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Abstract 

Monoallelic expression is when only one of a gene’s two copies is transcribed. It has long 

been recognised in the form of X-chromosome inactivation, genomic imprinting and 

random monoallelic expression (RME) of a small number of gene families. More 

recently, studies have reported evidence of widespread autosomal RME in human 

lymphoblastoid cells (Gimelbrant et al. 2007) and mouse neural stem cells (Wang et al. 

2010; Li et al. 2012). However, the extent to which RME occurs in human neural tissue is 

unknown. Using a genome-wide analysis of allele-specific expression in human neural 

stem cells, I reveal that 1.6 to 2.2% of assayed autosomal genes display monoallelic 

expression and 0.5 to 1.1% show evidence of RME. This is largely retained after 

differentiation into neurons and glia. I also present evidence in support of RME altering 

gene transcript levels and exposing heterozygous functional variation. These results are a 

first demonstration that autosomal RME is widespread in human neural tissue and 

indicate that it is a potential source of phenotypic diversity between genetically identical 

neural stem cells in vitro. Furthermore, I find the novel RME genes reported in this thesis 

to be epigenetically distinct from biallelic genes in human foetal and adult brain in a 

manner consistent with monoallelic expression. Together, these findings support a model 

in which the human central nervous system is a mosaic of clones of cells, each with 

different gene expression potentials. Although the presence of widespread RME in the 

human central nervous system remains to be demonstrated in vivo, if present, this would 

be predicted to have significant implications for human neural development, function and 

disease. Finally, I map the genetic variants associated with the monoallelic expression of 

PM20D1, a gene located in the Parkinson’s disease susceptibility locus PARK16. 
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Chapter 1. General Introduction 

1.1 Gene expression 

Life depends on gene expression. This fundamental process decodes genetic information 

into biological function. The sequential flow of information from DNA to RNA and then, 

typically, to protein is the central dogma of molecular biology (Crick 1970).  

The initial step in gene expression is transcription. Here, general transcription factors bind 

to the core promoter upstream of the coding sequence. This complex enables RNA 

polymerase II to bind to the transcription start site and run along the template strand of 

the gene generating a complementary strand of RNA called precursor messenger RNA 

(pre-mRNA). For protein coding genes, the pre-mRNA is capped, polyadenylated and 

spliced to form mature mRNA. It is then exported to the cytoplasm where it engages with 

ribosomes to direct protein synthesis. A subset of genes directs the expression of non-

coding RNAs (ncRNAs) that play an important role in regulating the expression of coding 

sequence. 

The cells within each individual are genetically identical, yet they display enormous 

phenotypic diversity. It is the exquisite spatiotemporal regulation of gene expression that 

enables the differentiation of specialised cell types. Equally, the dynamic regulation of 

gene expression directed by signal transduction cascades in response to external cues is 

critical for maintaining homeostasis.  
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1.1.1 Cis- and trans-regulatory elements 

Gene expression is controlled, in part, by a combination of cis- and trans-acting 

regulatory factors. Cis-regulatory elements are sequence motifs located on the same DNA 

molecule as the gene that they regulate. They are found upstream, downstream and within 

the target gene. In contrast, trans-regulatory factors are diffusible molecules, typically 

proteins or ncRNAs, which are transcribed from remotely located genes. These trans-

factors bind to cis-elements to affect gene expression.  

 

Figure 1.1 | Transcription regulatory interactions. See text below for description. 
Activator: orange oval; repressor: yellow diamond; Polymerase II (Pol II); general 

transcription factors (GTFs); B recognition element (BRE); TATA box (TATA); initiator 
(Inr); motif ten element (MTE); downstream promoter element (DPE) (Fuda et al. 2009). 

The inter-relationship between cis- and trans-acting factors during transcription is 

illustrated in Figure 1.1. General transcription factors act in trans, binding to various cis-

regulatory elements within the core promoter. They enable the binding of RNA 

polymerase II, forming the basal transcription complex. This formation is competent of 

driving basal, low level, transcription. Many genes have additional cis-regulatory 
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elements at proximal and distal sites to fine-tune gene expression. They are often bound 

by signalling molecules or tissue-specific transcription factors which can modulate the 

rate of transcription, acting as either activators or repressors. They do so either directly, 

by interacting with factors associated with the core promoter, or indirectly, via association 

with co-regulators. Combined, cis- and trans-regulatory elements allow for tight spatial, 

temporal and environment-aware regulation of gene expression. 

1.1.2 Epigenetic regulation of gene expression 

Epigenetic modification describes functional alteration to the genome that is maintained 

through cell division but, critically, involves no change to the nucleotide sequence 

(Berger et al. 2009). It regulates gene expression by altering the accessibility of 

transcription machinery to the DNA. This typically involves covalent alteration of the 

local chromatin (see Figure 1.2). Epigenetic processes play a key role in regulating gene 

expression during development, maintaining tissue-specific expression throughout life 

and enabling forms of allele-specific gene expression such as genomic imprinting and X-

chromosome inactivation (Reik 2007; Goldmit & Bergman 2004). It is also thought to 

play a major role in the mediation of gene-environment interactions (Meaney 2010). Two 

major classes of epigenetic alteration include histone modification and DNA methylation, 

both of which are discussed in greater detail in the sections below. 
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Figure 1.2 | Post-translational chromatin modification. Histone modification (blue 
and pink) and DNA methylation (orange) are the two main forms of epigenetic 

modification. They regulate the density of nucleosome packaging and, therefore, the 
accessibility of the DNA to the transcription machinery (red; adapted from Fuda et al. 

2009). 

1.1.2.1 Histone modification 

DNA is tightly packaged into chromatin in eukaryote nuclei. Nucleosomes are the basic 

unit of chromatin and they consist of approximately 146 base pairs of DNA wrapped 

around two copies of each of the four histone proteins: H2A, H2B, H3 and H4. Chromatin 

can be broadly described as being in one of two states: euchromatic or heterochromatic. 

Euchromatin has more loosely coiled DNA and is transcriptionally active, while 

heterochromatin is tightly packed and transcriptionally inert. These states are regulated in 

large part by reversible post-translational modification of the histone proteins, 

predominantly at their N-terminals known as “histone tails”. Types of histone 

modification include acetylation, phosphorylation and methylation.  

Both histone acetylation and phosphorylation are thought to alter chromatin structure 

predominantly by reducing the positive charge of histones, disrupting electrostatic 

interactions between histones and DNA (Bannister & Kouzarides 2011). In general, this 

results in a less compact chromatin structure, allowing greater access to the DNA. There 
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are, however, exceptions to this rule as both acetylation at H4K16 and phosphorylation at 

H3S10 result in chromatin compaction (Shogren-Knaak et al. 2006; Wei et al. 1998).  

Histone methylation occurs most frequently at lysine and arginine side chains. It does not 

alter the charge of histones; rather, it alters chromatin structure indirectly by regulating 

the binding of chromatin effectors. As such, histone methylation is site specific; it can 

either open or close chromatin depending on the effectors that it interacts with. For 

example, H3K4me3 is associated with active transcription (Barski et al. 2007) and it 

directly recruits euchromatin factors such as CHD1 (Sims et al. 2005), whereas H3K9me3 

binds to HP1, a protein critical for gene repression and heterochromatin structure 

(Lachner et al. 2001). 

1.1.2.2 DNA methylation 

DNA methylation involves the transfer of a methyl group to a DNA cytosine residue. It 

occurs most frequently at CpG dinucleotides, although it is also observed at other 

cytosine residues (Lister et al. 2009). While CpGs are mostly dispersed throughout the 

genome at a low density, they also appear in densely packed regions known as “CpG 

islands” (CGI). DNA methylation is generally associated with the repression of gene 

expression (Bird 2002; Laurent et al. 2010).  

DNA methylation plays a key role in regulating gene expression through development. 

Germline methylation is almost completely erased in the blastocyst before global de novo 

methylation is laid down at the stage of implantation (Meissner et al. 2008; Laurent et al. 

2010). The de novo methylation is bimodal; lower density non-island CpGs are highly 
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methylated while CGIs escape methylation. This enables tissue-specific genes and 

endogenous viral sequences to be repressed while housekeeping genes with CGI 

promoters are expressed. Differentiation into mature cells is associated with a global 

reduction in methylation (Laurent et al. 2010) as the differentiating cells adopt a cell-

type-specific methylation fingerprint (Han et al. 2011; Davies et al. 2012). This process 

permits cellular differentiation by presenting tissue specific genes to the transcription 

machinery only in the appropriate cells. In order for somatic cells to maintain their 

phenotype through cell division it is important that the methylation pattern is passed on to 

cellular progeny. This is achieved, at least in part, by the enzyme DNA methyl-transferase 

1 (Li et al. 1992). 

DNA methylation is thought to mediate gene silencing primarily by influencing 

chromatin structure. Early support for this notion came from the observation that 

unmethylated DNA transfected into mouse cells was packaged into euchromatin, while if 

the same sequence was pre-methylated, it remained DNase I resistant after transfection 

(Keshet et al. 1986). Consistent with this finding, it has been demonstrated that that DNA 

methylation directly induces histone H4 deacetylation as well as methylation of H3K9 

and H3K4 in mice (Hashimshony et al. 2003). Together, these findings support an 

instructive role of DNA methylation in dictating histone modification and chromatin 

conformation. 
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1.2 Allele-specific gene expression 

Autosomal genes are comprised of two alleles, one inherited from each parent. Both 

alleles are usually expressed at similar levels. Biallelic gene expression increases the 

genetic diversity of an organism, providing protection from recessive deleterious 

mutations. However, there are some well-characterised exceptions from this rule, where 

the risks associated with expressing a single allele are outweighed by the advantages. 

Classical examples of monoallelic gene expression include genomic imprinting, X-

chromosome inactivation and autosomal random monoallelic gene expression (RME). 

Allelic imbalance, and monoallelic expression in extreme cases, can also occur through 

heterozygosity for genetic cis-regulatory variants. These examples are discussed in the 

following sections. 

 

Figure 1.3 | Forms of allele-specific expression.  
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1.2.1 Genomic imprinting 

Genomic imprinting is the most extensively studied form of monoallelic expression. It is 

an epigenetic process that causes select genes to be expressed from a single allele in a 

parent of origin-specific manner. It was first demonstrated in mouse (Surani et al. 1984; 

Barlow et al. 1991) and to date 118 imprinted genes have been validated in mouse and 80 

have been validated in human (http://www.geneimprint.com). Imprinted genes usually 

appear in clusters under the control of a common imprinting control region (ICR), 

although this is not a universal rule. Most imprinted genes identified to date are regulators 

of embryonic growth, placental growth or adult metabolism (Morison et al. 2005), 

however, there is an increasing appreciation of its contribution to neural development, 

brain function and behaviour (Davies et al. 2005).  

1.2.1.1 Mechanisms of genomic imprinting 

Imprinted genes display differential methylation between the two parental chromosomes 

at ICRs (Ferguson-Smith & Sasaki 1993) which is critical for monoallelic expression 

(Sutcliffe & Nakao 1994; Wutz et al. 1997). The sex-specific epigenetic mark is acquired 

during gametogenesis and maintained in diploid cells after fertilisation. Exactly where the 

ICR is located in relation to the imprinted gene and how it acts to enforce monoallelic 

expression differs from locus to locus. The KCNQ1 and IGF2 clusters are two of the most 

studied and they are covered in greater detail below to illustrate the mechanisms typically 

involved in genomic imprinting. 
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For the maternally expressed KCNQ1 cluster, the ICR lies within the promoter of KCNQ1 

overlapping transcript 1 (KCNQ1OT1), an antisense ncRNA (see Figure 1.4). The 

paternal ICR is unmethylated and as a result KCNQ1OT1 is transcribed, leading to 

inactivation of the imprinted genes on the paternal chromosome (Mancini-Dinardo et al. 

2006). KCNQ1OT1 initiates the organisation of a nuclear silencing domain around the 

cluster by recruiting the histone-modifying proteins of polycomb repressive complex 2 

(PRC2; Terranova et al. 2008; Redrup et al. 2009). In contrast, the maternal ICR is 

methylated, resulting in the silencing of KCNQ1OT1 and expression of the genes within 

the cluster. Analogous ncRNA-dependent mechanisms have been described for the 

majority of other investigated maternally expressed imprinted genes, including the Igf2r 

(Sleutels et al. 2002) and GNAS (Plagge & Kelsey 2006) clusters. 

 

Figure 1.4 | The KCNQ1 cluster. Red bar: maternally expressed gene; Blue bar: 
paternally expressed gene; Black bar: biallelically expressed gene; Grey bar: repressed 

gene; Black octagon: methylated ICR; Grey octagon: unmethylated ICR (Ferguson-

Smith 2011). 

The IGF2-H19 cluster is regulated by an insulator dependent mechanism (see Figure 1.5). 

IGF2 and INS2 are exclusively expressed from the paternal chromosome. The 

differentially methylated ICR acts through its interaction with the zinc-finger protein 

CTCF, which only binds to the unmethylated maternal chromosome (Bell & Felsenfeld 
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2000). Here, CTCF blocks enhancer interaction with the maternal IGF2 promoter, 

resulting in repression of IGF2 and INS2 on the maternal chromosome. Conversely, 

CTCF does not bind to the methylated paternal ICR and the paternal alleles are expressed. 

In contrast, the imprinted H19 is expressed from the maternal chromosome. When CTCF 

is bound to the unmethylated maternal ICR, the chromatin topology is altered in a way 

that enables interaction between H19 and the enhancer sequences which drive its 

expression (Murrell et al. 2004).  

 

Figure 1.5 | The IGF2R–H19 cluster. Red bar: maternally expressed gene; Blue bar: 
paternally expressed gene; Grey bar: repressed gene; Black octagon: methylated ICR; 
Grey octagon: unmethylated ICR; Black lollipop: methylated secondary DMR; Grey 

lollipop: unmethylated secondary DMR (Ferguson-Smith 2011). 

1.2.1.2 Regional and temporal control of genomic imprinting 

It is becoming clear that the monoallelic status of some imprinted genes is under strict 

spatiotemporal control. Of 82 mouse imprinted genes investigated, 23 show imprinted 

expression limited to a single tissue type (Prickett & Oakey 2012). Of this subset, 57% 

are exclusively imprinted in extra-embryonic tissues and 26% are solely imprinted in the 

brain. There is another subset of nine imprinted genes, which are monoallelic in all but 

one tissue type where they are expressed from both alleles. A recent study illustrated the 

potential importance of dynamic control of the monoallelic status of imprinted genes. It 
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has been demonstrated that the maternally imprinted NOTCH ligand Dlk1 reverts to 

biallelic status in neural stem cells and niche astrocytes at postnatal stages, and that this 

switch is required for normal neurogenesis (Ferrón et al. 2011). The change to biallelic 

expression is associated with de novo DNA methylation at the ICR and results in an 

increase in Dlk1 expression. The extent to which this process occurs in other imprinted 

genes is not yet clear and will require genome wide assessment of allele-specific 

expression in pure cell populations from different tissues. Nevertheless, this study 

illustrates the importance of allele-specific expression for controlling gene dosage during 

development. 

1.2.1.3 Genomic imprinting and disease 

The functional haploidity caused by imprinting means that inactivation of the expressed 

allele leads to a complete loss of function from that gene. The most frequently cited 

examples of genomic imprinting disorders are a result of de novo genetic variants, rather 

than any dysregulation of imprinting per se. For example, Angelman and Prader-Willi 

syndromes involve genomic deletions overlapping the imprinted SNRPN cluster (see 

Figure 1.6; Christian et al. 1995). Angelman syndrome presents when the deletion occurs 

on the maternal chromosome resulting in the loss of the paternally imprinted UBE3A 

(Kishino et al. 1997). Conversely, Prader-Willi syndrome is caused by deletion on the 

paternal chromosome resulting in a lack of expression of the maternally imprinted genes 

of this region (Ohta et al. 1999).  
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Figure 1.6 | The SNRPN cluster. Red bar: maternally expressed gene; Blue bar: 
paternally expressed gene; Grey bar: repressed gene; Black octagon: methylated ICR; 

Grey octagon: unmethylated ICR (Ferguson-Smith 2011). 

Epigenetic dysregulation of genomic imprinting can also result in disease. Beckwith-

Wiedemann syndrome (BWS) is a prime example; aberrant methylation of the imprinted 

genes at 11p15 is observed in more than 50% of cases (Cooper et al. 2005). BWS is a 

congenital overgrowth disorder with an incidence of one in 13,000. The most frequent 

aberration is hypomethylation of the KCNQ1 cluster ICR. It results in biallelic expression 

of KCNQ1OT1 and the subsequent downregulation of tumour suppresser CDKN1C (Lee 

et al. 1999; Diaz-Meyer et al. 2003). In approximately 5% of cases, BWS is caused by 

hypermethytlation of the IGF2 ICR and the resulting biallelic expression of growth 

promoting IGF2 (Reik et al. 1995). Loss of imprinting is the most abundant alteration in 

cancer (Feinberg et al. 2006). Epigenetic dysregulation of imprinted genes can promote 

cancer either by activation of a normally silenced copy of an oncogene such as IGF2 

(Ohlsson et al. 1999), or silencing of the normally active copy of a tumour-suppressor 

gene such as p57KIP2 (Diaz-Meyer et al. 2003).  
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1.2.1.4 The imprinting paradox 

The disorders described above highlight the evolutionary paradox of imprinting; its 

evolution and conservation indicates that there is a selective advantage that outweighs the 

vulnerability that monoallelic expression exposes. Genomic imprinting exists in plants 

and mammals; however, mechanistic differences indicate that they evolved independently 

(Scott & Spielman 2006).  In mammals, most imprinted genes function to control prenatal 

growth, placenta formation and brain development (Morison et al. 2005). The parental 

conflict hypothesis is the dominant theory describing the evolution of genomic imprinting 

in mammals (Moore & Haig 1991). It states that imprinting is the result of a tug of war 

between parental chromosomes over access to maternal resources for developing 

offspring. This theory rationalises the imprinting of several paternally expressed growth 

promoting genes (e.g. IGF2, KCNQ1OT1, Air) and maternally expressed growth 

inhibitors (e.g. Igf2r, CDKN1C, GRB10). However, many imprinted genes are hard to 

reconcile with the parental conflict hypothesis (Haig 2004). The coadaptive theory has 

been proposed to explain the imprinting of genes associated with postnatal maternal 

nurturing, stating that it enabled rapid fixation of desirable coadaptive maternal-offspring 

traits (Curley et al. 2004; Wolf & Hager 2006). These theories are neither mutually 

exclusive nor all encompassing; different imprinted genes were likely under different 

selective pressures. Further research into the physiological roles of imprinted genes 

should provide a more satisfying resolution to the imprinting paradox. 
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1.2.2 X-chromosome inactivation 

X-chromosome inactivation (XCI) was the first described form of monoallelic expression 

(Lyon 1961). It is the process where one of the female X-chromosomes is 

transcriptionally silenced to provide gene dosage compensation between males and 

females (Payer & Lee 2008). During development, mammalian females go through two 

kinds of XCI: imprinted and random. 

1.2.2.1 Imprinted XCI 

In a process referred to as imprinted XCI, the paternal X-chromosome is silenced in the 

female pre-implantation mouse embryo (Huynh & Lee 2003). Inactivation persists until 

the blastocyst stage, where the epigenetic marks are erased and the paternal X-

chromosome is reactivated (Mak et al. 2004). The paternal and the maternal X-

chromosome then have an equal chance of inactivation by random XCI (discussed 

below). As this process occurs before the embryonic stem cell stage, the majority of 

research has been carried out in mouse. The epigenetic state of human X-chromosomes in 

the pre-implantation embryo is not well understood, although a recent study indicates that 

genes from both female X-chromosomes are active at this stage (Okamoto et al. 2011).  

1.2.2.2 Random XCI 

Random XCI is initiated in all eutherian females at the stage of the late blastocyst. Unlike 

genomic imprinting or imprinted XCI, it occurs in a stochastic manner with respect to 

parent of origin (Gardner & Lyon 1971). First, the number of X-chromosomes in the cell 
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is counted and all but one are randomly selected for inactivation. This is mediated by 

physical interactions between the two X-chromosomes, where it is hypothesised that a 

mutually exclusive mark is laid down (Bacher et al. 2006; Xu et al. 2006; Masui et al. 

2011). The ncRNA X inactive specific transcript (XIST), transcribed from the future 

inactivated X-chromosome (Xi), is both necessary and sufficient for silencing of the 

chromosome (Brown et al. 1991; Wutz & Jaenisch 2000; Chow et al. 2007). XIST coats 

the entire Xi in cis, leading to its inactivation through the recruitment of silencing factors 

such as PRC2 and the subsequent condensation of the X-chromatin (Clemson et al. 1996; 

Silva et al. 2003; Marks et al. 2009). XIST is tethered to the Xi by the transcription factor 

YY1, preventing it from operating in trans on the active X-chromosome (Jeon & Lee 

2011). Once established, the Xi is irreversibly maintained through future cell divisions, 

resulting in somatic mosaicism in adult females (Wutz & Jaenisch 2000). Maintenance of 

XCI is managed by a diverse array of chromatin factors, including Orc2 and HP1a, which 

keep the Xi packaged tightly in heterochromatin (Chan et al. 2011). Nuclear organization 

is also thought to play a role in the maintenance of XCI through cell division; in both 

mouse and human, it has been observed that the Xi is sent to a distinct nuclear 

compartment, rich in the chromatin remodeling factor SNF2H, when it undergoes 

replication (Clemson et al. 2006; Zhang et al. 2007).  

1.2.2.3 Skewed XCI 

As stated above, adult females are mosaics of cells with different active X-chromosomes. 

This is advantageous as it reduces the effect of deleterious X-linked mutations. While 

most females are comprised of an even representation of the two X-chromosomes, 

approximately 30% have greater than 20% skew in XCI (Amos-landgraf et al. 2006). XCI 
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skewing is concordant between monozygotic twins (Wong et al. 2011). Extreme skewing 

of greater than 95% is very rare in the population but frequently observed in 

phenotypically normal carriers of X-linked mutations, where the X with the deleterious 

mutation is preferentially silenced (Plenge et al. 2002). This is thought to be a result of 

clonal selection during development; if cells expressing the complement of alleles from 

one X-chromosome have a growth advantage over cells expressing the alternate X-

chromosome it would result in clonal outgrowth (Belmont 1996; Muers et al. 2007).  

1.2.3 Autosomal random monoallelic expression 

Random monoallelic expression (RME) describes the regulation of some autosomal genes 

that can be exclusively expressed from either allele, or in some cases both alleles, and the 

allelic choice is thought to be random. Once a cell has committed to an allele during 

development its cellular progeny maintains the choice. RME has classically been 

described in terms of a small number of gene families including antigen receptors, 

olfactory receptors and protocadherins. In these disparate gene families, RME plays a 

similar role: increasing cellular specificity and tissue diversity. Of particular interest to 

this thesis are the recent observations that indicate that RME is more widespread than had 

previously been appreciated (Gimelbrant et al. 2007; Wang et al. 2010; Li et al. 2012). 

1.2.3.1 Antigen receptors 

Monoallelic expression of antigen receptors, also known as allelic exclusion, was the first 

described form of autosomal RME (Pernis et al. 1965). The genes encoding antigen 
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receptors share a unique property in that they undergo DNA recombination before 

expression. DNA recombination along with monoallelic expression forms the central 

paradigm of allelic exclusion: “one lymphocyte - one antigen receptor” (Burnet 1957). It 

ensures that only a single receptor variant is present on each cell, enabling antigen 

specificity. For the sake of clarity I will focus on the mechanisms underpinning the allelic 

exclusion of immunoglobulin genes of B cells, but analogous mechanisms apply for T 

cell receptors (Brady et al. 2010).  

B cell antigen receptors contain both heavy and light chain immunoglobulins, which are 

generated by the recombination of a limited number of V, D and J segments at the pro-B 

cell stage of development (Bassing et al. 2002). Exactly how the random allelic choice is 

coordinated is not yet clear. The probabilistic model states that both alleles are equally 

susceptible to recombination, and that the stochastic selection is born out of competition 

for a cooperative factor (Perry et al. 1980). However, it is becoming clear that 

recombination is preceded by epigenetic events that differentiate the two alleles. A key 

factor appears to be that antigen receptor loci start to replicate asynchronously after 

implantation (Mostoslavsky et al. 2001). Replication timing is determined randomly and 

once established, the pattern is maintained in the cell’s progeny. The early replicating 

allele is selected for recombination 80% of the time (Goldmit et al. 2004). Other 

asymmetric epigenetic alterations precede rearrangement, including chromatin 

modification, demethylation and locus contraction (Goldmit et al. 2004; Mostoslavsky et 

al. 1998; Sayegh et al. 2005). The instructive model states that the asymmetry of these 

alterations is determined by asynchronous replication, and they then influence which 

allele is selected for recombination (Mostoslavsky et al. 2001). As recombination is 

initiated, the homologous chromosomes pair and the uncleaved allele is marked and 
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subsequently repositioned to the pericentromeric heterochromatin where it is sheltered 

from the recombination machinery (Hewitt et al. 2009). Interestingly, the excluded allele 

can be recalled if the primary allele fails to make a functional receptor (Casellas et al. 

2007). Once a functional receptor expressed, allelic exclusion is stably maintained by 

downregulation of recombination factors (Corcoran 2005), locus decontraction (Roldán et 

al. 2005) and histone deacetyltion (Stanton & Brodeur 2005).  

1.2.3.2 Olfactory receptors 

Olfactory receptors (ORs) are G-protein coupled receptors responsible for the detection of 

odorants. They are subject to both monoallelic and monogenic expression; therefore, only 

a single allele from a single OR gene is expressed per cell (Chess et al. 1994). This 

ensures specific detection of olfactory stimuli by olfactory sensory neurons. ORs also 

play an important role in the wiring of the olfactory system during brain development, 

ensuring that olfactory sensory neurons expressing the same OR converge on the same 

glomerus in the olfactory bulb (Imai et al. 2010). While it is understood that the 

expression of a functional OR allele initiates a feedback mechanism to prevent the 

expression of others (Serizawa et al. 2003; Lewcock & Reed 2004), the molecular 

mechanisms that regulate the initial OR selection have remained elusive. The observation 

that an enhancer region, the H element, associates with multiple OR gene promoters in 

trans lead to the suggestion that this element played a central role in the stochastic 

activation of a single OR allele (Lomvardas et al. 2006). However, subsequent work 

where the H element was genetically targeted refutes this hypothesis, as only the 

expression of ORs located near to the H element were disrupted (Fuss et al. 2007). A 

recent study in mice has demonstrated that all OR genes are packaged into compacted 
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heterochromatin prior to transcription (Magklara et al. 2011). The authors propose that, 

after the whole cluster has been silenced, a limited factor derepresses a randomly selected 

allele enabling its transcription. The expressed allele then initiates a feedback mechanism 

that prevents the selector from reactivating any other alleles. Further research is required 

to test this hypothesis and elucidate the control of RME in ORs. It is noteworthy that ORs 

also display asynchronous replication, a hallmark of monoallelic expression (Chess et al. 

1994). While it is not clear what role it plays in regulating OR expression; one could 

hypothesise that it determines which chromosome is first exposed to the proposed 

reactivating factor. As with antigen receptor allelic exclusion, it has been demonstrated 

that if a non-functional OR is selected for expression the cell is able to reverse the 

decision and activate an alternate allele (Serizawa et al. 2003; Lewcock & Reed 2004). 

1.2.3.3 Protocadherins 

Protocadherins are cell surface proteins belonging to the cadherin superfamily of cell 

adhesion proteins. They are enriched at synapses and function during neural development 

(Kohmura et al. 1998; Wang et al. 2002). The three protocadherin sub families, Pcdhα, 

Pcdhβ and Pcdhγ, are all located in a single cluster (Wu & Maniatis 1999). Pcdhα and 

Pcdhγ gene structure is unusual in that they consist of twelve tandemly arrayed variable 

region (V) exons and three constant (C) exons. It has been demonstrated that Pcdhα and 

Pcdhγ genes are subject to monoallelic yet combinatorial expression of the variable exons 

(see Figure 1.7; Esumi et al. 2005; Kaneko et al. 2006). 
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Figure 1.7 | Monoallelic and combinatorial expression of protocadherin genes. A 

variable exon is randomly selected (red) and spliced with the three constant exons (blue) 

to generate the mature mRNA. A) Monoallelic expression of a single isoform. B) 

Combinatorial monoallelic expression. 

For each Pcdhα and Pcdhγ transcript, cells can express either the maternal, paternal, both 

or neither allele. This results in enormous diversity in protocadherin gene transcript sets 

between different cells. The expressed protocadherin proteins form heteromultimers 

exhibiting isoform-specific homophilic binding (Murata et al. 2004; Schreiner & Weiner 

2010). Protocadherin complexes are hypothesised to provide a cell-specific fingerprint 

facilitating self-recognition, analogous to Dscam1 in invertebrates (Zipursky & Sanes 

2010). Little is known about the mechanisms that regulate the monoallelic expression of 

protocadherins. A model has been proposed in which there is a limiting number of 

activators in each nucleus, and it is the competition for this limiting factor that gives rise 

to the stochastic monoallelic selection of each variable exon (Chess 2005). Further work 
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is required to unravel the regulation of protocadherin gene expression as well as their role 

in neural development.  

1.2.3.4 Widespread random monoallelic expression 

Recent evidence indicates that RME is not restricted to the established gene families 

reviewed above; instead, it is widespread throughout the human autosome. Using 

genotyping microarrays, Gimelbrant et al. (2007) carried out a genome-wide assessment 

of monoallelic expression in clonal human B-lymphoblastoid cell lines. They found 

evidence of RME in approximately 9% of the genes assayed. The genes were scattered 

throughout the genome and the allelic choice was made at the gene, rather than 

chromosome, level. The authors found these genes to be enriched for cell surface proteins 

and more than twice as likely to be located near noncoding sequences associated with 

human lineage-specific accelerated evolution. They also demonstrate monoallelic 

expression of a subset of these genes in vivo, in placental micropatches and fresh 

peripheral blood mononuclear cells. The study was replicated with mouse lymphoblastoid 

cells to assess the conservation between species (Zwemer et al. 2012). A similar 

frequency of RME was detected in mice as in human and, importantly, a significant 

overlap between genes subject to RME in mouse and human was observed. This, along 

with the enrichment for cell surface proteins, indicates that gene selection is not random; 

rather, some genes are predisposed for RME. Support for these findings comes from a 

recent next-generation sequencing study in clonal mouse neural stem cells (Li et al. 

2012). The authors found evidence for RME in approximately 4% of autosomal genes 

and, notably, monoallelic expression was associated with a 30-35% reduction in transcript 
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levels. This demonstrates that widespread RME occurs in murine neural tissue in vitro, 

consistent with previous findings (Wang et al. 2007; Wang et al. 2010).  

Together, these studies reveal an unprecedented source of epigenetic diversity between 

clonal cell lines. For each locus subject to RME, a cell can be in one of three cell states: 

biallelic, monoallelic for the paternal allele or monoallelic for the maternal allele. This 

could potentially drive functional variation between genetically identical cells by altering 

gene dosage, or by exposing functional heterozygosity. The extent to which RME occurs 

in human neural tissue, and the impact that it may have on brain function, development 

and disease remains to be determined.  

1.2.4 Genetic cis-regulatory variants 

The HapMap and 1000 Genomes projects have revealed that genetic variation is 

widespread on the human genome. Variants, such as single nucleotide polymorphisms 

(SNPs) and copy number variants (CNVs), can affect gene expression by altering 

regulatory elements or dosage of the protein coding sequence itself. While functional 

alteration of a trans-element would be predicted to alter both alleles equally, cis-

regulatory variants only affect the expression of the allele on which they reside. 

Therefore, heterozygosity for genetic cis-regulatory variants can give rise to allelic 

expression imbalance (AEI), and in extreme cases, monoallelic expression. 

Genetic cis-regulatory variation represents a significant source of AEI in the human 

genome. This was first demonstrated by a series of studies that assayed selected genes to 

estimate the prevalence of cis-acting variation in the transcriptome (Yan et al. 2002; Lo et 
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al. 2003; Bray et al. 2003). Recent genome-wide studies indicate that at least 20% of 

human genes display AEI caused by genetic cis-regulatory variation (Zhang et al. 2009; 

Ge et al. 2009; Heap et al. 2010). These variants are found upstream, downstream and 

within the gene they influence (Cheung et al. 2005). The presentation of AEI is dictated 

by the cis-regulatory element that is affected, as well as the manner in which it is altered. 

For example, one way in which cis-acting variants influence gene expression is by 

altering the affinity of a trans-factor to its binding site. It can do so by increasing, 

decreasing or abolishing binding. This can lead to tissue- or temporal-specific AEI when 

the variant is in the binding site of a trans-factor only present in certain cell types or 

developmental stages (Heinzen et al. 2008; Buonocore et al. 2010). Additional ways in 

which genetic cis-regulatory variants act to alter gene expression include disruption of 

RNA splicing and altering the stability of the message by modifying RNA structure or the 

polyadenylation site.  

Recently, assays of allele-specific expression have been the preferred method for the 

detection of cis-acting variants (see section 1.2.5). This approach has an advantage over 

expression quantitative trait loci (eQTL) approaches in that each allele acts as an internal 

control for the other, eliminating confounding inter-sample variables. 

1.2.5 Allele-specific expression assays 

Assays of allele-specific expression typically utilise heterozygous SNPs as copy-specific 

tags to distinguish between a gene’s two alleles. Individuals heterozygous for the tag SNP 

can then be assayed for allele-specific expression by measuring the relative abundance of 

each gene copy (see Figure 1.8).  
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Figure 1.8 | Analysis of allele-specific expression. A heterozygous coding SNP (T/C 

in this example) is used to distinguish between the two gene copies. A quantitative 
method of allele discrimination is then used to measure the relative abundance mRNA / 

cDNA from each chromosome. A 1:1 allele ratio is observed in the genomic DNA, 
whereas a 2:1 imbalance is observed in the cDNA. Figure adapted from Bray and 

O’Donovan (2006). 

Techniques used in the 1980s and early 1990s for the investigation of allele-specific 

expression were qualitative; they were only able to detect the presence or absence of a 

given allele (Nozari et al. 1986; Wu et al. 1989; Bourguin et al. 1990; Smrzka et al. 

1995). In recent years, the need for quantitative measurement of the two alleles has been 

met by the development of a variety of techniques: allele-specific quantitative polymerase 

chain reaction (qPCR) (Zhu et al. 2004), polymerase colonies (Butz et al. 2004), 

sequencing (Sanger et al. 1977; Ge et al. 2005) and single base primer extension (Singer-
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Sam et al. 1992; Bray & O’Donovan 2006). Modern single base primer extension assays 

utilising fluorescently tagged dideoxynucleotides and capillary gel electrophoresis are 

highly quantitative, enabling the detection of subtle allelic distortion (Norton et al. 2002; 

Bray & O’Donovan 2006). 

Genome-wide assays have also been developed working on the same principle, enabling 

high throughput non-hypothesis driven assessment of allele-specific expression. 

Genotyping microarray-based approaches have been successfully implemented in the last 

five years for the detection of novel imprinted genes (Pollard et al. 2008), autosomal 

RME (Gimelbrant et al. 2007) and genetic cis variation (Ge et al. 2009). Recently, next 

generation sequencing (RNA-seq) has superseded microarrays in the investigation of 

allele-specific expression (Degner et al. 2009; Zhang et al. 2009; Heap et al. 2010; 

DeVeale et al. 2012). RNA-seq data is highly quantitative and its digital nature lends 

itself to the detection of allele-specific expression. Additionally, RNA-seq potentially 

enables the analysis of every heterozygous SNP in the transcriptome. The development of 

standardised RNA-seq allele-specific expression data analysis is expected to overcome 

technical biases observed in early studies (Rozowsky et al. 2011; Skelly et al. 2011). 
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1.3 Neural stem cells 

Neural stem cells (NSCs) have been a focus of medical research in recent years due to 

their therapeutic potential as well as their application for modelling neural development 

and disease. Rather than a specific cell type, “neural stem cell” is an umbrella term 

covering a lineage of distinct cell populations that share the defining characteristics of 

self-renewal and the ability to generate neurons and glia. Typically, the later the NSC 

population emerges during development the more fate restricted it is. Various NSC 

populations can be isolated at different stages of development, or generated by in vitro 

differentiation of embryonic stem cells (ESCs; see Figure 1.9).  

 

Figure 1.9 | NSC subtypes. NSCs can be isolated from the neuroepithelium, foetal 
brain or adult brain. Alternatively, less mature ESCs can be isolated and neuralised in 

vitro to form the NSC subtypes. NEP: neuroepithelial progenitor; RG: radial glia; ANSC: 

adult neural stem cell. Figure adapted from Conti and Cattaneo (2010). 
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Neuroepithelial progenitors (NEPs) are the most immature NSC subtype with the 

broadest differentiation potential. Appearing in the neural plate, they are responsible for 

the preliminary surge of neurogenesis via the generation of intermediate basal progenitors 

(Haubensak et al. 2004). NEPs are characterised by the expression of the markers PAX6, 

SOX1 and OTX2. They can be isolated directly from the neural plate (Elkabetz et al. 

2008) or generated in vitro by SMAD inhibition of ESCs (Chambers et al. 2009). These 

cells are highly responsive to patterning signals that direct differentiation towards region-

specific neuronal fates and they are capable of adopting both central and peripheral 

nervous system fates (Elkabetz et al. 2008). While NEPs represent an ideal population of 

NSCs for many in vitro applications, stable long-term expansion has not yet been 

achieved.  

Radial glia (RG), spawned from NEPs in the neural tube, are the major source of neurons 

in the foetal brain and spinal cord (Malatesta et al. 2000, 2003; Anthony et al. 2004; 

Anthony & Heintz 2008). The majority loose their neuronal lineage towards the end of 

development where they terminally differentiate into astrocytes (Culican et al. 1990). RG 

are a heterogeneous cell population characterised by their bipolar morphology and 

astroglial marker expression. They are more lineage restricted than NEPs, retaining 

distinct spatiotemporal identities in vitro after isolation (Malatesta et al. 2003; Pinto et al. 

2008). RG-like NSCs can also be generated in vitro by exposing less mature SOX1 

positive neural progenitors to the mitogens fibroblast growth factor 2 (FGF2) and 

epidermal growth factor (EGF; Luciano Conti et al. 2005). These cells can be expanded 

as a homogenous population, which retain differentiation potential after extended in vitro 

expansion (Glaser et al. 2007). 
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Contrary to the long-held belief that the human brain does not contain proliferative cells, 

it is now understood that NSCs are preserved in the adult central nervous system (Kuhn et 

al. 1996; Eriksson et al. 1998). For the most part, adult NSCs reside in two neurogenic 

niches: the subgranular zone (SGZ) of the dentate gyrus (Kuhn et al. 1996; Eriksson et al. 

1998) and the subventricular zone (SVZ) of the forebrain (Corotto et al. 1993; Barbaro et 

al. 2004). It has been demonstrated that the NSCs that populate the mouse SVZ are direct 

decedents of foetal RG (Merkle et al. 2004). In animal studies, adult neurogenesis has 

been shown to be activated on neuronal loss (Arvidsson et al. 2002; Tattersfield et al. 

2004) and hippocampal neurogenesis to be associated with learning and memory (Deng et 

al. 2010) as well as affective disorders (Samuels & Hen 2011). The physiological role of 

adult NSCs in humans remains unknown, largely due to limitations of the available 

methodology. Human adult NSCs have successfully been isolated and expanded in vitro, 

demonstrating their self-renewal, multipotency and ability to generate physiologically 

active neurons (Johansson et al. 1999; Kukekov et al. 1999; Roy et al. 2000).  

Induced pluripotent stem cells (iPSCs) represent an additional source of NSCs. iPSCs are 

generated in vitro by the forced expression of OCT4, SOX2, KLF4 and c-MYC in somatic 

cells (Takahashi & Yamanaka 2006). They are ESC-like and can be differentiated in vitro 

to generate various NSC populations (Chambers et al. 2009). While iPSCs closely 

resemble ESCs in terms of pluripotency (Zhao et al. 2009) and gene expression profiles 

(Stadtfeld et al. 2010), questions remain whether their epigenetic reprogramming is 

complete. Epigenetic memory has been observed from the somatic cell of origin (Doi et 

al. 2009; Kim et al. 2010) as well as the accumulation of novel aberrant epigenetic states 

(Doi et al. 2009; Lister et al. 2011). Nevertheless, iPSCs represent an attractive source of 

NSCs for clinical purposes as well as for modelling development and disease. 
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1.3.1 NSC expansion in vitro 

The expansion of homogeneous, phenotypically stable NSCs in vitro is critical for many 

applications, from models of neurogenesis to cell replacement therapies. There are two 

well established approaches to expand NSCs in culture: neurospheres and monolayers. 

Neurosphere assays have been used in some of the pioneering studies that first sought to 

characterise NSCs in vitro (Reynolds & Weiss 1992; Uchida et al. 2000). The cells, 

acquired by microdissection of primary tissue or by ESCs neuralisation, are plated as 

single cell suspensions in N2 and/or B27 medium supplemented with EGF and FGF2. 

Differentiating cells are expected to die, while the NSCs proliferate and generate clonal 

aggregates. Neurospheres enable the expansion of RG-like NSCs that are capable of 

differentiating into neurons, astrocytes and oligodendrocytes (Reynolds & Weiss 1992, 

1996). The neurosphere assay has two key limitations that have resulted in a decline in its 

popularity. Firstly, they lose neurogenic potential after extended passages (Fricker et al. 

1999). Secondly, they generate a highly heterogeneous population consisting of only a 

small proportion of genuine neurosphere-forming NSCs (Suslov et al. 2002; Reynolds & 

Rietze 2005). Combined, these factors make neurospheres a suboptimal method to 

conduct informative assays of neurogenesis or generate well characterised, phenotypically 

stable cells for clinical applications. 

Monolayer assays have become the method of choice for NSC culture in recent years. 

Cells are plated in adherent tissue culture vessels, often coated with extracellular matrix 

proteins such as laminin and fibronectin, in the presence of EGF and FGF2. Using this 

approach, it is possible to expand ESC-derived late-NEPs (Koch et al. 2009) and ESC-, 
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foetal brain- and adult brain-derived RG-like NSCs (Conti et al. 2005; Pollard et al. 

2006). On exposure to differentiating conditions, these cells are capable of generating glia 

and electrically excitable neurons. A key advantage that this method offers over 

neurospheres is that it facilitates the generation of homogenous clonal cells lines that can 

be profiled for gene expression as well as growth and differentiation characteristics. 

Complete and proper characterisation is essential for transplantation applications as well 

as for models of disease and development. The monolayer system also generates a greater 

proportion of neurons and shows reduced karyotypic abnormalities after extended 

passaging than neurospheres (Goffredo et al. 2008). 

1.3.2 Conditional immortalisation of NSCs 

While progress has been made in the long-term expansion of NSCs in vitro, they 

eventually undergo growth arrest and senescence, limiting their use for large-scale 

applications. In addition, the inherent tumourigenic potential of NSCs is a hurdle in the 

way of cell transplantation therapies. A technique called conditional immortalisation 

tackles these problems, improving both the efficient long-term propagation of uniform 

clonal NSC lines as well as their safety after transplantation (Pollock et al. 2006). In this 

study, cells extracted from first trimester human foetal cortex were transduced with the 

conditional immortalising transgene c-MycERTAM. The construct encodes the growth-

promoting c-Myc fused to a hormone receptor that is driven by the synthetic 4-hydroxy-

tamoxifen (4-OHT). These cells are multipotent and showed therapeutic benefit in a rat 

model of stroke (Pollock et al. 2006). The cell line, CTX0E03, is currently being used in 

the first clinical trial of NSC therapy for stoke patients (ClinicalTrials.gov identifier: 

NCT01151124). CTX0E03 and similar NSC lines are used in this thesis. 
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1.4 Study aims 

In this introduction I have highlighted the critical role that different forms of monoallelic 

expression play in regulating gene expression through development and adulthood. With 

recent studies indicating that RME is widespread across the autosome (Gimelbrant et al. 

2007; Wang et al. 2010; Li et al. 2012), the intriguing possibility arises that the human 

central nervous system is a mosaic of different clones of cells with different combinations 

of monoallelic and biallelic genes. Neighbouring cells could differ in terms of gene 

dosage as well as by exposing functional heterozygosity. This would be expected to have 

significant implications for brain development, function and disease.  

The analysis of RME has been limited by the difficulty of detection in mixed cell 

populations in vivo. At the time of this study, no genome wide analysis of allele-specific 

expression has been carried out in human neural tissue with the power to detect RME. 

Therefore, the extent to which this process occurs in the developing and adult human 

central nervous system is unknown.  

Using a genome-wide screen for monoallelic expression in clonal human NSCs I aim to 

assess the extent and nature of autosomal monoallelic expression in human neural tissue.  

Specifically, this thesis aims to: 

1) Determine the extent of autosomal monoallelic expression in clonal human NSC lines 

2) Investigate autosomal monoallelic gene expression through NSC differentiation 

3) Explore the functional implications of RME 

4) Screen for novel imprinted genes 
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Chapter 2. General materials and methods 

 

This section details methods relevant to multiple result chapters. Each results chapter 

contains an additional materials and methods section with methods specific to that 

chapter. 

2.1 Cell Culture 

2.1.1 Cell lines 

The human NSC lines employed in this study were generated from three different foetal 

tissue types: spinal cord, cerebral cortex and striatum. Each tissue type was derived from 

a different donor and gave rise to three clonal cell lines (see Figure 2.1). 

 

Figure 2.1 | The relationship between the human NSC lines. The spinal cord lines 
were generated from a female donor, while the cerebral cortex and striatum lines were 

derived from two different male donors. 
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The cortical and striatal lines were generated by ReNeuron Ltd. and the spinal cord lines 

were generated by my colleague Dr Graham Cocks (paper submitted). They were created 

by conditionally immortalising human somatic stem cells as described by (Pollock et al. 

2006). In brief, primary cells were extracted from 12-week-old foetal central nervous 

system tissue and transduced with a retrovirus containing c-MycERTAM. This transgene is 

a mutant oestrogen receptor (G525R) fused to the C-terminus of the mitogenic c-Myc 

(Littlewood et al. 1995). c-MycERTAM is exclusively responsive to the synthetic drug 4-

hydroxy-tamoxifen (4-OHT) and, in its presence, c-Myc expression drives cell 

proliferation. Clonal cell lines were generated from the transduced primary cells. The 

clonal cell lines accurately represent human NSCs; in their proliferative phase, they are 

self-replicative and under differentiating conditions they are multipotent and retain their 

positional specification in terms of gene expression and the specificity of the neurons they 

generate (Johansson et al. 2008; El-Akabawy et al. 2011). All cell lines used in this study 

are of a normal human karyotype.  

2.1.2 Cell growth 

All cells were grown in Binder CB150 incubators at 37°C, saturated humidity and 5% 

CO2. They were cultured as monolayers in Nunclon™∆ Surface tissue culture vessels 

(Thermo Scientific). Tissue culture vessels were coated with laminin (Sigma-Aldrich) at 

20 μg/ml in Dilbecco’s Modified Eagle’s Media F-12 (DMEM:F12; Sigma-Aldrich) for 

three hours at 37°C. The flask was then rinsed with DMEM:F12 before the addition of the 

growth media. Spinal cord and cortical lines were cultured in Reduced Modified Media 

(RMM; see Table 2.1) and the striatal lines were cultured in Human Media (see Table 

2.2). 
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Table 2.1 | Components of Reduced Modified Media 

Component Supplier Concentration 

DMEM:F12 Sigma-Aldrich - 

Human serum albumin Baxter 0.03% 

Human apo-transferin  Sigma-Aldrich 100 µg/ml 

Putrescine dihydrochloride Sigma-Aldrich 16.2 µg/ml 

Human recombinant insulin Sigma-Aldrich 5 µg/ml 

Progesterone Sigma-Aldrich 60 ng/ml 

L-Glutamine GIBCO 2 mM 

Sodium selenite Sigma-Aldrich 40 ng/ml 

Human bFGF Peprotech 10 ng/ml 

Human EGF Peprotech 20 ng/ml 

4-OHT Sigma-Aldrich 100 nM 
 

Table 2.2 | Components of Human Media 

Component Supplier Concentration 

DMEM:F12 Sigma-Aldrich - 

Human serum albumin Baxter 0.03% 

Human apo-transferin  Sigma-Aldrich 100 µg/ml 

Putrescine dihydrochloride Sigma-Aldrich 16.2 µg/ml 

Human recombinant insulin Sigma-Aldrich 5 µg/ml 

Progesterone Sigma-Aldrich 60 ng/ml 

L-Glutamine GIBCO 2 mM 

Sodium selenite Sigma-Aldrich 40 ng/ml 

T4 (L-Thyroxine) Sigma-Aldrich 400 ng/ml 

T3 (Tri-iodo-thyronine) Sigma-Aldrich 337 ng/ml 

Heparin sodium Sigma-Aldrich 10 Units/ml 

Corticosterone  Sigma-Aldrich 40 ng/ml 

Human bFGF Peprotech 10 ng/ml 

Human EGF Peprotech 20 ng/ml 

4-OHT Sigma-Aldrich 100 nM 
 



 

 

50 

Vials were thawed from liquid nitrogen at 37°C and revived in laminin-coated 

Nunclon™∆ Surface 75 cm2 tissue culture flasks (Thermo Scientific) with pre-warmed 

growth media. Cells were kept between 30% and 80% confluency, typically requiring 

passaging every 72 hours. For passaging, growth media was removed by aspiration and 

cells were washed with pre-warmed Hank’s Balanced Salt Solution (HBSS) without Ca2+ 

or Mg2+ (Sigma-Aldrich). The HBSS was removed by aspiration and replaced with pre-

warmed Accutase (Sigma-Aldrich) which was left for 3 minutes at 37°C. After the cells 

detached from the culture vessel, the cell suspension was transferred to a 15 ml centrifuge 

tube and centrifuged for 5 minutes at 400 rpm. The cell pellet was resuspended in 2 ml of 

growth media and the cells were added to a new laminin-coated Nunclon™∆ Surface 

tissue culture vessel (Thermo Scientific) with pre-warmed growth media at a seeding 

density of 1.6 x 104 cells/cm2. Cell counting was carried out using a standard Neubauer 

hemocytometer. Growth media was changed every 48 hours. The volumes of the reagents 

described above varied depending of the size of the culture vessel, the appropriate 

volumes are displayed in Table 2.3. Cells harvested during proliferations were collected 

one week or more after thawing. The differentiation protocol is detailed in section 4.2.1 

on page 102. 

Table 2.3 | Tissue culture reagent volumes for different vessels. 

Vessel Media HBSS Accutase 

96 well plate 200 µl 100 µl 100 µl 

6 well plate 3 ml 2 ml 1 ml 

25 cm2 flask 7 ml 5 ml 3 ml 

75 cm2 flask 15 ml 10 ml 5 ml 

175 cm2 flask 40 ml 20 ml 10 ml 
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2.2 Molecular Biology 

2.2.1 DNA extraction from human NSCs 

Cells from a Nunclon™∆ Surface 75 cm2 tissue culture flask (Thermo Scientific) were 

harvested and pelleted at 80% confluency as described in section 2.1.2. The cell pellet 

was resuspended and homogenised by pipetting in 1 ml of cell lysis buffer (Meulenbelt et 

al. 1995). The lysis buffer comprised of 100 mM NaCl, 10 mM Tris-HCl pH 8, 10 mM 

ethylene diaminetetraacetic acid (EDTA) pH 8 and 0.5% sodium dodecyl sulphate (SDS). 

25 μg of Ribonuclease A (Fermentas) was added to the homogenate and incubated at 

37°C for 30 minutes. 200 μg of Proteinase K (Fermentas) was then added and the sample 

was incubated at 50°C for 2 hours. Yeast reagent 3 (Autogen Bioclear Ltd.) was diluted 

with an equal volume of ethanol to make an organic deproteinisation reagent (ODPR) as 

described by Freeman et al. (2003). 200 μl of the ODPR was added to the sample which 

was then shaken vigorously by hand for 30 seconds and centrifuged for 5 minutes at 

13,000 rpm to pellet the cell debris. The supernatant was recovered and transferred to a 

clean tube where a further 200 μl of ODPR was added. The sample was centrifuged for a 

further 5 minutes at 13,000 rpm after which the supernatant was recovered and transferred 

to a clean tube. An equal volume of isopropanol was added to precipitate the DNA. The 

tube was inverted 5 times and then centrifuged for 15 minutes at 13,000 rpm. The 

isopropanol was discarded and 3 ml of 70% ethanol added to the DNA pellet. The sample 

was centrifuged for a further 10 minutes at 46000 rpm. The ethanol was discarded and the 

DNA pellet air-dried before resuspension in TE buffer (Invitrogen) at 4°C for 16 hours. 

The yield and quality of the DNA was assessed as described in section 2.2.3. 
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2.2.2 Total RNA extraction from human NSCs 

Cells from a Nunclon™∆ Surface 75 cm2 tissue culture flask (Thermo Scientific) were 

harvested and pelleted at 80% confluency as described in section 2.1.2. The cell pellet 

was lysed by resuspension in 1 ml of TRIzol® Reagent (Invitrogen) and pipetting until the 

solution turned clear. After complete cell lysis, 200 μl of chloroform (Sigma-Aldrich) was 

added, and the homogenate was mixed by 10 inversions. The sample was transferred to a 

Phase Lock Gel Heavy 2 ml tube (5PRIME) and incubated on ice for 3 minutes. The 

sample was then centrifuged at 12,000 g for 15 minutes at 4°C to separate the aqueous 

and the phenol-chloroform phase. The aqueous phase was recovered and transferred to a 

fresh 1.5 ml tube where the RNA was precipitated with 500 μl of isopropanol (Sigma-

Aldrich). The sample was inverted 10 times and incubated at room temperature for 15 

minutes. The precipitated RNA was then pelleted by centrifugation at 12,000 g for 30 

minutes at 4°C. The isopropanol was removed and the RNA pellet was rinsed with 75% 

ethanol. The sample was centrifuged again at 12,000 g for 15 minutes at 4°C after which 

the supernatant was carefully removed and the RNA pellet was left to air dry. On turning 

transparent, the RNA pellet was resuspended in 40 μl of nuclease-free H20 (Sigma-

Aldrich). The yield and quality of the RNA was assessed as described in section 2.2.3. 

2.2.3 Quantification of nucleic acid concentration and purity 

The concentration and purity of extracted nucleic acids was measured using the 

NanoDrop™ 1000 spectrophotometer (Thermo Scientific). The 260/280 and 260/230 

absorbance ratios were used to assess the purity of the nucleic acids. A 260/280 ratio of 

>1.8 was considered pure for DNA and a ratio of >2.0 was considered pure for RNA. A 
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260/230 ratio of >2.0 was considered pure for DNA and RNA. If a sample did not meet 

these standards, all samples from that study were re-precipitated as described in section 

2.2.4. The integrity of extracted nucleic acids was assessed by agarose gel electrophoresis 

(see section 2.4). 

2.2.4 Nucleic acid re-precipitation 

Three volumes of molecular biology grade ethanol (Sigma-Aldrich) and 0.1 volume of 3 

M sodium acetate (Fermentas) was added to the sample and mixed by 10 inversions. It 

was incubated for 16 hours at -80°C and then centrifuged at 14,000 rpm for 20 minutes. 

The supernatant was discarded and 1 ml of 80% molecular biology grade ethanol was 

added. The sample was centrifuged again at 14,000 rpm for 5 minutes, the supernatant 

discarded and a further 1 ml of 80% molecular biology grade ethanol was added to the 

nucleic acid pellet. The sample was centrifuged a final time for 5 minutes at 14,000 rpm 

before the supernatant was removed and the pellet air-dried. The nucleic acid was 

resuspended in the appropriate amount of nuclease-free H20 to make approximately 1 

μg/μl. Nucleic acid concentration and purity was calculated as described in section 2.2.3. 

2.2.5 DNase treatment of RNA 

To remove residual genomic DNA contamination, all RNA samples were treated with 

TURBO DNA-free™ (Ambion).  5 μg of extracted RNA was combined with 2 units of 

TURBO DNase, 1 x TURBO DNase Buffer and made up to 25 μl with nuclease-free H20 

(Sigma-Aldrich). The sample was incubated for 50 minutes at 37°C. The DNase was 

subsequently inactivated by incubation with 6 μl of DNase Inactivation Reagent at room 



 

 

54 

temperature for 5 minutes, vortexing every 30 seconds. The sample was then centrifuged 

at 13,000 rpm for 90 seconds and the supernatant recovered and transferred to a new 

microcentrifuge tube and stored at -80°C. 

2.2.6 Genomic DNA contamination test 

To verify complete removal of genomic DNA, 1 μl of DNase treated RNA was used as 

template for a quantitative polymerase chain reaction (qPCR; see section 2.6). The 

sequence of the GAPDH primer pair used is presented in Table 2.4 on page 62. The RNA 

sample was run alongside a no-template negative control as well ten serial diluted 

genomic DNA samples. Only samples without amplification were reverse transcribed.  

2.2.7 Reverse transcription 

Complimentary DNA (cDNA) was synthesised using SuperScript® III Reverse 

Transcriptase (Invitrogen). 1 μg of DNase-treated RNA was combined with 250 ng of 

random hexamers (Invitrogen) and 1 mM dNTP mix (New England BioLabs) made up to 

10 μl with nuclease-free H20 (Sigma-Aldrich). The mix was incubated for 5 minutes at 

65°C on a heated block to denature RNA secondary structure. It was then promptly 

placed on ice and incubated for 1 minute. The mix was then made up to 20 μl with the 

following reagents: 1x First Strand Buffer (Invitrogen), 5 mM Dithithretiol (Invitrogen), 

40 units RNaseOUT™ (Invitrogen), 200 units SuperScript® III Reverse Transcriptase 

(Invitrogen) and 3 μl of nuclease-free H20 (Sigma-Aldrich). Samples were incubated at 

25ºC for 2 minutes, 42ºC for 2 hours and then 70ºC for 15 minutes. For the microarray 
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studies, the cDNA was not diluted. For polymerase chain reaction (PCR) applications, the 

cDNA was diluted in 140 μl of nuclease-free H20 (Sigma-Aldrich).  

2.3 Polymerase Chain Reaction 

2.3.1 Amplification primer design 

PCR primer pairs were designed to amplify an amplicon of approximately 200 base pairs. 

DNA sequence was obtained from the University of California, Santa Cruz, genome 

browser (http://genome.ucsc.edu) and primers designed using Primer3Plus software 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi). They were designed 

to have minimal self-complementarity and no complementarity to the other primer. GC 

content was kept between 40% and 60% and primers were designed with an annealing 

temperature between 55ºC and 65ºC with only 1ºC between the pair. The nucleotide 

sequence was sent to Sigma-Aldrich who synthesised the oligonucleotides. They were 

resuspended in nuclease-free H20 to a stock concentration of 100 μM and a working 

concentration of 2 μM. 

2.3.2 PCR protocol 

PCR reactions were carried out in a total reaction volume of 15 μl. The reaction 

comprised of template nucleic acid (48 ng of DNA or 6 μl of PCR concentration cDNA as 

described in section 2.2.7), 0.4 unit HOT FIREPol® DNA Polymerase (Solis BioDyne), 

0.2 μM primer mix, 400 μM dNTP mix (New England BioLabs), 1x Buffer B2 (Solis 
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BioDyne), 1.5 mM MgCl2 (Solis BioDyne) and nuclease-free H20 (Sigma-Aldrich) to 

make a total reaction volume of 15 μl. All PCR reactions were carried out with a negative 

control for each primer pair, where the template was replaced with H20. Thermal cycling 

was carried out on a G-Storm GS4 thermal cycler (Somerton Biotechnology Centre) using 

the following parameters: 

Initial denaturation 95ºC   15 minutes 

 Denaturation  95ºC   30 seconds 

Annealing  50ºC - 60ºC  30 seconds  35 cycles 

Extension  72ºC   30 seconds 

Final extension 72ºC   10 minutes 

The annealing temperature was typically 5ºC cooler than the lowest melting temperature 

of the primer pair as predicted by the Primer3Plus software. 

2.3.3 PCR optimisation 

Where sub optimal-PCR results were observed, for example by low amplification or 

primer dimerisation, the optimal annealing temperature was determined using the 

temperature gradient function of the G-Storm GS4 thermal cycler (Somerton 

Biotechnology Centre). The temperature that yielded the brightest specific band after 

agarose gel electrophoresis analysis (see section 2.4) was used for subsequent PCRs. 
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2.4 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to test the integrity of extracted nucleic acids as 

well as to assess the level and specificity of PCR amplification. Agarose gels were made 

by melting agarose (Sigma-Aldrich) into 1x tris-acetate-EDTA (TAE) buffer. 0.8% and 

1.2% gels were prepared for assessing the integrity of for extracted genomic DNA and 

RNA respectively. For PCR products, the concentration of agarose was dependent on the 

size of the amplicon. 3% agarose was used if the amplicon was smaller than 100 base 

pairs (bp), 2% if 100 to 200 bp and 1% if greater than 300 bp. After cooling, ethidium 

bromide (1% solution in water; MERK) was added at a concentration of 1 μl / 100 ml of 

TAE. The molten agarose was then poured into a mould and combs were inserted. After 

solidifying, the gel was placed into an electrophoresis tank with 1x TAE. Samples were 

mixed with 1x DNA Loading Dye (Fermentas) before being loaded into the wells. 

Samples were run alongside an appropriate sized DNA ladder (100 bp DNA ladder, Solis 

Biodyne; O’GeneRuler™ 1kb DNA Ladder, Fermentas). Electrophoresis was carried out 

at 4 V / cm between the electrodes for approximately 30 minutes until desired separation 

was achieved. Gels were analysed by ultra violet transillumination using the 

BioSpectrumAC Imaging System (UVP) and imaged using the Vision Works LS software 

(UVP).  

2.5 SNaPshot single base primer extension assay 

Single base primer extension with SNaPshot™ chemistry (Applied Biosystems) was 

carried out for the purpose of genotyping DNA samples and allelic expression analysis. 



 

 

58 

2.5.1 Target amplification 

SNPs within exons present in all isoforms were targeted where possible for allelic 

expression analysis. When genotyping samples for tag SNPs, heterozygosity rates from 

the International HapMap database (www.hapmap.ncbi.nim.nih.gov) were taken into 

consideration. A ~200 bp region containing the target SNP was amplified by PCR as 

described in section 2.3. The intensity and specificity of the PCR product was then 

examined by agarose gel electrophoresis as described in section 2.4. For allele-specific 

expression assays, a minimum of four genomic DNA samples and a no-template negative 

control were included for each primer pair assayed. cDNA samples from the NSC lines 

were always run in biological triplicate. 

2.5.2 PCR product cleanup 

PCR products underwent an enzymatic cleanup step to eliminate unincorporated primers 

and dNTPs. 7 μl of PCR product was combined with 1 unit rAPid Alkaline Phosphatase 

(Roche), 4 units Exonuclease I (New England BioLabs) and made up to 10 μl with 

nuclease-free H20 (Sigma-Aldrich). The reaction was incubated at 37ºC for 1 hour and 

then 85ºC for 15 minutes to inactivate the enzymes. 

2.5.3 Primer extension 

Single base primer extension was carried out using the SNaPshot™ Multiplex Kit 

(Applied Biosystems). The system involves the binding of an extension primer to the 

PCR product immediately upstream of the SNP of interest. The polymerase, AmpliTaq®, 
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extends the primer by one base incorporating a fluorescently labelled ddNTP 

complimentary to the nucleotide in the amplified sequence on its 3’ end. Measuring the 

relative intensity of incorporated fluorescent ddNTPs enables quantitative genotyping 

(Norton et al. 2002). 

2.5.3.1 Extension primer design 

Extension primers were deigned using the online tool FP Primer 

(www.m034.pc.uwcm.ac.uk/FP_Primer.html) with all settings at default. 50 bp of 

sequence flanking either side of the SNP of interest was pasted into FP Primer from 

dbSNP and the highest ranked primer was selected. The sequence was synthesised by 

Sigma-Aldrich and rehydrated to 1 μM working concentration in nuclease-free H20. 

2.5.3.2 Single base primer extension protocol 

2 μl of cleaned PCR product was combined with 1.25 μl SNaPshot™ Multiplex Kit mix 

(AmpliTaq® DNA polymerase, F-ddNTPs and buffer; Applied Biosystems), 0.1 μM 

extension primer and made up to a total volume of 10 μl with nuclease-free H20 (Sigma-

Aldrich). Temperature cycling was carried out on a G-Storm GS4 thermal cycler 

(Somerton Biotechnology Centre, UK) following the parameters below: 

Initial denaturation 95ºC   2 minutes 

 Denaturation  95ºC   10 seconds 

Annealing  50ºC   5 seconds  30 cycles 

Extension  60ºC   10 seconds 
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2.5.3.3 Electrophoresis 

2 μl of single base primer extension product was combined with 8 μl of genetic analysis 

grade Hi-Di™ Formamide (Applied Biosystems). Electrophoresis was carried out on the 

3130 Genetic Analyzer (Applied Biosystems) with a 36 cm capillary and POP-7™ 

polymer (Applied Biosystems). The default SNaPshot settings were used as 

recommended by the manufacturer. 

2.5.4 Analysis of allele-specific expression data 

Data files from the 3130 Genetic Analyzer (Applied Biosystems) were analysed using 

GeneMarker® 2.2.0 (SoftGenetics LLC®). The quantity of each allele detected is 

represented by the peak height. The average allele ratio derived from heterozygous 

genomic DNA was representative of the 1:1 ratio, correcting for any inherent primer or 

dye bias. The relative expression of the two alleles was determined by correcting cDNA 

allele ratios with those from the genomic DNA samples as illustrated below: 

 

 

Where Ac and Bc are the cDNA peak heights for alleles A and B, Ag and Bg are the 

genomic DNA peak heights for alleles A and B, and n is the number of genomic DNA 

samples. This calculation was carried out for each replicate. Ratios were transformed into 

percentages for clearer graphical representation. 

Ag 
Allele ratio   = 

AC / BC 

Bg 
( ∑      ) / n 
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2.6 Quantitative real-time PCR 

2.6.1 Primer design 

Primers for quantitative PCR (qPCR) were designed as described in section 2.3.1 with 

some minor alterations. qPCR primers were designed to amplify ~100 bp amplicons and, 

where possible, they were also designed to span large exon boundaries to prevent the 

amplification of any residual genomic DNA. However, the GAPDH primer pair used to 

test for genomic DNA contamination (see section 2.2.6) did not span exon-boundaries.  

2.6.2 Reference gene selection 

The selection of appropriate reference, or housekeeping, genes is essential for accurate 

comparison of gene expression between biological samples. However, many commonly 

used reference genes show significant variability in expression between tissues, reducing 

their efficacy (Lee et al. 2002). The reference gene primers ACTB, B2M, GAPD, HMBS, 

HPRT1, RPL13A, SDHA, UBC and YWHAZ from Vandesompele et al. (2002) as well as 

RPL27, RPL30, OAZ1, RPL22 and RPS29 from de Jonge et al. (2007) were first tested for 

efficiency and specificity on my samples. ACTB, GAPDH, HMBS, SDHA, UBC and 

OAZ1 were subsequently redesigned for optimal results as described in section 2.6.1. 

Primer sequences are presented in Table 2.4. These reference genes were then assayed 

across samples using the methods described in section 2.6.3. The programme geNormPLUS 

(Vandesompele et al. 2002) in qbasePLUS version 3 (Biogazelle) was used to assess 

reference stability between samples and the optimal normalisation factor was determined 

to be the geometric mean of the reference targets HPRT1 and RPL13A (see Figure 2.2).  
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Table 2.4 | Reference gene primer sequences for qPCR. Forward 

(F), reverse (R) and extension (E) sequences are presented. GAPDH* is 
the primer used for testing genomic DNA contamination in RNA 

samples. 

Gene !! Primer sequence (5’-3’) 

ACTB F TCGTGCGTGACATTAAGGAG 
R AGGAAGGAAGGCTGGAAGAG 

B2M F TGCTGTCTCCATGTTTGATGTAT 
R TCTCTGCTCCCCACCTCTAAGT 

GAPDH F CCTGACCTGCCGTCTAGAAA 
R ATCCTGGTGCTCAGTGTAGCC 

GAPDH* F ATCATCAGCAATGCCTCCTGC 
R ATGGCATGGACTGTGGTCATG 

HMBS F CTCTGCGGAGACCAGGAGT 
R ATTGCCGTTACCAGACATGG 

HPRT1 F TGACACTGGCAAAACAATGCA 
R GGTCCTTTTCACCAGCAAGCT 

OAZ1 F GGTCTCCCTCCACTGCTGTA 
R ACTATTCCCTCGCCCACCT 

RPL13A F CCTGGAGGAGAAGAGGAAAGAGA 
R TTGAGGACCTCTGTGTATTTGTC 

RPL27 F ATCGCCAAGAGATCAAAGATAA 
R TCTGAAGACATCCTTATTGACG 

RPL30 F ACAGCATGCGGAAAATACTAC 
R AAAGGAAAATTTTGCAGGTTT 

RPS29 F GCACTGCTGAGAGCAAGATG 
R ATAGGCAGTGCCAAGGAAGA 

SDHA F AGGAATCAATGCTGCTCTGG 
R CTGCTCCGTCATGTAGTGGA 

UBC F CCCCAGTATCAGCAGAAGGA 
R TATAATCATCGGCGTTCACC 

YWHAZ F ACTTTTGGTACATTGTGGCTTCA 
R CCGCCAGGACAAACCAGTAT 
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Figure 2.2 | Average expression stability of reference targets. geNorm M values are 

displayed for twelve reference target genes. A geNorm M value of < 0.2 is considered 
highly stable. 

2.6.3 qPCR protocol 

Experiments were carried out following the sample maximisation approach, where all 

samples assayed for the same target are included in the same plate (Hellemans et al. 

2007). White welled qPCR plates (4titude FrameStar 96) were exposed to UV for 10 

minutes in the UV Stratalinker 1800 (Stratagene) to crosslink DNA prior to plating. 4 μl 

of PCR concentration cDNA was combined with 0.2 μM primer mix and 1x HOT 

FIREPol® EvaGreen® qPCR Mix Plus ROX (Solis Biodyne). qPCR reactions were carried 

out on a Chromo4™ Real-Time PCR detector (Bio-Rad) using the following parameters: 
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Initial denaturation 95ºC   15 minutes 

 Denaturation  95ºC   30 seconds 

Annealing  60ºC   30 seconds  45 cycles 

Extension  72ºC   30 seconds 

Fluorescence was recorded at the end of each cycle. A melt curve was carried out from 

60ºC-95ºC with a 10 second hold and a plate read and at every 1ºC increment. Reactions 

were carried out in biological triplicate and technical duplicate. Target genes were 

assayed alongside the reference genes selected by geNormPLUS (see section 2.6.2). Two 

negative controls were included for every primer pair, where 4 μl of H20 replaced the 

template. 

2.6.4 qPCR data analysis 

Data files were opened in Opticon Monitor™ (Bio-Rad), where the threshold was 

selected and melting profiles were assessed. Cycle threshold (CT) values and efficiency 

values were exported and opened in Excel 2011 (Microsoft). The Pfaffl mathematical 

model for relative transcript quantification was used for data analysis (Pfaffl 2001). The 

formula is illustrated below: 

  

 

(Etarget) 
∆CTtarget (control – sample) 

Ratio   = 

(Eref) 
∆CTref (control – sample) 
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Where ∆CTtarget = target gene cycle threshold, ∆CTref = mean of reference gene CTs, and 

E = PCR efficiency. This method enables relative quantification of a target gene in 

comparison to an endogenous standard, the reference genes. Technical duplicates were 

averaged and used to generate the biological replicate values that were used for statistical 

analysis. 

2.7 Statistics 

All statistical analysis in this thesis was carried out in Prism (GraphPad). P value 

summaries displayed on figures are as follows: p ≤ 0.05 = *; p ≤ 0.01 = **; p ≤ 0.001 = 

***. T-tests were used to compare the means of two samples. Unless stated otherwise, t-

tests were unpaired and two-tailed with 95% confidence intervals. F-tests were carried out 

in parallel to compare variances. If unequal variance was found, Welch’s correction was 

applied. Binomial exact tests, chi-square tests and Fisher’s exacts tests were used to test 

categorical outcomes. The binomial exact test was used to compare the observed to the 

expected distribution for one nominal variable with only two outcomes. Fisher’s exact 

test was used to test two nominal variables. Chi-squared test was used to test two nominal 

variables of large values (Prism defaults to chi-squared tests when values exceed its 

threshold), or to test more than two nominal variables. Linear regression and Pearson’s 

coefficients were calculated to assess the correlation between two datasets. 
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Chapter 3.  A genome-wide assessment of monoallelic 

expression in human neural stem cells 

3.1 Introduction 

The importance of monoallelic gene expression has long been appreciated in respect to 

genomic imprinting, XCI and the RME of a small number of autosomal gene families 

(see section 1.2). Genomic imprinting and XCI play critical roles in regulating gene 

dosage, while RME acts to enhance cell specificity and tissue diversity. The recent 

reports that RME is widespread on the autosome in human B-lymphoblastoid cells 

(Gimelbrant et al. 2007) and mouse NSCs (Wang et al. 2010; Li et al. 2012) raise 

important questions about the role this process may play in human neural development, 

function and disease. The analysis of RME in neural tissue has been limited by the 

difficulty of detection in mixed cell populations in vivo. Therefore, the extent to which 

this process occurs in the developing and adult human central nervous system is 

unknown. 

In this chapter, I report the first genome-wide assessment of monoallelic gene expression 

in human neural tissue with the power to detect RME. I aimed to assess the extent and 

nature of RME in clonal human NSCs. Some of the studies presented in this chapter have 

been published in Stem Cells (Jeffries et al. 2012). 
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3.2 Methods 

Cell culture and molecular biology was carried out as described in Chapter 2. 

Experimental details specific to this results chapter are included below.  

3.2.1 Microarray-based assay of monoallelic expression 

The Illumina Omni1-Quad BeadChip platform was used to assess allele-specific 

expression in the three spinal cord, cortical and striatal NSC lines. Genomic DNA from 

each of the three donors, and cDNA from each of the clonal lines, was used as template. 

The spinal cord line SPC01 was run in triplicate to test reproducibility. 

3.2.1.1 BeadChip procedure 

Samples were sent to the Wellcome Trust Centre for Human Genetics at the University of 

Oxford to be processed. The manufacturers protocol was followed with the only 

exception of using cDNA as the template for some samples. 5 μl of undiluted reverse 

transcription reaction product was used as template for cDNA samples and 750 ng of 

DNA was used as template for the genomic DNA samples. In brief, the template was 

denatured, neutralised and then underwent whole-genome amplification with MA1 

reagent (Illumina) for 22 hours at 37ºC before being enzymatically fragmented with FMS 

reagent (Illumina) for 1 hour at 37ºC. The fragmented template was then precipitated with 

isopropanol, pelleted by centrifugation and resuspended in the hybridization buffer RA1 

reagent (Illumina) for 1 hour at 48ºC. The samples were denatured at 95ºC for 20 minutes 

and then loaded onto the BeadChip where the template was hybridised to complementary 
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50-mers for 20 hours at 48ºC. The BeadChip was washed to remove unbound template 

before the application of TEM reagent (Illumina) to extend the template-bound oligos by 

a single labelled nucleotide. The hybridised template was removed with 95% 

formamide/1 mM EDTA and the BeadChip stained with the XStain HD reagents 

(Illumina). The fully processed BeadChip was then imaged with the Illumina iScan™ 

Reader. The scanner uses laser excitation to determine the single base extension product 

at each probe. 

3.2.1.2 BeadChip data analysis 

Data files were processed in GenomeStudio v2010.1 (Illumina) using Genotyping Module 

v1.6.3. Genotypes from the genomic DNA samples were called using Illumina’s EGT 

cluster file with a stringent gencall score threshold of 0.25. Genotypes from the genomic 

DNA samples, and allelic intensity values (Xraw and Yraw) from all samples were 

exported as CSV files. Quantile normalisation of allelic intensity values between channels 

was carried out in R (www.r-project.org) using the Bioconductor package Limma (see 

Figure 3.1). This allows for cross-array analysis and corrects for any inherent dye bias. 

The genomic DNA samples were normalised separately from the cDNA samples to 

account for copy number differences.  
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Figure 3.1 | Quantile normalisation of allelic intensity values. Allelic intensity values 

for the genomic DNA samples are displayed before (A) and after (B) quantile 
normalisation. cDNA values were normalised in the same way but separately from the 

genomic samples to account for copy number differences (see Appendix 9.1 on page 
204 and Appendix 9.2 on page 205). 
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Figure 3.2 | Intensity threshold to remove background signal. A) β values of 

homozygous SNPs are plotted against total intensity. B) The same SNPs are plotted 
using cDNA from the same genotype. The cDNA β values deviate from the genomic 

distribution at low intensity. C) An intensity threshold of 3000 was set to remove the 
background signal probes. 
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A stringent post-normalisation total intensity (Xraw + Yraw) threshold of 3,000 was used 

for cDNA samples to eliminate spurious results arising from the analysis of non-

expressed SNPs (see Figure 3.2). Normalised allelic intensity values that met the intensity 

threshold were used to calculate β values using the formula below: 

 

The β value is a score of allelic expression, where 0.5 represents equal expression of the 

two alleles and 1 or 0 represents exclusive expression of either allele. The β value of a 

heterozygous SNP in the genomic DNA provides a theoretical 1:1 allele ratio. Deviation 

from the genomic DNA β value in the cDNA samples indicates imbalance in allele-

specific expression. Therefore, Δβ values were calculated for all heterozygous SNPs to 

assess allelic-expression using the following formula: 

Δβ value   =  βgDNA  -  βcDNA 

Assayed SNPs were associated with RefSeq accessioned transcripts using Galaxy 

(http://usegalaxy.org).  The mean Δβ value of all SNPs within a transcript was used to 

calculate the transcript Δβ value. A penalty-based weighting score was applied to 

transcripts: SNPs with a Δβ > 0.1 scored +1 while values < 0.1 received a -2 penalty. 

Transcripts with a total score of one or below were rejected.  

Xraw 

Xraw + Yraw 
β value  =  
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Figure 3.3 | Normal QQ plot of autosomal genic SNPs. Heavy tails are observed 

deviating from normal distribution at Δβ values +0.07 and -0.07. This chart illustrates 
data from CTX0E03 and is representative of the other cDNA samples (data not shown). 

A transcript Δβ value of 0.1 (60:40 ratio) has been deemed to represent biologically 

significant allelic imbalance in other similar microarray studies (Pastinen et al. 2004; 

Serre et al. 2008; Lee et al. 2009). This threshold was validated in our data by generating 

normal QQ plots in R for each clonal line. The data deviated from normal distribution at 

Δβ values of approximately +0.07 and -0.07 with a kurtosis of > 5 (see Figure 3.3). 

Monoallelic expression was defined as a transcript Δβ value of > 0.2 (70:30 ratio). 

Biallelic expression was defined as a Δβ < 0.05. 
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3.2.2 BeadChip validation by SNaPshot primer extension 

The SNaPshot single base primer extension assay, as described in section 2.5, was carried 

out for 23 genes in multiple cell lines to validate the microarray assay. The genes assayed 

and the primers used are presented in Table 3.1. Δβ values were calculated in Excel 2011 

(Microsoft) and the mean Δβ from three biological replicates was correlated with Δβ 

values derived from the BeadChips. The plot was drawn and Pearson’s correlation 

calculated in Prism (GraphPad).  

3.2.3 DNA methylation analysis 

My collaborators, Dr Chloe Wong and Dr Ruth Pidsley, ran 750 ng of bisulfite-treated 

genomic DNA from each of the cortical and spinal cord NSCs on the Infinium 

HumanMethylation27 BeadChip (Illumina) following the manufactures recommended 

protocol. DNA methylation β values were calculated using the GenomeStudio 

Methylation module (v1.6.1). Differences between DNA methylation β values for 

monoallelic and biallelic genes were tested for statistical significance using a two-tailed t-

test in Prism. 
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Table 3.1 | Primer sequences for single nucleotide primer extension. Forward 

(F), reverse (R) and extension (E) sequences are presented. Continued overleaf. 

Gene Tag SNP !! Primer sequence (5’-3’) 

C1QL3 rs4747277  
F TGGACACATAAGGGCTTTTTC 
R CCTGGGAATGATTCAACTTCA 
E ACATAAGGGCTTTTTCTAAATACCGTAC 

CAT rs769217 
F GCCTGGGACCCAATTATCTT 
R TGTCCTGCATGCACATCG 
E TCGAGTGGCCAACTACCAGCGTGA 

CHL1 rs2117046 
F TTGGGTTTTGTTCTTGTATTGC 
R TGGGGTAGATGTACATTCAACAAT 
E TTTCAACAGTTTCAAAATAAAATATCATA 

DNAJC15 rs1047775 
F TCTCCTTACGTAGCAGCCAAA 
R TGGTGGAAGATAAGACTGTGG 
E AGAATATTTTGCAGGGCTTTTTTTTTTTT 

ENG rs3739817 
F GGCACACTTTGTCTGGATCA 
R TAGGCTGCAGACCTCACC 
E GGCTACAAGTGTCCTTGGGAGGAGT 

GABRG3 rs10873636 
F CTACTGGTGACCCACCACCT 
R CGGTGTCTGCAACATAGGAA 
E ACACTGTCAGGATCTTGCTCATAG 

GRIA1 rs707176 
F TCCTGCAGAAAGTCCTGGAT 
R TGAGGCGTTCTGATTCACAG 
E GTATCCCTCCTCTGTGGTTGTCAA 

GRID1 rs1054979 
F CCGACCAGCAGAGCTTTTTA 
R CCCCACTCCATTCTGTCATT 
E CGAGTGTGTGTGGTTTGTGTTGTT 

JAG2 rs1057744 
F TGAACGGGTACCAGTGTGTG 
R GGGCAGTGGCAGTGGAAG 
E CGGCATTGCGAGCTGGAACGAGAC 

KIAA1324L rs12535941 
 

F GGCTACATAGGGGAAGACTAAGC 
R GCAGCAGAACAAGGCTCTTC 
E ATGCATTTCTACTGAAGGATCACTAAAAA 

NECAB2 rs2280027 
F TCCATCCTCCACAAGAAGGT 
R GTGTGGTCAGTGTGGGTCAT 
E CCCCTGCCTCCTGGTCCTGGCCTCTCCCC 
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Table 3.1 | Continued.  

Gene Tag SNP !! Primer sequence (5’-3’) 

PAX8 rs1478 
F AAGGAGAGAAGCCCCACAG 
R TTTGTTTGGGTCAAGCTTCC 
E CATTTCACTCAGAGGCCAAAGTCTGGGGG 

PM20D1 rs1104899 
F ATCACAGAGTTCTTGTCGTCCA 
R GAGGTGCCCCCATTCTCT 
E AGAGTTCTTGTCGTCCAGTGTGCCCC 

PMP2 rs2229015  
F TTTTCAGGTGTGGGGTTAGC 
R TCTCTCTCAAGCAGCCCACT 
E ACGAACTGAAAGTACCTTTAAAAATACAGA 

RALYL rs10094238 
F AAATGTGTTTTCCCCTTTGC 
R CAGAATTGCAATATCACCTGACTT 
E TGTGAAAGGCATTTATGAATGGTAAGGGA 

SEMA5A rs786843 
F CACCTTTCTGCACCTGATGT 
R TAGCACTGGGAGCCACTTTC 
E ATTTAACTTCTAAAATTATTTCTGAATACAGTTG 

SFMBT2 rs11255084 
F GGGCACCTCCATGTTTTCTA 
R TGCCCCATATTTTGCATTTT 
E AAGGCAATCAGTGAACTTCCTC 

SLC6A15 rs17183577 
F ATGTGTGATTTGCCCACAGA 
R TCTGAAAGTGGGGGCTTAAA 
E TCCCTCTCTCAAATTCTGTTACAG 

THNSL2 rs4129190 
F TTCTCTGGCTATGCACCTGA 
R GCTCAGAGCCAATGAAGAGG 
E AAGAGCTCCCACAGTTGGACAGAG 

TNFRSF10D rs1133782  
F CGCAACGAGACCCTGAGTA 
R GACGCTGTGGCTCCTCTG 
E CAGAGCTAACAGGTGTGACTGTAGAGT 

TTN rs12463674 
F CTGCCCACCATCAATTCTAA 
R TGAGGTTGAACTCCCAAGAA 
E TCCTTATCTCCTCTTAACCACTCA 

VAX2 rs3771389 
F CCTGCCCAATCCTGTAAGTG 
R CCTTCTTCCCTGGATACTCAGA 
E CATGGTCCCAATTCAGGCAGAG 

  F CCTGCCACTGCTGACAGATA 
ZFP3 rs12600437 R AGGGGCAAAACCAAGAAGAG 

  E AAAGCACTTAAGTTCTCATGACCTGGACC 
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3.2.4 Demethylation study 

The spinal cord NSC lines were treated with the demethylating agent 5-Aza-2’-

deoxycytodine (5-Aza). The cells were plated at normal seeding density in growth media 

as described in section 2.1. Two hours after plating, 5-Aza was added to culture vessels to 

make a final concentration of 1 μM. Control cells were cultured in parallel and exposed to 

the same concentration of vehicle (1 μl of DMSO per 1 ml of media). Cells were treated 

for four days with a full media change and fresh 5-Aza added each day. The study was 

carried out in biological triplicate, with cells separated by multiple passages. RNA was 

extracted and cDNA generated as described in sections 2.2.2 and 2.2.7 respectively for 

SNaPshot primer extension analysis. 

The allelic expression of twelve RME genes was assessed before and after 5-Aza 

treatment by SNaPshot primer extension as described in section 2.5. The genes assayed 

were C1QL3, CAT, DNAJC15, GRIA1, GRID1, JAG2, KIAA1324L, PMP2, SFMBT2, 

TNFRSF10D, TTN and VAX2. Primer sequences are presented in Table 3.1. Difference in 

the percentage representation of the silenced allele before and after treatment was tested 

for statistical significance using a two-tailed t-test in Prism.  

3.2.5 Gene ontology analysis 

Autosomal genes subject to RME were interrogated for enrichment of specific gene 

classes and functional terms using the DAVID Gene Functional Classification Tool 

(http://david.abcc.ncifcrf.goc/). The RME gene lists from each donor were tested against a 
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reference gene set comprised of all expressed genes from that donor. The large 

protocadherin family were removed from the gene sets to avoid bias.  

3.2.6 Foetal brain epigenetic analysis 

The epigenetic status of the monoallelic and biallelic genes were compared in public data 

from human foetal brain. The analysis was carried for all novel monoallelic genes 

combined (same allelic choice, RME and unclassified) and RME were also tested 

independently. DNA methylation data was obtained from the Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo; reference: GSM664920) and histone modification 

(reference: UW H-22510) and DNase sensitivity (reference: H-22510) data was retrieved 

from the NIH Epigenomics Atlas (http://www.genboree.org/epigenomeatlas/). 

Differences between the RME and biallelic gene lists derived from each genotype were 

tested for statistical significance using a two-tailed t-test in Prism. 

3.3 Personal contribution 

The microarrays were run at the Wellcome Trust Centre for Human Genetics at the 

University of Oxford. My colleague, Dr Aaron Jeffries, carried out the initial data 

processing to calculate gene Δβ values. I validated the BeadChip data by single base 

primer extension. We worked in combination to interpret the data and I carried out further 

bioinformatic analyses. I also carried out the demethylation study. Collaborators Dr Chloe 

Wong and Dr Ruth Pidsley ran the methylation microarrays. I used the resulting data to 

assess the methylation status of the novel RME genes.  
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3.4 Results 

3.4.1 Microarray assay validation 

The reproducibility of the microarray assay was demonstrated with the spinal cord line 

SPC01, which was evaluated in triplicate. A Pearson’s correlation of the Δβ values was 

carried out between each pair and an R between 0.87 and 0.89 was observed (see Figure 

3.4).  

 

Figure 3.4 | Comparison of autosomal SNP probe Δβ values between the three 

biological replicates of spinal cord line SPC01. Pearson’s coefficient is presented. 
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In order to validate the use of the Illumina’s BeadChip platform for the analysis of allele-

specific expression, the detection of XCI in the female spinal cord lines was used as a 

proof of principle. 85% of assayed SNPs on the X chromosome, and 78% of genes, were 

called monoallelic (see Figure 3.5). This is consistent with previous estimates that 

approximately 15% of the genes on the human Xi escape silencing (Carrel & Willard 

2005). Known imprinted genes were also called monoallelic in our dataset; of the 21 

human imprinted genes that were assayed (listed on http://www.geneimprint.com), 16 

were called monoallelic in all cell lines assayed, 20 were called monoallelic in at least one 

cell line, and only one did not meet the threshold for monoallelic expression in any cell 

line assayed. 

 

Figure 3.5 | Density plot of SNP Δβ values across the X chromosome. A Δβ value of 
0.2, marked by the red line, is the threshold for monoallelic expression.  
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Figure 3.6 | Correlation between BeadChip and SNaPshot Δβ values. SNaPshot Δβ 

values are the mean of three biological replicates. 

The accuracy of the BeadChip allelic expression measures was tested by plotting 

BeadChip Δβ values against those from the highly quantitative SNaPshot primer 

extension assay. A significant positive correlation was observed between the two datasets 

(p < 0.0001; R = 0.90; see Figure 3.6), demonstrating that the microarray assay is capable 

of quantitative detection of allele-specific expression. Notably, the microarray data is 

compressed with a slope of 1.4. Therefore, the threshold Δβ value for allelic imbalance of 

0.1 actually represents 0.14 (an allele ratio of 64:36), and the threshold Δβ value for 

monoallelic expression of 0.2 reflects an actual Δβ of 0.28 (a ratio of 78:22). The high 

validation rates also demonstrate the stability of allele-specific expression in biological 

replicates separated by time. 
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3.4.2 Autosomal monoallelic expression is widespread 

More than 9,000 autosomal genes were assayed in lines from each genotype, of which 1.6 

to 2.2% showed evidence for monoallelic expression in at least one clone (see Table 3.2). 

Of the monoallelic genes detected, 7.4 to 10.5% are known imprinted genes. The novel 

monoallelic genes were dispersed throughout the genome (see Figure 3.7, Figure 3.8 and 

Figure 3.9). Between 34 and 57% of the novel monoallelic genes showed evidence for 

RME, where either monoallelic and biallelic clones are observed from the same genotype 

(see Figure 3.10A), or monoallelic clones with a different allelic choice are observed 

from the same genotype (see Figure 3.10B). Another set of novel monoallelic genes 

displayed the same allelic choice in all three clones from a single donor. Finally, genes 

were designated “unclassified monoallelic” when only one or two clones showed 

detectable monoallelic expression in the same direction. 

 

Table 3.2 | Autosomal monoallelic expression in human NSCs summary. 

 Cortical Striatal Spinal 

Assayed genes 10,150 9,417 9,085 

Monoallelic 185 (1.8%) 203 (2.2%) 143 (1.6%) 

Known imprinted 15 (0.1%) 15 (0.1%) 15 (0.1%) 

Random monoallelic 89 (0.9%) 107 (1.1%) 43 (0.5%) 

Same allelic choice 19 (0.2%) 22 (0.2%) 25 (0.3%) 

Unclassified monoallelic 63 (0.6%) 60 (0.6%) 61 (0.7%) 
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Figure 3.7 | Distribution of novel autosomal monoallelic genes (red) detected in the 

three cortical NSC cell lines. Known imprinted genes and protocadherins are 
excluded. 
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Figure 3.8 | Distribution of novel autosomal monoallelic genes (red) detected in the 

three striatal NSC cell lines. Known imprinted genes and protocadherins are 

excluded. 
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Figure 3.9 | Distribution of novel autosomal monoallelic genes (red) detected in the 

three spinal cord NSC cell lines. Known imprinted genes and protocadherins are 
excluded. 



 

 

85 

    

Figure 3.10 | Two presentations of RME. Bars illustrate the mean percentage 
representation of each allele (n=3) and error bars signify the SEM. Red represents the 

major frequency allele and blue represents the minor frequency allele of the tag SNP. 
Data is from SNaPshot primer extension allele-specific expression assay. 

3.4.3 Common monoallelic genes between genotypes 

A significant overlap of the novel monoallelic genes was observed between samples from 

different genotypes (least significant pairwise chi squared p value < 0.0001). No more 

than 2.4 genes are expected shared between two donors by chance and none are expected 

shared by all three. However, between 14 and 24 genes are observed shared between two 

donors, and two are shared between all three (see Figure 3.11). The two genes shared 

between all three donors are TNFRSF10D and ACCS. A statistically significant overlap 

between genotypes was also observed for the RME subset (least significant pairwise chi 

squared p value < 0.0001). Furthermore, a 4.3 fold enrichment of the novel RME genes 

detected in this study are observed in the monoallelic loci identified by Gimelbrant et al. 

(2007; p < 0.0001, Fisher’s exact test). 
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Figure 3.11 | Area-proportional Venn diagram illustrating the overlap of novel 

autosomal monoallelic genes between genotypes. Known imprinted genes were 
omitted from this analysis. 

3.4.4 RME genes show bias in allelic choice 

The randomness of allelic choice was assessed for the novel RME genes detected in this 

study. Of the RME set that show monoallelic expression in two clones and biallelic 

expression in the third, 71% (29 genes) are expressed from the same allele in both 

monoallelic clones, whereas only 29% (12 genes) are expressed from alternate alleles. 

This is a significant deviation from the 1:1 distribution expected if allelic choice was 

genuinely random (p = 0.006, binomial exact test). 
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3.4.5 RME gene ontology 

Within the novel RME gene set, significant enrichment for the gene ontology term 

“signal” (1.8 to 2.3-fold) and the topological domains “extracellular” (1.8 to 2.8-fold) and 

“transmembrane” (1.4 to 1.7-fold) were observed in all three genotypes. More than 30% 

of all genes subject to RME detected in this study were transmembrane glycoproteins. 

Among the RME genes encoding transmembrane signalling proteins were the 

neurotransmitter receptor subunits GABA-A receptor gamma 3 (GABRG3), glutamate 

receptor ionotropic alpha 1 (GRIA1) and glutamate receptor ionotropic delta 1 (GRID1). 

Developmental terms were particularly enriched in the brain derived NSCs. For example, 

a 3.8 to 4.9-fold enrichment for the gene ontology term “cell morphogenesis involved in 

differentiation” was found. Developmental genes subject to RME included orthodenticle 

homeobox 2 (OTX2; see Figure 3.10B), oligodendrocyte lineage transcription factor 2 

(OLIG2), ventral anterior homeobox transcription factor 1 (VAX1), neurotrophin-3 

(NTF3) and neurexin 3 (NRXN3). Summary tables displaying count, percentage, fold 

enrichment and p values are included in Appendix 9.3 on page 206 and Appendix 9.4 on 

page 207. Full annotation can be retrieved at http://onlinelibrary.wiley.com-

/doi/10.1002/stem.1155/full supporting information File S4. 
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3.4.6 RME genes show increased DNA methylation 

Data from the Infinium HumanMethylation27 BeadChip (Illumina) was used to compare 

DNA methylation levels at RME and bialleleic loci. I show that the RME loci detected in 

this study show increased levels of DNA methylation compared to biallelic loci (see 

Figure 3.12). The increased level of methylation was statistically significant for RME 

genes detected in each of the six NSC lines assayed (least significant p = 0.0248). 

Statistical significance was also observed when comparing all novel monoallelic genes 

(RME, same allelic choice and unclassified combined) to biallelic genes (data not shown).  

 

Figure 3.12 | Methylation state of novel RME genes in human NSCs. 

Methylation β values are presented for all biallelic (blue) and RME (red) genes 
detected in each of the cortical and spinal cord NSC lines. T-test p value 

summaries are presented. Whiskers represent the 10-90th percentile. 
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3.4.7 The impact of DNA demethylation on RME 

In order to determine the extent that DNA methylation is deterministic in RME, the spinal 

cord NSC lines were treated with the demethylating agent 5-Aza. The allelic expression 

of twelve RME genes was assayed before and after treatment. All twelve genes showed a 

significant reduction in allelic expression imbalance (see Figure 3.13). The mean increase 

in representation of the silenced allele after treatment was 14% (p < 0.0001, paired two-

tailed t-test).  

 

 

Figure 3.13 | Allele-specific expression of twelve RME genes in monoallelic clones 

before and after treatment with the demethylating agent 5-Aza. T-test p value 
summaries and SEM are presented. A summary box plot combining data from all genes 

assayed is included. Whiskers display minimum to maximum value and a paired t-test p 

value summary is presented (continued overleaf). 
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Figure 3.13 | Continued. 
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Figure 3.13 | Continued. 
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3.4.8 Epigenetic state of novel RME genes in vivo 

In an attempt to test the relevance of these findings in vivo, the epigenetic status of the 

novel RME genes was assessed in publicly available datasets from human foetal brain. As 

observed in the NSCs, the RME genes detected from each donor have significantly 

increased levels of DNA methylation in human foetal brain when compared to biallelic 

loci (see Figure 3.14).  

 

Figure 3.14 | Methylation state of novel RME genes in human foetal brain. 
Methylation β values derived from human foetal brain are presented for biallelic (blue) 

and RME (red) genes detected in the cortical (CTX), striatal (STR) and the spinal cord 
(SPC) NSC lines. T-test p value summaries are presented. Whiskers represent the 10-

90th percentile. 

0.0

0.2

0.4

0.6

0.8

1.0

CTX STR SPC

M
et

hy
la

tio
n 
β 

va
lu

e 

*** ***

***



 

 

93 

In foetal brain, the novel RME genes reported in this study are also associated with an 

increase in repressive H3K27me3 and a reduction in signatures of open chromatin 

H3K4me3, H3K9ac and DNaseI hypersensitivity when compared to biallelic loci (see 

Figure 3.15). H3K9me3 is the only chromatin measure investigated that does not follow 

the expected trend; it is usually associated with repressive chromatin, but it is enriched in 

the biallelic gene set. 

 

Figure 3.15 | Histone modification and DNaseI sensitivity of novel RME genes in 

human foetal brain. Chromatin data for biallelic (blue) and RME (red) genes detected in 

the cortical donor are presented. T-test p value summaries are displayed. Whiskers 

represent the 10-90th percentile. This data is representative of data from the other two 
donors (see Appendix 9.5 on page 208).  
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3.5 Discussion 

This study demonstrates for the first time that autosomal monoallelic gene expression is 

widespread in human neural tissue. Using a genome-wide assay of allele-specific 

expression in NSCs, I find that 1.6 to 2.2% of assayed autosomal genes display 

monoallelic expression and 0.5 to 1.1% show evidence of RME.  

The prevalence of autosomal monoallelic expression reported in this chapter is likely to 

be an underestimation for two reasons. Firstly, an additional 2,000 genes containing a 

single informative SNP were omitted from the final analysis. 5% of this group were 

predicted to be monoallelic and, despite many of these genes being independently 

validated, they were removed from the final analysis to minimise the inclusion of false 

positives. Secondly, this study had limited power to detect RME with only three clones 

per genotype; a significant proportion of genes subject to RME would be expected to be 

biallelic in the three clones by chance. Additionally, a significant proportion of genes 

subject to RME would be expected to be monoallelic for the same allele by chance. 

Therefore, the present study is expected to underestimate both the proportion of 

autosomal monoallelic genes as well as the fraction that display RME. 

The number of autosomal monoallelic genes detected in this study is considerably lower 

than the 9.4% reported in human B-lymphoblastoid cells (Gimelbrant et al. 2007). This 

discrepancy could be explained by a major technical difference between our assays: the 

exclusion of genes with a single informative SNP in the present study. As stated above, 

this subset was removed to minimise the inclusion of false positives. However, 

Gimelbrant et al. (2007) included genes with a single informative SNP in their analysis. 
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The proportion of monoallelic genes they detected drops from 9.4 to 2.2% by excluding 

this subset. Furthermore, unlike the study reported by Gimelbrant et al., the present study 

implemented a gene expression threshold and rejected monoallelic genes that did not 

meet it. Another factor to consider is possible tissue-specific differences; indeed, it has 

been observed that autosomal monoallelic expression is considerably more widespread in 

lymphoblastoid cells than fibroblasts in mice (Zwemer et al. 2012). Recent studies in 

clonal mouse NSCs report the prevalence of autosomal RME to be between 2 and 4%, 

consistent with the data presented in this chapter (Wang et al. 2010; Li et al. 2012).  

Unlike the vast majority of established monoallelic genes, those detected in this study are 

scattered across the autosome. XCI is coordinated at a chromosome-wide level, while 

genomic imprinting is classically associated with clusters of genes that are co-regulated 

under the control of common regulatory elements. Clustering is also observed for most 

established gene families subject to RME including antigen receptors, odorant receptors 

and protocadherins. The dispersed nature of the monoallelic genes reported in this chapter 

is consistent with other reports of widespread autosomal monoallelic expression in human 

lymphoblastoid cells (Gimelbrant et al. 2007) and mouse NSCs (Li et al. 2012) and 

indicates that these genes are independently regulated.  

I assessed the randomness of allelic choice for the novel RME genes detected in this 

study. Of the RME set that show monoallelic expression in two clones and biallelic 

expression in the third, 71% are expressed from the same allele in both monoallelic 

clones, whereas only 29% are expressed from alternate alleles. This is a significant 

deviation from the 1:1 distribution expected if allelic choice was genuinely random and it 

is consistent with observations made in a genome-wide assessment monoallelic 
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expression in clonal mouse lymphoblasts (Zwemer et al. 2012). The bias towards one 

allele indicates that, at least for a proportion of this subset, the allelic choice is not 

genuinely random. Instead, it is suggestive of a genetic component where one allele is 

more susceptible to monoallelic expression than the other. Further studies with more 

clones per genotype would provide greater power to determine the randomness of allele 

selection for the novel RME genes detected.  

Further support for the notion that RME has a genetic component comes from my 

observation that the novel RME genes detected show significant overlap between donors. 

Furthermore, I observed a highly significant 4.3 fold enrichment of the RME genes 

detected in this study in the monoallelic gene set reported by Gimelbrant et al. (2007) in 

B-lymphoblastoid cells, despite inherent tissue differences in expression.  

These observations warranted further investigation to identify the genetic sequences that 

predispose genes to RME. It has previously been reported that long interspersed nuclear 

element (LINE)-1 sequences are associated autosomal monoallelic genes together with 

fewer CpG islands and short interspersed nuclear elements (SINEs; Allen et al. 2003). My 

colleague, Dr Aaron Jeffries, tested the novel monoallelic genes detected in this study for 

association with these motifs. No significant difference was observed for the prevalence 

of LINE-1 repeats between monoallelic and biallelic genes. However, a significant 

reduction in CpG density was observed at monoallelic gene transcriptional start sites (p = 

0.0008, Wilcoxon rank-sum test) as well as a reduction in SINE repeats across the length 

of the transcript (p < 0.0001; Jeffries et al. 2012). 
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Taken together, the apparent non-randomness of allelic choice, the overlap between 

genotypes and the association with reduced CpG density and SINE repeats strongly argue 

for a genetic component predisposing genes for RME. As stated above, the dispersed 

nature of the monoallelic genes reported in this chapter indicates that these genes are 

regulated independently. Unravelling the mechanisms controlling RME will require 

further research at the gene-specific level.  

Gene ontology analysis was carried out on the novel RME genes detected in this study 

with the aim of revealing the role they may play in brain development, function and 

disease. The RME genes detected in each of the three genotypes were significantly 

enriched for the gene ontology term “signal” and the topological domains “extracellular” 

and “transmembrane”. This is consistent with observations made by Gimelbrant et al. 

(2007), who found a disproportionately large fraction of monoallelic cell surface proteins 

in human B-lymphoblastoid cells. Additionally, developmental terms were enriched in 

RME genes detected in the brain-derived NSC lines. These observations are revealing 

when considered in respect to the better-established gene families subject to RME; 

antigen receptors, odorant receptors and protocadherins are all transmembrane proteins 

involved in cell signalling, and the RME of these genes acts to increase cell specificity 

and tissue diversity. Furthermore, the RME of odorant receptors and protocadherins is 

known to be critical from proper wiring of the brain during development by generating a 

specific cell identity (Imai et al. 2010; Wang et al. 2002). The results presented in this 

chapter are consistent with widespread autosomal RME playing a similar role in human 

NSCs. Again, more detailed work on the gene-specific level, as well as in vivo validation, 

will be required to determine the biological significance of these findings. 
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The novel monoallelic loci identified in the spinal cord and cortical cell lines display 

significantly higher levels of DNA methylation at promoter regions than biallelic genes. 

This is true both when all novel monoallelic genes are combined (RME, same allelic 

choice and unclassified) and when RME genes are tested independently. Allele-specific 

DNA methylation is known to play a critical role in establishing and maintaining 

monoallelic expression in genomic imprinting, XCI and the RME of several gene families 

(Goldmit & Bergman 2004). Allelic skewing of DNA methylation has also been 

associated with genetic cis effects (Schalkwyk et al. 2010). While this assay was not 

allele-specific, the results are consistent with monoallelic silencing by DNA methylation.  

While this data demonstrates that the novel RME genes are associated with increased 

levels of DNA methylation, the extent to which DNA methylation causes monoallelic 

expression remained to be demonstrated. After treatment with the demethylating agent 5-

Aza, all twelve RME genes assayed showed significant reductions in allelic imbalance, 

with a mean reduction of 14%. This could either represent a partial reduction in allelic 

expression imbalance per cell, or complete reversion to biallelic status in a proportion of 

cells. Single cell analysis of the imprinted PLAGL1 indicated that 5-Aza induced loss of 

imprinting is an all-or-none process (Diplas et al. 2009). Similar single cell analysis 

would be required to determine if this is true for the RME genes described in this chapter. 

Nonetheless, this data indicates that DNA methylation directly regulates the monoallelic 

expression of the RME genes assayed.  

One possible criticism of the findings reported in this chapter is that they could represent 

an artefact of tissue culture, or the immortalisation process, where epigenetic regulation 

has gone awry. Indeed, concerns have been raised over the epigenetic stability of cell 
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lines after extended passages in vitro (Grafodatskaya et al. 2010). It is feasible that the 

enrichment of monoallelic loci observed between donors represents no more than genes 

prone to epigenetic dysregulation in vitro. In order to test the relevance of these findings 

in vivo, the epigenetic status of the novel RME genes was assessed in publically available 

data from human foetal brain. The RME genes discovered in this study were enriched for 

signatures of repressive chromatin (DNA methylation and H3K27me3), while the 

biallelic genes were associated with marks of open chromatin (H3K4me3, H3K9ac and 

DNaseI hypersensitivity). Notably, H3K9me3 does not follow the expected trend; it is 

usually associated with repressive chromatin, but it is enriched in the biallelic gene set. It 

has, however, previously been described in actively transcribed regions (Vakoc et al. 

2005). While these observations do not directly prove that these genes are similarly 

expressed in foetal brain, it does demonstrate that the RME subset are distinct from the 

biallelic genes in vivo in a manner consistent with them being expressed from a single 

allele. This is evidence in support of biological relevance for the reported findings in the 

developing human brain. Further studies are required to determine whether these genes 

are also subject to RME in vivo. The non-clonal nature of brain tissue represents and 

obstacle in the way of investigating RME in vivo; neighbouring cells expressing the 

alternate allele, or both alleles, are expected to mask the effect. Single cell RNA-seq is 

now established (Tang et al. 2010), and this methodology represents the ideal platform to 

investigate whether RME is widespread in human neural tissue in vivo.  

Finally, this study demonstrates that the Illumina BeadChip platform is suitable for 

genome-wide assays of allele-specific expression. High reproducibility between 

biological replicates was demonstrated as well as a strong correlation with data from the 

highly quantitative single base primer extension assay. This is consistent with the 
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observations made by other groups who have used Illumina’s BeadChips for similar 

assays (Ge et al. 2009; Morcos et al. 2011). While RNA-seq is becoming the assay of 

choice, Illumina’s BeadChip platform remains an efficient and cost-effective method to 

assay allele-specific expression on a genome-wide scale. 

3.6 Conclusion 

From the results presented in this chapter, I conclude that autosomal monoallelic 

expression is widespread in human NSCs in vitro. Approximately half of the novel 

monoallelic genes detected show evidence of RME. The overlap of RME genes between 

genotypes, as well as the bias in allelic choice, argues for a genetic component 

predisposing genes to RME. The novel RME genes are enriched for transmembrane 

signalling proteins, and those detected in the brain derived NSCs also show enrichment 

for developmental terms. Genes subject to RME are associated with increased levels of 

DNA methylation, and the results from 5-Aza treatment indicate that DNA methylation is 

directly regulating the monoallelic silencing of these genes. Finally, I demonstrate 

evidence in support of an in vivo relevance for these findings; the novel RME genes are 

epigenetically distinct from biallelic genes in vivo in a manner consistent with 

monoallelic expression. The presence of widespread RME in vivo, in the human central 

nervous system, remains to be demonstrated. The extent to which the novel monoallelic 

genes are retained through neural differentiation is investigated in Chapter 4 and potential 

functional implications are explored in Chapter 5. The monoallelic genes classified “same 

allele choice” in multiple genotypes are further investigated in Chapter 6. 
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Chapter 4. Monoallelic expression through neural 

differentiation 

4.1 Introduction 

Monoallelic gene expression is typically initiated early in development and stably 

maintained in adult tissues. This is true for XCI (Amos-landgraf et al. 2006) as well as the 

established autosomal gene families subject to RME described in section 1.2.3 (Pernis et 

al. 1965; Chess et al. 1994; Esumi et al. 2005). There are, however, examples of 

imprinted genes that show tissue and developmental stage specific monoallelic 

expression. For example, the imprinted Dlk1 is exclusively expressed from the paternal 

allele during mouse embryogenesis before reverting to biallelic status in the neurogenic 

niche of the adult brain (Ferrón et al. 2011). The extent to which widespread autosomal 

RME is maintained through development has not been properly characterised. While a 

handful of select examples have been shown to retain monoallelic expression after the 

differentiation of mouse NSCs (Wang et al. 2010; Li et al. 2012), at the time of this study, 

no global assessment has been performed. Supposing that the novel monoallelic 

expression reported in Chapter 3 is occurring in human NSCs in vivo, the extent to which 

it is maintained through neural development, as well as the developmental stage at which 

it is initiated, will have significant implications for its role in neural development, 

function and disease. The NSC lines employed in this thesis offer the opportunity to 

address this question.  
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In this chapter I report a genome-wide screen for allele-specific expression in the three 

spinal cord NSC lines before and after differentiation. I aim to determine the extent to 

which non-imprinted autosomal monoallelic expression is retained after the NSCs are 

differentiated into neurons and glia. Additionally, I assess DNA methylation data derived 

from adult brain to test for in vivo relevance of this phenomenon and I perform a pilot 

study in an iPSC line generated from one of the assayed spinal cord NSC lines, assessing 

the allelic status of five RME genes after reprograming. 

4.2 Methods 

General molecular biology and cell culture methods are described in Chapter 2. 

Experimental details specific to this chapter are included below. 

4.2.1 Cell differentiation 

The three spinal cord lines were differentiated into neurons and glia. Cells differentiated 

for the purpose of nucleic acid extraction were grown in Nunclon™∆ Surface 75 cm2 

tissue culture flasks (Thermo Scientific) and cells differentiated for 

immunocytochemistry were cultured in Nunclon™∆ Surface 96 well optical bottom 

plates (Thermo Scientific). They were grown to 95% confluency in Reduced Modified 

Media (see section 2.1). At this point, the growth media was removed and replaced with 

media without 4-OHT, bFGF and EGF. The cells were treated with the γ-secretase 

inhibitor DAPT (10 μM; Sigma-Aldrich) for 48 hours. After the removal of DAPT, cells 

were cultured for 8 further days in the absence of 4-OHT, bFGF and EGF. The media was 
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changed every 72 hours. RNA extraction and cDNA synthesis was carried out as 

described in sections 2.2.2 and 2.2.7. 

4.2.2 Immunocytochemistry 

Media was removed from each well of the 96 well plate and replaced with 100 μl 4% 

paraformaldehyde (PFA; Alfa Aesar). After 15 minutes, the PFA was removed and 

replaced with 200 μl phosphate buffered saline (PBS; Sigma-Aldrich). Cells were then 

permeabalised with 100 μl of tris-buffered saline (TBS; Sigma-Aldrich) supplemented 

with 0.1% Triton X-100 (Sigma-Aldrich) and 10% normal donkey serum (NDS; Sigma-

Aldrich) for 30 minutes at room temperature. Each well was rinsed with 100 μl TBS 

before adding the primary antibody (see Table 4.1) diluted in TBS with 1% NDS. 

Negative (isotype) controls were prepared using non-specific monoclonal IgGs (Abcam) 

in place of the primary antibody, matching host and concentration. The primary antibody 

was incubated for 16 hours at 4°C. Cells were then washed 4 times with TBS before 

incubation with the complimentary Alexa Flour® 488 secondary antibody (Invitrogen) 

diluted 1 in 500 in 75 μl of TBS for 1 hour at room temperature in the dark. The 

preparations were washed a further 4 times with TBS before incubation with 0.02 mg/ml 

Hoescht33342 (Sigma-Aldrich) for 5 minutes at room temperature and finally washed 4 

more times with TBS. 

Immunocytochemically stained cells were imaged by fluorescence microscopy. Both the 

TCS SP5 confocal microscope (Leica) in conjunction with the LAS AF software (Leica) 

and the 1X70 inverted microscope (Olympus) with the Axio Vision Digital Image 

Processing Software (Carl Zeiss Inc.) were used for image capture and processing. 
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All cell counting was carried out in biological triplicate, where the experiment was 

replicated with cells plated several passages apart. Each biological replicate consisted of 

three wells (technical replicates) for each condition. Each technical replicate consisted of 

three randomly placed non-overlapping images taken per well with the 40x objective. 

Images were imported into ImageJ and nuclei and target-positive cells were counted 

manually. The three well images were averaged to generate one technical replicate. The 

three technical replicates (wells) were averaged to generate one biological replicate 

(plate), which was then used for statistical analysis. All cell counting was carried out from 

images taken from the 1X70 inverted microscope (Olympus) and processed with the Axio 

Vision Digital Image Processing Software (Carl Zeiss Inc.). Exposure times were kept 

consistent for each target. Differences in the proportion of marker-positive cells between 

cell lines were tested for statistical significance using a one-way ANOVA for each 

marker (Prism). 

 

Table 4.1 | Primary antibodies used for immunocytochemistry. 

Target 
Primary antibody 

Supplier Code Host Conc. 

Ki67 Abcam AB15580 Rabbit 1:500 

NESTIN Millipore ABD69 Rabbit 1:500 

SOX2 Millipore AB5603 Rabbit 1:500 

S100β DAKO Z0311 Rabbit 1:500 

TAU DAKO A0024 Rabbit 1:2000 

O1 Millipore MAB344 Mouse 1:500 
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4.2.3 Microarray-based assay of monoallelic expression 

A genome-wide assay of allele-specific expression was carried out for the three spinal 

cord NSC lines before and after differentiation. This study was carried out as described in 

section 3.2.1 with two key differences. Firstly, the OmniExpress BeadChips (Illumina) 

were used for this study rather than the Omni1-Quad BeadChips used previously. These 

microarrays were selected because the Omni1-Quad is no longer in production. The 

OmniExpress BeadChips have lower SNP probe density, covering ~700,000 loci 

compared to ~1,000,000 of the previous array. The second key difference in study design 

was the use of biological triplicates for each cDNA sample. Genomic DNA samples were 

assayed from each of the three spinal cord lines.  

Unlike the microarrays used in Chapter 3, I processed and scanned these in-house. With 

the exception of using 5 μl of undiluted reverse transcription reaction product as template 

for the cDNA samples, the manufacturers recommended protocol was followed as 

summarised in section 3.2.1.1. The more recent Illumina HiScan™ Reader was used. 

Data analysis for this study was carried out as described in section 3.2.1.2 with some 

small alterations. Due to differences in the array platform, the allelic intensity threshold 

for cDNA samples was altered to 1,500 using the same principle for selection (see Figure 

4.1). Because this study was carried out with biological triplicate, the data analysis was 

modified slightly. Each replicate was analysed independently, as described in section 

3.2.1.2 (see Appendix 9.6 on page 209 and Appendix 9.7 on page 210). For each clone, 

transcripts were assigned allelic status (biallelic, allele expression imbalance or 

monoallelic) when at least two of the three replicates agreed. 
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Figure 4.1 | SNP probe intensity threshold selection. β values of homozygous SNPs 
are plotted against total intensity for the SPC01 replicate 1 cDNA sample. As with the 

primary array study, a threshold was selected to remove background signal probes 
(observed as homozygous SNPs being called heterozygous in the cDNA). Due to 

different array platforms, this study had a lower threshold. 

4.2.4 BeadChip validation by SNaPshot primer extension 

The SNaPshot single nucleotide primer extension assay, as described in section 2.5, was 

carried out for 27 genes in multiple samples to validate the microarray assay. All samples 

were assayed in biological triplicate, separated by multiple passages. The genes assayed 

and the primers used are presented in Table 4.2. Δβ values were calculated and correlated 

with those from the OmniExpress BeadChips. The plot was drawn and Pearson’s 

correlation coefficient calculated in Prism (GraphPad). 
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Table 4.2 | Primer sequences for single nucleotide primer extension. Forward 
(F), reverse (R) and extension (E) sequences are presented. Continued overleaf. 

Gene Tag SNP !! Primer sequence (5’-3’) 

ADAMTS16  
rs1863968 

 

F CCACTAGGCTGCTGGAAGTC 
R TGGTCTCTGCCTACGAGGTT 
E CTAGGCTGCTGGAAGTCCTCAGATCCA 

C1QL3 rs4747277  
F TGGACACATAAGGGCTTTTTC 
R CCTGGGAATGATTCAACTTCA 
E ACATAAGGGCTTTTTCTAAATACCGTAC 

C22ORF26  
rs7510754 

 

F TTAGGGCTTGGACATCTTGG 
R TGAGGAGGAGGAAGAGGACA 
E TTCAGTCCCCTGGGGAGGTTCAGATGC 

CAT rs769217 
F GCCTGGGACCCAATTATCTT 
R TGTCCTGCATGCACATCG 
E TCGAGTGGCCAACTACCAGCGTGA 

DDX11  
rs10843881 

 

F GGTGTTTTCTGTCCCTGCTG 
R TCAATGAAACCAAATGGGAAA 
E GCAGGGGACTCATGTCTGTCCTACCCG 

DSCAM  
rs736977 

 

F AGACAGCCTTCTCTGGGACA 
R TCAGGCCAATAGCATGTGAG 
E CTAAAACTTCTGCTCGGATTTGCC 

GABRG3 rs10873636 
F CTACTGGTGACCCACCACCT 
R CGGTGTCTGCAACATAGGAA 
E ACACTGTCAGGATCTTGCTCATAG 

GRIA1 rs707176 
F TCCTGCAGAAAGTCCTGGAT 
R TGAGGCGTTCTGATTCACAG 
E GTATCCCTCCTCTGTGGTTGTCAA 

GRID1 rs1054979 
F CCGACCAGCAGAGCTTTTTA 
R CCCCACTCCATTCTGTCATT 
E CGAGTGTGTGTGGTTTGTGTTGTT 

HLA-DOA  
rs3129304 

 

F GGGAGGTCCACCTAGACACA 
R AATCTGTATTGCTCATTTTGGTC 
E TAAATCACCATACCACATAGTTTATGTCA 

HLA-DRA  
rs14004 

 

F TCTTGTCTGTTCTGCCTCACTC 
R TCCTAGCACAGGGACTCCAC 
E CGAGCTCTACTGACTCCCAA 
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Table 4.2 | Continued. 

Gene Tag SNP !! Primer sequence (5’-3’) 

HSPA12B  
rs3088007 

 

F ACTCCAGAGGGACAGGTGTG 
R GCAAGTGGGGTCCTTCATAA 
E TTCGAGACAAAACACCCGTCTGGGAAG 

JAG2 rs1057744 
F TGAACGGGTACCAGTGTGTG 
R GGGCAGTGGCAGTGGAAG 
E CGGCATTGCGAGCTGGAACGAGAC 

KIAA1324L 
 

rs12535941 
 

F GGCTACATAGGGGAAGACTAAGC 
R GCAGCAGAACAAGGCTCTTC 
E ATGCATTTCTACTGAAGGATCACTAAAAA 

NECAB2 rs2280027 
F TCCATCCTCCACAAGAAGGT 
R GTGTGGTCAGTGTGGGTCAT 
E CCCCTGCCTCCTGGTCCTGGCCTCTCCCC 

PLXDC2  
rs3817405 

 

F CTTCTGTAGGGAGGCTGGTG 
R TTCTTCTCGAACCACCACAA 
E TGAACTGGGTGGTTGTCGCTCCTA 

PMP2 rs2229015  
F TTTTCAGGTGTGGGGTTAGC 
R TCTCTCTCAAGCAGCCCACT 
E ACGAACTGAAAGTACCTTTAAAAATACAGA 

PSCA  
rs2294008 

 

F AAGTCACCTGAGGCCCTCTC 
R CAAGCCTGCCATCAACAG 
E TCCACCACAGCCCACCAGTGACCA 

RALYL rs10094238 
F AAATGTGTTTTCCCCTTTGC 
R CAGAATTGCAATATCACCTGACTT 
E TGTGAAAGGCATTTATGAATGGTAAGGGA 

RIC3  
rs10839976 

 

F GCAGTTGTTTTCCCCTTTGA 
R TTTTGAGCTATTTCTCTAGTGTTGC 
E CTATACCTCCTTCAATTCTCAGCT 

RIN3  
rs3814830 

 

F AGAGGTGGGCAAAGGACAG 
R CAGCCACCTCTTGGAAATTG 
E GCACGCCCTTTGCCGCCCACCTCTGATGC 

SFMBT2 rs11255084 
F GGGCACCTCCATGTTTTCTA 
R TGCCCCATATTTTGCATTTT 
E AAGGCAATCAGTGAACTTCCTC 
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Table 4.2 | Continued. 

Gene Tag SNP !! Primer sequence (5’-3’) 

SLC6A15 rs17183577 
F ATGTGTGATTTGCCCACAGA 
R TCTGAAAGTGGGGGCTTAAA 
E TCCCTCTCTCAAATTCTGTTACAG 

THNSL2 rs4129190 
F TTCTCTGGCTATGCACCTGA 
R GCTCAGAGCCAATGAAGAGG 
E AAGAGCTCCCACAGTTGGACAGAG 

TNFRSF10D rs1133782  
F CGCAACGAGACCCTGAGTA 
R GACGCTGTGGCTCCTCTG 
E CAGAGCTAACAGGTGTGACTGTAGAGT 

TTN rs12463674 
F CTGCCCACCATCAATTCTAA 
R TGAGGTTGAACTCCCAAGAA 
E TCCTTATCTCCTCTTAACCACTCA 

VAX2 rs3771389 
F CCTGCCCAATCCTGTAAGTG 
R CCTTCTTCCCTGGATACTCAGA 
E CATGGTCCCAATTCAGGCAGAG 

ZFP3 rs12600437 
F CCTGCCACTGCTGACAGATA 
R AGGGGCAAAACCAAGAAGAG 
E AAAGCACTTAAGTTCTCATGACCTGGACC 
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4.2.5 Gene ontology 

Novel autosomal monoallelic genes detected in the differentiated cell lines were 

interrogated for enrichment of specific gene classes and functional terms using the 

DAVID Gene Functional Classification Tool (http://david.abcc.ncifcrf.goc/). The novel 

monoallelic genes were tested against a background list comprised of all assayed genes in 

the differentiated cell lines.  

4.2.6 Adult brain methylation analysis 

The DNA methylation status of the RME genes detected in the differentiated cells, as 

well as all RME loci reported in this thesis combined, was compared to the equivalent 

biallelic gene set in publically available adult brain DNA methylation data (Ginsberg et 

al. 2012). The data was retrieved from the Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo; reference: GSE38608) and comprised of nine control 

subjects. It was collected using the Infinium HumanMethylation27 BeadChip (Illumina). 

The raw data was converted into M values by the authors, an alternative scoring system to 

the β values described in Chapter 3. An M value of 0 represents an even proportion of 

methylated and unmethylated DNA. A positive M value means that more molecules are 

methylated than unmethylated, while a negative M value means the opposite. Statistical 

difference between the mean M value of RME versus biallelic genes sets was tested with 

a two-tailed t-test in Prism (GraphPad).  
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4.2.7 Assessment of RME genes after reprogramming 

Five genes subject to RME in the spinal cord lines, and monoallelic in SPC01, were 

assayed using the SNaPshot primer extension assay in the iPSC line iPSC-SPC01. My 

colleague Dr Graham Cocks created the cell line by transducing SPC01 with a 

polycistronic excisable vector containing C-MYC, KLF4, OCT4 and SOX-2 as described 

elsewhere (Papapetrou et al. 2011). He carried out the cell culture and I extracted the 

RNA and synthesised cDNA as described in sections 2.2.2 and 2.2.7 respectively. The 

SNaPshot primer extension assay was carried out as described in section 2.5, for the 

following genes: C1QL3, GRID1, SFMBT2, TNFRSF10D and VAX2. Primer sequences 

are presented in Table 4.2. The difference between the mean percentage representation of 

the silenced allele before and after reprogramming was tested for statistical significance 

using a two-tailed t-test in Prism (GraphPad). 
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4.3  Results 

4.3.1 Differentiation into neurons and glia 

Immunocytochemical analysis was carried out to assess the multipotency of the spinal 

cord NSC lines. After ten days differentiation, the KI67, NESTIN and SOX2 positive 

NSCs successfully differentiate into approximately 75% S100β positive astrocytes, 12% 

TAU positive neurons and < 1% O1 positive oligodendrocytes (see Figure 4.2 and Figure 

4.3). No significant difference was observed between cell lines for any of the markers 

(ANOVA). This is consistent with a more detailed characterisation carried out by my 

colleague Dr Graham Cocks, who demonstrated that these cell lines retain their ventral 

spinal cord identity and give rise to electrophysiologically active neurons (paper 

submitted). 

 

Figure 4.2 | Marker expression before and after differentiation of SPC01. Images 

P1-3 show expression of KI67, NESTIN and SOX2 in the proliferating SPC01 NSC line. 

Images D1-3 show expression of S100β, TAU and O1 after 10 days differentiation. Cells 

are nuclear stained with Hoechst 33342. 
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Figure 4.3 | Proportion of marker-positive cells in the three spinal cord NSC lines 

before (A) and after (B) differentiation. No significant difference between cell lines 

was observed for any of the markers (ANOVA). 
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4.3.2 Microarray assay validation 

The OmniExpress BeadChips used in this study are different to those described in 

Chapter 3. To test the reproducibility of the allele-specific expression assay with these 

microarrays, a Pearson’s correlation was carried out for assayed gene Δβ values between 

replicates. R values ranged from 0.87 to 0.95 showing high reproducibility (see Figure 

4.4). 

 

 

Figure 4.4 | Correlation of gene Δβ values between biological replicates. Each 

pairwise comparison shows a strong, statistically significant, correlation demonstrating 
high reproducibility between replicates. Continued overleaf. 
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Figure 4.4 | Continued 
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After demonstrating biological and technical reproducibility, gene Δβ values from the 

three replicates were averaged and correlated with those derived from the highly 

quantitative SNaPshot primer extension assay to assess the accuracy of BeadChip allele-

specific expression measurements. A significant positive correlation was observed 

between the two datasets (p < 0.0001; R = 0.91; see Figure 4.5), demonstrating that 

Illumina’s OmniExpress BeadChips are suitable for assays of allele-specific expression. 

The linear regression shows a slope of 1.3 indicating that, similar to the previous study, 

Δβ values derived from the BeadChip underestimate the actual ratios of RNA derived 

from each allele.  

 

Figure 4.5 | Correlation between average BeadChip and SNaPshot Δβ values. 
BeadChip Δβ values are an average of the three biological replicates. A significant 
positive correlation between the two datasets is observed. 
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4.3.3 Monoallelic expression through neural differentiation 

A similar proportion of novel autosomal monoallelic expression was detected before and 

after differentiation, 0.84% and 0.80% respectively. It is worth noting that this markedly 

is lower than the 1.4% reported in Chapter 3; this is thought to be due to technical 

differences between the BeadChips employed in each study (discussed in section 4.4). 

Average Δβ values from genes called monoallelic in the NSCs were correlated with those 

assayed in the same line after differentiation (see Figure 4.6). A statistically significant 

positive correlation was observed (p < 0.0001, R = 0.75). Of these 42 genes, 32 (76%) 

retain monoallelic status. Of the 10 genes that lose monoallelic status after differentiation, 

nine retained biologically significant allele expression imbalance (Δβ value > 0.1) and 

only one reverted to biallelic status. Of the novel monoallelic genes detected in the NSCs 

and assayed after differentiation, significantly more showed a reduction in Δβ values after 

differentiation than would be expected by chance (p = 0.033, binomial exact test), 

indicating that, while monoallelic expression is largely maintained, there is a trend 

towards reduced Δβ values.  

Table 4.3 | Autosomal monoallelic expression before and after differentiation 

 NSCs Neurons and glia 

Assayed genes 7,839 7,606 

Monoallelic 77 (0.98%) 74 (0.97%) 

Known imprinted 11 (0.14%) 13 (0.17%) 

Random monoallelic 20 (0.26%) 15 (0.19%) 

Same allelic choice 7 (0.09%) 10 (0.13%) 

Unclassified monoallelic 39 (0.50%) 36 (0.47%) 
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Figure 4.6 | Δβ values from novel autosomal monoallelic genes detected in NSCs 

correlated before and after differentiation. Data from all three clones are presented.  

Of the RME genes detected in the undifferentiated spinal cord NSCs that were also 

expressed after differentiation, 71% maintained monoallelic status. Only one of these 

genes reverts to biallelic status. A 27% reduction in the proportion of assayed genes 

subject to RME is observed after differentiation (0.19% compared to 0.26%). This is due 

to the fact that 30% of the RME genes detected in the NSCs before differentiation do not 

meet the expression threshold after differentiation. An additional 29 novel monoallelic 

genes emerge after differentiation, 18 of which were assayed before differentiation but 

were not classed as monoallelic. Eight of these genes are subject to RME.  
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4.3.4 DNA methylation of RME genes in adult brain 

In Chapter 3 I describe that, when compared with biallelic loci, the novel RME genes 

discovered are associated with increased levels of methylation in the NSCs themselves, as 

well as in human foetal brain. Here, I have retrieved DNA methylation data from adult 

human occipital cortex to test if this association is preserved in the adult brain. I find the 

same relationship: RME loci show significantly higher levels of DNA methylation than 

biallelic loci (see Figure 4.7). This is true both when comparing all biallelic and RME loci 

reported in this thesis (p = 0.0003, t-test), as well as when comparing just the loci 

detected in the differentiated spinal cord cell lines (p = 0.0002, t-test). 

 

Figure 4.7 | DNA methylation status of biallelic and RME genes in adult brain. M 
values are grouped by biallelic (blue) and RME (red) genes. The pair on the left display 

data from all biallelic and novel RME genes reported in this thesis. The pair on the right 
display data from genes detected in the differentiated spinal cord NSC lines. Whiskers 

represent the 10-90th percentile. T-test p value summaries are presented. 
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4.3.5 Gene ontology analysis after differentiation  

The autosomal monoallelic genes detected in the differentiated spinal cord NSC lines 

were interrogated for the enrichment of specific gene families and functional terms. 

Consistent with observations made in the proliferating NSCs reported in Chapter 3, I find 

a significant enrichment for the cellular component “extracellular region” (2.5 fold 

enrichment, p = 0.009) and keyword “signal” (2.2 fold enrichment, p = 0.001). Also of 

interest, the autosomal monoallelic genes in the differentiated spinal cord lines are 

enriched for the term “polymorphism” (1.3 fold enrichment, p = 0.00042). A summary 

table displaying count, percentage, fold enrichment and p value is included in the 

Appendix 9.8 on page 211. Note that, unlike in Chapter 3, this analysis was carried out 

for all novel monoallelic genes, rather than RME genes independently. This is because 

the number of RME genes detected after differentiation (15) is too low to carry out 

meaningful enrichment analysis. 

4.3.6 RME after reprogramming 

Using an iPSC line generated from the spinal cord NSC line SPC01, I have carried out a 

pilot study assessing the allelic status of five RME genes before and after reprogramming. 

All five genes lose monoallelic status, showing statistically significant reduction in the 

magnitude of allele expression imbalance (least significant p = 0.002, t-test; see Figure 

4.8). Complete reversion to biallelic status was observed in four of the five genes while 

the fifth, C1QL3, showed a 26% shift towards biallelic expression. 
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Figure 4.8 | Allelic expression of RME genes before and after reprogramming. 

Mean percentage expression of the silenced allele as detected by SNaPshot primer 
extension (n=3). T-test p value summaries and SEM is illustrated. The summary box plot 

box plot combines data from all genes assayed. Whiskers display minimum to 

maximum values and a paired t-test p value summary is presented. 
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4.4 Discussion 

I first report immunocytochemical analysis of the spinal cord NSC lines before and after 

differentiation. The aim of this study was to verify that they had successfully 

differentiated into neurons and glia. I show that they express the generic NSC markers 

NESTIN and SOX2 in proliferative state, and after ten days of differentiation conditions 

they generate approximately 75% S100β positive astrocytes, 12% TAU positive neurons 

and < 1% O1 positive oligodendrocytes. No significant difference was observed between 

cell lines for any of the markers. This is consistent with a more in depth characterisation 

of these cell lines carried out by my colleague Dr Graham Cocks (paper submitted), who 

reports a similar fraction of neurons and astrocytes after differentiation (10% and 79% 

respectively). He finds that they retain their ventral specification; the neurons generated 

are predominantly NKX6, LHX3 and CHX10 positive V2a interneurons. He has also 

demonstrated that they give rise to electrophysiologically active neurons, with 

spontaneous Ca2+ oscillations and K+ induced depolarisation. These results indicate that 

the spinal cord NSC lines employed for this study show a good degree of functional 

maturation after differentiation. 

In this chapter I report the first genome-wide assessment of allele-specific expression 

after human NSC differentiation. A near-equal proportion of novel autosomal monoallelic 

expression was detected before and after differentiation, 0.84% and 0.8% respectively. 

While a significant trend towards reduced Δβ values was observed after differentiation, 

monoallelic expression is largely maintained. Of the monoallelic genes detected in the 

NSCs that were also assayed after differentiation, 76% remained monoallelic and 98% 

retained allele expression imbalance. RME genes show a similar relationship when 
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assessed independently; 71% assayed after differentiation retain monoallelic expression 

and 93% show allelic expression imbalance. However, a difference was observed in the 

proportion of RME genes detected before and after differentiation (0.26% compared to 

0.19%). Additionally, a subset of novel monoallelic genes emerges after differentiation. 

Taken together, this data indicates that widespread autosomal monoallelic expression is 

largely maintained after NSC differentiation. 

When assessing allele-specific expression in the differentiated cells, it is important to be 

mindful of the fact that a heterogeneous cell population is being assayed. This could 

result in an underestimation of the number of monoallelic genes in each cell. For 

example, if a gene were monoallelic in neurons and biallelic in astrocytes, it would not be 

detected in this study. Professor Judith Singer-Sam’s research group report data for 19 

non-imprinted autosomal monoallelic genes detected in mouse NSCs after differentiation 

into both pure neuron and astrocyte populations. Ten of these genes showed monoallelic 

expression in one cell type and biallelic expression in the other in at least one cell line 

(Wang et al. 2010; Li et al. 2012). This demonstrates that the allele-specific expression 

can differ dramatically between neural cell types and it may explain the trend towards 

reduced Δβ values, as well as the reduced proportion of RME genes, observed after 

differentiation. Additionally, some monoallelic genes might only be expressed in one cell 

type resulting in them falling short of the gene expression threshold. A revealing follow 

up experiment could be conducted using fluorescence-activated cell sorting to generate 

pure cell populations. The genes that loose monoallelic status after differentiation could 

then be assayed in the pure populations. If evidence for a cell type-specific effect were 

observed, a genome-wide assay of allele-specific expression in these pure cell populations 

could be carried out.  
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Unexpectedly, the proportion of autosomal monoallelic genes detected in the 

undifferentiated spinal cord NSC lines is considerably lower than was reported in the 

same cell lines in the previous chapter (0.84% compared to 1.4%). This is unlikely to be a 

result of instability of the monoallelic genes as SNaPshot primer extension validation was 

carried out in biological triplicate with cells separated by multiple passages. Furthermore, 

correlating assayed gene Δβ values from the two studies shows a strong correlation (p < 

0.0001, R = 0.72; see Appendix 9.9 on page 212). Instead, it seems that monoallelic genes 

have been disproportionately omitted from the analysis; while 86% of the genes assayed 

using the Omni1-Quad BeadChips were assayed in this study, only 45% of the novel 

monoallelic genes were. Of the monoallelic genes reported in Chapter 3 that were not 

assayed in this study, 24% were omitted due to insufficient (less than two) SNPs and the 

remainder did not reach the expression threshold. The OmniExpress BeadChip has 

smaller hybridization beads in order to fit more samples on each chip and this may have 

resulted in reduced sensitivity. Indeed, the median post-normalisation cDNA SNP probe 

intensity value was ~800 on the Omni1-Quad BeadChips and ~300 on the OmniExpress 

BeadChips (see Appendix 9.2 on page 205 and Appendix 9.7 on page 210). Reduced gene 

dosage resulting from monoallelic expression may have biased the exclusion of 

monoallelic genes from this analysis. The relationship between monoallelic expression 

and total gene expression is explored in Chapter 5. It would have been preferable to carry 

out this study with the same genotyping arrays as the primary study, however, it was no 

longer in production. With cost rapidly reducing, RNA-seq is the ideal methodology for 

this analysis. 

Taking these study limitations into account, it is difficult to accurately predict the 

proportion of autosomal genes subject to monoallelic expression in neurons or glia. 
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However, I can conclude that autosomal monoallelic expression remains widespread after 

NSC differentiation and, for the genes assayed, monoallelic expression is largely 

maintained. In addition, a subset of novel monoallelic genes emerge after differentiation, 

of which, a proportion shows evidence of RME. A more complete analysis of the state of 

autosomal monoallelic expression through neural differentiation could be carried out 

using RNA-seq, or genotyping microarrays closer matched to the Omni1-Quad 

BeadChips, with RNA from pure neuron and astrocyte populations. 

The novel monoallelic genes detected in the differentiated cells were assessed for the 

enrichment of specific gene classes and functional terms. The number of RME genes 

detected after differentiation was too low to perform a meaningful analysis, so all novel 

monoallelic genes were assayed together. The results obtained were consistent with those 

reported in Chapter 3; a significant enrichment for the cellular component “extracellular 

region” and keyword “signal” was observed. This indicates that autosomal monoallelic 

expression is performing a similar function after differentiation and supports the 

hypothesis that RME is involved in cell-cell interaction.  

While the results discussed above are of interest with respect to NSCs and their progeny 

in vitro, this study was also carried out with the ambition of providing clues as to the 

extent this process may occur in vivo, in the adult human CNS. NSC differentiation in 

vitro offers a powerful model that has revolutionised the understanding of neural 

development, however, the extrapolation of these observations to the adult CNS must be 

made cautiously. The detection of widespread autosomal monoallelic expression, 

including RME, in neurons and glia in vitro acts as a proof of principle. 
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In Chapter 3 I reported that the novel RME genes detected in this thesis are associated 

with increased levels of DNA methylation, both in the NSCs themselves, and in foetal 

brain. Using the demethylating agent 5-Aza, I also demonstrated that DNA directly 

regulates the monoallelic expression of all twelve RME genes assayed. In this chapter I 

assessed publically available DNA methylation data from adult human occipital cortex 

with the aim of determining whether or not this epigenetic distinction is retained into 

adulthood. I find the same relationship; the novel RME genes show significantly 

increased levels of DNA methylation in adult human cortex. While this does not 

demonstrate that these genes are similarly expressed in adult brain, it does demonstrate 

that they are epigenetically distinct from biallelic loci in a manner consistent with 

monoallelic expression.  

Further research will be required to conclusively demonstrate that widespread monoallelic 

expression occurs in the developing and adult human CNS. One hurdle in the way of this 

study is the non-clonal nature of brain tissue; RME is expected to be masked by 

neighbouring cells with biallelic expression or monoallelic expression for the alternate 

allele. Additionally, the possibility of cell-type specific monoallelic expression would 

compound the issue, further reducing the power to detect RME in brain tissue. A recent 

publication reports a protocol for transcriptome-wide RNA-seq analysis of single cells 

(Tang et al. 2010). This technique should enable genome-wide assays of allele-specific 

expression from single cells and this would circumvent the obstacles highlighted above.  

If widespread RME does occur in vivo, the stage at which it is initiated will dictate not 

only when this source of diversity is introduced, but also the size of clones that share the 

same repertoire of monoallelic genes. No previous study has addressed this issue. I 
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conducted a pilot study assessing the allele-specific expression of five RME genes in an 

iPSC line generated from the spinal cord NSC line SPC01. All five genes lost monoallelic 

status, and four of the five genes completely reverted to biallelic status. This data could 

be construed as evidence in support of RME being initiated between the ESC and NSC 

stage. However, there are two key factors that require consideration before drawing this 

conclusion.  

Firstly, it is difficult to generalise about all RME genes when only five were assayed. In 

Chapter 3 I report that these genes are dispersed throughout the genome, and are therefore 

likely to be independently regulated by varying molecular mechanisms. This concern is 

being addressed; the study reported in this chapter is a pilot preceding a genome-wide 

analysis carried out by our laboratory. Preliminary results from the genome-wide study 

are consistent with this pilot; 83% of non-imprinted autosomal monoallelic genes 

detected in SPC01 lose their monoallelic status after reprogramming. This data taken 

together argues that RME is largely lost after reprogramming. 

The second factor to be mindful of is how closely the iPSC line represents SPC01 cells 

when they were at the ESC stage. In other words, has the clock been turned back, or has a 

distinct cell population been generated? While iPSCs closely resemble ESCs in terms of 

pluripotency (Zhao et al. 2009) and gene expression profiles (Stadtfeld et al. 2010), 

questions remain whether their epigenetic reprograming is complete. Epigenetic memory 

has been observed from the somatic cell of origin (Doi et al. 2009; Kim et al. 2010) as 

well as the accumulation of novel aberrant epigenetic states (Doi et al. 2009; Lister et al. 

2011). A global assessment of the epigenetic profile of the iPSC line used for this study 

has not been carried out and therefore, the extent to which it mirrors ESCs in this regard 
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is unknown. However, incomplete reprogramming would be expected to bias results in 

favour of the retention of monoallelic expression, rather than its loss. Ideally, a time 

course experiment would be conducted in ESCs, assessing allele-specific expression 

frequently throughout neural differentiation. Cells grown in parallel would be fixed for 

immunocytochemical analysis to identify the equivalent stage of neural development at 

which RME is initiated.   

4.4.1 Conclusion 

From the results presented in this chapter, I conclude that autosomal monoallelic 

expression is largely maintained after NSC differentiation, although a trend towards 

reduced Δβ values is observed. A near-equal proportion of novel monoallelic genes are 

observed before and after differentiation, however, study limitations have precluded an 

accurate estimation of the proportion of non-imprinted autosomal monoallelic genes in 

neurons and glia. I propose follow up experiments in pure cell populations that will 

address these issues. The extent that widespread autosomal monoallelic expression occurs 

in vivo, in the adult human CNS, remains unknown. The observation that RME genes are 

epigenetically distinct from biallelic loci in the adult cortex in a manner consistent with 

monoallelic expression is evidence in support. Single cell analysis will be required to 

answer this important question. Finally, I find that RME is largely lost after 

reprogramming. This result should be interpreted cautiously but it indicates that RME is 

initiated between the ESC and NSC stage. Further work in ESCs will be required to 

determine the timing of RME initiation. 
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Chapter 5. The potential functional implications of RME 

5.1 Introduction 

There are two potential functional implications of monoallelic expression at the cellular 

level: altered transcript levels and the exposure of functional heterozygosity. If these hold 

true for the widespread RME reported in Chapters 3 and 4, it could provide a source of 

phenotypic diversity between genetically identical neural cells.  

For both XCI and genomic imprinting, monoallelic expression is believed to have 

evolved as a means to regulate the expression of dosage-sensitive genes. XCI exists to 

match female X-linked gene dosage to that of males, while genomic imprinting has 

evolved, at least in part, as a result of a conflict between sexes over the expression of 

prenatal growth related genes. The importance of imprinting as a mechanism of 

regulating gene expression is illustrated by disorders that arise when it is disrupted; for 

example, biallelic expression of the growth promoting IGF2 is sufficient to cause the 

congenital overgrowth disorder Beckwith Wiedemann syndrome (Reik et al. 1995). The 

dosage sensitivity of genes subject to RME is not well characterised. The RME of antigen 

receptors, odorant receptors and protocadherins exposes functional variation in order to 

increase cellular specificity and tissue diversity. The functional implications of 

widespread RME remain to be determined.  
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In this chapter I perform a global analysis of the relationship between allelic expression 

and total expression for the novel RME genes reported in Chapter 3. I also assess non-

synonymous variation in RME genes with the aim of revealing the extent that widespread 

RME could impact phenotypic variation by exposing functional heterozygosity. 

5.2 Methods 

General molecular biology and cell culture methods used throughout this thesis are 

described in Chapter 2. Experimental details specific to this chapter are included below. 

5.2.1 BeadChip gene expression estimates 

Gene expression estimates were calculated from the Omni1-Quad BeadChip (Illumina) 

study reported in Chapter 3. The quantile normalised X and Y SNP probe intensity values 

from the cDNA samples were summed and normalised to that of the matching genomic 

DNA sample to control for any inherent SNP probe sensitivity bias (see the formula 

below). This method has previously been described by Wanger et al. (2010). The mean 

expression of all SNP probes (intronic and exonic) within a transcript was calculated for 

the gene expression estimate.  

 

(XrawcDNA + YrawcDNA) 
Expression   = 

(XrawgDNA + YrawgDNA) 
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5.2.2 BeadChip expression estimate validation 

The validity of this expression estimate to measure differential gene expression was tested 

by comparison with data obtained by qPCR. Sixteen genes were assayed in the three 

spinal cord NSC clones as described in section 2.6 with the two reference genes HPRT1 

and RPL13A. The genes assayed and primers used are presented in Table 5.1. Reference 

gene primer sequences can be found in section 2.6.2. Both BeadChip estimates and qPCR 

measures were used to calculate differential expression for each gene by normalising to 

one control clone. The data was presented on a log base 2 scale due to the non-normal 

distribution. The Pearson’s correlation coefficient was calculated with the untransformed 

data in Prism (GraphPad). 

5.2.3 Gene expression comparison 

For the 201 RME genes reported in Chapter 3, which have both monoallelic and biallelic 

clones from the same genotype, BeadChip gene expression estimates were compared 

between biallelic and monoallelic clones from the same genotype. When a gene had two 

biallelic clones, or two monoallelic clones, the mean expression was used. A binomial 

exact test was used to test if more monoallelic clones showed reduced gene expression 

that would be expected by chance. A paired two-tailed t-test was used to assess the 

difference between the mean expression of monoallelic and biallelic clones. 



 

 

132 

5.2.4 qPCR analysis of 5-Aza treated cells 

The transcript levels of twelve RME genes were measured before and after 5-Aza 

treatment in all three spinal cord NSC lines. RNA for this analysis was the same used in 

section 3.2.4 for allelic expression analysis after 5-Aza treatment. New cDNA was 

synthesised as described in section 2.2.7. qPCR was carried out as described in section 

2.6 for the following genes: C1QL3, CAT, DNAJC15, GRIA1, GRID1, JAG2, 

KIAA1324L, PMP2, SFMBT2, TNFRSF10D, TTN and VAX2. Primer sequences are 

presented in Table 5.1. The two reference genes HPRT1 and RPL13A were used. 

Reference gene primer sequences can be found in section 2.6.2. 

5.2.5 Comparison of nsSNPs abundance 

In order to compare the abundance of non-synonymous SNPs (nsSNPs) in biallelic and 

RME genes, the respective gene lists were uploaded to Galaxy 

(https://main.g2.bx.psu.edu; Goecks et al. 2010) along with chromosome coordinates. The 

RME gene list comprised of all 212 novel RME genes reported in Chapter 3. The biallelic 

gene list consisted of 975 genes called biallelic in all three genotypes. All nsSNPs 

(nonsense, missense and frameshift) were obtained from dbSNP build 135. Using the 

“join by genomic intervals” function in Galaxy, SNPs were assigned to genes. The 

number of nsSNP per coding base was also calculated to overcome transcript length bias. 

The mean nsSNP content per gene, and per coding base, was compared between biallelic 

and RME genes and tested for statistical significance using a two-tailed t-test in Prism 

(GraphPad). The same analysis was also carried out using common nsSNPs with a 

frequency in the population of >1%. 
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5.2.6 Prediction of functional effects of nsSNP 

The online tool PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2; Adzhubei et al. 2010) 

was used to assess the impact amino acid substitution on protein function. The common 

nsSNPs located in biallelic and RME genes were uploaded to PolyPhen-2 and the default 

HumDiv classifier model was selected. The qualitative probabilistic classification of 

“neutral” or “deleterious” was extracted for all successfully annotated nsSNPs and a 

Fisher’s exact test was carried out to test for association between either of the groups and 

outcomes using Prism (GraphPad). 
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Table 5.1 | Primer sequences for qPCR. Forward (F) and reverse (R) 

primers are presented. 

Gene !! Primer sequence (5’-3’) 

C1QL3 F ATCCCGGGCATCTACTTCTT 
R GCTTTCCCGCCATCTAATTT 

CAT F GCCTGGGACCCAATTATCTT 
R TGTCCTGCATGCACATCG 

CHL1 F GCCTTCGGTCCCTTAATAGG 
R GCGTAGGCACCAATAAATGA 

DNAJC15 F TCTCCTTACGTAGCAGCCAAA 
R TGGTGGAAGATAAGACTGTGG 

GABRA5 F TCCGACAAAGCTGGAAAGAT 
R GAAGTCCTCAAGCTGCATGG 

GRIA1 F TCCTGCAGAAAGTCCTGGAT 
R TGAGGCGTTCTGATTCACAG 

GRID1 F CAGCCTCATGGATGAAGACA 
R CTCTGCTCTGGCAGAAAGGT 

JAG2 F ATCGACGAGTGCCAGTCC 
R GTGGGCAGCTACAGCGATAC 

KIAA1324L F GGCTACATAGGGGAAGACTAAGC 
R GCAGCAGAACAAGGCTCTTC 

PAX8 F GAGCAACAGGAGGACTCAGC 
R TAACCACACAGGGAGTGTGC 

PMP2 F GGGGTTAGCCACCAGAAAAC 
R CTGGCCTAGCTTGAAGGAGA 

SEMA5A F CTTGGCCCATCTCTGGAATA 
R CGGGTCCTCATATAGTGTCCA 

SFMBT2 F ATATTGACGGCCAAGCACTC 
R GGCGTAGAAAGCCACTTTGA 

TNFRSF10D F AAGTTCGTCGTCTTCATCGTC 
R CTGGACACTCCTCCTCCTTG 

TTN F CCACATCACAACCGTGAAAG 
R GCATTGTCTGCTCCTTGACA 

VAX2 F AGCGGACACGTACATCCTTC 
R CTGGGTCTCGGAGAGGTTC 
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5.3 Results 

5.3.1 The impact of RME on transcript levels 

In order to carry out a global analysis of the impact of RME on gene expression, the 

validity of using the BeadChip expression estimates to measure differential gene 

expression had to be demonstrated. A strong correlation was observed between qPCR and 

BeadChip differential gene expression measures (p < 0.0001, R = 0.71; see Figure 5.1).  

 

Figure 5.1 | Correlation of BeadChip and qPCR differential gene expression 

measures. Data is presented on a log2 scale. Pearson’s correlation coefficient was 
calculated before log transformation. Trend line presented. 
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Using mean BeadChip expression estimates, the impact of RME on gene transcript levels 

was assessed for all 201 RME genes reported in Chapter 3, which have both monoallelic 

and biallelic clones of the same genotype. Figure 5.2 illustrates a trend towards reduced 

gene expression in the monoallelic clones. Of the 201 genes tested, 124 show reduced 

expression in monoallelic clones. Although a weak effect, this is significantly more than 

would be expected by chance (p = 0.0019, binomial exact test). In addition, the mean 

BeadChip expression estimate of RME genes in monoallelic clones was 15.4% lower than 

biallelic clones (p = 0.0002, paired two-tailed t-test). Two selected genes that illustrate 

this relationship are presented in Figure 5.3; both show reduced expression in monoallelic 

compared to biallelic clones. 

 

Figure 5.2 | Comparison of BeadChip gene expression estimates between 

monoallelic and biallelic clones of RME genes. Linear regression and Pearson’s 
correlation coefficient presented. 
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Figure 5.3 | Allele-specific expression (left) and total gene expression (right) of two 

selected RME genes. SEMA5A and TNFRSF10D illustrate the relationship between 
allelic expression and total transcript levels observed globally. Allele-specific expression 

data was collected using SNaPshot primer extension (see section 3.2.2) and total 
expression by qPCR (see section 5.2.2). Error bars represent the SEM.  
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In section 3.4.7 I demonstrate that all twelve RME genes assayed show a significant 

reduction in allele expression imbalance in monoallelic clones after 5-Aza treatment. In 

an attempt to further investigate the relationship between RME and total expression I 

carried out qPCR analysis of these genes before and after 5-Aza treatment. No correlation 

was found between the change in allelic expression and total expression (p = 0.18; R = 

0.13; see Figure 5.4). Six of the twelve genes show a significant increase in expression 

after treatment and three show a significant decrease in monoallelic clones (see Figure 

5.5). One, C1QL3, showed a significant increase in one monoallelic clone, and a 

significant decrease in another. Two showed no significant change. Importantly, ten of 

the twelve genes show a significant change in total expression in biallelic clones after 

treatment. Therefore, this is not isolating the impact of allelic expression on total 

expression. 

 

Figure 5.4 | Correlation of percentage change in allelic expression with percentage 

change in total expression of RME genes in monoallelic clones after 5-Aza 

treatment. Each data point is the mean of three biological replicates. 
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Figure 5.5 | Relative transcript levels of RME genes before (blue) and after (red) 5-

Aza treatment in the three spinal cord NSC lines. The mean (n=3), SEM and t-test p 
value summary is presented. The allelic status of each clone is designated as MA 

(monoallelic), AEI (allelic expression imbalance) or BA (biallelic). Continued overleaf. 
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Figure 5.5 | Continued. 
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5.3.2 RME genes are enriched for nsSNPs 

The novel RME genes reported in this study are enriched for nsSNPs when compared to 

biallelic genes. A mean of 3.9 common nsSNPs are found in RME genes compared to 2.3 

in biallelic genes (p = 0.0014, t-test). One factor potentially biasing this comparison is 

coding sequence length. Indeed, the mean coding sequence of RME genes was 570bp 

(18%) longer than biallelic genes. To correct for this, the number of nsSNPs per coding 

base was calculated. Biallelic genes had a mean of 0.00091 common nsSNPs per coding 

base while the RME genes had 0.0014 (a 1.58 fold enrichment; see Figure 5.6). The 

difference between the means is highly significant (p = 3.16 x 10-9, t-test).  

 

Figure 5.6 | Comparison of the number of common nsSNPs per coding base for 

biallelic and RME genes. Mean displayed as a plus, whiskers represent the 5-95th 
percentile. P value summary from a two-tailed t-test is presented. 
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A reduced, but still highly significant, 1.22 fold increase in the mean number nsSNPs per 

coding base was observed in RME genes when all nsSNPs in dbSNP were tested (as 

opposed to common nsSNPs; p = 6.78 x 10-8, t-test). The common nsSNPs located in 

biallelic and RME genes were uploaded to PolyPhen to assess the predicted impact of the 

amino acid substitution on protein function. Of the common nsSNPs located in RME 

genes, 35% were assigned “deleterious” compared to 30% of the common nsSNPs in 

biallelic genes. A Fisher’s exact test revealed no significant association between groups 

and outcomes (p = 0.45). 

5.4 Discussion 

In this chapter I report a trend towards reduced transcript levels in monoallelic clones 

compared to biallelic clones for RME genes. Significantly more RME genes show 

reduced expression in monoallelic clones compared to biallelic clones than would be 

expected by chance, and the mean expression estimate is 15.4% lower in monoallelic than 

biallelic clones. This observation is consistent with previous studies of widespread RME, 

where individual genes were shown to be dosage sensitive (Gimelbrant 2007; Wang et al. 

2010). Since the study reported in this chapter was completed, a transcriptome-wide 

assessment of RME in mouse NSCs using RNA-seq has been published (Li et al. 2012). 

The authors report a mean 35.8% reduction of expression levels in monoallelic compared 

to biallelic clones. Taken together, these studies indicate that widespread RME can 

increase cellular heterogeneity by altering gene expression levels. The extent that this 

relationship translates to the protein level remains to be determined.  
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While a trend towards reduced transcript levels in monoallelic clones is observed, the data 

presented in this chapter, and that reported by Li et al. (2012), indicate that this is not a 

general rule applying to all RME genes. 38% of genes tested do not show the expected 

reduction of transcript levels in monoallelic clones. This could be a result of dosage 

compensation; altered gene dosage will only alter the transcript level of dosage-sensitive 

genes. Studies of human aneuploidies have revealed that many genes have feedback 

mechanisms to compensate for altered gene dosage (FitzPatrick et al. 2002; Yahya-

Graison et al. 2007). Therefore, it may be that a proportion of the RME genes that do not 

show reduced gene expression in monoallelic clones have compensatory mechanisms in 

place to maintain the desired transcript levels.  

This study is limited in that it is not able to isolate the impact of monoallelic expression 

on total transcript levels; there are likely to be other, trans-acting, factors contributing to 

transcript level variation between clonal cell lines (Huang 2009). This variation is visible 

in Figure 5.5 where VAX2 exemplifies the issue; one biallelic clone expresses VAX2 at a 

higher level that the monoallelic clone, while the second biallelic clone shows lower 

expression than the monoallelic clone. Therefore, it is possible that the effect of RME on 

transcript levels of some genes is being masked. A more robust analysis of this 

relationship would require more cell lines per genotype in order to overcome interclonal 

variation in gene expression. Alternatively, candidate genes could be assessed 

independently for dosage sensitivity by genetic copy number manipulation.  

I attempted to overcome the confounding factor of interclonal gene expression variation 

by assessing transcript levels before and after demethylation within the same cell line. It 

was hypothesised that the monoallelic clones would show an increase in gene expression 
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after 5-Aza treatment due to increased expression from the silenced allele. However, 5-

Aza treatment affected transcript levels of biallelic clones as much a monoallelic clones, 

resulting in the same shortcoming: the impact of allele-specific expression on gene 

transcript levels was not being isolated. 5-Aza is a drug of broad affect, demethylating the 

genome indiscriminately. Therefore, it is not only acting on the target genes in cis to 

remove the allele-specific DNA methylation that enforces RME, but also in trans by 

altering the expression of upstream genes. The rational for this experiment came from a 

study of loss of imprinting (Diplas et al. 2009). Here, the authors report 5-Aza induced 

loss of imprinting of PLAGL1 is associated with an increase in PLAGL1 transcript levels. 

My results suggest that the increase in PLAGL1 expression that they observe could be 

attributable in part to non-specific trans-acting factors rather than a result specific to the 

loss of imprinting. As mentioned above, further work will be required to fully 

characterise the dosage sensitivity of the RME genes reported in this thesis. Nonetheless, 

the results presented in this chapter, along with the other studies referenced, indicate that 

at least a proportion of RME genes are dosage sensitive. 

In addition to altering gene expression levels, RME also has the potential to impact 

cellular phenotype by exposing functional heterozygosity. For this to occur, non-

synonymous variants would have to be common in genes subject to RME. I observe that 

the novel RME genes reported in this thesis are significantly enriched for nsSNPs in 

comparison to biallelic genes; the mean number of common nsSNPs per coding base is 

1.58 fold greater in RME genes. This is consistent with the enrichment of the gene 

ontology term “polymorphism” (1.3 fold enrichment, p = 0.00042) observed in novel 

monoallelic genes detected after differentiation of the spinal cord NSC lines in Chapter 4. 

The bioinformatics tool PolyPhen-2 predicted that 35% of the common nsSNPs would 
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alter protein function. This evidence for increased diversity of RME compared to biallelic 

genes supports a model of widespread RME increasing clonal diversity by exposing 

functional variation in a manner similar to the better established RME gene families. At 

present, it is not clear whether exposing functional variation is an adaptive advantage of 

RME. While this explanation is appealing, it is also possible that the RME genes are less 

critical than the biallelic genes and the enrichment of nsSNPs merely represents a reduced 

purifying pressure against amino acid variation.  

The observation that nsSNPs are enriched in RME genes is also consistent with the 

hypothesis that RME could increase a gene’s evolvability (Chess 2012). Chess suggests 

that RME may facilitate the selection of beneficial recessive alleles that would otherwise 

only increase the fitness of the organism when it is homozygous. As new advantageous 

alleles will initially be present predominantly in the heterozygous state, Chess suggests 

that RME could provide a mechanism to expose the new allele, increasing the fitness of 

the organism and reinforcing the selection of the new allele. This is especially interesting 

in light of the observation that the RME genes detected in human lymphoblastoid cells are 

more than twice as likely to be located near noncoding sequences associated with human 

lineage-specific accelerated evolution (Gimelbrant et al. 2007). My colleague Dr Aaron 

Jeffries replicated this finding in our dataset (Jeffries et al. 2012). The comparison of 

biallelic and RME gene ka/ks ratios could provide more information on the evolutionary 

rate of these genes. 
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5.5 Conclusion 

As with all forms of monoallelic expression, functional hemizygosity will expose 

recessive deleterious mutations. With this apparent fitness cost, it would be predicted that 

RME provides a considerable benefit that has enabled its conservation. An adaptive 

advantage of widespread RME remains to be demonstrated. However, the data presented 

in this chapter supports a model in which widespread RME increases clonal diversity by 

reducing transcript levels and exposing non-synonymous variation. This diversification of 

NSCs would be predicted to have considerable implications for the developing central 

nervous system if present in vivo. The observation that RME genes are significantly 

enriched for common nsSNPs also lends support to the hypothesis that RME can increase 

a gene’s evolvability. 
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Chapter 6. Identification of common genetic cis variants 

associated with monoallelic expression of PM20D1 

6.1 Introduction 

The genome wide assay of allele-specific expression reported in Chapter 3 revealed a 

subset of monoallelic genes that showed the same allele choice in all clones in more than 

one genotype. This pattern of allelic expression is consistent with both genomic 

imprinting and common cis-acting genetic regulatory variation. Genomic imprinting is an 

epigenetic process that causes genes to be expressed from a single allele in a parent of 

origin-specific manner (see section 1.2.1). To date, 80 human imprinted genes have been 

validated and many more are predicted (http://www.geneimprint.com). Microarray-based 

assays of allele-specific expression have been used successfully for the detection of novel 

imprinted genes (Pollard et al. 2008; Morcos et al. 2011). The complete characterisation 

of human imprinting is an important task as it promises to be informative for human 

disease, development and evolution. Heterozygosity for genetic cis-regulatory variation 

could also describe this pattern of monoallelic expression. While common cis variants 

typically have a subtle impact on allelic expression, extreme allelic expression imbalance, 

or monoallelic expression, is also observed (Yan et al. 2002). This can result from allele-

specific disruption of a crucial regulatory element. Microarray based approaches have 

been used previously for the detection of genetic cis variation (Ge et al. 2009) and screens 

for monoallelic expression have successfully identified disease-associated genetic 

variants (Ben-David et al. 2011). 
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The present study initially sought to screen for novel imprinted genes in post-mortem 

adult cortex. While no novel imprinted genes were validated, I was able to map the 

genetic variants associated with the monoallelic expression of the PM20D1, a gene 

located in the Parkinson’s disease (PD) susceptibility locus PARK16.  

6.2 Methods 

General molecular biology and cell culture methods used throughout this thesis are 

described in Chapter 2. Experimental details specific to this chapter are included below. 

6.2.1 Samples 

Post-mortem brain samples were of unrelated Caucasian European subjects obtained from 

the MRC London Neurodegenerative Diseases Brain Bank. Tissue was from the 

dorsolateral prefrontal cortex (DLPFC; Brodmann’s area BA9). All individuals were free 

from psychiatric or neurological diagnosis at the time of death. Samples were selected 

based on heterozygosity for allele-specific expression tag SNPs. Blood samples were 

from the Twins Early Development Study (TEDS), a longitudinal study of behavioural 

development in twins. Twelve parent-child trios were selected from 32 when the 

genotypes of the allele-specific expression tag SNPs enabled the parent of origin of each 

allele to be determined. The children were healthy 12-years olds.  
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6.2.2 Total RNA extraction from post-mortem human brain 

Frozen brain samples were thawed at room temperature and suspended in 10 μl of TRI 

Reagent® (Ambion) per 1 mg of tissue. The tissue was homogenised using FastPrep®-24 

Instrument (MP Biomedicals) for 45 seconds at a speed setting of five. The sample was 

incubated for five minutes at room temperature and transferred to a new 1.5 ml tube. 0.1 

volume of 1-Bromo-3-chloropropane (Sigma-Aldrich) was added to the homogenate, 

which was then vortexed for five seconds and incubated at room temperature for ten 

minutes. The sample was then transferred to a Phase Lock Gel Heavy 2 ml tube 

(5PRIME) and centrifuged at 12,000 g for 15 minutes at 4°C to separate the aqueous and 

the phenol-chloroform phase. RNA was precipitated, washed and resuspended as 

described in section 2.2.2. The yield and quality of the RNA was checked as described in 

section 2.2.3. RNA was DNase treated and cDNA was synthesised as described in 

sections 2.2.5 and 2.2.7 respectively. 

6.2.3 Total RNA extraction from whole blood 

Blood samples were collected in PAXgene Blood RNA Tubes (PreAnalytiX) as part of 

the Twins Early Development Study (TEDS) using standard protocols. RNA was 

extracted using the PAXgene Blood RNA Kit (PreAnalytiX). The manufacturer’s 

recommended protocol was followed. In brief, the blood was pelleted, washed, and then 

resuspended with a lysis buffer and proteinase K to digest cellular proteins. The sample 

was then passed through the PAXgene Shredder spin column to homogenise the lysate 

and filter out cell debris. The supernatant of the flow-through was then passed through the 

PAXgene RNA spin column where the silica membrane selectively binds to the RNA. 



 

 

150 

After several wash steps the RNA is eluted and heat-denatured. The yield and quality of 

the RNA was assessed as described in section 2.2.3. RNA was DNase treated and cDNA 

was synthesised as described in sections 2.2.5 and 2.2.7 respectively. 

6.2.4 Genotyping 

Post-mortem brain and whole blood parent-child trio samples were genotyped by single 

base primer extension. In brief, PCR primers were designed to amplify approximately 200 

bp of genomic DNA containing the target SNP as described in section 2.3.1. PCR 

amplification, enzymatic cleanup, primer extension and electrophoresis were carried out 

for each sample as described in section 2.5. Primer sequences for the purpose of allelic 

expression analysis are presented in Table 6.1 and primers designed to map the PM20D1 

regulatory variant are presented in Table 6.2. Genotypes were called by GeneMarker® 

2.2.0 (SoftGenetics LLC®). Allele frequencies were compared to the HapMaP CEU 

database as a quality control. Genomic DNA had previously been extracted from the brain 

and blood donors by Dr Nicholas Bray and Dr Rebecca Smith respectively using standard 

phenol chloroform techniques. 

6.2.5 SNaPshot allele-specific expression assay 

Post-mortem brain and whole blood parent-child trio samples were assayed for allele-

specific expression by single base primer extension using SNaPshot chemistry (Applied 

Biosystems). This assay was carried out as described in section 2.5 with a minor 

alteration. The nature of these samples precluded the use of biological replicates. 

Therefore, each sample was assayed with four technical replicates from two separate 
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reverse transcription reactions. Genes assayed, tag SNPs and primer sequences are 

presented in Table 6.1. 

6.2.6 Bioinformatics 

6.2.6.1 eQTL analysis 

The influence of common SNPs on transcript levels of THNSL2 and PM20D1 in human 

brain was investigated using the SNPExpress eQTL database (Heinzen et al. 2008). The 

two genes were tested for cis-acting effects, where all common SNPs within 100 kb up- 

and down-stream of the target are tested for association with transcript levels. The 

database consists of genotype and expression data from 93 human brain samples. All 

settings were left as default. 

6.2.6.2 Linkage disequilibrium analysis 

Two bioinformatics tools were used to assess the linkage disequilibrium of SNPs of 

interest. CEU population genotype data from the International HapMap Project was 

analysed with HaploView version 4.2 (Barrett et al. 2005) and the Tagger function was 

used to aid tag SNP selection with an r2 threshold of one (de Bakker et al. 2005). The 

web-based tool SNAP (Johnson et al. 2008) was used to determine whether rs708727 is in 

linkage disequilibrium with any SNPs from the 1000 Genomes Project. 
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Table 6.1 | Primer sequences for allele-specific expression analysis. Forward 

(F), reverse (R) and extension (E) sequences are presented. 

Gene Tag SNP !! Primer sequence (5’-3’) 

CD163L1 rs7306824 
F GGGCATAATGCAAGGTGAGT 
R CTCTTCATGCTGCCAATGTG 
E AGAAAGAGATATGGCATCTCCACA 

CLUL1 rs8093432 
F GAAAAAGTGGTTCACAATCACC 
R TTTTCTAGGAGGAGTCATGAAGAA 
E CAAAATAAATGAAAGCTGCCCTCTCCT 

FTCD rs1980983  
F CTCTGGGAACCAAGCTTCTG 
R CCCTGAGGGAACTACCTGCT 
E CTGCTCCTCCACCAAGCCTGATGC 

OGFR rs1048802  
F CTCCTGGCCTGGCTGTGT 
R AAGTCAAATGAATTTATTCAGAAAAGG 
E TTATTCAGAAAAGGCCTTGCTTGG 

PKDREJ rs4508712  
F TTCCATTCATGCTGACCAAA 
R TGACAATTTTGAAGACCCTCAG 
E CCATCCAGGCTGCCCTCCC 

PM20D1 rs1104899 
F ATCACAGAGTTCTTGTCGTCCA 
R GAGGTGCCCCCATTCTCT 
E AGAGTTCTTGTCGTCCAGTGTGCCCC 

RPL22L1 rs13063927 
F GAGCAGGCTGGGTGTTTTTA 
R GCAATACCTCAGTGCAGCAA 
E TGGGAACAATGGGGCAGAG 

SELP rs6131 
F AGTGTCAGCACCTGGAAGC 
R CAAGCCCCTCACTCTGTAGC 
E TGAACACAGTCCATGGTTCCTTCA 

THNSL2 rs4129190 
F TTCTCTGGCTATGCACCTGA 
R GCTCAGAGCCAATGAAGAGG 
E AAGAGCTCCCACAGTTGGACAGAG 

TXLNB rs10499208  
F GGCAGAAAACGTGTTGGTTT 
R CCCAGCCCTCATCTCAATTA 
E CTGATATTGAGACCCAGTGTAGATTT 
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Table 6.2 | Primer sequences for genotyping candidate PM20D1 

cis-regulatory variants. Forward (F), reverse (R) and extension (E) 
sequences are presented. 

SNP !! Primer sequence (5’-3’) 

rs823114 
F TGATAGGCTCCACCTTCACC 
R TGATCAAGGCAGACGAGATG 
E CTAAGCAGCGACCATTTTTGTTTTGCGGC 

rs708723 
F CCATGTGCATTTCTGCATCT 
R AAACGCAGGTGCTGATTTCT 
E GGCACTAACTGGCACTAATGTGAG 

rs947211 
F GGTTGTCACATTTGCCTCCT 
R GGGAACCACACAACCAGTTC 
E TGAAAACTAAAGAGAAAATTTTGCTTCA 

rs1772159 
F CCTACATCCAAATCCCCAGA 
R CCCCATTGCTCAACCAGTAT 
E TGGTAAGGAGAGGTGGAGGGAAGGGAAT 

rs823154 
F GCCCTAGGAAGGGAATGGTA 
R GCCTGAATTGGAAAGGATGA 
E CCTTTACAGGGGATCAAGTGTCA 

rs708727 
F GGACTCCAAGAAGCCACACT 
R CCCACTTGCTCACCAGGTAT 
E GCAGCAATGGGTGTGGCCAC 

rs11240572 
F AAAAACCTTGGAGCCATCCT 
R AGGTAGTGCATGTGAAGGTCTG 
E ACATACCACATCCTATTGAACCCA 

rs960603 
F GGAAGAACAGAAGGGGAAGC 
R TCTTCTGACTCCAGCCCTTG 
E CTCTTTATTTACACCTGTTGTATTAATCA 

rs11240574 
F GTGACTTGCCCAGGGTCTAA 
R GCAGTGGGTCCATCACCTAT 
E TTTTCAGTTCTTTTTCCATCACACGTATG 



 

 

154 

6.2.6.3 Haplotype prediction 

In order to phase the PM20D1 tag SNP rs1104899 and rs708727, 92 individuals were 

genotyped for these two SNPs and eight more spanning approximately 100 kb (the SNPs 

assayed are presented in Table 6.2). The subjects were obtained from the MRC London 

Neurodegenerative Diseases Brain Bank and included those assayed for allelic expression 

of PM20D1. They were all free from psychiatric or neurological diagnosis at the time of 

death. Dr Nicholas Bray extracted the genomic DNA from these samples using standard 

phenol chloroform techniques. Genotyping was carried out as described in section 6.2.4. 

The primers sequences are presented in Table 6.2. Haplotypes were reconstructed from 

the genotype data using the program PHASE 2.02 (Stephens et al. 2001; Stephens & 

Donnelly 2003). All settings were set as default. The phase probability of the two SNPs 

was calculated from the x.out_pairs output file. 

6.2.6.4 Transcription factor binding site prediction 

Five SNPs (rs708727, rs823074, rs823075, rs9438393 and rs823080) were investigated 

for allele-specific modulation of transcription factor binding using three web-based 

predictive bioinformatics packages TFsearch (http://www.cbrc.jp/research/db/-

TFSEARCH.html), MatInspector (Quandt et al. 1995) and AliBaba 2.1 (http://www.gene-

regulation.com/pub/programs.html). All settings were left as default. 
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6.3 Results 

6.3.1 Screen for novel imprinted genes 

The genome-wide assay of allele-specific expression described in Chapter 3 detected 22 

genes with a pattern of monoallelic expression consistent with genomic imprinting: when 

all clonal lines from a donor showed the same monoallelic choice, and this was observed 

in at least two different donors. Of these 22 genes, twelve were known imprinted genes. 

The remaining ten were assayed in adult post-mortem brain. Sixteen individuals were first 

genotyped for the expressed SNPs. Heterozygotes, for which tissue was available, were 

then assayed for allelic expression. Monoallelic expression in a manner consistent with 

genomic imprinting was detected in two genes: PM20D1 and THNSL2 (see Figure 6.1). 

Monoallelic expression of PKDREJ was detected in one individual and RPL22L1 showed 

allelic imbalance in all three individuals assayed.  

  

Figure 6.1 | Allelic expression of ten candidate imprinted genes in adult human 

cortex. Data points represent the mean percentage representation of the major allele 
(n=4) for each individual and error bars illustrate the SEM. Continued overleaf. 
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Figure 6.1 | Continued. 
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Genomic imprinting is parent of origin dependent. In order to determine whether or not 

PM20D1 and THNSL2 are classically imprinted, further work was required to trace the 

parent of origin of the silenced alleles. This information was not available for the brain 

samples so the two genes were assayed in whole blood parent-child trios. 32 trios were 

genotyped and seven were informative for each gene. PM20D1 was not monoallelic in 

any of the individuals assayed in whole blood and therefore it was not possible to 

determine whether or not it is imprinted (see Figure 6.2). Monoallelic expression of 

THNSL2 was observed in all individuals assayed; however, no parent of origin effect was 

observed (see Figure 6.3). The SNPExpress database was interrogated for cis-acting 

genetic variants to describe the monoallelic expression of THNSL2. Sixteen SNPs were 

significantly associated with altered transcript levels in human brain (see Table 6.3). 

rs4359651 and rs13019346 were called heterozygous by the genotyping arrays in both 

monoallelic NSC genotypes, making them good candidates for further study.  

 

 Figure 6.2 | Allelic expression of PM20D1 in whole blood. Data points represent the 

mean percentage representation of the paternal allele (n=4) for each individual and error 
bars illustrate the SEM. 
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Figure 6.3 | Allelic expression of THNSL2 in whole blood. Data points represent the 
mean percentage representation of the paternal allele (n=4) for each individual and error 
bars illustrate the SEM. 

 

Table 6.3 | SNPs influencing the expression of THNSL2 

in human brain. P values from SNPExpress and 

genotypes of the monoallelic spinal cord (SPC) and striatal 
(STR) NSC donors are included. 

SNP ID P value SPC STR 
rs988731 0.005926 BB BB 
rs7581571 0.01628 - - 
rs4386315 0.001242 - - 
rs10185660 0.009162 AA AA 
rs4359651 4.22 x 10-10 AB AB 
rs4246599 1.99 x 10-5 BB AB 
rs4129190 5.59 x 10-5 AA AB 
rs2139100 1.19 x 10-4 - - 
rs2176569 2.07 x 10-4 AB AA 
rs3791357 0.02674 - - 
rs2292869 0.01712 BB BB 
rs9973903 2.07 x 10-5 - - 
rs13019346 0.001996 AB AB 
rs2363731 0.007068 AB BB 
rs6724281 0.003975 - - 
rs4355112 0.001243 BB BB 
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6.3.2 Further investigation of PM20D1 

PM20D1 is located in the PD susceptibility locus PARK16 and a SNP within PM20D1, 

rs11240572, has previously shown genome-wide association with PD (Satake et al. 2009). 

Therefore, determining the cause of monoallelic expression was of particular interest. A 

further twenty individuals were assayed in post-mortem cortex. A varied pattern of allelic 

expression was observed; eleven subjects display monoallelic expression and twelve 

show equal representation of the two alleles (see Figure 6.4). This was considered 

consistent with a causative cis-acting genetic variant. To test this hypothesis, the 

SNPExpress database was interrogated for SNPs that influence the expression of 

PM20D1. Seven showed a significant association with PM20D1 transcript levels in 

human brain (see Table 6.4), and one of these, rs960603, was heterozygous in both 

monoallelic NSC genotypes.  

 

Figure 6.4 | Allelic expression of PM20D1 in adult human cortex. Data points 
represent the mean percentage representation of the major allele (n=4) for each 

individual and error bars illustrate the SEM. 
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The 23 individuals assayed for PM20D1 allelic expression were genotyped for rs960603 

as well as two PARK16 SNPs that showed genome-wide association with PD in the 

discovery genome-wide association study (Satake et al. 2009). rs11240572 is located in 

an intron in PM20D1 and rs947211, located in NUCKS1, showed the strongest 

association with PD from the PARK16 locus. None of the three SNPs defined the 

monoallelic expression of PM20D1 (see Figure 6.5).  

The NSC genotype microarray data was then sorted for all SNPs that were heterozygous 

in both monoallelic NSC donors within 100 kb of PM20D1. Six additional SNPs met 

these criteria. The Tagger function in HaploView was used to assess the linkage 

disequilibrium of these SNPs in the CEU population HapMap data. None met the r2 

threshold of one; so all six were genotyped in the 23 individuals assayed for allelic 

expression. Genotypes were grouped by homozygotes and heterozygotes for each SNP 

(see Figure 6.6). The SNP rs708727 showed a strong association with all homozygotes 

biallelic, and all heterozygotes monoallelic (p < 0.0001, Fisher’s exact test). The 

SNPExpress eQTL database reports a trend between rs708727 genotype and PM20D1 

transcript levels (p = 0.07978). 

Two monoallelic individuals (A152/95 and A206/90) preferentially express the alternate 

allele of the expressed PM20D1 SNP rs1104899. To test whether this was a result of a 

phase inversion between the functional and expressed SNPs, the genotype data from ten 

SNPs across this region (including rs1104899 and rs708727) for 92 subjects (including 

those assayed for PM20D1 allelic expression) was processed with the software package 

PHASE 2.02. The individuals A152/95 and A206/90 were the only two monoallelic 

subjects predicted to have a phase inversion (see Table 6.5). 
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Table 6.4 | SNPs influencing the expression of PM20D1 

in human brain. P values from SNPExpress and 

genotypes of the monoallelic cortical (CTX) and striatal 
(STR) donors are included. 

SNP ID P value CTX STR 
rs823128 0.02148 AA AA 
rs823122 0.03389 AA AB 
rs823066 0.004208 BB BB 
rs708730 0.0304 AA AB 
rs823088 0.006034 AB AA 
rs11240572 0.04442 - - 
rs960603 0.03218 AB AB 

 

 

 

Figure 6.5 | Allelic expression of PM20D1 grouped by genotype of candidate 

regulatory variants. Data points represent the mean percentage representation of the 
major allele (n=4) for each individual. Individuals are grouped by homozygotes (Hom) 

and heterozygotes (Het). 
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Figure 6.6 | Allelic expression of PM20D1 grouped by genotype of candidate 

regulatory variants. Data points represent the mean percentage representation of the 
major allele (n=4) for each individual. Individuals are grouped by homozygotes (Hom) 

and heterozygotes (Het). 
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Table 6.5 | Phase predictions of rs708727 and the allelic expression 

tag SNP for monoallelic individuals. Sample A049/03 dropped out of 

phase analysis due to incomplete genotype data. 

Individual Strand rs708727 rs1104899 Probability 

A033/96 1a G A 0.943 1b A G 

A094/95 1a G A 0.914 1b A G 

A098/89 1a G A 0.921 1b A G 

A123/09 1a G A 0.808 1b A G 

A130/09 1a G A 0.628 1b A G 

A152/95 1a G G 0.734 1b A A 

A205/94 1a G A 0.853 1b A G 

A206/90 1a G G 0.569 1b A A 

A331/94 1a G A 0.961 1b A G 

A346/95 1a G A 0.628 1b A G 
 

 

Figure 6.7 | Allelic expression of PM20D1 in monoallelic individuals. Data points 
represent the mean percentage representation of the major allele (n=4) for each 

monoallelic individual and error bars illustrate the SEM.  

PM20D1

A03
3/9

6

A04
9/0

3

A09
4/9

5

A09
8/8

9

A12
3/0

9

A13
0/0

9

A15
2/9

5

A20
5/9

4

A20
6/9

0

A33
1/9

4

A34
6/9

5
0

20

40

60

80

100

Al
le

lic
 e

xp
re

ss
io

n



 

 

164 

The associated SNP, rs708727, is a synonymous coding variant located in exon six of the 

neighbouring gene SLC41A1. In the Caucasian population, rs708727 is in linkage 

disequilibrium (r2 = 1) with four other SNPs from the 1000 Genomes Project: rs823074, 

rs823075, rs9438393 and rs823080. Two of these are located in an intron of SLC41A1 

and two are in the intergenic space between SLC41A1 and PM20D1 (see Figure 6.8). 

These five SNPs were subjected to bioinformatic analysis of transcription factor binding 

sites using three prediction packages. Each SNP is predicted to reside within multiple 

transcription factor binding sites and each is predicted to cause allele-specific 

transcription factor binding. There is no consistency of binding site prediction between 

packages (see Table 6.6).  

 

Figure 6.8 | Graphic representation of PM20D1 and neighbouring SLC41A1. 
rs708727 and the four SNPs in linkage disequilibrium are illustrated. 

Professor Huw Morris and Dr Nigel Williams tested rs708727 for association with PD 

(personal communication) using a meta-analysis dataset from five PD genome-wide 

association studies in Caucasian populations from Europe and the USA (Nalls et al. 

2011). No association was found (p = 0.7191). 

 



 

 

165 

 

Table 6.6 | Predicted transcription factor binding motifs. 

SNP 
 

 
Software 
 

Transcription factors 
 

Binding allele 
 

rs708727 TFSearch - - 
  MatInspector Doublesex and mab-3 related 1 A + G 
    SMAD3 A + G 
    X-box binding protein 1 G 
    Myc-Max G 
  AliBaba Repressor activator protein 1 G 
rs823074 TFSearch - - 
  MatInspector Zinc finger protein 148 C + T 
    Zinc finger protein 219 C + T 
    GRE C 
  AliBaba Specificity protein 1 C 
    CCAAT/enhancer binding protein alpha T 
rs823075 TFSearch - - 
  MatInspector Homeobox protein H6 2 C + T 
    Proximal sequence element C + T 
    General transcription factor IIIC C 
    NK3 homeobox 1 T 
  AliBaba - - 
rs9438393 TFSearch - - 
  MatInspector T-cell leukemia homeobox 1 A + G 
    Grainyhead-like 1 A + G 
    E2F-4/DP-2 heterodimeric complex A 
    Hmx2/Nkx5-2 homeodomain A + G 
    Olfactory neuron-specific factor A + G 
    Winged helix protein G 
  AliBaba - - 
rs823080 TFSearch Ikaros 2 A 
  MatInspector NF-kappaB A + G 
    Ikaros 3 A + G 
    Glial cells missing homolog 1 A 
    Mesoderm posterior 1 and 2 A + G 
    Transcription factor yin yang 2 A + G 
    Neurogenin 1 and 3 A + G 
    SWI/SNF related, matrix associated A 
    Myc associated zinc finger protein G 
  AliBaba Specificity protein 1 A + G 
    CACCC-bi A 
    Early growth response 1 G 
    CCAAT/enhancer binding proteins G 
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6.4 Discussion 

The study reported in this chapter initially sought to screen for novel imprinted genes. 

The genome-wide assay of allele-specific expression reported in Chapter 3 detected 22 

genes that showed monoallelic expression of the same allele in all clonal NSC lines for at 

least two genotypes. Twelve of these genes were known imprinted genes and therefore, 

the remaining ten were deemed putatively imprinted. These candidates were assayed in 

post-mortem adult cortex where two genes, PM20D1 and THNSL2, displayed a pattern of 

allelic expression consistent with genomic imprinting (i.e. monoallelic expression in all 

three initial samples). After further investigation it was determined that genomic 

imprinting does not cause the monoallelic expression of these two genes. Therefore, this 

study did not validate any novel imprinted genes.  

With the exception of PM20D1 and THNSL2, which appear to be explained by genetic 

effects (discussed below), these genes remain candidate novel imprinted genes. Tissue-

specific monoallelic expression is common for imprinted genes (Prickett & Oakey 2012); 

therefore, the observation that they are not monoallelic in the adult cortex does not 

disqualify them from being imprinted in NSCs and other tissues. Further research in 

multiple NSC lines, or foetal brain, with parental genotype data will be required to answer 

this question. An alternative explanation for the allelic expression pattern of these genes 

is that the NSC donors are heterozygous for a cis-acting genetic regulatory variant while 

the subjects assayed in adult cortex are homozygotes. The screen in post-mortem brain 

tissue was in a small sample size with limited power to detect such effects. The 

observation that PKDREJ shows distortion in two of four individuals suggests that 

genetic effects could describe its allelic expression pattern. It has previously been 
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reported that a large proportion of cis-acting genetic variants have a tissue-specific effect 

on gene expression (Zhang et al. 2009; Dimas et al. 2009) and this could also explain the 

different allelic expression patterns observed in NSCs and adult cortex. Finally, the 

genome-wide assay was carried out in clonal NSCs and it cannot be ruled out that the 

putative imprinted genes are subject to RME in the NSCs with the same allele silenced in 

each clone by chance. RME is expected to be masked in non-clonal brain tissue by 

neighbouring cells that express the alternate, or both, alleles and this could explain the 

observed biallelelic expression of these genes in adult cortex. The remaining candidate 

imprinted genes require further investigation in other tissues to determine the cause of 

monoallelic expression observed in the NSCs. 

The genome-wide assay of allele-specific expression reported in Chapter 3 was not 

designed with the intention of screening for novel imprinted genes and, therefore, it has 

some limitations when used for this application. Firstly, the small sample size of three 

genotypes reduces the power to discriminate between genomic imprinting and common 

genetic effects. Secondly, the validation of genomic imprinting requires the 

demonstration of parent of origin specific allele silencing and this information was not 

available for the NSC lines assayed. Together, these limitations meant that candidates 

were followed up in different tissues, exposing the confounding factor of tissue-specific 

regulation. Finally, screening for genomic imprinting in clonal tissue is not ideal as RME 

genes can be mistaken for imprinted genes when the same allele is silenced in all clones 

by chance. The complete definition of human genomic imprinting will be laborious task, 

requiring transcriptome-wide analysis of allele-specific expression in all human tissues 

from different developmental stages. These samples also need to be accompanied by 
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parental genotype data. This is an important job as it promises to be informative for both 

human disease and evolution. 

The gene PM20D1 was found to be monoallelic in all of the cortical and striatal NSC 

lines as well as eleven of the 23 subjects assayed in adult cortex. I found the monoallelic 

expression of PM20D1 to be strongly associated with rs708727, a SNP in the 

neighbouring gene SLC41A1; all homozygotes were biallelic and all heterozygotes were 

monoallelic. rs708727 has a minor allele frequency of 0.46 in the CEU HapMap cohort 

and is rare in Asian and African HapMap populations. The SNPExpress eQTL database 

reports a trend towards altered transcript levels of PM20D1 in brain associated with 

rs708727 genotype, although it did not meet the threshold for statistical significance (p = 

0.07978). The association between rs708727 and the monoallelic expression of PM20D1 

does not prove causality; it could be tagging the causative variant. The location of 

rs708727, in an exon of a neighbouring gene, makes this a more likely explanation. It was 

found to be in linkage disequilibrium with four other SNPs from the 1000 Genomes 

Project (rs823074, rs823075, rs9438393 and rs823080), of which two are also in 

SLC41A1 and two are in the intergenic space between SLC41A1 and PM20D1. 

Bioinformatic analysis of these SNPs was carried out with the aim of revealing which is 

most likely to define the monoallelic expression of PM20D1. All were predicted to alter 

transcription factor binding, but there was no consistency between predictions from the 

three programs. The observation that PM20D1 is expressed biallelically in all seven 

individuals assayed in blood indicates that the causative variant is in a tissue-specific 

regulatory region. However, it should be noted that the allelic status of PM20D1 in the 

brain of those individuals is unknown. Further molecular biology will be required to 

identify the causative variant. One approach for further study is site directed mutagenesis; 
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rs708727 and the four other SNPs in linkage disequilibrium could each be altered to 

homozygous state in the monoallelic NSC lines. Allelic expression analysis would then 

reveal if any of these variants were causing the monoallelic expression of PM20D1.  

Little is known about the functional role of PM20D1 (peptidase M20 domain containing 

1) other than a link with peptidase activity and metal ion binding inferred from electronic 

annotation (http://www.ncbi.nlm.nih.gov/gene/). The observation that PM20D1 is 

commonly monoallelic in NSCs and adult brain was of particular interest because it is 

located in the PD susceptibility locus PARK16. A SNP in PM20D1 intron ten, 

rs11240572, has shown genome-wide significant association with PD in the Japanese 

population (Satake et al. 2009). While the strongest PARK16 association signal came 

from a SNP in NUCKS1, linkage disequilibrium analysis indicated that rs11240572 

represented an independent association signal. The association between rs11240572 and 

PD has twice been replicated in Chinese cohorts (Tan et al. 2010; Yan et al. 2011). The 

signal from rs11240572 was less robust in a Caucasian genome-wide association study (p 

= 1.3 x 10-4) and did not surpass Bonferroni-corrected significance (Simón-Sánchez et al. 

2009). However, the significance was improved when the initial study was combined with 

a stage two replication study (p = 6.11 x 10-7) and the investigators concluded that it is 

likely to represent a true association. The allele frequency of the implicated SNP is low in 

the tested population (2 to 4%) and this could account for the weaker association detected 

in the Caucasian population. Professor Huw Morris and Dr Nigel Williams tested the SNP 

associated with monoallelic expression of PM20D1, rs708727, for association with PD in 

a meta-analysis dataset from five PD genome-wide association studies in European and 

North American populations (personal communication). No association was found (p = 

0.7191), indicating that the monoallelic expression of PM20D1 is not influencing PD 
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susceptibility in these populations. In the future it will be interesting to test for a 

compound heterozygote effect of rs708727 and rs11240572 on PD risk. 

THNSL2 also showed an allelic expression pattern consistent with genomic imprinting 

after the initial screen in post-mortem cortex. Further investigation in parent-child trios 

revealed that THNSL2 was also monoallelic in all seven individuals in whole blood, but 

monoallelic expression was not dependent on parent of origin. This is inconsistent with 

genomic imprinting and indicative of a cis-acting genetic variant. Interrogation of the 

SNPExpress eQTL database revealed sixteen SNPs associated with altered transcript 

levels in human brain. Of these, two were heterozygous in the two monoallelic NSC 

genotypes, making them candidates for further study. An additional six were not covered 

on the genotyping array and therefore they also remain candidates. The fact that all 

individuals assayed are monoallelic indicates that the allelic expression tag SNP is in 

linkage disequilibrium with, or is itself, the causative variant. The same approach used for 

the investigation of PM20D1 could be carried out to map the causative variant. It cannot 

be ruled out that a parent of origin independent epigenetic effect causes the monoallelic 

expression of THNSL2. 

THNSL2 (threonine synthase-like 2) is a conserved gene remnant encoding a protein with 

close homology to threonine synthase. It is incapable of L-threonine synthesis (metazoa 

have lost the L-threonine biosynthetic pathway) but can act as a catabolic phospholyase 

(Donini et al. 2006). The THNSL2 mRNA splice variant B, named SOFAT, has been 

shown to encode a protein with cytokine activity capable of inducing IL6 production by 

oseteoblasts (Rifas & Weitzmann 2009). Considering the current understanding of 

THNSL2 function, the biological significance of its monoallelic expression is unclear. 
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6.5 Conclusion 

In conclusion, the present study sought to test ten putative imprinted genes predicted from 

a genome-wide assay of monoallelic expression in human NSCs. No further evidence in 

support of imprinting was gained from screening in adult cortex samples. However, I find 

the monoallelic expression of PM20D1 to be strongly associated with rs708727. This 

SNP shows no association with PD in the European and Northern American populations 

tested. Evidence in support of a genetic variant underlying the monoallelic expression of 

THNSL2 is also presented. This study was not ideally suited for the identification of novel 

imprinted genes and the nature of the monoallelic expression of eight of the putative 

imprinted genes in the NSCs remains to be determined. However, this study validates the 

use of genome-wide screens for monoallelic expression as a method of identifying large-

effect genetic cis variants. This approach could prove informative in screening for rare 

variants in disease cohorts. 
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Chapter 7. General discussion 

 

The overall aim of the series of experiments presented in this thesis was to explore 

autosomal monoallelic gene expression in human neural tissue. Monoallelic expression 

has long been recognised in the form of XCI, genomic imprinting and RME of a small 

number of gene families. More recently, studies have reported evidence of widespread 

autosomal RME in human lymphoblastoid cells (Gimelbrant et al. 2007) and mouse 

NSCs (Wang et al. 2010; Li et al. 2012). If this were true for human NSCs, and by 

extension the developing human brain, RME would be predicted to have significant 

implications for neural development, function and disease. Therefore, I sought to assess 

the prevalence, nature and potential functional implications of RME in human NSCs and 

their differentiated progeny.  

The initial objective of this thesis was to determine whether or not RME occurs in human 

NSCs, and if so, to what extent. In Chapter 3 I report the first genome-wide assessment of 

allele-specific expression in human neural tissue with the power to detect RME. A 

genotyping microarray array approach was used based on the method described by 

Gimelbrant et al. (2007). I find that 1.6 to 2.2% of assayed autosomal genes display 

monoallelic expression and 0.5 to 1.1% show evidence of RME. Therefore, I demonstrate 

for the first time that, as in human lymphoblastoid cells and mouse NSCs, autosomal 

RME is widespread in human NSCs. The prevalence of RME reported in this study is 

consistent with studies of monoallelic expression in mouse NSCs (Wang et al. 2010; Li et 

al. 2012) but lower than the 9% reported in human lymphoblastoid cells (Gimelbrant et al. 

2007). This discrepancy is likely explained by technical differences between our studies; 
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unlike Gimelbrant et al., the present study excluded lowly expressed genes as well as 

those with a single informative SNP.  

The novel RME genes reported in Chapter 3 are dispersed throughout the autosome and 

were found enriched for the functional term “signal” and the topological domains 

“extracellular” and “transmembrane”. This is consistent with observations made by 

Gimelbrant et al. who found a disproportionate fraction of monoallelic genes encoding 

cell surface proteins (Gimelbrant et al. 2007). Additionally, the RME genes detected in 

the brain-derived NSCs were enriched for developmental terms. I find evidence in 

support of a genetic component to RME, predisposing alleles for RME: significantly 

more RME genes overlap between genotypes than would be expected by chance. 

Furthermore, I find that RME genes are significantly biased towards silencing the same 

rather than the alternate allele. This demonstrates that, at least for a proportion of the 

genes detected, the choice of which allele to silence is not truly random. Further 

investigation of the mechanisms that regulate this form of monoallelic expression is 

required. I find the novel RME genes to be associated with increased DNA methylation at 

promoter regions when compared to biallelic loci. Using the demethylating agent 5-Aza, I 

demonstrate that DNA methylation directly regulates the monoallelic expression of all 

twelve novel RME genes assayed in the spinal cord NSC lines.  

Given the observation that autosomal RME is widespread in human NSCs, I assessed 

whether it is maintained after differentiation into the cell types that populate the adult 

central nervous system: neurons and glia. A microarray-based genome wide analysis of 

allele-specific expression was carried out using the spinal cord NSC lines, which have 

previously been shown to retain their positional specification and generate functional 
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neurons (paper submitted). I find that non-imprinted autosomal monoallelic expression 

was largely retained after neural differentiation; 71% of RME genes assayed after 

differentiation maintained monoallelic status. The genes that lost monoallelic status 

predominantly adopted an intermediate state of allele expression imbalance. It is unclear 

whether this reflects an intermediate allele ratio for each cell, or whether a proportion of 

cells remain monoallelic while others revert to biallelic status. Indeed, this differentiation 

protocol results in a heterogeneous cell population and neural cell type-specific RME has 

previously been described in mouse (Wang et al. 2010; Li et al. 2012). A revealing follow 

up study could be carried out assaying cell populations purified for specific cell types.  

The studies described above demonstrate that autosomal RME is widespread in human 

NSCs in vitro and indicate that it is largely preserved after differentiation. Whether or not 

NSCs and their progeny are subject to the same regulation in vivo is of particular interest. 

Direct allele-specific expression analysis of brain tissue is complicated by the fact that 

RME is expected to be masked by the heterogeneous non-clonal nature of this tissue. 

Therefore, I interrogated publically available epigenetic data from human foetal and adult 

brain in an attempt to test the in vivo relevance of these findings. In both foetal and adult 

brain, RME genes were associated with significantly increased DNA methylation when 

compared to biallelic loci. Additional epigenetic measures were assessed in foetal brain; 

RME genes were found enriched for repressive H3K27me3, while biallelic genes were 

enriched for signatures of open chromatin (H3K4me3, H3K9ac and DNaseI 

hypersensitivity). Therefore, I find that the novel RME loci detected in this thesis are 

epigenetically distinct from biallelic loci in a manner consistent with monoallelic 

expression in vivo. Whether or not they are also subject to RME remains to be 

determined. An essential follow up study to advance our understanding of this process is 
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ex vivo single cell analysis from human brain. Single cell RNA-seq technology is 

becoming established (Tang et al. 2010) and provides the ideal platform to assess RME in 

heterogeneous non-clonal brain tissue. 

If widespread RME is occurring in vivo, then the point at which it is initiated will dictate 

the size and distribution of clones that share the same pattern of monoallelic and biallelic 

genes. In Chapter 4 I report a pilot study investigating the allelic status of five novel RME 

genes after reprogramming to iPSCs. I find that all five genes loose monoallelic status 

and four completely revert to biallelic status. Preliminary results from the succeeding 

genome-wide analysis are consistent with this data, with 83% of non-imprinted autosomal 

monoallelic genes detected in SPC01 losing monoallelic status after reprogramming. 

These results indicate that RME is initiated between the ESC and NSC stage. Following 

iPSCs or ESCs through neural differentiation could enable the precise timing of RME 

initiation to be elucidated.  

After exploring the extent and nature of RME in Chapters 3 and 4, the next aim was to 

investigate the possible functional implications that this process could have at the cellular 

level. Other forms of monoallelic expression are known to affect cells by either altering 

transcript levels or exposing functional diversity. In Chapter 5 I assess the transcript 

levels of RME genes in biallelic versus monoallelic clones using gene expression 

estimates from the genotyping microarrays. I find that significantly more monoallelic 

clones have lower transcript levels than sister biallelic clones than would be expected by 

chance. Furthermore, the mean expression of monoallelic clones was significantly lower 

than that of biallelic clones. These data indicate that RME is capable of influencing cell 

phenotype by altering gene transcript levels. However, it should be noted that this was not 
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a general rule, as nearly 40% of genes did not show the expected relationship. It is not 

clear whether this is accounted for by feedback mechanisms to correct for altered gene 

dosage, or whether interclonal variation in gene expression is masking the effect. A recent 

study on mouse NSCs using RNA-seq, which is better suited to this analysis, lends 

support to my findings; they report a mean 35.8% reduction of expression levels in 

monoallelic compared to biallelic clones (Li et al. 2012). Further investigation of the 

dosage sensitivity of the RME genes could be carried out by genetic manipulation of gene 

copy numbers. Whether or not this relationship translates to the protein level remains to 

be determined.  

In addition to altering gene transcript levels, monoallelic expression can alter cellular 

phenotype by exposing functional variation. I tested the extent that this is likely to occur 

for the novel RME genes reported in this thesis by assessing the number of nsSNPs per 

coding base in RME and biallelic genes. Intriguingly, I find a significant 1.58 fold 

enrichment of nsSNPs per coding base in RME genes when compared to biallelic genes. 

This indicates that the widespread autosomal RME reported in this thesis has the potential 

to influence cellular phenotype by exposing functional variation. The reason for the 

enrichment of nsSNPs is, as yet, unclear. It could be that the generation of tissue diversity 

itself is an adaptive advantage in a manner similar to odorant receptors, antigen receptors 

and protocadherins. The enrichment of genes encoding transmembrane signalling proteins 

is evidence in support in support of this hypothesis, although further work at the gene 

level will be required to determine if this is the case. The observation that RME genes are 

enriched for nsSNPs is also consistent with a theory of RME enhancing a gene’s 

evolvability (Chess 2012). This concept is appealing as it has previously been reported 

that RME are more than twice as likely to be located near noncoding sequences 
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associated with human lineage-specific accelerated evolution (Gimelbrant et al. 2007), 

and my colleague Dr Aaron Jeffries replicated this finding with our dataset (Jeffries et al. 

2012). Investigating the evolutionary rate of these genes by comparison of RME and 

biallelic gene ka/ks ratios could be informative. It should also be noted that the 

enrichment of nsSNPs in RME genes could merely represent these genes being less 

critical for the cell and subsequently under less intensive purifying selective pressure. 

Taken together, the findings discussed above demonstrate that autosomal RME is 

widespread in human NSCs in vitro and that it is largely maintained after differentiation 

into neurons and glia. Here, this process has the potential to drive phenotypic diversity 

between otherwise identical clones of cells by altering gene transcript levels and by 

exposing functional variation. This could go some way towards explaining the well-

documented non-genetic heterogeneity observed between clonal cell populations (Huang 

2009) and it highlights the importance of full and proper epigenetic characterisation of 

NSC lines for clinical and research applications. Furthermore, the data presented in this 

thesis supports a model in which the human central nervous system is a mosaic of clones 

of cells, each with different combinations of monoallelic and biallelic genes. RME can 

give rise to three cell states: biallelic, monoallelic for the paternal allele or monoallelic for 

the maternal allele (see Figure 7.1). This would be predicted to have significant 

implications for human neural development, function and disease. Widespread RME 

would have the potential to drive phenotypic diversity, not just between cells but also 

between individuals. Take the example of monozygotic twins; while they share identical 

genetic backgrounds, the stochastic nature of RME would result in distinct gene 

expression potentials for each twin in discrete brain regions. This could help explain the 

discordance between monozygotic twins for psychiatric disorders (Dempster et al. 2011). 
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The penetrance of a disease-causing allele subject to RME would be altered in 

heterozygotes based on the location, or connectivity, of cells exclusively expressing the 

mutant allele. In addition, widespread RME in somatic tissues could be relevant to human 

disease by way of exposing recessive deleterious mutations, although clones exclusively 

expressing the mutant allele could be selected against during development in manner 

similar to XCI skewing in females carrying deleterious X-linked mutations (Plenge et al. 

2002). While these potential implications are intriguing, it should be stressed that 

widespread RME in human neural tissue remains to be demonstrated in vivo. 

 

Figure 7.1 | RME can give rise to three cell states. A hypothetical scenario where a 
neurotransmitter receptor gene comprised of functionally distinct alleles is subject to 

RME. A) Biallelic expression: both receptor variants are expressed and present at the 

synapse resulting in maximal sensitivity. B) Monoallelic expression of the high sensitivity 

C variant: here, reduced receptor density decreases the excitability of the synapse. C) 

Monoallelic expression of the low sensitivity T variant: this scenario results in even 
further reduction of post-synaptic cell excitability. 
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In Chapter 6 I report a screen for novel imprinted genes using the genome-wide allele-

specific expression data reported in Chapter 3. Ten putative novel imprinted were assayed 

in post-mortem adult cortex where two genes, PM20D1 and THNSL2, had an allelic 

expression pattern consistent with genomic imprinting. After further investigation I was 

able to map genetic variants associated with the monoallelic expression of PM20D1. This 

gene was of particular interest as it is located in the PD susceptibility locus PARK16 and a 

SNP within PM20D1 has shown association with PD (Satake et al. 2009; Tan et al. 2010; 

Yan et al. 2011). The SNP associated with PM20D1 monoallelic expression, rs708727, 

was not found to be associated with PD in the meta-analysis dataset tested, indicating that 

the causative variant does not influence PD susceptibility in the Caucasian population. 

However, a compound heterozygote effect cannot yet be ruled out. THNSL2, which also 

showed an allelic expression pattern consistent with genomic imprinting after the initial 

screen in post-mortem cortex, was also monoallelic in blood but showed no parent of 

origin dependence and is therefore inconsistent with genomic imprinting. Interrogation of 

the SNPExpress eQTL database revealed sixteen candidate SNPs that influence THNSL2 

expression in human brain. Two of these are heterozygous in both monoallelic NSC 

genotypes and therefore good candidates for further study. The cause of monoallelic 

expression of the remaining eight putative novel imprinted genes remains unknown. 

These genes remain candidate novel imprinted genes, although common genetic effects 

could also explain the observed allelic expression pattern. The work reported in Chapter 6 

highlights the need for large sample sizes with parental genotype information when 

screening for genomic imprinting. It also validates the use of genome-wide assays of 

monoallelic expression for the detection of large-effect genetic cis variants. This approach 

could prove valuable in screening for rare variants in disease cohorts. 
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Conclusion 

In this thesis I report evidence of widespread autosomal RME expression in human NSCs 

and their differentiated progeny in vitro for the first time. My data indicates that this 

process has the potential to drive phenotypic diversity between genetically identical cells. 

These findings highlight the importance of full and proper epigenetic characterisation of 

NSC lines for clinical and research applications. Furthermore, they support a model of 

widespread RME in the human central nervous system driving phenotypic diversity both 

between clones of cells and individuals. If this process does occur in vivo, it would be 

predicted to have significant implications for brain development, function and disease. 

These observations warrant a follow up investigation in ex vivo human foetal and adult 

brain. Single cell RNA-seq represents an ideal platform to progress our knowledge of this 

phenomenon. Finally, I have mapped the genetic variants associated with the monoallelic 

expression of PM20D1. While this variant does not appear to have any influence on PD 

susceptibility, the finding validates the use of screens for monoallelic expression in 

identifying cis acting genetic variants. 
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Appendix 9.1 | Raw SNP probe intensity values of cDNA samples from the microarray study 

described in Chapter 3. 
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Appendix 9.2 | SNP probe intensity values of cDNA samples from the microarray study 

described in Chapter 3 after quantile normalisation.  

In
te

ns
ity

 



 

 

206 

 

Appendix 9.3 | Gene ontology terms enriched in the RME genes lists from all three donors. 

GO Term 
Cortical donor Striatal donor Spinal cord donor 

Count % Enrichment p value Count % Enrichment p value Count % Enrichment p value 

Transmembrane 26 30.95 1.41 0.048 37 35.92 1.62 0.0015 14 33.33 1.67 0.046 
Extracellular 16 19.05 1.88 0.018 19 18.45 1.83 0.013 11 26.19 2.81 0.0032 
Cytoplasmic 22 26.19 1.88 0.0038 27 26.21 1.88 0.0012 13 30.95 2.43 0.0034 
Glycoprotein 33 39.29 2.2 5.58E-06 34 33.01 1.88 0.00018 13 30.95 1.96 0.019 
Signal 23 27.38 2.07 0.00084 24 23.3 1.84 0.0037 11 26.19 2.28 0.014 
Glycosylation site:N-linked 33 39.29 2.31 1.83E-06 34 33.01 1.96 0.000082 13 30.95 2.04 0.014 
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Appendix 9.4 | Gene ontology terms enriched in the RME genes lists from the two brain derived NSC lines. 

GO Term 
Cortical donor Striatal donor 

Count % Enrichment p value Count % Enrichment p value 

Anatomical structure development 21 25 1.91 0.0031 20 19.42 1.62 0.027 

Cellular component morphogenesis 8 9.52 3.77 0.0045 8 7.77 3.42 0.0079 

System development 19 22.62 1.9 0.0059 19 18.45 1.7 0.021 
Anatomical structure morphogenesis 13 15.48 2.36 0.0064 12 11.65 1.95 0.037 
Cell morphogenesis 6 7.14 3.11 0.04 8 7.77 3.73 0.0049 
Cell morphogenesis involved in differentiation 5 5.95 3.75 0.042 7 6.8 4.86 0.0028 
Membrane 45 53.57 1.54 0.000097 50 48.54 1.34 0.005 
Intrinsic to membrane 28 33.33 1.4 0.036 41 39.81 1.58 0.00069 
Transmembrane 26 30.95 1.41 0.048 37 35.92 1.62 0.0015 
Extracellular 16 19.05 1.88 0.018 19 18.45 1.83 0.013 
Cytoplasmic 22 26.19 1.88 0.0038 27 26.21 1.88 0.0012 
Glycoprotein 33 39.29 2.2 5.58E-06 34 33.01 1.88 0.00018 
Signal 23 27.38 2.07 0.00084 24 23.3 1.84 0.0037 
Glycosylation site:N-linked 33 39.29 2.31 1.8E-06 34 33.01 1.96 0.000082 
Cell adhesion 8 9.52 4.61 0.0016 6 5.83 3.04 0.046 
Disulfide bond 18 21.43 2.05 0.0047 20 19.42 1.93 0.0057 
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Appendix 9.5 | Histone modification and DNaseI sensitivity of novel RME genes in 

human foetal brain. Chromatin data for biallelic (blue) and RME (red) genes detected in 

the spinal cord (A) and striatal (B) cell lines. Whiskers represent the 10-90th percentile. 

T-test P value summaries are presented. 
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Appendix 9.6 | Raw SNP probe intensity values of cDNA samples from the 

microarray study described in Chapter 4. 

 



 

 

210 

 

 

 

Appendix 9.7 | SNP probe intensity values of cDNA samples from the microarray 

study described in Chapter 4 after quantile normalisation. 
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Appendix 9.8 | Gene ontology terms enriched in the monoallelic genes 

detected in the differentiated spinal cord lines. 

GO Term 
Differentiated spinal cord lines 

Count % Enrichment p value 

Extracellular region 11 16.18 2.46 0.009 
Glycoprotein 22 32.35 1.85 0.0035 
Signal 19 27.94 2.20 0.0012 

Disulfide bond 18 26.47 2.77 0.00012 

Polymorphism 53 77.94 1.32 0.00042 
Sequence variant 54 79.41 1.30 0.00046 
Glycosylation site:N-linked 22 32.35 1.94 0.002 
Cleavage on pair of basic residues 6 8.23 8.00 0.00081 

 



 

 

212 

 

 

Appendix 9.9 | Correlation of Δβ values from all autosomal genes assayed in the 

three spinal cord NSC lines in the primary microarray study reported in Chapter 3 

and the secondary study reported in Chapter 4. A good correlation is observed 

between the two datasets (p < 0.0001, R = 0.72). 
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