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Abstract

 
Hepcidin, the iron regulatory peptide, has emerged as the master regulator of systemic 

iron homeostasis. Under normal circumstances, hepcidin expression is upregulated by 

excess iron and inflammation; and downregulated by iron deficiency, anaemia and 

hypoxia. Insights gained into the pathogenesis of iron-storage disorders such as 

hereditary haemochromatosis (HH) and hypotransferrinaemia (HPX), have 

contributed to the identification of the molecular mechanisms governing hepcidin 

expression. In these disorders, hepcidin expression is inappropriately low, causing 

increased absorption of iron by the gut thus leading to iron overload. The precise 

mechanism by which hepcidin is suppressed in these disorders is unclear.   

 

The regulation of hepcidin is principally transcriptional, where the Bone 

Morphogenetic Protein (BMP) pathway has been shown to be a major network 

governing hepcidin expression. The current study utilised the HPX mouse model to 

identify potential regulators of hepcidin that are produced locally in liver with a focus 

on the regulation of hepcidin by the BMP signalling pathway. 

 

A known regulator of the BMP pathway, bone morphogenetic protein [BMP]-binding 

endothelial cell precursor-derived regulator (BMPER), was found to be overexpressed 

in the HPX mouse liver. Soluble BMPER peptide in excess strongly inhibited BMP-

dependent hepcidin promoter activity in both HepG2 and Huh7, cells abolishing the 

effects of BMP2 and attenuating the effects of BMP6. These effects correlated with 

reduced cellular pSMAD levels. Addition of recombinant BMPER peptide to primary 

human hepatocytes strongly downregulated hepcidin mRNA levels and abolished the 

effects of BMP2. These effects were reflected in vivo where the injection of mice with 

recombinant BMPER peptide significantly reduced hepcidin mRNA expression which 

correlated with increased serum iron levels. Thus, the protein may play an important 
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role in suppressing hepcidin production to increase iron availability under conditions 

of chronic anaemia. 

 

Using the same HPX model, several other genes related to the BMP pathway also 

demonstrated differential gene expression. Atonal Homologue 8 (ATOH8), a basic 

helix-loop helix (bHLH) transcription factor, was previously shown to be regulated by 

iron loading however its precise role in iron metabolism was unknown. The studies 

presented in this thesis identified hepatic ATOH8 mRNA and protein expression to be 

robustly downregulated in various mouse models of altered iron metabolism where 

increased erythropoietic activity was shown to suppress hepcidin. Further 

investigations demonstrated that ATOH8 expression in HEK-293 cells directly 

regulated the hepcidin promoter and increased cellular pSMAD levels, thereby 

establishing a hitherto missing link between the regulation of hepcidin, erythropoietic 

activity and the BMP/SMAD pathway. 

 

Finally, the little known BMP, BMP8b, and the clotting factor, von Willebrand Factor 

which were also found to be significantly increased in the liver of the HPX mouse, 

were investigated as potential regulators of hepcidin. BMP8b has the potential to form 

heterodimeric complexes with other BMP members and therefore could be important 

in modulating BMP signalling and thus in turn hepcidin promoter activity. Whereas 

von Willebrand factor contains BMP binding sites and therefore may sequester BMPs, 

thus inhibiting BMP signalling. However the present study was unable to show 

consistent effects of either molecule on hepcidin promoter activity and so the roles of 

BMP8b and von Willebrand Factor in iron metabolism, if any, remains unclear. 

 

In conclusion, the analyses presented in this thesis demonstrate the novel molecular 

interactions governing hepcidin regulation by the BMP pathway. The new knowledge 

generated will be useful in the development of therapeutic strategies to diagnose, 

prevent, or mitigate disorders of iron homeostasis.  
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Chapter 1 .  

General introduction 
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1.1 Importance of iron in mammalian physiology  

 

1.1.1  Maintaining iron balance  

 

Iron is a key element in the metabolism of almost all living organisms. Iron is a 

functional component of the oxygen carrying unit, haemoglobin; additionally it is 

important in numerous other biological processes including electron transfer and DNA 

synthesis (Lieu et al., 2001). The biological importance of iron can be determined by its 

chemistry. Iron can switch between the ferrous form (Fe2+) and the ferric (Fe3+) forms 

making it a useful component of cytochromes, oxygen binding molecules and a variety 

of enzymes (Andrews, 2000). Its ability to accept and donate electrons also renders iron 

as a toxic metal where it is able to participate in the Fenton reaction, converting 

hydrogen peroxide (H2O2) into dangerous free radicals, which cause damage to fatty 

acids, proteins and nucleic acids within the cell (Halliwell and Gutteridge, 1986).  

(1) Fe3+ + O2
.-                    Fe2+ + O2   (Haber-Weiss reaction) 

(2) Fe2+ + H2O2                         Fe3+ + OH
.
 + OH -   (Fenton reaction)  

Biological systems have evolved intricate transport, storage and regulatory proteins to 

achieve the correct balance of iron throughout the system. 

 

1.1.2  Iron distribution   

 

The total body iron content in the normal healthy adult man is approximately 3-4 

grams, which remains fairly constant as the amount of iron absorbed is balanced by the 

amount lost through blood loss and sloughing of skin and mucosal cells (Anderson et 

al., 2007). Approximately 65% of total body iron is incorporated into erythroid cells, 

with 30% stored in the liver, spleen and bone marrow as ferritin or haemosiderin, 
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while the remaining 5% is distributed to myoglobin, haem enzymes and transferrin 

(Smith, 1969). Approximately 3 mg of iron is found in plasma. Despite its small 

proportion, the circulating iron found in the plasma represents one of the most 

dynamic compartments of the body with the highest turnover rate. Since there is no 

excretory mechanism for iron, the rate at which iron absorption occurs is tightly 

regulated.  

 

1.1.3 Iron absorption  

 

The absorption of iron takes place in the proximal small intestine, primarily in the 

duodenum. Iron obtained from the diet can be in two forms: haem iron or non haem 

iron. The absorption of haem iron is highly efficient as the proteolytic digestion of 

haemoglobin results in the release of haem which remains available for absorption 

(Uzel and Conrad, 1998).  In contrast, the efficiency of non haem iron absorption is 

poor, as iron is found in the ferric form and needs to be reduced to the ferrous form 

before being absorbed.  

 

Several studies have demonstrated that the brush-border surface of the enterocyte has 

ferric-reductase activities (Raja et al., 1992, Riedel et al., 1995, Ekmekcioglu et al., 1996). 

The first intestinal ferricreductase to be isolated was duodenal cytochrome b (DCYTB) 

(McKie et al., 2001). The expression of DCYTB was localised to the apical membrane 

and was upregulated during chronic anaemia, iron deficiency and hypoxia, all 

processes which stimulate iron absorption (McKie et al., 2001). However mice lacking 

functional DCYTB expression did not appear to become iron deficient, implying that 

there may be other mechanisms in place which are able to compensate for the DCYTB 

activity (Gunshin et al., 2005b). A limitation to the use of mouse models in these 

studies is that humans, unlike mice, are completely reliant on the diet to provide 

ascorbic acid which has been shown to increase the uptake of iron in vitro (Han et al., 

1995). Mice however are able to produce endogenous ascorbate which may act as a 

reducing agent in the intestinal lumen (Gunshin et al., 2005b).  
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Ferrous iron is transported across the apical membrane by divalent metal transporter 1 

(DMT1 – also known as SLC11A2/NRAMP2/DCT1). DMT1 was shown to accept a 

broad range of divalent cations including Ca2+, Co2+, Cu2+, Ni2+, Mn2+, Pb2+, Zn2+ 

(Gunshin et al., 1997). The cDNA encodes a 561 amino acid protein with 12- putative 

membrane spanning domains with a 3’-UTR iron response element (IRE) which may 

be subject to iron sensitive post-transcriptional regulation via the IRE-IRP system 

(discussed in 1.2.3) (Gunshin et al., 1997, Lee et al., 1998). Mice deficient in intestinal 

DMT1 are normal at birth, but their pre-natal iron stores are rapidly depleted after 

which they develop iron deficiency anaemia (Gunshin et al., 2005a). Additionally, the 

Slc11a2-/- animals where the gene was globally ablated, were unable to use iron 

efficiently for erythropoiesis demonstrating impairment in iron transport in the 

erythroid precursor cells (Gunshin et al., 2005a).  

 

Intracellular iron is either stored in ferritin or exported out of the enterocyte through 

the basolateral iron transporter ferroportin (FPN1, MTP1) (Donovan et al., 2000, McKie 

et al., 2000, Abboud and Haile, 2000). Functional studies with Xenopus Laevis oocytes 

demonstrated that overexpression of ferroportin in the presence of DMT1 increased the 

efflux of iron (McKie et al., 2000). However, in order for the exported iron to be loaded 

on to apotransferrin (iron free transferrin), ferrous iron needs to be re-oxidised to ferric 

iron. This was shown to occur through the association of hephaestin and/or 

ceruloplasmin (Cp). The importance of these ferroxidases was demonstrated through 

the analysis of the defective mechanism that exists in the sex-linked anaemia (SLA) 

mouse model. In the SLA model, iron is taken up normally by the enterocyte, however 

iron is not released from the enterocyte into the bloodstream. The gene hephaestin was 

identified as a protein mutated in this strain and was shown to be required for the 

release of iron by a putative basolateral transporter, which we now know as ferroportin 

(Vulpe et al., 1999). Targeted gene deletion of ceruloplasmin (Cp) in mice caused iron 

over load in particularly in the liver and spleen. The uptake of iron was unaffected by 

Cp deletion, however Cp-/-  mice displayed a marked impairment in the ability to efflux 

iron from hepatocytes as judged by a lack of radiolabelled iron in the serum of these 

animals. Interestingly administration of Cp protein in these mice resulted in a rapid 
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rise in radiolabelled serum iron, demonstrating the importance of this protein in iron 

efflux (Harris et al., 1999).  

 

Ferroportin expression increased with iron loading in the liver (Abboud and Haile, 

2000), lung (Yang et al., 2002) and macrophage (Delaby et al., 2008). This was 

supported by the identification of an iron responsive element (IRE) located at the 5’ 

untranslated region (UTR) of ferroportin mRNA. Under iron replete conditions, the 

expression of ferroportin protein is increased through the lack of iron regulatory 

protein (IRP) binding, thus promoting iron efflux from these cells (see section 1.2.3). 

However Ferroportin mRNA expression in the duodenum was shown to increase in 

iron deficiency (McKie et al., 2000). The later discovery of another transcript 

ferroportin1B (FPN1B) which lacked the IRE and was expressed in the duodenum now 

explains this anomaly (Zhang et al., 2009b). 

 

It is now well known that the actions of ferroportin is also regulated by the hormone 

hepcidin which is released into the circulation when systemic iron levels are increased. 

The interaction of ferroportin with hepcidin was demonstrated through cell culture 

studies where the addition of hepcidin to cells expressing ferroportin tagged to green 

fluorescent protein (GFP) caused ferroportin to be internalised and degraded. 

Therefore hepcidin controls the amount of ferroportin on the cell surface and thus the 

amount of iron entering the circulation from the diet and from macrophages (Nemeth 

et al., 2004b).  

 

Absorbed ferric iron is rapidly bound to Apotransferrin (the iron free form of 

transferrin). Transferrin (Tf) is an abundantly expressed protein with a molecular 

weight of approximately 80kDa. Transferrin can bind to two atoms of ferric iron per 

molecule (Fletcher, 1970). Therefore transferrin can exists in three forms: iron free 

apoTF; monoferric form or diferric/ holoTf. Plasma transferrin facilitates the transport 

of iron to cells that express transferrin receptors and also limits the ability of iron to 

generate reactive oxygen species. 
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Haem iron is an additional source of dietary iron and is absorbed via a different 

mechanism in comparison to non haem iron. Haem carrier protein 1 (HCP1) was 

described in 2005 and demonstrated an increased uptake of haem when expressed in 

Xenopus oocytes and Hela cells. (Shayeghi et al., 2005). Subsequently HCP1 was 

independently characterised as a folate/proton symporter and was shown to be 

necessary for folate homeostasis in man (Qiu et al., 2006). Thus the precise role of this 

haem/folate transporter requires further investigation. Upon entry into the enterocyte, 

the haem is degraded by haem oxygenases which release ferrous iron, which follows 

the same pathway as non-haem iron thereafter. 

 

 

Figure 1.1 Mechanism of intestinal iron absorption  
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1.2 Regulation of iron homeostasis 

  

Due to the limited ability to excrete iron, tight regulation between the sites where iron 

is absorbed, utilised and stored is essential.  

 

1.2.1 Cellular iron uptake  

 

The uptake of iron into cells is dependent on the expression of transferrin receptors 

(TfR). There are two transferrin receptors, TfR1, which is ubiquitously expressed and 

TfR2 whose expression is restricted to the liver (Kawabata et al., 1999). The binding of 

mono-Tf or holoTf at the cell surface to TfR1 causes the complex to be endocytosed into 

a clathrin-coated pit. The endosome is then acidified possibly by recruitment of a 

proton pump which causes a conformational change in Tf, releasing iron from 

transferrin (Aisen, 2004). The iron is reduced by the ferric reductase STEAP3 (Ohgami 

et al., 2006) to ferrous iron which exits the endosome through DMT1 (Fleming et al., 

1998). The apoTf is recycled back to the cell surface where the protein is released for 

another cycle of iron transport (Aisen, 2004). The uptake of iron by TfR1 appears to be 

most important in the developing erythroid cell. Murine TfR1 deletion is 

embryonically lethal and haploinsuffiency results in impaired erythroid development 

and abnormal iron homeostasis (Levy et al., 1999). Thus red cell development is 

dependent on TfR1 function.  

 

TfR2 is structurally similar to TfR1 and both receptors bind holoTf better than apoTf, 

however the affinity for TfR2 to bind diferric-Tf was shown to be 25-fold lower than 

TfR1 (Kawabata et al., 1999). Mutations in human and mouse TfR2 gene have been 

shown to cause severe hepatic iron overload termed type III haemochromatosis 

(section 1.6.1) (Camaschella et al., 2000, Fleming et al., 2002, Wallace et al., 2007). 

Although the effects of TfR2 mutations cause iron overload, studies involving TfR1 

mutations demonstrated high mortality rates, suggesting that TfR2 was unable to 

compensate for TfR1 expression possibly due to its restricted tissue location. 



Neeta Patel | 24 

Additionally, erythroid cells had reduced TfR2 protein expression and displayed 

limited mRNA expression (Calzolari et al., 2004), suggesting that the role of TfR2 may 

be more related to the iron sensing where TfR2 abundantly expressed by the 

hepatocyte.  

 

1.2.2 Iron storage and recycling  

 

Not all of the iron that is taken up by the cell is used for metabolism. Some of it can be 

stored to protect the cell from the toxic effects of free iron. Hepatocytes of the liver 

serve as major depots for iron storage where excess iron can be stored in ferritin. 

Ferritin is a water soluble molecule of 24 subunits which can bind up to 4500 atoms of 

iron (Harrison and Arosio, 1996). The protein is composed of heavy (21kDa) and light 

(19kDa) chains and the ratio of these are varied depending on the cell type. The heavy 

chain functions as a ferroxidase, which oxidises ferrous iron to ferric iron which is 

bound inside ferritin (Koorts and Viljoen, 2007). In addition to the iron that is absorbed 

from the diet, the recovery of iron from senescent erythrocytes also plays an important 

role in iron metabolism. The average life span of an erythrocyte is approximately 120 

days. At the end of their life, the erythrocytes undergo surface alterations which targets 

them to be phagocytosed and digested by macrophages in the spleen, liver and bone 

marrow (Ganz, 2007). Haem from haemoglobin is degraded by the actions of haem 

oxygenases (Poss and Tonegawa, 1997). Iron is exported out of the phagosomal 

membrane into the cytoplasm by DMT1 where it can be stored in ferritin.  

 

The stored iron can be used when iron is required by the cell through the help of 

ferroportin. Cells treated with exogenous iron increase cellular iron levels which in 

turn increase ferritin expression. This effect is lost through co-expression of ferroportin 

in the cells suggesting that ferroportin causes degradation of ferritin (Nemeth et al., 

2004b). The mechanism by which this occurs has been proposed to require the activity 

of a proteosome (De Domenico et al., 2006). The expression of ferroportin is dependent 

on the expression of hepcidin (discussed in section 1.4.3). The importance of 
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ferroportin in erythrocyte recycling is demonstrated in mice that lack ferroportin which 

become anaemic and iron loaded due to the lack of iron export from macrophages and 

enterocytes (Ganz, 2007). 

 

1.2.3 Regulation of cellular iron balance  

 

The liver stores are mobilised if body iron levels are decreased; thus regulation 

between the sites where iron is absorbed, utilised and stored is essential to maintain 

iron homeostasis. Molecules involved in these processes can be regulated post-

transcriptionally by intracellular iron levels through the interactions of iron regulatory 

proteins (IRPs) which bind to iron regulatory elements (IREs) found on the 

untranslated regions (UTR) of mRNA sequences (Casey et al., 1988). 

 

There are two types of IRPs identified in the mammalian system, IRP1 and IRP2. IRP1 

is an iron-sulphur cluster-protein containing a cubane [4Fe-4S]. IRP2 shares over 60% 

identity to IRP1 however lacks an iron-sulphur cluster (Ponka et al., 1998). The 

presence of IRE’s located in the 3’ UTR of TfR1 and 5’ UTR of ferritin enables 

regulation of expression of these proteins by IRPs. Under iron depleting conditions, the 

IRE’s in the 3’ UTR are occupied by IRP binding and this stabilises the TfR1 mRNA 

which increases iron uptake. In contrast, the translation of ferritin mRNA is inhibited 

through the binding of IRP on the 5’ IRE thus preventing iron from being stored. 

During iron repletion/excess, IRP1 binds iron-sulphur clusters converting it into a 

cytosolic aconitase and IRP2 undergoes iron dependent degradation (Guo et al., 1995, 

Iwai et al., 1995). Thus the IRPs fail to bind to IREs. In this situation, ferritin translation 

is stimulated while TFR1 mRNA containing 3’ IRE is degraded. The expression of 

ferroportin is also under the control of the IRE/IRP system (see section 1.1.3).  

 

The roles of each of the IRPs in mammalian iron physiology have been investigated 

through genetic ablation studies. A lack of IRP1 did not appear to regulate iron 
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metabolism as indicated by the viability and health of IRP1-/- mice (Meyron-Holtz et al., 

2004). Additionally, the authors proposed that IRP1 functions mainly as a cytosolic 

aconitase and is not critical for the regulation of iron (Meyron-Holtz et al., 2004). In 

contrast, iron deficiency increased the expression of IRP2 implying an iron sensing role 

of IRP2. The importance of IRP2 in maintaining iron homeostasis was demonstrated by 

two independent studies. IRP2-/- mice were shown to develop normally up to 6 months 

however mice older than 6 months of age developed progressive neurodegenerative 

disease along with increased liver and duodenal iron levels (LaVaute et al., 2001). 

However in a later study which generated another IRP2-/- model, the symptoms of 

overt neuropathy were not displayed and more systemic abnormalities with reduced 

TfR1 expression in the bone marrow were noted (Galy et al., 2005). The in vivo 

investigations demonstrate the importance of IRE/IRP regulation in maintaining 

cellular iron homeostasis.  

 

1.3 Systemic iron regulation  

 

The existence of the stores and erythroid regulators of systemic iron homeostasis was 

first coined by Clement Finch in 1994 many years before the discovery of hepcidin. In 

his review, Finch hypothesised that the stores regulator would regulate the amount of 

iron absorbed from the duodenum and a feedback mechanism would be involved to 

prevent iron overload. The erythroid regulator on the other hand would be involved 

when the demand for iron for erythropoiesis surpasses the capacity of storage cells to 

mobilise iron for erythropoiesis and thus intestinal iron absorption is increased (Finch, 

1994). It is now well known that hepcidin is a key regulator of systemic iron 

homeostasis and that the stores and erythroid regulators are likely to modulate the 

expression of hepcidin through molecular components that are able to communicate 

signals between the sites of iron absorption/ storage utilisation.  
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1.4 Hepcidin: the iron regulatory peptide  

 

1.4.1 Discovery  

 

Before the iron connection emerged, hepcidin was regarded as an antimicrobial 

peptide expressed predominantly in the liver and was termed Liver Expressed 

Antimicrobial Peptide-1 (LEAP1) (Krause et al., 2000). LEAP1 could be isolated from 

human urine and was shown to be weakly active against bacteria and fungi (Park et al., 

2001).  

 

The relevance of hepcidin in iron metabolism was suggested later by Pigeon et al in 

2001 who identified it from a search of new genes that were upregulated in the liver by 

iron excess. (Pigeon et al., 2001). The confirmation of the role of hepcidin in iron 

metabolism was initially completely serendipitous. A group in Paris had developed a 

knockout mouse for a gene involved in glucose metabolism named upstream 

stimulatory factor 2 (USF2-/-). The USF2-/- mice developed liver iron overload which 

could not be explained. As it turned out the USF2 gene was located very close to the 

hepcidin gene and the later had been silenced by the insertion of the USF2 targeting 

construct. Nonetheless this strongly suggested a functional role of hepcidin in iron 

metabolism since mice had a similar phenotype to haemochromatosis patients (Nicolas 

et al., 2001b). The role of hepcidin was confirmed in a follow up paper from the same 

group showing that transgenic mice over expressing hepcidin developed severe iron 

deficiency (Nicolas et al., 2002a).  

 

1.4.2 Structure  

 

The human hepcidin gene (HAMP) is located on chromosome 19q13.1 and is 

synthesised by hepatocytes as a preprohepcidin of 84 amino acids. The full length 

preprohepcidin undergoes a series of enzymatic cleavages first to produce a 
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prohepcidin of approximately 64 amino acids. The proregion is post-translationally 

removed by a furin-like proprotein convertase resulting in a bio active 25 amino acid 

peptide (Valore and Ganz, 2008). The structure of hepcidin resembles that of other 

antimicrobial peptides such as defensins and proteogrin and is predicted to be an 

amphiphatic cationic disorted beta-sheet protein with four disulphide bridges (Hunter 

et al., 2002).  

 

1.4.3 Mechanism of action  

 

The molecular mechanisms governing the hepcidin response to iron came from cell 

culture studies, where hepcidin was found to interact with GFP- (green fluorescent 

protein) tagged ferroportin which caused ferroportin internalisation and degradation. 

The binding of hepcidin to ferroportin reduced the release of iron from hepatocytes, 

enterocytes and macrophages (Nemeth et al., 2004b). Hepcidin is therefore a negative 

regulator of iron efflux in these tissues. Loss of function studies suggested the N-

terminal amino acid region of hepcidin was critical for its activity whereas the loss of 

the C-terminal did not affect its function (Nemeth et al., 2006).  

 

The structural determinants governing hepcidin-mediated ferroportin degradation is 

currently under debate. Initial investigations demonstrated the importance of tyrosine 

residues 302 and 303 located on ferroportin which are phosphorylated by JAK2 

following hepcidin binding (De Domenico et al., 2007, De Domenico et al., 2009). The 

phosphorylation of these residues was accompanied by the activation of the STAT3 

pathway, thus providing evidence for downstream effectors (De Domenico et al., 2010). 

The studies conducted by De Domenico and colleagues have been recently challenged 

by findings that the neither JAK2 or phosphorylation of the tyrosine residues are 

required for hepcidin mediated internalisation (Ross et al., 2012). Ferroportin was 

found to be expressed in JAK2 null human fibrosarcoma cells and was shown to 

decrease upon hepcidin treatment with no reported phosphorylation of STAT3 or 

STAT5 (Ross et al., 2012). The authors highlight the significance of lysine residues 240 
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and 258 on ferroportin, which demonstrated a reduced rate of ferroportin 

internalisation when mutated to arginine upon hepcidin treatment in vitro. (Ross et al., 

2012). In a separate study, the substitution of lysines in the third intracellular loop of 

ferroportin reduced ubiquitination upon hepcidin treatment and instead increased 

cellular iron export. This was determined by intracellular ferritin expression. HEK-293 

cells expressing WT Ferroportin-GFP increased ferritin expression upon hepcidin 

treatment demonstrating iron retention in these cells. In contrast the expression of 

ferritin remained unchanged in mutant ferroportin-GFP expressing cells, 

demonstrating the continued export of iron in these cells (Qiao et al., 2012).     

 

1.5 Regulation of hepcidin expression  

 

Knowledge of the signals that repress and activate hepcidin expression has come from 

studies involving iron loading and iron deficient phenotypes in humans and mice, 

where hepcidin expression is increased during inflammation and iron loading and 

decreased by anaemia and hypoxia.  Delineation of the regulatory circuits that govern 

hepcidin expression have identified the involvement of the Bone Morphogenetic 

Protein (BMP), JAK/STAT and the ERK/p38 MAP kinase pathways to be contributors 

to the transcriptional regulation of hepcidin expression. The BMP pathway is of 

interest in the present study and will be described in detail below.  

 

1.5.1 The Bone morphogenetic proteins (BMPs) 

 

Bone is the material that makes vertebrates unique from other animals. Providing 

support and protection for the visceral organs as well as allowing movement of limbs 

are but a few key features of bone. When a bone breaks, various signals are released to 

eventually produce a completely healed skeleton. Understanding how the bone 

regenerates has been central to the entire discipline of bone morphogenesis. In 1965, Dr 

Marshall Raymond Urist, implanted demineralised bone into a rabbit’s muscle which 

then formed a bone at the site (Urist, 1965). He hypothesised that proteins released 
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from the bone are the cause of the regeneration at the site of implantation; he named 

the protein bone morphogenetic protein (BMP). Since their initial discovery in the 

formation of bone and cartilage, the BMPs have been shown to be a dynamic family of 

cytokines belonging to the TGF-β superfamily of ligands. They are involved in the 

regulation of a vast number of cellular processes ranging from tooth development to 

the maintenance of iron metabolism and vascular homeostasis in vivo (Miyazono et al., 

2010).  

 

Of the 20 members of the BMP family, BMP2 and BMP4 were amongst the first BMPs 

to be purified (Wozney et al., 1988). Purification of BMPs from bone has provided 

insight into the structure and sequence similarities between different BMPs and has 

enabled them to be sub-divided into groups (see Table 1.1). BMP2 and BMP4 have 83% 

amino acid sequence identity and are the best studied members of the BMP family 

(Kawabata et al., 1998). BMP5, BMP6, BMP7 (also known as osteogenic protein-1, OP-1) 

and BMP8 (OP-2) form another sub family which are slightly larger proteins in 

comparison to BMP2 and BMP4, with approximately 70% amino acid similarity 

between the sub-groups (Wozney, 2002). 

 

The BMPs are processed as larger precursor proteins which are proteolytically 

processed to form dimeric proteins (Figure 1.2). A hydrophobic signal peptide is 

processed to produce a pro-BMP. This is further cleaved by a furin-like protease at the 

RXXR cleavage site to yield the mature C-terminal fragment. The mature BMP protein 

is a dimer which is formed by two BMPs molecules forming disulphide links at the 

highly conserved carboxy terminal region. In particular, seven cysteine residues are 

conserved in this domain and are present at analogous position in nearly all family 

members (Wozney et al., 1988). BMPs can form homo dimers between BMPs of the 

same subfamily or heterodimers between BMPs of different subfamilies. There is some 

evidence that heterodimeric BMPs are more potent in BMP signalling than 

homodimers (Ying et al., 2001).  
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Figure 1.2 The proteolytic processing of BMP proteins (adapted from (Wozney et al., 1988))  

 

The homo- or –heteromeric BMPs can bind to two types of serine-threonine kinase 

receptors, i.e. type I and type II receptors (de Gorter et al., 2009). 

 

BMP type I receptors: there are 7 type I activin receptor-like kinases which are 

classified into three groups based on their structure and function (Table 1.1).  

Table 1.1 BMP type I receptors 

Group Receptors  BMP binding preference  Downstream target 

BMPR-I BMPR-IA / ALK3 

BMPR-IB / ALK6 

BMP2/BMP4 

GDF5 

Activates  

SMAD 1,5,8 

ALK-I ALK1 

ALK2 

BMP9/ BMP10 

BMP6/BMP7 

Activates  

SMAD 1,5,8 

TβR-I ALK4 / ACTR-IB 

ALK5 / TβR-I 

ALK7 

 Activates  

SMAD2/3 
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BMP type II receptor: there are three BMP type II receptors which are widely 

expressed in mammals (Table 1.2).  

Table 1.2 BMP type 11 receptors 

Group BMP binding preference  

BMPR-II BMP specific  

ACTR-II Activins 

Myostatin 

BMPs 

ACTR-IIB  

 

Type I and type II receptors differ in certain structural features. Type I receptors have a 

glycine/serine residue rich stretch in the intracellular juxtamembrane region which 

becomes phosphorylated by type II receptors which are constitutively active and have 

extensions rich in serine and threonine residues (de Gorter et al., 2009). As well as BMP 

receptors type I and II, the regulation of certain ligands can be assisted by co-receptors 

(section 1.5.2).  

 

The phosphorylation of type I receptors leads to the activation and phosphorylation of 

downstream signal transducers called SMADs. It was found that the Drosophila 

homologue of the C.elegans gene SMA, when mutated in the mother, repressed the 

gene decapentaplegic in the embryo. Hence the gene was called, "mothers against 

decapentaplegic". The human protein is called SMA and MAD related protein (SMAD) 

(Massague et al., 2005). The eight SMADs which have been identified in mammals can 

be sub-classed into three groups based on their functions: 

 

 R-SMAD - receptor regulated 

 Co-SMAD - common SMAD 

 I-SMAD – inhibitory SMAD 
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Five R-SMADs have been identified in mammals whose actions are dependent on the 

BMP binding and receptor activation (outlined in Table 1.1 downstream target). 

Activated R-SMADs form a heteromeric complex with common SMAD4. This complex 

then translocates into the nucleus where it can bind to promoter regions located on 

target genes. Inhibitory SMADs also exist, which are also induced by BMPs and 

provide a feedback mechanism to prevent excessive BMP signalling (de Gorter et al., 

2009). 

 

In addition to the well defined BMP/SMAD pathway, BMPs are also able to activate 

alternative pathways including ERK/p38 MAP kinase pathways through TGF-β 

activated kinase I which associates with BMPR-II (Miyazono et al., 2010). BMPs are also 

able to activate PI3-kinase (PKB/AKT) and caspases which mediate BMP-induced 

osteoblast differentiation (de Gorter et al., 2009).  

 

1.5.2 The BMP proteins and hepcidin transcription  

 

Early investigations identified a connection between the BMP/SMAD pathway and 

iron metabolism through studies assessing the role of SMAD4 in liver development. 

SMAD4-/- resulted in embryonic lethality, however when a liver specific knockout was 

generated, investigators noted that the absence of SMAD4 resulted in iron overload 

and reduced hepcidin expression (Wang et al., 2005).  

 

Since then a number of studies have been conducted in order to elucidate the role of 

factors that are upstream and downstream of the SMAD4 signalling cascade. Of the 20 

different BMP ligands identified, BMP2, BMP4, BMP5, BMP6, BMP7 and BMP9 have 

been shown to be potent stimulators of hepcidin transcription in vitro (Truksa et al., 

2006, Babitt et al., 2007). BMP2 positively regulates hepcidin transcription and reduces 

serum iron levels in vivo (Babitt et al., 2007). Shortly after the discovery of SMAD4-/- 

phenotype, Babitt and colleagues identified Hemojuvelin (HJV) as a co-receptor for the 
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BMP signalling pathway. The significance of HJV in modulating BMP signalling was 

demonstrated through cell cultures studies from primary hepatocytes isolated from 

HFE2-/- mice. These cells were unable to respond to BMP2/4 stimulation and failed to 

upregulate hepcidin expression. Transfection with HJV cDNA into hepatoma-derived 

cells increased hepcidin mRNA expression by quantitative real-time RT-PCR and 

increased hepcidin promoter reporter activity (Babitt et al., 2006). 

 

Babitt et al were the first to show that a soluble form of HJV inhibits hepcidin 

expression in vivo (Babitt et al., 2006). HJV belongs to the RGM family of proteins of 

which RGMA and DRAGON were amongst the first described co-receptors for the 

BMP subfamily (Samad et al., 2005, Babitt et al., 2006). HFE2-/- mice displayed a similar 

phenotype to patients with HFE2 mutations where hepcidin levels are depressed, with 

marked tissue iron overload (Babitt et al., 2006). In addition, the expression of pSMAD 

1,5,8, a downstream effector for BMP signalling, was significantly decreased in the 

HFE2-/- animals providing evidence that a loss of HJV reduced hepcidin by reducing 

BMP signalling.  

 

HJV exists as two forms; a membrane bound (m-HJV) which acts as a BMP co-receptor 

and a soluble form (s-HJV). The soluble form has been shown to suppress hepcidin 

mRNA expression in primary human hepatocytes (Lin et al., 2007). Additionally, 

injections of s-HJV decreased hepatic hepcidin mRNA expression in mice (Babitt et al., 

2007). s-HJV was shown to selectively bind and inhibit BMP2,4,5 and 6’s ability to 

induce the hepcidin promoter without affecting BMP9 or BMP7 (Babitt et al., 2007). 

Having tested a wide array of ligands from both BMP and TGF-β sub-families, the 

authors concluded that the TGF-β sub-family may be less critical in modulating 

hepcidin transcription as these members showed no effect on hepcidin transcription in 

vitro. Additionally, when comparing the effects of BMP2/4 to other BMP’s, BMP9 at 

first glance appeared to be the most potent inducer of hepcidin expression (Truksa et 

al., 2006). However further investigations revealed that BMP9 was only able to 

modulate basal hepcidin responses and did not appear to interact with HJV (Lin et al., 

2007, Babitt et al., 2007). 
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The mechanism by which HJV is processed has been shown to occur in two ways 

which may account for its ability to switch from a co-receptor to a possible BMP-

antagonist. 

 Furin mediated cleavage 

Silvestri and colleagues proposed that s-HJV is produced as a result of a furin cleavage 

that occurs in the endoplasmic reticulum (Silvestri et al., 2008a). Upon iron treatment 

the expression of s-HJV was reduced along with amount of furin protein which is 

consistent with increased hepcidin transcription. However under conditions of iron 

deficiency, where hepcidin expression is suppressed, s-HJV and furin expressions were 

increased suggesting that these proteins could be modulated by intrinsic iron levels. 

The absence of IRE’s on the furin promoter ruled out the possibility of this regulation, 

however the identification of hypoxia responsive elements (HRE) on the furin 

promoter suggested that furin induced by hypoxia could release s-HJV under 

conditions of iron deficiency (Silvestri et al., 2008a). A more recent study however 

failed to show the effect of hypoxia on furin expression. Hypoxia induced by repeated 

phlebotomies had no effect on the expression of furin in vivo (Krijt et al., 2010). HJV has 

also been shown to interact with neogenin, an interaction which is considered to 

increase the susceptibility of cleavage by furin (Zhang et al., 2009a, Maxson et al., 2009).  

 

 Cleavage by TMPRSS6 (Matriptase-2)  

Matriptase-2 (MT-2) is a serine protease encoded by the gene TMPRSS6 (Velasco et al., 

2002). The significance of MT-2 in iron metabolism came from studies investigating 

mutant MASK mice, which exhibited microcytic anaemia, low plasma iron levels and 

high hepcidin levels amongst other characteristics (Du et al., 2008). The results from 

this study suggested that a lack of a functional catalytic domain in MT-2 increased 

hepatic hepcidin expression and thus MT-2 was required for the suppression of 

hepcidin. This was supported by observations that human mutations of TMPRSS6 

cause increased hepcidin expression leading to iron-refractory-iron-deficiency-anaemia 

(IRIDA) (Finberg et al., 2008). It was subsequently shown that MT-2 was able to bind 
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and cleave m-HJV and significantly reduce the hepcidin transcriptional response to 

BMP2 stimulation (Silvestri et al., 2008b).  

 

The cleavage of m-HJV by furin results in a single product; conversely the cleavage of 

m-HJV by MT-2 results in a number of fragments. It remains to be determined if the 

cleavage products that result from m-HJV cleavage by MT-2 have any ability to 

antagonise BMP ligands. The absence of the catalytic domain within MT2 found in the 

MASK phenotype suggests this domain is required for cleavage of m-HJV. The 

regulation of MT-2 expression by iron still requires further investigation and is 

currently thought to occur through an autocatalytic mechanism.  

 

Characterisation of BMP6-/- mice identified BMP6 as a potent regulator of iron 

metabolism (Meynard et al., 2009, Andriopoulos et al., 2009). Knockout mice of other 

BMP members appear to have skeletal and developmental defects; however BMP6-/- 

mice were viable and fertile with no apparent phenotype. However closer inspection 

revealed defects in iron metabolism; increased serum iron, increased tissue iron 

loading along with undetectable hepcidin mRNA expression (Meynard et al., 2009). 

Mice treated with a neutralising antibody against BMP6, had reduced liver hepcidin 

levels whereas mice injected with BMP6 peptide had increased hepcidin transcription 

(Andriopoulos et al., 2009). BMP6 expression was shown to be elevated by iron loading 

and reduced by iron deficiency (Kautz et al., 2008) a process which did not require HFE 

as demonstrated by increased BMP6 expression in HFE-/- mice by dietary iron loading 

(Corradini et al., 2009). Liver iron content was shown to correlate with hepatic BMP6 

expression: liver iron loading induced by HJV-/- increased BMP6 mRNA expression. 

This effect was reduced having depleted HJV-/- mice of iron through dietary iron 

deficiency (Zhang et al., 2010a).  

 

The mechanism by which iron (either liver iron stores or circulating iron) is able to 

regulate BMP6 expression is largely unknown. Studies which looked at the effect of 

increased circulating iron (by acute iron loading to increase transferrin saturation) 
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compared to increased tissue iron (chronic iron loading to increase liver iron content) 

on hepcidin regulation have highlighted the potential of hepcidin to be regulated by 

the BMP signalling pathway through differential mechanisms. Acute iron loading 

increased transferrin saturation which correlated with increased hepatic hepcidin 

expression without any changes in BMP6 expression. However chronic iron loading 

increased liver iron content (LIC) which correlated with increased hepatic BMP6 

expression. Interestingly hepatic pSMAD 1,5,8 protein expression  was increased in the 

acute iron administration setting where transferrin saturation was increased but LIC 

and hepatic BMP6 mRNA were not, demonstrating the activation of pSMAD 1,5,8 

downstream of BMP6. In the chronic iron treatment setting, increases in LIC stimulate 

hepcidin expression by stimulating BMP6 mRNA expression, thereby activating the 

SMAD signalling pathway (Corradini et al., 2011).  

 

In general, the regulation of signalling pathways can occur at multiple levels; 

intracellularly, extracellularly and at the membrane. Liver specific deletion of ALK2 

and ALK3 (receptors for BMP2/4 and BMP6) caused iron loading in mice with 

significant reductions in hepcidin expression due to the lack of BMP signalling. Both 

receptors were required for the effect of BMP2 stimulation; however ALK3 appeared to 

be more abundantly expressed in the hepatocyte where mutations in ALK3 

demonstrated a more marked iron overload. Thus ALK3 may be required for basal 

hepcidin expression (Steinbicker et al., 2011).  

 

Just as important as activation of the BMP signalling pathway is, inhibition of the BMP 

pathway enables fine tuning of the responses elicited by the BMP ligands. The co-

regulation of SMAD7, an inhibitory SMAD, through interaction with co-SMAD4 

demonstrated the importance of a negative feedback loop in regulating hepcidin, 

expression where overexpression of SMAD7 strongly reduced hepcidin mRNA 

expression and prevented activation from both TGF-β and BMP ligands (Mleczko-

Sanecka et al., 2010).   
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1.5.3 The regulation of hepcidin by other stimuli  

 

1.5.3.1 Iron  

 

The regulation of hepcidin by iron has been demonstrated in vivo where human 

subjects ingesting 65mg of iron for three days increased urinary hepcidin excretion 

after the first day (Nemeth et al., 2004a). The mechanism by which this occurs is still 

under investigation. Insights into diseases where hepcidin fails to respond in the 

appropriate manner according to the iron burden have provided useful information 

into the molecular mechanisms behind the regulation of hepcidin by iron. Hereditary 

haemochromatosis (HH) are a group of disorders hallmarked by excessive iron 

loading. Various subtypes of HH have been characterised based upon the gene 

mutations (see Table 1.3). A common denominator between all of these disorders is the 

lack of an appropriate response of hepcidin to iron loading suggesting that the proteins 

encoding these genes are important for iron sensing and hepcidin regulation. 

 

The HFE gene was identified by Feder and colleagues to be a MHC (major 

histocompatibility complex) class-I like protein in which a cysteine 282 tyrosine 

(C282Y) mutation prevented the binding of HFE to β2-microglobulin (β2-M) which in 

turn prevented HFE presentation on the cell surface (Feder et al., 1996). The C282Y 

missense mutation was present in 83% of HH patients and murine mutations of the 

HFE gene increased transferrin saturation and liver iron loading where hepcidin 

expression was decreased (Feder et al., 1996, Ahmad et al., 2002). HFE was shown to 

interact with TfR1 to form a stable complex thus regulating the amount of transferrin 

bound iron entering the cell (Feder et al., 1996). A study conducted by Schmidt et al 

demonstrated the nature of this interaction by carrying out mutational analysis in 

mouse strains which either favoured or interfered with the HFE/TfR1 complex. 

Interference with the HFE-TfR1 interaction increased hepcidin expression and caused 

iron deficiency suggesting that HFE induces hepcidin synthesis. However when HFE is 

complexed to TfR1, mice exhibited iron overload due to a lack of hepcidin expression 

(Schmidt et al., 2008). Additionally the HFE/TfR1 interaction greatly reduced the 
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affinity of TfR1 binding to diferric-Tf, suggesting HFE acts to repress the iron uptake 

by TfR1 (Lebron et al., 1999).  

 

Mutations in TfR2 also cause HH, however unlike TfR1, the expression of TfR2 has 

been shown to be restricted to hepatocytes, erythroid cells lines and crypt cells 

(Subramaniam et al., 2002). Mutations in TfR1 cause mice to die in utero despite 

retaining a functional TfR2 gene. In contrast, TfR2-/- mice demonstrate hepatic iron 

loading (Levy et al., 1999). The modulation of TfR1 occurs through transcriptional and 

post-translational regulation by iron (see section 1.2.3). In contrast, TfR2 mRNA has no 

IRE’s and hence the regulation of TfR2 by iron is largely unknown. Regulation has 

been proposed to occur through increases in protein stability where diferric-Tf 

increases TfR2 expression (Robb and Wessling-Resnick, 2004).  

 

The importance of TfR2 in the regulation of hepcidin by iron was demonstrated 

through investigations into TfR2 knockout mice (TfR2-/-). TfR2-/-  mice failed to increase 

hepcidin expression after acute iron loading; however mice were able to respond to 

chronic iron loading in the correct manner (Ramos et al., 2011). The same study 

demonstrated a partial increase in hepcidin expression in HFE-/- mice in response to 

acute iron challenges suggesting a redundant role of HFE in acute iron changes. Similar 

to TfR2-/- mice, HFE-/- mice responded by increasing hepcidin mRNA expression in 

response to chronic iron loading. This was in contrast to HJV-/- and BMP6-/- mice which 

had impaired responses to both chronic and acute iron loading. The authors hypothesis 

that the pathways involved in regulating intracellular iron stores are mainly dependent 

on BMP6 and HJV with little contribution from HFE/TfR2 which may participate in the 

regulation of hepcidin by extracellular iron levels (Ramos et al., 2011) . 

 

Recent investigations have shown attenuated BMP/SMAD signalling in HFE-/- 

(Corradini et al., 2009). In this mouse model, the expression of hepcidin was 

inappropriately low relative to the expression of BMP6. Additionally, these animals 

were unable to increase pSMAD 1,5,8 protein expression in response to dietary iron 
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loading thus implying HFE may regulate hepcidin expression through the BMP/SMAD 

pathway (Corradini et al., 2009). Transgenic overexpression of HFE was able to 

increase hepcidin expression in HFE-/- mice; an effect which was greatly attenuated in 

mice having lost HJV expression demonstrating the importance of both of these 

proteins in the regulation of hepcidin (Schmidt et al., 2010). Studies have demonstrated 

the ability of HJV to interact with HFE and TfR2. Co-localization of the three HH-

associated proteins on the cell surface has been shown by glycerol gradient 

sedimentation where all three proteins co-sedimented in over-lapping fractions which 

were verified by immunofluorescence. The authors hypothesised the ability of both 

increased diferric iron levels in plasma as well as increased expression of TfR2 and/or 

HJV (which trigger the release of HFE from TfR1) may increase hepcidin expression 

(D'Alessio et al., 2012). 

 

1.5.3.2 Hypoxia   

 

The ability of cells to adapt to changes in oxygen tension is fundamental for their 

effective functioning. In order to correct for oxygen imbalances, oxygen sensitive 

transcription factors called hypoxia inducible factors (HIFs) have been identified which 

are able to regulate individual cellular responses to hypoxia (Semenza and Wang, 

1992).  

 

The HIFs are a family of transcription factors that mediate the response to hypoxia by 

increasing the expression of oxygen regulated genes. They are heterodimeric 

transcription factors consisting of a constitutively expressed HIF-β subunit which does 

not vary with oxygen availability and HIF-α subunits. To date, three HIF-α subunits 

have been identified; HIF-1α which is ubiquitously expressed, HIF-2α which is limited 

to certain cells such as endothelial cells, hepatocytes and enterocytes and HIF-3α where 

little is known about the expression and functional properties (Wenger, 2002). During 

hypoxia, the HIF-α subunits accumulate and translocate to the nucleus and interact 

with the constitutively expressed HIF-β subunit and other transcription factors, where 
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they are able to bind to recognition promoter sequences called hypoxia responsive 

elements (HRE). When oxygen is abundant, the HIF-α subunits are tightly regulated by 

oxygen dependent hydroxylation by specific prolyl hydroxylases (PHD) and the 

asparaginal hydroxylase factor inhibiting HIF (FIH). Prolyl hydroxylation enables 

ubiquitinylation and degradation of HIF-α by von Hippel-Lindau ligase (vHL) 

whereas asparaginal hydroxylation interferes with the association of transcriptional co-

activators CBP and p300 and therefore with HIFα/β complex (Nakayama, 2009) (Figure 

1.4).  

 

 

Figure 1.4 Regulation of the hypoxia inducible factors by iron and oxygen concentrations (adapted from 

(Evstatiev and Gasche, 2012)) 

 

Early investigations demonstrated the effect of hypoxia on iron absorption either 

through anaemia or changes in localised tissue hypoxia. Hypoxia increased intestinal 

iron absorption independently of erythropoiesis (Raja et al., 1988, Frazer et al., 2002) 

suggesting that the gut is able to sense hypoxia. The molecular mechanisms are still 

under investigation and have identified hepcidin and HIFs to play important roles in 

the local iron absorption which occurs during hypoxia.  
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The direct effect of hypoxia on hepcidin expression was shown by Nicolas and 

colleagues who demonstrated the negative regulation of hepcidin by hypoxia in vivo 

and in vitro (Nicolas et al., 2002b). This was supported by the discovery of putative 

HRE’s located on hepcidin promoter which was shown to be occupied by HIF-1α. 

Treatment of the hepcidin promoter with the HIF agonist desferrioxamine (DFO), 

strongly reduced hepcidin promoter activity which correlated with increased HIF-1α 

binding, demonstrated by chromatin immunoprecipitation studies (Peyssonnaux et al., 

2007). Additionally, the response of hepcidin to iron deficiency was partially blunted in 

liver specific HIF-1α knockout mice demonstrating the involvement of HIF-1α in the 

negative regulation of hepcidin (Peyssonnaux et al., 2007). Despite the strong evidence 

provided for the role of HIF-1α by Peyssonnaux and colleagues, other studies have 

proven that the effect of hypoxia is independent of HIF-1α where the binding of C/EBP 

and pSTAT3 to the hepcidin promoter were reduced by hypoxia (Choi et al., 2007). Co-

culture of Huh7 cells with activated macrophages significantly reduced hepcidin 

expression upon exposure to hypoxia, an effect which was not significant on Huh7 

cells alone (Chaston et al., 2011). Additionally the effects of hypoxia on co-culture 

studies significantly reduced SMAD4 protein expression suggesting the involvement of 

the BMP/SMAD pathway in the hypoxic repression of hepcidin in vitro (Chaston et al., 

2011).   

 

More recently the intestinal involvement of HIF-2α as a gene responsible for the 

increase in expression of genes involved in iron absorption (DMT1, DCYTB, FPN1) has 

been shown. Firstly Shah and colleagues and later Mastrogiannaki et al showed HIF-2α 

to be a critical regulator of intestinal iron absorption and iron metabolism generally 

(Shah et al., 2009, Mastrogiannaki et al., 2009). Using vHL/HIF-1α double knockout 

mice, Shah et al demonstrated an increased duodenal expression of DCYTB, DMT1 and 

FPN1 mRNAs resulting in systemic iron loading which was dependent on HIF-2 α 

expression. In the later paper by Mastrogiannaki the authors generated a specific 

intestinal HIF-2α-/- mouse and found decreases in duodenal DCYTB, DMT1 and FPN1 

mRNA levels. 
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Recent studies have implicated the involvement of the BMP/HJV pathway in the 

regulation of hepcidin by hypoxia. The Pro- and anti- effects of HJV are thought to be 

dependent on the presence of membrane bound or soluble HJV where cleavage of HJV 

is thought to be carried out by furin whose promoter activity was increased by HIF 

stabilisation. Additionally, the serine protease matriptase-2 has been shown to degrade 

HJV, where recent studies have demonstrated the upregulation of matriptase-2 by 

hypoxia which was reduced upon silencing of HIF-1α or HIF-2α (Lakhal et al., 2011). 

 

1.5.3.3 Inflammation  

 

Hypoferraemia (low serum iron) is characteristic of anaemia of inflammation (AI) 

which results from reticuloendothelial sequestration of iron and interruption of 

intestinal iron absorption (Cartwright and Lee, 1971). The observation that 

inflammatory cytokines associated with AI increase hepcidin expression has 

established a role for hepcidin in inflammation. Evidence suggesting that hepcidin was 

playing a role in the dysregulation of iron homeostasis during inflammation came from 

investigations in mouse models of turpentine-induced inflammation, where mice 

demonstrated a six fold increase in hepatic hepcidin gene expression which correlated 

with a two-fold decrease in serum iron (Nicolas et al., 2001b). Additionally patients 

with AI had as much as a 100-fold increase in urinary hepcidin expression (Nemeth et 

al., 2003). Monocytes/ macrophages treated with LPS are able to produce cytokines 

which mediate either a type 1 (Il-1) or a type II (Il-6) acute phase response. Hepatocytes 

exposed to monocyte-induced LPS or IL-6 increased hepcidin expression, an effect 

which was not observed by Il-1 indicating that the induction of hepcidin was a type II 

acute phase response.  

 

Mechanisms by which the inflammatory process stimulates hepcidin are still under 

investigation. The involvement of HFE in the hepcidin response to Il-6/inflammation 

has been controversial; studies which have stimulated inflammation in HFE-/- mice have 

either shown a HFE dependent or HFE independent mechanism (Roy et al., 2004, Lee 
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et al., 2004). The identification of STAT3 binding elements located on the hepcidin 

promoter have provided insights into the potential mechanisms that regulate the 

hepcidin response to inflammatory cytokines, in particular Il-6. The interaction of a 

complex of Il-6 receptor-α and gp130 results in the activation of Janus Kinase (JAK) 

which phosphorylates the Signal transducer and activators of transcription (STATs) 

which in turn translocate into the nucleus and bind to transcriptional target genes i.e. 

hepcidin (Verga Falzacappa et al., 2007, Wrighting and Andrews, 2006). STATs are a 

family of transcription factors involved in cytokine signal transduction during 

inflammation. STAT1 was unresponsive to Il-6 stimulation however STAT3 

phosphorylation was increased by Il-6 (Pietrangelo et al., 2007). Additionally, the 

STAT3 binding motif at position -72/-64 on the hepcidin promoter was shown to be 

critical for basal hepcidin mRNA expression as well as hepcidin’s response to the 

inflammatory cytokine IL-6 (Verga Falzacappa et al., 2007, Wrighting and Andrews, 

2006). The observation that SMAD4-/-mice failed to respond to Il-6 stimulation 

indicated that SMAD signalling may also play a role in staging the appropriate 

response to inflammation.  

 

Mice deficient in Il-6 are still able to increase hepcidin expression in response to LPS 

suggesting that other cytokines may also be governing the response. This has been 

demonstrated by the effect of TNF-α on HJV expression; injection of LPS to normal 

mice increased hepcidin expression and decreased HJV expression (Krijt et al., 2004). 

These effects were independent of HFE as HJV expression remained reduced in HFE-/-  

mice exposed to LPS (Constante et al., 2007). The suppressive effect of LPS on HJV was 

shown to be independent of Il-6 and the cytokine responsible for the suppression was 

TNF-α. The treatment of hepatocytes with exogenous TNF-α suppressed HJV mRNA 

expression, an effect that was not observed on treatment with Il-6. Thus it could be 

hypothesised that the suppression of HJV by TNF-α would uncouple the iron-

regulatory pathway and promote the Il-6 inflammatory pathway (Constante et al., 

2007). 
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1.5.3.4 Erythropoiesis  

 

The majority of body iron is found in the circulating erythrocytes bound to haem; 

therefore the production of erythrocytes and iron homeostasis are closely linked. When 

the erythropoietic demands of the body are increased for example under anaemic 

conditions, iron absorption is increased by reducing the hepcidin expression. This 

process occurs regardless of the iron storage abilities of the organism and is observed 

in iron loading anaemia’s. The inhibition of hepcidin despite iron overload can be 

considered as an inappropriate physiological response and demonstrates the ability of 

the suppressive erythroid signal to over-ride the effects of a stores regulator. The effect 

appears to be dependent on erythropoiesis rather than anaemia or hypoxia since 

inhibition of erythropoiesis using carboplatin or irradiation attenuated the response 

(Pak et al., 2006, Vokurka et al., 2006).   

 

The mechanism by which hepcidin suppression occurs as a result of erythropoiesis is 

currently an area of active research. It was hypothesised that one or more humoral 

factors are secreted from erythroblasts during erythropoiesis could contribute to the 

suppression of hepcidin. Patients suffering from β-Thalassaemia develop chronic 

anaemia due to defective haemoglobin production. The chronic anaemia causes tissue 

hypoxia which in turn stimulates erythropoiesis (Tanno et al., 2007). Frequent blood 

transfusions are able to correct the anaemia however this results in sever tissue iron 

over load which is not compensated for by increased hepcidin and in turn increases 

iron absorption causing secondary iron overload (Tanno et al., 2007). The expression of 

growth differentiating factor 15 (GDF15) and twisted gastrulation (TWSG1) were 

found to be significantly increased in patients and mice with β-Thalassaemia (Tanno et 

al., 2007, Tanno et al., 2009). Additionally both proteins were able to inhibit hepcidin 

production in vitro. One could argue that the increase in GDF15 in β-Thalassaemia 

patients could be due to iron loading however this was not the case as GDF15 levels 

were not increased in the blood of patients with primary haemochromatosis (Tanno et 

al., 2007). The study conducted by Tanno and colleagues utilised the serum from β-

Thalassaemia patients to treat hepatocytes which reduced hepcidin expression. 



Neeta Patel | 47 

 

Interestingly, the same effect was also observed having depleted the serum of GDF15 

suggesting other molecules could be assisting with GDF15 to suppress hepcidin. 

Investigators hypothesised TWSG1 to be the second erythroid regulator of hepcidin 

which was able to inhibit hepcidin production through inhibiting the action of BMP2 

and BMP4 (Tanno et al., 2009). In this context, the function of TWSG1 is of an anti-BMP 

factor, however earlier investigations have demonstrated TWSG1 to be a secreted 

protein that has a permissive role in BMP signalling. Chordin is a well defined BMP 

antagonist and has been shown to bind to BMP molecules through interactions of its 

four cysteine rich domains (Zhang et al., 2007b). Additionally, the binding of chordin 

to BMP’s has been shown to be facilitated by TWSG1, where the formation of a ternary 

complex improves the antagonising ability of chordin. Thus in this context TWSG1 

functions as an anti-BMP factor (Chang et al., 2001). The cleavage of chordin by the 

zinc metalloproteinase Xolloid generates fragments of chordin which are bound by 

BMP molecules. The expression of TWSG1 in this context however promotes the 

degradation of chordin fragments thus acting as a pro-BMP molecule (Larrain et al., 

2001). 

 

Recombinant erythropoietin (EPO) injections in mice significantly stimulated 

erythropoiesis and decreased serum iron status, non haem iron concentrations and 

hepcidin expression (Kong et al., 2008). The mechanism by which EPO suppressed 

hepcidin was shown to occur by preventing the binding of CCAAT/enhancer-binding 

protein alpha (C/EBPα) to C/EBP domains located on the hepcidin promoter. EPO 

significantly decreased the ability of C/EBPα to bind to the hepcidin promoter through 

the action of erythropoietin receptor (EPOR) (Pinto et al., 2008). Additionally an effect 

of EPO on hepcidin levels in vivo was shown through inhibition of STAT3 and SMAD 

phosphorylation (Huang et al., 2009). These results suggest that EPO may affect 

hepcidin by modulating the STAT/BMP signalling pathway, however the proteins 

involved need to be further investigated. Additionally, EPO alone does not appear to 

directly modulate hepcidin transcription. Inhibition of erythropoiesis through the 

cytotoxic inhibitor carboplatin, increased hepcidin expression without affecting serum 
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EPO levels (Pak et al., 2006).   In a more recent study, the importance of the BMP 

signalling cascade in regulating hepcidin expression during increased erythropoiesis 

was demonstrated through the use of a mouse model of chronic stimulated 

erythropoiesis with secondary iron loading by treatment of mice with the haemolytic 

agent phenylhydrazine (PHZ). BMP6 levels were increased (a sign of increased stores), 

however hepcidin remained suppressed with reduced pSMAD 1,5,8 expression, 

suggesting the erythroid regulator may attenuate hepcidin expression through  effects 

on BMP signalling (Frazer et al., 2012). 

 

1.5.3.5 Oxidative stress  

 

The labile iron pool (LIP) represents non ferritin bound iron that is able to react with 

oxygen to form reactive oxygen species (ROS). β-Thalassaemia patients have increased 

LIP which may contribute to increased oxidative stress in these patients (Staubli and 

Boelsterli, 1998, Rachmilewitz et al., 2005). Additionally, oxidative stress has been 

shown to suppress hepcidin expression in patients with alcoholic liver disease. 

Treatment of mice with 10 or 20% alcohol for seven days significantly reduced liver 

hepcidin expression which correlated with increased expression of duodenal iron 

transporters DMT1 and ferroportin. A similar trend was observed in vitro in HepG2 

cells transfected with alcohol metabolising enzymes, providing a direct link between 

alcohol and hepcidin expression (Harrison-Findik et al., 2006).  

 

The mechanism by which ethanol induces oxidative stress has been shown to involve 

the C/EBP proteins. Evidence of this comes from the findings that exposure of the 

hepcidin promoter encompassing the C/EBP responsive element to ethanol, reduced 

promoter activity by reducing the binding ability of C/EBPα protein (Harrison-Findik 

et al., 2006). A similar finding was observed in rats where the effect of chronic alcohol 

consumption reduced the expression of C/EBPα in the liver. More recent findings have 

identified the importance of the TGF-β signalling pathway in the involvement of 

alcohol mediate hepcidin suppression. Chronic alcohol consumption increased the 
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expression of the cytokine TGF-β which correlated with increased pSMAD2 protein 

expression. The expression of pSMAD 1,5,8 however was unchanged suggesting no 

involvement of the BMP pathway in this effect. Additionally, the authors report the 

lack of BMP receptor-1 phosphorylation despite increased BMP2 expression after 

alcohol consumption suggesting that the simultaneous activation of the TGF-β with the 

inhibition of the BMP pathway may contribute to the suppressive effects of hepcidin by 

alcohol in vivo (Gerjevic et al., 2012).  

 

So far the effects of ethanol mediated c/EBPα suppression have been reversed by 

treatment with Vitamin E or antioxidant N-acetyl cysteine. Since the effects of C/EBPα 

can be reversed, C/EBPα activators may be therapeutically useful for iron overload 

prevention in HH of thalassemia syndromes (Harrison-Findik et al., 2006).   

 

1.6 Disorders of hepcidin regulation 

 

1.6.1 Primary disorders of hepcidin dysregulation  

 

Primary disorders of hepcidin regulation are those which result from mutations in 

genes that are directly involved in the regulation of hepcidin. These can result in excess 

or absence of hepcidin production. 

  

1.6.1.1 Hepcidin deficiency  

 

Hereditary haemochromatosis (HH) are a group of inherited disorders characterised 

by hyper-absorption of iron from the diet leading to increased transferrin saturation 

which result in increased uptake non transferrin bound iron (NTBI) by the liver and 

other organs (Pietrangelo, 2006). The listed characteristics are associated with an 

inappropriately low of production of hepcidin. HH can be classified into four groups 
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based on the gene mutated. These are listed in Table 1.3 (adapted from (Deugnier et al., 

2008)). Heritable iron overload has also been shown to occur through ablation of the 

genes encoding BMP6 and SMAD4 in mice, however no known human clinical 

equivalents have been reported (Ganz, 2011). 

 

1.6.1.2 Hepcidin excess 

 

Iron refectory iron deficiency anaemia (IRIDA) is a rare heritable form of iron 

deficiency anaemia characterised by hypochromic, microcytic anaemia, low serum iron 

and low transferrin saturation despite apparent marrow, spleen or hepatic iron stores 

(Ramsay et al., 2009). Patients with IRIDA show inappropriately high hepcidin 

expression which may explain why these patients are unresponsive to oral iron 

therapy but partially responsive to parenteral iron administration (Finberg et al., 2008). 

Studies have linked the IRIDA phenotype to mutations of the TMPRSS6 gene encoding 

the serine protease matriptase-2 (MT-2) (Finberg et al., 2008). Mutations lead to 

reduced MT-2 activity in hepatocytes which results in increased hepcidin synthesis, 

and as a result decreased plasma iron concentration leading to anaemia, suggesting 

that the normal function of MT-2 is to repress hepcidin expression in response to iron 

deficiency. At the molecular level, mutations of MT-2 lead to increased HJV expression 

and therefore increased BMP signalling (Ramsay et al., 2009). 

 

1.6.2 Secondary disorders of hepcidin dysregulation 

 

Secondary disorders of hepcidin dysregulation are those which result in iron overload 

or iron deficiency as a phenomenon secondary to a number of different causes.  

 

1.6.2.1 Hepcidin deficiency in acquired disorders  
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Ineffective erythropoiesis is a condition which results in the premature death of red 

blood cells which in turn results in anaemia. Diseases associated with ineffective 

erythropoiesis with anaemia include the thalassaemia syndromes and 

dyserythropoietic anaemia’s. In these diseases, severe iron overload develops as a 

result of blood transfusion and of greatly expanded erythropoiesis which suppresses 

hepatic hepcidin production and increases dietary iron absorption. Despite the iron 

overload, hepcidin expression remains low, highlighting the importance of the 

dominant effect of the erythroid regulator in the suppression of hepcidin irrespective 

of the iron stores (Origa et al., 2007).  

 

It has been shown at the molecular level that the suppression of hepcidin in these 

conditions could be carried out by one or more mediators produced during ineffective 

erythropoiesis. The candidate mediators are members of the BMP family, GDF15 and 

TWSG1 (discussed in section 1.5.3.4). However the role of these mediators in hepcidin 

suppression was not demonstrated in other studies in which inhibition of 

erythropoiesis decreased both GDF15 and TWSG1 without affecting hepcidin 

expression (Bartnikas et al., 2011).  

 

1.6.2.2 Hepcidin excess in acquired disorders  

 

In contrast to hepcidin deficiency, hepcidin excess has been associated with the 

development of anaemia (anaemia of inflammation/anaemia of chronic disease) as a 

result of chronic infections and inflammation. Disorders resulting from these 

conditions are characterised by an over production of inflammatory cytokines in 

particular Il-6 and TNF-α (Weiss and Goodnough, 2005). Increased inflammatory 

cytokines, increase hepcidin expression via the STAT3 pathway which causes iron 

retention in macrophages and hepatocytes due to a lack of ferroportin expression and 

decreased erythropoiesis due to the limited availability of iron (Nicolas et al., 2001b, 

Nemeth et al., 2004a).     
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1.7 Aims and hypothesis  

 

Hypotransferrinaemia is a rare genetic disorder characterised by severe deficiency in 

serum transferrin (Trenor et al., 2000). The affected patients and mouse models 

demonstrate chronic anaemia with parenchymal iron overload and severe hepcidin 

deficiency. The precise mechanism of hepcidin suppression in this mouse model 

remains unclear and may involve a number of signalling pathways. 

 

The aims of the present study were to investigate four potential regulators of hepcidin 

(BMPER, BMP8b, VWF and ATOH8) identified in hypotransferrinaemic mice liver, 

with a focus on the regulation of hepcidin by the BMP/SMAD signalling pathway. 
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Chapter 2 . 

Material and methods
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2.1 Cell culture  

 

2.1.1 Cell lines  

 

Human hepatocellular carcinoma cells (HepG2 and Huh7 cells) and Human 

Embryonic Kidney cells (HEK-293 cells) were purchased from the American Type 

Culture Collection (ATCC) and were cultured in Dulbecco Modified Eagles Medium 

(DMEM) supplemented with 10% heat inactivated FBS/FCS, Penicillin G (3 mg/L), 

Streptomycin (5 mg/L) and L-glutamine (200 mM) (Sigma Aldrich, UK). Cells were 

maintained at 37ºC under 95% air and 5% CO2. Adherent cells were harvested and/or 

re-seeded using trypsin/EDTA(Sigma Aldrich, UK). Briefly, cells were washed with 

PBS, before being treated with trypsin/EDTA for 5 minutes at 37ºC, after which the 

cells were resuspended in cell culture media for immediate use or freezing media. Cells 

were initially placed at -80ºC prior to storage in liquid nitrogen.  

 

Cell number and viability were determined using a haemocytometer and trypan blue 

staining. Depending on the format of the experiment, the concentration of the cells was 

counted and plated at approximately 2.5 X 105 cells/mL. The concentration was 

calculated as follows: 

Cells per mL = average number of cells in primary square x 104 x dilution factor. 

 

2.1.2 Primary cell cultures  

 

Primary human hepatocytes were obtained and cultured in collaboration with Dr. 

Ragai Mitry (King’s College Hospital, UK). Human hepatocytes were isolated from 

donor liver segments/lobes. All tissues were consented for research in accordance with 

the Research Ethics Committee of King’s College Hospital. Cell isolation was carried 

out using a modified two-step collagenase perfusion technique, and hepatocytes were 
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purified by low speed centrifugation at 50g for 5 minutes at 4ºC (Mitry et al., 2003). 

Cells were cryopreserved in University of Wisconsin solution containing 10% DMSO 

using a controlled-rate freezer and stored at -140ºC.  

 

Before plating the primary cells, the collagen coated cell culture plates were prepared. 

This was carried out by washing the collagen coated wells in MEM-Eagle media and 

incubation at 37ºC for 20 minutes. This is carried out to neutralise the acetic acid used 

to make the collagen coated plates. Having washed the wells, the previously isolated 

hepatocytes were thawed out quickly ensuring that the cells do not reach room 

temperature. They were then diluted in ice cold MEM-eagle media (Sigma Aldrich, 

UK) in a drop-wise manner to prevent cell shock. Percoll (Sigma Aldrich, UK) density 

gradient centrifugation of cell suspensions was carried out to improve the viability of 

cells. Approximately 25% percoll was added to a final volume of 50 mL of cells. The 

cells were then centrifuged at 250g for 20 minutes at 4ºC. The pellet contained viable 

cells whilst any cells found floating were decanted and were considered to be dead 

cells. The cells were resuspended in Williams’ E medium supplemented with 10mM 

HEPES (Cambrex, UK), 10% heat inactivated FCS, 2mM L-Glutamine (Invitrogen, UK), 

0.1 µM dexamethasone, 0.1 µM insulin, penicillin (50 IU/mL) and streptomycin (50 

µg/mL Sigma Aldrich, UK) on ice to maintain cell viability before being subjected to 

low speed centrifugation at 50g for 5 minutes at 4ºC. Cells were then counted using a 

haemocytometer as described previously and plated out. Cells were incubated at 37ºC 

over night before being used for experiments. 

 

2.1.3 Recombinant peptide treatments 

 

Recombinant peptides were purchased from R&D Systems (USA) or PeproTech (USA) 

and were reconstituted according to manufacturer’s instructions. The concentrations of 

individual peptides are listed in Table 2.1. 
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Table 2.1 list of recombinant peptides used in vitro studies 

Peptide name Concentration of stock 

solution 

Recombinant Human BMP 2  

(R&D Systems, USA) 

100 µg/ mL 

Recombinant Human BMP 4 

(R&D Systems, USA) 

100 µg/ mL 

Recombinant Human BMP 6 

(R&D Systems, USA) 

380 µg/ mL 

Recombinant Human BMP 8b 

(R&D Systems, USA) 

100 µg/ mL 

Recombinant Human Crossveinless-2 (BMPER) 

(R&D Systems, USA) 

50 µg/ mL 

Recombinant Human Twisted Gastrulation Protein 

(TWSG1) (PeproTech, UK) 

1000 µg/ mL 

Recombinant Human BMP8B  

(Adipo Bioscience, Inc, USA) 

200 µg/ mL 

 

2.1.4 Apo- and holotransferrin treatment 

 

Human apo- and holotransferrin were purchased from Sigma Aldrich (UK) and were 

reconstituted with sterile water as per manufacturer’s instructions. HepG2 cells were 

grown in 6-well plates until 60-80% confluence was reached. The medium was 

replaced with serum-free DMEM and the cells were incubated for several hours prior 

to treatment. A working solution of 100 µM was prepared and added to the cells to 

give the desired final concentrations. Holotransferrin and apotransferrin were added to 

cells at various ratios to reach a constant total transferrin concentration of 30 µM. Cells 

were treated over night at 37ºC before harvesting.    
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2.2 Animals  

 

2.2.1 Mouse models 

 

All mice were maintained on standard commercial diet (Rodent Maintenance diet; 

RM1, Special Diet Services; UK) and were fed ad libitum unless indicated. Mice were 

sacrificed by isofluorane anaesthesia followed by neck dislocation. The central lobe of 

the liver was collected for further analysis. Blood samples were withdrawn by cardiac 

puncture and were allowed to clot before being centrifuged at 16,000g for 5 minutes to 

collect serum. All animal experiments were performed under the authority of a UK 

Home Office licence. 

 

Hypotransferrinaemic (HPX, Trfhpx/hpx) were bred on the Balb/c background strain and 

were maintained on Biosure diet CRM (Special Diet Services, Cambs). Homozygous 

HPX mice were obtained through HPX/+ * HPX/+ crosses (Simpson et al., 1991). HPX 

mice were maintained by weekly intraperitoneal injections of 50-250 µL mouse serum 

obtained from wild type/heterozygous littermates. The mice were sacrificed and tissue 

samples were collected at the age of 7-8 weeks or 10-11 weeks. In the case of HPX mice 

aged 10-11 weeks, mice were able to survive in the absence serum injections. Wild type 

or heterozygous littermates which were healthy and have normal iron metabolism 

were used as controls.   

 

CD1 mice were purchased from Charles River (Margate, UK). All mice were 

maintained on the RM1 diet as described above. Animal treatments were commenced 

between 6-8weeks of age.  

 

Bmper knockout heterozygous (Bmper+/-) mouse samples were obtained through 

collaboration by Dr. Cam Patterson (Carolina Cardiovascular Biology Centre, 

University of North Carolina (Kelley et al., 2009)). Liver and serum samples from 12-
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week old wild type and Bmper+/- mice were transported to King’s College on dry ice 

and further analysed 

 

Mouse models in which the HFE gene has been disrupted display a similar phenotype 

to patients who have haemochromatosis (Zhou et al., 1998). Male homozygote HFE 

knockout mice (HFE-/-) of 8 weeks of age on a 129/Ola*C57BL/6 mixed background 

were used (Simpson et al., 2003). 

 

The Hepcidin1 knockout mouse model (Hamp1-/-) (mixed C57BL/6*129 background 

strain backcrossed for at least 5 generations on C57BL/6) was obtained through 

collaboration with Dr. Sophie Vaulont (Institute of Cochin; Paris, France). Female 

Hamp1-/- mice and wild type littermates aged 5-7 weeks old were utilized.  

 

2.2.1.1 Hypoxia  

 

Male CD1 mice aged 8 weeks were exposed to 24 hours  or 72 hours of hypoxia (0.5atm 

in a hypobaric chamber) after which the treated mice were immediately anaesthetised 

with isofluorane and samples were collected. Control mice were maintained at 

normoxia. 

 

2.2.1.2 Bmper treatment 

 

Male CD1 mice aged 6 weeks were given an intraperitoneal injection of 2 µg, 20 µg, or 

50 µg of recombinant mouse BMPER peptide (R&D systems, USA) dissolved in 0.5 mL 

of sterile PBS. Control mice were injected with 0.5 mL sterile PBS. The mice were 

sacrificed after 18 hours and serum and tissues were collected for further analysis. In a 

similar experiment, mice of the same age and sex were in injected with 10 µg of 

recombinant mouse BMPER peptide. The mice were sacrificed at 2 hours or 6 hours 
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post-injection where serum and tissues were collected for further analysis. Control 

mice were injected with PBS as described above.  

 

2.2.1.3 Phenylhydrazine treatment 

 

Phenylhydrazine (PHZ) is a commonly used experimental procedure to induce 

haemolysis in animals to create a mouse model of acute haemolytic anaemia. The 

reaction of PHZ with ferrihaemoglobin forms ferrihaemochrome along with reactive 

oxidants which denature oxyhaemoglobin. As a result, PHZ treated mice have 

enhanced erythropoietic activity, increased iron absorption and tissue iron loading, all 

characteristics that mirror haemolytic anaemia (Latunde-Dada et al., 2006). Female 

Hamp-/- mice along with wild type littermates aged 5-7 weeks were intraperitoneally 

injected with 60 mg/kg body weight of neutralized phenylhydrazine or saline solution 

twice on consecutive days. In a separate study, male CD1 mice aged 8 weeks were 

treated in the same way. The mice were sacrificed and samples were collected three 

days after the last injection. 

 

2.3 General molecular biology techniques  

 

2.3.1 RNA extraction from cells and tissues 

 

RNA was extracted using the TRIzol reagent protocol (Invitrogen, UK). Briefly, cells 

were washed with ice cold phosphate buffered saline (PBS) before being resuspended 

in 0.5 mL TRIzol reagent. Tissue samples were snap frozen by immersion into liquid 

nitrogen upon collection and were stored at -80ºC. Approximately 40-100 mg of mouse 

tissues (liver and muscle) was homogenised in 1 mL of TRIzol using a glass 

homogeniser. The cell and tissue lysates were incubated at room temperature for 5 

minutes and phase separation was achieved by adding 200 µL of chloroform per 1 mL 

of TRIzol reagent and shaken vigorously for approximately 15 seconds. The samples 
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were centrifuged at 12,000g for 15 minutes at 4ºC. The top aqueous phase containing 

RNA was removed and further precipitated by the addition of half a volume of 

isopropanol. The samples were left at room temperature for 10 minutes before being 

centrifuged at 12,000g for 10 minutes at 4ºC. The isopropanol was decanted and the 

RNA pellet was washed in 1 mL of 75% ethanol and further centrifuged at 7,500g for 5 

minutes. The ethanol was then removed and the pellet was air dried and resuspended 

in nuclease-free water. The quality of RNA was determined by running 1 µL of RNA 

on an agarose-formaldehyde gel and quantified using a Nanodrop spectrophotometer 

(ND-1000, Nanodrop Technologies, USA). The level of protein and phenol 

contamination was determined by the Data provided by the nanodrop where A260/280 

and A260/A270 ratios indicated protein and phenol contamination, respectively.  

 

2.3.2 Complementary DNA (cDNA) synthesis  

 

Complementary DNA (cDNA) was synthesised from total RNA extracted from either 

cells or tissues using a Transcriptor High Fidelity cDNA Synthesis Kit (Roche 

Diagnostics, Germany). The RNA amount was quantified using a NanoDrop 

spectrophotometer and the ratio of A260/280 was used to assess the purity of the RNA. 

One microgram of RNA was primed with 1 µL of anchored oligo-dT, in a final reaction 

volume of 12 µL which was made up with nuclease-free water. The mixture was 

denatured by heating at 65ºC for 10 minutes before being transferred on to ice to cool 

down. The mixtures were briefly spun after which the following reaction mixture was 

added to each sample: 4 µL of reaction buffer, 2 µL of dNTP mix (10mM each), 1 µL of 

0.1M DTT, 0.5 µL of protector RNase inhibitor, 0.25 µL of transcriptor high fidelity 

reverse transcriptase and 0.25 µL of nuclease-free water. The reaction mix was 

incubated at 50ºC for 30 minutes followed by 85ºC for 5 minutes. The cDNA was stored 

at -20ºC for future use.  

 

2.3.3 Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR)  
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Semi-quantitative RT-PCR was carried out using Go-Taq polymerase (Promega, USA) 

using the cDNA templates obtained from section 2.3.2. Cycle numbers and template 

concentrations were optimized to avoid over saturation of the final PCR product. The 

products were resolved on either a 1% or 2% agarose/ethidium bromide gel depending 

on the size of the product. Messenger RNA from the gene encoding mouse beta actin 

(Actb) and human beta actin (ACTB) were expression controls. The band intensities 

were quantified using ImageJ software (NIH; USA) and normalized to beta actin 

expression where possible. The sequences of the utilised primers are listed in 

Appendix 2: Primers. 

 

2.3.4 Real-time polymerase chain reaction (Q-PCR) 

 

Real-time PCR was conducted using the cDNA obtained from section 2.3.2. Real-Time 

PCR primers were designed using the Universal Probe Library system software (Roche 

Diagnostics, Germany). Probes for the corresponding primers were provided by the 

Genomics centre, King’s College London. Briefly per reaction, 0.05 µL of forward and 

reverse primers were mixed with 0.25 µL of the universal probe. This reaction was 

mixed with 12.5 µL of FastStart Universal Probe Master mix (Rox) (Roche Diagnostics, 

Germany). The reaction was made up to a final volume of 20 µL with nuclease free 

water with an additional 5 µL of diluted cDNA. Quantitative real-time PCR was 

carried out using ABI Prism 3700 PCR machine (Applied Biosystems, USA) and 

analysed using SDS software at King’s College Genomics centre. Messenger RNA from 

the gene encoding mouse beta actin (Actb), human beta actin (ACTB), mouse Rpl19 

(Rpl19) and human Rpl19 (RPL19) were used as house-keeping genes. The expression 

of the gene of interest was normalised to those of a house-keeping gene to obtain 

relative gene expression. The relative expression of the gene of interest in each group 

was compared to the relative expression in the control group. The relative gene 

expression in the treatment group was expressed as a fold change compared to the 

relative gene expression in control group. The method was based on that of Livak and 

Schmittgen (Livak and Schmittgen, 2001). The sequences of the utilised primers are 

listed in Appendix 2: Primers. 
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2.3.5 Gel electrophoresis  

 

Depending on the estimated size of the fragment, DNA was resolved on 1% to 2% 

agarose gels made by using 1X TBE buffer (1M Tris, 0.9 M Boric Acid, and 0.5 M 

EDTA). The integrity of RNA was verified before any gene expression analysis was 

carried out. RNA was resolved on a 1% MOPS gel (10% 10X MOPS buffer, 8% 

formaldehyde in water). The RNA samples were denatured at 99ºC for 3 minutes in 6X 

loading dye spiked with ethidium bromide before being loaded on the gel. Samples 

were resolved at 100-120V (Bio-Rad power pack, USA).  

  

2.3.6 Transformation and plasmid DNA preparation  

 

The pGL3 vector expressing 0.9kb and 2.7kb of the human hepcidin promoter along 

with a mutant BMP-responsive element (BMP-RE) were a gift from Dr. Pavle Matak 

(Duke University Medical Center, North Carolina, USA) (Matak et al., 2009). The 

pcDNA 3.1-Matriptase-2 FLAG expressing vector were kindly provided by Professor 

Carlos Lopez-Otin (University of Oviedo, Spain) and the MASK and R774C vectors 

were kindly provided by Professor Clara Camaschella (University Vita-Salute San 

Raffaele, Italy) (Silvestri et al., 2008b). The vectors were transformed into chemically 

competent E.coli cells by heat shocking at 42ºC for 30 seconds and immediately 

transferred on to ice before being recovered in LB broth at 37 ºC for an hour on a 

shaker. The transformed bacterial cells were plated on agar-ampicillin plates and left 

overnight. Colonies were picked and grown up in LB broth containing ampicillin (50 

µg/mL) overnight at 37ºC shaking. Plasmid DNA was purified using QIAGEN Plasmid 

Mini/Midi/Maxi kits as per the manufacturer’s instructions (QIAGEN, Germany).  

 

Plasmids expressing Myc-DDK-tagged ORF clones of Homo sapiens, Atonal homologue 

8 (Drosophila) (ATOH8 – RC203005), Bone morphogenetic protein 8b (BMP8B – 
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RC215336) and von Willebrand factor C domain containing protein 2-like (VWC2L – 

RC212458) were purchased from OriGene Technologies (Rockville, MD) as 

transfection-ready DNA. The plasmids were transformed into E.coli cells and grown up 

to yield larger amounts of plasmid DNA, as described above, using Kanamycin as the 

antibiotic for selecting positive clones for use as transfection ready DNA. Plasmid 

vector maps can be found in Appendix 3: Plasmid maps.    

 

2.3.7 Diagnostic restriction enzyme digest 

 

A diagnostic restriction enzyme digest was carried out in order to screen for the 

plasmid DNA obtained in section 2.3.6. The plasmid DNA was digested with the same 

enzymes that were used to insert DNA fragments into the vector backbone. Briefly, 1-2 

µg of plasmid DNA was incubated with 1 µL of restriction enzyme (0.5 µL each for a 

double digest), 1 µL of BSA and 5 µL of compatible buffer in a final reaction volume 

made up to 20 µL at 37ºC for 1-4 hours. The products were resolved on a 1% agarose 

gel. The expected size of fragments for each plasmid are listed in Table 2.2. 

 

Table 2.2 Restriction enzymes utilised in diagnostic restriction digest of all constructs used 

Plasmid  Restriction 

enzymes 

Expected size of product(s) 

Tk-Renilla MluI , BamHI Single digest: 4045bp 

Double digest: 2535bp; 1510bp 

WT 0.9b/ BMP-RE1/ E-box 1,2 MluI, Xhol Single digest: 5718bp 

Double digest: 4818bp; 900bp 

WT 2.7/ BMP-RE2  MluI, Xhol Single digest: 7518bp 

Double digest: 4818bp; 2700bp 

Myc-DDK-tagged ORF clones BamHI, NotI,  Single digest: 4900bp 

Double digest: 4800bp; 1,00bp 

Matriptase -2/ MASK/ R774C KpnI, Xhol Single digest: 7924bp 

Double digest: 5374bp; 2550bp 
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pSecTag2BMPER AscI, XhoI Single digest: 7026bp 

Double digest: 5080bp, 1946bp 

 

2.4 Protein analysis  

 

2.4.1 Protein extraction  

 

2.4.1.1 Total cell lysate extraction  

Total cell lysates were extracted from mouse tissues by homogenisation in 500 µL of 

RIPA buffer (10mM TRIS, 150mM NaCl, 1mM EDTA, 1% NP-40, 0.1% SDS) and 

protease inhibitor cocktail (1:100 dilution, Sigma Aldrich, UK). The same extraction 

buffer was used to extract whole cell lysates from cells. In general, cells were washed in 

ice cold PBS and harvested in RIPA buffer containing protease inhibitor by scraping 

and incubating on ice for 5 minutes. Tissue and cell extracts were prepared using NET-

TRITON (150mM NaCl, 5mM EDTA, 10mM TRIS pH 7.4 and 1% Triton X-100) as 

described by Zhang et al (Zhang et al., 2007a) for the immunodetection of pSMAD 1,5,8 

and total SMAD 1,5,8. The homogenates were centrifuged at 1,000g at 4ºC for 5 

minutes. 

 

2.4.1.2 Nuclear protein extraction 

Nuclear protein from cells and tissues was extracted using the NE-PER nuclear and 

cytoplasmic extraction kit (Thermo scientific, UK) according to the manufacturer’s 

instructions. Briefly, cells or tissues were homogenised in buffer CERI and subjected to 

vortex for 15 seconds and then incubated on ice for 10 minutes after which 11 µL of 

buffer CERII was added. The cells were then vortex for 5 seconds and centrifuged at 

16,000g at 4ºC for 5 minutes. The remaining supernatant (cytoplasmic extract) was 

transferred to a clean pre-chilled tube. The insoluble pellet (nuclei) was suspended in 

buffer NER, after which the samples were vortex for 15 seconds every 10 minutes for a 

total of 40 minutes. Nuclear extracts were obtained by centrifugation at 16,000g at 4ºC 

for 10 minutes.   



Neeta Patel | 66 

 

2.4.1.3 Protein quantification  

The resulting supernatants from total cell lysates and nuclear protein lysates were 

quantified using a BSA assay (Bio-Rad, USA) according to the manufacturer’s protocol. 

Briefly, buffer A was added to reagent S in a 1:50 ratio. 5 µL of sample was added to 15 

µL of nuclease free water to which 100 µL of reagent A + S mixture and 800 µL of 

reagent B were added and incubated for 15 minutes at room temperature. The optical 

densities of the samples were measured by spectrophotometry at 750nm. A protein 

standard curve was generated using bovine serum albumin (BSA) as a reference 

protein from which protein concentrations of the samples were determined. 

 

2.4.2 Western blot analysis  

 

50-100 µg of proteins from section 2.4.1 or 5 µl of mouse sera was separated by SDS-

PAGE on either 4-15% Mini-Protean precast gel or 4-15% Criterion TGX precast 

gradient gel depending on the number of samples loaded and protein to be detected 

(Bio-Rad, USA). Beta-mercaptoethanol was added to Laemmli loading dye according 

to the manufacturer’s instructions (Bio-Rad, USA). The loading dye was added to 

protein samples in a 1:1 ratio, before being separated and transferred to a PVDF 

membrane or nitrocellulose membrane using a trans-blot turbo transfer system (Bio-

Rad, USA). The membrane was blocked with 5% milk in PBST for 1-2 hours at room 

temperature followed by an overnight incubation with primary antibody in blocking 

solution at 4ºC. This was followed by three 5 minute wash steps with PBST at room 

temperature after which the membranes were incubated with secondary antibody 

coupled with horse radish peroxidase. The membrane was washed for a second time 

(three 5 minutes wash steps) and immunoreactive bands were visualised with Pierce 

ECL western blot substrate (Thermo Scientific, USA) on Hyperfilm ECL (GE 

Healthcare, UK). The band intensities were quantified using ImageJ software (NIH, 

USA) and normalized to beta actin expression where possible. For the detection of 

pSMAD, 5% BSA was used as the blocking solution as opposed to 5% milk to prevent 
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the high background caused by phosphoproteins present in milk. The antibodies and 

their dilutions are listed in Table 2.3. 

 

Table 2.3 List of antibodies used for western blot analysis 

Primary antibodies Dilution 

Goat anti-mouse Crossveinless-2 (BMPER)  

(R&D Systems, USA) 

1:1,000 

Rabbit anti-Phospho-Smad1/Smad5/Smad8  

(Cell Signaling technology, USA) 

1:1,000 

Rabbit polyclonal Smad1/5/8  

(Santa Cruz Biotechnology, USA)  

1:1,000 

Rabbit anti- Smad1  

(Cell Signaling technology, USA) 

1:1,000 

Rabbit anti-FLAG(TM) 

(Sigma Aldrich, UK) 

1:1,000 

Mouse anti-c-Myc (9E10) 

(Santa Cruz Biotechnology, USA) 

1:1,000 

Mouse anti-DDK (IgG2a) 

(OriGene Technologies, USA) 

1:2,000 

Rabbit anti VWF (H-300) 

(Santa Cruz Biotechnology, USA) 

1:1,000 

Rabbit anti-ATOH8 

(OriGene Technologies, USA) 

1:1,000 

Sheep anti-BMP8b 

(R&D Systems, USA) 

1:1,000 

Rabbit anti-actin 

(Sigma Aldrich, UK) 

1:1,000 

 

  

Secondary Antibodies  

Polyclonal Rabbit anti-Goat Immunoglobulin/HRP 

(Dako Cytomation, Denmark) 

1:5,000 
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Polyclonal Goat anti-Rabbit Immunoglobulin/HRP 

(Dako Cytomation, Denmark) 

1:2,000 

Polyclonal Goat anti-Mouse Immunoglobulin/HRP 

(Dako Cytomation, Denmark) 

1:2,000 

Goat anti-Mouse Immunoglobulin/HRP 

(OriGene Technologies, USA) 

1:5,000 

Polyclonal Donkey anti-sheep Immunoglobulin/HRP 

(R&D Systems, USA) 

1:2,000 

 

2.4.3 Immunostaining  

 

Tissue sections were collected and immediately submerged in OCT embedding matrix 

(Thermo Scientific, USA) and stored at -80ºC. Cryostat sections were cut to 

approximately 5 µM thickness and mounted on poly-lysine coated slides (Sigma 

Aldrich, UK). All samples were stored -80ºC. Prior to staining, slides were air dried for 

30 minutes to 1 hour after which the slides were fixed in pre chilled acetone for 10 

minutes at 4ºC. The acetone was allowed to evaporate after which the sections were 

blocked with 1% BSA in PBS for 1 hour at room temperature in a humid chamber. 

Blocking buffer was removed and the sections were covered with primary antibody 

diluted 1:100 in blocking buffer for 1 hour at room temperature in a humid chamber. 

The slides were washed three times in a stream of PBS and then incubated with FITC-

conjugated secondary antibody (Dako Cytomation, Denmark) diluted 1:100 in PBS for 

45 minutes. After incubation, the slides were washed with PBS as before, and counter-

stained with VECTASHIELD Mounting Medium with Propidium Iodide (Oxford 

instruments, UK). Images were captured on DM IRE2 Confocal microscope (Leica; 

Wetzlar, Germany). The antibodies and their dilutions are listed in Table 2.4 

 

Table 2.4 List of antibodies used for immunostaining 

Primary antibodies Dilution 

Goat anti-mouse Crossveinless-2 (BMPER)  1:100 
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(R&D Systems, USA) 

Rabbit anti-ATOH8 

(OriGene Technologies, USA) 

1:100 

Secondary Antibodies  

Polyclonal Rabbit anti-Goat Immunoglobulin/FITC 

(Dako Cytomation, Denmark) 

1:200 

Polyclonal Goat anti-Rabbit Immunoglobulin/FITC 

(Dako Cytomation, Denmark) 

1:200 

 

 

2.5 Reporter gene assay  

 

A ‘dual’ luciferase reporter assay system was utilised for measuring luminescence in a 

Glo-max luminometer (Promega, USA). This approach utilises the expression and 

detection of two reporter enzymes, firefly (Photinus pyralis) and renilla (Renilla 

reniformis) simultaneously. Both enzymes have distinct evolutionary origins and 

therefore share no similarities in terms of structure and substrate requirements. They 

can therefore be used in the same system, where the luminescence from the 

experimental vector which expresses firefly can be quenched whilst activating the 

luminescence of the internal control which expresses renilla. In addition, neither 

enzyme requires any post translational processing and can therefore be detected as 

soon as they are translated. 

 

2.5.1 Cell transfection  

 

Plasmid DNA was transiently transfected into either HepG2 cells, Huh7 cells or HEK-

293 cells using FuGENE 6 or x-tremeGENE 9 DNA transfection reagent (Roche, 

Germany) according to manufacturer’s protocol. In brief, cells were seeded and grown 

to 50-70% confluence overnight in complete DMEM. The final amount of DNA, 

transfection reagent and media was dependent on the experiment. In general, the 
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transfection reagent was added to serum-free DMEM and the mixture was incubated 

for 5 minutes after which plasmid DNA was added. The hepcidin promoter and renilla 

were added in a 1:50 ratio. After a minimum of 15 minute incubation of the 

transfection reagent and plasmid DNA, the mixture was aliquoted out into each 

individual well in a drop-wise manner. The cells were left in the cell culture incubator 

for 6-8 hours after which over-night treatments of recombinant peptides, where 

appropriate, were commenced.  

 

2.5.2 Luminescence measurement  

 

Luciferase activity was assayed according to manufacturer’s protocol (GloMax 

Luminometer, Promega, USA). All reactions were carried out at room temperature in 

order to maintain efficient enzyme activity. Briefly, cells were washed in PBS before 

being lysed with 1X passive lysis buffer (PLB) for 15 minutes on a shaker. The volume 

of PLB used was dependent on the plate format. 20 µL of cell lysate was mixed with 

100 µL of luciferase buffer after which the firefly signal from the experimental vector 

was read. This was followed by the addition of Stop and Glo buffer, which consists of a 

firefly signal quencher and renilla substrate. A second reading was taken from the 

internal control renilla. The ratio of firefly/renilla was calculated allowing 

normalisation of the signal from the experimental vector (firefly) to the internal control 

(renilla) and thus minimising experimental variability caused by transfection 

efficiencies or cell viability.   

 

2.6 Measurement of iron parameters  

 

2.6.1 Haemoglobin measurement  

 

Haemoglobin was determined using the methods described by Beutler (Beutler, 1971). 

Briefly, 5 µL of blood was added to 1 mL of Drabkin’s solution (2 mM sodium cyanide 
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and 1 mM potassium ferricyanide, Sigma Aldrich, UK). This converted the 

haemoglobin into cyanmethaemoglobin, a stable complex which can be read 

spectrophotometrically at 540nm, where 1 mL of Drabkin’s solution was used as a 

blank measurement. The concentrations of haemoglobin were quantified using the 

following equation: 

Haemoglobin = (A540 x reaction volume)/(sample volume x extinction coefficient)

   = (A540 x 1.005)/(5 x 5.6)  g/dL 

Where A540 represents the absorbance of the samples at 540nm. 

 

2.6.2 Serum iron measurement  

 

Serum iron was measured using the Bio-Assay Systems kit (Hayward, USA) according 

to manufacturer’s instructions. In brief, 100 µl of working reagent containing reagent 

A, B and C in a 20:1:1 ratio was added to 25 µl samples and iron standards. The 

intensity of the colour was measured at 590nm. Serum iron was calculated from the 

following formula: 

Serum iron (µg/dL)  = (Absorbance unknown – Absorbance blank) / slope 

Where 1mg/dL iron equals 179µM.  

 

2.6.3 Tissue non haem iron measurement  

 

The weight of each individual tissue sample was recorded before being homogenised 

in 500µl of HEPES saline (pH 7.4) with a glass homogeniser. 100 µl of tissue 

homogenate was added to 200 µl of 25% trichloroacetic acid and 2M sodium 

pyrophosphate. The mixtures were then boiled for 10 minutes and centrifuged at 

10,000g for 5 minutes after which the supernatant was collected and the sediment was 

resuspended in 100 µl of TCA/sodium pyrophosphate. The samples were again boiled 

for 10 minutes and centrifuged at 10,000g for 5 minutes. The sediment was 
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resuspended in TCA/sodium pyrophosphate for the final time and the process of 

boiling and centrifugation was repeated. Non haem iron measurements were carried 

out by mixing 200 µl from the total supernatant with 100 µl of 0.23 M ascorbate, 80 µl 

of 10 mM ferrozine and 420 µl of 2 M sodium acetate pH 4.78. Samples were measured 

spectrophotometrically at 562nm. 1 µl of 10 mM FeCl3 in 10 mM HCL was added to 199 

µl of TCA/sodium pyrophosphate to obtain a standard and was mixed with ascorbic 

acid, ferrozine and sodium acetate as for the samples. The following calculation was 

used to calculate tissue nonhaem iron concentration:  

 

Non haem iron concentration = (A562 unknown x 125)/(A562 standard x wet weight) 

 

Where Non haem iron concentration = nmol/mg wet weight; A562 unknown and A562 

standard represent the absorbance of unknown samples and the standard at 562 nm, 

respectively (Simpson and Peters, 1990).  

 

2.7 Statistical analysis  

 

Data are presented as mean ± standard deviation (SD).  The comparisons of multiple 

groups for significant effects were conducted by 1-way analysis of variance (1-way 

ANOVA) with Tukey post-hoc test. 2-way analysis of variance (2-way ANOVA) was 

used to test significant differences between two or more groups and their interactions 

with Bonferroni post-hoc test. Unpaired Student t-test was used for simple comparison 

between control and treatment groups. A p value less than 0.05 was considered 

significant.  Data analysis was performed using SPSS (IBM, USA).  
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Chapter 3 . 

BMPER is a negative regulator of hepcidin
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3.1 Introduction  

 

A growing body of evidence has outlined the importance of the BMP signalling 

pathway during vascular development. Gain- and loss- of functions studies have 

identified BMP2 and BMP4 to be important pro-angiogenic factors.  Treatment of bone 

explants with BMP2 and BMP4 increased the production of vascular endothelial 

growth factor A (VEGFA), a protein that induces angiogenesis (Deckers et al., 2002). 

Treatment of human umbilical vein endothelial cells (HUVEC) with increasing 

concentrations of BMP4 and BMP2 increased capillary sprouting (Zhou et al., 2007, 

Finkenzeller et al., 2012). Failure to co-ordinate the expression of these proteins in vivo 

can lead to increased angiogenesis which can promote tumour growth and 

development. Investigations into antagonising the effects of BMPs during increased 

vascular development identified Bone morphogenetic protein (BMP) binding 

endothelial precursor derived regulator (BMPER) to play a pivotal role in fine-tuning 

BMP activity during angiogenesis. 

 

The formation and patterning of veins is a well defined process in Drosophila wing 

development. The BMP signalling pathway plays a pivotal role in the maintenance of 

cross veins during the later stages of wing development (Conley et al., 2000). By 

investigating a Drosophila mutant ‘’crossveinless’’ where the mutant fly lacked small 

cross vein between the wing capillaries, a group identified the causative gene naming 

it  Crossveinless-2 (Cv-2) (Conley et al., 2000). The orthologous mouse protein named 

Bone morphogenetic protein (BMP) binding endothelial precursor derived regulator 

(BMPER) was identified from a screen of differentially expressed transcripts during 

early endothelial cell development (Moser et al., 2003). Altered BMPER expression in 

zebrafish as in fly adversely affected the development of blood vessels, (Moser et al., 

2007).  
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BMPER is a secreted protein that contains five cysteine-rich von Willebrand type-C like 

domains (CR-domains) at the N-terminus followed by a von Willebrand factor type D 

located at the C-terminus. The presence of CR domains are characteristic of many BMP 

binding proteins such as chordin (Zhang et al., 2007b). Although both drosophila and 

mouse proteins are structurally similar, the presence of a trypsin domain in mouse 

BMPER may confer differences in the function compared to its drosophila homologue. 

 

The mRNA expression of BMPER was highest in the heart, lung, skin and brain; tissues 

which are of endothelial lineage as judged by FLK-1 (fetal liver kinase-1) positive 

expression, thus further emphasising the importance of the role of this protein in 

endothelial cell development (Moser et al., 2003). Additionally, the expression of 

BMPER was also found in regions which were important for angiogenesis in the 

developing embryo; the yolk sac where BMP2, BMP4 and BMP6 are expressed, and the 

AGM (aorto-gonadal-mesonepheric) region where increased expression of BMP4 was 

observed (Moser et al., 2003, Farrington et al., 1997, Marshall et al., 2000).  

 

The ability of BMPER to influence BMP signalling is closely linked to its ability to bind 

BMP2, BMP4 and BMP6 (Moser et al., 2003). Studies conducted in Drosophila wing 

suggest a pro-BMP effect where mutations in the CV-2 gene reduced BMP signalling 

and cross-vein formation (Conley et al., 2000, Coffinier et al., 2002, Rentzsch et al., 

2006). However, studies conducted in mouse suggest an anti-BMP effect (Binnerts et 

al., 2004, Moser et al., 2003). The biphasic nature of BMPER function has been 

suggested to occur via two potential mechanisms: 

 

(a) Firstly, several studies have demonstrated a concentration dependent effect 

of BMPER on BMP signalling, where the ratio of BMPs to BMPER determine 

the function of BMPER. This was demonstrated in functional assays using 

endothelial cell sprouting and migration of HUVEC cells; low 

concentrations of BMPER demonstrated faster migration which was 

prevented at higher concentrations. In addition to the concentrations of 
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BMP present, the type of BMP present may also determine the nature of 

BMPER’s actions. For example, BMPER inhibits DPP signalling (BMP2 and 

BMP4) without promoting the effects of BMP signalling at any given 

concentrations. In contrast the effects of BMPER on Gbb signalling 

demonstrated biphasic properties (Serpe et al., 2008).  

 

(b) Secondly, the protein exists in two forms, a full-length membrane bound 

associated form and a soluble form consisting of a heterodimer of C- and N-

terminal cleavage fragments connected by disulphide bonds (Rentzsch et 

al., 2006). The cleavage of the protein at a conserved acid sensitive 

autocatalytic cleavage site (FGDPH) through an undefined protease has 

been suggested to account for the ability of the protein to act as a pro- or 

anti- BMP modulator in vivo (Rentzsch et al., 2006); and hence may function 

in a manner similar to m-HJV and s-HJV where one is pro-BMP and the 

other an anti-BMP. 

 

In agreement with the former mechanism, the ratio of BMPER to BMP4 was shown to 

modify the cellular responses to BMP signalling where BMPER was shown to bind to 

BMP4 with a 2:1 molar stoichiometry; a low ratio of BMPER:BMP4 increased signalling 

and excess BMPER:BMP4 inhibited signalling through a trap and sink mechanism 

(Kelley et al., 2009). Based on this, the N-terminus of BMPER which is rich in CR 

domains, was shown to bind to BMP4 which prevented SMAD interaction and the C-

terminus of BMPER was required to sink the BMP4 further into the cell to ensure 

efficient lysosomal degradation (Kelley et al., 2009). 

 

The pro-angiogenic ability of BMP4 was shown to be dependent on the expression of 

BMPER where both proteins were required to stimulate endothelial cell production in 

vitro (Heinke et al., 2008). However later studies demonstrated that the expression of 

BMPER was negatively regulated in response to hypoxia, a pro-angiogenic stimulus, 

both in vivo and in vitro and these effects were independent of BMP4 expression. Since 

BMPER null mice do not survive beyond birth (Ikeya et al., 2006, Kelley et al., 2009) the 
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authors utilised heterozygote mice which displayed increased revascularisation in the 

retina along with increased BMP signalling compared to wild type controls upon 

exposure to hypoxia, demonstrating that the ratio of BMPER to BMP is critical in 

determining the in vivo angiogenic response to a physiological stimulus (Moreno-

Miralles et al., 2011). 

 

A plethora of factors have been shown to participate in the regulation of hepcidin. The 

studies in this chapter were conducted in order to elucidate the function of BMPER, a 

known BMP antagonist, in the regulation of hepcidin. The expression of BMPER and 

other iron related genes were investigated in various mouse models of altered iron 

metabolism along with the effects of BMPER on the hepcidin transcriptional response 

to BMP signalling. 
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3.2 BMPER expression in Hypotransferrinaemic mice (HPX) 

 

To identify factors which could potentially regulate or suppress liver hepcidin 

expression, microarray analysis was conducted on HPX livers and WT/Het liver. Bmper 

mRNA was found to be significantly upregulated in HPX mouse liver (McKie 

unpublished data). These results were confirmed by real-time PCR (Figure 3.1) and 

western blot/ immunostaining analysis on the liver and serum of HPX mice (Figure 3.2 

and Figure 3.3). Hepcidin mRNA transcripts were also measured to confirm hepcidin 

mRNA suppression compared to WT/Het.  

 

In order to explore the mechanisms of hepcidin suppression in the HPX mouse model, 

the mRNA expression of other known BMP antagonists (Noggin, Chordin, Twsg1, Hjv) 

as well as other hepcidin inhibitors such as Gdf15 were also measured by real-time PCR 

in HPX mouse liver (Figure 3.4A). There were no significant changes in any of the BMP 

antagonists listed with the exception of Gdf15 where hepatic levels were significantly 

increased.  

 

Hepcidin antagonists such as soluble HJV (s-HJV) have been reported to be highly 

expressed in other tissues as well as the liver (Papanikolaou et al., 2004, Rodriguez 

Martinez et al., 2004); therefore the suppression of hepcidin could be generated from 

more than one tissue. The levels of Hjv, Noggin and Chordin were also measured in the 

skeletal muscle of HPX mice and controls. No significant changes were observed 

(Figure 3.4B and Figure 3.4C). 
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Figure 3.1 Real-time PCR measurement of hepatic Bmper and Hamp1 mRNA levels in HPX mouse liver 

Liver Hamp1 and Bmper mRNA expression were measured in 10-11 week old male HPX mice 

(n=3). Wild type and heterozygous mice were used as controls. Relative mRNA expression was 

normalised against the house keeping gene Rpl19. Data are presented as mean ± SD for fold 

change as compared with wt/het mice (n=3 per group). The samples were measured in 

triplicate. Statistical analysis was performed by Student t-test. *p<0.05; **p<0.01 for CONTROL 

vs. HPX comparisons.  
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Figure 3.3 Immunofluorescence of liver BMPER expression in HPX mice 

The expression of BMPER from frozen liver sections of 10-11 week old male HPX mice was 

demonstrated though immunofluorescence technique. BMPER protein was visualised as green 

fluorescence and nuclei were counterstained in red (Leica DM-IRE2 confocal microscope, 

magnification x630). 
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Figure 3.4 Expression levels of other potential hepcidin modifiers in HPX mouse liver and muscle  

The mRNA expression of potential hepcidin modifiers were measured in the liver (A) (B) and 

muscle (C) of HPX mice. WT/Het mice were used as control. Relative mRNA expression was 

normalised against the house keeping gene Rpl19. Data are presented as mean ± SD for fold 

change as compared with Wt/Het mice (n=3 per group). The samples were measured in 

triplicate. Statistical analysis was performed by Student t-test. *p<0.05 for CONTROL vs. HPX 

comparisons.   

Liver 
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Muscle 

Liver 
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3.3 Effects of recombinant BMPER peptide on hepcidin 

transcription  

 

Identification of the BMP-responsive elements (BMP-RE 1/2/3) present within the 

hepcidin promoter has provided a direct link between the BMP signalling pathway 

and hepcidin expression. BMP-RE1 at position -84/-79 and BMP-RE2 at position -2,255/-

2,250 of the human hepcidin promoter function together to regulate basal hepcidin 

mRNA expression under control conditions (Casanovas et al., 2009). There is also the 

third BMP-RE however, unlike BMP-RE1/2, it is not full conserved between species and 

is not required for BMP signalling. 

 

pGL3 vectors expressing 0.9kb and 2.7kb of the human hepcidin promoter  

encompassing the BMP-REs were utilised together with controls in which the BMP-REs 

were mutated. The expression vectors were transiently transfected into to the HepG2 

and Huh7 cell lines which were treated with recombinant BMP peptides (BMP2/4/6) in 

the absence and presence of various concentrations of BMPER peptide. Western blot 

analysis of phosphorylated SMAD 1,5,8 (pSMAD 1,5,8) was carried out in order to 

investigate the effects on the SMAD signalling. 

 

As shown in Figure 3.5 and Figure 3.6, BMPER peptide strongly inhibited BMP2-

dependent hepcidin promoter activity in both HepG2 cells and Huh7 cells. pSMAD 

1,5,8 protein expression was increased by BMP2 treatment and this induction was 

suppressed in the presence of BMPER in both cell lines (Figure 3.7 and Figure 3.8). The 

effects of BMPER on BMP6-dependent hepcidin promoter were also investigated. 

Similar to BMP2, addition of increasing amounts of BMPER resulted in a significant 

inhibition of BMP6 induced hepcidin promoter activity (Figure 3.9 and Figure 3.10).  
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Figure 3.9 Effect of BMPER on BMP6 induced hepcidin promoter activity in HepG2 cells 

HepG2 cells transiently transfected with (A) 0.9kb wild type (WT) or BMP-RE1 mutant (MUT) 

hepcidin construct; (B) 2.7kb wild type (WT) or BMP-RE2 mutant (MUT) construct for 6-8 hours 

were treated with 25ng/mL BMP6 and 2500ng/mL BMPER or a combination both. Data are 

presented as mean ± SD derived from a single experiment with three biological replicates. The 

experiment shown is representative of 3 similar experiments. Statistical analysis was performed 

by 1-way ANOVA with Tukey’s post hoc test. ***p<0.001 –BMP6 vs. treatment comparison; 

•••p<0.001 for +BMP6 vs. treatment comparisons.  

*** 

••• 

••• 

*** 

B 

A 

••• 

••• 
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Figure 3.10 Effect of BMPER on BMP2- and BMP6 dependent hepcidin promoter activity in HepG2 cells 

HepG2 cells transiently transfected for 6 hours with wild type 2.7kb (WT) hepcidin promoter 

were treated with BMPER (1-1000 ng/mL), in the presence of BMP2 (25 ng/mL) or BMP6 

(25ng/mL). Data are presented as mean ± SD derived from a single experiment with three 

biological replicates. The experiment shown is representative of 3 similar experiments. 

Statistical analysis was performed by 1-way ANOVA with Tukey’s post hoc test. **p<0.01 for 

+BMP2 vs. BMP2+BMPER; •p<0.05 for +BMP6 vs. BMP6+BMPER. 

 

  

** 

• 

• 
• 
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3.4 BMPER inhibits hepcidin transcription in primary human 

hepatocytes  

 

The effects observed on the hepcidin promoter were confirmed on isolated primary 

hepatocytes (in collaboration with The Liver Unit, King’s College hospital). 

Endogenous hepcidin mRNA expression, measured by real-time PCR, increased upon 

exposure of the primary cells to BMP2. This effect was abolished in the presence of 

BMPER (Figure 3.11).  

 

 

Figure 3.11 Effect of recombinant BMPER on Hamp1 mRNA in primary human hepatocytes 

Primary human hepatocytes were treated with 2500ng/mL BMPER in the presence or absence of 

25ng/mL BMP2 for 16 hours. Hamp1 mRNA expression was measured by real-time PCR. 

Relative mRNA expression was normalised against the house keeping gene Actb. Data are 

presented as mean ± SD for fold change compared to control (n=3 per group). The samples were 

measured in triplicate. Statistical analysis was performed by 1-way ANOVA with Tukey’s post 

hoc test. *p<0.05 for –BMP2 vs. treatment comparison; ••p<0.01 for +BMP2 vs. treatment 

comparisons.  

 

•• •• 

* 
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3.5 Effects of recombinant BMPER and Twisted gastrulation 

(TWSG1) on hepcidin transcription 

 

It has been proposed that, in iron-loading anaemia’s such as hypotransferrinaemia, one 

or more humoral factors are released from the marrow under increased erythropoietic 

drive that can influence hepatic hepcidin levels (Tanno et al., 2007, Tanno et al., 2009).  

 

The expression of growth differentiating factor 15 (GDF15) and twisted gastrulation 

(TWSG1) was found to be significantly increased in patients (GDF15) and mice 

(TWSG1) with β-Thalassaemia and both have been shown to inhibit hepcidin 

expression in vitro (Tanno et al., 2009, Tanno et al., 2007). Additionally, TWSG1 has also 

been proposed to form a ternary complex with BMPER and BMPs. The binding of 

BMP4 to BMPER was enhanced in the presence of TWSG1 (Ambrosio et al., 2008). It 

was therefore hypothesised that the inhibitory effects observed on the hepcidin 

promoter by BMPER may be further enhanced in the presence of TWSG1. The effects of 

TWSG1 and BMPER on hepcidin transcription were tested.  

 

BMPER exhibited a clear dose response inhibition of BMP2-dependent hepcidin 

promoter activity. In this study TWSG1 did not appear to inhibit BMP-2 dependent 

hepcidin promoter activity. When given together, BMP2-dependent hepcidin promoter 

activity was decreased to a similar level to that observed with BMPER alone 

demonstrating no additive or interactive effects of BMPER with TWSG1 on BMP2-

dependent hepcidin promoter activity (Figure 3.12).  
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Figure 3.12 Effect of BMPER and TWSG1 on BMP2-dependent hepcidin promoter activity in HepG2 

cells 

HepG2 cells transiently transfected with wild type 2.7kb (WT) hepcidin promoter were treated 

with BMPER (   1-1000 ng/mL) or TWSG1 (    1-1000 ng/mL) alone or in combination (   ), in the 

presence of BMP2 (25ng/mL). Data are presented as mean ± SD derived from a single 

experiment with three biological replicates. The experiment shown is representative of 3 similar 

experiments. Statistical analysis was performed by 1-way ANOVA with Tukey’s post hoc test. 

**p<0.01 for +BMP2 vs. BMP2+BMPER; ••p<0.01 +BMP2 vs. BMP2+BMPER+TWSG1.  

  

•• ** 
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3.6 Effects of recombinant BMPER peptide on hepcidin 

transcription and serum iron in CD1 mice  

 

Recombinant BMPER peptide was administered to CD1 mice in order to investigate the 

effects of BMPER in vivo. Various studies were carried out in order to optimise the dose 

and duration of treatment. 

 

3.6.1 Effect of BMPER injections: optimising the dose of BMPER injections  

 

A range of doses of BMPER peptide were administered in order to identify an optimal 

concentration of BMPER which causes significant changes in the measured iron 

parameters. The mice were sacrificed after 18 hours.  

 

The highest dose (50 µg) was associated with a tendency for hepcidin mRNA 

expression to decrease (Figure 3.13) which correlated with increased serum iron levels 

(Table 3.1). Tissues nonhaem iron was unchanged with a trend towards decreased liver 

nonhaem iron at the highest dose (Table 3.1). No changes in hepatic pSMAD 1,5,8 

protein expression was observed (Figure 3.14).  
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Figure 3.13  Effect of different doses of recombinant BMPER peptide on liver Hamp1 mRNA 

Seven week old male CD1 mice received an intraperitoneal injection of either 2 µg, 20 µg or 50 

µg of BMPER peptide dissolved in PBS or PBS alone. Mice were sacrificed 18 hours after 

injection. Hamp1 mRNA expression was measured by real-time PCR and results were 

normalised to the expression of Actb. Data are presented as mean ± SD for fold change 

compared with control (n=2 per group). The samples were measured in triplicate. 

 

Table 3.1 Blood and tissue indicators of iron status in 7 week old male CD1 mice treated with PBS or 

varying doses of recombinant BMPER peptide 

Sample ID (n=2) Haemoglobin 

(g/dL) 

Serum iron 

(µM) 
Liver non haem iron 

(nmol/mg wet weight) 
Control PBS injections 13.53 ± 0.65 28.34 ± 13.07 3.75 ± 0.18 

2 µg BMPER  12.99 ± 0.20 60.56 ± 25.73 2.63 ± 0.86 

20 µg BMPER 12.61 ± 0.02 53.99 ± 1.26 3.03 ± 1.24 

50 µg BMPER 13.80 ± 0.83 64.44 ± 12.65 2.51 ± 0.61 

 

Data are presented as mean ± SD for (n) determinations.  
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3.6.2  Effect of BMPER injections: optimising the duration of BMPER injections   

 

Small doses of BMPER at shorter time points were also investigated to see if BMPER 

has a rapid response compared to 18hrs. 10µg of peptide was injected intraperitoneally 

and mice were sacrificed after 2 hours or 6 hours respectively. Trends towards 

decreased hepcidin mRNA expression were observed after 2 hours of treatment 

(Figure 3.15). There were no changes in hepcidin mRNA expression, pSMAD 1,5,8 

protein expression, serum iron and liver non haem iron after 6 hours (Figure 3.15, 

Figure 3.16 and Table 3.2).  
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Figure 3.15 Effect of various treatment times after recombinant BMPER peptide on liver Hamp1 mRNA 

expression 

Seven week old male CD1 mice received an intraperitoneal injection of 10 µg BMPER peptide 

dissolved in PBS or PBS alone. Mice were sacrificed 2 hours or 6 hours after injection. Hamp1 

mRNA expression was measured by real-time PCR and results was normalised to the 

expression of Actb. Data are presented as mean ± SD for fold change compared with control 

(n=2 per group). The samples were measured in triplicate. 

 

Table 3.2 Blood and tissue indicators of iron status in 7 week old male CD1 mice treated with PBS or 10 

µg of recombinant BMPER peptide for different lengths of time 

Sample ID (n=2) Haemoglobin 

(g/dL) 

Serum iron 

(µM) 
Liver non haem iron 

(nmol/mg wet weight) 
Control PBS injections  15.03 ± 0.862 40.57 ± 5.90 3.78 ± 0.09  

10 µg BMPER injection: 2hrs   13.81 ± 0.20 41.17 ± 1.68 2.81 ± 1.69 

10 µg BMPER injection: 6hrs 14.14 ± 0.30 46.62 ± 2.95 3.26 ± 0.83  

 

Data are presented as mean ± SD for (n) determinations  
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In another set of experiments male CD1 mice of 7 weeks of age received an 

intraperitoneal injection of 50 µg BMPER peptide dissolved in PBS or PBS alone. Mice 

were sacrificed 18 hours later. Compared to control mice, mice injected with 50 µg 

BMPER peptide showed significant increases in serum iron levels (Table 3.3) together 

with a significant decrease in liver hepcidin mRNA levels (Figure 3.17). Hepatic 

pSMAD 1,5,8 protein expression remained unaltered (data not shown).    

 

Table 3.3 Blood and tissue indicators of iron status in 7 week old male CD1 mice treated with PBS or 50 

µg of recombinant BMPER peptide 

Sample ID (n=4) Haemoglobin 

(g/dL) 

Serum iron  

(µM) 
Liver non haem iron 

(nmol/mg wet weight) 
Control PBS injection 13.62 ± 1.24 19.39 ± 6.56 3.02 ± 0.78 

50 µg BMPER injection 12.39 ± 0.56 26.94 ± 4.08* 2.07 ± 0.51 

 

Data are presented as mean ± SD for (n) determinations. *p<0.05 for control PBS injections vs. 

50µg BMPER injections. 

 

 



Neeta Patel | 100 

 

Figure 3.17 Effect of 50 µg recombinant BMPER peptide on liver Hamp1 mRNA expression 

7 week old male CD1 mice received an intraperitoneal injection of 50 µg BMPER peptide 

dissolved in PBS or PBS alone. Mice were sacrificed 18 hours after later. Hamp1 mRNA 

expression was measured by real-time PCR and results was normalised to the expression of 

Rpl19. Data are presented as mean ± SD for fold change compared with control (n=4 per group). 

The samples were measured in triplicate. Statistical analysis was performed by Student t-test 

*p<0.05 for Control vs. BMPER 50 µg comparison. 

* 
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3.7 Effects of hypoxia on BMPER expression  

 

Amongst other factors, hypoxia has been shown to reduce hepcidin levels. BMPER was 

originally identified in developing endothelial cells where it was postulated to play a 

role in blood vessel sprouting (Moser et al., 2003). It was therefore hypothesised that 

under hypoxic conditions the levels of BMPER may alter in attempts to increase the 

production of blood vessels. This in turn may cause hepcidin levels to be suppressed to 

increase iron absorption.  

 

To test this, CD1 mice were exposed to 24 hours or 72 hours of hypoxia (0.5atm in a 

hypobaric chamber). Haemoglobin measurements were significantly increased upon 

exposure to hypoxia (Table 3.4). This correlated with significant reductions in hepcidin 

mRNA expression after 24 hours of hypoxia and trends towards decreased hepcidin 

mRNA expression after 72 hours of hypoxia (Figure 3.18). BMPER expression was 

measured by real-time PCR and western blot analysis (Figure 3.18 and Figure 3.19). 

Interestingly, trends towards increased BMPER mRNA and protein expression were 

also observed after 24 hours and reduced almost back to basal levels after 72 hours of 

hypoxia. The expression of adrenomedullin (Adm) was measured as a marker for 

hypoxia which was significantly increased with hypoxic treatment (Ribatti et al., 2005) 

(Figure 3.20). 

 

Table 3.4 Haemoglobin measurements in 7 week old CD1 mice exposure to 24hr or 72hr of hypoxia 

Sample ID (n=6) Normoxia 24hr hypoxia 72hr hypoxia 

Haemoglobin (g/dL) 14.17 ± 0.90 16.92 ± 0.81* 17.32 ± 0.56* 

 

Data are presented as mean ± SD for (n) determinations. *p<0.05 for normoxia vs. 24hr and 72hr 

hypoxia by 1-way ANOVA. 
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Figure 3.18 Real-time PCR measurement of Hamp1 and Bmper mRNA levels in CD1 mice exposed to 24 

hours or 72 hours of hypoxia 

Hepatic Hamp1 and Bmper mRNA levels were measured in 7 week old male CD1 mice (n=6) 

treated with normoxia, 24 hours or 72 hours of hypoxia. mRNA expression was normalised to 

the housekeeping gene Rpl19. The samples were measured in triplicates. Data are presented as 

mean ± SD for fold change compared with normoxic mice (n=6 per group). Statistical analysis 

was performed by 1-way ANOVA with Tukey’s post hoc test. *p<0.05 for normoxia vs. 24hr 

hypoxia. 

  

* 
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Figure 3.19 Western blot analysis of liver BMPER expression after 24 hours and 72 hours of hypoxia 

Western blot analysis of liver total cell lysates of 7 week old male CD1 mice  treated with 

normoxia, 24 hours or 72 hours of hypoxia (n=4 per group). BMPER expression (full length 

band indicated by arrow) was normalised to the expression of β-actin and are presented in 

arbitrary units (AU). Densitometry is displayed below the blot. Data are presented as mean ± 

SD. Statistical analysis was performed by 1-way ANOVA with Tukey’s post hoc test.  
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Figure 3.20 Real-time PCR measurement of Adm mRNA expression after 24 hours and 72 hours of 

hypoxia 

Liver Adm mRNA levels were measured as a marker for hypoxia (Ribatti et al., 2005) in 7 week 

old male CD1 mice treated with normoxia, 24 hours or 72 hours of hypoxia. Relative mRNA 

expression was normalised to the housekeeping gene Rpl19. Data are presented as mean ± SD 

for fold change compared with normoxia (n=6 per group). The samples were measured in 

triplicates. Statistical analysis was performed by 1-way ANOVA with Tukey’s post hoc test. 

**p<0.01 for normoxia vs. 24hr hypoxia. 

  

** 
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The trends observed at mRNA and protein level were further investigated through 

immunostaining of liver sections (Figure 3.21). Due to the poor quality of sample at 24 

hours, only control sections and 72 hours hypoxic treatment were stained for BMPER 

expression. A noticeable increase in BMPER expression as judged by staining of the 

smaller surrounding blood vessels (indicated by arrows) in the liver was observed after 

72 hours of treatment.   

 

Figure 3.21 Immunofluorescence of liver tissue from normoxic and 72 hours hypoxic treatment stained 

with BMPER  

The expression of BMPER in frozen liver tissues of 7 week old male CD1 mice from normoxia 

and 72 hours of hypoxia were investigated by immunofluorescence technique. BMPER protein 

was visualised as green fluorescence and nuclei were counterstained in red (Leica DM-IRE2 

confocal microscope, magnification x630).  
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3.8 Measurement of iron parameters in BMPER heterozygous mice 

 

BMPER knockout mice do not survive beyond birth however heterozygous mice are 

viable. Liver samples from BMPER heterozygous mice (aged 12 weeks) were kindly 

provided by the Patterson laboratory (University of North Carolina, USA). Hepcidin 

mRNA expression (Figure 3.22), serum iron and liver nonhaem iron were measured 

(Table 3.5). Although not statistically significant, trends towards increased liver 

hepcidin levels and decreased serum iron in the BMPER knockout heterozygous 

samples were observed.  

 

Figure 3.22 Real-time PCR measurement of Hamp1 mRNA expression in BMPER knockout 

heterozygous mice 

Liver Hamp1 mRNA expression was measured in 12 week old BMPER knockout heterozygous 

mice (n=13) and compared against wild type mice (n=4) Relative mRNA expression was 

normalised to the housekeeping gene Actb. Data are presented as mean ± SD for fold change 

compared with WT. The samples were measured in triplicates. Statistical analysis was 

performed by Student t-test.   
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Table 3.5 Blood and tissue indicators of iron status in wild type and BMPER heterozygous mice 

 

Sample ID Haemoglobin (g/dL) Serum iron (µM) Liver non haem iron 

(nmol/mg wet weight) 
Wt (n=4) 16 ± 2.66 22.47 ± 1.24 0.86 ± 0.22 

Het (n=13) 18.38 ± 2.95 17.42 ± 4.57 1.02 ± 0.31 

 

Data are presented as mean ± SD for (n) determinations.  
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3.9 Proteolytic processing of BMPER   

 

BMPER is a secreted protein which can undergo proteolytic cleavage to generate two 

fragments bound together by disulphide bonds (Rentzsch et al., 2006). Multiple 

sequence alignments of BMPER and HJV revealed certain structural similarities 

between the two proteins (Figure 3.23). The cleavage mechanism of HJV has been 

proposed to involve furin as well as the serine protease TMPRSS6 otherwise known as 

matriptase-2 (MT-2) (Babitt et al., 2006, Silvestri et al., 2008a). Co-transfection of HEK-

293 cells with MT-2 and BMPER was performed to determine if BMPER was also a 

substrate for MT-2 cleavage.  

 

HEK-293 cells were co-transfected with 10 µg of MT-2, MASK, R774C which are 

mutants of MT-2 in the presence and absence of 10 µg BMPER. Western blot analysis 

was carried out to assess the expression of MT-2 and BMPER. Co-expression of BMPER 

and MT-2 increased the expression of MT-2, without significantly altering the 

expression of BMPER (Figure 3.24).  
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Figure 3.23 Sequence comparison of BMPER, CV-2 and HJV 

Upper panel BMPER, HJV and CV-2 share a common von Willebrand type D domain (vWD) a 

fully conserved acid-sensitive autocatalytic cleavage site and C terminal furin cleavage site.  

BMPER and CV-2 contain 5 N-terminal cysteine rich regions (CR1-5) which are involved in 

binding BMPs; these domains are absent in HJV.  Lower panel multiple alignment (Clustal) of 

mouse, human and zebra fish BMPER and HJV sequences showing fully conserved acid-

sensitive auto catalytic cleavage site.   
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Figure 3.24 Proteolytic cleavage of BMPER by MT-2 in HEK-293 cells 

HEK-293 cells were transfected with 10 µg of MT-2, MASK, R774C which are mutants of MT-2 

in the presence and absence of 10 µg BMPER. Western blot analysis was carried out to assess 

the expression of MT-2 (A) which was tagged with Flag and BMPER (C) which was tagged with 

c-Myc. The MT-2 plasmid and mutants were detected with a Flag antibody. The BMPER protein 

was detected with a c-Myc antibody. β-actin was used as a loading control (middle panel, B). 

 

 

C 

B 

A 
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3.10 Discussion  

 

BMPER is a known regulator of the BMP pathway and was found to be significantly 

upregulated in the HPX mouse model both at the mRNA and protein level. The 

expressions of other known antagonists were also measured and only GDF-15 was 

found to be significantly increased. Hepcidin downregulation in the HPX mouse model 

can occur through various mechanisms, each targeting and affecting various signalling 

pathways. The study described in this chapter has been able to highlight the 

importance of the BMP pathway and its involvement in hepcidin transcription.  

 

The effects observed in vivo were investigated in vitro through the use of hepcidin 

promoter constructs. Recombinant BMPER peptide was able to inhibit basal hepcidin 

promoter activity as well as the hepcidin promoter response to BMP2 and BMP6. Initial 

studies have highlighted the importance of BMP2, -4 and -6 in the hepcidin response to 

BMP signalling. The discovery that BMP6 deficient mice induce iron overload together 

with the finding that other BMPs are unable to compensate for the lack of BMP6 now 

corroborates BMP6 to be the key regulator of hepcidin transcription (Meynard et al., 

2009, Andriopoulos et al., 2009). BMPER has been shown to bind BMP2,-4, and -6 

(Moser et al., 2003). This was evident from the current study where BMPER was able to 

inhibit BMP2 and BMP6 dependent hepcidin promoter activity. The ability of BMPER 

to inhibit BMP6 dependent hepcidin promoter activity was somewhat dampened in 

comparison to BMP2. The reasons for this are not clear as yet, however this is likely to 

be due to different binding affinities of BMPER to individual BMPs.   

 

The effects of BMPER were also correlated with reduced pSMAD 1,5,8 protein 

expression in two independent cell lines as well as direct effects on hepcidin mRNA 

expression in primary human hepatocytes. This result verifies the effects elicited by 

BMPER are via the SMAD signalling pathway. However further investigations could 

be carried out to see if upstream or downstream effectors are also being affected. For 

example, one could disrupt the expression of endogenous BMPER levels through RNA 
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interference and examine the hepcidin response to BMP stimulation. If the expression 

of hepcidin is increased above basal levels, one could hypothesise that BMPER directly 

affects hepcidin transcription. The importance of the BMP pathway could be reinforced 

if the effects of BMPER-RNAi affect pSMAD 1,5,8 protein expression. It can be noted 

that the pSMAD1,5,8 antibody appeared to recognise a doublet of bands which may 

represent different R-SMAD members. Knockdown of individual R-SMADs maybe be 

required in order to confirm the identities of the bands. Primary human hepatocytes 

can be considered as the gold standard for hepcidin expression studies, however due 

to the scarce availability of freshly isolated human liver samples, primary human 

hepatocytes were only used once in this study. The effects of BMPER on hepcidin 

mRNA expression should be repeated in immortalised cell lines for further 

confirmation. 

 

The mechanism of BMPER is likely based on the ability of BMPER to bind BMP 

molecules with high affinity and therefore prevent the binding of the BMPs to their 

receptors. It is noteworthy that this effect may only be observed when BMPER levels 

are in excess. Previous studies have suggested that BMPER can have both pro- and anti 

-BMP effects; at low levels BMPER acts to promote BMP signalling, and high levels acts 

to sequester the BMPs in the extracellular space (Serpe et al., 2008, Kelley et al., 2009). 

This effect was not reproducible in the current study and hence this could be a 

species/organ specific effect.  

 

TWSG1 was previously suggested to form a ternary complex with BMPER and BMP4, 

thus increasing the binding of BMP4 to BMPER and reducing BMP signalling 

(Ambrosio et al., 2008). In the current study, no significant additive anti-BMP effects 

were observed when BMPER and TWSG1 were used in combination on hepcidin 

promoter activity. When comparing the molar ratio’s used, 1:23 molar of BMP2:TWSG1 

compared to 1:6 molar of BMP2:BMPER, it was evident that using approximately four 

times less BMPER resulted in a more significant decrease in hepcidin promoter activity, 

highlighting the potency of BMPER compared to TWSG1.  
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Mutations of the Bmper gene adversely affect the formation of small blood vessels in 

the Drosophila wing. It has been suggested that BMPER may play a role in blood vessel 

sprouting (Conley et al., 2000). Hypoxia as a result of chronic anaemia may stimulate 

angiogenesis. This has been hypothesised in breast cancer patients where iron 

deficiency due to menstruation in premenopausal women increased HIF-1α stability 

which in turn increased the angiogenic factor, VEGF. Additionally, bovine capillary 

endothelial cells demonstrated increased elongation and extension when cultured 

under premenopausal conditions (Jian et al., 2011). Since BMPER was identified as an 

early marker of vasculogenesis (Moser et al., 2003) it was hypothesized that under 

hypoxic/anaemic conditions, increased BMPER levels may be required for blood vessel 

remodelling, leading to increased sequestration of BMPs and the downregulation of 

hepcidin in the liver. The effect of hypoxia on hepcidin expression in vivo has been 

shown to be variable with some studies demonstrating reduced hepatic hepcidin levels 

after 4 days, however in other studies only mild effects have been reported (Nicolas et 

al., 2002b, Latunde-Dada et al., 2011, Benedict et al., 2007). In the current study, trends 

towards increased Bmper mRNA expression were observed after 24 hours of hypoxia 

which correlated with significant decreases in Hamp1 mRNA levels. 72 hours of 

hypoxia normalised the expression of hepcidin to that of normoxic mice suggesting an 

adaptive or short-lived response to hypoxia by hepcidin.  In a similar way, Bmper levels 

reduced back to almost the same levels as normoxic mice. The small effects of hypoxia 

could be explained by an increase in BMPER expression which was localised to smaller 

blood vessels when liver sections were stained for BMPER protein. The effect of 

hypoxia on BMPER expression was small compared to those brought about in the HPX 

mice suggesting that BMPER maybe more relevant under pathophysiological 

conditions as opposed to a physiological adaptive situations such as hypoxia.   

 

In a recent study, BMPER heterozygous mice demonstrated increased BMP signalling 

as judged by increased pSMAD expression in retinal sections from oxygen-induced 

retinopathy (OIR)–subjected mice (Moreno-Miralles et al., 2011), corroborating the 

notion that a loss of one functional BMPER allele removes the anti-BMP effect. These 
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results provide an explanation to the trends towards increased hepcidin expression 

observed in BMPER heterozygous mouse liver samples. Although BMPER knockout 

mice do not survive beyond birth (Ikeya et al., 2006), it would be interesting to see if a 

liver specific knockout or inducible knockout of BMPER would alter hepcidin 

expression and ultimately iron metabolism in adult mice.  

 

The way in which BMPER modulates BMP signalling is not very well understood. 

Several mechanisms have been proposed: 

 A concentration dependent mechanism where low concentrations promote 

BMP signalling and high concentrations inhibit BMP signalling (Serpe et al., 

2008). This effect was not observed in the current study.  

 A membrane bound versus cleaved mechanism (Zhang et al., 2007b). 

 

Following the latter theory, hemojuvelin has been shown to be processed in a similar 

way where the membrane-bound form acts as a co-receptor for BMP signalling, 

however the cleaved soluble form of HJV has been shown to reduce the BMP signalling 

cascade (Babitt et al., 2006, Babitt et al., 2007). Cleavage of m-HJV has been shown to 

occur in two ways, where the cleavage of HJV by furin results in a single product 

where as the cleavage of m-HJV by MT-2 results in a ladder of products. The precise 

nature of the binding of BMPs to HJV is not very well understood, however the 

binding of BMPs to BMPER has been shown to occur through the cysteine-rich (CR) 

domains (Zhang et al., 2007b). Multiple sequence alignments between several species 

of BMPER to HJV have revealed sequence similarities in particular the acid sensitive 

auto-catalytic domain FGDPH. Co-expression of MT-2 with BMPER increased the 

expression of MT-2 as measured by increased FLAG expression; levels of soluble 

BMPER appeared to increase somewhat with treatment with MT-2 compared to 

mutants, as determined by c-MYC western blot analysis, suggesting BMPER could also 

be a substrate for MT2. However the experiments conducted in this study were 

preliminary investigations and were only conduced once, therefore future work would 

be required to confirm these observations. 
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To conclude, the evidence presented in this chapter emphasises the importance of the 

BMP signalling pathway in the regulation of hepcidin. The mechanism by which 

hepcidin is downregulated in the HPX mouse model appears to involve a number of 

factors, with BMPER adding to the list of potential modulators that can suppress 

hepcidin levels in vitro and in vivo. BMPER was able to effectively suppress the effects 

of BMP2 and BMP6-mediated hepcidin promoter induction. Increased BMPER levels in 

HPX mice would also explain why increased BMP6 expression fails to induce an 

increase in hepcidin levels. One cannot exclude the potential of other BMP modulators 

such as TWSG1 and GDF15 to interact with BMPER. Although the effect of 

recombinant TWSG1 demonstrated no additive effect on BMPER, the levels of GDF15 

were significantly increased in the HPX mouse model. Further investigations need to 

be conducted to see if GDF15 could be co-operating with BMPER to reduced hepcidin 

expression. BMPER may play a role in the suppression of hepcidin in other forms 

severe chronic anaemia with iron loading or in diseases where there is a significant 

amount of angiogenesis.  
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Chapter 4 . 

Atonal homologue 8 (ATOH8) regulates 

hepcidin transcription
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4.1 Introduction  

 

The differentiation and development of an organism is a tightly regulated process 

where the patterning of undifferentiated cells into specialised cells requires rapid 

changes in gene expression to occur. The involvement of the basic helix-loop-helix 

family of transcription factors (b-HLH) in the regulation of various biological processes 

in the eukaryotic organism has been well documented (Massari and Murre, 2000). As 

their name implies, the structure comprises of two regions: the basic (b) region which is 

a highly conserved region responsible for interaction with recognitions sequences on 

DNA; and the HLH region, which are two alpha helices separated by a loop which can 

be of variable length. The HLH are able to form homo- and heterodimers with other b-

HLH proteins, increasing their biological activities depending on the availability of 

other transcription factors (Massari and Murre, 2000). The b-HLH proteins have been 

categorised into six groups based on their phylogenetic relationships and different 

biochemical properties (Ledent et al., 2002). Group A is of relevance to the current 

study which belongs to the neuronal bHLH proteins.   

 

Insights into the importance of neuronal bHLH proteins came from studies conducted 

in Drosophila which have two classes of proneural genes namely aschaete-scute 

complex (as-c) and atonal (ato) (Hassan and Bellen, 2000). The cloning of Atonal in 

1993 by Jarman and colleagues identified it to be a bHLH transcription factor involved 

in the development of the peripheral nervous system (PNS) of Drosophila (Jarman et al., 

1993). The mouse homologue, ATOH8/MATH6 (Atonal Homologue 8/Mouse Atonal 

Homologue 6), was also shown to be expressed by neural precursor cells (Inoue et al., 

2001). Despite a reported function in neural development, the expression of ATOH8 

extended over a range of tissues; brain, heart, kidney, lung and pancreas (Ross et al., 

2006, Lynn et al., 2008). The expression of ATOH8 was required for the differentiation 

and maturation of podocytes in mouse kidney development (Ross et al., 2006) and also 

for the development of the endocrine cell lineage during mouse pancreatic 

development (Lynn et al., 2008). Additionally, mice deficient in ATOH8 demonstrated 
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malformation of the retina and muscle which affected the expression of another bHLH 

protein, MyoD (Yao et al., 2010). Inactivation of ATOH8 gene expression resulted in 

embryonic lethality in mice demonstrating a pivotal role of this protein during the 

embryogenesis (Lynn et al., 2008).  

 

Sequence alignment of ATOH8 orthologs revealed all vertebrate ATOH8 proteins to 

have 100% sequence conservation through the bHLH region, which persisted through 

the rest of the sequence (Ross et al., 2006). Additionally, the mammalian ATOH8 

promoter was found to be enriched with CpG islands which characteristically have 

multiple transcriptional start sites (TSS). Which TSS is adopted is dependent on the 

cellular context. The observation of CpG islands in the ATOH8 promoter supports the 

functionally dynamic expression observed in multiple tissues (Chen et al., 2011a).  

 

The transcriptional regulation of hepcidin has been extensively studied. In addition to 

the previously discussed BMP-response elements (chapter 3), the CCAAT/enhancer 

binding protein alpha (CEBPα) is required for the hepcidin response to oxidative stress 

as well as basal promoter activity (Harrison-Findik et al., 2006). Additionally, the 

inflammatory response induces hepcidin via activation of the Janus kinases 

(JAK/STAT3) pathway, where Il-6 is the principle cytokine activator (Pietrangelo et al., 

2007, Verga Falzacappa et al., 2007). The actions of Il-6 are dependent on a STAT3 

consensus site present on the proximal hepcidin promoter. bHLH proteins, such as 

ATOH8, bind to the core consensus DNA sequence CANNTG within promoter regions 

known as E-boxes. There are 4 such E-boxes within the hepcidin promoter. The current 

study focused on two canonical E-boxes with the core sequence CACGTG within the 

core hepcidin promoter previously reported to bind other bHLH factors (Bayele et al., 

2006).  

 

In the current study, the effect of Atonal homologue 8 (ATOH8), was investigated to 

determine its role in the regulation of hepcidin and iron metabolism. Prior research has 

examined the ability of other members of the b-HLH family, USF1 and USF2 and c-
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Myc and Max to occupy E-Boxes located on the hepcidin promoter (Bayele et al., 2006). 

Atoh8 mRNA expression has been show to be regulated by iron in vivo in parallel with 

other genes known to be regulated by the BMP pathway (Kautz et al., 2008). The 

studies conducted in this chapter aimed to characterise the role ATOH8 in the 

regulation of hepcidin transcription in vitro. Additionally, the expression of ATOH8 

was examined in vivo using various mouse models of altered iron metabolism.  

 

4.2  ATOH8 expression in Hypotransferrinaemic mice (HPX) 

 

The hepatic expression of ATOH8 was measured by real-time PCR and western blot 

analysis (Figure 4.1 and Figure 4.2). Hepatic ATOH8 localization was examined by 

immunohistochemistry in HPX liver sections (Figure 4.3). Contrary to the concept of 

ATOH8 upregulation by iron loading, HPX mice, despite being severely iron loaded, 

demonstrated decreased expression of ATOH8 at both mRNA and protein levels as 

demonstrated by real time PCR, western blot analysis and immunohistochemistry. 
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Figure 4.1Real-time PCR measurement of hepatic Atoh8 mRNA expression in HPX mouse liver 

Liver Atoh8 mRNA expression was measured in 10-11 week old male HPX mice. Wild type and 

heterozygous mice were used as controls. Relative mRNA expression was normalised against 

the house keeping gene Rpl19. Data are presented as mean ± SD for fold change compared with 

wild type and heterozygous mice (n=3 per group). The samples were measured in triplicate. 

Statistical analysis was performed by Student t-test. *p<0.05 for CONTROL vs. HPX 

comparisons.  

* 
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Figure 4.2 Western blot analysis of ATOH8 expression in HPX mouse liver 

Western blot analysis of nuclear liver extract of 10-11 week old male HPX mice (n=1). Wild 

type/heterozygous mice were used as controls (n=2). ATOH8 expression was normalized to the 

expression of β-actin and presented in arbitrary unit (AU). Densitometry is displayed below the 

blot.  



Neeta Patel | 123 

 

 

Figure 4.3 Immunofluorescence of liver ATOH8 expression in HPX mice 

The expression of ATOH8 from frozen liver sections of 10-11 week old male HPX mice was 

demonstrated though immunofluorescence technique. ATOH8 protein was visualised as green 

fluorescence and nuclei were counterstained in red (Leica DM-IRE2 confocal microscope, 

magnification x630).  
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4.3 Effect of ATOH8 on hepcidin transcription in vitro  

 

In preliminary experiments, HepG2 cells were co-transfected with 0.5 µg of the 2.7kb 

hepcidin promoter cloned into the pGL3 luciferase vector together with 2 µg, 4 µg, or 6 

µg of the ATOH8 expression plasmid in the absence or presence of 25ng/mL 

recombinant BMP2. Luciferase activities were determined and results were compared 

to wild-type hepcidin promoter activity without BMP2 treatment (Figure 4.4A). The 

transfection efficiency of the ATOH8 plasmid was determined through western 

blotting analysis (Figure 4.4B). ATOH8 expression significantly increased hepcidin 

promoter activity in the presence of BMP2 stimulation but had no effect in the absence 

of BMP2 stimulation. There was no significant effects on endogenous pSMAD 1,5,8 

protein expression.  
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4.3.1 ATOH8 titration significantly increased basal and BMP2-mediated hepcidin 

promoter activity in HEK-293 cells  

 

The transfection efficiency and/or protein expression from the ATOH8 plasmid in 

HEK-293 cells appeared to be much higher than HepG2 cells (Figure 4.5D). HEK-293 

cells treated with the same concentrations of ATOH8 plasmid as HepG2 cells, 

demonstrated a significant increase hepcidin promoter activity in the presence or 

absence of BMP stimulation. Concentrations above 4 µg produced no further increase 

in promoter activity, suggestive of saturation of the hepcidin promoter activity at high 

concentrations of ATOH8 (Figure 4.5A-C). Interestingly pSMAD 1,5,8 protein 

expression increased in a dose dependent manner with ATOH8 transfection suggesting 

ATOH8 affects the BMP signalling pathway (Figure 4.6). The increase in hepcidin 

promoter activity correlated with increased expression of endogenous hepcidin in 

HEK-293 cells (Figure 4.7). 
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Figure 4.5 Effect of ATOH8 on hepcidin promoter activity and pSMAD 1,5,8 protein expression in 

HEK-293 cells 

HEK-293 cells were co-transfected with the wild-type 2.7 kb hepcidin promoter construct along 

with increasing concentrations of ATOH8 plasmid in the presence or absence of 25ng/mL BMP2 

(A), BMP4 (B) or BMP6 (C). Data are presented as mean ± SD derived from a single experiment 

with three biological replicates. The experiment shown is representative of 3 similar 

experiments. Statistical analysis was performed by 1-way ANOVA with Tukey’s post hoc test. 

*p<0.05; **p<0.01; ***p<0.001 for –BMP vs. ATOH8 treatment comparisons; •••p<0.001 for +BMP 

vs. ATOH8 treatment comparisons. (D) HEK-293 cells were transfected with increasing 

concentration of the ATOH8 plasmid in the presence or absence or 25ng/mL BMP2. Western 

blot analysis was performed on whole cell lysates. The expression of the plasmid was 

determined through detection of anti-DDK (indicated by arrow). The expression of pSMAD 

1,5,8, Total SMAD 1,5,8 (indicated by arrow) and β-actin were also determined. 

  

** 

••• 
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Figure 4.6 Western blot analysis of HEK-293 cells transfected with ATOH8 

HEK-293 cells were transfected with different concentrations of ATOH8 plasmid. Western blot 

analysis was performed on whole cell lysates where pSMAD 1,5,8 expression was normalized to 

the expression of total SMAD 1,5,8 and presented in arbitrary unit (AU). Densitometry is 

displayed below the blot. Data are presented as mean ± SD (n=3 per groups). Statistical analysis 

was performed by 1-way ANOVA with a Tukey’s post hoc test. **p<0.01 control vs. ATOH8 

treatment comparisons.  

 

** ** 
** 
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Figure 4.7 Endogenous HAMP1 mRNA expression in HEK-293 cells transfected with increasing 

concentrations of ATOH8 plasmid 

HEK-293 cells were transfected with increasing amounts of ATOH8 plasmid. HAMP1 mRNA 

expression was determined through semi-quantitative PCR (A) where ACTB was used as the 

housekeeping gene, and by real-time PCR (B) where relative mRNA expression was normalized 

to the housekeeping gene RPL19. Data are presented as mean ± SD for fold change as compared 

with control (n=3 per group). The samples were measured in triplicates. Statistical analysis was 

performed by 1-way ANOVA with Tukey’s post-hoc test.  

 

  

A 

B 
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4.3.2 Mutations in the enhancer elements (E-boxes) and BMP response elements 

(BMP-RE) reduces hepcidin promoter activation by ATOH8 

 

Two E-Boxes located on the proximal hepcidin promoter were previously shown to 

bind the basic helix-loop-helix leucine zipper family of transcription factors (b-HLH-

ZIP) USF1 and USF2 (Bayele et al., 2006). Given that ATOH8 also belongs to the b-HLH 

family of transcription factors, the ability of ATOH8 to activate the hepcidin promoter 

in constructs bearing mutations in the two E-boxes (E-box MUT 1, 2) was explored 

(Figure 4.8A). This was compared to a WT hepcidin promoter of the same length 

(0.9kb). As described for the WT 2.7kb promoter, increasing concentrations of ATOH8 

plasmid significantly increased the wild type hepcidin promoter. However this effect 

was ablated in the E-Box mutants (Figure 4.8B). Interestingly, the hepcidin promoter 

response to ATOH8 was also reduced in constructs which had the BMP-RE1 mutated 

supporting the notion that ATOH8 also affects BMP signalling. 
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Figure 4.8 Effect of mutations on hepcidin promoter induction by ATOH8 in HEK-293 cells 

(A) Schematic representation of the 0.9kb hepcidin promoter. Positions of particular consensus 

elements and their mutations are highlighted (Matak et al., 2009). (B) The ability of ATOH8 to 

induce the hepcidin promoter in the absence of known consensus elements, E-box 1,2 and BMP-

RE1 were investigated through promoter mutational analysis. HEK-293 cells were transfected 

with WT 0.9kb, E Box 1,2 mutant or BMP-RE1 mutant hepcidin promoter constructs in the 

absence or presence of 2- or 4 µg of ATOH8 plasmid. Data are presented as mean ± SD derived 

from a single experiment with three biological replicates. The experiment shown is 

representative of 3 similar experiments. Statistical analysis was performed by 1-way ANOVA 

with Tukey’s post hoc test. *p<0.05; **p<0.01; ***p<0.001 for control vs. treatment comparisons.  
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4.4 Effect of hypoxia and increased erythropoiesis on ATOH8 

expression  

 

The hepatic expression of ATOH8 in the HPX mouse model demonstrates that iron 

loading alone is not the sole regulator of ATOH8 expression. Amongst other factors, 

the HPX mouse serves as a model for iron-restricted erythropoiesis due to the lack of 

transferrin (Bartnikas et al., 2011). Therefore, to examine the effects of erythropoiesis on 

ATOH8 expression in another setting, mice were exposed to hypoxia. Atoh8 mRNA 

expression was significantly reduced after 24 hours and 72 hours of hypoxia; ATOH8 

protein expression was reduced after 24 hours of hypoxia, with no significant change 

observed after 72 hours of hypoxia (Figure 4.9 and Figure 4.10). Immunostaining of 

liver sections demonstrated small reductions in ATOH8 expression after 72 hours of 

hypoxia. Immunostaining was not conducted in liver section of 24 hours hypoxia 

treatment due to the poor quality of liver samples (Figure 4.11).  

 

 

Figure 4.9 Real-time PCR measurement of Atoh8 mRNA levels in CD1 mice exposed to 24 hours or 72 

hours of hypoxia 

Liver Atoh8 mRNA expression was measured in 7 week old male CD1 mice treated with 

normoxia, 24 hours or 72 hours of hypoxia. Relative mRNA expression was normalized to the 

housekeeping gene Rpl19. Data are presented as mean ± SD for fold change compared with 

normoxic mice (n=6 per group). The samples were measured in triplicates. Statistical analysis 

was performed by 1-way ANOVA with Tukey’s post hoc test. **p<0.01 for normoxia vs. 

Hypoxia treatment. 

** ** 
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Figure 4.10 Western blot analysis of liver ATOH8 expression after 24 hours and 72 hours of hypoxia 

Western blot analysis of liver nuclear protein extracts of 7 week old male CD1 mice treated with 

normoxia, 24 hours or 72 hours of hypoxia. ATOH8 expression was normalized to the 

expression of β-actin and presented in arbitrary unit (AU). Densitometry is displayed below the 

blot. Data are mean ± SD (n=4 for per group). Statistical analysis was performed by 1-way 

ANOVA with Tukey’s post hoc test. *p<0.01 for normoxia vs. 24hr hypoxia.  

* 
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Figure 4.11 Immunofluorescence of liver tissue from normoxic and 72 hours hypoxic treatment stained 

with ATHO8  

The expression of ATOH8 in frozen liver tissues of 7 week old male CD1 mice treated with 

normoxia and 72 hours of hypoxia were investigated by immunofluorescence technique. 

ATOH8 protein was visualised as green fluorescence and nuclei were counterstained in red 

(Leica DM-IRE2 confocal microscope, magnification x630).  
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4.5 Effects of iron loading and erythropoiesis on ATOH8 

expression  

 

The expression of ATOH8 was examined in wild type mice and Hamp1-/- mice treated 

with PHZ in order to investigate the effect of iron loading and haemolytic anaemia (in 

which there is increased erythropoietic demand) on hepatic ATOH8 expression. The 

effect of PHZ treatment in wild type mice showed trends towards decreased Atoh8 

liver mRNA expression as measured by real-time PCR (Figure 4.12). The effect of the 

global hepcidin1 gene disruption caused iron loading and significantly increased both 

Atoh8 and Bmp6 mRNA expression which is in line with previous reports by Kautz et 

al (Kautz et al., 2008). This effect was significantly decreased upon PHZ challenge in 

Hamp1-/-. The effect of PHZ on ATOH8 protein expression was significant in both 

genotypes as measured by western blotting (Figure 4.13). 
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Figure 4.12 Real- time PCR measurement of Hamp1, Atoh8 and Bmp6 mRNA expression in livers of WT 

and Hamp1-/- mice treated with saline or PHZ 

Hepatic Hamp1, Atoh8 and Bmp6 mRNA expression was measured in Female Hamp1-/- mice and 

wild type littermates (5-7weeks old) treated with saline or PHZ injections. Relative mRNA 

expression was normalized to the housekeeping gene Rpl19. Data are presented as mean ± SD as 

compared with saline-treated wild type mice (n=5 and 6 for saline-, PHZ treated wild type mice 

and n=6, 7 for saline-, PHZ-treated Hamp1-/- mice respectively). The samples were measured in 

triplicates. Statistical analysis was performed by 2-way ANOVA with Bonferroni post-hoc test. 

***p<0.001 as compared to saline treated WT mice. 

 

Significant effects of genotype: Hamp1 (p<0.0001), Atoh8 (p<0.0001), Bmp6 (p<0.0001) 

Significant effects of treatment: Hamp1 (p<0.0001), Atoh8 (p<0.0001), Bmp6 (p<0.05)  

Significant interaction: Hamp1 (p<0.0001), Atoh8 (p<0.001), Bmp6 (p<0.05) 

 

*** 

*** 
*** 

*** 
*** 
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Figure 4.13 Western blot analysis of ATOH8 expression in the liver of WT and Hamp1-/- mice treated 

with saline or PHZ  

Western blot analysis of ATOH8 expression in liver nuclear protein extracts of WT mice and 

Hamp1-/- mice treated with saline or PHZ. The expression of ATOH8 (indicated by arrow) was 

verified by running lysates obtained from HEK-293 cells over-expressing ATOH8. ATOH8 

expression was normalized to the expression of β-actin and presented in arbitrary unit (AU). 

Densitometry is displayed below the blot. Data are presented as mean ± SD (n=3 for per group). 

Statistical analysis was performed by 2-way ANOVA with a Bonferroni post hoc test. **p<0.01 

as compared to saline treated WT mice. 

 

No significant effect of genotype  

Significant effect of treatment p<0.0001 

No significant interaction 

** 

** 
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4.6 ATOH8 expression in HFE-/- mice 

 

The downstream signalling cascade as a result of HFE gene disruption which reduces 

hepcidin transcription remains elusive. By utilising the HFE knockout mouse model 

(HFE-/-), several studies have accentuated the involvement of the BMP signalling 

cascade where HFE-/- mice, despite having elevated hepatic BMP6 expression due to 

iron loading, show decreased pSMAD 1,5,8 expression, suggesting an impairment of 

the BMP signalling cascade (Corradini et al., 2009). Consequently the expression of 

ATOH8 was assessed in the HFE-/- mouse model in order to determine its role in the 

BMP signalling cascade. Surprisingly, despite the iron loading in HFE-/- mouse liver 

and in contrast to Hamp1-/- mice, ATOH8 mRNA and protein expression was not 

altered (Figure 4.14 and Figure 4.15).  

 

 

Figure 4.14  Real-time PCR measurement of Hamp1, Atoh8 and Bmp6 in HFE-/- mice 

Hepatic Hamp1, Atoh8 and Bmp6 mRNA expression was measured in 8 week old male WT and 

HFE-/- mice. Relative mRNA expression was normalized to the housekeeping gene Rpl19. Data 

are presented as mean ± SD for fold change compared with WT mice (n=4 per group). The 

samples were measured in triplicates. Statistical analysis was performed by Student t-test.  
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Figure 4.15 Western blot analysis of liver ATOH8 expression in HFE-/- mice 

Western blot analysis of ATOH8 expression in liver nuclear protein extracts of 8 week old male 

WT and HFE-/- mice. ATOH8 expression (indicated by arrow) was normalized to the expression 

of β-actin and presented in arbitrary unit (AU). Densitometry is displayed below the blot. Data 

are presented as mean ± SD (n = 4 for all groups). Statistical analysis was performed with 

Student’s t-test.  
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4.7 Effect of transferrin saturation on HAMP1 and ATOH8 mRNA 

expression in vitro  

 

Initial investigations identified ATOH8 to be increased by dietary iron loading and 

decreased by dietary iron deficiency (Kautz et al., 2008). Both liver iron stores and 

transferrin saturation change in these experimental settings. In order to investigate the 

effect of transferrin saturation on ATOH8 mRNA expression, HepG2 cells were 

exposed to different ratios of apo- and holotransferrin where ATOH8 mRNA 

expression was measured by real-time PCR. HAMP1 and ATOH8 mRNA expression 

showed a steady decrease in expression when treated with increasingly iron-saturated 

transferrin, where treatment of 100% iron-saturated holotransferrin significantly 

reduced the expression of ATOH8 by approximately 5-fold in comparison to iron free 

apotransferrin treatment (Figure 4.16).   

 

Figure 4.16 Real-time PCR measurement of HAMP1 and ATOH8 mRNA expression in response to 

different transferrin saturation in HepG2 cells  

Mixtures of apotransferrin and holotransferrin were added to HepG2 cells at a total transferrin 

concentration of 30 µM. HAMP1 and ATOH8 mRNA expression was measured at each 

transferrin saturation level and was plotted as fold increase in comparison to untreated cells. 

Relative mRNA expression(s) was normalised to the housekeeping gene RPL19. Data are 

presented as mean ± SD for fold change compared with control (n=3 per group). The samples 

were measured in triplicates. Statistical analysis was performed by 1-way ANOVA with 

Tukey’s post-hoc test. ***p<0.001 as compared to control; •p<0.05; ••p<0.01; •••p<0.001 as 

compared to 0% transferrin saturation.  

*** 

*** 
*** 

*** 

*** ••• 
••• •• 

•• 
• 
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4.8 Discussion  

 

The present study was designed to determine the role of ATOH8 in the regulation of 

hepcidin. The findings from the study are consistent with those of Kautz et al who 

demonstrated the ability of iron to influence Atoh8 gene expression (Kautz et al., 2008). 

Through the use of mouse models in which iron metabolism is altered, a striking 

correlation between the effect of iron and erythropoiesis on ATOH8 expression was 

observed.   

 

The first line of evidence came from the analysis of hepatic ATOH8 expression in the 

HPX mouse model. In this model, despite extensive tissue iron loading, the expression 

of ATOH8 was found to be significantly reduced. The HPX mice used in the current 

study only received haematologic support for the first few weeks, where mice were 

able to survive without therapy. In agreement with previous reports by Trenor and 

colleagues, the liver of these mice was particularly noteworthy for its dark brown 

colour where iron deposition was seen in both Kupffer cells and hepatocytes (Trenor et 

al., 2000). Immunostaining studies demonstrated ATOH8 staining to be localised to the 

hepatocytes in WT mice with reduced staining in the HPX liver.   

 

It was hypothesised that in addition to iron loading, the effect of increased 

erythropoietic activity or reduced transferrin saturation may also regulate hepatic 

ATOH8 levels. The effect of increased erythropoiesis on ATOH8 expression was 

pursued through the induction of acute hypoxia. The hypoxic induction of 

erythropoietin (EPO) has been extensively studied; EPO serves to prevent apoptosis of 

developing erythrocytes and therefore increases their viability under hypoxic 

conditions through the actions of hypoxia inducible factors (see section 1.5.3.2) (Haase, 

2010). Although the expression of EPO was not measured in the current study, 

increased erythropoiesis was assumed from the significant increases in haemoglobin 

(Hb) levels after 24 and 72 hours of hypoxia (see Table 3.4 chapter 3). The increased 

exposure to hypoxia was correlated with a significant reduction in hepatic Hamp1 and 
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Atoh8 mRNA expression, providing further evidence to support the suggestion that 

increased erythropoiesis affects hepcidin expression possibly through ATOH8.  

 

Prior studies have associated increased Atoh8 mRNA expression in the Hamp1-/- mouse 

model which have increased iron stores (Kautz et al., 2008). In this report the authors 

hypothesised that Atoh8 may be regulated by iron stores provided that SMAD4 was 

functional and is a downstream target for BMP signalling induced by dietary iron 

loading. The present study showed that ATOH8 levels were robustly decreased by 

treatment with PHZ which causes haemolysis of the erythrocytes and thus increases 

erythropoietic activity. Upon PHZ injection, haemoglobin levels demonstrated a 

tendency towards reduced levels in WT mice which correlated with reduced ATOH8 

protein expression (17.98±1.63 g/dL in WT PHZ treated, n=6, vs. 19.10±1.28 g/dL in WT 

saline treated, n=5). Although not significant, haemoglobin levels were increased by 

PHZ treatment in Hamp1-/- however ATOH8 protein and mRNA expression was 

significantly reduced (24.74±1.64 g/dL in Hamp1-/- PHZ treated, n=7, vs. 21.95±0.87 

g/dL in Hamp1-/-saline treated, n=6) (Masaratana et al., 2012).This evidence provides 

further support for the notion that Atoh8 mRNA expression is reduced by increased 

erythropoietic demand even in the face of iron overload and perhaps anaemia and 

reinforces the idea that ATOH8 could be involved in the erythropoietic regulation of 

hepcidin. Although the mice in this study were not significantly anaemic after PHZ 

treatment, prolonged treatment with PHZ with smaller doses may be more effective 

and inducing anaemia as was observed by Frazer and colleagues (Frazer et al., 2012).    

 

The regulation of hepcidin is dependent on erythropoietic activity. This was 

demonstrated through studies in which erythropoiesis was inhibited using carboplatin, 

doxorubicin, EPO-blocking antibody (Pak et al., 2006) and irradiation or 

posttransfusion polycythemia (Vokurka et al., 2006). Hepcidin expression was 

increased upon inhibition of erythropoiesis even when challenged with anaemia or 

EPO. Additionally the inhibition of erythropoiesis did not affect the ability of the tissue 

to sense hypoxia as demonstrated by an increase in vascular endothelial growth factor 

(VEGF) in all mice with or without the treatment with erythropoiesis inhibitors (Pak et 
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al., 2006). These studies demonstrate that hepcidin was not suppressed by anaemia and 

hypoxia in absence of erythropoietic activity. Evidence presented throughout this 

chapter suggests an important role of ATOH8 in the regulation of hepcidin by 

erythropoiesis. Future studies will focus on hepatic ATOH8 expression under 

conditions of enhanced erythropoiesis and anaemia to investigate whether ATOH8 is 

responding to the former, as demonstrated for hepcidin by Pak et al and Vokurka et al 

(Pak et al., 2006, Vokurka et al., 2006). 

 

It is clear from the in vivo investigations conducted in this chapter that multiple stimuli 

such iron and erythropoietic demands are able to influence both ATOH8 mRNA and 

protein expression. In each case, the expression of ATOH8 paralleled that of hepcidin. 

Further investigations were conducted in order to establish whether ATOH8 had a 

direct effect of on hepcidin transcription. ATOH8 increased hepcidin promoter activity 

in a dose dependent manner in the absence or presence of BMP stimulation which 

correlated with increased pSMAD 1,5,8 protein expression. In support of this, mutation 

of the BMP-RE element reduced ATOH8-dependent hepcidin promoter activity by 

around 50% demonstrating the potential of ATOH8 to regulate hepcidin transcription 

thorough pSMAD/SMAD4.  

 

In addition to the BMP-RE’s, the enhancer elements (E-Boxes) which have been shown 

to be occupied by other members of the b-HLH family of transcription factors i.e. USF1 

and USF2 and also c-Myc and c-Max were also of particular interest to this study 

(Bayele et al., 2006). Despite increasing hepcidin transcription in vitro, mutations of 

USF1 and USF2 do not appear to affect hepcidin expression or iron metabolism in vivo 

(Nicolas et al., 2001a). Interestingly, mutation of the E-boxes also reduced the ability of 

ATOH8 to activate the hepcidin promoter indicating the potential of ATOH8 to bind to 

the E-box regions. Further studies involving chromatin immunoprecipitation (ChIP) 

studies would ascertain that the promoter regions highlighted are bound by ATOH8.  
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The results presented in this chapter could offer an explanation for the recent findings 

by Frazer and colleagues who report decreased hepatic hepcidin levels, increased 

BMP6 levels with no change in liver pSMAD 1,5,8 levels in mice treated with PHZ. The 

authors noted two important findings; firstly that in PHZ treated mice, increased 

hepatic BMP6 levels failed to elicit an increase in pSMAD 1,5,8 levels and secondly that 

hepcidin levels decreased without any change in pSMAD1/5/8 levels suggesting SMAD 

independent suppression of hepcidin (Frazer et al., 2012). In the current study the 

expression of BMP6 was not changed with PHZ treatment, however hepcidin 

expression was significantly reduced along with ATOH8 protein expression. This data 

suggests that a reduction in ATOH8 expression could attenuate BMP signalling via 

reduction of pSMAD 1,5,8 independently of BMP6 levels by reducing E-box dependent 

hepcidin  transcription. 

 

In addition to the b-HLH transcription factors, HIF-1 was also shown to inhibit 

hepcidin promoter activity through the binding of putative HRE located at -582bp in 

the proximal hepcidin promoter (Peyssonnaux et al., 2007). It is noteworthy that these 

regions lie very close to the E-boxes and therefore it is possible that there may be 

interaction or interferences between the various transcription factors which are 

activated by different pathways. The crosstalk between pathways will require further 

clarification. 

 

HFE knockout mice are phenotypically iron loaded due to impaired hepcidin 

production. A trend towards decreased ATOH8 expression was observed in the HFE-/- 

mouse model. However the expression of hepcidin appeared to be unaffected. This 

could be interpreted in a few ways; firstly, age-related changes between WT and HFE-/- 

mice have previously been reported where younger mice of 4-week of age have 

significantly reduced hepatic hepcidin expression compared to mice which are of 8-

weeks of age (which was the age used in the present study), where hepcidin expression 

was not statistically different between WT and HFE-/- (Ahmad et al., 2002). 

Furthermore, the background strains of mice have been shown to respond differently 

to HFE mutations where mice of the AKR strain are more susceptible to iron loading 
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compared to the C57BL/6 which is what was used for analysis in the present study 

(Fleming et al., 2001, Simpson et al., 2003). The fact that ATOH8 levels did not increase 

in HFE-/- mice despite the liver iron loading is intriguing and may indicate that HFE is 

required for ATOH8 regulation. Further studies in HFE-/- mice will be required to 

confirm this. 

 

Hepcidin can be regulated by both serum and liver iron levels perhaps independently 

as demonstrated in studies where mice challenged with acute or chronic iron 

administration through dietary intervention (Corradini et al., 2011). Mice treated with 

PHZ displayed increased liver iron stores (demonstrated by increased BMP6 

expression) with reduced serum diferric-transferrin and increased apotransferrin levels 

(Frazer et al., 2012). It seems unlikely that ATOH8 is predominantly regulated by iron 

stores as PHZ treatment significantly reduced its expression. Therefore changes in the 

ratios of apo-to holotransferrin levels could be a factor regulating ATOH8 levels. In 

support of this, treatment of HepG2 cells with either apo- or holotransferrin 

significantly reduced ATOH8 mRNA expression. Previous reports have outlined the 

inconsistencies that exist with an in vitro system that mimics in vivo conditions of iron 

loading. The current study outlines the lack of HAMP1 mRNA expression from 

treatment of HepG2 cells with holotransferrin. The reasons for this are not fully 

understood and are thought to be due to the loss of liver-specific gene expression over 

prolonged time periods in the absence of differentiation-promoting factors (Lin et al., 

2007). As a result of immortalisation, some effects one observes in vivo cannot be 

mimicked with an in vitro system in an immortalised cell line such as HepG2 cells. It is 

possible that ATOH8 expression may change in response to changes in either holo- or 

apotransferrin which could be sensed by the hepatocyte via the HFE/TfR1 and TfR2 

complex, leading to signals which increase ATOH8 expression. However further work 

in primary hepatocytes will be required to confirm this. Additionally, the transferrin 

used in the current study was sourced from a commercial company and may have 

contained contaminants which could have contributed to the reduction in hepcidin and 

Atoh8 expression. Future studies will involve precise analysis of the transferrin by 

HPLC prior to experimental use to establish the baseline transferrin saturation. 

Furthermore, the current study was carried out in the absence of serum 
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supplementation to the cell culture media. Previous studies have shown that serum 

affects hepcidin (Ramey et al., 2009). This may have also contributed to the reduction in 

hepcidin and/or Atoh8 expression. Further studies would test the effect of serum 

supplementation in the culture media.   

 

Recent studies have demonstrated the ability of HJV to interact with HFE and/or TfR2 

(D'Alessio et al., 2012). The authors hypothesised that increased diferric iron levels in 

plasma as well as increased expression of TfR2 and/or HJV may trigger the release of 

HFE from TfR1 causing increased hepcidin expression through modulation of the 

BMP/SMAD signalling cascade (D'Alessio et al., 2012). Whether ATOH8 is a 

downstream target of HFE or TfR2 requires further investigation perhaps through the 

use of HFE and TfR2 KO mice. 

 

In summary, the studies carried out in this chapter have shown that a previously little 

studied iron regulated gene, Atoh8, is significantly influenced erythropoietic demand 

and moreover can regulate hepcidin levels. ATOH8 was able to influence hepcidin 

transcription through the actions of the BMP/SMAD signalling cascade and E-box’ 

regions. Further clarification of this binding needs to be carried out, taking into 

consideration the potential of other transcription factors that could be co-operating to 

induce hepcidin transcription. The expression of other signalling pathways such a 

MAPK/ERK1,2 was not analysed in the current study and the crosstalk between 

pathways (if any) will require further clarification. Prior studies have shown the effect 

of transferrin saturation on hepcidin expression; however the intracellular signalling 

pathway involved in this regulation has not been clarified. Preliminary investigations 

have identified ATOH8 to be a potential candidate that could be influenced by changes 

in either holo- or apotransferrin which in turn could be signalling via HFE/ TfR2 

complex possibly through interactions with the BMP/SMAD4 pathway. Taken 

together, these findings add another dimension to the complex regulatory mechanisms 

that are already known to influence hepcidin transcription. The ability of ATOH8 to be 

regulated both by iron and erythropoiesis makes it an attractive candidate for future 
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studies which will involve analysis of any regulatory elements contained with its 

promoter sequences.  
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Chapter 5 . 

The regulation of hepcidin by other 

potential modulators of BMP signalling:  

BMP8b and von Willebrand Factor C
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5.1 Introduction 

 

BMP8 belongs to the 60A subfamily of BMP proteins (Zhao et al., 1998) and exists as 

two highly related and closely linked genes namely, BMP8a and BMP8b found on 

chromosome 4 in mice and humans (Zhao and Hogan, 1996). Despite their similarities, 

the expression profile of each gene has been shown to be variable. The expression of 

BMP8a was reported to be high in the maternal elements of the placenta however the 

expression of BMP8b was shown to be in the male germ cells (Zhao et al., 1996, Zhao 

and Hogan, 1996). Unlike many of the other BMP knockout mice, BMP8a and BMP8b 

deficient mice appear to be healthy and viable implying a redundant role in the 

developmental stages. Of the two genes, mice homozygous for the mutant allele in 

BMP8b demonstrated impaired development of the male germ cells however BMP8a 

mutant mice failed to show any obvious germ cell defects. Investigators ascribe the role 

of BMP8a to be important in the maintenance rather than the induction of 

spermatogenesis (Zhao et al., 1996, Zhao et al., 1998). 

 

Studies have demonstrated that the members of the 60A class are often co-expressed 

with members of the DPP class (BMP2 and BMP4) in numerous tissues and cell types 

(Ying et al., 2001). BMPs are functionally active as dimers where heterodimeric 

complexes have been shown to be more potent at activating BMP signalling than 

homodimeric complexes (Valera et al., 2010), thus increasing the variability of the 

downstream effector molecules. This was evidenced for BMP8b and BMP4 in the 

induction of primordial germ cells (PGCs), where a combination of BMP8b and BMP4 

was more effective for the induction of PGCs compared to homodimers (Ying et al., 

2000).  

 

Although the roles of each of these proteins have been established, the mechanism by 

which BMP8a and BMP8b proteins mediate their effects are still poorly understood. 

Recent investigations have demonstrated the importance of BMP8b in the regulation of 

thermogenesis. BMP8b was shown to stimulate the p38-MAP kinase pathway in brown 
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adipocytes where the transcription factor, cAMP-responsive element binding protein 

(CREB), was implicated to be a potential downstream target of BMP8b (Whittle et al., 

2012). The involvement of this pathway in spermatogenesis however requires further 

investigations. 

 

The biological activities of BMPs are largely influenced by extracellular modulators, 

allowing many of the BMPs to have a dual function. Chordin is one of the most 

extensively studied BMP modulators which has shown to bind to BMP proteins 

through four cysteine rich (CR) regions similar to those found in the extracellular 

protein von Willebrand factor C (VWC) (Larrain et al., 2000, Sasai et al., 1994). The 

VWC domain has a common conserved CXXCXC and CCXXC consensus where its 

expression has been noted in approximately 70 human extracellular proteins (Zhang et 

al., 2007b). The expression of VWC domains has also been noted in the chordin family 

member CV-2/BMPER (chapter 3). BMPER has 5 closely spaced VWC domains at its N-

terminal region, where truncation studies have demonstrated the first VWC domain to 

be important for the binding of BMP2 (Zhang et al., 2007b).  

 

In addition to genes discussed in previous chapters (BMPER and ATOH8) the 

expression of BMP8b and VWC, were also identified by microarray analysis, to be 

significantly increased in the HPX mouse liver (McKie unpublished data). The 

expression of BMP8b was not found to be reported in any of the iron related disorders 

and hence the potential of BMP8b to modulate hepcidin was further explored. 

Following on from the negative regulation of hepcidin by BMPER (chapter 3), since 

VWC domains bind to BMPs with high affinities, the potential of the VWC domains 

alone to inhibit BMP signalling were thus investigated. The expression of BMP8b and 

VWC were also investigated in various mouse models of altered iron metabolism along 

with the effects of BMP8b and VWC on the hepcidin promoter.  
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5.2 BMP8b Expression in Hypotransferrinaemic mouse liver (HPX) 

 

The overexpression of BMP8b in the HPX mouse liver was confirmed by real-time PCR 

and western blot analysis (Figure 5.1A and Figure 5.2). The levels of Hamp1 mRNA 

transcripts were measured previously (Figure 3.1, chapter 3). The mRNA expression of 

other BMP proteins (Bmp2, Bmp4 and Bmp6) was also measured by real-time PCR 

(Figure 5.1B). The mRNA expression of Bmp6 and Bmp8b were significantly 

upregulated amongst the BMP molecules analysed. 
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Figure 5.2 Western blot analysis of liver and serum BMP8b expression in HPX   

Western blot analysis of (A) liver and (B) serum of 10-11 week old male HPX mice (n=3). Wild 

type and heterozygous mice were used as controls. BMP8b expression (indicated by arrow) was 

normalised to the expression of β-actin and presented in arbitrary units (AU). Densitometry is 

displayed next to the blot. Data are presented as mean ± SD. Statistical analysis was performed 

by Student t-test. *p<0.05 for CONTROL vs. HPX comparisons.  

  

A 

* 

B 
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5.3 Effect of BMP8b on hepcidin promoter activity  

 

5.3.1 Recombinant BMP8b peptide  

 

The pGL3 vector expressing 2.7kb of the human hepcidin promoter encompassing the 

BMP-REs was utilised together with controls in which the BMP-RE2 was mutated. The 

expression vectors were transiently transfected into the HepG2 cells which were then 

treated with recombinant BMP peptides (BMP4/6) in the absence and presence of 40 to 

100 times excess BMP8b peptide. 

 

The results showed that BMP8b peptide significantly enhanced BMP6 dependent 

hepcidin promoter activity (Figure 5.3A). However no such response was noted in 

BMP4 dependent hepcidin promoter activity (Figure 5.3B).  

 

5.3.2 BMP8b plasmid constructs 

 

HEK-293 cells were transfected with the human hepcidin promoter along with 

increasing concentrations of BMP8b plasmid ranging from 2 to 6 micrograms in the 

presence or absence of BMP2 stimulation (Figure 5.4A). Phosphorylated SMAD 1,5,8 

(pSMAD 1,5,8) protein expression was measured by western blot analysis (Figure 

5.4B). BMP8b plasmid was able to significantly reduce the BMP2 dependent hepcidin 

promoter induction without significantly altering pSMAD 1,5,8 protein expression.  
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5.4 Effect of iron loading and haemolytic anaemia on BMP8b 

expression  

 

HPX mouse is a complex model which has secondary iron overload with chronic 

anaemia, low levels of transferrin, and increased erythropoietic drive (Trenor et al., 

2000). The effects of these factors were investigated individually. A model of iron 

loading was induced by intramuscular injection of iron dextran (Fe dextran); 

haemolytic anaemia was induced by intraperitoneal injection of phenylhydrazine (PHZ 

60mg/kg body weight). Hamp1 and Bmp8b expression was measured by real-time PCR 

(Figure 5.5). In agreement with previous reports, the mRNA expression of Hamp1 

increased and decreased upon iron dextran and PHZ treatment respectively (Nicolas et 

al., 2002b). Interestingly, Bmp8b mRNA expression altered in the same direction as 

hepcidin after both Fe dextran and PHZ treatment indicative of a correlation between 

the two genes (Figure 5.5).  

 

This was investigated further through the use of a model in which iron loading and 

haemolytic anaemia co-exist. Hamp1-/- mice, which are characteristically iron loaded, 

were treated with PHZ to induce haemolysis as described previously (Masaratana et 

al., 2012). The mRNA expression of Bmp8b in this mouse model did not retain the same 

expression pattern observed when the factors (iron loading or PHZ) were manipulated 

individually (Figure 5.6). Two-way ANOVA indicated a significant effect of genotype 

with no significant effect of treatment on Bmp8b expression, implying the effect of 

haemolysis in this model had no effect on Bmp8b expression.  
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Figure 5.5 Real-time PCR measurement of Hamp1 and Bmp8b mRNA levels in CD1 mice treated with 

iron dextran or phenylhydrazine  

Liver Hamp1 and Bmp8b levels were measured in 6 week old male CD1 mice (n=6) treated with 

iron dextran (A) or phenylhydrazine (B). Relative mRNA expression was normalised to the 

housekeeping gene Rpl19. Data are presented as mean ± SD for fold change compared to control 

(n=6 per group). The samples were measured in triplicates. Statistical analysis was performed 

by Student t-test. *p<0.05; **p<0.01 for Control vs. PHZ/Fe dextran.  

 

* 

A 

B 

** 

* 

* 
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Figure 5.6 Real-time PCR measurement of Bmp8b mRNA expression in livers of WT and Hamp1-/- mice 

treated with saline or PHZ 

Liver Bmp8b levels was measured in WT and Hamp1-/- treated with saline or phenylhydrazine. 

Relative mRNA expression was normalised to the housekeeping gene Rpl19. Data are presented 

as mean ± SD as compared with saline-treated wild type mice (n=5 and 6 for saline-, PHZ 

treated wild type mice and n=6, 7 for saline-, PHZ-treated Hamp1-/- mice respectively). The 

samples were measured in triplicates. Statistical analysis was performed by 2-way ANOVA 

with Bonferroni post-hoc test. 

 

Significant effects of genotype: Bmp8b (p=0.049) 

No Significant effect of PHZ treatment: Bmp8b (p=0.150) 

No Significant interaction: Bmp8b (p=0.388) 
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5.5 VWC expression in Hypotransferrinaemic mouse liver (HPX) 

 

The expression of BMPER was shown to be significantly increased in the HPX mouse 

liver (Figure 3.1, chapter 3). The VWC domains of BMPER have been shown to bind 

BMPs; thus the expression of VWF (a monomer encompassing VWC) was investigated 

in the same mouse model. The expression of BMPER was mirrored by a significant 

increase in the expression of VWF at both mRNA and protein level (Figure 5.7 and 

Figure 5.8).  

 

 

 

Figure 5.7 Real-time PCR measurement of Vwf in the HPX mouse liver 

Liver Vwf mRNA expression levels were measured in 10-11 week old male HPX mice (n=3). 

Wild type and heterozygous mice were used as controls. Relative mRNA expression was 

normalised against the house keeping gene Rpl19. Data are presented as mean ± SD for fold 

change as compared with wild type and heterozygous mice. The samples were measured in 

triplicate. Statistical analysis was performed by Student t-test. *p<0.05 for CONTROL vs. HPX 

comparisons.  

  

* 
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Figure 5.8 VWF protein expression in the HPX mouse model 

VWF protein expression was measured in 10-11 week old male HPX mice (n=3). Wild type and 

heterozygous mice were used as controls. VWF expression (indicated by arrow) was normalised 

to the expression of β-actin. Densitometry is displayed below the blot and presented in arbitrary 

units (AU). Data are presented as mean ± SD. *p<0.05 for WT vs. HPX comparison.  

 

* 
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5.6 Effect of VWC on hepcidin promoter activity  

 

The human hepcidin promoter was co-transfected with increasing concentrations of 

VWC plasmid ranging from 2 to 6 micrograms into HepG2 or HEK-293 cells in the 

presence or absence of BMP2 or BMP4 stimulation. The transfection efficiency of the 

HepG2 cells was not as good as that of the HEK-293 cells and therefore measurement 

of pSMAD 1,5,8 protein expression was only carried out in HEK-293 cells by western 

blot analysis. VWC potentiated BMP2-dependent hepcidin promoter activity with no 

effect on BMP4 in HepG2 cells (Figure 5.9). VWC suppressed BMP4-dependent 

hepcidin promoter activity in HEK-293 cells at the highest concentration (Figure 5.10). 

This was not correlated with reduced pSMAD 1,5,8 expression as demonstrated by 

western blot analysis (Figure 5.11).  
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Figure 5.10 Effects of VWC plasmid on hepcidin promoter activity in HEK-293 cells 

HEK-293 cells were transiently co-transfected with the wild-type 2.7kb hepcidin promoter 

construct and 2, 4 or 6 µg of VWC plasmid before being treated with 25ng/mL BMP4. Samples 

were compared against the wild type hepcidin promoter without any BMP4 treatment Data are 

presented as mean ± SD derived from a single experiment with three biological replicates. The 

experiment shown is representative of 3 similar experiments.  Statistical analysis was performed 

by 1-way ANOVA with Tukey’s post hoc test. *p<0.05; **p<0.01; ***p<0.001 for –BMP4 vs. 

treatment comparisons. ••p<0.05 for +BMP4 vs. treatment.  

 

 

 

•• 

•• 

* 
** 

*** 
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Figure 5.11 pSMAD 1,5,8 expression in HEK-293 cells transfected with VWC plasmid 

HEK-293 cells were transfected with 3 or 6 µg of VWC plasmid for 16-18 hours. The expression 

of the VWC plasmid was detected by an anti-DDK antibody (indicated by arrow). pSMAD 1,5,8 

levels were determined in the same samples. β-actin was used as a loading control.  
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5.7 Expression of VWC in phenylhydrazine treated mice  

 

The von Willebrand factors are a family of glycoprotein’s involved in the process of 

blood clotting. The effect of PHZ-induced anaemia on Vwf and Bmper mRNA 

expression was measured by real-time PCR in order to determine the potential of Vwf 

to reduce hepcidin expression in response to haemolysis. Hepatic Hamp1 mRNA 

expression was significantly reduced after PHZ treatment with no significant changes 

in Bmper or Vwf (Figure 5.12). 

 

 

Figure 5.12 Real-time PCR measurement of Hamp1, Bmper and Vwf mRNA expression after 

phenylhydrazine injection 

6 week old male CD1 mice were intraperitoneally injected with 60 mg/kg body weight of 

neutralized phenylhydrazine or saline solution twice on consecutive days. The expression on 

Hamp1, Bmper and Vwf were determined though real-time PCR. Relative mRNA expression 

were normalised against the house keeping gene Rpl19. Data are presented as mean ± SD for 

fold change as compared with saline injected mice (n=6 per group). The samples were measured 

in triplicate. Statistical analysis was performed by Student t-test. **p< 0.01 for Control vs. PHZ 

comparison.  

 

** 
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5.8 Discussion  

 

The BMP signalling pathway and its involvement in the regulation of hepcidin has 

been extensively researched. The present study was designed to investigate the effects 

BMP8b and VWC on hepcidin transcription.  

 

BMP6 knockout mice are the only BMP knockout model so far to demonstrate altered 

iron metabolism. Iron overload appears to induce BMP6 mRNA expression in the liver 

but not other BMPs (Kautz et al., 2008, Andriopoulos et al., 2009, Meynard et al., 2009). 

The current study demonstrated the expression of BMP8b as well as BMP6 to be 

significantly increased in the HPX mouse model, which has not been identified in 

previous studies. Various mouse models of altered iron metabolism were utilised in 

order to identify a correlation between BMP8b expression and iron loading. The effects 

of iron dextran injections significantly increased Bmp8b mRNA expression. In contrast 

the effect of PHZ significantly reduced Bmp8b expression. Although it was not 

measured in the current study, PHZ treatment has been shown to increase liver iron 

stores while decreasing the expression of diferric transferrin (Frazer et al., 2012). Thus 

the expression of BMP8b could be dependent on the levels of circulating transferrin 

bound iron, where injections of iron dextran or PHZ may have increased or decreased 

transferrin saturation respectively. In the case of the HPX mouse model, in the absence 

of a functional transferrin gene, the expression of BMP8b may have been upregulated 

by increased circulating non-transferrin bound iron.  

 

This study demonstrates that iron loading and anaemia (caused by haemolysis from 

PHZ treatment) are both able to influence the expression of BMP8b individually. 

However when both factors are present, for instance in hypotransferrinaemia, the 

effect of iron appears dominant. Studies conducted utilising the Hamp1-/- model treated 

with PHZ, do not agree with this paradigm, since BMP8b expression was not affected. 

Therefore other factors maybe influencing the expression of BMP8b in the HPX model 
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which may have not been present in the Hamp1-/- model treated with PHZ. Further 

investigations need to be carried out in order to identify the factor(s) responsible. 

 

Prior studies have noted the importance of homo- and heterodimeric complexes that 

can form between different BMP proteins. In particular, the DPP family (BMP2 and 

BMP4) have been shown to be more potent activators when forming heterodimeric 

complexes with members from the 60A class (BMP5,6,7,8a,8b) (Ying et al., 2001). There 

was some evidence that BMP8b peptide appeared to potentiate BMP6-dependent 

hepcidin promoter activity in HepG2 cells however BMP8b had no effect on basal 

hepcidin promoter activity in HEK-293 cells. The lack of BMP8b effect on hepcidin and 

pSMAD 1,5,8 expression suggests it may require other BMPs to heterodimerise for full 

activity. The effect of BMP8b on hepcidin promoter activity was negative and in 

general appeared to inhibit effects of other BMPs. Therefore BMP8b could form 

heterodimeric complexes with BMP6 and other BMPs and thus modify their effects, 

however further investigations into these complexes need to be undertaken before the 

association between BMP8b, BMP6 and other BMPs are more clearly understood. 

 

Future work could involve analysis of hepatic hepcidin and BMP6 expression in 

BMP8b-/- mice or conversely BMP8b expression could be assessed in BMP6-/- mice, 

where the expression of other BMPs  (BMP2 and BMP4) were shown not to be 

significantly altered in this mouse model (Andriopoulos et al., 2009). Additionally, the 

effects of BMP8b could be explored in vivo through peptide injections in the presence 

and absence of BMP6 to see if hepcidin expression is affected by the combination of 

different BMPs.  

 

Recent studies have highlighted the potential of BMP8b to be a regulator of 

thermogenesis. BMP8b-/- mice were shown to have lower metabolic rates and displayed 

increased propensity for weight gain which was significantly exacerbated when the 

mice were fed a high fat diet (Whittle et al., 2012). Interestingly, obesity has been 

associated with decreased serum iron concentrations with assumptions that the 
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adipose tissues are able to release cytokines which increase hepcidin production and as 

a result cause anaemia in obese individuals (Yanoff et al., 2007). Further studies which 

take these variables into account could be carried out to investigate the relationship 

between BMP8b and hepcidin levels in a mouse model of obesity.  

 

Thrombospondin and types I and III procollagen alpha-1 have two internally 

homologous domains known as von Willebrand type C domains. These domains are 

now referred to as VWC due to their C-terminal location on VWF protein (Hunt and 

Barker, 1987). These regions are rich in cysteine residues which are thought to 

participate in the intramolar formation of disulphide bonds between proteins. This is 

supported by more recent findings which shows the first VWC repeat of BMPER to be 

involved in the molecular interaction between BMPER and BMPs and accounts for the 

pro and anti-BMP effects of BMPER (Zhang et al., 2007b). BMPER has more than one 

VWC domain and it is thought that the second VWC domain contributes to the pro-

BMP effect of BMPER. This is mediated by the interaction of the second VWC domain 

on BMPER with the BMP antagonist, chordin. The interaction between BMPER and 

chordin relieves the inhibitory effect of chordin to BMPs and therefore promotes BMP 

signalling (Zhang et al., 2010b). The presence of endogenous chordin or other factors 

could thus modify the function of VWC domains as an anti- or pro- BMP molecules. In 

the studies carried out in HepG2 and HEK-293 cells, the expression of VWC in HepG2 

cells produced a small increase in hepcidin promoter activity, however in HEK-293 

cells the expression of VWC decreased hepcidin promoter activity. The presence of 

such extracellular modifiers such as chordin could provide an explanation for the 

variations observed in the in vitro studies carried out with the VWC plasmid. One 

could hypothesise that expression of chordin may vary in different cell lines used. 

Future studies could therefore measure the expression of chordin in the cell lines. 

 

The expression of VWF (which is the monomer encompassing VWC) was significantly 

increased in HPX mouse liver. The hypothesis behind this increase could be that the 

HPX mice, as a result of anaemia may increase the remodelling of blood vessels where 
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VWF has been proposed to be synthesised by endothelial cells (Chen et al., 2011b). This 

increase in vessel development is only assumed and further investigations are required 

to confirm this. Evidence from immunostaining (Figure 3.3, chapter 3) has revealed 

small amounts of increased vasculature in the HPX mouse model. Additionally, the 

expression of chordin was unchanged in the HPX liver (see Figure 3.4, chapter 3), 

providing further evidence that the anti-BMP effect observed in the HPX mouse could 

be mediated by the binding of BMPs to the first VWC domain of BMPER. Increasing 

the expression of chordin in the HPX mouse could displace the binding of the BMPs to 

BMPER and ultimately increase BMP signalling.  

 

Moreover it was hypothesized that conditions such as haemolysis may lead to 

increased VWF protein production in attempts to increase clotting factors. Surprisingly 

mice treated with phenylhydrazine however did not show any changes in VWF 

expression. In other studies VWF was increased with increased rate of haemolysis 

(Chen et al., 2011b). While in a separate study, it has been demonstrated that PHZ 

prolongs bleeding in rats (Naughton et al., 1989) and therefore maybe acting to 

decrease clotting factors.  

 

In summary, the studies carried out in this chapter have shown increased expression of 

BMP8b in the HPX mouse model. The effects of iron loading are most likely to be 

influencing the expression of BMPs of different sub-classes, although the studies in this 

chapter did not demonstrate a direct effect of BMP8b on BMP signalling. The effect of 

BMP8b on hepcidin transcription appears to be less clear in comparison to other BMPs 

which have demonstrated a direct effect on hepcidin promoter activity. This study has 

been unable to demonstrate the strongly additive heterodimeric effect of BMP8b and 

BMP4 as shown in other studies during the development of primordial germ cells 

(Ying et al., 2000). Hence it appears the interaction may be a cell specific effect. The 

effect of VWF protein on hepcidin transcription appears cell-type dependent and may 

be modulated by other extracellular molecules such as chordin. However it would be 

interesting to look at the effect of VWF on hepcidin levels in vivo in future studies.  
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Chapter 6  . 

Conclusion 
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Hepcidin has emerged as the master regulator of iron homeostasis. Understanding the 

molecular basis by which hepcidin is regulated has enabled us to further our 

knowledge of the underlying mechanisms which contribute to the pathogenesis of 

primary haemochromatosis, secondary iron loading and iron-restricted anaemia. The 

regulation of hepcidin is principally transcriptional with the BMP/SMAD signalling 

pathway central to the regulatory network governing hepcidin expression. The studies 

presented in this thesis have provided new insights into the regulation of hepcidin by 

the BMP pathway, by the extracellular BMP antagonist BMPER and the transcriptional 

regulation by ATOH8. Both molecules contribute to regulation of hepcidin expression 

and will open up new avenues of research.  

 

Experimental animal models of altered iron metabolism have provided a great deal of 

insight into the systemic regulation of iron metabolism and the relevance of hepcidin in 

genetic iron disorders such as hereditary haemochromatosis and the anaemia of 

chronic disease. The hypotransferrinaemic (HPX) mouse model, where the suppression 

of hepcidin is drastic despite secondary hepatic iron loading has proved particularly 

useful. Due to the transferrin deficiency, these animals suffer from severe iron 

restricted anaemia despite having undetectable levels of hepcidin. In these mice is it 

not clear whether the anaemia, increased erythropoietic drive and possibly tissue 

hypoxia or all contribute to the suppression of hepcidin. The first study conducted in 

this thesis demonstrated an increase in the hepatic expression of a known BMP 

antagonist, BMPER, in HPX mice. Exogenous BMPER was able to inhibit hepcidin 

expression in vivo causing alterations in serum iron levels and in vitro via suppression 

of BMP2/6 dependent hepcidin promoter activity. Since BMPER has a role in blood 

vessel generation and sprouting, levels may be increased in HPX mice in response to 

severe chronic anaemia and/or hypoxia that may occur in pathophysiological 

situations. However BMPER was not significantly affected by hypoxia or iron 

deficiency induced anaemia. BMPER or peptides based on the structure of the BMP 

binding sites (VWC domains, chapter 5) have therapeutic potential for the treatment of 

iron-restrictive disorders in which hepcidin excess contributes to the pathogenesis of 

anaemia with the proviso that inhibitors of the BMP pathway may disturb other 

important process dependent on BMP signalling. Additionally, identifying the 
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cleavage mechanism of BMPER may provide some additional regulatory mechanism of 

hepcidin expression.  

 

Hepcidin remains suppressed even with the greatly increased iron stores in the HPX 

model. This has been attributed to an enhanced erythropoietic activity in the HPX 

mouse which serves as an attractive system for identifying the ‘erythroid regulator’ 

which is able to stimulate iron absorption even in the face of iron loading. The second 

major finding of this thesis identified ATOH8 as a transcription factor that is 

significantly suppressed in the liver of the HPX mouse. The expression of ATOH8 was 

influenced by iron and erythropoiesis in various mouse models simulating the iron-

loading anaemia phenotype. ATOH8 was shown to positively regulate hepcidin 

transcription through the BMP signalling cascade as well as through E-box’ regions 

located on the hepcidin promoter, demonstrating the importance of this molecule in 

the regulation of iron metabolism. Further work will be required to determine whether 

ATOH8 represents part of the true erythroid regulatory mechanism of hepcidin; 

however it is certainly a strong candidate. Identifying the molecules that regulate 

ATOH8 can become important drug targets for disorders of iron metabolism where 

hepcidin expression is greatly disturbed.  

 

The major findings of this thesis can be summarised in brief as depicted in Figure 6.1. 

Collectively, the data presented in this thesis provides an in depth of knowledge on the 

regulation of hepcidin by the BMP signalling pathway. The in vivo models of altered 

iron metabolism have been compared to normal circumstances throughout the thesis, 

highlighting the importance of the genes identified under diseased conditions. 

Ultimately, disease results from the disruption of normal signalling pathways, and 

prevention depends upon our knowledge of these signalling pathways and how they 

were perturbed. The iron-loading diseases are strong examples of hepcidin 

dysregulation that rely on current research for treatment.  
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Figure 6.1 Schematic summary of the work presented 

The suppression of hepcidin is thought to occur through multiple stimuli. Following the red 

arrows (), as a result of anaemia and possibly hypoxia, chapter 3 hypothesised that an 

increase in blood vessel remodelling increases the expression of BMPER which is able to inhibit 

hepcidin transcription through modulation of the BMP/SMAD signalling cascade. The binding 

of BMPs to BMPER was partially shown to occur to through the VWC domain indentified in 

chapter 5. Following the blue arrows (), chapter 4 demonstrated the upregulation of ATOH8 

by increased liver iron stores, whose expression was suppressed during conditions of enhanced 

erythropoietic demands. This is turn reduced hepcidin expression through an undefined 

erythroid signal. Evidence from chapter 4 demonstrated the involvement of pSMAD 1,5,8 and 

E-box regions on the hepcidin promoter. Furthermore ATOH8 may also be regulated by the 

ratio of apo- to holotransferrin which may signal via TfR2/HFE receptor complex. As well as 

reduced hepcidin expression, non-transferrin bound iron uptake is another cause of liver iron 

overload in the HPX model. Chapter 5 introduced a novel member of the BMP family of 

cytokines namely BMP8b who’s expression was the only BMP member besides BMP6 to be 

significantly increased in the liver of the HPX mouse. The nature of the signal that regulates 

BMP8b expression and how this affects hepcidin regulation requires further investigation. In 

addition, increased oxidative stress may also be contributing to the suppression of hepcidin in 

this model which was not examined in the current study (images adapted from science photo 

library). 



Neeta Patel | 177 

Bibliography  

 

ABBOUD, S. & HAILE, D. J. 2000. A novel mammalian iron-regulated protein involved 

in intracellular iron metabolism. J Biol Chem, 275, 19906-12. 

AHMAD, K. A., AHMANN, J. R., MIGAS, M. C., WAHEED, A., BRITTON, R. S., 

BACON, B. R., SLY, W. S. & FLEMING, R. E. 2002. Decreased liver hepcidin 

expression in the Hfe knockout mouse. Blood Cells Mol Dis, 29, 361-6. 

AISEN, P. 2004. Transferrin receptor 1. Int J Biochem Cell Biol, 36, 2137-43. 

AMBROSIO, A. L., TAELMAN, V. F., LEE, H. X., METZINGER, C. A., COFFINIER, C. 

& DE ROBERTIS, E. M. 2008. Crossveinless-2 Is a BMP feedback inhibitor that 

binds Chordin/BMP to regulate Xenopus embryonic patterning. Dev Cell, 15, 

248-60. 

ANDERSON, G. J., DARSHAN, D., WILKINS, S. J. & FRAZER, D. M. 2007. Regulation 

of systemic iron homeostasis: how the body responds to changes in iron 

demand. Biometals, 20, 665-74. 

ANDREWS, N. C. 2000. Iron metabolism: iron deficiency and iron overload. Annu Rev 

Genomics Hum Genet, 1, 75-98. 

ANDRIOPOULOS, B., JR., CORRADINI, E., XIA, Y., FAASSE, S. A., CHEN, S., 

GRGUREVIC, L., KNUTSON, M. D., PIETRANGELO, A., VUKICEVIC, S., LIN, 

H. Y. & BABITT, J. L. 2009. BMP6 is a key endogenous regulator of hepcidin 

expression and iron metabolism. Nat Genet, 41, 482-7. 

BABITT, J. L., HUANG, F. W., WRIGHTING, D. M., XIA, Y., SIDIS, Y., SAMAD, T. A., 

CAMPAGNA, J. A., CHUNG, R. T., SCHNEYER, A. L., WOOLF, C. J., 

ANDREWS, N. C. & LIN, H. Y. 2006. Bone morphogenetic protein signaling by 

hemojuvelin regulates hepcidin expression. Nat Genet, 38, 531-9. 

BABITT, J. L., HUANG, F. W., XIA, Y., SIDIS, Y., ANDREWS, N. C. & LIN, H. Y. 2007. 

Modulation of bone morphogenetic protein signaling in vivo regulates systemic 

iron balance. J Clin Invest, 117, 1933-9. 

BARTNIKAS, T. B., ANDREWS, N. C. & FLEMING, M. D. 2011. Transferrin is a major 

determinant of hepcidin expression in hypotransferrinemic mice. Blood, 117, 

630-7. 

BAYELE, H. K., MCARDLE, H. & SRAI, S. K. 2006. Cis and trans regulation of hepcidin 

expression by upstream stimulatory factor. Blood, 108, 4237-45. 

BENEDICT, C., GHIO, A. J., GEHRING, H., SCHULTES, B., PETERS, A. & 

OLTMANNS, K. M. 2007. Transient hypoxia and downregulation of circulating 

prohepcidin concentrations in healthy young men. Haematologica, 92, 125-6. 

BEUTLER, E. 1971. Red Cell Metabolism: a manual of biochemical methods. Grune & 

Stratton. 

BINNERTS, M. E., WEN, X., CANTE-BARRETT, K., BRIGHT, J., CHEN, H. T., 

ASUNDI, V., SATTARI, P., TANG, T., BOYLE, B., FUNK, W. & RUPP, F. 2004. 

Human Crossveinless-2 is a novel inhibitor of bone morphogenetic proteins. 

Biochem Biophys Res Commun, 315, 272-80. 

CALZOLARI, A., DEAGLIO, S., SPOSI, N. M., PETRUCCI, E., MORSILLI, O., 

GABBIANELLI, M., MALAVASI, F., PESCHLE, C. & TESTA, U. 2004. 



Neeta Patel | 178 

Transferrin receptor 2 protein is not expressed in normal erythroid cells. 

Biochem J, 381, 629-34. 

CAMASCHELLA, C., ROETTO, A., CALI, A., DE GOBBI, M., GAROZZO, G., 

CARELLA, M., MAJORANO, N., TOTARO, A. & GASPARINI, P. 2000. The 

gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat 

Genet, 25, 14-5. 

CARTWRIGHT, G. E. & LEE, G. R. 1971. The anaemia of chronic disorders. Br J 

Haematol, 21, 147-52. 

CASANOVAS, G., MLECZKO-SANECKA, K., ALTAMURA, S., HENTZE, M. W. & 

MUCKENTHALER, M. U. 2009. Bone morphogenetic protein (BMP)-responsive 

elements located in the proximal and distal hepcidin promoter are critical for its 

response to HJV/BMP/SMAD. J Mol Med (Berl), 87, 471-80. 

CHANG, C., HOLTZMAN, D. A., CHAU, S., CHICKERING, T., WOOLF, E. A., 

HOLMGREN, L. M., BODOROVA, J., GEARING, D. P., HOLMES, W. E. & 

BRIVANLOU, A. H. 2001. Twisted gastrulation can function as a BMP 

antagonist. Nature, 410, 483-7. 

CHASTON, T. B., MATAK, P., POURVALI, K., SRAI, S. K., MCKIE, A. T. & SHARP, P. 

A. 2011. Hypoxia inhibits hepcidin expression in HuH7 hepatoma cells via 

decreased SMAD4 signaling. Am J Physiol Cell Physiol, 300, C888-95. 

CHEN, J., DAI, F., BALAKRISHNAN-RENUKA, A., LEESE, F., SCHEMPP, W., 

SCHALLER, F., HOFFMANN, M. M., MOROSAN-PUOPOLO, G., YUSUF, F., 

BISSCHOFF, I. J., CHANKIEWITZ, V., XUE, J., YING, K. & BRAND-SABERI, B. 

2011a. Diversification and molecular evolution of ATOH8, a gene encoding a 

bHLH transcription factor. PLoS One, 6, e23005. 

CHEN, J., HOBBS, W. E., LE, J., LENTING, P. J., DE GROOT, P. G. & LOPEZ, J. A. 

2011b. The rate of hemolysis in sickle cell disease correlates with the quantity of 

active von Willebrand factor in the plasma. Blood, 117, 3680-3. 

CHOI, S. O., CHO, Y. S., KIM, H. L. & PARK, J. W. 2007. ROS mediate the hypoxic 

repression of the hepcidin gene by inhibiting C/EBPalpha and STAT-3. Biochem 

Biophys Res Commun, 356, 312-7. 

COFFINIER, C., KETPURA, N., TRAN, U., GEISSERT, D. & DE ROBERTIS, E. M. 2002. 

Mouse Crossveinless-2 is the vertebrate homolog of a Drosophila extracellular 

regulator of BMP signaling. Mech Dev, 119 Suppl 1, S179-84. 

CONLEY, C. A., SILBURN, R., SINGER, M. A., RALSTON, A., ROHWER-NUTTER, D., 

OLSON, D. J., GELBART, W. & BLAIR, S. S. 2000. Crossveinless 2 contains 

cysteine-rich domains and is required for high levels of BMP-like activity 

during the formation of the cross veins in Drosophila. Development, 127, 3947-

59. 

CONSTANTE, M., WANG, D., RAYMOND, V. A., BILODEAU, M. & SANTOS, M. M. 

2007. Repression of repulsive guidance molecule C during inflammation is 

independent of Hfe and involves tumor necrosis factor-alpha. Am J Pathol, 170, 

497-504. 

CORRADINI, E., GARUTI, C., MONTOSI, G., VENTURA, P., ANDRIOPOULOS, B., 

JR., LIN, H. Y., PIETRANGELO, A. & BABITT, J. L. 2009. Bone morphogenetic 

protein signaling is impaired in an HFE knockout mouse model of 

hemochromatosis. Gastroenterology, 137, 1489-97. 

CORRADINI, E., MEYNARD, D., WU, Q., CHEN, S., VENTURA, P., PIETRANGELO, 

A. & BABITT, J. L. 2011. Serum and liver iron differently regulate the bone 



Neeta Patel | 179 

morphogenetic protein 6 (BMP6)-SMAD signaling pathway in mice. Hepatology, 

54, 273-84. 

D'ALESSIO, F., HENTZE, M. W. & MUCKENTHALER, M. U. 2012. The 

hemochromatosis proteins hfe, tfr2 and hjv form a membrane-associated 

protein complex For hepcidin regulation. J Hepatol. 

DE DOMENICO, I., LO, E., WARD, D. M. & KAPLAN, J. 2009. Hepcidin-induced 

internalization of ferroportin requires binding and cooperative interaction with 

Jak2. Proc Natl Acad Sci U S A, 106, 3800-5. 

DE DOMENICO, I., VAUGHN, M. B., LI, L., BAGLEY, D., MUSCI, G., WARD, D. M. & 

KAPLAN, J. 2006. Ferroportin-mediated mobilization of ferritin iron precedes 

ferritin degradation by the proteasome. EMBO J, 25, 5396-404. 

DE DOMENICO, I., WARD, D. M., LANGELIER, C., VAUGHN, M. B., NEMETH, E., 

SUNDQUIST, W. I., GANZ, T., MUSCI, G. & KAPLAN, J. 2007. The molecular 

mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell, 18, 

2569-78. 

DE DOMENICO, I., ZHANG, T. Y., KOENING, C. L., BRANCH, R. W., LONDON, N., 

LO, E., DAYNES, R. A., KUSHNER, J. P., LI, D., WARD, D. M. & KAPLAN, J. 

2010. Hepcidin mediates transcriptional changes that modulate acute cytokine-

induced inflammatory responses in mice. J Clin Invest, 120, 2395-405. 

DE GORTER, D. J. J., VAN BEZOOIJEN, R. L. & TEN DIJKE, P. 2009. Bone 

Morphogenetic Proteins and Their Receptors. Encyclopedia of Life Sciences (ELS). 

15/09/2009 ed. Chichester: John Wiley&Sons, Ltd. 

DECKERS, M. M., VAN BEZOOIJEN, R. L., VAN DER HORST, G., HOOGENDAM, J., 

VAN DER BENT, C., PAPAPOULOS, S. E. & LOWIK, C. W. 2002. Bone 

morphogenetic proteins stimulate angiogenesis through osteoblast-derived 

vascular endothelial growth factor A. Endocrinology, 143, 1545-53. 

DELABY, C., PILARD, N., PUY, H. & CANONNE-HERGAUX, F. 2008. Sequential 

regulation of ferroportin expression after erythrophagocytosis in murine 

macrophages: early mRNA induction by haem, followed by iron-dependent 

protein expression. Biochem J, 411, 123-31. 

DEUGNIER, Y., BRISSOT, P. & LOREAL, O. 2008. Iron and the liver: update 2008. J 

Hepatol, 48 Suppl 1, S113-23. 

DONOVAN, A., BROWNLIE, A., ZHOU, Y., SHEPARD, J., PRATT, S. J., MOYNIHAN, 

J., PAW, B. H., DREJER, A., BARUT, B., ZAPATA, A., LAW, T. C., 

BRUGNARA, C., LUX, S. E., PINKUS, G. S., PINKUS, J. L., KINGSLEY, P. D., 

PALIS, J., FLEMING, M. D., ANDREWS, N. C. & ZON, L. I. 2000. Positional 

cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. 

Nature, 403, 776-81. 

DU, X., SHE, E., GELBART, T., TRUKSA, J., LEE, P., XIA, Y., KHOVANANTH, K., 

MUDD, S., MANN, N., MORESCO, E. M., BEUTLER, E. & BEUTLER, B. 2008. 

The serine protease TMPRSS6 is required to sense iron deficiency. Science, 320, 

1088-92. 

EKMEKCIOGLU, C., FEYERTAG, J. & MARKTL, W. 1996. A ferric reductase activity is 

found in brush border membrane vesicles isolated from Caco-2 cells. J Nutr, 

126, 2209-17. 

EVSTATIEV, R. & GASCHE, C. 2012. Iron sensing and signalling. Gut, 61, 933-52. 

FARRINGTON, S. M., BELAOUSSOFF, M. & BARON, M. H. 1997. Winged-helix, 

Hedgehog and Bmp genes are differentially expressed in distinct cell layers of 

the murine yolk sac. Mech Dev, 62, 197-211. 



Neeta Patel | 180 

FEDER, J. N., GNIRKE, A., THOMAS, W., TSUCHIHASHI, Z., RUDDY, D. A., 

BASAVA, A., DORMISHIAN, F., DOMINGO, R., JR., ELLIS, M. C., FULLAN, 

A., HINTON, L. M., JONES, N. L., KIMMEL, B. E., KRONMAL, G. S., LAUER, 

P., LEE, V. K., LOEB, D. B., MAPA, F. A., MCCLELLAND, E., MEYER, N. C., 

MINTIER, G. A., MOELLER, N., MOORE, T., MORIKANG, E., PRASS, C. E., 

QUINTANA, L., STARNES, S. M., SCHATZMAN, R. C., BRUNKE, K. J., 

DRAYNA, D. T., RISCH, N. J., BACON, B. R. & WOLFF, R. K. 1996. A novel 

MHC class I-like gene is mutated in patients with hereditary 

haemochromatosis. Nat Genet, 13, 399-408. 

FINBERG, K. E., HEENEY, M. M., CAMPAGNA, D. R., AYDINOK, Y., PEARSON, H. 

A., HARTMAN, K. R., MAYO, M. M., SAMUEL, S. M., STROUSE, J. J., 

MARKIANOS, K., ANDREWS, N. C. & FLEMING, M. D. 2008. Mutations in 

TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet, 40, 

569-71. 

FINCH, C. 1994. Regulators of iron balance in humans. Blood, 84, 1697-702. 

FINKENZELLER, G., HAGER, S. & STARK, G. B. 2012. Effects of bone morphogenetic 

protein 2 on human umbilical vein endothelial cells. Microvasc Res, 84, 81-5. 

FLEMING, M. D., ROMANO, M. A., SU, M. A., GARRICK, L. M., GARRICK, M. D. & 

ANDREWS, N. C. 1998. Nramp2 is mutated in the anemic Belgrade (b) rat: 

evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U 

S A, 95, 1148-53. 

FLEMING, R. E., AHMANN, J. R., MIGAS, M. C., WAHEED, A., KOEFFLER, H. P., 

KAWABATA, H., BRITTON, R. S., BACON, B. R. & SLY, W. S. 2002. Targeted 

mutagenesis of the murine transferrin receptor-2 gene produces 

hemochromatosis. Proc Natl Acad Sci U S A, 99, 10653-8. 

FLEMING, R. E., HOLDEN, C. C., TOMATSU, S., WAHEED, A., BRUNT, E. M., 

BRITTON, R. S., BACON, B. R., ROOPENIAN, D. C. & SLY, W. S. 2001. Mouse 

strain differences determine severity of iron accumulation in Hfe knockout 

model of hereditary hemochromatosis. Proc Natl Acad Sci U S A, 98, 2707-11. 

FLETCHER, J. 1970. Iron transport in the blood. Proc R Soc Med, 63, 1216-8. 

FRAZER, D. M., WILKINS, S. J., BECKER, E. M., VULPE, C. D., MCKIE, A. T., 

TRINDER, D. & ANDERSON, G. J. 2002. Hepcidin expression inversely 

correlates with the expression of duodenal iron transporters and iron 

absorption in rats. Gastroenterology, 123, 835-44. 

FRAZER, D. M., WILKINS, S. J., DARSHAN, D., BADRICK, A. C., MCLAREN, G. D. & 

ANDERSON, G. J. 2012. Stimulated erythropoiesis with secondary iron loading 

leads to a decrease in hepcidin despite an increase in bone morphogenetic 

protein 6 expression. Br J Haematol, 157, 615-26. 

GALY, B., FERRING, D., MINANA, B., BELL, O., JANSER, H. G., MUCKENTHALER, 

M., SCHUMANN, K. & HENTZE, M. W. 2005. Altered body iron distribution 

and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood, 

106, 2580-9. 

GANZ, T. 2007. Molecular control of iron transport. J Am Soc Nephrol, 18, 394-400. 

GANZ, T. 2011. Hepcidin and iron regulation, 10 years later. Blood, 117, 4425-33. 

GERJEVIC, L. N., LIU, N., LU, S. & HARRISON-FINDIK, D. D. 2012. Alcohol Activates 

TGF-Beta but Inhibits BMP Receptor-Mediated Smad Signaling and Smad4 

Binding to Hepcidin Promoter in the Liver. Int J Hepatol, 2012, 459278. 



Neeta Patel | 181 

GUNSHIN, H., FUJIWARA, Y., CUSTODIO, A. O., DIRENZO, C., ROBINE, S. & 

ANDREWS, N. C. 2005a. Slc11a2 is required for intestinal iron absorption and 

erythropoiesis but dispensable in placenta and liver. J Clin Invest, 115, 1258-66. 

GUNSHIN, H., MACKENZIE, B., BERGER, U. V., GUNSHIN, Y., ROMERO, M. F., 

BORON, W. F., NUSSBERGER, S., GOLLAN, J. L. & HEDIGER, M. A. 1997. 

Cloning and characterization of a mammalian proton-coupled metal-ion 

transporter. Nature, 388, 482-8. 

GUNSHIN, H., STARR, C. N., DIRENZO, C., FLEMING, M. D., JIN, J., GREER, E. L., 

SELLERS, V. M., GALICA, S. M. & ANDREWS, N. C. 2005b. Cybrd1 (duodenal 

cytochrome b) is not necessary for dietary iron absorption in mice. Blood, 106, 

2879-83. 

GUO, B., PHILLIPS, J. D., YU, Y. & LEIBOLD, E. A. 1995. Iron regulates the 

intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol 

Chem, 270, 21645-51. 

HAASE, V. H. 2010. Hypoxic regulation of erythropoiesis and iron metabolism. Am J 

Physiol Renal Physiol, 299, F1-13. 

HALLIWELL, B. & GUTTERIDGE, J. M. 1986. Oxygen free radicals and iron in relation 

to biology and medicine: some problems and concepts. Arch Biochem Biophys, 

246, 501-14. 

HAN, O., FAILLA, M. L., HILL, A. D., MORRIS, E. R. & SMITH, J. C., JR. 1995. 

Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells. J 

Nutr, 125, 1291-9. 

HARRIS, Z. L., DURLEY, A. P., MAN, T. K. & GITLIN, J. D. 1999. Targeted gene 

disruption reveals an essential role for ceruloplasmin in cellular iron efflux. 

Proc Natl Acad Sci U S A, 96, 10812-7. 

HARRISON-FINDIK, D. D., SCHAFER, D., KLEIN, E., TIMCHENKO, N. A., 

KULAKSIZ, H., CLEMENS, D., FEIN, E., ANDRIOPOULOS, B., 

PANTOPOULOS, K. & GOLLAN, J. 2006. Alcohol metabolism-mediated 

oxidative stress down-regulates hepcidin transcription and leads to increased 

duodenal iron transporter expression. J Biol Chem, 281, 22974-82. 

HARRISON, P. M. & AROSIO, P. 1996. The ferritins: molecular properties, iron storage 

function and cellular regulation. Biochim Biophys Acta, 1275, 161-203. 

HASSAN, B. A. & BELLEN, H. J. 2000. Doing the MATH: is the mouse a good model 

for fly development? Genes Dev, 14, 1852-65. 

HEINKE, J., WEHOFSITS, L., ZHOU, Q., ZOELLER, C., BAAR, K. M., HELBING, T., 

LAIB, A., AUGUSTIN, H., BODE, C., PATTERSON, C. & MOSER, M. 2008. 

BMPER is an endothelial cell regulator and controls bone morphogenetic 

protein-4-dependent angiogenesis. Circ Res, 103, 804-12. 

HUANG, H., CONSTANTE, M., LAYOUN, A. & SANTOS, M. M. 2009. Contribution of 

STAT3 and SMAD4 pathways to the regulation of hepcidin by opposing 

stimuli. Blood, 113, 3593-9. 

HUNT, L. T. & BARKER, W. C. 1987. von Willebrand factor shares a distinctive 

cysteine-rich domain with thrombospondin and procollagen. Biochem Biophys 

Res Commun, 144, 876-82. 

HUNTER, H. N., FULTON, D. B., GANZ, T. & VOGEL, H. J. 2002. The solution 

structure of human hepcidin, a peptide hormone with antimicrobial activity 

that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem, 

277, 37597-603. 



Neeta Patel | 182 

IKEYA, M., KAWADA, M., KIYONARI, H., SASAI, N., NAKAO, K., FURUTA, Y. & 

SASAI, Y. 2006. Essential pro-Bmp roles of crossveinless 2 in mouse 

organogenesis. Development, 133, 4463-73. 

INOUE, C., BAE, S. K., TAKATSUKA, K., INOUE, T., BESSHO, Y. & KAGEYAMA, R. 

2001. Math6, a bHLH gene expressed in the developing nervous system, 

regulates neuronal versus glial differentiation. Genes Cells, 6, 977-86. 

IWAI, K., KLAUSNER, R. D. & ROUAULT, T. A. 1995. Requirements for iron-

regulated degradation of the RNA binding protein, iron regulatory protein 2. 

EMBO J, 14, 5350-7. 

JARMAN, A. P., GRAU, Y., JAN, L. Y. & JAN, Y. N. 1993. atonal is a proneural gene 

that directs chordotonal organ formation in the Drosophila peripheral nervous 

system. Cell, 73, 1307-21. 

JIAN, J., YANG, Q., DAI, J., ECKARD, J., AXELROD, D., SMITH, J. & HUANG, X. 

2011. Effects of iron deficiency and iron overload on angiogenesis and oxidative 

stress-a potential dual role for iron in breast cancer. Free Radic Biol Med, 50, 841-

7. 

KAUTZ, L., MEYNARD, D., MONNIER, A., DARNAUD, V., BOUVET, R., WANG, R. 

H., DENG, C., VAULONT, S., MOSSER, J., COPPIN, H. & ROTH, M. P. 2008. 

Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, 

Smad7, Id1, and Atoh8 in the mouse liver. Blood, 112, 1503-9. 

KAWABATA, H., YANG, R., HIRAMA, T., VUONG, P. T., KAWANO, S., GOMBART, 

A. F. & KOEFFLER, H. P. 1999. Molecular cloning of transferrin receptor 2. A 

new member of the transferrin receptor-like family. J Biol Chem, 274, 20826-32. 

KAWABATA, M., IMAMURA, T. & MIYAZONO, K. 1998. Signal transduction by bone 

morphogenetic proteins. Cytokine Growth Factor Rev, 9, 49-61. 

KELLEY, R., REN, R., PI, X., WU, Y., MORENO, I., WILLIS, M., MOSER, M., ROSS, M., 

PODKOWA, M., ATTISANO, L. & PATTERSON, C. 2009. A concentration-

dependent endocytic trap and sink mechanism converts Bmper from an 

activator to an inhibitor of Bmp signaling. J Cell Biol, 184, 597-609. 

KONG, W. N., CHANG, Y. Z., WANG, S. M., ZHAI, X. L., SHANG, J. X., LI, L. X. & 

DUAN, X. L. 2008. Effect of erythropoietin on hepcidin, DMT1 with IRE, and 

hephaestin gene expression in duodenum of rats. J Gastroenterol, 43, 136-43. 

KOORTS, A. M. & VILJOEN, M. 2007. Ferritin and ferritin isoforms I: Structure-

function relationships, synthesis, degradation and secretion. Arch Physiol 

Biochem, 113, 30-54. 

KRAUSE, A., NEITZ, S., MAGERT, H. J., SCHULZ, A., FORSSMANN, W. G., 

SCHULZ-KNAPPE, P. & ADERMANN, K. 2000. LEAP-1, a novel highly 

disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett, 480, 

147-50. 

KRIJT, J., FUJIKURA, Y., SEFC, L., VOKURKA, M., HLOBENOVA, T. & NECAS, E. 

2010. Hepcidin downregulation by repeated bleeding is not mediated by 

soluble hemojuvelin. Physiol Res, 59, 53-9. 

KRIJT, J., VOKURKA, M., CHANG, K. T. & NECAS, E. 2004. Expression of Rgmc, the 

murine ortholog of hemojuvelin gene, is modulated by development and 

inflammation, but not by iron status or erythropoietin. Blood, 104, 4308-10. 

LAKHAL, S., SCHODEL, J., TOWNSEND, A. R., PUGH, C. W., RATCLIFFE, P. J. & 

MOLE, D. R. 2011. Regulation of type II transmembrane serine proteinase 

TMPRSS6 by hypoxia-inducible factors: new link between hypoxia signaling 

and iron homeostasis. J Biol Chem, 286, 4090-7. 



Neeta Patel | 183 

LARRAIN, J., BACHILLER, D., LU, B., AGIUS, E., PICCOLO, S. & DE ROBERTIS, E. 

M. 2000. BMP-binding modules in chordin: a model for signalling regulation in 

the extracellular space. Development, 127, 821-30. 

LARRAIN, J., OELGESCHLAGER, M., KETPURA, N. I., REVERSADE, B., ZAKIN, L. & 

DE ROBERTIS, E. M. 2001. Proteolytic cleavage of Chordin as a switch for the 

dual activities of Twisted gastrulation in BMP signaling. Development, 128, 4439-

47. 

LATUNDE-DADA, G. O., MCKIE, A. T. & SIMPSON, R. J. 2006. Animal models with 

enhanced erythropoiesis and iron absorption. Biochim Biophys Acta, 1762, 414-23. 

LATUNDE-DADA, G. O., XIANG, L., SIMPSON, R. J. & MCKIE, A. T. 2011. Duodenal 

cytochrome b (Cybrd 1) and HIF-2alpha expression during acute hypoxic 

exposure in mice. Eur J Nutr, 50, 699-704. 

LAVAUTE, T., SMITH, S., COOPERMAN, S., IWAI, K., LAND, W., MEYRON-HOLTZ, 

E., DRAKE, S. K., MILLER, G., ABU-ASAB, M., TSOKOS, M., SWITZER, R., 

3RD, GRINBERG, A., LOVE, P., TRESSER, N. & ROUAULT, T. A. 2001. 

Targeted deletion of the gene encoding iron regulatory protein-2 causes 

misregulation of iron metabolism and neurodegenerative disease in mice. Nat 

Genet, 27, 209-14. 

LEBRON, J. A., WEST, A. P., JR. & BJORKMAN, P. J. 1999. The hemochromatosis 

protein HFE competes with transferrin for binding to the transferrin receptor. J 

Mol Biol, 294, 239-45. 

LEDENT, V., PAQUET, O. & VERVOORT, M. 2002. Phylogenetic analysis of the 

human basic helix-loop-helix proteins. Genome Biol, 3, RESEARCH0030. 

LEE, P., PENG, H., GELBART, T. & BEUTLER, E. 2004. The IL-6- and 

lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin 

receptor 2-, and beta 2-microglobulin-deficient hepatocytes. Proc Natl Acad Sci U 

S A, 101, 9263-5. 

LEE, P. L., GELBART, T., WEST, C., HALLORAN, C. & BEUTLER, E. 1998. The human 

Nramp2 gene: characterization of the gene structure, alternative splicing, 

promoter region and polymorphisms. Blood Cells Mol Dis, 24, 199-215. 

LEVY, J. E., JIN, O., FUJIWARA, Y., KUO, F. & ANDREWS, N. C. 1999. Transferrin 

receptor is necessary for development of erythrocytes and the nervous system. 

Nat Genet, 21, 396-9. 

LIEU, P. T., HEISKALA, M., PETERSON, P. A. & YANG, Y. 2001. The roles of iron in 

health and disease. Mol Aspects Med, 22, 1-87. 

LIN, L., VALORE, E. V., NEMETH, E., GOODNOUGH, J. B., GABAYAN, V. & GANZ, 

T. 2007. Iron transferrin regulates hepcidin synthesis in primary hepatocyte 

culture through hemojuvelin and BMP2/4. Blood, 110, 2182-9. 

LIVAK, K. J. & SCHMITTGEN, T. D. 2001. Analysis of relative gene expression data 

using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 

25, 402-8. 

LYNN, F. C., SANCHEZ, L., GOMIS, R., GERMAN, M. S. & GASA, R. 2008. 

Identification of the bHLH factor Math6 as a novel component of the embryonic 

pancreas transcriptional network. PLoS One, 3, e2430. 

MARSHALL, C. J., KINNON, C. & THRASHER, A. J. 2000. Polarized expression of 

bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region. 

Blood, 96, 1591-3. 



Neeta Patel | 184 

MASARATANA, P., LATUNDE-DADA, G. O., PATEL, N., SIMPSON, R. J., 

VAULONT, S. & MCKIE, A. T. 2012. Iron metabolism in hepcidin1 knockout 

mice in response to phenylhydrazine-induced hemolysis. Blood Cells Mol Dis. 

MASSAGUE, J., SEOANE, J. & WOTTON, D. 2005. Smad transcription factors. Genes 

Dev, 19, 2783-810. 

MASSARI, M. E. & MURRE, C. 2000. Helix-loop-helix proteins: regulators of 

transcription in eucaryotic organisms. Mol Cell Biol, 20, 429-40. 

MASTROGIANNAKI, M., MATAK, P., KEITH, B., SIMON, M. C., VAULONT, S. & 

PEYSSONNAUX, C. 2009. HIF-2alpha, but not HIF-1alpha, promotes iron 

absorption in mice. J Clin Invest, 119, 1159-66. 

MATAK, P., CHASTON, T. B., CHUNG, B., SRAI, S. K., MCKIE, A. T. & SHARP, P. A. 

2009. Activated macrophages induce hepcidin expression in HuH7 hepatoma 

cells. Haematologica, 94, 773-80. 

MAXSON, J. E., ENNS, C. A. & ZHANG, A. S. 2009. Processing of hemojuvelin 

requires retrograde trafficking to the Golgi in HepG2 cells. Blood, 113, 1786-93. 

MCKIE, A. T., BARROW, D., LATUNDE-DADA, G. O., ROLFS, A., SAGER, G., 

MUDALY, E., MUDALY, M., RICHARDSON, C., BARLOW, D., BOMFORD, 

A., PETERS, T. J., RAJA, K. B., SHIRALI, S., HEDIGER, M. A., FARZANEH, F. 

& SIMPSON, R. J. 2001. An iron-regulated ferric reductase associated with the 

absorption of dietary iron. Science, 291, 1755-9. 

MCKIE, A. T., MARCIANI, P., ROLFS, A., BRENNAN, K., WEHR, K., BARROW, D., 

MIRET, S., BOMFORD, A., PETERS, T. J., FARZANEH, F., HEDIGER, M. A., 

HENTZE, M. W. & SIMPSON, R. J. 2000. A novel duodenal iron-regulated 

transporter, IREG1, implicated in the basolateral transfer of iron to the 

circulation. Mol Cell, 5, 299-309. 

MEYNARD, D., KAUTZ, L., DARNAUD, V., CANONNE-HERGAUX, F., COPPIN, H. 

& ROTH, M. P. 2009. Lack of the bone morphogenetic protein BMP6 induces 

massive iron overload. Nat Genet, 41, 478-81. 

MEYRON-HOLTZ, E. G., GHOSH, M. C., IWAI, K., LAVAUTE, T., BRAZZOLOTTO, 

X., BERGER, U. V., LAND, W., OLLIVIERRE-WILSON, H., GRINBERG, A., 

LOVE, P. & ROUAULT, T. A. 2004. Genetic ablations of iron regulatory proteins 

1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. 

EMBO J, 23, 386-95. 

MITRY, R. R., HUGHES, R. D., AW, M. M., TERRY, C., MIELI-VERGANI, G., 

GIRLANDA, R., MUIESAN, P., RELA, M., HEATON, N. D. & DHAWAN, A. 

2003. Human hepatocyte isolation and relationship of cell viability to early graft 

function. Cell Transplant, 12, 69-74. 

MIYAZONO, K., KAMIYA, Y. & MORIKAWA, M. 2010. Bone morphogenetic protein 

receptors and signal transduction. J Biochem, 147, 35-51. 

MLECZKO-SANECKA, K., CASANOVAS, G., RAGAB, A., BREITKOPF, K., MULLER, 

A., BOUTROS, M., DOOLEY, S., HENTZE, M. W. & MUCKENTHALER, M. U. 

2010. SMAD7 controls iron metabolism as a potent inhibitor of hepcidin 

expression. Blood, 115, 2657-65. 

MORENO-MIRALLES, I., REN, R., MOSER, M., HARTNETT, M. E. & PATTERSON, C. 

2011. Bone morphogenetic protein endothelial cell precursor-derived regulator 

regulates retinal angiogenesis in vivo in a mouse model of oxygen-induced 

retinopathy. Arterioscler Thromb Vasc Biol, 31, 2216-22. 

MOSER, M., BINDER, O., WU, Y., AITSEBAOMO, J., REN, R., BODE, C., BAUTCH, V. 

L., CONLON, F. L. & PATTERSON, C. 2003. BMPER, a novel endothelial cell 



Neeta Patel | 185 

precursor-derived protein, antagonizes bone morphogenetic protein signaling 

and endothelial cell differentiation. Mol Cell Biol, 23, 5664-79. 

MOSER, M., YU, Q., BODE, C., XIONG, J. W. & PATTERSON, C. 2007. BMPER is a 

conserved regulator of hematopoietic and vascular development in zebrafish. J 

Mol Cell Cardiol, 43, 243-53. 

NAKAYAMA, K. 2009. Cellular signal transduction of the hypoxia response. J Biochem, 

146, 757-65. 

NAUGHTON, B. A., MOORE, E., BUSH, M. E., LAPIN, D. M. & DORNFEST, B. S. 

1989. Hemostatic alterations associated with phenylhydrazine-induced anemia 

in the rat. J Med, 20, 305-30. 

NEMETH, E., PREZA, G. C., JUNG, C. L., KAPLAN, J., WARING, A. J. & GANZ, T. 

2006. The N-terminus of hepcidin is essential for its interaction with ferroportin: 

structure-function study. Blood, 107, 328-33. 

NEMETH, E., RIVERA, S., GABAYAN, V., KELLER, C., TAUDORF, S., PEDERSEN, B. 

K. & GANZ, T. 2004a. IL-6 mediates hypoferremia of inflammation by inducing 

the synthesis of the iron regulatory hormone hepcidin. J Clin Invest, 113, 1271-6. 

NEMETH, E., TUTTLE, M. S., POWELSON, J., VAUGHN, M. B., DONOVAN, A., 

WARD, D. M., GANZ, T. & KAPLAN, J. 2004b. Hepcidin regulates cellular iron 

efflux by binding to ferroportin and inducing its internalization. Science, 306, 

2090-3. 

NEMETH, E., VALORE, E. V., TERRITO, M., SCHILLER, G., LICHTENSTEIN, A. & 

GANZ, T. 2003. Hepcidin, a putative mediator of anemia of inflammation, is a 

type II acute-phase protein. Blood, 101, 2461-3. 

NICOLAS, G., BENNOUN, M., DEVAUX, I., BEAUMONT, C., GRANDCHAMP, B., 

KAHN, A. & VAULONT, S. 2001a. Lack of hepcidin gene expression and severe 

tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. 

Proc.Natl.Acad.Sci.U.S.A, 98, 8780-8785. 

NICOLAS, G., BENNOUN, M., DEVAUX, I., BEAUMONT, C., GRANDCHAMP, B., 

KAHN, A. & VAULONT, S. 2001b. Lack of hepcidin gene expression and 

severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout 

mice. Proc Natl Acad Sci U S A, 98, 8780-5. 

NICOLAS, G., BENNOUN, M., PORTEU, A., MATIVET, S., BEAUMONT, C., 

GRANDCHAMP, B., SIRITO, M., SAWADOGO, M., KAHN, A. & VAULONT, 

S. 2002a. Severe iron deficiency anemia in transgenic mice expressing liver 

hepcidin. Proc Natl Acad Sci U S A, 99, 4596-601. 

NICOLAS, G., CHAUVET, C., VIATTE, L., DANAN, J. L., BIGARD, X., DEVAUX, I., 

BEAUMONT, C., KAHN, A. & VAULONT, S. 2002b. The gene encoding the 

iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and 

inflammation. J Clin Invest, 110, 1037-44. 

OHGAMI, R. S., CAMPAGNA, D. R., MCDONALD, A. & FLEMING, M. D. 2006. The 

Steap proteins are metalloreductases. Blood, 108, 1388-94. 

ORIGA, R., GALANELLO, R., GANZ, T., GIAGU, N., MACCIONI, L., FAA, G. & 

NEMETH, E. 2007. Liver iron concentrations and urinary hepcidin in beta-

thalassemia. Haematologica, 92, 583-8. 

PAK, M., LOPEZ, M. A., GABAYAN, V., GANZ, T. & RIVERA, S. 2006. Suppression of 

hepcidin during anemia requires erythropoietic activity. Blood, 108, 3730-5. 

PAPANIKOLAOU, G., SAMUELS, M. E., LUDWIG, E. H., MACDONALD, M. L., 

FRANCHINI, P. L., DUBE, M. P., ANDRES, L., MACFARLANE, J., 

SAKELLAROPOULOS, N., POLITOU, M., NEMETH, E., THOMPSON, J., 



Neeta Patel | 186 

RISLER, J. K., ZABOROWSKA, C., BABAKAIFF, R., RADOMSKI, C. C., PAPE, 

T. D., DAVIDAS, O., CHRISTAKIS, J., BRISSOT, P., LOCKITCH, G., GANZ, T., 

HAYDEN, M. R. & GOLDBERG, Y. P. 2004. Mutations in HFE2 cause iron 

overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet, 36, 

77-82. 

PARK, C. H., VALORE, E. V., WARING, A. J. & GANZ, T. 2001. Hepcidin, a urinary 

antimicrobial peptide synthesized in the liver. J Biol Chem, 276, 7806-10. 

PEYSSONNAUX, C., ZINKERNAGEL, A. S., SCHUEPBACH, R. A., RANKIN, E., 

VAULONT, S., HAASE, V. H., NIZET, V. & JOHNSON, R. S. 2007. Regulation 

of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin 

Invest, 117, 1926-32. 

PIETRANGELO, A. 2006. Hereditary hemochromatosis. Biochim Biophys Acta, 1763, 

700-10. 

PIETRANGELO, A., DIERSSEN, U., VALLI, L., GARUTI, C., RUMP, A., CORRADINI, 

E., ERNST, M., KLEIN, C. & TRAUTWEIN, C. 2007. STAT3 is required for IL-6-

gp130-dependent activation of hepcidin in vivo. Gastroenterology, 132, 294-300. 

PIGEON, C., ILYIN, G., COURSELAUD, B., LEROYER, P., TURLIN, B., BRISSOT, P. & 

LOREAL, O. 2001. A new mouse liver-specific gene, encoding a protein 

homologous to human antimicrobial peptide hepcidin, is overexpressed during 

iron overload. J Biol Chem, 276, 7811-9. 

PINTO, J. P., RIBEIRO, S., PONTES, H., THOWFEEQU, S., TOSH, D., CARVALHO, F. 

& PORTO, G. 2008. Erythropoietin mediates hepcidin expression in hepatocytes 

through EPOR signaling and regulation of C/EBPalpha. Blood, 111, 5727-33. 

PONKA, P., BEAUMONT, C. & RICHARDSON, D. R. 1998. Function and regulation of 

transferrin and ferritin. Semin Hematol, 35, 35-54. 

POSS, K. D. & TONEGAWA, S. 1997. Heme oxygenase 1 is required for mammalian 

iron reutilization. Proc Natl Acad Sci U S A, 94, 10919-24. 

QIAO, B., SUGIANTO, P., FUNG, E., DEL-CASTILLO-RUEDA, A., MORAN-

JIMENEZ, M. J., GANZ, T. & NEMETH, E. 2012. Hepcidin-induced endocytosis 

of ferroportin is dependent on ferroportin ubiquitination. Cell Metab, 15, 918-24. 

QIU, A., JANSEN, M., SAKARIS, A., MIN, S. H., CHATTOPADHYAY, S., TSAI, E., 

SANDOVAL, C., ZHAO, R., AKABAS, M. H. & GOLDMAN, I. D. 2006. 

Identification of an intestinal folate transporter and the molecular basis for 

hereditary folate malabsorption. Cell, 127, 917-28. 

RACHMILEWITZ, E. A., WEIZER-STERN, O., ADAMSKY, K., AMARIGLIO, N., 

RECHAVI, G., BREDA, L., RIVELLA, S. & CABANTCHIK, Z. I. 2005. Role of 

iron in inducing oxidative stress in thalassemia: Can it be prevented by 

inhibition of absorption and by antioxidants? Ann N Y Acad Sci, 1054, 118-23. 

RAJA, K. B., SIMPSON, R. J. & PETERS, T. J. 1992. Investigation of a role for reduction 

in ferric iron uptake by mouse duodenum. Biochim Biophys Acta, 1135, 141-6. 

RAJA, K. B., SIMPSON, R. J., PIPPARD, M. J. & PETERS, T. J. 1988. In vivo studies on 

the relationship between intestinal iron (Fe3+) absorption, hypoxia and 

erythropoiesis in the mouse. Br J Haematol, 68, 373-8. 

RAMEY, G., DESCHEMIN, J. C. & VAULONT, S. 2009. Cross-talk between the mitogen 

activated protein kinase and bone morphogenetic protein/hemojuvelin 

pathways is required for the induction of hepcidin by holotransferrin in 

primary mouse hepatocytes. Haematologica, 94, 765-72. 

RAMOS, E., KAUTZ, L., RODRIGUEZ, R., HANSEN, M., GABAYAN, V., GINZBURG, 

Y., ROTH, M. P., NEMETH, E. & GANZ, T. 2011. Evidence for distinct 



Neeta Patel | 187 

pathways of hepcidin regulation by acute and chronic iron loading in mice. 

Hepatology, 53, 1333-41. 

RAMSAY, A. J., HOOPER, J. D., FOLGUERAS, A. R., VELASCO, G. & LOPEZ-OTIN, 

C. 2009. Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis. 

Haematologica, 94, 840-9. 

RENTZSCH, F., ZHANG, J., KRAMER, C., SEBALD, W. & HAMMERSCHMIDT, M. 

2006. Crossveinless 2 is an essential positive feedback regulator of Bmp 

signaling during zebrafish gastrulation. Development, 133, 801-11. 

RIBATTI, D., NICO, B., SPINAZZI, R., VACCA, A. & NUSSDORFER, G. G. 2005. The 

role of adrenomedullin in angiogenesis. Peptides, 26, 1670-5. 

RIEDEL, H. D., REMUS, A. J., FITSCHER, B. A. & STREMMEL, W. 1995. 

Characterization and partial purification of a ferrireductase from human 

duodenal microvillus membranes. Biochem J, 309 ( Pt 3), 745-8. 

ROBB, A. & WESSLING-RESNICK, M. 2004. Regulation of transferrin receptor 2 

protein levels by transferrin. Blood, 104, 4294-9. 

RODRIGUEZ MARTINEZ, A., NIEMELA, O. & PARKKILA, S. 2004. Hepatic and 

extrahepatic expression of the new iron regulatory protein hemojuvelin. 

Haematologica, 89, 1441-5. 

ROSS, M. D., MARTINKA, S., MUKHERJEE, A., SEDOR, J. R., VINSON, C. & 

BRUGGEMAN, L. A. 2006. Math6 expression during kidney development and 

altered expression in a mouse model of glomerulosclerosis. Dev Dyn, 235, 3102-

9. 

ROSS, S. L., TRAN, L., WINTERS, A., LEE, K. J., PLEWA, C., FOLTZ, I., KING, C., 

MIRANDA, L. P., ALLEN, J., BECKMAN, H., COOKE, K. S., MOODY, G., 

SASU, B. J., NEMETH, E., GANZ, T., MOLINEUX, G. & ARVEDSON, T. L. 

2012. Molecular mechanism of hepcidin-mediated ferroportin internalization 

requires ferroportin lysines, not tyrosines or JAK-STAT. Cell Metab, 15, 905-17. 

ROY, C. N., CUSTODIO, A. O., DE GRAAF, J., SCHNEIDER, S., AKPAN, I., 

MONTROSS, L. K., SANCHEZ, M., GAUDINO, A., HENTZE, M. W., 

ANDREWS, N. C. & MUCKENTHALER, M. U. 2004. An Hfe-dependent 

pathway mediates hyposideremia in response to lipopolysaccharide-induced 

inflammation in mice. Nat Genet, 36, 481-5. 

SAMAD, T. A., REBBAPRAGADA, A., BELL, E., ZHANG, Y., SIDIS, Y., JEONG, S. J., 

CAMPAGNA, J. A., PERUSINI, S., FABRIZIO, D. A., SCHNEYER, A. L., LIN, 

H. Y., BRIVANLOU, A. H., ATTISANO, L. & WOOLF, C. J. 2005. DRAGON, a 

bone morphogenetic protein co-receptor. J Biol Chem, 280, 14122-9. 

SASAI, Y., LU, B., STEINBEISSER, H., GEISSERT, D., GONT, L. K. & DE ROBERTIS, E. 

M. 1994. Xenopus chordin: a novel dorsalizing factor activated by organizer-

specific homeobox genes. Cell, 79, 779-90. 

SCHMIDT, P. J., ANDREWS, N. C. & FLEMING, M. D. 2010. Hepcidin induction by 

transgenic overexpression of Hfe does not require the Hfe cytoplasmic tail, but 

does require hemojuvelin. Blood, 116, 5679-87. 

SCHMIDT, P. J., TORAN, P. T., GIANNETTI, A. M., BJORKMAN, P. J. & ANDREWS, 

N. C. 2008. The transferrin receptor modulates Hfe-dependent regulation of 

hepcidin expression. Cell Metab, 7, 205-14. 

SEMENZA, G. L. & WANG, G. L. 1992. A nuclear factor induced by hypoxia via de 

novo protein synthesis binds to the human erythropoietin gene enhancer at a 

site required for transcriptional activation. Mol Cell Biol, 12, 5447-54. 



Neeta Patel | 188 

SERPE, M., UMULIS, D., RALSTON, A., CHEN, J., OLSON, D. J., AVANESOV, A., 

OTHMER, H., O'CONNOR, M. B. & BLAIR, S. S. 2008. The BMP-binding 

protein Crossveinless 2 is a short-range, concentration-dependent, biphasic 

modulator of BMP signaling in Drosophila. Dev Cell, 14, 940-53. 

SHAH, Y. M., MATSUBARA, T., ITO, S., YIM, S. H. & GONZALEZ, F. J. 2009. 

Intestinal hypoxia-inducible transcription factors are essential for iron 

absorption following iron deficiency. Cell Metab, 9, 152-64. 

SHAYEGHI, M., LATUNDE-DADA, G. O., OAKHILL, J. S., LAFTAH, A. H., 

TAKEUCHI, K., HALLIDAY, N., KHAN, Y., WARLEY, A., MCCANN, F. E., 

HIDER, R. C., FRAZER, D. M., ANDERSON, G. J., VULPE, C. D., SIMPSON, R. 

J. & MCKIE, A. T. 2005. Identification of an intestinal heme transporter. Cell, 

122, 789-801. 

SILVESTRI, L., PAGANI, A. & CAMASCHELLA, C. 2008a. Furin-mediated release of 

soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood, 

111, 924-31. 

SILVESTRI, L., PAGANI, A., NAI, A., DE DOMENICO, I., KAPLAN, J. & 

CAMASCHELLA, C. 2008b. The serine protease matriptase-2 (TMPRSS6) 

inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab, 8, 

502-11. 

SIMPSON, R. J., DEBNAM, E., BEAUMONT, N., BAHRAM, S., SCHUMANN, K. & 

SRAI, S. K. 2003. Duodenal mucosal reductase in wild-type and Hfe knockout 

mice on iron adequate, iron deficient, and iron rich feeding. Gut, 52, 510-3. 

SIMPSON, R. J., LOMBARD, M., RAJA, K. B., THATCHER, R. & PETERS, T. J. 1991. 

Iron absorption by hypotransferrinaemic mice. Br J Haematol, 78, 565-70. 

SIMPSON, R. J. & PETERS, T. J. 1990. Forms of soluble iron in mouse stomach and 

duodenal lumen: significance for mucosal uptake. Br J Nutr, 63, 79-89. 

SMITH, P. M. 1969. Iron overload. Postgrad Med J, 45, 214-9. 

STAUBLI, A. & BOELSTERLI, U. A. 1998. The labile iron pool in hepatocytes: 

prooxidant-induced increase in free iron precedes oxidative cell injury. Am J 

Physiol, 274, G1031-7. 

STEINBICKER, A. U., BARTNIKAS, T. B., LOHMEYER, L. K., LEYTON, P., MAYEUR, 

C., KAO, S. M., PAPPAS, A. E., PETERSON, R. T., BLOCH, D. B., YU, P. B., 

FLEMING, M. D. & BLOCH, K. D. 2011. Perturbation of hepcidin expression by 

BMP type I receptor deletion induces iron overload in mice. Blood, 118, 4224-30. 

SUBRAMANIAM, V. N., SUMMERVILLE, L. & WALLACE, D. F. 2002. Molecular and 

cellular characterization of transferrin receptor 2. Cell Biochem Biophys, 36, 235-9. 

TANNO, T., BHANU, N. V., ONEAL, P. A., GOH, S. H., STAKER, P., LEE, Y. T., 

MORONEY, J. W., REED, C. H., LUBAN, N. L., WANG, R. H., ELING, T. E., 

CHILDS, R., GANZ, T., LEITMAN, S. F., FUCHAROEN, S. & MILLER, J. L. 

2007. High levels of GDF15 in thalassemia suppress expression of the iron 

regulatory protein hepcidin. Nat Med, 13, 1096-101. 

TANNO, T., PORAYETTE, P., SRIPICHAI, O., NOH, S. J., BYRNES, C., 

BHUPATIRAJU, A., LEE, Y. T., GOODNOUGH, J. B., HARANDI, O., GANZ, 

T., PAULSON, R. F. & MILLER, J. L. 2009. Identification of TWSG1 as a second 

novel erythroid regulator of hepcidin expression in murine and human cells. 

Blood, 114, 181-6. 

TRENOR, C. C., 3RD, CAMPAGNA, D. R., SELLERS, V. M., ANDREWS, N. C. & 

FLEMING, M. D. 2000. The molecular defect in hypotransferrinemic mice. 

Blood, 96, 1113-8. 



Neeta Patel | 189 

TRUKSA, J., PENG, H., LEE, P. & BEUTLER, E. 2006. Bone morphogenetic proteins 2, 

4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, 

transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci U S A, 103, 10289-93. 

URIST, M. R. 1965. Bone: formation by autoinduction. Science, 150, 893-9. 

UZEL, C. & CONRAD, M. E. 1998. Absorption of heme iron. Semin Hematol, 35, 27-34. 

VALERA, E., ISAACS, M. J., KAWAKAMI, Y., IZPISUA BELMONTE, J. C. & CHOE, S. 

2010. BMP-2/6 heterodimer is more effective than BMP-2 or BMP-6 homodimers 

as inductor of differentiation of human embryonic stem cells. PLoS One, 5, 

e11167. 

VALORE, E. V. & GANZ, T. 2008. Posttranslational processing of hepcidin in human 

hepatocytes is mediated by the prohormone convertase furin. Blood Cells Mol 

Dis, 40, 132-8. 

VELASCO, G., CAL, S., QUESADA, V., SANCHEZ, L. M. & LOPEZ-OTIN, C. 2002. 

Matriptase-2, a membrane-bound mosaic serine proteinase predominantly 

expressed in human liver and showing degrading activity against extracellular 

matrix proteins. J Biol Chem, 277, 37637-46. 

VERGA FALZACAPPA, M. V., VUJIC SPASIC, M., KESSLER, R., STOLTE, J., 

HENTZE, M. W. & MUCKENTHALER, M. U. 2007. STAT3 mediates hepatic 

hepcidin expression and its inflammatory stimulation. Blood, 109, 353-8. 

VOKURKA, M., KRIJT, J., SULC, K. & NECAS, E. 2006. Hepcidin mRNA levels in 

mouse liver respond to inhibition of erythropoiesis. Physiol Res, 55, 667-74. 

VULPE, C. D., KUO, Y. M., MURPHY, T. L., COWLEY, L., ASKWITH, C., LIBINA, N., 

GITSCHIER, J. & ANDERSON, G. J. 1999. Hephaestin, a ceruloplasmin 

homologue implicated in intestinal iron transport, is defective in the sla mouse. 

Nat Genet, 21, 195-9. 

WALLACE, D. F., SUMMERVILLE, L. & SUBRAMANIAM, V. N. 2007. Targeted 

disruption of the hepatic transferrin receptor 2 gene in mice leads to iron 

overload. Gastroenterology, 132, 301-10. 

WANG, R. H., LI, C., XU, X., ZHENG, Y., XIAO, C., ZERFAS, P., COOPERMAN, S., 

ECKHAUS, M., ROUAULT, T., MISHRA, L. & DENG, C. X. 2005. A role of 

SMAD4 in iron metabolism through the positive regulation of hepcidin 

expression. Cell Metab, 2, 399-409. 

WEISS, G. & GOODNOUGH, L. T. 2005. Anemia of chronic disease. N Engl J Med, 352, 

1011-23. 

WENGER, R. H. 2002. Cellular adaptation to hypoxia: O2-sensing protein 

hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene 

expression. FASEB J, 16, 1151-62. 

WHITTLE, A. J., CAROBBIO, S., MARTINS, L., SLAWIK, M., HONDARES, E., 

VAZQUEZ, M. J., MORGAN, D., CSIKASZ, R. I., GALLEGO, R., RODRIGUEZ-

CUENCA, S., DALE, M., VIRTUE, S., VILLARROYA, F., CANNON, B., 

RAHMOUNI, K., LOPEZ, M. & VIDAL-PUIG, A. 2012. BMP8B Increases Brown 

Adipose Tissue Thermogenesis through Both Central and Peripheral Actions. 

Cell, 149, 871-85. 

WOZNEY, J. M. 2002. Overview of bone morphogenetic proteins. Spine (Phila Pa 1976), 

27, S2-8. 

WOZNEY, J. M., ROSEN, V., CELESTE, A. J., MITSOCK, L. M., WHITTERS, M. J., 

KRIZ, R. W., HEWICK, R. M. & WANG, E. A. 1988. Novel regulators of bone 

formation: molecular clones and activities. Science, 242, 1528-34. 



Neeta Patel | 190 

WRIGHTING, D. M. & ANDREWS, N. C. 2006. Interleukin-6 induces hepcidin 

expression through STAT3. Blood, 108, 3204-9. 

YANG, F., WANG, X., HAILE, D. J., PIANTADOSI, C. A. & GHIO, A. J. 2002. Iron 

increases expression of iron-export protein MTP1 in lung cells. Am J Physiol 

Lung Cell Mol Physiol, 283, L932-9. 

YANOFF, L. B., MENZIE, C. M., DENKINGER, B., SEBRING, N. G., MCHUGH, T., 

REMALEY, A. T. & YANOVSKI, J. A. 2007. Inflammation and iron deficiency in 

the hypoferremia of obesity. Int J Obes (Lond), 31, 1412-9. 

YAO, J., ZHOU, J., LIU, Q., LU, D., WANG, L., QIAO, X. & JIA, W. 2010. Atoh8, a 

bHLH transcription factor, is required for the development of retina and 

skeletal muscle in zebrafish. PLoS One, 5, e10945. 

YING, Y., LIU, X. M., MARBLE, A., LAWSON, K. A. & ZHAO, G. Q. 2000. 

Requirement of Bmp8b for the generation of primordial germ cells in the 

mouse. Mol Endocrinol, 14, 1053-63. 

YING, Y., QI, X. & ZHAO, G. Q. 2001. Induction of primordial germ cells from murine 

epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc 

Natl Acad Sci U S A, 98, 7858-62. 

ZHANG, A. S., ANDERSON, S. A., MEYERS, K. R., HERNANDEZ, C., EISENSTEIN, 

R. S. & ENNS, C. A. 2007a. Evidence that inhibition of hemojuvelin shedding in 

response to iron is mediated through neogenin. J Biol Chem, 282, 12547-56. 

ZHANG, A. S., GAO, J., KOEBERL, D. D. & ENNS, C. A. 2010a. The role of hepatocyte 

hemojuvelin in the regulation of bone morphogenic protein-6 and hepcidin 

expression in vivo. J Biol Chem, 285, 16416-23. 

ZHANG, A. S., YANG, F., WANG, J., TSUKAMOTO, H. & ENNS, C. A. 2009a. 

Hemojuvelin-neogenin interaction is required for bone morphogenic protein-4-

induced hepcidin expression. J Biol Chem, 284, 22580-9. 

ZHANG, D. L., HUGHES, R. M., OLLIVIERRE-WILSON, H., GHOSH, M. C. & 

ROUAULT, T. A. 2009b. A ferroportin transcript that lacks an iron-responsive 

element enables duodenal and erythroid precursor cells to evade translational 

repression. Cell Metab, 9, 461-73. 

ZHANG, J. L., HUANG, Y., QIU, L. Y., NICKEL, J. & SEBALD, W. 2007b. von 

Willebrand factor type C domain-containing proteins regulate bone 

morphogenetic protein signaling through different recognition mechanisms. J 

Biol Chem, 282, 20002-14. 

ZHANG, J. L., PATTERSON, L. J., QIU, L. Y., GRAZIUSSI, D., SEBALD, W. & 

HAMMERSCHMIDT, M. 2010b. Binding between Crossveinless-2 and Chordin 

von Willebrand factor type C domains promotes BMP signaling by blocking 

Chordin activity. PLoS One, 5, e12846. 

ZHAO, G. Q., DENG, K., LABOSKY, P. A., LIAW, L. & HOGAN, B. L. 1996. The gene 

encoding bone morphogenetic protein 8B is required for the initiation and 

maintenance of spermatogenesis in the mouse. Genes Dev, 10, 1657-69. 

ZHAO, G. Q. & HOGAN, B. L. 1996. Evidence that mouse Bmp8a (Op2) and Bmp8b 

are duplicated genes that play a role in spermatogenesis and placental 

development. Mech Dev, 57, 159-68. 

ZHAO, G. Q., LIAW, L. & HOGAN, B. L. 1998. Bone morphogenetic protein 8A plays a 

role in the maintenance of spermatogenesis and the integrity of the epididymis. 

Development, 125, 1103-12. 



Neeta Patel | 191 

ZHOU, Q., HEINKE, J., VARGAS, A., WINNIK, S., KRAUSS, T., BODE, C., 

PATTERSON, C. & MOSER, M. 2007. ERK signaling is a central regulator for 

BMP-4 dependent capillary sprouting. Cardiovasc Res, 76, 390-9. 

ZHOU, X. Y., TOMATSU, S., FLEMING, R. E., PARKKILA, S., WAHEED, A., JIANG, J., 

FEI, Y., BRUNT, E. M., RUDDY, D. A., PRASS, C. E., SCHATZMAN, R. C., 

O'NEILL, R., BRITTON, R. S., BACON, B. R. & SLY, W. S. 1998. HFE gene 

knockout produces mouse model of hereditary hemochromatosis. Proc Natl 

Acad Sci U S A, 95, 2492-7. 

 



Neeta Patel | 192 

Appendices  

 

Appendix 1: Common reagents  

 

Formaldehyde RNA gel  

 

10x MOPS:  0.2M MOPS 

0.05 sodium acetate 

0.01M EDTA 

 

1% agarose gel for RNA electrophoresis: 10 mL 10xMPOS 

      82 mL distilled water 

      1 g agarose 

      8 mL formaldehyde  

 

Ethidium bromide DNA gel 

 

10x TBE:  1M Tris base 

0.9M Boric acid 

40 mL 0.5M EDTA 

Made up to a final volume of 1 L 

 

1% agarose gel if DNA electrophoresis:  1 g agarose 

      100 mL 1xTBE 

      1-2 µL ethidium bromide  
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Appendix 2: Primers 
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Appendix 3: Plasmid maps 

 

pRL- TK renilla 

 

 

 

pGL3- Basic 
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pCMV6-Entry vector (Myc-DDK tagged ORF clones) 

 

 

 

pSecTag2 (Bmper vector) 
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pCDNA3.1 (Matriptase-2/MASK/R774C) 
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