal EGMs during scar re-mapping and failure to 

capture with high-output pacing. Although the end-point of abnormal EGM elimination (e.g. 

LAVA elimination) has been shown to result in improvement in VT-recurrence and mortality 

in those patients in whom it could be achieved (Jais et al. 2012), this was only possible in 

70% of patients. The presence of late potentials may persist in regions of ablation and the 

demonstration of local capture with exit block during high-output pacing may be useful to 

determine if sufficient ablation has been performed (Santangeli et al. 2014). Complete 

elimination of abnormal EGMs may require time-consuming and extensive ablation whilst 

also inadvertently targeting bystander sites where late potentials may be recorded but do not 

participate in a VT circuit. Whether scar re-mapping from different pacing sites is required to 

demonstrate comprehensive elimination of abnormal EGMs also remains unclear and this 

strategy would prolong procedure times still further.   

 

Imaging techniques such as ICE or MRI represent alternative modalities to judge procedural 

end-points. ICE has been used to monitor lesion formation in real-time through 

demonstration of increased echogenicity within ablated tissue whilst lesion size on imaging 

appeared to correlate with size at pathology in a pre-clinical study (Ren et al. 2001). In this 

thesis, a method of evaluating ablation lesion formation in real-time using MRI temperature 
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mapping (MR-thermometry and dosimetry) is evaluated as a possible novel end-point for VT 

ablation.  

 

1.3.4 Clinical outcomes 

A number of clinical trials have examined the impact of catheter ablation on outcomes in 

patients with VT. In general, non-ischaemic cardiomyopathies (NICM) have been under-

represented with no randomised controlled trials investigating the role of catheter ablation. 

NICM patients tend to have worse outcomes after catheter ablation of VT compared to 

patients with ischaemic cardiomyopathy (Dinov et al. 2014). For the treatment of drug-

refractory VT storm, catheter ablation is generally considered a safe and effective strategy 

(Carbucicchio et al. 2008).  

 

In patients with ischaemic cardiomyopathy presenting with recurrent VT, the Euro-VT study 

suggested that catheter ablation could successfully terminate VT acutely in most patients but 

around 49% developed VT recurrence during follow-up (Tanner et al. 2010). The 

observational multi-centre Thermocool VT ablation trial enrolled 231 patients with ischaemic 

cardiomyopathy and recurrent monomorphic VT to undergo catheter ablation. The primary 

end-point was freedom from recurrent VT at 6 months, but this was only achieved in 53% of 

patients. There was a high 1-year mortality rate at 18% whilst procedure-related mortality 

was 3%.  

 

A number of randomised controlled trials have also been published investigating the safety 

and efficacy of VT ablation in ischaemic cardiomyopathy. In the SMASH-VT trial, patients 

with ischaemic cardiomyopathy who were randomised to receive catheter ablation in addition 

to ICD implantation had a reduced incidence of ICD therapies compared to patients who 
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received an ICD alone (Reddy et al. 2007). Patients did not receive anti-arrhythmic drugs in 

this trial and participants were enrolled who had experienced a single episode of VT or 

ventricular fibrillation, suggesting a low-risk population. In the VTACH study, patients with 

ischaemic cardiomyopathy and reduced left ventricular ejection fraction were randomised to 

receive either catheter ablation and an ICD or an ICD alone. Similar to the SMASH-VT 

study, prophylactic VT ablation prolonged the time to recurrence of VT in this cohort (Kuck 

et al. 2010). Amiodarone was used in around 35% of patients in each arm. At 2-year follow-

up, around 50% of patients in the ablation arm and 70% of patients in the control arm had a 

recurrence of VT however, suggesting that catheter ablation is insufficient as a stand-alone 

therapy in this cohort of patients.  

 

The VANISH trial investigated the role of catheter ablation versus an escalation of anti-

arrhythmic drug therapy in patients with ischaemic cardiomyopathy and an ICD in-situ who 

presented with recurrent VT. In this study, catheter ablation was associated with a lower rate 

of the primary composite end-point of death, VT storm or appropriate ICD shock versus an 

escalation of anti-arrhythmic drug therapy (Sapp et al. 2016). Around 65% of patients in 

VANISH were already on amiodarone at baseline, the mean LVEF was 31% in both arms 

and patients had to have either ≥3 episodes of VT treated with anti-tachycardia pacing, ≥1 

appropriate ICD shocks or ≥3 VT episodes within 24hrs at enrolment suggesting a higher-risk 

cohort compared to SMASH-VT. In these patients, catheter ablation clearly emerged as the 

favourable option over escalation of anti-arrhythmic medications.  

 

No improvement in all-cause or cardiovascular mortality has been demonstrated by any VT 

ablation clinical trial.  A recent meta-analysis of the main randomised trials in ischaemic 

cardiomyopathy found that the most consistent benefits of VT ablation was a reduction in 
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cardiovascular-related hospitalisations driven mainly by reductions in VT storm and ICD 

shocks (Maskoun et al. 2018). Although these trials were underpowered to detect a mortality 

benefit, the data highlights the need to improve the efficacy and safety of VT ablation.  

 

Clinical trials in VT ablation have proven to be difficult to perform with long enrolment 

periods, poor recruitment rates and high cross-over rates across study arms. During the course 

of long trials, iterative changes in ablation techniques, strategies and technologies have 

occurred making interpretation of trial results difficult (Mukherjee et al. 2017). There is also 

significant heterogeneity within trials regarding the mapping and ablation strategy - ablation 

being guided by either entrainment and activation mapping, pace-mapping or substrate-based 

strategies. The definition of acute procedural success also varies between trials with some 

studies targeting the clinical VT alone and defining success with non-inducibility of the 

clinical VT whilst others have targeted all inducible VTs or used a substrate-based strategy. 

The reproducibility of programmed stimulation to induce VT itself is variable. Even with 

substrate-based approaches, some approaches are considered complete and require extensive 

ablation (e.g. scar homogenisation) where the end-point may be anatomical or incomplete 

substrate modification strategies (e.g. core isolation) where isolation of segments may be 

demonstrated by the presence of exit block during pacing from within the isolated segment. 

 

Optimal ICD programming protocols have also changed over time with high-rate therapy and 

delayed ICD therapy associated with reduced episodes of inappropriate therapy and all-cause 

mortality compared to conventional programming (Moss et al. 2012).  More recently, the 

Substrate Modification Study (SMS) with contemporary ICD programming, randomised 

patients with ischaemic cardiomyopathy to catheter ablation plus ICD implantation versus 

ICD implant alone. There was a failure to meet the primary end-point of time to first VT 
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recurrence but catheter ablation did reduce the total number of ICD therapies during a follow-

up of 2.3 ± 1.1 years (Kuck et al. 2017).  

 

There is some evidence that patients are referred for catheter ablation late in the disease 

process. The CALYPSO pilot trial found that when screening patients into a trial of ablation 

versus anti-arrhythmic medications, around 41% of patients had already failed anti-

arrhythmic therapy prior to consideration of catheter ablation (Al-Khatib et al. 2015). A 

recent European Heart Rhythm Association (EHRA) survey found that around 62% of 

centres would perform ablation after the first episode of monomorphic VT in patients with 

ischaemic cardiomyopathy (Tilz et al. 2018); in non-ischaemic cardiomyopathy, catheter 

ablation was used first-line in around 37%. A meta-analysis investigating the impact of early 

versus late referral for VT ablation suggested reduced VT recurrence and acute complications 

with early referral in patients with structural heart disease but no differences in total mortality 

and acute success (Romero et al. 2018).  

 

As a consequence of the limitations to arrhythmia mechanism-directed RF energy delivery in 

the management of VT, there is increasing interest in substrate-based approaches that target 

the entire abnormal substrate. An extensive ablation strategy to homogenise scar and target 

any abnormal potentials in sinus rhythm was found to be superior to reduce VT recurrence 

compared to an approach where limited ablation of clinical VTs was performed in the multi-

centre VISTA trial (Di Biase et al. 2015). A meta-analysis investigating ablation strategy in 

patients with structural heart disease found that substrate modification was associated with a 

lower composite end-point of ventricular arrhythmia recurrence and all-cause mortality 

compared to standard ablation of stable VTs (43% relative risk reduction). Additionally, 

complete substrate modification (e.g. scar homogenisation) was associated with a lower 
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recurrence compared to substrate-based approaches with incomplete modification (e.g. core 

isolation) (Briceno et al. 2018).  

 

Scar dechanneling whereby the channels of ‘slow conduction’ within the abnormal substrate 

have been uncovered through physiologic manoeuvres and targeted with catheter ablation to 

connect regions of electrically unexcitable scar has also been used to achieve acute 

procedural non-inducibility and reduce VT burden during follow-up (Soejima et al. 2002). 

Recently, characterisation of scar channels from LGE-MRI based on pixel signal intensity 

thresholds has been integrated into the navigation system for VT ablation. Interestingly, a 

lower need for RF delivery, higher non-inducibility rate and improved VT-free survival was 

demonstrated using MRI-guided scar dechanneling compared to conventional ablation in a 

non-randomised study (Andreu et al. 2017). Such an approach highlights the potential value 

in using a structural-based approach to target segments of myocardium responsible for VT 

rather than a purely electrophysiological approach, with its inherent limitations.  
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2 Magnetic resonance imaging 

This chapter discusses the principles of magnetic resonance imaging, its role in the non-

invasive characterisation of the underlying substrate responsible for ventricular arrhythmias 

and assessment of ablation lesions. The field of interventional magnetic resonance is also 

introduced and the technical aspects of performing electrophysiology procedures inside a 

scanner examined.  

 
2.1 Introduction 
 
Magnetic resonance imaging (MRI) is a non-invasive imaging modality that allows 

comprehensive assessment of cardiac anatomy and function. In addition, tissue 

characterisation techniques including contrast-enhanced MRI can be used to characterise 

myocardial scar and differentiate between disease processes (Ambale-Venkatesh and Lima, 

2015). MRI can also enable the online monitoring of temperature in different tissues as the 

magnetic properties of water protons are temperature-dependent (de Senneville et al. 2012), 

thereby permitting direct visualisation of RF-induced thermal injury.  

 

As noted in the previous chapter, VT in the presence of structural heart disease frequently 

involves re-entry around or within a region of ventricular scar. The presence of late 

gadolinium enhancement (LGE) on MRI may identify the fibrotic substrate of VT (Ashikaga 

et al. 2013) whilst regions of intermediate signal intensity between scar tissue and normal 

myocardium have been histologically validated as scar borderzone (BZ) (Pop et al. 2013) 

which may represent the imaging equivalent of slowly conducting tissue. Scar and scar BZ 

are 3D structures - LGE-MRI is the best available non-invasive technique to define these 

structures in 3D and is a powerful predictor of ventricular arrhythmia risk (Disertori et al. 

2016).  



 51 

There are a number of potential benefits that the use of MRI in general and interventional 

MRI, in particular, could offer the electrophysiologist during VT ablation including 

assessment of structural substrate to complement functional electrophysiological assessment, 

accurate tracking of catheters to improve intra-procedural guidance and evaluation of ablation 

lesion formation with soft tissue visualisation (Mukherjee et al. 2019).  This chapter explores 

the basic principles of MRI, image reconstruction and pulse sequences. The application of 

MRI for scar assessment, temperature mapping and interventional procedures is also 

discussed.  

 

2.2 MRI physics 
 
2.2.1 Nuclear magnetic resonance phenomenon 
 
The primary source of the MR signal for imaging applications is the hydrogen atom 

consisting of a single positively-charged proton surrounded by a single negatively-charged 

electron. Hydrogen nuclei (1H) are abundant in water and fat within biological tissues and is 

ideally suited for MR imaging. Each nuclei with an odd mass (e.g. 1H) possesses a basic 

quantum mechanical property termed ‘spin’ which is a representation of intrinsic angular 

momentum. The spin of the positively-charged proton (1H) generates a small magnetic field 

and a magnetic moment. For a 1H nucleus, there are two possible spin states (i.e. direction of 

the angular momentum), e.g. ‘spin-up’ or ‘spin-down.’  

 

Conventionally, magnetic moments are randomly orientated but following the application of 

an external magnetic field (B0), magnetic moments align either with or against B0. Depending 

on the orientation of the spin states against B0, a difference in energy levels may occur (spin-

up = lower energy state; spin-down = higher energy state). The energy gap between the two 

spin states is related to the magnetic field strength and the gyromagnetic ratio (constant 
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specific to a particular atomic nucleus). At body temperature, the number of spins in each 

state are almost equal with a slight excess in the lower energy (spin-up) state. The excess of 

these proton magnetic moments can be combined to give the net magnetisation vector which 

at equilibrium is parallel to B0 (z-axis) and is given the value M0. When particles are placed 

within a static external magnetic field, they experience a force perpendicular to the 

orientation of angular momentum resulting in a circular motion termed ‘precession’. The 

precession frequency of a nucleus is proportional to the strength of B0 and the gyromagnetic 

ratio and is described in the Larmor equation: 

 

Equation 1: Larmor equation: 𝜔0 = 𝛾B0 

 
where 𝛾 is the gyromagnetic ratio (42.6 MHz/Tesla for 1H) and 𝜔0 is the Larmor frequency 

(which at 1.5T is 64MHz).  

 

2.2.2 Radiofrequency (RF) excitation 
 
In order to perform magnetic resonance imaging, the net magnetisation is displaced out of its 

alignment with B0 through the application of additional oscillating time-varying RF pulses 

(B1) perpendicular to B0. The B1 field can be produced by driving an electrical current 

through RF transmit coils. In order to flip the net magnetisation of the nuclear spins, B1 is 

applied at the Larmor frequency which enables spin transitions from low energy to high 

energy states resulting in excitation. The amplitude and duration of the RF pulse determines 

the degree of rotation of net magnetisation and is termed the ‘flip angle’. Following 

application of the RF pulse, net magnetisation can be split into two components - the 

longitudinal component that lies parallel to the z-axis (Mz) and the transverse component that 

lies perpendicular to the z-axis and within the plane of the x and y axes (Mxy).  
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Spin-echo based pulse sequences are initially preceded by a 90o RF excitation pulse that 

transfers M0 into the transverse plane leaving no component in the z-axis. This is followed by 

a 180o refocusing pulse which reverses the dephasing of spins due to B0 field inhomogeneity. 

If the RF excitation pulse leaves some component of net magnetisation in the z-axis and only 

transfers a proportion into the transverse plane, a lower flip angle is produced (<900) - this is 

typically used to generate the signal in gradient echo pulse sequences. A 180o pulse can also 

be used to flip M0 perpendicular to B0 prior to the application of an excitation pulse and is 

known as an inversion pulse - these are typically used in inversion recovery pulse sequences. 

Following cessation of the RF excitation pulse, the transverse magnetisation induces a current 

(MR signal) which can be detected by a RF receiver coil placed next to the tissue of interest.  

 

2.2.3 Relaxation 
 
The process by which thermal equilibrium is re-established following the termination of a RF 

excitation pulse is termed relaxation as high energy protons decay back to low energy states. 

The time taken for decay of the z component of the net magnetisation (longitudinal 

relaxation) to reach 63% of its equilibrium value is defined as the T1 time. The time taken for 

decay of the xy component of net magnetisation (transverse relaxation) to 37% of its 

equilibrium value is defined as the T2 time. Both T1 and T2 relaxation are a function of the 

size and motion of the molecule upon which the 1H nucleus resides and therefore vary 

according to the tissue type, e.g. liquids (water/cerebrospinal fluid) have longer T1 and T2 

values than dense solids (fat). This information can therefore be used for tissue 

characterisation during imaging.   

 

As noted earlier, following cessation of the RF excitation pulse, transient fluctuations in coil 

voltage are created. This signal is called free induction decay (FID) which is produced as the 
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net transverse magnetisation decays as proton magnetic moments move out of phase to one 

another. The FID signal is a combined effect of T2 relaxation and additional de-phasing 

caused by inhomogeneity in the applied magnetic field - a process called T2*-decay. Pulse 

sequences used in MRI are manipulations of the FID signal involving application of 

dephasing and rephasing gradients to create calibrated changes in local magnetic fields and 

alter the Larmor frequency in a given direction. This results in ‘echoes’ that are used to 

measure, localise and encode MR signals in space.  

 
2.3 Pulse sequences 

The most common types of echoes used in MR pulse sequences are spin echoes and gradient 

echoes. Balanced steady-state free precession (bSSFP) sequences are created from a 

combination of spin echo and gradient echo. In general, without the application of pre-pulses, 

gradient echo and bSSFP sequences are bright-blood whilst spin echo sequences are black-

blood. During application of multiple RF pulses, the time interval between the centre of the 

RF pulse and the resulting echo is called the echo time (TE) whilst the time interval between 

successive excitation pulses is called the repetition time (TR). The common pulse sequences 

used in cardiac MRI are described in the section below.   

 
2.3.1 Spin echo 
 
A spin echo sequence is generated through the application of successive pulses - a 90o 

excitation pulse followed by a 180o refocusing pulse. After the 90o pulse, net magnetisation is 

tipped into the transverse plane; due to magnetic field inhomogeneities, individual protons 

precess at different rates causing dephasing. The 180o pulse, rephases these protons causing 

the FID to increase in amplitude (initial FID decays as a function of T2* but the 180o pulse 

rephasing results in an echo amplitude that is T2 weighted). The signal that rephases 
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following the 180o pulse is knows as a spin echo. Adjustment of the TE and TR allows 

images with different contrast weightings to be obtained.  

 

2.3.2 Gradient echo 
 

A gradient echo (GRE) signal is initiated with a single RF pulse which typically uses a flip 

angle <90o with a smaller degree of transverse magnetisation, but can have any value. 

Following the RF pulse, a FID signal is generated. An external magnetic field ‘gradient’ is 

then applied (causing a calibrated change in local magnetic field) leading to proton spins 

losing coherence and leading to a dephasing of transverse magnetisation and accelerated 

decay of the FID signal. A second gradient then reverses the phase shift to recover the FID 

signal and create the ‘gradient echo.’ GRE imaging is generally faster than spin echo 

sequences as only one RF pulse is applied and therefore TE is shorter. A low flip-angle 

excitation pulse can also allow for a short TR thereby enabling rapid imaging acquisitions.  

 

Whilst each RF pulse in a GRE sequence generates a FID signal, each pair of RF pulses 

generates a spin echo. If the TR is shorter than the T2 time, the FID signal persists as the 

‘echo’ component starts. The application of gradients can preserve or suppress either the FID 

or echo signals depending on the time, duration or strength of application. GRE sequences 

that aim to preserve coherence are called coherent GRE sequences whilst sequences that 

apply a gradient to dephase residual transverse magnetisation (spoiler gradients) are known 

as spoiled GRE.  

 

2.3.3 Balanced steady-state free precession (bSSFP) 
 
As noted above, a FID signal will occur after each RF pulse and a spin echo after successive 

pulses. However, if the TR between pulses is less than T2, transverse magnetisation will not 
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fully dephase and the signal from the FID and echo will merge. A pulse sequence where 

residual transverse magnetisation remains between RF pulses is known as steady state free 

precession (SSFP) - i.e. a type of coherent GRE sequence. Dedicated dephasing and 

rephasing gradients can then be used to refocus the FID and/or echo components of the 

signal. bSSFP sequences uses balanced gradients along the x, y and z axes that refocuses both 

the FID and echo components into a single echo. The result is higher signal-to-noise ratio 

(SNR) as the entire magnetisation vector is utilised to produce the signal and good contrast 

between blood and myocardium leading to its use as the work-horse of cardiac imaging.   

 

2.3.4 Inversion recovery pulse sequences 
 
A pre-pulse where longitudinal magnetisation (Mz) is inverted by a 180o pulse prior to the 

spin echo/gradient echo sequence is known as inversion recovery. The time delay between 

the 180o inversion pulse and the first RF excitation pulse is known as the inversion time (TI). 

After the application of the inversion pulse, the inverted tissue undergoes T1 relaxation 

during the TI interval. Different tissues will have varying T1 relaxation times. Therefore, 

altering the TI interval allows image contrast between tissues to be generated. In order to 

generate the MR signal (readout), the inversion recovery pre-pulse can be combined with 

additional pulses and associated gradients (e.g. spin echo, gradient echo or bSSFP) which 

may further produce a range of image contrasts.   

 

Inversion pulse application allows selective tissue suppression and is widely used in cardiac 

imaging. Following the inversion of longitudinal magnetisation of tissue, there is gradual 

recovery of magnetisation. If the TI is set a specific value, tissues with a longitudinal 

magnetisation of zero will have no signal at that time interval and will be ‘nulled.’ Inversion 

recovery pre-pulses are typically used in late gadolinium enhancement (LGE) imaging 
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whereby the paramagnetic molecule, gadolinium, which shortens T1 time, is used to 

differentiate between normal and pathological myocardium due to its delayed wash-out from 

the expanded interstitial space in pathological conditions (e.g. myocardial infarction).  

 

2.4 Slice selection, spatial encoding and image reconstruction 
 
2.4.1 Slice selection 
 
A combination of RF excitation pulses and gradient fields are used to initiate the image 

formation process and localise the MR signal in three dimensions. In order to selectively 

excite a slice of tissue, a gradient field (slice selection gradient - Gs) is applied during RF 

pulse transmission. Resonance of protons will only occur when the frequency of the RF pulse 

matches the Larmor frequency at a given position along the direction of the gradient. This has 

the effect of only selectively exciting protons which are perpendicular to the direction of 

gradient applied and therefore determines the slice of tissue which has been excited. The RF 

pulse is usually transmitted as a small range of frequencies (bandwidth) which defines the 

slice thickness.  

 
2.4.2 Phase encoding 
 
A second gradient called the phase encoding gradient (Gp) is then applied which temporarily 

alters the precession frequency of protons. As the magnetic field strength varies in various 

parts of the body, the application of Gp leads to a change in the relative phase of protons 

dependent on their position along the gradient. This allows the spatial position of protons to 

be mapped according to the phase differences of transverse magnetisation.  

 
2.4.3 Frequency encoding 
 
A third gradient called the frequency encoding gradient (Gf) is then applied in a direction 

perpendicular to the phase encoding gradient and alters the homogeneity of the main 
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magnetic field in a calibrated way. Similar to the phase encoding gradient, the frequency 

encoding gradient alters the precession of protons according to their position along the 

direction of Gf so that resonant frequency is changed as a function of spatial position.  

 

In combination, Gs, Gp and Gf allow 3D localisation of the MR signal by selecting a given 

slice and creating a phase shift along a particular axis and a frequency shift along a 

perpendicular axis in that slice.  

 
2.4.4 Image reconstruction 
 
A 2D image can be decomposed into sine waves which vary in frequency, amplitude, phase 

and direction. Spatial encoding using phase and frequency encoding enables an image to be 

recorded in this way and the resulting data points representing amplitudes and phases are 

recorded in a raw data matrix known as k-space. Image space comprised of all pixels that 

make up an image and k-space are inversely related. Within image space, all MR signals that 

have been phase and frequency encoded may contribute to a pixel which is part of that image 

space. Within k-space, each point of the MR signal occupies a particular location - i.e. each 

point in k-space represents the degree of spatial frequency contained in the image pixel 

(Ridgeway, 2010). In order to create an image pixel map from the frequency and phase 

information, a mathematical transformation (Fourier transformation) is required to decode the 

signals and reconstruct the final image.  

 
2.5 Scar imaging with late gadolinium enhancement 
 
2.5.1 Contrast-enhanced imaging 
 
Contrast-enhanced imaging following intravenous administration of contrast agents 

containing complexes of the small paramagnetic molecule, gadolinium is widely used in 

cardiac MRI. Gadolinium shortens T1 values in tissue where it accumulates. Following 
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administration, gadolinium is transferred from the intravascular space to the interstitial/extra-

vascular space. Wash-out of gadolinium-based agents are dependent on renal clearance. In 

normal cardiac tissue, there is a rapid wash-in and wash-out phase. In abnormal tissue such as 

scarred myocardium (e.g. following myocardial infarction), the interstitial space is expanded 

and therefore gadolinium accumulates in this space and exhibits a delayed wash-out phase.  

 

In order to identify abnormal tissue with gadolinium accumulation, late gadolinium 

enhancement (LGE) sequences are used which are T1-weighted pulse sequences preceded by 

an inversion recovery pulse. Signal from abnormal tissue has a bright signal on T1-weighted 

images. A TI is chosen where signal from normal myocardium is suppressed (nulled) thereby 

maximising the contrast between normal and scarred/fibrotic myocardium. A number of 

factors can affect the optimal nulling of myocardium including the time from contrast 

injection to acquisition, MR field strength, type of contrast agent, dose and pulse sequence 

used for image read-out.  

 

Conventionally, LGE imaging is performed 5-15 minutes following administration of 

contrast with a maximal dose of 0.2mmol/kg. After this period of time, the TI in both blood 

pool and myocardium increase as gadolinium wash-out occurs and therefore, conventionally, 

there is a narrow window to perform imaging and discriminate between normal and abnormal 

tissue. In this thesis, a technique to maintain the blood and myocardial TI in a steady-state 

through the application of a slow continuous infusion of gadolinium is presented to enable 

higher resolution scar imaging and compare different contrast-enhanced pulse sequences to 

identify the optimal method of substrate assessment. The slow infusion of continuous 

gadolinium to achieve ‘contrast steady-state’ was first applied to quantify diffuse myocardial 

fibrosis (Flett et al. 2010).  
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2.5.2 2D vs 3D imaging 
 
The reference LGE exam most commonly used for myocardial scar imaging is a 2D IR GRE 

sequence which is acquired using multiple breath-holds. During 2D imaging, tissue within a 

2D plane is excited during each breath-hold and a stack of multiple 2D images within a 

region of interest are acquired to create a 3D volume. In 3D imaging, an entire slab of tissue 

is excited and imaged. 3D imaging generally provides a better spatial resolution, signal-to-

noise ratio (SNR) and can be acquired with an isotropic resolution facilitating multi-planar 

reconstruction of images to aid interpretation. However, 3D imaging can require prolonged 

scan times during free-breathing acquisitions whilst both cardiac and respiratory motion, 

without correction, can corrupt the entire acquisition.  

 

For assessment of myocardial infarcts, 3D LGE can visualise scar with a better SNR and 

greater image sharpness demonstrating the complexity of heterogenous scars (Peters et al. 

2009) compared to 2D LGE. For routine diagnostic purposes, conventional 2D LGE may be 

sufficient but a higher spatial resolution will allow an improved assessment of scar 

morphology and peri-infarct tissue, which may be required to define ablation targets for VT 

ablation. Isotropic 3D LGE imaging will also allow for reconstruction and multi-planar 

reformatting in any imaging plane, further allowing assessment of scar tissue in different 

views and therefore aid the identification of channels of tissue that may be important in the 

maintenance of VT (Basha et al. 2017).  

 

2.5.3 Pulse sequence techniques for LGE imaging 
 

A number of approaches alternative to standard 2D IR GRE have been investigated for LGE 

scar imaging including phase sensitive inversion recovery (PSIR) reconstruction where the 

polarity of Mz is taken into account in addition to the magnitude of Mz (Kellman et al. 2002) 
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and reduces the variation in image quality related to selection of the optimal TI. Additional 

approaches include 3D LGE to improve spatial resolution and assessment of scar 

heterogeneity (Basha et al. 2017) and dark-blood LGE using an inversion pulse followed by 

T2 magnetisation preparation to simultaneously reduce normal myocardium and blood pool 

signal intensity and increase scar-blood contrast whilst preserving scar-myocardium contrast 

(Basha et al. 2018). Different pulse sequence read-outs after the inversion pulse (GRE vs 

SSFP) can also impact the visualisation of the infarct-blood boundary (Detsky et al. 2007).  

 

Some investigators have performed head-to-head comparisons of LGE sequences to 

determine the optimal imaging method for different applications. An improved contrast-to-

noise ratio (CNR) and qualitative image quality was reported in ischaemic cardiomyopathy 

patients using a 3D IR GRE technique compared to other breath-hold and free-breathing 2D 

and 3D techniques (Viallon et al. 2011). Similarly, in patients with structural heart disease 

referred for VT ablation, an improved matching to EAM-defined scar was reported using scar 

reconstruction following a 3D IR GRE sequence compared to 2D IR GRE and a 2D IR SSFP 

sequence (Andreu et al. 2015).  

 

However, given that the wash-in and wash-out kinetics of gadolinium following a single 

bolus will change the TI during extended scar imaging, it is difficult to be certain that 

consistent contrast distributions are present during comparison of multiple sequences. To 

identify the regions of tissue responsible for VT, high-resolution isotropic imaging is required 

which require prolonged scan times, during which TI may vary significantly. In this thesis, 

the use of contrast steady-state is applied to compare post-contrast sequences in an 

experimental model with consistent contrast conditions to determine the optimal imaging 

technique for 3D scar assessment.  
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2.5.4 Motion compensation for cardiac and respiratory motion 
 
Motion due to cardiac contraction or breathing can cause significant artifacts and result in 

blurred images affecting image quality. Broadly speaking, synchronisation with the cardiac 

cycle through the use of surface ECG electrodes is mandatory to account for cardiac motion. 

The peak of the R-wave of the ECG can be used as the reference to synchronise the MR 

sequence with the cardiac cycle. Following this, prospective gating can be applied, where 

data is acquired during a specific acquisition window within the R-R interval and images 

reconstructed. Alternatively, retrospective gating, where data is acquired continuously and 

subsequently re-ordered according to the phase of the cardiac cycle, can be used to 

reconstruct images and correct for cardiac motion.  

 

A number of techniques may be used to account for respiratory motion. The most 

straightforward approach is to acquire images during patient breath-holds. A 10-20s breath-

hold is typically used at end-expiration to acquire all the data required to reconstruct the 

image at a time when diaphragmatic motion is minimal.  Following a period of rest, the cycle 

is repeated to acquire consecutive slices.  

 

For patients unable to hold their breath or 3D scans that require prolonged imaging times, 

free-breathing acquisitions are necessary. A respiratory navigator beam can be used to enable 

either prospective or retrospective respiratory gating. The navigator is placed on the 

diaphragm over the lung-liver interface to detect motion of the lungs given that most of the 

motion is in the foot-head direction. A pre-pulse, called a navigator echo, is used before 

and/or after the image sequence to locate diaphragm position along the direction of the 

navigator beam. The signal from the navigator echo are displayed in columns or lines to 

measure respiratory motion through the duration of the sequence. A pre-defined gating 
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window is used to accept or reject data depending on whether the diaphragm was in the given 

window during the respiratory cycle, thereby accepting data only during a still period in the 

cycle (Lombardi et al. 2018) - Figure 2-1.  Single-shot acquisition techniques are also 

possible where all required data are acquired during a single heart beat and phase of the 

cardiac cycle. The 3D imaging sequences described in this thesis were acquired during free-

breathing using prospective respiratory gating.  

 

 

Figure 2-1: Respiratory navigator acceptance window 

 
2.5.5 Analysis and post-processing: core scar and borderzone assessment  

 
There are a number of imaging features that can be extracted from LGE-MRI that could be 

used to delineate the regions of tissue associated with VT substrate including pixel signal 

intensity, scar transmurality or tissue thickness and entropy of scar. Spatially complex scar 

containing a mixture of viable myocardium and electrically-inert scar is thought to represent 

the substrate for re-entrant VT. Critical isthmus and ablation termination sites have been 

localised to peri-infarct tissue, defined as regions of dense scar-borderzone transition on MRI 
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and in regions of scar with >75% transmurality (Piers et al. 2014). Scar heterogeneity with 

intermediate grades of viable tissue on MRI has been reported to be present at sites 

containing the critical isthmus for VT (Ashikaga et al. 2007) whilst successful ablation of 

heterogenous tissue has been associated with non-inducibility of VT in an animal model 

(Estner et al. 2011). 

 

Tissue characterisation algorithms based on pixel signal intensity have been used to define 

tissue as either binary (scar or normal myocardium) or ternary (dense scar, borderzone tissue, 

normal myocardium). These include the full-width at half maximum (FWHM) method 

whereby manual delineation of a region of interest (ROI) around a region of hyper-intense 

(scarred) myocardium is selected. The signal intensity at 50% of this value is then used as the 

threshold to define scar. Other approaches for scar quantification include the n-standard 

deviation (SD) method whereby a ROI in the remote (normal) myocardium is selected. 

Thresholds can then be selected based on pixel signal intensity values at 2-SD, 3-SD, 4-SD, 

5-SD or 6-SD to define scar. Manual quantification of scar has also been applied based on 

image segmentations. There is however no agreement on the optimal method or thresholds to 

categorise scar (Sramko et al. 2019) or any validation of the extent of borderzone tissue and 

dense scar in large animal models quantified from MRI using whole-mount histology (Pop et 

al. 2013).  

 

LGE dense scar and borderzone volume can vary significantly depending on the method used 

for quantification. Borderzone volume can be 2-3 fold higher using FWHM vs n-SD methods 

whilst dense scar values are higher using the n-SD method of quantification (Mesubi et al. 

2015). The FWHM technique appears to be the most reproducible however with the lowest 



 65 

intra-observer and inter-observer variability (Flett et al. 2011). Differences in MR sequences 

could also lead to variability in VT substrate identification (Andreu et al. 2015).  

 

Recently, there has been interest in scar entropy, as a measure of tissue inhomogeneity which 

is independent of signal intensity thresholds to differentiate arrhythmogenic from non-

arrhythmogenic scar. High entropy within scar has been associated with an increased risk of 

ventricular arrhythmias (Androulakis et al. 2019; Gould et al. 2019).  

 

There are limitations in using imaging to define the critical regions of tissue responsible for 

VT - recently, high-resolution activation mapping data in a porcine infarct model has 

demonstrated the importance of functional block in defining the borders of a VT isthmus 

(Anter et al. 2016). Furthermore, a limited specificity of voltage and electrogram 

characteristics in sinus rhythm have been demonstrated (Anter et al. 2018) suggesting that 

imaging structural characteristics alone (where there is no equivalent of an electrical ‘stress 

test’) are unlikely to identify the optimal sites for ablation. Limitations in the image 

resolution of current clinical scans (1.4mm3, as reported in Andreu et al. 2015) can also lead 

to partial volume effects that may overestimate the volume of heterogenous tissue (Schelbert 

et al. 2010).  

 

2.5.6 Developments in magnetic resonance techniques to improve substrate assessment 

Acquisition of high-resolution imaging is required to detect smaller regions of scar and 

improve assessment of scar geometry in patients undergoing VT ablation (Basha et al. 2017). 

3D LGE imaging can allow acquisitions with a higher spatial resolution compared to 2D 

LGE but requires prolonged scan durations. Longer scans can lead to changes in contrast 

agent concentration over time or reduced respirator navigator efficiency due to irregular 
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breathing patterns (Basha et al. 2017). The use of image acceleration techniques such as 

compressed sensing has enabled faster acquisition of 3D imaging of higher spatial resolution 

(1.2mm3) with acceptable scan duration, image quality and comparable scar characteristics to 

conventional 3D LGE (Basha et al. 2017). Parallel imaging with a stack-of-spirals acquisition 

technique has also been used to enable rapid 3D LGE acquisitions in a 12 heart beat-long 

breath-hold (Shin et al. 2014). 3D free-breathing self-navigating MR sequences have recently 

been described to overcome the errors associated with respiratory navigator placement and 

irregular breathing patterns enabling high-resolution visualisation of scar distribution and 

superior delineation of scar borders (Rutz et al. 2016). A new technique to reconstruct a high 

resolution image from multiple low resolution views of the same volume (super-resolution 

reconstruction - SRR) has also shown a good agreement with the bipolar voltage range of 

scar borderzone (Dzyubachyk et al. 2015). Further developments in these techniques may 

allow faster imaging with higher spatial resolution and advance the ability of clinical MRI 

protocols to identify areas of scar critical for re-entrant VT circuits.  

The development of dark-blood LGE (DB-LGE) sequences as a technical solution to sub-

optimal contrast between scar and blood pool offers promise for improved substrate 

assessment. DB-LGE sequences have been described that simultaneously reduce normal 

myocardium and blood pool signal intensity whilst enhancing scar-blood contrast and 

preserving scar-myocardium contrast (Basha et al. 2018; Kellman et al. 2016). Given that a 

large proportion of VTs appear to originate in the sub-endocardial region (Tschabrunn et al. 

2016), improved contrast between scar and blood pool may improve the detection of 

substrate in these areas.  
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2.6 Temperature mapping 
 
Tissue temperature distribution can be estimated using MRI as several MR parameters are 

temperature-dependent.  Intrinsic tissue magnetic properties such as the T1/T2 relaxation 

time, proton density, diffusion co-efficient, magnetisation transfer and proton resonance 

frequency (PRF) are sensitive to changes in temperature (Reike V et al. 2008). In cardiac RF 

ablation, due to the need for real-time application with fast imaging sequences, reduced 

sensitivity to motion, tissue independence, good temporal and spatial resolution, the PRF 

method for temperature mapping has been the most widely used for assessment in preference 

to other techniques.  

 

2.6.1 MR-thermometry with the PRF-shift technique 
 
The resonance frequency of water protons is temperature-dependent (de Senneville et al. 

2012) which is thought to be due to the result of rupture, stretching or bending of hydrogen 

bonds proportional to changes in temperature (Ishihara et al. 1995). PRF-shift based 

thermometry computation can be derived directly from the MR spectra or phase mapping. 

For phase mapping, relative temperature changes (∆T) can be calculated via differences in 

phase measurements to a reference phase at a given temperature as follows (Winter et al 

2016): 

 

Equation 2: PRF shift equation: 

  

 
where 𝛾 is the gyromagnetic ratio, TE is the echo time, α is the temperature dependent 

chemical shift of water (~0.009-0.01 ppm/oC, apart from in adipose tissue), B0 is the static 

magnetic field strength and ∆ φ is the phase variation.  
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A GRE sequence is most commonly used to compose temperature maps using gradient 

echoes with a long TE with optimisation to ensure adequate spatial and temporal resolution 

and good SNR. A series of reference images are initially acquired prior to RF ablation to 

derive phase of the baseline image. During and following RF ablation, further phase images 

are acquired. The phase variation is then subtracted to facilitate PRF shift computation and 

obtain measurements of tissue temperature in each individual pixel of the resulting image 

(Reike et al. 2008).  

 

There are a number of technical issues that can affect the accuracy of PRF-based 

thermometry including variations in B0 during the course of RF ablation, a small degree of 

tissue dependence of the chemical shift and temperature-dependent changes in the relative 

permittivity and electric conductivity of tissue which can affect the phase velocity (Winter et 

al. 2016). In addition, issues with motion (both cardiac and respiratory) is a ubiquitous 

problem for temperature mapping in the heart. Artifacts can be present due to inter-scan 

motion (PRF-shift with phase mapping is dependent on acquisition of reference scans prior to 

ablation and during ablation) and intra-scan motion causing blurring or object ghosting 

(Reike et al. 2008). Physiological motion can lead to important errors during estimation of 

tissue temperature and require correction (Mukherjee et. al. 2019).  Strategies for motion 

management include the use of respiratory gating, motion detection and movement 

registration with navigator echoes, multiple reference acquisitions to sample periodic changes 

(de Senneville et al. 2007) and referenceless phase correction (Rieke et al. 2004; Reike et al. 

2008).  

 
2.6.2 MR-dosimetry 
 
The relationship between temperature elevation and tissue destruction is complex. The 

volume of tissue necrosis following delivery of RF ablation is not easily calculated and a 



 69 

number of techniques to estimate lesion size derived from tissue temperature and duration of 

exposure to ablation have been described. In cardiac RF ablation, the calculation of thermal 

dose (MR-dosimetry) has been applied to determine when target tissue destruction has been 

achieved using an integral of temperature elevation and time to derive the thermal dose as 

follows (Mukherjee et al. 2018; Toupin et al. 2017): 

 

Equation 3: Thermal dose calculation 
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where T(t) represents absolute tissue temperature; the concept of cumulative equivalent 

minutes (CEM43) is applied whereby for each degree increase above 43oC, a 2-fold decrease 

in the time required for the tissue to be thermally destroyed (Chang, 2010) based upon 

experimental studies of tissue injury. When the thermal dose reaches a critical threshold 

(43oC for a duration of 240 min), the tissue destruction is believed to have occurred.  

 

Other approaches to quantify lesion volumes include the use of iso-temperature contours 

from the temperature profiles to delineate ablation lesion boundaries or utilising the 

Arrhenius equation to determine the relationship between tissue temperature, exposure time 

and tissue injury (Chang, 2010).  

 

MR-dosimetry can therefore be used to determine the end-point of ablation therapy. In this 

thesis, the use of MR-thermometry and dosimetry using CEM43 to derive the thermal dose, is 

applied to calculate lesion size when delivering both endocardial and epicardial RF ablation 

in the left ventricle, inside the MRI scanner.  
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2.7 Interventional MRI 
 
2.7.1 Introduction 
 
The ability of cardiac MRI to characterise arrhythmia substrate, guide procedures and 

evaluate ablation lesions has inspired the development of interventional MRI within 

electrophysiology whereby mapping and ablation can be completed within the MRI 

environment. Although many investigators have integrated anatomical and scar data from 

pre-acquired MRIs into the navigation system during catheter ablation (Andreu et al. 2017; 

Zghaib et al. 2018) these techniques invariably result in registration errors of up to 3.5mm 

(Roujol et al. 2013). Additionally, conformational changes within cardiac chambers as a 

result of different loading conditions between the time of imaging and intervention as well as 

translational changes due to patient movement, cardiac and respiratory motion could all lead 

to discrepancies between structural data and electrical substrate with potential consequences 

for the efficacy of catheter ablation (Mukherjee et al. 2018). The mean maximum amplitude 

of cardiac and respiratory motion for example, during EAM has been estimated to be in the 

region of 10.2 ± 2.7mm and 8.8 ± 2.3mm respectively (Roujol et al. 2013). 

 

Interventional MRI offers a potential solution to overcome the limitations of image 

integration as well as utilise the benefits of MR-based catheter tracking and lesion assessment 

that can only be performed inside a MRI scanner (Chubb et al. 2017). Over the last decade, 

development of MR-conditional devices and imaging techniques have led to the application 

of interventional MRI in the setting of cardiac electrophysiology but a number of challenges 

have been identified. These include the recording of high quality electrograms in an 

environment with significant electromagnetic interference, the development of clinical-grade 

MR-compatible devices with similar physical capabilities as their conventional counterparts 

and establishing robust tools for real-time lesion assessment (Mukherjee et al. 2018). On a 
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practical level, effective communication is difficult between team members in a noisy 

environment and novel workflows are evolving to accommodate this hurdle. 

 

From an imaging perspective, there are a number of specific of requirements for 

interventional MRI compared to diagnostic MRI including the need for faster image 

acquisition and reconstruction. There are various stages of an interventional MRI procedure 

including the acquisition of an anatomic procedural roadmap, catheter navigation during the 

procedure, lesion delivery and evaluation. Each stage requires sequences optimised for their 

specific purpose. For example, the ‘roadmap’ sequence will typically need to have a good 

spatial resolution for definition of anatomy but can have a low temporal resolution. 3D 

respiratory-navigated, ECG-gated GRE or bSSFP sequences with or without contrast have 

been used for this stage (Dukkipati et al. 2008). For catheter navigation, sequences with a 

high temporal resolution are required, typically at least 5-10 frames/second (Bhagirath et al. 

2015). Ablation lesion visualisation may use a combination of T1-weighted, T2-weighted, 

LGE or thermometry sequences to evaluate lesion composition, measure lesion size and 

evaluate oedema and necrosis.  

 
 
2.7.2 Technical issues: electrogram fidelity, devices and defibrillation 
 
Accurate recording and characterisation of both surface electrocardiogram (ECG) and intra-

cardiac electrograms (EGM) are an essential component of cardiac electrophysiology 

procedures. During catheter ablation of simple arrhythmias such as atrial flutter, 

demonstration of bidirectional conduction block created at the cavo-tricuspid isthmus and 

proven by sequential, timed EGM recordings made along the ablation line during coronary 

sinus pacing are necessary (Shah et al. 2000). For complex arrhythmias such as ventricular 

tachycardia, substrate-based mapping techniques rely on the correct identification of low 
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voltage regions, annotation of abnormal potentials and robust characterisation of electrogram 

morphologies (Josephson et al 2015).  

 

The MRI environment is considered relatively ‘hostile’ for the rigorous recording of EGMs 

as there are many sources of artifact that may distort signals. During MR scanning, RF pulses 

are deployed that are coupled with fast-switching magnetic gradients which can induce 

electromagnetic fields around the subject and create voltage artifacts on both the surface ECG 

and intra-cardiac EGMs (Oster et al. 2010). A second source of signal distortion is the 

magneto-hydrodynamic effect (MHD). The static magnetic field (B0) can lead to MHD 

voltages due to the flow of electrically charged blood particles through the aortic arch in a 

direction perpendicular to B0. MHD voltages are superimposed primarily during the S-T 

phase of the cardiac cycle (period of peak flow) and can have a similar frequency spectrum 

and magnitude to real electrogram signals - Figure 2-2 (Tse et al. 2014). The size of MHD 

voltages may also be affected by the heart rate as a different volume of blood may be ejected 

from the left ventricle - this may be relevant during EGM recordings in the context of 

tachycardia or pacing. A third source of artifacts are time-varying magnetic fields that 

provide position-dependent variation in MR field strength but can lead to induced electric 

currents in conducting tissues as well as connecting wires (Felblinger et al. 1999).   

 

Figure 2-2: Recording surface ECG and intra-cardiac EGMs inside a MRI scanner.  
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Significant distortions inside a MRI scanner can occur on both the surface ECG and during intra-cardiac EGM acquisition 
due to 1) Time-varying MR gradient fields 2) RF pulses during MR scanning that couple to conductive material (A) and 3) 
Magneto-hydrodynamic (MHD) voltages due to the static magnetic field (B). Noise filtering technologies are required to 
improve intra-cardiac EGM fidelity and reduce baseline noise (C and D). Reproduced with permission from Mukherjee et 
al. 2019; Current Cardio Imaging Reports.  
 

Following the application of a low-pass filter (300Hz), high-pass filter (30Hz), notch filter 

(60Hz) and RF filters to reduce the 64MHz signal from the MRI scanner, Nazarian et al. 

(2018) demonstrated the ability to record both atrial and ventricular potentials in normal 

canines and healthy patients including distinguishing small His potentials with good fidelity. 

Subsequent studies in patients with atrial flutter have shown that double potentials can be 

detected along and conduction detour around an ablation line (Hilbert et al. 2016; Chubb et 

al. 2017). An experimental study in an ovine model estimated that the peak-to-peak 

amplitude of baseline noise inside the MRI scanner (without scanning) is 10-fold higher than 

in a conventional X-ray fluoroscopy laboratory (0.10 vs 0.01 mV) whilst the signal-to-noise 

ratio (SNR) may vary depending on the MRI sequence used during scanning (Elbes et al. 

2017). In this study, a low-pass filter with a cut-off frequency of 120Hz gave the best quality 

EGM signals compared to filter cut-offs at 240 and 500Hz (Elbes et al. 2017). It remains 

unclear, however, whether low-amplitude abnormal potentials such as fractionated EGMs or 

late potentials with an amplitude <0.1mV can be detected robustly inside a MRI scanner with 

limited evidence available from one study (Oduneye et al. 2015). Although a lower value 

low-pass filter may give the best quality normal EGM signals, it may risk losing the fine high 

frequency components of abnormal EGMs that are important in substrate evaluation. Further 

developments in signal processing technologies are needed to improve EGM fidelity and 

there has been interest in the application of techniques such as adaptive noise cancellation 

(Wu et al. 2011) artefact modelling and Bayesian filtering for this purpose (Oster et al. 2010). 

The majority of patients who undergo VT ablation have an implantable-cardioverter 

defibrillator (ICD) in situ (Tilz et al. 2018). A number of potential adverse effects could 
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occur during MRI in patients with cardiac devices including device movement, induced 

current due to rapidly changing gradient magnetic fields, thermal injury with subsequent 

effects on the sensing and capture thresholds, activation of the reed switch as well as over-

sensing and power-on-reset due to electromagnetic interference (Blissett et al. 2018). 

Although the risks of adverse effects have been reported as low, including imaging with 

legacy ICD systems (Nazarian et al. 2017), concerns regarding radiofrequency-induced tissue 

heating and device failure and their potential impact during long procedures lasting several 

hours, as is often the case during VT ablation, remains. The presence of ICDs also leads to 

the generation of artefacts; although wideband LGE sequences have been reported to 

adequately suppress artefacts and preserve diagnostic image quality for LGE imaging 

(Ranjan et al. 2015; Do et al. 2018) this remains a challenge for real-time MRI-guided 

procedures. 

 

During VT ablation, haemodynamically unstable arrhythmias are often induced and may 

require immediate defibrillation. If defibrillation was required inside the scanner bore, the 

subject would have to be removed from the bore, the MR coil and any connecting wires or 

catheter instruments would have to be disconnected, the MRI table would need to be 

undocked, the subject evacuated outside the scanner room and connected to defibrillation 

pads. This process can be completed in around 60s with practice but nevertheless represents 

an unacceptable delay and could increase mortality (Schmidt et al. 2016). The inability to 

perform defibrillation inside a MRI scanner is a major safety hurdle and is a pre-requisite for 

clinical studies in patients. To date, there are only limited reports of prototype MRI-

conditional defibrillation systems to enable electrical defibrillation both inside and outside 

the scanner bore in swine (Schmidt et al. 2016).  
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2.7.3 MR-compatible devices and tracking methods 
 
Catheters used in the conventional electrophysiology laboratory typically incorporate ferrous 

components to grant the mechanical characteristics to enable torque transmission and 

navigation of tortuous structures. However, these materials can lead to large susceptibility 

artifacts inside a MRI scanner - although this phenomenon may be used during passive 

tracking, the susceptibility artifacts from conventional catheters can severely degrade image 

quality. Instead, materials that create a lower burden of artifacts are preferred including gold, 

titanium and nitinol with polyester braiding (Ratnayaka et al. 2008). The mechanical 

performance of MR-compatible catheters is not currently equivalent to their conventional 

counterparts and this has proven to be an obstacle to more widespread implementation of 

interventional MRI. The process of RF excitation during MRI can also lead to heating in 

conductive materials such as wires and transmission lines and make them inherently unsafe 

requiring re-design of the devices themselves.  

 

There are two principle methods of intra-procedural guidance during interventional MRI - 

active and passive catheter tracking. Passive catheter tracking enables either positive or 

negative contrast visualisation by integration of susceptibility artefacts generated from 

ferromagnetic/paramagnetic materials embedded within a catheter (Grothoff et al. 2014) or 

using gadolinium or CO2/N2O-filled balloon catheters (Ratnayaka et al. 2013). Typically, 

during passive tracking an in-plane resolution of around 1mm, slice thickness of 6mm and 

temporal resolution of 4 frames/second has been reported (Nordbeck et al. 2013). Tip 

tracking accuracy using gadolinium-filled balloon catheters has been estimated to be in the 

region of ± 0.41mm with imaging reconstructions displayed at a frame rate of around 3 

frames/s (Omary et al. 2000). Recently, application of a positive-contrast based passive 

tracking sequence using partial saturation magnetisation preparation has been shown to 
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provide improved simultaneous visualisation of both anatomy as well as gadolinium-filled 

catheters (Velasco-Forte et al. 2017). However, susceptibility artefacts during passive 

tracking can make devices with ferromagnetic/paramagnetic materials appear larger than 

their actual size as well as potentially obscure surrounding tissue. Furthermore, with all 

passive tracking techniques, if the device moves out of the imaging plane, the operator is 

required to relocate the device which can be time-consuming (Campbell-Washburn et al. 

2017). It is also more difficult to track catheters within the expansive 3D space of cardiac 

chambers compared to in-plane tracking within the lumen of a vessel (e.g. aorta).  

 

Active catheter tracking is an alternative technique whereby micro-coils embedded within the 

catheter produce a receiver signal to determine location of the device - Figure 2-3. An active 

tracking sequence consisting of intermittent non-selective excitations combined with spatially 

encoding gradients enable measurement of 1D projections in each space dimension and 

estimation of the 3D coordinates of the position of the micro-coils (Chubb et al. 2017; 

Daniels et al. 2016). Real-time estimates of the position of micro-coils can be used to 

estimate catheter tip orientation. This information can also be used for real-time slice tracking 

to automatically maintain the catheter tip in the imaging plane during navigation (Chubb et 

al. 2017). The precision of active tracking during ex-vivo technical validation experiments 

has been estimated to be in the region of 0.90 ± 0.58mm along the axis of the catheter whilst 

the angular deviation of catheter orientation from its true direction was 8.50 ± 3.60 (Chubb et 

al. 2017). Active tracking has been used to perform coronary sinus intubation, activation 

mapping and trans-septal left atrial access in swine (Grothoff et al. 2017) as well as to guide 

cavo-tricuspid isthmus ablation in patients with atrial flutter (Hilbert et al. 2016; Chubb et al. 

2017). 
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Figure 2-3: Active catheter tracking.  

Active catheter tracking using a MR-compatible catheter with gold-tip electrodes and two 2.5mm solenoid receive coils (A). 
Using a dedicated tracking sequence, the X, Y and Z coordinates of the catheter micro-coils can be determined in 3D space 
(B) whilst the catheter tip can be displayed as a red icon in three orthogonal MRI projections to guide a MR-EP procedure 
(C). Reproduced with permission from Mukherjee et al. 2019; Current Cardio Imaging Reports 
 

 

2.7.4 Communication 

The interventional MRI suite is a noisy environment compared to a conventional 

electrophysiology laboratory. There are also additional personnel required including a MR 

radiographer and MR physicists who are outside the interventional suite in the control room. 

Good communication between all team members is a mandatory element to drive 

interventional MRI procedures. During scanning, MR gradients generate significant acoustic 

noise to interfere with communication. Headsets with fibre-optic cables, opto-acoustic 

headsets to subtract gradient noise and wireless headphones have all been used to enable two-

way communication between members of the interventional and imaging team (Bhagirath et 

al. 2015).  
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2.7.5 Image guidance platforms 
 
EAM systems are in widespread use for catheter ablation of complex arrhythmias. They can 

facilitate an understanding of arrhythmia mechanism, permit annotation of single or multiple 

sites of interest, guide catheter navigation to target ablation sites and, when properly used, 

can dramatically reduce fluoroscopy times and may reduce procedural times (Knackstedt et 

al. 2008). There has therefore been interest in the development of graphical interfaces to 

integrate data from real-time imaging into interfaces that closely mimic those of clinical-style 

EAM systems in order to drive progress in real-time MRI-guided electrophysiology (Wang, 

2015). Several major MRI vendors have developed graphical solutions to represent electrical 

data, enable real-time imaging with active catheter tracking and workflows for catheter 

ablation - Figure 2-4. Philips Healthcare have developed the iSuite system that consists of 

hardware including a PC and monitor connected to the MR scanner console. A foot pedal 

also allows an operator to directly control the scanner in real-time from the scanner bore. 

Additional software capabilities include the ability to perform MRI-guided navigation 

combining pre-acquired imaging with real-time data, segmentation tools for procedural 

planning as well as custom modules to perform MR-based device tracking and support MR-

thermometry (Chubb et al. 2017).   

 

Similarly, Siemens Healthineers have developed their own interventional MRI platform that 

allows flexible control of scan plane orientation and image parameters from a dedicated PC 

connected to the scanner console, load and display volumetric data onto a custom software as 

well as perform automatic segmentations of pre-acquired data to ensure rapid image 

processing (Mukherjee et al. 2018). The mapping interface of the software gives the ability to 

change the colour or rendering styles of loaded segmentations and generate activation and 

voltage maps based on local activation time or voltage amplitude data using colour 
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interpolation between mapping points. Active tracking can be superimposed onto real-time 

imaging datasets allowing the system to deliver the features required of a clinical EAM 

system as well as having additional capabilities to exploit the benefits of real-time imaging 

(Mukherjee et al. 2018).  

 

The Vurtigo platform, which is compatible with GE systems is a real-time visualisation 

application (open-source) that can either import EAMs generated conventionally or compose 

one using MR-tracked catheters followed by fusion with acquired MR volumes (Campbell-

Washburn et al. 2017). A real-time scan control system (RTHawk research platform) which is 

based on the Heart Vista Cardiac operating system (Heart Vista, Los Altos, CA, USA) acts as 

a 2D viewer and allows acquisition of real-time sequences. The communication latency 

between the RTHawk application and Vurtigo has been estimated to be in the region of 6.3 ± 

7.7ms (Radau et al. 2011). The system has the ability to visualise, compare and overlay MRI 

volumes, real-time imaging planes, catheters and surface meshes of EAMs. Further 

development of features including motion correction of mapping data points and improved 

signal processing are under evaluation (Radau et al. 2011).  
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Figure 2-4: Image guidance platforms. 

Image guidance software platforms for procedure visualization have been developed by several MRI vendors that are 
capable of displaying 3D volume roadmaps, real-time imaging planes, cardiac chamber segmentations, electroanatomical 
maps and actively tracked catheters. Shown here are example screenshots from the Siemens iCMR platform (A) during MRI-
guided electroanatomical mapping of the left ventricle in a porcine infarct model and Philips iSuite platform (B) during 
MRI-guided catheter ablation of the cavotricuspid isthmus in a patient with atrial flutter. Reproduced with permission from 
Mukherjee et al. 2019; Current Cardio Imaging Reports. LV = left ventricle; IVC - inferior vena cava; MPR = multi-plane 
reconstruction.  
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2.7.6 Safety and patient monitoring 
 
There are several safety considerations to performing interventional procedures in the MRI 

environment including ensuring that ferromagnetic materials are not inadvertently brought 

near the magnet, adequate preparation of the patient, haemodynamic and ECG-monitoring 

during the intervention, comprehensive monitoring during anaesthesia and robust evacuation 

protocols in case of an emergency. Monitoring equipment used need to be MRI-conditional 

and there are commercially available options for anaesthesia (e.g. Drager Fabius ® MRI) and 

basic haemodynamic monitoring (Expression, Invivo) (Chubb et al. 2017).  

 

If the patient is sedated or under general anaesthesia during a prolonged interventional 

procedure, additional monitoring may be required to protect against skin burns due to rapidly 

switching magnetic gradients and RF pulses. Measurement of the specific absorption rate 

(SAR) during image acquisition and/or direct measurement of skin temperature can be 

employed (Lederman, 2005). Conductive material within the patient such as pacemaker/ ICD 

leads carries a risk of inducing severe burns due to RF-induced heating and all such devices 

must be carefully screened for safety (Wilson et al. 2019).  

 

In the event of a cardiac arrest or an emergency requiring evacuation of the patient from the 

MRI environment, specific roles should be assigned to the interventionalist, radiographer and 

anaesthetist. Staff working within an interventional MRI suite should undergo dedicated 

training and emergency roles and tasks documented within a standard operating procedure.  
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3 Methods 

In this section, methods which are applicable to one or more chapters are detailed to avoid 

repetition. Specific study protocols are retained within the individual chapters.  

 

3.1 Animal model 

The research protocols were approved by the local institutional review board and complied 

with French law on animal experiments and the Guiding Principles for the Care and Use of 

Laboratory Animals published by the National Institutes of Health (8th Edition, National 

Academies Press, 2011). All animal experiments were performed at the Institut de Chirurgie 

Guidée par l’image (IHU), Strasbourg, France. Domestic pigs were pre-sedated with a 

combination of intramuscular tiletamine and zolazepam. Following sedation, endotracheal 

intubation was performed and general anaesthesia induced and maintained with inhaled 

isoflurane (1.0 - 2.5%) with mechanical ventilation at 15-20 breaths/min. Percutaneous 

vascular access was gained from the right femoral artery (7-Fr introducer sheath) under 

ultrasound guidance. Following arterial access, a bolus of 7000 units of unfractionated 

heparin was administered intravenously followed by a maintenance infusion of 1000-2000 

units/hr. An intravenous lidocaine (1mg/min) and amiodarone infusion (200mcg/kg/min) was 

also initiated to reduce the risk of ventricular arrhythmias.  

 

3.1.1 Infarct preparation 

The protocol was adapted as previously described by Tschabrunn et al. 2016. A 6-Fr Hockey-

stick guide catheter (Medtronic, Minneapolis, MN) was advanced to the left main stem and a 

0.14in Choice PT extra-support angioplasty guidewire (Boston Scientific, Malborough, MA) 

was placed in the left anterior descending artery (LAD). A 3.0 x 12mm Emerge Monorail 

PTCA dilatation catheter (Boston Scientific, Malborough, MA) was placed over the 
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angioplasty wire in the LAD. A coronary angiogram was performed to assess pre-infarct 

anatomy, following which the balloon was inflated to 12-14 atm in the mid-LAD distal to the 

second diagonal branch and maintained for 3 hours. A coronary angiogram was performed at 

1 hour and 3 hours after inflation of the balloon to confirm that the artery was still occluded. 

The creation of infarct was also confirmed by the presence of ST-segment changes in lead 

V1. A continuous infusion of amiodarone (20mcg/kg/min) and lidocaine (12ml/hr) was 

administered to reduce the risk of arrhythmias. In the presence of haemodynamically unstable 

VT or VF at any time during the infarct procedure or at the end of procedure due to 

reperfusion arrhythmia, DC cardioversion was performed. At the end of the procedure, 

0.03mg/kg buprenorphine was administered intramuscularly and a fentanyl patch (125 

micrograms/hour) was applied for 72 hours. Animals then underwent a 6-week recovery 

period prior to imaging and electrophysiology study.  

 
 

3.2 Magnetic resonance imaging 
 
All MRI scans were performed on a 1.5T scanner (MAGNETOM Aera, Siemens, Erlangen, 

Germany) with an 18-channel body matrix coil and a 32-channel spine coil.  

 
3.2.1 3D Whole-heart imaging 

A 3D, ECG-triggered whole-heart bSSFP acquisition with a 1D diaphragmatic navigator (5 

mm gating window) was performed with the following parameters: transverse slice 

orientation, AP phase encoding, 1.25 × 1.25 mm2 in-plane resolution, 256 × 256 in-plane 

matrix size, 2.5 mm acquired slice thickness reconstructed to 1.25mm, typically around 100 

slices to cover the whole heart, TR/TE = 3.7/1.64 ms, flip angle = 90°, readout bandwidth 

(per pixel) = 592 Hz, fat suppression, GRAPPA acceleration factor = 2. The trigger delay was 

set so that the acquisition was performed during mid-diastole and the acquisition window was 
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set to correspond to the length of the diastolic period (typically ~110ms, corresponding to 30 

k-space lines acquired per heartbeat). Following acquisition, the left ventricle, right ventricle, 

left atrium, right atrium and aorta were manually segmented on each animal using an image 

processing platform based on a version of Medical Imaging Interaction Toolkit (MITK, 

Heidelberg, Germany) and saved as Stereolithography (.STL) files. Segmentations were 

loaded on the iCMR application (Siemens Healthcare) to create a roadmap for mapping and 

ablation studies.  

 
3.2.2 Active catheter tracking 
 
In order to project the location of the ablation catheter within the context of the cardiac 

chambers, active catheter tracking using a dedicated MRI tracking sequence, detected by 

micro-coils within the catheter was used. To perform active catheter tracking during MRI 

scans, the X, Y, Z coordinates of the catheter microcoils were determined using a custom 

active tracking sequence/module, which was optionally interleaved with a fast balanced 

steady state free precession (bSSFP) imaging sequence automatically following the current 

catheter position. The active tracking sequence comprised three non-selective projection 

acquisitions along the respective axis. A dynamic imaging coil detuning approach and pre-

spoiler were applied to avoid potential background noise, i.e. coil coupling and residual 

signal effects. Based on the acquired projections, the corresponding signal peaks were 

detected with a dynamic template-matching algorithm, which used the initial projections to 

calculate a template per coil and axis. The template was continuously updated with each new 

projection fulfilling a minimal peak-to-noise ratio to adapt to the changing shape of the 

projections while manoeuvring the catheter. The detected positions were fed back to both the 

iCMR platform (Siemens Healthcare) and the MRI scanner to update the rendered catheter 

position/orientation and imaging plane location respectively. The tracking module was 

further optimized to run with an ambient acoustic noise and had been found to perform 
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robustly with an open MR cabin door, in the presence of other electrical equipment (e.g. 

ventilator, ECG monitoring, etc.) and during RF ablation (Chubb et al. 2017). 

 
 
3.2.3 Late gadolinium enhancement imaging 
 
To perform 2D standard LGE imaging, a bolus of 0.1mmol/kg gadobutrol (Gadovist) was 

first administered. After a period of 10 minutes, an inversion time (TI) scout sequence was 

acquired in a single mid ventricular short-axis slice (bSSFP; TE/TR/α = 1.1ms/2.6ms/30o; 

slice thickness = 8mm; in-plane resolution = 1.8x1.8mm; FOV = 340x280mm2) to select the 

inversion time at which normal myocardium is nulled. A standard clinical 2D LGE was then 

acquired using a phase-sensitive IR (PSIR) sequence (SSFP; TE/TR/α	= 1.21ms/3ms/45°; 

slice thickness: 8mm; in plane resolution: 1.4 x 1.4mm2; FOV: 360 x 280 mm2). 

 

To enable achievement of contrast steady-state, gadolinium was administered via infusion at 

a rate of 0.0011mmol/kg/min. The TI scout was repeated initially at 5-minute intervals until 

inversion time reached equilibrium as previously described (Flett et al. 2010). High-

resolution 3D late gadolinium enhancement (LGE) imaging was then performed using a free-

breathing, respiratory navigator and ECG-gated (in diastole) inversion recovery sequences as 

described in the individual result chapters.  

 
 
3.2.4 MR-thermometry and dosimetry 
 
MR-thermometry using the proton resonance frequency shift (PRFS) technique, which is 

sensitive to temperature changes in real-time was employed to enable real-time monitoring of 

tissue temperature during MR-guided ablation. To perform MR-thermometry, an ECG-

triggered multi-slice single-shot echo planar imaging (EPI) sequence was used with spoiled 

gradient echo (TR/TE/α=50ms/17ms/60°, FOV=180×180mm2, voxel size=1.6×1.6mm2, slice 
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thickness=5mm, slice number=4, bandwidth=1565Hz/Px, GRAPPA factor=2, partial 

Fourier=0.75, orientation – short axis). Saturation slabs were used for reduced field of view 

imaging and inflow saturation to reduce blood signal (de Senneville et al. 2012). 

Reconstruction of temperature maps was performed offline using a customized multi-baseline 

approach extending the method previously proposed (Roujol et al. 2010) as follows: A look up 

table of co-registered MR-phase images was initially created and the MR-thermometry 

sequence was run for 20 heartbeats before each ablation. Images from the first heart beat served 

as the reference image. Non-rigid motion was then estimated between the reference and each 

subsequent magnitude image using an optical flow technique. Phase images were then 

registered to the reference position using the estimated motion fields. The registration was 

performed on the complex data instead of the phase images to prevent artifacts due to phase 

wrap. During ablation, each new phase image was registered to the reference, position as 

described above. The phase image from the lookup table that best matched the current 

registered phase image (i.e. minimal mean square error between pair-wise unwrapped phase 

images) was then selected and used for temperature estimation.  

 

MR-dosimetry derived from MR-thermometry is a technique that can be used to provide a real-

time accumulated thermal dose during radiofrequency energy delivery at the intended ablation 

point. Thermal dose (TD) mapping was calculated on a pixel-wise basis as follows as 

previously described (Toupin et al. 2017): 
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Where )(tT represents absolute tissue temperature. Baseline temperature was approximated to 

39°C. The thermal dose was considered as lethal when exceeding the equivalent thermal dose 



 88 

at constant heating of 43°C for 240 seconds. To correct for thermal dose error induced by noise 

on temperature estimates, thermal dose maps were corrected on a pixel-wise basis as follows: 

 

))2(ln(5.0 TeTDTDcorr
s×-×=  

 

Where corrTD is the corrected thermal dose and Ts is the temporal standard deviation of 

temperature estimates at baseline (measured from the first 20 measurements following the 

training thermometry step and before the heating process). Width and depth of lesion estimated 

from thermal dose mapping were measured from the middle slice containing the largest lethal 

dose area. 

 

 3.3 MR-EP Workflow 

3.3.1 MR-compatible ablation catheter 

A MR-compatible ablation catheter (Vision, Imricor, USA) was used in all animal studies. The 

catheter is designed to facilitate mapping, delivery of pacing stimuli and ablation lesions within 

a MRI environment. It contains a MR-conditional lumen with a deflectable tip to facilitate 

mapping and transmit RF current to the tip electrode for ablation. The shaft is 9Fr and the distal 

end contains a bipolar pair of tip and ring electrodes that can be used both for recording and 

stimulation. The electrodes are made out of gold to reduce artefact during MRI scanning (in 

comparison to conventional platinum). During catheter ablation, a conventional RF generator 

and a dispersive pad (indifferent electrode) is used in combination with the catheter. The tip 

electrode has irrigation holes for open loop irrigation of the ablation lesion site when connected 

to a conventional irrigation pump.  The catheter incorporates a fibre optic temperature sensor 

that is embedded in the tip electrode.   For catheter tip location in the MR environment, the 
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distal tip section of the catheter has two independent solenoid coils for receiving MR signal 

from the surrounding tissue.  These coils are connected to the MR scanner via coax cable inside 

the catheter body.  Additionally, the coax cable has in-line transformers to prevent unintended 

RF heating (Hilbert et al. 2016). 

 

The catheter has a high-torque shaft with a deflectable tip section.  Tip deflection is controlled 

at the proximal end by a hand-piece in which a piston slides; a thumb knob on the piston 

controls the piston travel. When the thumb knob is pulled back, the tip is deflected (curved). 

When the thumb knob is pushed forward, the tip straightens. The high torque shaft also allows 

the plane of the curved tip to be rotated to facilitate accurate positioning of the catheter tip at 

the desired site. 

 

At the proximal end of the catheter, an irrigation input port with a standard luer fitting 

terminates from the open lumen. This irrigation port serves to permit the injection of normal 

saline to irrigate the tip electrode. During ablation, heparinized normal saline was passed 

through the irrigation lumen of the catheter and through the tip electrode, to irrigate and cool 

the tip electrode (Chubb et al. 2017).  

 

3.3.2 ADVANTAGE-MR electrophysiology recording system 

The Advantage-MR EP recording system allows the operator to perform a range of 

electrophysiology operations including pacing, ablation, recording of EGMs, data review and 

monitoring. It is split into three components - a patient interface module (PIM), a digital 

amplifier/stimulator (DAS) and a host computer workstation. The DAS resides inside the 

magnet room and connects the catheters to the workstation. It receives, filters and digitizes 
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the EGM signals, which are optically converted and transmitted to the workstation via a fibre 

optic cable. Uninterrupted high resistivity wires are used to transmit the EGM signals. The 

cables are filtered to reduce RF-induced heating and minimise artifacts due to RF-induced 

noise. The DAS also receives commands from the workstation (e.g. to act as a programmable 

stimulator) and provides a pathway to transfer ablation energy to the MR-compatible catheter 

via a standard ablation generator. The computer workstation is located in the scanner control 

room. It is able to display and record EGMs as well as demonstrate tip temperature data. In 

addition, it passes cardiac waveform data (e.g. EGM amplitude, local activation time) to the 

Monte-Carlo image guidance system for cardiac mapping (Mukherjee et al. 2018).  

 

3.3.3 MR-EP Image guidance platform 

A custom interventional cardiovascular magnetic resonance (iCMR) image guidance platform 

(Monte-Carlo, Siemens Healthcare, Erlangen, Germany) was used in this study. The 

application has the ability to load volumetric data from MRI scans, display multi-plane 

reconstructions (MPR) in 3 orthogonal planes and transfer segmentations of cardiac chambers 

derived from previous imaging or imaging acquired at the time of the EAM procedure. An 

automatic segmentation tool is incorporated within the software to ensure rapid image 

processing. During the MR-EP procedure, the MPR slices on the iCMR application can 

follow the tip of the actively tracked catheter to display 3D location of the catheter within the 

segmentations of the cardiac chambers as well as on the MPR images. The position of the 

actively tracked catheter is displayed following the implementation of a temporal smoothing 

algorithm that limits its excursion due to cardiac motion.  

 

The software allows the imaging operator to start/stop sequences remote from the scanner 

console and configure parameters of each sequence on the MRI scanner. A MR-compatible 
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foot-switch is also available as part of the application to start or pause an interactive imaging 

sequence that the electrophysiologist can operate (e.g. to use MPRs to navigate the catheter to 

a region of interest). The mapping interface of the application allows for changes to the 

rendering style or colour of a loaded segmentation, as well as place markers in regions of 

interest (e.g. to highlight EGMs or mark sites of ablation). The iCMR application 

communicates directly with the Advantage EP Recording system to display recorded 

activation times and voltage amplitudes. Colour interpolation is used to display this data 

which is computed by a relaxation algorithm that takes the values on the mapping points as 

the fixed boundary condition and then performs a linear interpolation on the segmentation 

surface between these mapping points. These features enable the system to closely mimic that 

of a clinical EAM system whilst having additional capabilities to utilise imaging data for 

procedure guidance.  

 

3.3.4 Real-time MR-EP procedure 

 

All EAM studies were performed inside the MRI scanner without the use of fluoroscopy at 

any point. The left ventricle (LV), right ventricle (RV), left atrium (LA), right atrium (RA) 

and aorta were manually segmented from the 3D ECG-triggered whole heart bSSFP MRI 

dataset using the MITK-based platform. Image processing was performed during a 45-minute 

window following the completion of imaging studies and prior to the start of EAM. During 

this time, each animal remained inside the scanner in order to minimise translational changes 

due to subject movement between imaging and mapping. The 3D shells of each chamber 

were imported into the iCMR guidance platform and displayed using the 3D-whole heart 

dataset to act as a ‘road-map’ for mapping studies. The 3D segmentation of scar from the 
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LGE-MRI was also imported into the iCMR guidance platform and overlaid onto the 3D 

shell for the LV chamber.  

 

A custom 9Fr, MR-compatible steerable catheter with a single gold 3.5mm tip and ring 

bipolar electrode (3.5mm inter-electrode spacing) and six circumferential open irrigation 

ports (Vision-MR, Imricor, Burnsville, MN, USA) was advanced into the LV cavity via 

retrograde aortic access. A number of modifications were implemented to the MR-compatible 

catheter from previous versions used in the atria (Hilbert et al. 2016; Chubb et al. 2017) to 

enable manipulation in the left ventricle - Figure 3-1.  

 

Figure 3-1: 2nd generation MR-compatible ablation catheter 

Changes made in the 2nd generation MR-compatible Vision, Imricor ablation catheter to enable retrograde aortic access 
and improved manoeuvrability within the left ventricle. Previous clinical studies published with the Imricor catheter were in 
patients with atrial flutter using a 1st generation catheter. Images courtesy of Mr Tom Lloyd (Imricor Medical Systems).  
 

These changes enabled improved torque transfer within the ventricle, manoeuvrability and 

consistency of shape following deflection. The MR-compatible catheter has 2 solenoid 

micro-coils located 2mm and 11mm proximal to the ring electrode that enabled the location 

and orientation of the catheter to be detected in 3D space using a dedicated MRI active 

Requirements	for	
Ventricular	Ablation Catheter	Improvements

Torque	transfer	within	the	
ventricle

• Designed	to	navigate	increasingly	complex	vascular	
pathways

• Improved	torque	response	to	allow	unencumbered	
rotation	and	deflection	within the	ventricle

Maneuverability	within	
the	ventricle • Rigid tip	length	reduced	from	25.4	mm to	16.4	mm

Handle	Ergonomics

• Reduced	handle	diameter

• Ergonomic	deflection	mechanism	to	
deflect/straighten	tip

• Improved	deflection	forces

Return to	neutral	
following	deflection • Implemented	active	return	to	neutral
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tracking sequence. A custom-built MR-EP recording system (Advantage-MR, Imricor, 

Burnsville, MN, USA) consisting of a digital amplifier, stimulator and host workstation was 

used to record, display and analyse intra-cardiac electrograms as previously described 

(Mukherjee et al. 2018). A patient monitoring system suitable for use in the MRI 

environment (Invivo, Gainesville, Florida) was used to monitor a single lead ECG and 

invasive arterial blood pressure throughout the pre-clinical studies.  
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Statement of originality and candidate contributions: 

The contrast steady-state technique described in this chapter was first described by Dr 

Andrew Flett as a non-invasive technique to quantify diffuse myocardial fibrosis (Flett et al. 

2010). This technique was subsequently adapted by Dr John Whitaker (King’s College 

London) to enable high resolution 3D LGE imaging with an extended scar acquisition 

window (manuscript under review).  

 

In this chapter, I have applied the technique described by Dr John Whitaker in an 

independent cohort of animals to compare the performance of 3D LGE with contrast steady-

state to standard clinical 2D LGE. I have performed my own analyses, presented and 

interpreted the data in my own words. For qualitative comparisons, Dr Adriana Villa (SCMR 

Level 3, Consultant Radiologist) (King’s College London) performed an independent, 

blinded assessment of image quality as Reader 2 whilst I performed my own assessment of 

all images acquired as Reader 1.  

 

In addition, I acquired the raw data to facilitate comparisons between multiple 3D LGE 

sequences in the experimental model, completed all data analyses and wrote the results in my 

own words. I obtained ethical approval to perform additional MRIs in patients with a history 

of arrhythmias (including VT) and recruited the patients, acquired images and performed all 

data analyses described in this chapter. Dr Radhouene Neji assisted with optimisation of the 

image protocols and acquisition of imaging in the animal datasets. For data analysis, Dr 

Sebastien Roujol provided the custom software (Mediacare) developed in Matlab (The 

Mathworks, Natick, MA, USA) and wrote the script to integrate calculation of scar entropy 

into the Matlab code.  
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4 High-resolution imaging of ventricular scar: head-to-head 

comparison of three late gadolinium enhancement (LGE) 

sequences in a porcine infarct model and application in a cohort 

of patients with ischaemic cardiomyopathy 

 
4.1 Introduction 

 
The use of cardiac MRI as an adjunctive tool to guide VT ablation is increasing (Mahida et 

al. 2017). Accurate determination of cardiac anatomy and scar distribution can aid in 

planning the access route for VT ablation, particularly when scar is intramural or epicardial 

(Bogun et al. 2009). Image integration of pre-procedural or intra-procedural imaging into the 

navigation system at the time of ablation, can also be used to define the extent and 

distribution of arrhythmogenic substrate, focus mapping efforts in regions of interest and 

potentially improve localisation of the target sites for ablation (Andreu et al. 2017).  

 

The underlying rationale of scar characterisation by cardiac MRI to define target sites for VT 

ablation is based on the understanding that heterogeneous scar tissue, containing a mixture of 

normal myocardium and scar, results in slow conduction and represents the substrate for re-

entrant VT. These target regions are often located within scar tissue or around scar border-

zones. LGE-MRI can be used to index the spatial heterogeneity of necrotic myocardium 

through the application of signal-intensity based thresholds and classify tissue into infarct 

core (dense scar) and borderzone (heterogeneous or grey-zone tissue). The extent of 

heterogeneous tissue, quantified from LGE-MRI, has been related to all-cause mortality in 

patients with ischaemic cardiomyopathy (Yan et al. 2006) and inducibility of monomorphic 

VT (Schmidt et al. 2007).  
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Heterogeneous tissue may have intermediate signal intensities (between that observed in 

normal myocardium and dense scar) which could be related to the partial volume effect 

whereby in a given voxel, a mixture of infarct tissue and normal tissue will result in a signal 

intensity that is an average of the two tissue types. Alternatively, at an interface between 

infarct and viable myocardium, a region of intermediate signal intensity may be present. 

During clinical imaging, the spatial resolution of LGE-MRI is frequently >1.5mm in-plane 

with a slice thickness between 6-10mm. In these scenarios, the partial volume effect can 

significantly overestimate the peri-infarct borderzone and reduce the accuracy of 

identification of ablation target sites compared to imaging with a sub-millimetre spatial 

resolution (Schelbert et al. 2010).   

 

An additional factor that could impact on the signal intensity of heterogeneous tissue is 

variability in the wash-in and wash-out kinetics of gadolinium within the infarct region and 

borderzone tissue. Depending on the degree of microvascular damage and remaining 

capillary perfusion near an infarct borderzone, the wash-out kinetics of gadolinium may vary 

leading to a higher signal intensity compared to normal myocardium but lower than that of 

dense scar (Kim et al. 1996; Schmidt et al. 2007).  

 

In order to accurately identify the scar areas critical for re-entry VT circuits, high-resolution 

3D imaging is required. Furthermore, isotropic 3D imaging (resolution which is identical in 

all dimensions) can detect smaller regions of scar and enable multi-planar reconstruction to 

facilitate visualisation of ‘channels’ of slow conduction and ablation target sites (Basha et al. 

2017). The major limitation of 3D high-resolution isotropic LGE imaging is prolonged scan 

times during which temporal changes in contrast kinetics can lead to artifacts due to 

difficulties in nulling healthy myocardium (Basha et al. 2017). Although image acceleration 
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techniques such as compressed sensing can be used to reduce scan times, recovery of images 

with under-sampled data can lead to additional artifacts and amplify noise leading to low 

signal-to-noise ratios (Otazo et al. 2010).  

 

Following delivery of a bolus of gadolinium contrast, there is a reduction in the TI of the 

blood pool and myocardium which gradually recovers over time. After a period of around 20-

30 minutes, an upward drift in the TI results in sub-optimal nulling of healthy myocardium 

which therefore limits the window during which LGE imaging can be optimally performed. 

In a seminal study, (Flett et al. 2010) described a method to quantify diffuse myocardial 

fibrosis using a bolus of gadolinium followed by a slow continuous infusion to achieve 

blood-myocardium contrast equilibrium. This was then followed by a blood test to measure 

the volume of distribution of contrast. Recently, (Whitaker et al. unpublished data) adapted 

this technique using a continuous infusion of contrast to achieve steady-state during LGE-

MRI and establish a stable myocardial T1 time, enabling extended acquisition of high-

resolution 3D imaging without significant changes in the TI of the blood pool and 

myocardium.  

 

High-resolution LGE with contrast steady-state could allow detailed characterisation of scar 

architecture and heterogeneity which is necessary to permit identification of VT ablation 

target sites. In this chapter, the use of contrast steady-state LGE imaging is applied in an 

experimental animal model of myocardial infarction to compare 3D post-contrast sequences 

with consistent contrast distributions and in a cohort of patients with ischaemic 

cardiomyopathy to demonstrate feasibility of the technique in clinical practice. High-

resolution ex-vivo MRI is used in the animal model to validate in-vivo imaging findings. 
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Qualitative and quantitative comparisons of the technique with conventional 2D LGE 

imaging is also performed in both the animal model and patients.   

 
4.2 Methods 
 
A porcine model of ischaemic cardiomyopathy was used to enable high-resolution imaging of 

ventricular scar using the contrast-steady state LGE protocol and systematically compare 

three 3D LGE techniques for assessment of scar and heterogeneous tissue. Two bright-blood 

3D LGE sequences and one black-blood 3D LGE sequence were compared against each other 

to define the optimal technique for assessment of scar architecture and borderzone.  Twelve 

male domestic pigs (weight 56.6 ± 5kg at the time of imaging) underwent a 180-minute 

occlusion of the mid left anterior descending artery as described in Section 3.1 followed by a 

6-week recovery. All animals then underwent MR imaging in-vivo, followed by euthanasia, 

extraction of the heart and high-resolution ex-vivo imaging, as described below.  

 

Ten patients with a known scar in the left ventricle underwent a cardiac MRI scan with an 

adapted contrast-steady state LGE protocol. Patients were recruited from an ‘Ablation’ MRI 

list at our institution whereby patients have a pre-procedural MRI prior to a catheter ablation 

procedure (AF/ PVC or VT ablation). Following demonstration of LV scar, patients were 

invited back for a research MRI study to undergo the adapted contrast-steady state protocol. 

In this cohort, 2 patients had a history of sustained VT whilst the remaining patients had 

either frequent PVCs or AF. The presence of LGE in patients with a history of AF was felt to 

be likely due to a previous thromboembolic infarct rather than an acute plaque rupture event. 

As a result, the patient cohort did have a history of arrhythmias but is not reflective of a 

typical ischaemic cardiomyopathy cohort. 
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Ethical approval was granted by the local institutional review board (17/LO/0150). Both 

standard clinical 2D LGE as well as high-resolution 3D LGE imaging were performed after 

establishment of contrast steady-state. 

 

4.2.1 Magnetic resonance imaging protocol in porcine model 

All MR imaging was performed on a 1.5T scanner (MAGNETOM, Aera, Siemens 

Healthcare, Erlangen, Germany). In the animal model, an assessment of LV function was 

made using cine imaging performed at end-expiration using a standard multi-slice balanced 

steady state free precession (bSSFP) technique. An ECG-triggered, 3D whole-heart bSSFP 

acquisition with a 1D diaphragmatic navigator was performed for cardiac chamber 

segmentation as described in Section 3.2.1. The following parameters were applied: 

transverse slice orientation, AP phase encoding, 1.25 × 1.25 mm2 in-plane resolution, 256 × 

256 in-plane matrix size, 2.5 mm acquired slice thickness reconstructed to 1.25mm, typically 

around 100 slices to cover the whole heart, TR/TE = 3.7/1.64 ms, flip angle = 90°, readout 

bandwidth (per pixel) = 592 Hz, fat suppression, GRAPPA acceleration factor = 2.  

 

A bolus of gadolinium contrast (Gadovist, Bayer, Berlin, Germany) at 0.1mmol/kg was then 

administered. After a period of 10 minutes, a standard 2D LGE scan was performed during 

end-expiration using a phase-sensitive inversion recovery (PSIR) sequence with the 

following parameters: bSSFP read-out, 8 short-axis slices, 1.40 x 1.40 mm2 in-plane 

resolution, 8.0 mm slice thickness, TR/TE = 3/1.21 ms, flip angle = 45°, FOV = 

360x281mm2, Pixel bandwidth = 780 Hz/Px. The inversion time (TI) to optimally null 

normal myocardium was determined using a standard TI scout sequence acquired in a mid-

ventricular, short-axis slice during free-breathing, prior to the 2D LGE scan, with the 

following parameters: bSSFP read-out, 1.80 x 1.80 mm2 in-plane resolution, 6.0 mm slice 
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thickness, TR/TE = 2.6/1.1 ms, flip angle = 55°, FOV = 340 x 276mm2, Pixel Bandwidth = 

1095 Hz/Px.  

 

Following completion of the standard 2D LGE scan, a slow infusion of gadolinium contrast 

was initiated at a rate of 0.0011mmol/kg/min as previously described (Flett et al. 2010; 

Whitaker et al. unpublished data). The TI scout sequence was repeated at 3-5 minute intervals 

to measure the blood and myocardial TI until a steady-state was achieved. Steady-state was 

maintained for up to 3 hours in each animal to permit the acquisition of multiple 3D isotropic 

LGE sequences under consistent contrast conditions. Three LGE sequences (bSSFP and GRE 

read-outs and a black-blood LGE sequence) were then acquired sequentially as follows in 

6/11 animals: 

 

1. 3D bSSFP IR LGE - ECG triggered, respiratory navigator-gated, bSSFP read-out, 

coronal orientation, spatial resolution = 1.2 x 1.2 x 1.2 mm3, TR/TE = 3.6/1.58 ms, 

flip angle = 90°, FOV = 400 x 257 x 96 mm3; Pixel Bandwidth = 930 Hz/Px, 2 R-R 

interval; GRAPPA acceleration factor = 2; trigger delay = subject-specific determined 

from a breath-held 2D cine coinciding with the mid-diastolic rest period - acquisition 

window ranging from 100 to 125ms. 

 

2. 3D GRE IR LGE - ECG triggered, respiratory navigator-gated, GRE read-out, coronal 

orientation, spatial resolution = 1.2 x 1.2 x 1.2 mm3, TR/TE = 5.3/1.87 ms, flip angle 

= 20°, FOV = 380 x 380 x 92 mm3; Pixel Bandwidth = 365 Hz/Px, 2 R-R interval; 

GRAPPA factor = 2; trigger delay = subject-specific determined from a breath-held 

2D cine coinciding with the mid-diastolic rest period - acquisition window ranging 

from 100 to 125ms. 
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3. 3D BOOST LGE (Bright-blood and black-blOOd phase sensiTive inversion recovery 

sequence) - this sequence exploits alternating T2-prep-IR and T2-prep modules to 

acquire two interleaved bSSFP bright-blood datasets. The T2-prep acquisition is used 

as the reference dataset for phase computation and a complimentary, co-registered 

black-blood LGE PSIR is reconstructed as previously described (Ginami et al. 2017). 

Prior to data acquisition, a low-resolution 2D image-based navigator (iNAV) is 

acquired at each heart beat to enable beat-to-beat 2D translational respiratory motion 

estimation and compensation to achieve 100% scan efficiency leading to predictable 

scan times compared to diaphragmatic navigator gated sequences with the same 

acquisition parameters. Image parameters for the 3D BOOST LGE sequence were as 

follows: ECG triggered, image-navigated, coronal orientation, spatial resolution = 1.2 

x 1.2 x 1.2 mm3, TR/TE = 4.7/1.47 ms, flip angle = 90°, T2-prep duration = 40ms, 

FOV = 320 x 320 x 100 mm3, Pixel Bandwidth = 990 Hz/Px, right-left phase 

encoding, trigger delay = subject-specific determined from a breath-held 2D cine 

coinciding with the mid-diastolic rest period - acquisition window ranging from 100 

to 125ms. A dedicated 2D BOOST TI scout was acquired prior to acquisition of the 

3D LGE sequence. This consisted of a magnetisation-prepared cine sequence where 

an alternate T2-prep IR module (odd heartbeats) and T2-prep module alone (even heart 

beats) is performed during alternate heartbeats as previously described (Ginami et al. 

2017). The optimal TI to null the blood pool was determined from the cine frames 

acquired during odd heartbeats (T2-prep IR portion of the sequence).  

 
Following completion of in-vivo imaging, animals were recovered. One week later, ex-vivo 

studies were performed to validate in-vivo imaging findings. An additional dose of 

gadolinium contrast (Gadovist, Bayer, Berlin, Germany) at 0.2mmol/kg was administered 10 
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minutes prior to death of the animal. Rapid intravenous injection of potassium chloride 

(20mL 10% KCl) was administered to arrest the heart in diastole. The chest cavity was 

opened and blunt dissection used to extract the heart. Each heart was rinsed in 0.9% normal 

saline. In order to prevent collapse of the LV, each heart was filled with kinetic sand to 

maintain the shape of the LV cavity - Figure 4-1.  

 

 

Figure 4-1: Preparation of hearts for ex-vivo imaging.  

The LV and RV cavities have a tendency to collapse when removed from the thoracic cavity. In order to maintain the shape 
of the ventricles during ex-vivo imaging, kinetic sand was used to fill both cavities, preventing collapse (A) and maintaining 
their shape (B).  
 

Each heart was then submerged in a bath of 0.9% normal saline and ex-vivo imaging 

performed within 1 hour of euthanasia. A high-resolution 3D T1-weighted spoiled gradient 

echo sequence was used for ex-vivo imaging with the following parameters: spatial 

resolution - 0.4 x 0.4 x 0.4 mm3, TR/TE = 5.4/ 11.2 ms, flip angle = 20o, Pixel Bandwidth = 

130 Hz/Px, FOV = 150 x 150 x 100 mm3.  

 
4.2.2 Magnetic resonance imaging protocol in patients  

An adapted CMR protocol was used to enable application of contrast steady-state in patients 

with ischaemic cardiomyopathy - Figure 4-2. Imaging was performed on a 1.5T scanner 

(MAGNETOM, Aera, Siemens Healthcare, Erlangen, Germany). Each patient was 
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cannulated and had a single bolus of contrast (0.1mmol/kg) administered prior to entering the 

scanner. Standard planning scans (localiser, 2-chamber, 4-chamber, short-axis) were acquired 

followed by commencement of a slow infusion of gadolinium at a rate of 0.0011 

mmol/kg/min within 15 minutes after the initial bolus of contrast. Standard 2-chamber, 3-

chamber, 4-chamber views and a short-axis stack were then acquired. A TI scout was then 

repeated until the blood and myocardial TI demonstrated <5% variability and steady-state 

was achieved. A 2D multi-slice, breath-hold, clinical LGE (bSSFP, PSIR) sequence was 

performed with the following parameters: TR/TE = 6.0/1.2 ms, flip angle = 45o, in-plane 

resolution = 1.4 x 1.4 mm, slice thickness = 8 mm, pixel bandwidth = 780Hz/Px, FOV = 292 

x 150 mm2. A 3D isotropic bSSFP IR LGE sequence was then performed whilst contrast 

steady-state was maintained with the following parameters: ECG triggered, respiratory 

navigator-gated, coronal orientation, spatial resolution = 1.2 x 1.2 x 1.2 mm3, TR/TE = 

3.6/1.44 ms, flip angle = 90°, FOV = 400 x 260 x100 mm3; Pixel Bandwidth = 1395 Hz/Px, 

GRAPPA acceleration factor = 2.  
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Figure 4-2: Imaging protocol for application of contrast steady-state to enable high-resolution imaging in patients with 
ischaemic cardiomyopathy.  

A single bolus of gadolinium (0.1mmol/kg) is administered outside the scanner. Following localiser and planning scans, the 
slow infusion of gadolinium diluted in normal saline (0.0011mmol/kg/min) is commenced. Following achievement of steady-
state, determined when the myocardial and blood pool TI has <5% variability during multiple TI scouts, the high-resolution 
3D LGE sequence is commenced. Total contrast dose does not exceed 0.2mmol/kg at the end of the study.  
 
 

4.2.3 Qualitative assessment of scar 

All imaging datasets were anonymised and stored in a randomised order prior to qualitative 

assessment. Two independent readers (RKM and AV) graded images using a 5-point Likert 

scale on the following criteria: scar conspicuity relative to the LV cavity, scar conspicuity 

relative to adjacent myocardium, presence of artifacts and overall image quality. On this 
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scale, 0 represents non-diagnostic image quality, 1 = poor image quality, 2 = moderate, 3 = 

good, 4 = excellent image quality. For lesion conspicuity, 0 = not able to differentiate, 1 = 

poor differentiation, 2 = moderate differentiation, 3 = good differentiation, 4 = excellent 

differentiation. For the presence of artifacts, 0 = no artifacts, 1 = minor artifacts, 2 = 

moderate artifacts, 3 = high artifact level, 4 = non-diagnostic. For transmural scar extent a 4-

point scale was used with 0 = 0-24%, 1 = 25-49%, 2 = 50-74%, 3 = 75-100%.  

 

4.2.4 Quantitative assessment of scar 

Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for the clinical 2D 

LGE and 3D bSSFP IR LGE sequences in both the animal model and patients. Images were 

analysed off-line on a OsiriX workstation (www.osirix-viewer.com). SNR and CNR were 

quantified using the mean signal intensities (SI) within a circular region of interest (ROI) 

drawn manually within scar, blood pool, and myocardium. An additional ROI positioned 

within the lungs was used to calculate the background noise intensity and noise standard 

deviation. For SIscar, a circular ROI was placed encompassing the infarct region (range of 

ROI size = 50mm2 - 250mm2 depending on infarct size). SImyocardium was determined from 

adjacent non-infarct tissue within the same slice. SIblood was determined using a 200mm2 

circular ROI in the LV blood pool whilst a 200mm3 ROI was used for estimation of 

background noise standard deviation in the lungs.  

 

The LV endocardium and epicardium was manually segmented within a custom software 

(Mediacare) developed in Matlab (The Mathworks, Natick, MA, USA). Quantification of 

core infarct and borderzone tissue volume was made through automatic application of the full 

width at half maximum (FWHM) and 35-50% of maximal pixel signal intensity thresholds 

respectively to segmentations.  
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4.2.5 Entropy evaluation 

Tissue entropy was used as a parameter derived from LGE imaging to evaluate tissue 

heterogeneity independent of signal intensity thresholds. Entropy is a statistical measure of 

randomness that can be used to characterise the texture of an image. The underlying 

assumption is that regions with varying signal intensity values within scar may represent 

tissues of different compositions. A narrow signal intensity distribution suggests low entropy 

whilst a wide distribution suggests high entropy. A histogram distribution of pixel signal 

intensities with each LGE sequence was created in Matlab with each histogram divided into 

256 equidistant bins. The endocardial and epicardial segmentations were applied to each 

sequence to quantify entropy across the LV myocardium. The number of pixels within each 

bin was counted and entropy (H) calculated using the following formula: 

 

Equation 4: Entropy calculation:  H = -∑(p.*ln2(p)) 
 

 

Where ∑ = sum; p = normalised histogram counts 

 

The signal intensity (SI) values across subjects and sequences were normalised to a range 

between 0 - 1024 in order to avoid SI variation between sequences and subjects from 

influencing the results.  

 

4.2.6 Statistical analysis 

Statistical analyses were performed using GraphPad PRISM Version 7.0 (GraphPad Inc, CA, 

USA) or SPSS (v24, IBM Corporation, New York, USA). All data was screened using 

skewness and kurtosis tests and the normality of distribution assessed using the Shapiro-Wilk 

test. Qualitative data are reported as means and quantitative continuous data expressed as 
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mean ± SD. On qualitative analysis, inter-observer variation was evaluated using weighted 

kappa statistics with extent of agreement rated as follows: K ≥ 0.81 = excellent; K = 0.61 - 

0.80, good; K = 0.41 - 0.60, moderate; K < 0.40 = poor. Statistical significance of kappa 

values was assessed using a z-statistic. Different sequences were compared using a paired t-

test, Wilcoxon matched-pairs signed rank test or a repeated-measures analysis of variance 

test. Non-parametric ordinal data between two or more groups were compared using a 

Kruskal-Wallis test. Tukey post-hoc test was used for multiple comparisons. A level of p < 

0.05 was considered statistically significant, unless otherwise stated.   

 
4.3 Results 
 
Twelve pigs underwent successful balloon occlusion of the mid left anterior descending 

artery and were subsequently recovered - Figure 4-3. One pig died post-MI during MR 

scanning and did not complete the imaging protocol. In eleven pigs, 2D LGE, 3D bSSFP IR 

LGE and ex-vivo imaging was successfully acquired with the in-vivo imaging performed 

during contrast steady-state - Figure 4-4. In six of these pigs, three high-resolution 3D LGE 

sequences (bSSFP, GRE, BOOST) were acquired during contrast steady-state at the same 

spatial resolution - Figure 4-5.  

 

Figure 4-3: Coronary angiograms 

Coronary angiograms acquired pre-occlusion (A), during balloon inflation in the mid left anterior descending artery (B) 
and at the end of the procedure demonstrating no flow distal to occlusion (C).  
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Figure 4-4: Representative LGE and ex-vivo images 

Representative slices from three animals demonstrating regions of scar obtained during 2D LGE (A-C), 3D bSSFP LGE (D-
F) and ex-vivo imaging (G-I).  
 
 
 

 

Figure 4-5: Representative images from three LGE sequences 

Representative examples of scar seen in the same animal, in the same slice position with the 3D bSSFP LGE (A), 3D GRE 
LGE (B) and 3D BOOST (C) sequences.  
 

Contrast steady-state was successfully established for LGE imaging in all animals with a total 

contrast dose not exceeding 0.2mmol/kg - Figure 4-6. The mean variation in TIblood and 
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TImyocardium was 6.5% and 4.8% respectively between the start and end of 2D LGE imaging 

whilst the mean variation during 3D LGE imaging was <2%. The mean scan duration during 

2D LGE imaging was 6.1 ± 1.3 minutes. Mean scan duration during 3D bSSFP LGE, 3D 

GRE LGE and 3D BOOST were 46.7 ± 3.8, 52.1 ± 5.4 and 26.0 ± 1.2 minutes respectively - 

Table 1.  

 

Table 1: Scan durations and variation in TI of the blood pool and myocardium between the start and end of LGE imaging. 

 

 

 

 2D LGE 3D bSSFP LGE 3D GRE LGE 3D BOOST 

Scan duration (mins) 6.1 ± 1.3 46.7 ± 3.8 52.1 ± 5.4 26.0 ± 1.2 

Variation in TIblood between start and 

end of imaging sequence (%) 

6.5 ± 5.0 1.2 ± 2.4 0.44 ± 0.76 0.45 ± 0.60 

Variation in TImyocardium between start 

and end of imaging sequence (%) 

4.8 ± 4.2 2.0 ± 3.0 0.39 ± 0.67 0.40 ± 0.54 
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Figure 4-6: Establishment of contrast steady-state 

Representative blood and myocardial TI following a bolus of contrast and during a continuous infusion in a pig. Continuous 
infusion of contrast with steady-state was maintained for up to 180 minutes facilitating extended LGE imaging during 
consistent contrast conditions.  
 

Ten patients with ischaemic cardiomyopathy were scanned as part of the study protocol. No 

patients had an implanted device in-situ. One patient was unable to complete the protocol due 

to a long scan time during 3D imaging and was excluded from the analysis. One patient 

developed acute kidney injury (AKI) 72 hours after undergoing the contrast steady-state 

protocol. This patient also underwent a VT ablation during this 72-hour period and had 

multiple episodes of haemodynamic compromise requiring DC cardioversion during the 

procedure. He also developed a significant femoral haematoma post-procedure with a >2g/dL 

drop in haemoglobin. Given these additional factors, it was felt that the contrast steady-state 

protocol was not responsible for the development of AKI but was reported as a serious 

adverse event (SAE) to the ethics committee but no change in study protocol was 

recommended. Patient characteristics are displayed in Table 2. The mean acquisition time to 
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complete the scan protocol was 89.8 ± 4.5 minutes whilst the mean acquisition time for the 

3D bSSFP LGE sequence was 49.0 ± 3.5 minutes. Representative images acquired using the 

2D LGE and 3D bSSFP LGE sequences are shown in - Figure 4-7.  

Patient 

number 

Age Gender Pathology LVEF (%) Rhythm during 

scan 

1 79 Male ICM 38 Sinus with 

occasional PVCs 

2 66 Female Thromboembolic 45 Sinus 

3 60 Male Thromboembolic 44 Sinus 

4 62 Male Thromboembolic 42 AF 

5 57 Male Thromboembolic 36 AF 

6 55 Male Thromboembolic 40 AF 

7 67 Male ICM 27 Sinus with runs 

of slow VT 

8 62 Male Thromboembolic/ 

Possible DCM 

43 AF 

9 58 Male Thromboembolic 39 AF 

 

Table 2: Patient characteristics. The LVEF values reported may be underestimated in the context of scans performed when 
patients were in AF.  
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Figure 4-7: Representative LGE images in patients  

Representative slices from approximately the same level in three patients demonstrating regions of scar obtained during 2D 
LGE (A,C,E), 3D bSSFP LGE (B,D,F). Arrows indicate location of scar. An area of possible mid-wall scar in the septum is 
also noted in Patient 8 raising the suspicion of underlying dilated cardiomyopathy.  
 
 
4.3.1 Qualitative data analysis - animal study 

On qualitative assessment of 2D LGE compared to 3D LGE, there was no difference in scar 

conspicuity relative to the LV cavity (1.9 vs 2.0; p=0.42) and assessment of transmural scar 

extent (2.5 vs 2.6; p=0.19). However, scar conspicuity relative to adjacent myocardium (2.0 

vs 3.7; p<0.0001) and overall image quality (2.4 vs 3.9; p<0.0001) were significantly 

improved with 3D LGE imaging. There were significantly more artifacts with 2D imaging 

(2.3 vs 1.5; p<0.001).  

 

On 3D LGE imaging, inter-rater agreement was moderate on assessment of scar conspicuity 

adjacent to normal myocardium (K = 0.56; p = 0.039) and presence of artifacts (K = 0.49; p = 

0.06), whilst good agreement was present on assessment of transmural scar extent (K = 0.63; 

Patient 2 

Patient 5 

Patient 8 
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p = 0.014) and overall image quality (K = 0.62; p = 0.026). Inter-rater agreement was poor on 

assessment of scar conspicuity relative to LV cavity (K = 0.10; p = 0.511). On 2D LGE 

imaging, inter-rater agreement was good on assessment of overall image quality (K = 0.81; p 

= 0.006) and transmural scar extent (K = 0.667; p = 0.011) whilst agreement on the presence 

of artifacts was moderate (K = 0.55; p = 0.009). Inter-rater agreement was poor on 

assessment of scar conspicuity relative to LV cavity and adjacent to normal myocardium, K = 

0.13; p = 0.54 and K = 0.10; p = 0.46, respectively - Figure 4-8.  

 

Figure 4-8: Qualitative assessment: 2D vs 3D LGE in animals 

Qualitative assessment by 2D and 3D LGE techniques on assessment of scar, presence of artifacts and overall image 
quality. Mean Likert scores are displayed as assessed by 2 independent readers on a 4-point scale for assessment of scar 
transmurality and a 5-point scale for all other factors. Error bars represent standard deviation.  
 

During qualitative comparison between the three 3D LGE sequences the BOOST sequence, 

relative to GRE and bSSFP, had improved scar conspicuity relative to the LV cavity (3.3 vs 

2.2 vs 1.8; p<0.001). The bSSFP sequence, however, had improved scar conspicuity relative 

to adjacent normal myocardium (4.0 vs 3.5 vs 2.6; p<0.0001). The GRE sequence had a 

higher degree of artifacts whereas the BOOST sequence had the lowest degree (2.1 vs 1.4 vs 

0.4; p<0.0001). There was no difference between the sequences on assessment of transmural 
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scar extent (bSSFP vs GRE vs BOOST = 2.5 vs 2.6 vs 2.6; p = 0.98). Overall image quality 

was better with the bSSFP sequence compared to GRE and BOOST (3.6 vs 2.8 vs 2.6; p = 

0.0029).  

 

Inter-rater agreement on assessment of transmural scar extent was good to excellent between 

bSSFP, GRE and BOOST (K = 0.67 vs 0.67 vs 1.00; p<0.05, respectively). Agreement on 

overall image quality was good to excellent between bSSFP and GRE (K = 0.67 vs 1.00; p = 

0.083) but poor on BOOST (K = 0.286; p = 0.361). Agreement on the presence of artifacts 

was good to excellent between GRE and BOOST (K = 0.71 vs 1.00; p<0.05) but poor on 

bSSFP (K = 0.182; p>0.05). Agreement on scar conspicuity relative to the LV cavity was 

good on the BOOST sequence (K = 0.67; p=0.04) but poor on bSSFP and GRE (K = 0.28 vs 

0.37; p>0.05, respectively). Agreement on scar conspicuity relative to normal adjacent 

myocardium was excellent with bSSFP (K = 1.00; p<0.05), moderate with GRE (K = 0.41; p 

= 0.014) and poor with BOOST (K = 0.17; p = 0.70) - Figure 4-9.  
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Figure 4-9: Qualitative assessment: three high-resolution 3D LGE sequences 

Qualitative assessment of scar, presence of artifacts and overall image quality as assessed between 3 high-resolution 3D 
LGE sequences. Mean Likert scores are displayed as assessed by 2 independent readers on a 4-point scale for assessment of 
scar transmurality and a 5-point scale for all other factors. Error bars represent standard deviation. 

 
4.3.2 Quantitative data analysis - animal study 
 
On comparison of 2D vs 3D LGE imaging, the 3D bSSFP dataset provided a statistically 

significant improvement in the SNRscar and SNRblood (25.2 vs 9.5; p<0.0001 and 16.9 vs 10.4; 

p = 0.01, respectively) but not SNRremote myocardium (3.3 vs 2.9; p = 0.28). An improved CNR 

between scar and remote myocardium as well as scar and blood pool was also observed with 

the 3D bSSFP sequence (21.9 vs 6.6; p<0.0001 and 8.3 vs -0.9; p=0.0011, respectively) - 

Figure 4-10.  

 

 

Figure 4-10: Quantitative analysis: SNR and CNR in animal study 

Signal to noise ratio (SNR) in scar tissue, blood pool and remote myocardium between 2D and 3D bSSFP LGE and contrast 
to noise ratio (CNR) between scar and remote myocardium and scar and blood pool. N = 11 animals.  
 

Dense scar volume (FWHM threshold) was not significantly different between 3D bSSFP 

LGE and high-resolution ex-vivo MRI (p=0.90) or between 2D LGE and 3D bSSFP 
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(p=0.09), however scar volume was significantly higher on 2D LGE vs ex-vivo MRI 

(p=0.04), likely related to overestimation of scar due to the partial volume effect. Borderzone 

tissue volume (35-50% maximal signal intensity threshold) was not significantly different 

between 3D bSSFP LGE and ex-vivo MRI (p=0.28) but was significantly higher with 2D 

LGE compared to 3D bSSFP (p=0.0033) and ex-vivo MRI (p<0.0001) - Figure 4-11.  

 

 

Figure 4-11: Core scar and borderzone volumes in animal study - 2D vs 3D vs ex-vivo MRI 

Dense (core) scar (A) and borderzone tissue volume (B) as assessed using a 2D LGE, 3D bSSFP LGE and high-resolution 
ex-vivo MRI. N=11 animals. *p<0.05, **p<0.0001.  
 
During comparison between the three, 3D LGE datasets and ex-vivo MRI, there was no 

significant difference in dense (core) scar volume (p=0.71) or borderzone tissue volume 

(p=0.64) - Figure 4-12.  
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Figure 4-12: Core scar and borderzone volumes: three high-resolution 3D LGE sequences vs ex-vivo MRI 

During high-resolution 3D LGE imaging under consistent contrast conditions, there was no difference in dense (core) scar 
volume (A) or borderzone tissue volume (B) between the bSSFP, GRE or BOOST sequences and ex-vivo MRI.  
 

4.3.3 Mean entropy for assessment of scar heterogeneity - animal study 

Mean entropy as a measure of tissue inhomogeneity was used to further evaluate the 

differences in scar seen with the 2D and 3D LGE sequences. A higher mean entropy was 

present on 3D bSSFP LGE compared to standard clinical 2D LGE in the same animals with 

the same scar (7.4 vs 4.8; p<0.0001) suggesting that calculation of scar entropy is sequence 

and spatial resolution dependent - Figure 4-13. A significant difference in mean entropy was 

also observed during comparison of the 3D bSSFP, GRE and BOOST sequences (p=0.0036). 

On multiple comparisons, there was no difference between the bSSFP and BOOST sequences 

(p=0.96) but a significantly higher entropy was observed when these sequences were 

compared to the 3D GRE (p=0.009 and p=0.007, respectively) - Figure 4-14.  
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Figure 4-13: Mean entropy of scar - animal study - 2D vs 3D LGE 

Mean entropy, as a quantitative marker of scar heterogeneity, was higher with 3D bSSFP LGE imaging compared to 2D 
LGE. Representative images of the same scar, in approximately the same slice position with 2D LGE (A) and 3D bSSFP 
LGE (B). Signal intensity histograms in the same animal with 2D LGE (C) and 3D LGE (D) and overall mean entropy in 11 
animals (E).*p<0.0001.  
 

 

Figure 4-14: Mean entropy of scar - three high-resolution 3D LGE sequences 

Mean entropy of scar using the 3D bSSFP, GRE and BOOST sequences. No difference in entropy was observed between the 
bSSFP and BOOST sequences but the GRE sequence had a statistically significant lower entropy compared to the remaining 
3D sequences. *p=0.009; **p=0.007.  
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4.3.4 Qualitative data analysis - clinical study 

Subjectively, in patients with ischaemic cardiomyopathy, scar conspicuity relative to LV 

cavity and overall image quality were improved with 3D bSSFP with contrast steady-state 

compared to 2D LGE (2.1 vs 1.6; p = 0.0039 and 2.1 vs 1.7; p=0.02). However, no 

differences were seen between 3D and 2D LGE on scar conspicuity relative to adjacent 

myocardium, presence of artifacts or transmural scar extent (2.3 vs 2.2; p=0.45 and 2.1 vs 

2.4; p=0.21 and 2.3 vs 2.3; p=0.99, respectively).  

 

Inter-rater agreement on assessment of scar conspicuity relative to LV cavity was moderate 

across 3D and 2D LGE imaging (K = 0.55 vs 0.41). Agreement on scar conspicuity relative 

to adjacent normal myocardium was good for 2D LGE (K = 0.79) but poor with 3D LGE (K 

= 0.23). Agreement on the presence of artifacts was poor across 3D and 2D imaging (K = 

0.33 vs 0.27, respectively) whilst agreement on scar transmurality was moderate to excellent 

for 3D and 2D LGE respectively (K = 0.59 and 1.00). Agreement on overall image quality 

was poor for 3D imaging (K = 0.25) but moderate for 2D imaging (K = 0.60) - Figure 4-15.   

 

Figure 4-15: Qualitative analysis - clinical study 
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Qualitative assessment by 2D and 3D LGE techniques on assessment of scar, presence of artifacts and overall image quality 
in patients with ischaemic cardiomyopathy. Mean Likert scores are displayed as assessed by 2 independent readers on a 4-
point scale for assessment of scar transmurality and a 5-point scale for all other factors. Error bars represent standard 
deviation. N=9 subjects.  

 
4.3.5 Quantitative data analysis - clinical study 

On comparison of 2D vs 3D LGE imaging, in contrast to the animal studies, there was no 

difference in SNRscar, SNRblood or SNRremote between sequences (p=0.13, 0.36 and 0.63, 

respectively). However, CNRscar-remote and CNRscar-blood was improved with 3D bSSFP LGE 

and reached statistical significance (p=0.032 and 0.046, respectively) - Figure 4-16. There 

was no significant difference in dense (core) scar volume (FWHM threshold) or borderzone 

tissue volume (35-50% maximal signal intensity threshold) between the sequences (p=0.48 

and 0.38, respectively) - Figure 4-17.   

 

Figure 4-16: Quantitative analysis - clinical study - SNR and CNR 

Signal to noise ratio (SNR) in scar tissue, blood pool and remote myocardium between 2D and 3D bSSFP LGE and contrast 
to noise ratio (CNR) between scar and remote myocardium and scar and blood pool in patients with ischaemic 
cardiomyopathy. N = 9 patients.  
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Figure 4-17: Core scar and borderzone volume - clinical study 

Dense (core) scar and borderzone tissue volume as assessed using a 2D LGE, 3D bSSFP LGE in patients with ischaemic 
cardiomyopathy. N=9 patients. 

 

4.3.6 Mean entropy for assessment of scar heterogeneity - clinical study 

Mean entropy was significantly higher with 3D bSSFP LGE compared to 2D LGE, consistent 

with the animal data, however the magnitude of this effect was lower (6.0 vs 5.2; p=0.029) - 

Figure 4-18.  

 

Figure 4-18: Mean entropy - clinical study 

Mean entropy of scar using the 3D LGE and 2D LGE sequences in patients with ischaemic cardiomyopathy. A higher 
entropy value was observed with the 3D sequence, consistent with the results obtained in the animal study.  
 
4.4 Discussion 

The principle findings of this study are: 
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1. A slow infusion of gadolinium to maintain consistent contrast conditions enabled 

extended scar imaging and a direct head-to-head comparison between multiple 3D 

sequences. 

2. In an animal model, high resolution 3D LGE during contrast steady-state resulted in 

improved image quality on subjective assessment, improved SNR, CNR and more 

accurate estimation of dense scar and borderzone tissue volumes compared to 

standard 2D LGE imaging. 

3. The contrast steady-state protocol can be applied in patients but results in prolonged 

scan times whilst differences between 2D and 3D LGE acquisition modes were 

attenuated, compared to the animal model. 

4. Mean entropy of scar as a measure of scar heterogeneity is dependent on sequence 

acquisition mode. 

 

Although LGE-MRI has been extensively used for diagnostic purposes to characterise scar 

location and extent, conventional 2D LGE is of a low spatial resolution with a typical slice 

thickness of 8-10mm. The ‘critical’ substrate for re-entrant VT is surviving myocardium 

within an infarct zone which pathologically consists of surviving myocyte bundles 

interspersed by fibrous tissue resulting in anisotropic conduction (de Bakker et al. 1993). 

High resolution ex-vivo imaging has revealed that VT pathways are preferentially located in 

zones of infarct with a thickness <2mm suggesting that standard LGE techniques are of 

insufficient resolution to accurately identify surviving tissue (Pashakhanloo et al. 2018).  

 

Furthermore, not all scar is arrhythmogenic and there has been interest in using MRI-derived 

parameters to discriminate arrhythmogenic from non-arrhythmogenic scar. These include 

scar borderzone (or gray-zone), transmurality of scar as well as scar complexity (entropy). 



 124 

Assessment of scar borderzone and transmurality are signal intensity-dependent and increase 

in proportion to spatial resolution of the MRI sequence used due to partial volume averaging 

(Schelbert et al. 2010). Scar entropy estimation appears a promising technique for risk 

stratification of patients at risk for VT (Muthalaly et al. 2018; Gould et al. 2019; Androulakis 

et al. 2019) but has previously been investigated using standard 2D LGE sequences.  

 

Given the technical challenges in detection of ‘critical’ regions of VT substrate, higher 

resolution 3D datasets may lead to improved identification of target areas. Previous studies 

using MRI to delineate the parts of scar required to sustain VT have mainly employed 

standard 2D LGE sequences to characterise imaging substrate with in-plane resolution 

ranging from 1.4 - 2.2 mm but with a slice thickness between 5-8mm (Gupta et al. 2012; 

Wijnmaalen et al. 2011; Perez-David et al. 2011). More recently, some investigators have 

used 3D imaging and reported an improved matching of ‘conducting channels’ to EAM with 

a 3D GRE LGE sequence compared to 2D GRE LGE and a 2D bSSFP LGE sequence 

(Andreu et al. 2015). In order to harness the power of MRI during real-time MR-EP, 

optimisation of LGE protocols to better visualise scar morphology is necessary. The optimal 

in-vivo LGE spatial resolution reported to date was 1.4mm3 with a mean scan acquisition 

time of 16.4 ± 7.2 minutes (Andreu et al. 2015). Using the contrast-steady state protocol, an 

improved spatial resolution was achieved (1.2mm3) in this thesis whilst maintaining the 

optimal TI for myocardial nulling.  

 
4.4.1 2D vs 3D acquisition modes   

On qualitative assessment, in both the animal model and patients, an improved overall image 

quality was reported on 3D vs 2D LGE. In addition, CNR between scar and normal 

myocardium and scar and blood pool were significantly improved with 3D LGE. A higher 

scar entropy was present with 3D LGE imaging highlighting the resolution-dependent nature 
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of entropy estimation. In the animal model, both core scar volume and borderzone tissue 

volume on 3D LGE more closely approximated the reference standard ex-vivo datasets 

compared to 2D LGE.  

 

When high resolution 3D LGE with contrast steady-state was applied in patients, the 

magnitude of difference with 2D LGE was reduced on both qualitative criteria (scar 

conspicuity, presence of artifacts) and quantitative criteria (SNR in scar and blood pool, core 

scar/ borderzone tissue volume) resulting in no statistically significant difference in these 

parameters. These differences could be explained by a number of factors. The animal scans 

were performed during general anaesthesia with close control of the respiratory cycle and 

improved scan acquisition efficiency. In contrast, clinical scans were performed in conscious 

patients with greater variation in their respiratory cycles during prolonged acquisitions. Scan 

times were longer in patients with reduced acquisition efficiency. In addition, prolonged scan 

times could have led to patient discomfort and movement affecting overall image quality 

compared to animals under general anaesthesia. The majority of patients scanned (6 out of 9) 

experienced episodes of arrhythmia during 3D imaging including slow VT, PVC or atrial 

fibrillation which resulted in mis-triggering and could have affected image quality. In 

contrast, only 1 animal experienced an episode of arrhythmia (PVC) during 3D imaging. All 

animals scanned had received prior treatment with amiodarone and lignocaine (Section 3.1) 

which could have reduced the incidence of arrhythmias. Given the requirement of high 

resolution MRI sequences needing repeated cyclical cardiac events to ensure robust imaging, 

the use of premedication and/or DC cardioversion in patients who are not in sinus rhythm at 

the time of imaging, prior to ablation, needs further exploration.  
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4.4.2 Head-to-head comparison between 3D sequences 

 
Direct head-to-head comparisons between multiple LGE sequences can be challenging due to 

contrast wash-out. In particular, 3D imaging can require prolonged scan durations and few 

comparisons have previously been made. (Viallon et al. 2011) reported improved image 

quality and CNR with a 3D GRE LGE technique compared to a 3D bSSFP LGE technique 

and multiple 2D techniques. However, spatial resolution of all sequences used were lower 

and did not always include full ventricular coverage compared to this thesis. The order of 

LGE sequences were randomised to prevent systematic errors due to a change in optimal TI 

over time. 3D imaging was performed during breath-holds instead of using a free-breathing 

protocol and isotropic 3D imaging was not performed.  

 

In this thesis, the use of contrast steady-state enabled acquisition of multiple high-resolution 

isotropic 3D LGE sequences under consistent contrast conditions. In this setting, overall 

image quality was better with the bSSFP technique qualitatively, but scar conspicuity relative 

to the LV cavity and absence of artifacts was best with the black-blood LGE technique 

(BOOST). Black-blood LGE has recently been proposed as an alternative sequence to 

improve scar-blood contrast and may be useful for detection of sub-endocardial scar and 

smaller scar regions (Basha et al. 2018; Ginami et al. 2018). Overall there were no significant 

differences in assessment of core scar volume and borderzone tissue volume between the 

three, 3D sequences and reference ex-vivo MRI datasets. However, a higher scar entropy was 

present with the bSSFP and BOOST techniques compared to GRE. Scan acquisition time for 

the BOOST sequence was also significantly lower and more predictable compared to the 

bSSFP and GRE sequences due to 2D image-based navigation enabling 100% scan 

efficiency.  
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Although conventional LGE imaging uses a GRE readout, it may be desirable to use a SSFP 

readout due to a higher SNR (Detsky et al. 2007). However, a higher bandwidth may be 

required with IR-SSFP in order to optimise TR leading to a lower CNR (Viallon et al. 2011). 

A 22% loss in CNR has been reported during comparison of 2D bSSFP LGE with a 2D 

segmented GRE LGE acquisition (Huber et al. 2005). The determination of T1 time may be 

underestimated during IR-GRE acquisitions due to the impact of low flip-angle excitation 

pulses on longitudinal magnetisation recovery but continuous refocusing of transverse 

magnetisation with IR-SSFP results in reduced impact on longitudinal magnetisation 

recovery and subsequently excellent T1 quantification (Scheffler et al. 2001). In this study, 

the were no differences between the 3D bSSFP and GRE LGE sequences on assessment of 

core scar and borderzone volumes but qualitatively an improved scar conspicuity relative to 

adjacent myocardium was noted and subsequently overall image quality. There were also 

more artifacts with the GRE sequence and longer scan acquisition times. These differences 

suggest that bSSFP protocol may be the optimal readout acquisition mode for high-resolution 

3D LGE imaging in most circumstances. The BOOST sequence may be optimal in the 

presence of sub-endocardial scar.  

 
4.4.3 Technique for quantification of myocardial scar 

In this thesis, the FWHM threshold and 35-50% of maximal signal intensity thresholds were 

used to quantify dense scar and borderzone tissue, respectively. A variety of methods have 

been reported in the literature to quantify scar and compared to EAM data. (Andreu et al. 

2011) reported that a cut-off of 60% of maximal signal intensity resulted in the best 

correlation between conducting channels on MRI and EAM. The same group used an 

automatic algorithm to classify pixels with a signal intensity between 40-60% as borderzone - 

channels identified using this method identified ~75% of the critical isthmus of clinical VTs 

(Fernandez-Armenta et al. 2013). Other groups have used a n-SD method whereby core scar 
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was defined as pixels with a signal intensity ≥3SD above mean signal intensity whilst 

borderzone tissue was between 2-3SD above mean signal intensity (Estner et al. 2011; Yan et 

al 2006; Watanabe et al. 2014).  

 

Although LGE volume can vary significantly depending on the thresholding technique used, 

direct comparisons of quantification methods suggest that the FWHM threshold is the most 

reproducible and similar to manual quantification (Flett et al. 2011). There is no agreement 

on the optimal technique for borderzone tissue quantification, however the 35-50% of 

maximal signal intensity method had a mildly improved ability for the prediction of VT in 

patients with ischaemic cardiomyopathy compared to the n-SD method, although this did not 

reach statistical significance (de Haan et al. 2011).  

 

4.4.4 Entropy as a measure of tissue heterogeneity 

The measurement of scar entropy has emerged as a novel signal-intensity independent 

parameter to evaluate the complexity of scar. A narrow signal intensity distribution represents 

low entropy and less inhomogeneity. Tissue harbouring the substrate for VT could 

theoretically have higher local entropy as a result of inhomogeneity caused by the presence of 

both surviving myocardium and scar tissue. (Androulakis et al. 2019) reported that patients 

with ischaemic cardiomyopathy who had a scar entropy ≥ 7.82 had a lower VT-free survival 

compared to patients with scar entropy <7.82, after adjustment for multi-vessel disease, acute 

revascularisation, LVEF, scar gray-zone and transmurality. Two subsequent independent 

cohort of patients with ischaemic and non-ischaemic cardiomyopathy have reported that 

mean entropy is predictive of subsequent VT (Muthalay et al. 2018; Gould et al. 2019) and 

could prove useful as a risk stratification tool to determine the need for ICD implantation. All 

three reports used standard clinical 2D LGE sequences during measurement of entropy.  
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In this thesis, scar entropy values were sequence and spatial resolution-dependent with higher 

entropy values with 3D LGE compared to 2D LGE. Furthermore, 3D bSSFP LGE and 

BOOST also gave significantly higher entropy values compared to 3D GRE LGE imaging. 

For application during real-time MR-EP, evaluation of higher regional scar entropy values 

could be a potential approach to identify target sites for ablation and requires further 

investigation. 

 

4.4.5 Limitations 

The LGE sequences evaluated in this study were not compared to histological assessment for 

validation. Instead, high resolution ex-vivo MRI datasets were used as the reference standard. 

Despite attempts to maintain the shape of the LV cavity ex-vivo using kinetic sand, there is a 

tendency for the LV to collapse ex-vivo with subsequent changes to tissue volumes 

(Whitaker et al. 2019) and this data should therefore be interpreted with caution.  Although 

eleven pigs completed 3D bSSFP LGE imaging combined with 2D LGE, the additional 3D 

GRE and BOOST sequences could only be completed in six animals due to time constraints 

within the imaging facility. The 3D GRE sequence was attempted in a further 2 animals but 

had to be abandoned due to the presence of PVCs in these animals which was increasing the 

time required for scan acquisition. The 3D bSSFP sequence was chosen as the technique to 

evaluate high-resolution imaging with contrast steady-state in patients. Due to patient 

comfort and tolerance considerations, the addition of 3D GRE and BOOST sequences were 

not evaluated and it is unknown if different results would have been obtained with those 

techniques. In order to evaluate the performance of high-resolution 3D LGE imaging with 

contrast steady-state without the confounding effect of device-related artifacts, patients 

without an ICD in-situ were deliberately studied. Given that VT ablation is primarily an 
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adjunctive treatment, the majority of patients referred for ablation will have a device in-situ. 

The performance of high resolution 3D LGE imaging with contrast steady-state in the 

presence of an implanted device remains unknown and further investigation is required.   

 

The qualitative and quantitative measurements reported in this study are dependent on signal 

intensity within the acquired MRI scans. Variation in signal intensity between MR images 

may occur due to type of sequence, haematocrit, renal function, field strength and surface coil 

proximity and these factors should be taken into account when extrapolating these results to 

different scenarios.  

 

Although histological evaluation is generally considered the gold-standard to validate 

imaging data, there are several limitations to using whole-mount 3D histology including the 

high costs and labour intensive endeavour of creating reconstructed histology slabs from 

individual slices, challenges in the registration of data between MRI and histology when 

significant deformations/shrinkage of tissue occurs during histological processing and the 

lack of a clear histological definition of borderzone tissue (Pop et al. 2013; Glashan et al. 

2018). In addition, the definition of borderzone tissue (on histology) can be affected by 

multiple factors during processing including the magnification technique used, stain used for 

collaged quantification or using a 2D vs 3D technique for assessment of fibrosis (Schelbert et 

al. 2010). Given that high-resolution ex-vivo MRI can be used to achieve sub-millimetre 

spatial resolution, is not affected by perfusion or motion-related artifacts and can be 

accurately co-registered to in-vivo imaging (Whitaker et al. 2019), this was used to validate 

the in-vivo MRI data in this study instead of histological assessment.  
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4.5 Conclusions 

This study demonstrates the use of the contrast steady-state protocol to enable high resolution 

imaging of myocardial scar under consistent contrast conditions and provide an experimental 

model whereby multiple 3D sequences may be compared against each other. Overall, the 3D 

bSSFP LGE sequence provided the optimal readout mode in most circumstances whilst the 

3D BOOST sequence may be optimal in the presence of sub-endocardial scar. Scar entropy, 

as a measure of tissue inhomogeneity is sequence and spatial resolution dependent.  

 

Although the contrast steady-state protocol can be applied in patients, both qualitative and 

quantitative measures of image quality were lower with 3D imaging due to prolonged scan 

acquisitions, patient tolerance and the presence of arrhythmias.  

 

In the next chapter, the contrast steady-state protocol is applied during real-time MR-EP 

procedures in the animal model of ischaemic cardiomyopathy to acquire high-resolution 3D 

bSSFP LGE datasets and assess the association between structural and electrophysiological 

substrate.   
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5 Evaluation of a real-time MRI-guided electrophysiology 

system for structural and electrophysiological ventricular 

tachycardia substrate assessment 

 
 
 
5.1 Introduction 

There is growing interest in the use of real-time magnetic resonance imaging-guided 

electrophysiology (MR-EP) to treat patients with cardiac arrhythmias (Chubb et al. 2017; 

Hilbert et al. 2016). Potential advantages of MR-EP procedures include soft tissue 

visualisation with a high contrast-to-noise ratio, improved assessment of arrhythmia 

structural substrate using late gadolinium enhancement (LGE) scar imaging, navigation of 

catheters using dedicated tracking techniques, online monitoring of ablation lesion formation 

and an evaluation of anatomic and physiologic changes during mapping and lesion delivery 

(Mukherjee et al. 2018).  

 

Although most preliminary real-time MR-EP studies have been performed in the atria, where 

significant technical challenges remain for accurate substrate evaluation (Hilbert et al. 2016; 

Chubb et al. 2017; Paetsch et al. 2019), MRI is the gold standard imaging modality for 

assessment of ventricular function and scar burden (Dawson et al. 2013). Combined MR-EP 

techniques could offer synergistic benefits for the evaluation and ablation of ventricular 
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tachycardia (VT) substrate. Previous studies using conventional mapping systems and image 

integration where the association between electrical substrate for VT and MRI-derived scar 

have been investigated, have reported conflicting results. (Wijnmaalen et al. 2011) found that 

bipolar voltage decreased with increasing scar transmurality in patients undergoing VT 

ablation. Similarly, (Sasaki et al. 2012) reported an inverse association between bipolar 

voltage and endocardial and mid-wall scar transmurality. However, other groups have 

reported a mis-match in scar areas between EAM and MRI in up to 33% of cases (Codreanu 

et al. 2008). These studies acquired pre-procedural imaging days or weeks prior to an 

ablation procedure and possible changes in loading conditions and/or rhythm could have 

occurred since the time of imaging and time of mapping. Furthermore, registration errors on a 

scale between 3.8 - 4.3mm (Wijnmaalen et al. 2011; Desjardins et al. 2009) have invariably 

been reported, which could be a significant source of mis-match. The choice of optimal 

thresholds to define both electrical scar and MRI-derived scar is also an important 

consideration. Using an optimal bipolar voltage threshold of 1.0mV, a sensitivity of 79% and 

specificity of 84% was reported in the identification of LGE regions on MRI (Desjardins et 

al. 2009). Using a signal intensity threshold of 60% of maximum to identify dense scar on 

MRI, a degree of agreement was reported between bipolar voltage and MR-derived scar, but 

this agreement remained moderate (Cohen K co-efficient = 0.70) (Andreu et al. 2011). 

Furthermore, in regions of intermediate bipolar voltage (0.5 - 1.5mV), a disagreement with 

MR-derived borderzone tissue regions was present in 21.7% of locations (Andreu et al. 

2011). The method of analysis has also varied between studies. (Wijnmaalen et al. 2011) 

divided each short-axis MRI slice into 20 segments to compare the association with bipolar 

voltage. A similar approach was employed by (Sasaki et al. 2012). A segmental approach for 

analysis may be less precise compared to a point-by-point registration approach (Audette et 

al. 2000).  
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The influence of spatial resolution of MRI on classification of scar areas was also recently 

described (Lopez-Yunta et al. 2019). In a swine model of myocardial infarction, 25% of 

voltage-derived scar areas in the LV endocardium were classified as non-enhanced on in-vivo 

MRI (spatial resolution - 1.5mm3) whilst 43% of voltage-derived scar areas were non-

enhanced on high-resolution ex-vivo MRI (spatial resolution - 0.6mm3), highlighting the 

importance of image resolution on the specificity of scar characterisation.  

 

Against this background, this study sought to assess the relationship between structural and 

electrophysiological substrate using a real-time MR-EP system, a high-resolution 3D LGE 

sequence (based on work described in the previous chapter) and a point-by-point analysis 

technique. Real-time MR-EP enables image registration to be performed within a single 

imaging modality, acquire imaging and electrical data in the same coordinate system and 

minimise translational changes due to beat-to-beat cardiac motion and respiratory motion.   

 

In this study, we describe the ability of a novel real-time MR-EP system to perform 

endocardial voltage mapping and limited assessments of delayed conduction in a porcine 

ischaemia-reperfusion model taking advantage of custom technical developments in a second 

generation MR-compatible catheter and a dedicated prototype image-guidance platform for 

interventional procedures. We hypothesised that with the minimisation of registration errors 

and translational changes expected using a real-time MR-EP platform, an improved 

association between structural and electrophysiological substrate may be expected.  
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5.2 Methods 

5.2.1 Animal model and infarct preparation 

The research protocol was approved by the local institutional review board and complied 

with French law on animal experiments and the Guiding Principles for the Care and Use of 

Laboratory Animals published by the National Institutes of Health (8th Edition, National 

Academies Press, 2011). The research was performed at the Institut de Chirurgie Guidée par 

l’image (IHU), Strasbourg, France. Seven male domestic pigs (weight - 35.7 ± 5kg; 2 

healthy, 5 post infarction) were treated with 800mg amiodarone, twice daily for 4 days prior 

to and following an infarct procedure and/or imaging and electrophysiology studies. A 

closed-chest model of myocardial infarction was used as described in Section 3.1.1. The 

purpose of using two normal heart pigs was to ensure a robust workflow was in place for 

mapping prior to attempting the procedures in the scar model as well as ensuring that the 

SNR of EGMs recorded in the normal LV from inside a MRI scanner was sufficient to justify 

proceeding with experiments in the infarct model where low voltage regions would be 

present.  

 

5.2.2 Imaging study 

All animals underwent a MRI scan for substrate assessment 6 weeks after infarct on a 1.5T 

scanner (MAGNETOM, Aera, Siemens Healthcare, Erlangen, Germany). Each animal was 

sedated, intubated and mechanically ventilated as per the infarct procedure for all imaging 

studies. A 3D ECG-triggered whole heart bSSFP MRI dataset was acquired to enable manual 

segmentations of cardiac chambers (transverse slice orientation, AP phase encoding, 256 x 

256 in-plane matrix size, TR/TE/α = 3.7ms/1.64ms/90o, voxel size = 1.25x1.25x2.5mm3, 

bandwidth = 895Hx/Px, GRAPPA factor = 2). For scar imaging, contrast was administered 

(Gadovist, Bayer, Germany) using an initial bolus (0.1mmol/kg) followed by slow infusion of 
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gadolinium contrast was initiated at a rate of 0.0011mmol/kg/min, as described in Section 

4.2.1. High-resolution 3D late gadolinium enhancement (LGE) imaging was performed using 

a free-breathing, respiratory navigator and ECG-gated (in diastole) inversion recovery, b-

SSFP sequence ((TR/TE/α=3.45ms/1.5ms/90°, FOV=339×264×100mm3, voxel 

size=1.2×1.2×1.2mm3, bandwidth=895Hz/Px, GRAPPA factor=2, 2RR acquisition). The 

choice of 3D LGE sequence was based on the results described in Chapter 4. Based on the 

LGE-MRI, scar was manually segmented using a version of the Medical Imaging Interaction 

Toolkit (MITK, Heidelberg, Germany) with the full-width-half-maximum (FWHM) 

threshold used to define scar and help guide electroanatomic mapping (EAM) during the 

subsequent procedure.  

 
5.2.3 Real-time MRI-guided electrophysiology procedure 

Vascular access was obtained via the femoral artery and vein under ultrasound guidance (9Fr 

or 10Fr introducer sheath) followed by administration of 100 units/kg of intravenous heparin. 

Using retrograde aortic access, the custom 9Fr, MR-compatible steerable catheter with a 

single gold 3.5mm tip and ring bipolar electrode (3.5mm inter-electrode spacing) and six 

circumferential open irrigation ports (Vision-MR, Imricor, Burnsville, MN, USA) was 

advanced into the LV cavity without the use of fluoroscopy at any point. Active catheter 

tracking (Section 3.2.2) was used to place the catheter within the LV and manoeuvre to 

different locations - Figure 5-1. The iCMR image guidance platform (described in Section 

3.3.1) displayed the 3D segmentations of each cardiac chamber (LV, RV, LA and RA) 

imported from the MITK-based platform. The 3D segmentation of scar from the LGE-MRI 

was overlaid onto the shell of the LV to guide EAM.  

 

A custom MR-EP recording system (Advantage-MR, Imricor, Burnsville, MN, USA) was 

used to record, amplify, filter, display and analyse intra-cardiac EGMs. The system consisted 
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of an integrated stimulator which was used to generate pacing stimuli. This system allowed 

mapping of activation time and voltage to be combined synergistically with real-time 

imaging of anatomy and LGE substrate.  

 

Figure 5-1: MR-compatible catheter, tracking coils and tracking signal 
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Example images of catheter tracking coils (A) which are used to determine catheter position in 3D space using the active 
tracking sequence. The catheter and handle (B and C) have been optimised to operate within the ventricle inside a MRI 
scanner. The robustness of the active tracking sequence can be assessed from the signal-to-noise ratio of the proximal and 
distal tracking coils which are displayed (D) when the sequence is run on the MRI scanner. The image (D) shown represents 
the signal from the tracking coils of 2 separate catheters - one in the right atrium (top 2 signals) and one in the left ventricle 
(bottom 2 signals).  
 

5.2.4 Intra-cardiac electrogram recording and characterisation 

Activation and voltage data were acquired during sinus rhythm. For each sampling point, the 

time delay (LAT) from a fixed intra-cardiac reference point to the initial deflection of the 

local LV electrogram was measured manually on the EP recording system and data 

transferred to the iCMR image guidance platform. Similarly, the peak-to-peak voltage 

amplitude was also measured manually and transmitted to the guidance platform - Figure 5-

2. Both datasets were used to generate colour-coded activation and voltage maps on the 

iCMR platform. Areas of focused mapping were based on the location of LGE-derived scar. 

In order to avoid EGM artifacts due to poor catheter-tissue contact, at least 2 consecutive 

EGMs had to have the same morphology prior to acceptance of each mapping point. Regions 

of abnormal myocardium were defined as areas with a bipolar voltage threshold <1.5mV 

(Tung et al. 2016). EGMs were reviewed off-line at a sweep speed of 100mm/s.  

 

After acquisition of activation and voltage maps, the LV catheter was used to pace during 

stable sinus rhythm (10mA, 3ms, cycle length 10% shorter than sinus cycle length) from sites 

of normal myocardium and scar. The time from the stimulus artefact to the surface QRS 

onset was used to distinguish regions of normal and delayed conduction. Following 

confirmation of capture, the time duration between the stimulus artefact to QRS onset was 

recorded. The MR-compatible catheter was sequentially manoeuvred to sites within normal 

myocardium and scar using active catheter tracking to generate a colour-coded map of 

stimulus-QRS duration times (S-QRS). Sites with a S-QRS >40ms during pace-mapping in 

sinus rhythm were considered regions of slow conduction as previously described 
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(Brunckhorst et al. 2003). Following completion of the MR-EP procedure, pigs were 

euthanised with potassium chloride and hearts were rapidly dissected for gross pathological 

examination. Hearts were photographed with areas of ischaemic scar delineated.  

 

 

Figure 5-2: MR-EP system set-up 

 
5.2.5 Image registration, scar segmentation and comparison to voltage maps 

The LGE-MRI imaging was registered to the 3D whole heart MRI datasets using a point-

based (landmark) rigid registration to guide EAM. Points were selected within the RV, LV 

and LA blood pools of each image dataset. Registration was performed on the Medical 

Imaging Interaction Toolkit (MITK) [https://doi.org/10.1016/j.media.2005.04.005]. Scar was 

segmented on the LGE-MRI using the FWHM method to normalise signal intensity relative 

to maximum myocardial signal intensity. First, the LV wall was manually segmented using a 

custom version of MITK. This was performed using the ‘Paint Tool’ on the MITK-based 

platform to derive the endocardial and epicardial border on a slice-by-slice basis with 3D 

interpolation to minimise discontinuities between slices. Then, the maximum signal intensity 
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within the LV wall was computed and the voxels with signal intensity above 50% of the 

maximum intensity (FWHM) were labelled as scar - Figure 5-3.  

 

 

Figure 5-3: Image processing 

Representative examples of segmentations of the LV wall (A and B) from 3D LGE-MRI images generated using the custom 
version of MITK and corresponding 3D shell (C) generated.  
 

To compare the scar segmentation with regions of low voltage, the scar segmentation was 

mapped onto the voltage map surface mesh. This was achieved in two steps. First, the scar 

segmentation image was rotated and translated so that it was aligned with the surface mesh. 

Second, the scar points were mapped onto the surface mesh using the iterative closest point 

(ICP) method. In addition, the voltage map was converted to a binary map of scar (1) and 

normal tissue (0). In this ischaemia-reperfusion model, scar has been noted to be transmural 

in the majority of myocardial segments with LGE (Tschabrunn et al. 2016). The Sorensen-

Dice similarity coefficient (DSC) between the two binary maps was then computed on a 

nodal basis for all regions, scar regions only and regions of normal myocardium. The DSC 

between LGE scar maps and voltage maps following thresholding at different cut-offs 

(0.5mV-3.5mV) was also derived. The normal heart pigs (n=2) were not used for assessment 

of scar concordance and all data reporting ROC curves and DSC refer to infarct hearts only.  
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5.2.6 Statistical analysis 

Data analysis was performed using GraphPad Prism version 7.0 (GraphPad Software, CA, 

USA) or SPSS v24.0 (IBM Corp. Armonk, NY, USA). Continuous data are represented as 

mean ± SD and compared using the Student’s two-tailed T-test. A 2-sided p value <0.05 was 

considered statistically significant. For assessment of the accuracy of the MR-EP system to 

correctly identify scar and delayed conduction, the location of LGE-derived scar was taken as 

the ‘gold standard’ of structural substrate. The sensitivity, specificity, positive predictive 

value and negative predictive value of low voltage points and S-QRS times using the MR-EP 

system to identify LGE-scar was assessed and used to derive receiver operator characteristic 

(ROC) curves.  

 
5.3 Results 

All pigs that underwent a LAD infarct developed antero-septal scar which was visualised on 

the LGE images (mean scar volume - 6.80 ± 0.88ml) - Figure 5-4. There was no LGE present 

in healthy pigs that did not undergo the LAD infarct procedure.  

 

Figure 5-4: LGE-MRI images of infarct 

LGE-MRI images acquired 6 weeks post infarct showing region of anteroseptal scar (D-E) - short-axis, 4-chamber and 3-
chamber views shown. Red arrows show location and extent of LGE.  
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5.3.1 Real-time MRI-guided electroanatomical mapping 

Segmentations of scar from the LGE-MRI were displayed on the iCMR image-guidance 

platform as coloured shells to guide EAM - Figure 5-5. 445 EGMs (range 30-186) were 

recorded from all animals in sinus rhythm (including 138 EGMs from regions located within 

the LGE scar segmentation). Using the MRI-derived LGE segmentation to differentiate 

between normal myocardium and scar, the mean signal-to-noise ratio (SNR) of EGMs within 

normal tissue and scar was 44.78 ± 21.91 and 11.67 ± 6.99 respectively (p<0.0001) - Figure 

5-6. Pacing captured at 103 sites whilst 10 sites which were all in regions of LGE-derived 

scar did not capture; 56 (54.4%) sites had S-QRS delay £40ms, 47 (45.6%) sites had a delay 

of ³40ms whilst 15 (14.5%) had a delay ³80ms. Representative examples of voltage and S-

QRS maps obtained using the system are shown in Figure 5-7.  

 

 

Figure 5-5: Depiction of scar, catheter, segmentations and MRI scans on image guidance platform 

Representative depiction of image guidance platform showing 3 orthogonal MRI views demonstrating location of catheter in 
relation to LV endocardium, 3D segmentation of the left ventricle derived from MRI and scar segmentation from LGE 
images to guide EAM. 
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Figure 5-6: Intra-cardiac EGMs obtained inside the MRI scanner and signal-to-noise ratios within normal myocardium and 
scar tissue 

Representative examples of intra-cardiac EGMs obtained using the MR-EP system in a region of normal myocardium (Point 
1) and area of scar (Point 2) (A-C). The baseline noise level inside the MRI scanner was in the region of 0.1mV 
(approximately 10-fold higher than that in the conventional electrophysiology laboratory). Dot-plot showing signal-to-noise 
ratios obtained for intra-cardiac EGMs in normal myocardium and LGE-derived scar regions from 7 animals; 
*p<0.0001(D). 
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Figure 5-7: Representative examples of segmented LGE scar, voltage and S-QRS maps obtained using real-time MR-EP 
system in 2 animals (Panel A and B) 

 
5.3.2 Relationship between MRI-derived scar, voltage and delayed conduction 

Using conventional (0.5mV-1.5mV) bipolar voltage thresholds, the sensitivity and specificity 

of voltage mapping using the MR-EP system to identify MR-derived LGE was 57% and 96% 

respectively (ROC area under curve = 0.907; p<0.0001). A S-QRS threshold of >40ms using 

this system resulted in a sensitivity of 76% and specificity of 73% to identify MR-derived 

LGE (ROC area under curve = 0.840; p<0.0001) - Figure 5. At a threshold of 1.5mV to 

define abnormal myocardium, the positive predictive value (PPV) and negative predictive 

value (NPV) of voltage mapping to identify LGE was 86% and 83% respectively. At a 

threshold of 40ms, the PPV and NPV of S-QRS time using the system to identify LGE was 

73% and 79% respectively - Figure 5-8.  
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Figure 5-8: ROC curves for prediction of LGE regions using voltage mapping and S-QRS 

ROC curves (A and C) for prediction of LGE regions using voltage mapping and S-QRS. Frequency histograms (B and D) 
displaying the true positive, false positive, true negative and false negative counts of voltage mapping and S-QRS 
measurements using the real-time MR-EP system to predict MRI-derived scar. Sensitivity, specificity, PPV and NPV of 
measurements using the system using different normal voltage cut-offs and S-QRS times (E-H).  
 

There was a moderate relationship between low voltage regions in the LV endocardium and 

LGE-derived scar mapped onto the endocardial surface mesh - Figure 5-9. At a voltage 

threshold of 1.5mV, mean DSC across all nodes was 79.0% ± 6.0%, whilst mean DSC within 
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scar regions only was 35.0% ± 10.1% and 90.4% ± 8.6% in normal myocardium regions 

only. An improvement in DSC within scar regions was observed using a higher voltage cut-

off of 2.0mV and 2.5mV (47.3 ± 9.9% and 60.2 ± 22.4%) at the expense of reduced 

agreement across regions of normal myocardium - Figure 5-10.  

 

 

Figure 5-9: Sorenson-Dice similarity co-efficient between MR-derived scar shells and endocardial voltage maps with 
varying normal voltage thresholds in two representative animals 
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Figure 5-10: Dice similarity co-efficients (DSC) between MR-derived scar shells and endocardial voltage maps acquired 
using MR-EP system following application of normal cut-off thresholds of 0.5-3.5mV. DSC is shown for overall similarity, 
similarity across scar nodes and normal myocardium nodes. 

 
5.4 Discussion 

This study shows that the prototype real-time MR-EP system can be used to guide catheters 

to regions of scar using active catheter tracking and to distinguish regions of low voltage and 

delayed conduction from healthy myocardium. There is a moderate relationship between low 

voltage and LGE scar using conventional bipolar voltage thresholds. An improved sensitivity 

for LGE detection may be achieved using higher bipolar voltage cut-offs with this system.  

 

The relationship between local EGM amplitude and scar is complex, in part due to the 

dependence of voltage on infarct size, heterogeneity and transmurality (Lopez-Yunta et al. 

2019). Conventional bipolar voltage thresholds for scar detection may lack sensitivity to fully 

detect scar as variations in inter-electrode spacing and recording electrode size may affect the 

representation of EGMs (Tung et al. 2016). Furthermore, although LGE-MRI is the current 

gold standard for visualisation of ventricular scar post myocardial infarction, the limited 

spatial resolution of in vivo LGE-MRI can result in partial volume effects and limit the 

specificity of scar characterisation (Lopez-Yunta et al. 2019). Increasing mapping resolution 

using multi-electrode catheters may also result in detection of a smaller area of low bipolar 

voltage as each data point represents a smaller tissue area with less far-field contamination 

(Tschabrunn et al. 2016). The use of multi-electrode catheters could improve the correlation 

between EAM and imaging as has been shown in a randomised study (Acosta et al. 2018). 

An additional source of discrepancy when correlating EAM and pre-procedural imaging is 

registration error due to translational changes (patient movement, cardiac or respiratory 

motion) or changes in volume, orientation or rhythm of the heart between time of imaging 

and EAM (Roujol et al. 2016).  



 149 

The real-time MR-EP system minimises registration error through registration of electrical 

and structural data within a single imaging modality with the same coordinate system. The 

3D whole heart sequence used for chamber segmentation was acquired during the same phase 

of the cardiac cycle as the 3D LGE to minimise translational changes due to beat-to-beat 

cardiac motion. Furthermore, both sequences were performed when animals were under 

general anaesthesia with reduced variability in respiratory motion thereby minimising 

translational changes due to respiratory motion. Compared to image integration approaches, 

where positional errors are introduced when registering catheter position to pre-procedural 

imaging, the MR-EP system tracks catheter position directly using a dedicated tracking 

sequence that is acquired in the same coordinate system as the 3D whole heart and LGE 

scans. The main sources of error with the MR-EP system include within scan registration 

error and catheter tip displacement on the 3D shell with the active tracking sequence. In a 

cohort of conscious patients scanned with an angiography sequence to create an endocardial 

mask and a 3D LGE acquisition, the within scan translation error was noted to be 1.9 ± 

1.6mm with a rotation error of 0.62 ± 0.41o (Chubb et al. 2018). This is, however, likely to 

overestimate within scar error with the MR-EP system where translational movements were 

minimal as animals were under general anaesthesia. Using ex-vivo technical validation, the 

average tip displacement of the actively tracked catheter using the MR-EP system was 

measured as 0.90 ± 0.58mm along the axis of the catheter (Chubb et al. 2017) and is likely to 

be the best estimate of error with this set-up.  

 

In this study, we show that despite the minimisation of registration and translational errors, 

the relationship between scar delineated using a custom MR-compatible catheter and high 

resolution isotropic LGE imaging (1.2mm3) remains moderate when using standard voltage 

thresholds. An improvement in scar concordance with this system can be achieved using a 
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higher normal bipolar voltage cut-off. Some investigators have found that abnormal 

potentials targeted for ablation may be present in tissue classified as ‘normal’ (>1.5mV) 

voltage and manual adjustment of bipolar voltage thresholds to higher cut-off values may 

identify more confluent scar regions incorporating all abnormal signals (Jais et al. 2012). 

Regions of slow conduction could also be present in tissue of normal bipolar voltage and 

unmasked during extrastimulus pacing (Acosta et al. 2018).   

 

Although the majority of real-time MR-EP studies published previously have focused on the 

atria, the full potential of substrate and lesion assessment afforded by such systems is likely 

to be realised in the context of VT ablation. There are limited data available evaluating real-

time MR-EP systems in the ventricle (Nazarian et al. 2008; Oduneye et al. 2013; Oduneye et 

al. 2015). Our study builds on previous work to characterise the relationship between LGE-

derived scar and electrophysiological measurements of low voltage and delayed conduction 

inside a MRI scanner.  

 

Currently, limited visualisation of soft tissue structures is possible in the electrophysiology 

laboratory with the use of intra-cardiac ultrasound (ICE), however MRI offers an improved 

contrast-to-noise ratio and ability to acquire 3D whole heart images or 2D slices in any 

imaging plane. Furthermore, tissue characterisation techniques such as LGE can be used to 

identify arrhythmogenic substrate whilst dedicated sequences can be used to monitor tissue 

temperature during ablation and provide a real-time method of calculating lethal thermal dose 

(Mukherjee et al. 2018). The novel MR-EP system described is capable of visualising the 

location and orientation of catheters relative to soft tissue, assess scar with MRI at the time of 

EAM, enable rapid segmentation and registration of cardiac chambers and potentially 

monitor formation of ablation lesions (Mukherjee et al. 2018). These features of the MR-EP 
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system could offer an alternative to conventional fluoroscopy-guided or ICE-guided 

procedures and improve catheter navigation, delivery of therapy and assess anatomical and 

physiological changes during VT ablation with the potential to reduce risks and improve 

outcomes.  

 

A number of technical developments are required prior to the realisation of real-time MRI-

guided VT ablation. The development of a MRI-compatible defibrillation system will be a 

prerequisite prior to any clinical studies and prototypes are currently under evaluation 

(Schmidt et al. 2016). Current surface ECG monitoring systems inside a MRI scanner are 

limited to 4-6 surface electrodes; in order to aid the diagnostic electrophysiology 

requirements of VT ablation, robust 12-lead ECG systems are required. Although high-

fidelity 12-lead ECG recordings are possible (Tse et al. 2014), the impact of magneto-

hydrodynamic effects and gradient switching-induced voltages within the MRI scanner can 

still corrupt ECG signals. There is currently a limited availability of MR-compatible devices; 

the development of MR-compatible multi-electrode catheters with similar capabilities to their 

conventional counterparts will accelerate progress in the electrophysiological assessment of 

substrate inside the scanner (Elbes et al. 2017).  

 

5.4.1 Limitations 

There are several important limitations to this study. We did not define the bipolar voltage 

threshold that best correlates to histological scar using the MR-compatible catheter - rather 

two indirect methods of scar assessment were compared to each other. During assessment of 

S-QRS intervals to assess slow conduction, a single ECG lead was used to derive 

measurements due to the lack of availability of a MRI-compatible 12-lead ECG; as a result, 

no assessment of QRS morphology using a 12-lead ECG was performed during pacing. 



 152 

These measurements should therefore be interpreted with caution as we could not account for 

local latency although this would be expected to be minimal at the pacing cycle length used. 

Furthermore, the technique of S-QRS measurements may have limited sensitivity for the 

detection of regions of myocardium with slow conduction compared to an approach 

analysing the evoked response to extrastimuli (Acosta et al. 2018). In this model, 

haemodynamic compromise and death of the animal was inevitable if VT was induced. As 

there was no means to defibrillate the animal inside the scanner, we deliberately avoided the 

induction of VT which in turn precluded entrainment mapping. As the location of LGE was 

used to guide ventricular mapping, there is a degree of sampling bias introduced during 

collection of mapping points. The purpose of the system being used in this way was to 

demonstrate the potential advantages and workflow of the MR-EP system. However, in order 

to perform a stepwise comparison of concordance between imaging scar and electrical scar, it 

would be necessary to remove this sampling bias by performing EAM independently 

(without LGE overlaid onto 3D shell) and retrospective evaluation.  

 

There was a large variability in the number of points collected per animal (range: 30-186). 

This was in part due to the difficulty with catheter manoeuvrability to access different parts 

of the LV inside the MRI scanner. We used retrograde aortic access to enter the LV rather 

than trans-septal puncture, due to the difficulties in performing trans-septal puncture inside a 

MRI scanner. It was difficult to access certain parts of the LV (e.g. LV summit) from 

retrograde aortic access. As a result, we tried to collect points from the region of LGE as well 

as a variety of locations where normal myocardium was expected. If it was not possible to 

sequentially move the catheter to certain locations, we decided not to collect multiple points 

from the same region as it was likely to add very little to the overall map.  
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In one particular animal, we were able to successfully acquire 186 points - however this was 

a relatively prolonged procedure and required > 3 hours of mapping. The animal frequently 

developed runs of NSVT during the procedure. The decision to stop mapping was influenced 

by the haemodynamic status of each animal, development of arrhythmias and changes in the 

manouverability of the catheters during a prolonged procedure. 

 

The MR-EP system used in this study consisted of a single electrode catheter and required 

manual annotation of activation times and voltages for each point on the EP recording system 

resulting in substantially lower mapping densities than with contemporary EAM systems. 

This could have lowered the precision of the sensitivity and specificity measures reported in 

the study. The development of automated mapping systems and multi-polar catheters for use 

inside the MRI scanner could better define the relationship between electrophysiological 

substrate and MR-derived substrate.  

 
5.5 Conclusions 

There is a moderate association between low voltage regions and sites of altered conduction 

determined using a novel real-time MR-EP system with scar derived from LGE-MRI. An 

improved sensitivity for LGE detection could be achieved using a higher normal voltage cut-

off with this system and the respective catheter. Further technical developments in MR-

compatible devices will accelerate progress towards real-time MRI-guided VT ablation.  

 

The next chapter builds on the work described to evaluate the accuracy of the MR-EP system 

in delivering ablation lesions. In addition, a MR technique to assess ablation lesions in real-

time (MR-thermometry and dosimetry) is also evaluated.  
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6 Catheter ablation and lesion imaging in the porcine left 

ventricle under real-time MRI-guidance  

 

6.1 Introduction 

The long-term recurrence rate following catheter ablation of VT in patients with structural 

heart disease has been reported as between 40-60% (Kuck et al. 2010; Stevenson et al. 2008; 

Al-Khatib et al. 2015). Meanwhile, the risks of VT ablation are considerable with a 5% risk 

of procedure-related mortality (Santangeli et al. 2017). Significant complications including 

cardiac tamponade, major bleeding and stroke are also not uncommon. Causes of treatment 

failure may include an inability to create fully transmural scar, difficulty in reaching regions 

of myocardium containing arrhythmogenic substrate and inaccurate lesion targeting (Tokuda 

et al. 2013).  

 

In the conventional electrophysiology laboratory, assessment of the location of ablation 

lesions is limited and based on either X-ray fluoroscopy with EAM, with no evaluation of 

soft tissue or through the use of intra-cardiac ultrasound (ICE). Although ICE can be used to 

assess catheter position and tip-tissue contact, it requires invasive placement, provides a 

limited field of view and image plane orientation. Furthermore, conventional techniques to 

determine the size of ablation lesions rely on mathematical modelling of limited surrogate 

markers including local impedance change, RF power, RF application time, electrode tip 

temperature and contact force, rather than direct visualisation of lesions (Kolandaivelu et al. 

2010).  
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Real-time MRI guidance during catheter ablation could allow a direct assessment of catheter 

position and its relation to soft tissue with a high contrast-to-noise ratio (CNR) (Nordbeck et 

al. 2011). In addition, MRI could be used to monitor lesion development, alongside 

visualisation of anatomic and physiologic changes during lesion delivery (Guttman et al. 

2018). The combination of improved navigation, accurate lesion placement and online 

visualisation of lesion characteristics could potentially reduce risks and improve the outcome 

of VT ablation.  

 

Contrast-enhanced MRI with LGE has been used to non-invasively assess RF ablation lesions 

(Dickfeld et al. 2006) however, acute LGE may grossly overestimate chronic lesion size 

(Kholmovski et al. 2018). Contrast can also only be given once during a procedure which 

limits the utility of LGE for real-time interventions. In order to facilitate repeated lesion 

assessments, the development of non-contrast MR sequences is required. A combination of 

T1-weighted imaging to visualise lesion necrosis (Guttman et al. 2018) and T2-weighted 

imaging to assess myocardial oedema can be used concurrently to assess the physiological 

response post ablation and monitor acute lesion composition (Krahn et al. 2018). However, 

these sequences are typically performed at the end of a procedure and not in real-time. 

Recently, there has been significant interest in the development of MR tools to evaluate 

lesions in real-time and MR-thermometry and dosimetry have emerged as an exciting means 

to directly monitor tissue temperature and estimate lesion size, respectively (de Senneville et 

al. 2012).   

 

In this chapter, the accuracy of the MR-EP system previously described, is evaluated to 

deliver ablation lesions in the porcine left ventricle. In addition, the use of MR-thermometry 
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and dosimetry to enable real-time visualisation in normal porcine hearts is described 

including ex-vivo technical development.  

 

6.2 Methods 

6.2.1 Ex-vivo technical validation of MR-thermometry 

Ex-vivo studies were performed to assess the temperature stability of the MR-thermometry 

sequence without catheter ablation. In addition, catheter ablation was performed to 

demonstrate a rise in temperature in the absence of blood flow. Experiments were performed 

on an ex-vivo porcine thigh preparation which was placed in a custom plastic container and 

bathed in normal saline. Images were acquired on a 1.5T scanner (MAGNETOM, Aera, 

Siemens Healthcare, Erlangen, Germany) using an ECG-triggered multi-slice single-shot 

echo planar imaging (EPI) sequence with spoiled gradient echo with the following 

parameters: TR/TE/α=50ms/17ms/60°, FOV=180×180mm2, voxel size=1.6×1.6mm2, slice 

thickness=5mm, slice number=4, bandwidth=1565Hz/Px, GRAPPA factor=2, partial 

Fourier=0.75. The ex-vivo porcine thigh preparation was kept stationary to avoid motion 

artifacts. Temperature stability was assessed in 10 locations on the thigh preparation through 

averaging of the temporal standard deviation of temperature within a manually drawn ROI. 

The MR-thermometry sequence was run for 100s for assessment of stability. For catheter 

ablation, a MR-compatible ablation catheter (Vision-MR, Imricor, USA) was introduced into 

the plastic container via a port and placed on the surface of the thigh preparation. A RF 

ablation generator (Ampere IBI T1500, St Jude Medical, USA) and irrigation pump (Cool 

Point, St Jude Medical, USA) was positioned outside the scanner room and connected to the 

catheter. Ten irrigated RF ablation lesions were delivered in different locations at 50W for 

60s (irrigation rate -17mL/min) inside the MRI scanner whilst running the MR-thermometry 

sequence. The sequence was initiated 20s prior to ablation and continued for 20s after the end 
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of ablation. Reconstruction of the temperature maps was performed offline as described in 

Section 3.2.4.  

 

6.2.2 Animal model 

Animal studies complied with French law on animal experiments and were performed at the 

Institut de Chirurgie Guidée par l’Image (IHU), Strasbourg, France. Eight female domestic 

pigs (49.7 ± 8 kg) were pre-sedated with a combination of intramuscular tiletamine and 

zolazepam. General anaesthesia was induced and maintained with inhaled 1-5% isoflurane 

and the animals were intubated and mechanically ventilated (20-25 breaths/min). Vascular 

access (7Fr introducer sheath) for invasive monitoring and administration of medications was 

obtained through the right and left femoral artery and femoral vein using ultrasound 

guidance. Epicardial access was successfully gained in four pigs using an anterior 

percutaneous subxiphoidal puncture under X-ray guidance in a fluoroscopy suite. A custom 

MR-compatible 10Fr deflectable sheath (Imricor, USA) was placed within the pericardial 

space for epicardial access. A MR-compatible 9Fr steerable catheter with open irrigation 

(Vision-MR, Imricor, USA) was manoeuvred into the epicardial space - Figure 6-1.  
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Figure 6-1: Fluoroscopic images demonstrating epicardial access.  

Following subxiphoidal puncture, a guidewire is advanced and shown coursing around the heart in the left anterior oblique 
view (A) and right anterior oblique (B) views. The sheath is in the pericardial space with the MR-compatible catheter 
coursing in front of the aorta in (C). Photographs showing location of puncture and sheath in a pig (D and E).  
 

The catheters have been described in detail previously (Grothoff et al. 2017). In the 

remaining four pigs, epicardial access was not possible due to the presence of pericardial 

adhesions and access to the LV endocardium was gained via retrograde aortic access as 

described in Section 5.2.3. A custom MR-EP recording system (Advantage-MR) consisting 

of a digital amplifier and stimulator, patient information module and a host workstation was 

used to record, display and analyse intracardiac signals, act as a programmable stimulator and 

deliver ablation energy as previously described (Grothoff et al. 2017). All animals underwent 

invasive blood pressure and surface ECG monitoring (Invivo Medical, FL, USA) throughout 

the study. Anticoagulation was maintained with an intravenous bolus of 70units/kg of 

heparin. A continuous infusion of intravenous lidocaine (12ml/hr) and amiodarone 

(20mcg/kg/min) was administered prior to ablation. A bolus of intravenous amiodarone 
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(150mg in 60mls dextrose) was administered as a slow push prior to each ablation lesion 

delivered. Animals were transferred to a MRI suite following epicardial access for mapping 

and ablation studies whilst retrograde aortic access was achieved within the MRI scanner 

using images for guidance. 

 

All MRI scans described below were performed on a 1.5T MR scanner (MAGNETOM, Aera, 

Siemens Healthcare, Erlangen, Germany). 3D whole-heart MRI for cardiac chamber 

segmentation, display on the iCMR platform and active catheter tracking was performed as 

described in sections 3.2.1 and 3.2.2.  

 

6.2.3 Ablation studies 

Ablation of the left ventricle was performed by delivering radiofrequency energy (40-60W, 

irrigation rate 17mL/min, 50-60s duration). Impedance change and catheter tip temperature 

were continuously assessed. Nineteen discrete ablation lesions were delivered in 8 animals 

with nine epicardial lesions and ten endocardial lesions. Lesion position was automatically 

recorded in 3D space and annotated upon the 3D rendering of each heart on the iCMR 

application. The aim was to create transmural lesions during each discrete ablation. In order 

to assess the conformational accuracy of lesions on the iCMR application, lesions were 

placed in discrete locations in the left ventricle and where possible, in a ‘X’ or ‘L’ shape to 

enable the calculation of angles between lesions. Using measurements on gross macroscopic 

examination as gold standard, conformational accuracy of lesion annotation on the iCMR 

application was assessed using the angle of intersection between points on two ablation lines 

measured to the nearest degree. Spatial accuracy was referenced to an anatomical landmark 

with low spatial variability -  the LV apex and was measured to the nearest millimetre.  
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The total number of ablations delivered in each animal was limited for the following reasons: 

1. Large animal models are particularly susceptible to arrhythmias following 

ablation in the ventricle resulting in ventricular fibrillation (VF) and death of the 

animal (Toupin et al. 2017), despite the use of anti-arrhythmic medications. In 

order to maximize the data collected from imaging and reduce the risk of death, 

we elected to limit the total number of ablations in each animal.  

 

2. In order to characterize RF delivery on CMR without bias from overlapping 

lesions, discrete lesions were placed in the LV with a distance of at least 1cm 

from two separate lesions.  

6.2.4 MR-thermometry and dosimetry 

Real-time lesion imaging could offer an attractive means to titrate energy delivery which 

could potentially decrease overall procedural time, increase efficacy and reduce procedural 

risk during MR-guided EP procedures. MR-thermometry and dosimetry using the proton 

resonance frequency shift (PRFS) technique was employed in this study which is sensitive to 

temperature changes in real-time and has been most widely studied in non-cardiac ablation 

(Roujol et al. 2010). The experimental details of the techniques are described in Section 

3.2.4.  

 

6.2.5 Non-contrast 3D gradient-echo inversion recovery sequence (GRE IR)  

In order to compare MR-dosimetry lesion dimensions with a non-contrast lesion imaging 

sequence, a subset of animals (4 animals, 8 ablation lesions) underwent additional imaging 

with a recently described gradient-echo sequence with a long TI (Guttman et al. 2018; Toupin 

et al. 2017) as follows: T1-weighted, 3D diaphragmatic navigator-gated gradient-echo (GRE) 

inversion recovery (IR) sequence; image sequence parameters were: TR/TE/Flip angle = 
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4ms/2.3ms/20°, TI = 700ms; FOV=360x360x100mm3, matrix = 272 x 272 px, number of 

slices = 35, voxel size=1.3×1.3×3mm3, bandwidth=250Hz/Px, GRAPPA factor=2; 2RR 

acquisition. Regions of signal enhancement on the 3D GRE IR sequence have been recently 

validated against regions of necrosis on gross pathology in a porcine model of LV ablation 

(Guttman et al. 2018). 

 

6.2.6 Gross macroscopy and histological assessment 

Following completion of imaging studies, animals were euthanized with potassium chloride 

and the heart was rapidly excised and dissected to expose individual ablation lesions. The 

gross specimens were photographed and fixed in 10% formalin. The ablation lines and 

surrounding tissue were excised en bloc and cut into sections perpendicular to the ablation 

line. Lesions were photographed and dimensions measured with a ruler. Each cross section 

was dehydrated, embedded in paraffin, sectioned (6µm sections) and then stained with 

haematoxylin and eosin.  

 

6.2.7 Lesion size measurements 

In order to compare 2D thermal dose lesion sizes to gross macroscopy, each heart was 

dissected to resemble the orientation of the thermal dose images. For measurement of lesion 

dimensions, the ablation lesion was defined as both the zone of pallor and the surrounding 

oedematous zone. Depth and width was measured on gross macroscopy and compared to the 

depth and width dimensions of the lesion on 2D thermal dose maps. For comparison of 2D 

thermal dose lesion sizes with the GRE IR sequence, four slices were reconstructed from the 

3D volume to resemble the equivalent slices and orientation on the thermal dose images. The 

depth and width was measured for each lesion on both sets of image datasets.  
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6.2.8 Statistical analysis 

Statistical analyses were performed using GraphPad PRISM Version 7.0 (GraphPad Inc, CA, 

USA). Continuous variables were compared using the Student’s two-tailed t-test. Linear 

regression analysis was performed to assess the relationship between lesion dimensions on 

image datasets with pathological dimensions and spatial accuracy of the iCMR guidance 

platform with gross pathology. Bland-Altman analysis and agreement are presented as 

average difference ± 95% confidence interval (CI). All other data are reported as mean ± SD 

unless otherwise specified. A level of p < 0.05 was considered statistically significant.   

 

6.3 Results 

6.3.1 Ex-vivo assessment of MR-thermometry 

Within the ex-vivo thigh preparation, the mean temperature variation was 3.2oC ± 1.2 in 

>80% of pixels within each ROI. During RF catheter ablation, a maximum rise in mean 

temperature variation of 48.2oC ± 4.7 was observed in the focal point position at the catheter 

tip within the ROIs. Within remote ROIs of the thigh preparation, distant from the region of 

catheter ablation, mean temperature variation was 2.8oC ± 0.9 - Figure 6-2.   
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Figure 6-2: Ex-vivo assessment of MR-thermometry.  

In a porcine thigh preparation, during catheter ablation, the magnitude image shows the susceptibility artifact created by 
RF heating at 65s after the start of imaging (A). The temperature map is overlaid onto the corresponding magnitude image 
(B) and temperature profiles in a remote region (C) and at the focal point position of the catheter tip (D) are shown.  
 

6.3.2 Spatial and conformational accuracy of the MR-EP system during delivery of catheter 

ablation 

All RF ablation lesions in animals were delivered on either the epicardium or endocardial LV 

surfaces using active catheter tracking (n=19). The locations of ablation lesion delivery were 

annotated onto the anatomical shells on the iCMR image guidance platform. The spatial 

accuracy of lesion delivery, compared to the gold standard pathological measurement, was 

0.95mm ± 1.03. Linear regression analysis showed a strong association between lesion 

location on the iCMR platform and gross pathology (r2 = 0.93; p<0.0001) whilst Bland-

Altman analysis revealed minor bias (-0.947; 95% CI: -8.99 - 7.09). Conformational accuracy 

of the MR-EP system as assessed by the angle of intersection between ablation lines, was <7 

degrees for all measured angles, compared to gross pathology - Figure 6-3.  
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Figure 6-3: Spatial and conformational accuracy of MR-EP system 

Ablation lesion location on the iCMR application (A) matched well to absolute site of lesion location on gross pathology (B). 
A strong association was observed (C) with mean spatial accuracy of <1mm between the iCMR application and gross 
macroscopy (n=19) with good agreement and minor bias (D). A conformational accuracy <7 degrees was also observed (E) 
in all angles measured between discrete ablation lesion lines (n=6) on the iCMR application and gross macroscopy. 
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6.3.3 In-vivo RF ablation with MR-thermometry and lesion size measurements with MR-

dosimetry 

MR-thermometry was able to demonstrate a localised temperature elevation near the catheter 

tip during delivery of radiofrequency ablation. Raw magnitude and phase images obtained 

during RF ablation demonstrated local phase variations associated with ablation-induced 

susceptibility changes - Figure 6-4. Following post-processing, temperature and thermal dose 

maps were generated and overlaid onto the corresponding magnitude images - Figure 6-5.   

 

 

Figure 6-4: Magnitude and phase images of MR-thermometry 

Magnitude (A) and phase raw images (B) obtained during RF ablation with the MR-thermometry sequence. Four adjacent 
slices (5mm slice thickness) are obtained at the level of RF application. Slice selection was determined based on the 3D 
catheter location determined from the active tracking signal and fed back to the scanner console via the iCMR guidance 
platform. Red arrows show regions of local phase variations associated with ablation-induced susceptibility changes. 
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Figure 6-5: ∆Temperature maps  

∆Temperature maps across four slices during RF ablation (A) after 60s are shown overlaid over the corresponding 
magnitude images. Achieved thermal dose maps (B) are shown across the same slices at the end of treatment.  
 

A maximum temperature difference of 35oC (relative to pixel in area of more remote septum) 

was observed within 2mm of the irrigated catheter tip (Point 1) whilst a lower temperature 

difference was observed further away from the catheter tip in the myocardium (Point 2) and 

no temperature change in a more remote area of myocardium >8mm away from the catheter 

tip (Point 3) - Figure 6-6.   
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Figure 6-6: MR-thermometry and dosimetry of a representative epicardial ablation lesion with gross pathological lesion 
dimensions 

In-vivo Dtemperature maps (A) shown at different time points relative to the start of the RF heating. Localised temperature 
elevation can be clearly visualized on the epicardial side of the left ventricle. Temporal profiles (B) obtained using MR-
thermometry during epicardial ablation in swine. A maximum temperature elevation of 35°C was observed in a pixel within 
2mm of the catheter tip – point 1 (relative to a more remote pixel in myocardium > 8mm away from the catheter tip – point 
3). No significant temperature elevation was observed in a pixel located in a remote area. 2D lesion dimensions measured 
using MR-dosimetry (C) correlate well with measurements on gross macroscopy with mild overestimation of lesion width.  
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Lesion dimensions measured using MR-dosimetry on thermal dose maps correlated 

moderately with lesion dimensions on gross pathology (lesion width: r2 = 0.77; lesion depth: 

r2 = 0.76). On assessment of lesion width, Bland-Altman analysis revealed good agreement 

and minor bias (0.684; 95% CI: -2.24 - 3.61) whilst on assessment of lesion depth, bias was 

1.842; 95% CI: -0.79 - 4.48 - Figure 6-7.  

 

Figure 6-7: Relationship between ablation lesion dimensions on thermal dose maps and gross pathology 

Linear regression between ablation lesion width (A) and depth (C) on 2D thermal dose maps and gross pathology (n = 19 
lesions). Bland-Altman plots showing the agreement on lesion width (B) and depth (D) size to those dimensions obtained on 
gross pathological measurements. Dashed/dotted lines indicate 95% confidence bands (A and C) and 95% confidence 
intervals (B and D). Several points may represent more than one measure given that several lesion dimensions were 
identical.  
 

6.3.4 Assessment of lesion sizes with non-contrast 3D GRE IR with a long TI and MR-

dosimetry 

 

On the 3D GRE IR images, ablation lesions had an increased signal intensity compared to 

adjacent myocardium, similar to recently described findings (Guttman et al. 2018). The long 

TI ensured that the blood pool signal was suppressed enhancing the visualisation of lesions - 
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Figure 6-8. There was a moderate association on lesion width between the 3D GRE images 

and thermal dose maps (r2 = 0.50) but an improved association on lesion depth between 

image datasets (r2 = 0.81). Agreement on lesion size measurements between sequences was 

good (Lesion width bias = 1.201; 95% CI: -2.498 - 4.901; Lesion depth bias = 1.294; 95% 

CI: -0.466 - 3.054) - Figure 6-9.  

 

 

Figure 6-8: Representative images of ablation lesions acquired using a 3D GRE IR sequence with a long inversion time. 
Lesions are indicated with white arrows.  
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Figure 6-9: Relationship between lesion dimensions on thermal dose maps and 3D GRE IR imaging.  

Linear regression between ablation lesion width (A) and depth (C) on 2D thermal dose maps and 3D GRE IR with a long TI 
(n = 8 lesions). Bland-Altman plots showing the agreement on lesion width (B) and depth (D) size to those dimensions 
obtained on 3D GRE. Dashed/dotted lines indicate 95% confidence bands (A and C) and 95% confidence intervals (B and 
D). Several points may represent more than one measure given that several lesion dimensions were identical.  

 
6.3.5 Gross macroscopy and histological assessment 

On gross macroscopy, a zone of pallor could be clearly delineated corresponding to the 

ablation lesion core with a surrounding haemorrhagic zone. Lesion transmurality of >75% 

was seen in 16/19 ablation lesions. Microscopic histology of acute ablation injury on 

haematoxylin and eosin staining demonstrated partial loss of membrane borders, nuclear 

elongation and interstitial oedema - Figure 6-10.  
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Figure 6-10: Gross pathological and histological appearances of ablation lesion 

A zone of pallor with a surrounding oedematous zone is clearly visible on ablation lesions (A). 16/19 lesions showed a 
>75% transmurality. On microscopic examination (haematoxylin and eosin stain), at 10x and 20x magnification, evidence of 
loss of membrane borders, interstitial oedema and nuclear elongation was visible within regions of ablated tissue (B and C).  
 

6.4 Discussion 

This study demonstrates the feasibility of using real-time MRI guidance to perform both 

epicardial and endocardial radiofrequency ablation using active catheter tracking in a porcine 

model. Real-time visualisation of ablation lesions can be achieved using a dedicated MR-

thermometry sequence whilst estimated lesion dimensions by MR-dosimetry corresponded to 

those obtained on gross pathology and a non-contrast 3D GRE IR sequence with a long TI. 

 

Lardo et al. (2000) first described the use of MRI for the spatial and temporal characterisation 

of RF lesions during MR-guided ablation in mongrel dogs. Regional changes in ablated tissue 

within the right ventricular (RV) apex were observed using a T2-weighted fast-spin-echo and 

gadolinium-enhanced T1-weighted gradient-echo sequences. There was a strong correlation 

between MR-derived lesion area and post-mortem lesion area. Subsequently, in a canine 

model, four distinct phases of contrast-enhanced signal enhancement were described over a 

10-hour time period following epicardial RF delivery (Dickfeld et al. 2006). RF lesions 

initially had a low signal intensity with increasing enhancement seen in the lesion periphery 
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at 4-minutes post-ablation which progressively extended to the centre of a given lesion. Full 

delayed enhancement was observed at approximately 21-minutes post ablation and lesions 

remained detectable up to 10 hours later. These findings suggested different wash-in and 

wash-out kinetics of gadolinium in ablation lesions compared to myocardial infarction and 

may reflect different underlying pathophysiological processes (Dickfeld et al. 2006). More 

recently, in a canine recovery model, using LGE and T2-weighted oedema imaging, 

microvascular obstruction volume at 26-minutes post contrast administration appeared to be 

the best predictor of chronic lesion volume (Ghafoori et al. 2017).  

 

However, administration of exogenous contrast agents can only be given once during a MR-

guided ablation procedure. In order to perform repeated assessments at multiple stages of an 

ablation procedure to characterise lesion formation and potentially titrate therapy based on 

MR information, the development of sequences without the use of contrast agents are 

required, ideally which can be performed in real-time.  

 

Celik et al. (2014) described changes in the intrinsic T1 value in lesion cores and intrinsic T2 

values in the oedematous regions of RF ablation using MR-relaxometry. Shortening of T1 

values were correlated to the presence of ferric iron which could have resulted from a change 

in iron state inside lesion cores due to conversion of haemoglobin to methaemoglobin during 

tissue heating. The authors concluded that non-contrast characterisation of T1 changes in 

ablation lesions may be more reliable than LGE where contrast agent distribution could be 

affected by changes in membrane permeability and microvascular obstruction (Celik et al. 

2014). Dickfeld et al. (2007) characterised the temporal evolution of non-contrast T1 and T2-

weighted imaging of RF lesions over a 12-hour time period in mongrel dogs. T2-weighted 

images demonstrated an elliptical high signal core and a surrounding low intensity rim whilst 
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T1-weighted images lacked a surrounding rim. These changes were related to central tissue 

necrosis and transition zone respectively on histopathological examination. More recently, a 

T1-weighted sequence with a long inversion time (TI = 700ms) has been used to discriminate 

between chronic scar in a porcine model of myocardial infarction and acute ablation lesions. 

Enhancement on the non-contrast T1-weighted sequence appeared to be more specific and 

stationary than LGE (Guttman et al. 2018).  

 

In this study, a real-time technique of lesion assessment (MR-thermometry) was used for 

lesion imaging, given its potential utility during MR-EP procedures and compared to both 

non-contrast GRE imaging with a long TI and gross pathological examination.  

 

6.4.1 Demonstration of MR-EP tracking and therapy accuracy 

The use of active catheter tracking with a dedicated tracking sequence, detected by 

microcoils in a MR-compatible catheter has been employed previously (Chubb et al. 2017). 

The microcoil method is advantageous due to its ability to track multiple coils along the body 

of the catheter, a faster rate of tracking and choice of guidance using acquired road-maps or 

real-time imaging (Chubb et al. 2017). Grothoff et al. (2017) reported the use of active 

catheter tracking to guide intubation of the coronary sinus, trans-septal puncture, activation 

mapping of the left atrium and ablation of the AV node in pigs. Catheter position was 

confirmed by passive real-time imaging. Our group have previously demonstrated the 

feasibility of real-time MRI-guided catheter ablation in patients with typical atrial flutter 

using active catheter tracking (Chubb et al. 2017). Using a combination of active tracking and 

catheter visualisation with real-time MR imaging, Hilbert et al. (2016) also performed 

cavotricuspid isthmus ablation in six patients with a mean procedural time of 109 +/- 58 

mins. Complete isthmus block was achieved in 3/6 patients without additional fluoroscopy. 
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There are little data, however, demonstrating the accuracy of radiofrequency ablation in a 

real-time MR environment, in the ventricle. Given the challenges of catheter manipulation 

and lesion delivery inside the MRI environment within the LV, a spatial accuracy of <1mm 

and conformational accuracy <7 degrees is encouraging. Further work to assess the spatial 

accuracy of lesion delivery to the scar borderzone tissue with the MR-EP system will be 

required to ensure that progress is made on a complete MR-based solution for VT substrate 

modification.  

 

6.4.2 Real-time lesion visualisation 

There has been significant interest in the development of MR tools to assess ablation lesions 

in real-time. Direct monitoring of tissue temperature using MR-thermometry and dosimetry 

offers an exciting means of exploiting acute physiological changes and could potentially be 

used to improve the safety and efficacy of catheter ablation. Kolandaivelu et al. (2010) first 

described the use of MR-thermometry using the Proton Resonance Frequency (PRF) shift 

technique to quantify tissue temperature changes that lead to ablation lesion formation. In 

mongrel dogs, the maximum ablation lesion extent during endocardial radiofrequency 

ablation on MR-thermometry corresponded well to the lesion location, depth on LGE-MRI 

and pathological examination (Kolandaivelu et al. 2010). Lesion transmurality with MR-

thermography was within 20% of that measured by pathology and LGE-MRI. Recently in an 

ovine model, Toupin et al. (2017) demonstrated that endocardial ablation lesion dimensions 

on thermal dose images correlated well with 3D T1-weighted images acquired immediately 

after ablation. The precision of lesion extent in the myocardium was in the region of 1mm – 

potentially offering a useful MR tool in real-time to guide the safety and efficacy of 

radiofrequency ablation. The same group have also optimised their thermometry pipeline to 

improve the spatial resolution achieved (1.6 x 1.6 x 3mm) and display of several slices per 
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heartbeat to resolve temperature distribution in the myocardium during catheter ablation 

(Ozenne et al. 2017). Their thermometry method relies on ECG-triggered echo-planar 

imaging, similar to this thesis, but utilises an optical flow algorithm to perform voxelwise 

registration of temperature maps in real-time. In addition, a principal component analysis 

method is employed to compensate for motion-related susceptibility artifacts and a temporal 

filter applied to increase the precision of temperature measurements (Ozenne et al. 2017). 

Initial results in healthy volunteers showed excellent temperature stability and in an ovine 

model of RF ablation, thermal lesion dimensions on dosimetry images were in good 

agreement with those at gross pathology (Ozenne et al. 2017). The presence of arrhythmia 

may also impact the precision of temperature measurements. In patients with frequent ectopic 

beats, the temporal standard deviation of temperature was 2.5oC, compared to a temporal 

standard deviation of 1.6oC in patients who were in sinus rhythm (Ozenne et al. 2019). A 

rejection strategy where corrupted phase images during arrhythmia-related beats are removed 

resulted in an improvement in the precision of temperature measurement whilst maintaining 

the frame rate (Ozenne et al. 2019). The feasibility of performing MR-thermometry in the 

presence of persistent arrhythmia, however, remains to be established.  

 

In this thesis, the MR-thermometry pipeline is extended to provide an assessment of 

epicardial lesion extent during radiofrequency ablation in a separate large animal model. 

There was a moderate association between lesion width on 3D GRE IR imaging and thermal 

dose maps but an improved association on lesion depth. This difference could be explained 

by the accuracy of correspondence between the orientation and position of the 2D magnitude 

images from MR-thermometry and 3D slices on the GRE imaging. As can be seen in Figure 

6-5, lesion depth appears consistent across thermometry slices but lesion width can vary 

considerably depending on the slice chosen for measurements.  
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Further work is required to assess how real-time lesion imaging relates to chronic transmural 

lesions – a porcine recovery model of ventricular ablation could be used to confirm long-term 

efficacy in future studies. In this study, the thermal dose model was used for the prediction of 

ablation lesion size. Other approaches have also been proposed such as using the maximum 

temperature peak for each voxel (Toupin et al. 2017; Kolandaivelu et al. 2010). Further work 

is needed to establish the most accurate model for the prediction of permanent ablation 

lesions. Of the various approaches available to assess acute ablation injury (LGE, T1-

weighted, T2-weighted, MR-thermometry), thermometry remains the only technique with the 

ability to assess lesions in real-time and would be ideally suited for MR-EP interventions. 

However, there are several limitations to the technique in its current form that need to be 

overcome (described below). 

 

6.4.3 Limitations 

Following ventricular radiofrequency ablation, large animal models frequently become 

tachycardic and/or develop ventricular arrhythmias which may affect the quality of the 

myocardium, blood and phase signal during MR-thermometry. MR-thermometry in the 

presence of irregular heart rhythm was not evaluated in this study and its feasibility remains 

to be established, particularly during RF ablation. Further refinements in the thermometry 

technique may be needed to overcome these limitations (see Section 7.2.3). We did not 

evaluate chronic ablation injury in this model, therefore further work is needed to evaluate 

whether thermal dose achieved during acute lesions corresponds to permanent lesion 

formation in a recovery model. The sensitivity and specificity of MR-thermometry for lesion 

monitoring during ablation was not assessed whilst the limited number of lesions delivered 

precluded our ability to assess if the extent of temperature rise could be predictive of lesion 
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transmurality – these areas could be an important focus of future work. The thermometry data 

required post-processing offline to generate the data on lesion dimensions. For this data to be 

useful to the electrophysiologist, a real-time pipeline with visualisation of the thermal dose 

onto an anatomical shell and demonstration of lesion dimension needs to be developed to 

guide catheter ablation although this was beyond the scope of this preliminary work.  

 

In order to facilitate VT ablation under MRI guidance in patients, there are still significant 

hurdles to overcome such as the availability of MRI-conditional defibrillation systems and 

MR-compatible 12-lead ECG systems. Patients undergoing VT ablation frequently require 

defibrillation – the time delay associated with removing a patient from the scanner bore 

before delivery of cardiopulmonary resuscitation and defibrillation could potentially increase 

the risk of mortality. Although there are prototype MR-compatible defibrillation systems 

currently undergoing testing, until there are robust systems that are shown to be successfully 

able to defibrillate patients without increasing the time needed for defibrillation, the uptake of 

higher-risk MR-guided interventions is likely to be limited.  

 
6.5 Conclusions 

This study demonstrates that the real-time MR-EP system can be used to target ablation 

lesions within the porcine left ventricle with a high degree of spatial and conformational 

accuracy. Furthermore, MR-thermometry and dosimetry enabled real-time visualisation of 

ablation injury and estimation of lesion dimensions. There was a good agreement between 

lesion sizes obtained from thermal dose maps to those obtained from 3D GRE IR imaging 

and gross pathological examination.  
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7 Summary and future directions 

7.1 Original contributions 

The aim of this thesis was to explore the use of a real-time MR-EP system for the evaluation 

of structural and electrophysiological ventricular tachycardia substrate and its application for 

catheter ablation. The potential benefits of MR-guided ablation include accurate 3D substrate 

assessment at the time of intervention with minimisation of registration error between 

structural and electrical data, intra-procedural guidance using dedicated MR-tracking 

techniques and assessment of ablation lesions in real-time. The main drawbacks of the system 

include limited availability of MR-compatible electrophysiology catheters, 12-lead ECG 

systems and defibrillators. The procedures are generally more time-consuming, expensive 

and require a steep learning curve for an electrophysiologist. There is also a lack of evidence 

currently that the use of MR-EP systems can impact on the safety, efficacy or efficiency of 

catheter ablation. Although most studies to date utilising MR-EP systems have focused on the 

atria, where significant technical challenges remain for accurate substrate assessment, the 

benefits of these systems are likely to be realised in the context of VT ablation. Given these 

issues, this thesis explored three main areas with respect to MR-guided VT ablation in order 

to guide the development of this new platform: 

 

1. Substrate assessment - There have been numerous studies published using LGE-

MRI to assess the substrate for VT. However, the assessment of LV scar 

heterogeneity which is crucial for identification of target sites for catheter ablation, is 

dependent on the spatial resolution of the MR sequence used. Differences in the type 

of LGE sequence used can also influence the image quality, signal-to-noise ratio, 

contrast-to-noise ratio as well as overall acquisition times. 3D isotropic LGE 

sequences may provide the optimal method to accurately assess LV borderzone 
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regions and thereby evaluate regions of scar heterogeneity, however, these require 

prolonged acquisition times and/or image acceleration techniques. To date, there have 

been few head-to-head comparisons of LGE sequences to determine the optimal 

method of LV scar and borderzone tissue assessment. In this thesis, using an 

experimental infarct model and a slow infusion of contrast to maintain steady-state, a 

direct comparison between three high-resolution LGE sequences was performed 

under consistent contrast conditions, alongside ex-vivo validation of results. The use 

of contrast steady-state enabled LGE imaging at a resolution of 1.2mm3 with 

improved performance compared to standard 2D clinical LGE in the animal model. 

Furthermore, a 3D LGE sequence with a bSSFP read-out was qualitatively improved 

compared to a GRE read-out and a black-blood LGE sequence. These findings have 

important implications for clinical MRI protocols in patients pre-VT ablation where 

use of standard 2D LGE may be insufficient to aid the electrophysiologist in planning 

an ablation procedure. The accurate identification of VT substrate can be challenging 

and ablating a region which does not harbour the critical re-entry circuit is an 

important factor determining the success of the procedure. 2D LGE is widely used for 

diagnostic purposes but may simply not have sufficient resolution to robustly identify 

the target sites for VT ablation. Although application of high-resolution 3D LGE with 

contrast steady-state in conscious patients proved challenging due to prolonged 

acquisition times, incorporation of the protocol immediately pre-ablation in an 

anaesthetised patient as part of a MR-EP procedure may prove to be feasible, but 

further work will be required to optimise the workflow.  

 

2. Comparison between structural and electrophysiological substrate - Multiple 

studies have also been published where the association between electrophysiological 
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substrate (generally bipolar voltage) and MRI-derived scar have been compared. 

Generally, these studies have relied on pre-procedural imaging acquired days or 

weeks prior to an ablation procedure where possible changes in loading conditions 

and/or rhythm between the time of imaging and time of mapping could introduce a 

registration error and result in mis-match of data. In addition, few studies have 

utilised high-resolution (<1.5mm3) LGE imaging for scar assessment. This thesis 

provides an objective comparison between structural and electrophysiological 

substrate whereby LGE imaging was optimised using the contrast steady-state 

protocol, data was acquired within a real-time MR-EP setting where registration error 

was minimised and a point-by-point analysis technique implemented to achieve 

improved precision. The main disadvantage of this approach was the limited 

resolution of EAM data with the MR-EP system due to inherent limitations in the 

design of the MR-compatible catheter and lack of an automated mapping system for 

use inside the MR scanner. Nevertheless, a moderate association was found between 

measurements of bipolar voltage, S-QRS and LGE with this system, despite the 

minimisation of registration error, highlighting the difficulty in using structural data 

to predict electrophysiological substrate.  

 

3. Catheter ablation in the left ventricle with the MR-EP system and real-time 

lesion imaging - The ability of the MR-EP system to use active catheter tracking to 

reach the target region within the LV and ablate both from the endocardium and 

epicardium was evaluated in this thesis. The MR-EP system provides an opportunity 

to evaluate anatomical and physiological changes during ablation as well as monitor 

lesion formation in real-time, in a way which is not possible in the conventional 

catheter laboratory. This thesis investigated the use of temperature mapping (MR-
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thermometry) to directly monitor lesion formation in real-time whilst MR-dosimetry 

was used to estimate lesion dimensions. There was a good correlation between lesion 

dimensions using MR-dosimetry to those obtained with a non-contrast T1-weighted 

sequence and gross pathology. These findings are consistent with those recently 

reported by the Bordeaux group (Toupin et al. 2017; JCMR) in an ovine model and 

extend the use of MR-thermometry to assessment of epicardial ablation. Much work 

is still required to optimise the imaging techniques and demonstrate its ability to 

predict chronic lesion size, but the study demonstrated the feasibility of the 

application of MR-thermometry to ventricular ablation.   

 

It is well known that scar pattern can be substantially different in different etiologies of 

structural heart disease. Typically, in ischaemic cardiomyopathy, compact scar may be 

present extending from the sub-endocardium to the epicardium with sparing of the 

endocardial rim. Patients with non-ischaemic cardiomyopathy may have a highly variable 

scar pattern - previous work has suggested that fibrosis architecture is rarely compact but 

typically patchy and/or diffuse (Glashan et al. 2018). In dilated cardiomyopathy, scars may 

be subendocardial, subepicardial, mid-wall or transmural whilst the architecture may be 

patchy or diffuse. In hypertrophic cardiomyopathy, interstitial fibrosis may be present 

preferentially involving the septum followed by the lateral and apical LV wall. In ARVC, 

fibrofatty replacement of myocardium may start in the subepicardium, usually affecting the 

RV but may also be present in the LV (Sramko et al. 2019).  

 

In order to evaluate the real-time MR-EP system used in this thesis including clinical-grade 

MR-compatible catheters, a large animal model was required. Although there are small 

animal models of non-ischaemic cardiomyopathy utilising surgical techniques, genetic 
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modifications or pharmacological approaches, large animal models of non-ischaemic 

cardiomyopathy are generally lacking, mainly due to the increasing costs involved. As a 

result, a porcine model of ischaemic cardiomyopathy was used in this thesis which has 

recently been well characterised from an electroanatomic, imaging and histopathologic 

perspective (Tschabrunn et al. 2016).  

 

The imaging techniques used in this thesis were deliberately performed at high spatial 

resolution in order to evaluate patchy/heterogeneous scar more accurately. It is therefore not 

expected that the inclusion of patients with non-ischaemic cardiomyopathy with different scar 

patterns would have necessarily changed the findings reported. It is possible that non-

ischaemic scar patterns may have been more difficult to detect, particularly diffuse fibrosis 

with the imaging techniques described in this thesis. However, the principle that extended 

scar imaging under conditions of contrast steady-state would enable more detailed scar 

characterisation would still be expected to apply in non-ischaemic cardiomyopathy patients 

(where scar would otherwise be detected using standard LGE imaging). The concordance 

between imaging substrate and electrical substrate may have been affected if non-ischaemic 

scar was evaluated as patchy and/or diffuse scar remote from the endocardial surface could 

be difficult to detect on assessment of bipolar voltage due to its limited field of view 

(compared to unipolar voltage). No group has successfully evaluated unipolar voltage inside 

a MRI scanner due to the presence of low frequency noise/artifact at a frequency and 

amplitude that could corrupt near-field signals - this can make signal evaluation challenging. 

Improvements in noise cancellation and filtering techniques are required to resolve this 

challenge. 
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7.2 Future directions 
 
7.2.1 High resolution imaging of scar and integration into MR-EP systems 
 
Respiratory-navigated 3D LGE is known to improve the diagnostic yield of MRI in patients 

with VT, particularly when other diagnostic tests have been negative or even when 

conventional 2D LGE has revealed no substrate (Hennig et al. 2018). High resolution LGE 

(<1.5mm3) may be valuable in providing detailed characterisation of 3D scar architecture and 

aid the delineation of VT ablation target sites. Using a 3D LGE sequence with an in-plane 

spatial resolution of 1.25 x 1.25mm, slice thickness of 2.5mm and image reconstruction into a 

stack of 1mm thick slices, (Yamashita et al. 2016) showed that image integration of scar 

architecture from MRI into the navigation system during VT ablation was successful in 

identification of 89% of critical isthmuses and 85% of LAVA sites. Furthermore, image 

integration impacted on procedural management through motivating additional mapping in 

regions of interest or modifying ablation strategy (Yamashita et al 2016). Given that the 

ability of MRI to identify heterogeneous tissue of intermediate signal intensity is spatial 

resolution-dependent (Schelbert et al. 2010), techniques to improve the spatial resolution of 

clinical protocols are needed. Image acceleration techniques such as compressed sensing can 

allow acquisition of high-resolution isotropic LGE imaging within scan times of 

approximately 3-4 minutes (Akcakaya et al. 2012). However, the under-sampled data 

obtained with compressed sensing protocols invariably results in a lower SNR and 

consequently CNR. Additionally, non-linear reconstruction of data may reduce the SNR 

further in the final images (Akcakaya et al. 2012; Basha et al. 2017). The contrast steady-

state technique described in this thesis enables extended scar image acquisition, thereby 

pushing the boundaries of achieved spatial resolution to 1.2mm3. However, the animal model 

used was studied under optimal conditions and all clinical scans were performed in patients 

who did not have cardiac devices in-situ.  
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The majority of patients undergoing VT ablation will have an ICD in-situ. Performing MRI 

scans in the presence of devices has been shown to be safe with minor changes in device 

parameters occurring occasionally (Nazarian et al. 2017). However, image quality can be 

degraded significantly in the presence of ICDs. In a cohort of patients undergoing VT 

ablation, 3D LGE acquisitions were successfully performed but ICD-related artifacts often 

appeared as a central signal void with a surrounding rim of increased signal intensity 

(Dickfeld et al. 2011). As a result, LGE could only be fully assessed in 9±4 out of 17 AHA 

segments and partially assessed in 12±3 segments, limiting the registration of the 3D MRI 

scar map to the voltage map (Dickfeld et al. 2011). Typically, the inversion pulse used in 

conventional LGE imaging is spatially non-selective with a spectral bandwidth of 1.1kHz. 

The resonance offset of the myocardium in the presence of a cardiac device is around 2-

6kHz, outside the bandwidth of the inversion pulse and as a result, the myocardium is not 

adequately nulled which can cause hyper-intense regions mimicking scar tissue (Rashid et al 

2014). The incorporation of wideband adiabetic inversion pulses into LGE imaging to 

facilitate adequate myocardial signal nulling in the presence of devices has enabled a 

reduction of metal-related artifacts, optimised the clinical yield from MRI and frequently 

changed clinical management (Bhuva et al. 2019).  

 

Most studies evaluating wideband LGE have used 2D multi-slice LGE with limited spatial 

resolution and SNR (Do et al. 2018). During 3D LGE imaging in the presence of an ICD, 

extended signal voids and ripple artifacts can appear compared to 2D imaging due to the 

spatially varying off-resonance introduced by the ICD and resulting distortion of the 

slice/slab profile. Recently, a modified wideband 3D LGE technique (spatial resolution: 1.4 x 

1.4 x.4mm) has been described in patients with ICDs which replaced the conventional 
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inversion pulse with a 3.8kHz wideband inversion pulse and increased the bandwidth of the 

RF excitation pulse to reduce signal voids and ripple artifacts (Rashid et al. 2016). Further 

work is required to address if the contrast steady-state protocol can be applied to improve the 

spatial resolution of the 3D wideband sequence and its consequent impact on in-plane 

artifacts (e.g. readout distortion from the frequency encode process, intra-voxel dephasing) 

and through-plane artifacts.  

 
In addition to the need for high-resolution 3D LGE imaging to identify VT substrate, real-

time MR-EP requires rapid image processing including segmentation and registration. In this 

thesis, manual segmentation of whole heart anatomy was employed which required around 30 

minutes of processing time after imaging and before EAM. Semi-automated segmentation 

methods (e.g. thresholding), use of shape-constrained deformable models (Chubb et al. 2017) 

or probabilistic models (Karim et al. 2016) could speed up this process considerably and 

reduce overall procedure times.  

 

Registration methods to integrate MR-derived scar images to EAM data typically use a 

combination of landmark and/or surface registration techniques, as employed in this thesis. 

However, real-time MR-EP provides an opportunity to acquire real-time reference images 

(e.g. bSSFP cine showing catheter position, regional wall motion, regions of wall thinning) 

and compare to prior 3D whole-heart road-maps or 3D scar maps. Registration of real-time 

imaging acquired with different spatial resolutions, plane orientation and acquisition 

parameters to 3D road-maps can be challenging. Updating the 3D road-map with 2D real-

time images with a dynamic registration using extracted image-based features within a multi-

scale framework has been described (Xu et al. 2015). This approach requires further 

validation in the setting of catheter ablation to assess if the accuracy of target delineation can 

be improved within the framework.  
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7.2.2 MR-guided EAM 
 
The major limitation of MR-EP is the limited availability of catheters and devices which can 

be used inside the MRI scanner. Single electrode mapping catheters were used in this thesis 

requiring manual annotation of individual electrograms to derive activation, voltage and S-

QRS data. The development of multi-electrode catheters which can be used inside the MRI 

environment has recently been reported (Elbes et al. 2017). Further development in catheter 

technology combined with the production of automated mapping systems that can be used as 

part of a MR-EP procedure is likely to accelerate progress in the field.  

 

As described in Section 2.7.2, there are multiple sources of signal distortion inside a MRI 

scanner which can affect the fidelity of EGM signals. It remains unclear at present whether 

fine myocardial signals (e.g. LAVA) can be robustly detected inside a MRI scanner. Further 

work to investigate the impact of MR interference on EGM signal characteristics are required 

and a study is planned to evaluate scar signals in an infarct model with the MR-compatible 

catheter both inside and outside the MRI scanner. The best approach to track the MR-

compatible catheter outside the MR scanner is unclear and may require a combination of 

fluoroscopy and ICE.  

 

In order to demonstrate the accuracy of MR-guided EAM, a direct comparison with 

conventional EAM will be required. Given the technical challenges of performing VT 

ablation under MRI guidance and lack of MR-compatible defibrillation systems currently 

available, a study is instead planned to use the MR-EP system in patients with adult 

congenital heart disease undergoing an atrial ablation. This study will afford the opportunity 

to image atrial substrate with high-resolution 3D LGE and perform EAM using the MR-

compatible catheter. As part of the study design, all patients will then be moved to the 
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catheter laboratory to have a conventional EAM with standard equipment and ablation, as 

required. In this way, a direct comparison of electrophysiological substrate between MR-

guided EAM and conventional EAM can be performed.  

 

Unless the technology available to perform EAM inside the MRI scanner develops 

sufficiently to compete with conventional EAM, it is possible that the role of MR-EP may 

simply be to optimise lesion targeting and perform lesion imaging after a conventional EAM 

has defined targets. Future studies will also have to demonstrate the ability of MR-EP to 

provide clinical benefit at a reasonable cost.  

 
 
7.2.3 Development of MR-thermometry and dosimetry protocol 
 
The reliability of MR-thermometry during catheter ablation is highly dependent on the 

quality of ECG-triggering. There are multiple factors which can lead to inadequate ECG-

triggering during catheter ablation including the need for additional RF equipment, poor skin 

contact with ECG electrodes and strong gradient fields associated with echo-planar imaging 

sequences. In addition, the large animal models used in this thesis are known to be pro-

arrhythmogenic and frequently experienced episodes of catheter-induced ventricular ectopy 

and occasional runs of VT during catheter ablation. Alternative methods to enable 

prospective cardiac triggering of the thermometry sequence could resolve these issues.  

 

The MR-compatible catheters used in this thesis contained micro-coils used for tracking of 

the catheters in 3D space. Using the continuously measured active tracking position as a 

surrogate for cardiac motion could provide a method to prospectively trigger the thermometry 

acquisition. Preliminary work in a beating heart phantom - Figure 7-1, where the active 
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tracking modules were interleaved with the thermometry sequence, was performed to 

evaluate feasibility and temperature stability.  

 

Figure 7-1: Cardiac motion phantom 

A MR-compatible cardiac motion phantom (Shelley Medical Imaging Technologies, Canada) (A) comprised of a pneumatic 
control, acrylic tank, hydrogel heart and cardiac motion control software was used for phantom experiments to evaluate 
MR-thermometry with active tracking. The phantom containing the hydrogel heart (B) mimics systolic and diastolic motion 
of the heart and contains ports for catheter devices to be introduced into the heart (C). MR images of the phantom with a 
catheter in situ acquired during systole and diastole are shown in (D). Images courtesy of Dr Ronald Mooiwer.  
 

In a series of experiments, the MR-thermometry sequence was acquired on an apical slice of 

the phantom at a heart rate of 60bpm. The sequence was interleaved with active tracking and 

compared to no triggering and evaluated in a scenario with no cardiac motion. An additional 

set of measurements were acquired with the phantom beating at 60bpm but triggering using a 

simulated ECG signal at 80bpm, in order to mimic mis-triggering. The following 

measurements were then made:  

 

1. Segmentation of visible area of myocardium with all acquisitions - to quantify 

stability of acquisition 
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2. Temperature stability - using temperature maps generated from phase data and 

stability determined through calculation of the standard deviation during all dynamics 

 

During active tracking-based triggering, all heartbeats were successfully detected. There was 

a strong similarity between myocardial areas detected during active-tracking based triggering 

and no motion. The temperature stability was 1.12 ± 0.36oC during active tracking-triggered 

measurements and >2.5oC during the mis-triggered scenario - Figure 7-2. Future work will 

focus on translation of this method during in-vivo cardiac RF ablation and will also need to 

model respiratory motion for accurate estimation of temperature.  

 

Figure 7-2: MR-thermometry with active-tracking triggering, no triggering and during no cardiac motion 

Magnitude images acquired during five time-points using active tracking-triggered thermometry, no triggering and during 
no cardiac motion (A). The visible myocardial area during each of the three scenarios is also shown (A). A large variation 
in myocardial area is present in the absence of triggering. Temperature stability measurements are displayed for the three 
scenarios (B). Images courtesy of Dr Ronald Mooiwer and presented as an abstract at ISMRM 2019 (Mooiwer et al. 2019; 
Active tracking-based cardiac triggering of MR thermometry for MRI-guided cardiac ablation).  
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Appendix Figure 1: Additional raw MRI images showing 2D LGE, 3D LGE and ex-vivo 
MRI datasets acquired in different animals at approximately the same slice location.  
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Appendix Figure 2: Additional raw MRI images showing 3D bSSFP, 3D GRE and 3D black-
blood LGE sequences from 6 animals at approximately the same slice location.  
 



 223 

 
Appendix Figure 3: Additional raw ex-vivo MRI datasets showing multi-plane 
reconstructions in 3 views in different animals.  
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Appendix Figure 4: Activation and voltage map acquired in normal porcine hearts under real-
time MRI guidance.  
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