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A Topological Loss Function for
Deep-Learning based Image Segmentation

using Persistent Homology
James R. Clough, Nicholas Byrne, Ilkay Oksuz, Veronika A. Zimmer, Julia A. Schnabel, Andrew P. King

Abstract—We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge
about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the
differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of
segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological
features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being
segmented. We demonstrate our approach in four experiments: one on MNIST image denoising and digit recognition, one on left
ventricular myocardium segmentation from magnetic resonance imaging data from the UK Biobank, one on the ACDC public challenge
dataset and one on placenta segmentation from 3-D ultrasound. We find that embedding explicit prior knowledge in neural network
segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a
semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.

Index Terms—Segmentation, Persistent Homology, Topology, Medical Imaging, Convolutional Neural Networks

F

1 INTRODUCTION

S EGMENTATION is the process of assigning a meaningful
label to each pixel in an image and is one of the fun-

damental tasks in image analysis. It is required for many
applications in which a high-level understanding of the
scene, and the presence, sizes, and locations of objects in an
image are required, and it is a precursor to many image pro-
cessing pipelines. Significant progress has been made on this
problem in recent years by using deep convolutional neural
networks (CNN), which are now the basis for most newly
developed segmentation algorithms [1]. Typically, a CNN
is trained to perform image segmentation in a supervised
manner using a large number of labelled training cases, i.e.
paired examples of images and their corresponding segmen-
tations [2]. For each case in the training set, the network is
trained to minimise some loss function, typically a pixel-
wise measure of dissimilarity (such as the cross-entropy)
between the predicted and the ground-truth segmentations.
However, errors in some regions of the image may be more
significant than others, in terms of the segmented object’s
interpretation, or for downstream calculation or modelling.
In some cases this can be captured by alternative loss func-
tions, such as the weighted cross-entropy or the generalised
Dice loss [3] which can weight the contribution from rarer
classes more strongly. Nonetheless, loss functions that only
measure the degree of overlap between the predicted and
the ground-truth segmentations are unable to capture the
extent to which the large-scale structure of the predicted
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segmentation is correct, in terms of its shape or topology.
In principle a large enough training dataset of images and
corresponding segmentations will contain enough informa-
tion for these global features to be learned. In practice
such datasets are rare because ground-truth labels can be
expensive to acquire. They often require a highly trained
expert to manually annotate the image, and in the case of
segmenting 3D volumes as is frequently required in medical
imaging applications, the process can take several hours per
volume.

As reviewed in section 2, there has been significant
recent interest in incorporating high-level shape and topo-
logical features within CNN training, including the de-
velopment of specialised segmentation loss functions. A
fundamental obstacle is that this loss function must be
differentiable with respect to the class probabilities assigned
to each pixel, which is challenging when the presence or
absence of particular global features is a discrete quantity.
Here we build on our preliminary work in [4] to include
a loss function for image or volume segmentation which
measures the correspondence of the predicted segmenta-
tion’s topology with that supplied as prior knowledge. We
use the theory of persistent homology (PH), as reviewed
in section 3, to measure the robustness of the presence of
various topological features. PH allows us to do this in such
a manner that a gradient to this loss can be calculated and
back-propagated through the weights of the CNN, training
it to provide segmentations which are both pixel-wise and
topologically accurate.

Our approach is demonstrated in section 4 with four
experiments. Firstly, in section 4.1 we illustrate the principle
of our method by showing that a CNN trained to de-noise
MNIST handwritten digits can improve its performance by
matching the topology of the digit in question. We also
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observe the effect of choosing different topological priors for
the same input, showing that the same ambiguous image
can be de-noised differently depending on the expected
digit’s topology.

Then, in section 4.2, we apply the method to the task
of segmenting the myocardium of the left ventricle of the
heart from short-axis view 2D cardiac magnetic resonance
(CMR) images. By including our topological loss function
and the prior knowledge that, from the view in question, the
myocardium is ring-shaped, the Dice score of the resulting
segmentations is improved, as is their topological accuracy.

In section 4.3, we demonstrate our method on a publicly
available challenge dataset, also for the task of segmenting
the myocardium from CMR images.

In section 4.4 we demonstrate our method on a different
imaging modality (ultrasound) and on 3D volumetric data,
by applying it to the task of segmenting the placenta. By
incorporating the prior knowledge that the placenta forms
one connected component with no topological handles or
cavities, we again find that the Dice score of the predicted
segmentations improves, as does the topological accuracy of
the resulting segmentations.

Finally we discuss other potential applications, generali-
sations of our method, and other approaches for integrating
the power of deep learning with the strong anatomical prior
knowledge available to other medical imaging applications.

2 RELATED WORK

2.1 Shape constraints in CNN segmentation
CNNs can be used to perform image segmentation on a
pixel-wise basis, with each pixel having some value as-
signed to it which represents the probability that it is in
the segmented object. These values are not necessarily in-
dependent from one pixel to another, as each is determined
by weights and activations in the network which will also
affect the value given to other pixels. However, the loss
function used to train such networks is typically a function
like the binary cross-entropy or Dice score, which measures
the overlap between the proposed and the ground-truth
segmentations considering each pixel independently. It can
therefore be challenging to train the network to produce
segmentations which are coherent in a global sense [5].
Attempts to include some form of global information in the
training of such networks have emerged in response to this
problem.

In [6] a pre-trained VGG network [7] was used to com-
pare the predicted and the ground-truth segmentations. The
differences in the activations at intermediate layers in this
network were used as a secondary loss function (alongside
the cross-entropy) which measures the similarity between
the two segmentations in a more globally aware manner and
was empirically shown to be sensitive to certain topological
changes. However, it is unclear which kinds of high-level
features of the segmentations this VGG network measures,
and which will be ignored. A more targeted approach was
proposed in [8]. Again, a second neural network was used to
compare the proposed and the ground-truth segmentations,
but here the second network was an encoder trained on
anatomically valid segmentations. A second loss function
was crafted based on the difference between the encoded

representations of the two segmentations, and the repre-
sentation was deliberately designed to efficiently capture
features relevant to describing the anatomy in question
(which is in this case was also the myocardium as depicted
in CMR). Despite the fact that the encoder was trained on
realistic cardiac anatomy, it is hard to know exactly which
kinds of shape or topological features are being learned
in that approach. A further limitation of any such meth-
ods is that in order to train the network by applying the
prior knowledge that the proposed segmentation should be
anatomically correct, the ground-truth segmentation is still
required, which is not the case in our approach.

An alternative approach to integrating shape priors into
network-based segmentation was presented in [9]. Here, the
segmentation started with a candidate shape which was
topologically correct (and approximately correct in terms of
its shape), and the network was trained to provide the ap-
propriate deformation to this shape such that it maximally
overlapped with the ground truth segmentation. This work
bears similarities to traditional methods using deformable
models for segmentation [10] in that an initial shape is
deformed to correspond to the image in question, with the
important difference that in [9] the deformation is provided
by a neural network rather than found by some energy
minimisation procedure. Such methods can be considered
to have a ‘hard prior’ rather than the ‘soft-prior’ of the
methods presented above (and by ours) in the sense that
the end result can be guaranteed to have the correct shape.
However, this approach may be limited by a requirement
that the initial candidate shape be very close to an accept-
able answer such that only small shape deformations are
needed. A further potential issue is that the deformation
field provided by the network may need to be restricted to
prevent the shape from overlapping itself and consequently
changing its topology.

2.2 Neural networks and Persistent Homology

The differentiable properties of persistent homology [11]
make it a promising candidate for the integration of topo-
logical information into the training of neural networks. PH
is explained in detail in section 3, but the key idea is that
it measures the presence of topological features as some
threshold or length scale (called the filtration value) changes.
Persistent features are those which exist for a wide range of
filtration values, and this persistence is differentiable with
respect to the original data. There have recently been a
number of approaches suggested for the integration of PH
and deep learning, which we briefly review here.

In [12] a classification task was considered, and PH was
used to regularise the decision boundary. Typical regular-
isation of a decision boundary might encourage it to be
smooth or to be far from the data. Here, the boundary
was encouraged to be simple from a topological point of
view, meaning that topological complexities such as loops
and handles in the decision boundary were discouraged.
[13] proposed a measure of the complexity of a neural
network (considering not just the number of neurons and
layers, but also their weights) using PH. This measure of
‘neural persistence’ was evaluated as a measure of structural
complexity at each layer of the network, and was shown to
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increase during network training as well as being useful as
a stopping criterion.

PH has also been suggested as a regularisation on the
weights of a neural network, as in [14]. There, it was noted
that typical regularisation schemes, such as L2 regularisa-
tion, effectively stipulate that the network’s weights should
cluster around a value of 0. By using PH on the network’s
weights, this approach allowed one to instead stipulate, for
example, that the weights should form a small number of
clusters, but remain agnostic about where those clusters
should be.

The topology of learned representations has been con-
sidered in [15] in which an autoencoder framework was
considered, and PH applied to the latent vectors learned
by the encoder. In this way, the representation learned by
the encoder can be optimised to respect certain topological,
or connectivity properties. PH has also been used to help
train generative adversarial networks in [16]. In this work,
the topological properties of the manifolds formed by the
real, and generated/fake data were compared in terms of
their topology using PH.

In each of these cases, PH was used to measure some
set of objects relevant to training neural networks, be it
their decision boundaries, weights, activations, learned rep-
resentations or generated datasets. The differentiability of
the PH measurement is key in that it allows gradient-based
optimisation schemes (e.g. stochastic gradient descent) to
be used to push the topology of this set of objects towards
some desired target. In some cases, the desired topology is
just ‘as simple as possible’. In other cases, it is ‘the same as
this other set of objects’. In others still, it can be specified as
some user-defined input, or prior knowledge. Our method
falls into this third category where PH is applied not to the
weights or activations of the network, but to the predicted
segmentations themselves.

2.3 Persistent Homology for Image Segmentation

Some previous literature has applied PH to image segmen-
tation, but the PH calculation has typically been applied
to the input image and used as a way to generate features
which can then be used by another algorithm. Applications
have included tumour segmentation [17], cell segmentation
[18] and cardiac segmentation from computed tomography
(CT) imaging [19].

The important distinction between these methods and
our approach is that we apply PH not to the input image
being segmented, but rather to the candidate segmentation
provided by the network. To the best of our knowledge, the
first work to take this approach was our preliminary work in
[4], although this idea has subsequently been developed for
the specific case of one-dimensional topological features (i.e.
connected components) in [20]. Here, we extend our prelim-
inary work [4] by introducing an explicit topological loss
function which can be used to introduce prior knowledge of
any topological feature(s). We also include more extensive
experiments on two different medical imaging modalities
(including one three-dimensional modality) as well as the
MNIST dataset.

By applying PH to the candidate segmentations of a
neural network, the topological information found by the

PH calculation can be used to provide a training signal to
the network, allowing us to compare the topological features
present in a proposed segmentation with those specified
to exist by some prior knowledge. Importantly, this can
be done even if those topological features are not easily
extracted from pixel intensities in the original image. The
mathematical details that describe how PH quantifies the
presence of topological features in an image, or a candidate
segmentation, are introduced in the next section.

3 THEORY AND METHODS

3.1 Persistent Homology of Cubical Complexes
Persistent homology (PH) is a method for calculating the
robustness of topological features of a dataset at different
scales. It is part of an emerging field known as topological
data analysis, in which ideas from topology are used to ex-
tract information from noisy and high-dimensional datasets.
PH has found applications in neuroscience [21], studying
phase transitions [22], analysis of tree-structured data [23],
and in measuring image artefacts [24]. Below we give an
overview of PH as it applies to our method, but for more
thorough reviews we direct the reader to [11], [25], [26].

PH is most often applied to data forming a high-
dimensional point cloud, and the topology of simplicial
complexes generated from that point cloud is the object of
study. In our case though, the data derives from 2D images
or 3D volumes, and so a cubical complex is a more natural
representation. A cubical complex is a set of points, unit line
segments, unit squares, cubes, hypercubes, etc. We define
an elementary interval as a closed subset of the real line
I = [z, z + 1] for z ∈ Z. Elementary cubes, which will
represent pixels or voxels, are the product of elementary
intervals, and are given by Q = I1 × I2 × ... × Ik where
k is the dimension of the space in question. For simplicity
we will describe the two-dimensional case here, and so the
region covering the pixel in row i and column j of an image
can be denoted by Qij = [i, i+ 1]× [j, j + 1].

Consider anNx×Ny image represented as a 2D array X,
with pixel intensities Xij and a predicted binary segmenta-
tion S also represented as a 2D array with Sij ∈ [0, 1], where
Sij is to be thought of as the predicted probability that the
pixel in row i and column j of the image belongs to the
object being segmented. S is calculated by some function
S = f(X;ω). In our case f will be a CNN parameterised
by weights ω. We then consider super-level sets of S, i.e. the
set of pixels for which Sij is above some threshold value p.
Denoting the super-level sets as B:

B(p) =
⋃
i,j

Qij : Sij ≥ p (1)

gives us a sequence of sets which grow as the threshold
parameter is brought down:

∅ ⊆ B(1) ⊆ B(p1) ⊆ B(p2) ⊆ ... ⊆ B(0) ⊆ [0, Nx]× [0, Ny].
(2)

When p is high, few pixels are in the cubical complex. As
p is lowered, new pixels join the cubical complex and topo-
logical features in B are created and destroyed. Eventually
p = 0 and the entire image is in the super-level set, and so
every pixel is in the cubical complex. PH involves counting
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the number of topological features of different dimensions
in B(p) at each value of p, and these numbers are the Betti
numbers of each cubical complex. The Betti numbers, βk
count the number of features of dimension k, where β0 is
the number of connected components, β1 the number of
loops or holes, β2 the number of hollow voids, etc. Since
our experiments only consider 2D images and 3D volumes,
only these first three Betti numbers need to be considered.

The result of this analysis is a set of birth and death
threshold values for each topological feature, which can be
represented in a barcode diagram like that in Figure 1. We will
denote the birth and death values for the `-th longest bar of
dimension k as bk,` and dk,` respectively. In this diagram
b0,` is the value at which the `-th longest red bar begins,
and d0,` where that bar ends. Correspondingly b1,` is the
value at which the `-th longest green bar begins, and d1,`
where it ends. Since we are considering super-level sets
bk,` > dk,`. Those features which have long bars in the
barcode diagram (i.e. for which there is a large difference
between the birth and death threshold values) are persistent
ones which represent meaningful topological features in the
data.

As noted in [4], [14] this calculation of the birth/death
values of each feature is differentiable with respect to the
values in the image/array - because the values taken by
bk,` and dk,` can only be values in S - i.e. the birth or
death of any feature must occur at the precise value of some
particular pixel Sij . This means that for any birth or death
threshold value we can calculate its gradient with respect
to S, because slightly changing the value of the pixel in
question would slightly change the birth or death filtration
value of that feature. Furthermore, since S = f(X;ω), which
is also differentiable as f is a neural network, we can calcu-
late the gradient of each bk,` and dk,` with respect to the
network’s weights ω. This will ultimately allow us to adjust
the network’s weights to make the barcode diagram adhere
to our prior knowledge of the topology of the segmented
object.

3.2 Topological Priors

A differentiable description of the topology of a predicted
segmentation allows us to compare that description to prior
knowledge about what that topology ought to be, and
then use gradient descent to bring it closer to that desired
topology. Let us denote the desired Betti numbers of the
segmented object by β∗k . Note that in all of our experiments
β∗k is prior knowledge determined by the experimenter and
is not something that needs to be inferred from the data
by an algorithm. We can then define a loss function for the
barcode diagrams as follows:

Lk(β∗k) =

β∗
k∑

`=1

(1− |bk,` − dk,`|2) +
∞∑

`=β∗
k+1

|bk,` − dk,`|2 (3)

Ltopo =
∑
k

Lk(β∗k) (4)

This loss function is minimised when the barcode diagram
has exactly β∗k bars of length 1, for each k and no other

(a) Left, an example of a 2D array of size 80x80, which
could represent probabilities assigned to each pixel in an
80x80 image. Right, the barcode diagram of the PH of the
super-level sets of this array. The x-axis of the barcode
diagram refers to the filtration value and the ends of each
bar correspond to the birth and death filtration values for
a particular topological feature. The ordering of the bars
on the y-axis is arbitrary. Note that the array contains
three visible regions of high intensity, which correspond
to the three persistent 0-dimensional features shown as
red bars in the diagram. The array also contains a loop
of high intensity, corresponding to the one persistent 1-
dimensional feature, shown here as a green bar on the
barcode diagram.

(b) Left, a 2D array with a persistent loop feature and
additive pixelwise Gaussian noise. Right, the barcode di-
agram of the PH of the super-level sets. The long red and
green bars near the top of the barcode correspond to the
persistent connected component (red) and loop (green).
The many other smaller bars correspond to topological
noise, i.e. the many small loops and connected components
which occur only for narrow ranges of the filtration value.

Fig. 1: Examples of 2D arrays (left) and barcode diagrams
describing the persistent homology of their super-level sets
(right).

bars1. It is important to note that this loss function does not
require knowing the ground truth segmentation, but only
the Betti numbers it ought to have. In the 2D case this is
as straightforward as knowing how many connected com-
ponents and how many loops/holes there are in the object
being segmented. In the case of 3D volumes, the numbers of
connected components, loops/handles, and hollow cavities
inside the segmented object need to be specified. Although it
is not required for the applications we demonstrate here, we

1. In theory the longest red bar in these diagrams is infinitely long,
since for all values of p below zero the entire image is in the cubical
complex and so must consist of one connected component only. In
practice we can consider this bar to be cut off at a filtration value of
0 without affecting any details.
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note that it is easily possible to further generalise this frame-
work by changing the summation limits in Equation 3 to
allow some values of ` to not appear in either sum (thereby
ignoring the length of some bars in the diagram and so
specifying a range of acceptable Betti number values), or
by weighting the terms in Equation 4 so as to change the
relative contribution to the loss from each type of feature.

3.3 Implementation

We will utilise this topological loss function in two frame-
works, which we will call the ‘post-processing framework’
and the ‘semi-supervised framework’.

In the post-processing framework, the segmentation net-
work f is first trained in a supervised manner on a labelled
training set of images and pixelwise labels leading to a set
of weights ω which minimise a supervised loss such as the
Dice loss, on this training set. Then, for each item Xn in
the test set (for which the ground-truth segmentation is not
available during training but the knowledge of the correct
prior topology is), the topological loss function is optimised.
This creates an updated set of network weights ωn (which
replace ω) for each item Xn in the test set, for which the loss
function

L(Xn;ω, ωn) =
1

V
|f(Xn, ω)− f(Xn, ωn)|2

+ λLtopo(Xn, ωn) (5)

is minimised, where V is the number of pixels or voxels
in the image or volume. This effectively finds the minimal
change to the output segmentation that corrects its topology.
This framework is appropriate when, for example, each item
in the test set has a known topology but these may differ
between items.

In the semi-supervised framework the network is trained
on a small set of images {X`} and corresponding labels
{Y`} and also makes use of a separate larger set of un-
labelled images {Xu} whose ground-truth labels are un-
available but whose segmentation topology is known. For
the labelled cases a typical segmentation loss function such
as the Dice loss is used, and for the cases which are not
labelled the topological loss can be used. When using this
semi-supervised approach in our experiments, we train the
network firstly in a fully supervised manner on the small
labelled training set before incorporating the unlabelled
cases with their topological loss. This is to ensure that the
network’s predicted segmentations on the unlabelled cases
are sufficiently good that the topological loss can be helpful.
The network is then trained to minimise the loss

L(X`,Xu;ω) =
∑
X`

LDice(X, ω) + λ
∑
Xu

Ltopo(X). (6)

In other words, the total loss is the weighted sum of the
normal Dice loss on the labelled cases, and the topological
loss, calculated using PH, on the unlabelled cases. This
framework is appropriate when the task is to train one
network to segment a set of objects which all have the same
topology, and when many images are available but manual
annotations may be expensive to acquire.

4 EXPERIMENTS

We implemented the CNNs used in our experiments in Py-
Torch, and the PH calculation using the ‘TopLayer’ Python
package introduced in [14] which uses PyTorch to calculate
the PH of images in such a way as to retain the gradients
of the birth and death filtration values bk,` and dk,`. We
use the Python module Gudhi [27] to produce the barcode
diagrams.

4.1 Experiment 1

To illustrate the principle of using topological priors on the
image-domain output of a neural network, we demonstrate
our approach on a toy experiment: de-noising images from
the MNIST handwritten digits dataset [28]. We begin by gen-
erating corrupted versions of each MNIST digit. To generate
noise with spatial correlations, we corrupt the images by
taking the Fourier transform, randomly remove m vertical
and m horizontal lines, replace the removed values with
zeros, and then take the inverse Fourier transform. We take
the absolute value of the result and renormalise each image
to the [0, 1] range. As shown in Figure 2, the resulting
corrupted images contain various artefacts including blur-
ring and aliasing. We will denote the corrupted image as
X and the original image as Y. A simple U-net-like [29]
CNN2 is trained to recover Y from the corrupted version X,
minimising the mean squared error between f(X;ω) and Y
as illustrated in Figure 3. We then assess whether adding a
further loss function (like that in Equation 3) in the post-
processing framework results in better quality recovered
images.

We first train the CNN in a supervised manner using
N` = 100 paired cases of corrupted and ground-truth digits
with a mean squared error loss. Then, for each digit in the
test set (of size Ntest = 1000) we apply post-processing
consisting of minimising a loss function like that in Equation
5 with λ = 0.02. Recall that β∗0 corresponds to the desired
number of connected components and β∗1 the desired num-
ber of holes in the object. For this experiment we assumed
that the digits 1, 2, 3, 4, 5 and 7 have β∗0 = 1, β∗1 = 0,
the digits 6, 9 and 0 have β∗0 = 1, β∗1 = 1 and the digit
8 has β∗0 = 1, β∗1 = 2. We then compare the quality of
the reconstructed digits before and after this topologically
informed post-processing step. We assess the quality of the
reconstructed digits by computing the mean squared error
between the ground truth and the reconstructed digit, but
also by measuring how recognisable the resulting digit was.
This is quantified by first training another CNN (the ‘clas-
sifier network’) to classify MNIST digits (trained on 10000
digits not used in the main experiment), and assessing how
well this network could classify the reconstructed digits.
On the original uncorrupted MNIST digits this classifier
network has a classification accuracy of 98.7%. If the recon-
structed digits are sufficiently similar to their originals, then
this network should be able to classify them with a similar
accuracy.

2. Although U-net architectures are more commonly used for seg-
mentation than for image de-noising we use it here for the consistency
of adopting a single type of CNN architecture throughout. The aim in
this experiment is to demonstrate our approach rather than produce
state-of-the-art results in image de-noising.
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Fig. 2: Corrupted versions of MNIST digits. Left column, the
original images. Second column, their Fourier transforms,
showing the image in the frequency domain. Third column,
the Fourier transforms with m horizontal and vertical lines
randomly selected and zero-filled. Right column, the inverse
Fourier transform of the third column, showing the original
images with artefacts. Top row: m = 4, middle row: m = 6,
bottom row: m = 8. As m increases the image-domain arte-
facts are more severe. Note that since the removal of lines
in the frequency domain is random and so not necessarily
symmetric in the Fourier domain the images resulting from
the inverse Fourier transform are complex-valued. We take
the magnitude only, and then normalise the images to have
intensities between 0 and 1.

Fig. 3: Diagram of the simple U-net architecture used in
experiment 1. Dotted arrows correspond to feature concate-
nation.

As shown in Table 1, the inclusion of the topological
prior significantly improved the performance of the classi-
fier network on the reconstructed digits, indicating that the
changes in the digit reconstruction (see some examples in
Figures 4 and 5) make them easier to correctly recognise.
In Figure 6 we show that the same image is de-noised
differently depending on the applied topological prior. In
each case the desired topology, as quantified by the barcode
diagrams, is reached, resulting in a different looking recon-
structed image.

Classification accuracy Mean Squared Error
LMSE Ltopo LMSE Ltopo

m = 2 95.7% 96.2% 0.008 0.008
m = 4 92.9% 93.7% 0.014 0.013
m = 6 87.6% 90.8%∗ 0.023 0.023
m = 8 80.4% 86.0%∗ 0.037 0.028
m = 10 70.4% 75.0%∗ 0.032 0.033
m = 12 56.9% 63.0%∗ 0.043 0.042

TABLE 1: Table of results for MNIST experiments. As m, the
number of removed lines in the corrupted images, increases,
the classification accuracy falls and mean squared error on
the reconstructed digits increases. The inclusion of the topo-
logical post-processing leads to more coherent reconstructed
digits which are more easily classified. ∗ indicates statis-
tical significance at 95% confidence with McNemar’s test
between the classifiers trained using images reconstructed
using the LMSE and Ltopo losses. None of the Mean Squared
Error values were statistically significantly different with a
2-tailed Wilcoxon signed rank test at 95% confidence.

4.2 Experiment 2

The second experiment considers the task of segmenting
the myocardium of the left ventricle of the heart in CMR
images. The data used here are from the UK Biobank [30],
and consist of 2D images from the short-axis view of the
heart, where we take only the mid-slice of the short-axis
stack, from the first cardiac phase from each subject. This
ensures that each image comes from a different subject,
and contains approximately the same anatomy, at the same
point in the cardiac cycle. Each image was cropped to an
80x80 pixel square centred on the left ventricle. Examples of
typical images and manual segmentations from this dataset
are shown in Figure 7.

In this experiment we utilise our method in a semi-
supervised framework since a large number of images are
available and the desired topology for each segmentation
is the same: the myocardium of the left ventricle from the
short-axis view is topologically circular. We expect to see
a segmentation which has one connected component with
one hole/loop, and so β∗0 = 1, β∗1 = 1. In order to assess
the utility of our method under a variety of conditions we
conduct experiments in which the quality of the images
provided as input to the network is degraded to varying
degrees. We do this by introducing artefacts into the data
by randomly removing m lines in the Fourier transform
of each image and zero-filling them, as shown in Figure 8.
The parameter m quantifies the degree to which the image
is corrupted, and so as m increases the segmentation task
becomes more challenging. We chose to corrupt the images
in this way as corruption during CMR image acquisition
occurs in the Fourier domain.

We began by training the segmentation network on
a small number of labelled cases, N`. Our approach is
compatible with any choice of network architecture, and
the focus of our work is to introduce the topological loss
function for segmentation, and not to assess the various
CNN architectures that have been proposed in the literature.
For the segmentation network we therefore choose a U-
net [29] since it is amongst the most frequently deployed.
We began training in a supervised manner, using a batch



7

(a) Original digit. (b) Corrupted digit. (c) LMSE output. (d) LMSE barcode. (e) Ltopo output. (f) Ltopo barcode.

Fig. 4: This digit a ‘0’, shown in (a) should consist of one connected component with one loop, corresponding to one long
red bar and one long green bar in the barcode diagram. The network is given as an input the highly corrupted version of
this digit, shown in (b). The digit reconstructed by the original network, (c), is misclassified as an ‘8’. Its barcode diagram,
(d) has three green bars: an incorrect topology for a ‘0’. After applying the topological prior to the reconstruction, the
network output (e) is correctly classified as a ‘0’. Its barcode diagram, (f) shows the correct topological features of a ‘0’ digit.

(a) Original digit. (b) Corrupted digit. (c) LMSE output. (d) LMSE barcode. (e) Ltopo output. (f) Ltopo barcode.

Fig. 5: This digit a ‘6’, shown in (a) should consist of one connected component with one loop, corresponding to one long
red bar and one long green bar in the barcode diagram. The network is given as an input the highly corrupted version of
this digit, shown in (b). The digit reconstructed by the original network, (c), is misclassified as an ‘5’. Its barcode diagram,
(d) has no long green bars: an incorrect topology for a ‘6’. After applying the topological prior to the reconstruction, the
network output (e) is correctly classified as a ‘6’. Its barcode diagram, (f) shows the correct topological features of a ‘6’ digit.

Fig. 6: The same degraded image is reconstructed in three
different ways depending on the topological prior used.
On the left, the corrupted image of a ‘3’ digit, X is recon-
structed by the original network f(X;ω). On the right, three
different topological priors are applied for post-processing,
each resulting in a modified set of weights ω′ and modified
reconstructed digits f(X;ω′). The resulting reconstructions
have the desired topology in each case. However they do
not necessarily look like a real digit, since topology alone,
being invariant to rotations and reflections, is not enough to
correctly describe the shape of a digit.

size equal to N` and training for up to 3000 epochs. Since

Fig. 7: Two example short-axis CMR images from the UK
Biobank dataset (left) and with manually annotated segmen-
tations of the myocardium (right).

the training sets are in some experiments very small, we
mitigated the risk of over-fitting by stopping training early.
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Fig. 8: Two CMR images artificially degraded by remov-
ing lines in the Fourier transform. From left to right, the
original CMR image, the Fourier transform, the degraded
Fourier transform, and the inverse Fourier transform of the
degraded frequencies. On the top row, 20 of the 80 frequency
lines are set to zero, causing mild image degradation. On
the bottom row, 60 of the 80 frequency lines are set to zero,
causing serious image degradation. In all cases, the middle
8 lines are reserved from deletion. This process allows us
to assess the efficacy of the segmentation CNN on tasks
of varying difficulty since segmenting the more strongly
corrupted images is a more challenging task.

A separate validation set of 100 cases was tested every 50
epochs and training stopped early if the Dice score on this
validation set did not improve for 5 such tests.

The topological prior was then introduced by training
in a semi-supervised manner with an additional Nu un-
labelled images. Training with the topological prior in a
semi-supervised manner consisted of alternating steps of
processing a batch of labelled cases and back-propagating
the Dice loss through the network, and then processing
a batch of unlabelled cases, calculating the PH of their
predicted segmentations and back-propagating their topo-
logical loss through the network. The relevant loss function
being minimised is that in Equation 6, where λ = 0.01. In
this way we can use the large number of unlabelled cases to
generate a useful training signal by leveraging the fact that
the topology of their segmentations is known, even if those
ground truth segmentations are not available.

As a baseline method, we evaluated the performance
of the same network architecture using solely supervised
training on the small number of labelled cases. We also
evaluated the baseline method with the addition of two
different postprocessing techniques: morphological closure
and the use of a conditional random field technique (CRF)
[31]. Both of these approaches can help to correct some
topological errors such as small gaps in the segmentation.
The morphological closure operation used a disk-shaped
kernel of radius 7 pixels. For the CRF approach we used
the method described in [31] with parameter settings which
were tuned using a grid search to optimise performance on a
CMR segmentation task [32]. We also compared our method
with a boot-strapping semi-supervised approach, similar to
that described in [32] (but without the CRF postprocessing),
in which predicted segmentations on the unlabelled cases
are used to train the network in an iterative process. This
semi-supervised approach uses the same set of unlabelled
cases as does our semi-supervised method with the topolog-

ical loss. To assess the output segmentations, we calculated
the Dice score with respect to the ground truth, and also
counted the proportion of test cases for which the predicted
segmentation was topologically correct when thresholded at
p = 0.5.

Figures 9 and 10 show typical cases where the network
trained using only labelled cases makes a topological error,
either segmenting extra connected components, or leaving
a gap in the ring-shaped myocardium. This kind of error is
clear in the persistence barcode diagrams in which the extra
components appear as additional red bars, and gaps in the
myocardium appear as a shortening of the green bar (since
the loop feature only appears when the filtration value is
brought very close to 0). After applying our topological
prior in training the persistence barcodes are much closer
to that which is specified by prior knowledge and which
minimises the loss function in Equation 6, demonstrating
that these topological errors are removed. Table 2 shows
that as well as correcting almost all of these topological
errors, the Dice score also generally improves when using
the topological loss. This effect is most significant when
the initial segmentation task is challenging (i.e. the images
heavily degraded). This demonstrates that extracting the
relevant topological information from the unlabelled images
in some way regularises the CNN allowing for better test-set
performance even when few manually annotated images are
available for training. Neither the morphology based nor the
CRF based postprocessing techniques were able to achieve
comparable levels of performance with regard to topological
correctness.

Note that the images corrupted by removing m=60 lines
from the Fourier transform were highly corrupted (see Fig-
ure 8), with 60 out of 80 Fourier lines removed and zero-
filled, resulting in a median signal-to-noise ratio of 3.3dB
compared to 4.22dB for the original images, and a mean
absolute gradient magnitude of 0.0445 compared to 0.0558
for the original images. Therefore, we demonstrate in this
experiment that our PH based method is robust within (and
beyond) a range of clinically realistic corruption levels.

4.3 Experiment 3
To enable comparison with other segmentation models,
we also evaluated our method on the publicly available
ACDC dataset [1]. This dataset includes 150 CMR short-
axis stacks featuring end-diastolic and end-systolic frames
acquired from equal numbers of subjects from 5 groups:
patients with 4 different cardiac pathologies and healthy
subjects3. The data are split into 100 subjects for training
and 50 for testing. In this experiment our task was to
segment the myocardium of the left ventricle. We applied
our method using the postprocessing framework, since the
topologies of the myocardium in different slices of the short-
axis stack can vary. We first trained a U-net model [29] using
a binary cross entropy loss on the 100 training cases. Next,
the topological prior knowledge for the 50 test cases was
specified by manual inspection of all slices. Three different
types of topology were present in the test set: a single
connected component with one loop (i.e. β∗0 = β∗1 = 1),
a single connected component with no loops (β∗0 = 1,

3. For more details see: https://acdc.creatis.insa-lyon.fr/
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m = 20 m = 60

N` = 10 N` = 20 N` = 40 N` = 100 N` = 10 N` = 20 N` = 40 N` = 100

Supervised 67.9∗ ± 2.5 76.3∗ ± 0.7 82.1∗ ± 0.5 86.1± 0.2 62.0∗ ± 2.0 70.8∗ ± 0.7 76.9∗ ± 0.5 82.1± 0.3
42.1∗ ± 5.7% 59.8∗ ± 3.1% 74.0∗ ± 2.2% 85.9∗ ± 1.0% 25.8∗ ± 2.9% 58.3∗ ± 5.3% 67.6∗ ± 2.9% 80.8∗ ± 2.1%

Supervised 68.2∗ ± 2.3 76.2∗ ± 0.6 81.7∗ ± 0.5 85.7∗ ± 0.2 62.9∗ ± 1.9 70.8∗ ± 0.6 76.9∗ ± 0.47 82.0± 0.3
+ closure 53.8∗ ± 5.2% 71.3∗ ± 3.2% 81.4∗ ± 1.4% 91.8∗ ± 0.8% 44.4∗ ± 4.7% 66.9∗ ± 5.0% 76.9∗ ± 2.2% 87.1∗ ± 1.7%

Supervised 67.4∗ ± 3.8 76.1∗ ± 0.7 81.9∗ ± 0.5 86.0∗ ± 0.2 61.7∗ ± 1.5 70.4∗ ± 0.8 76.4∗ ± 0.6 81.9∗ ± 0.4
+ CRF 38.1∗ ± 6.3% 52.9∗ ± 3.0% 69.7∗ ± 2.6% 82.1∗ ± 1.0% 22.0∗ ± 3.3% 52.0∗ ± 6.0% 61.3∗ ± 3.7% 77.8∗ ± 2.4%

Semi- 74.7± 0.6 78.6± 0.4 83.6± 0.4 87.2± 0.3 67.3± 1.3 73.3± 0.9 78.2± 0.5 82.7± 0.3
supervised 57.4∗ ± 4.8% 68.1∗ ± 2.3% 80.8∗ ± 1.7% 89.8∗ ± 1.4% 48.4∗ ± 6.0% 60.9∗ ± 2.6% 71.3∗ ± 2.8% 84.5∗ ± 1.4%

Ours 74.3± 0.8 79.1± 0.4 83.5± 0.3 86.8± 0.2 68.6± 0.8 74.3± 0.6 78.6± 0.4 82.6± 0.3
67.1± 2.9% 80.5± 2.3% 88.1± 1.5% 93.6± 1.3% 62.0± 5.1% 75.6± 2.4% 85.7± 1.8% 91.2± 1.6%

TABLE 2: Table of results for LV segmentation experiments. In this experiment the number of labelled cases was N` and
the number of unlabelled cases Nu = 400. The number of lines removed from the Fourier domain data, representing the
difficulty of the segmentation task wasm = 20 (left) andm = 60 (right). For each method and experiment, the average Dice
score between the predicted segmentation and the ground truth (top), and proportion of the test set which was segmented
without topological errors (bottom) is shown. For both of these metrics higher scores are better. The ranges indicate the
standard error over 10 experiments each with different training, validation and test sets. ∗ indicates statistical significance
at 95% confidence with a 2-tailed Wilcoxon signed rank test between ‘Ours’ and each other evaluated method.

β∗1 = 0) and no connected components (β∗0 = 0, β∗1 = 0).
This prior knowledge was used when applying the trained
model using the postprocessing framework with λ = 0.01
(see Equation 5).

We achieved mean Dice scores of 0.8994 and 0.9068 at
end-diastole and end-systole respectively. These results are
comparable with state-of-the-art techniques and within the
range of agreement of the leading method reported in [1].
Note that we are unable to assess topological correctness
for this experiment due to the lack of public availability of
the ground truth segmentations for the test set.

4.4 Experiment 4

To demonstrate the applicability of our method to 3D vol-
umes, as well as to other imaging modalities we performed
a final experiment in which the task was to segment the
placenta in 3D ultrasound volumes of pregnant women. 17
patients in the third trimester (29 − 34 weeks of gestation)
were scanned using a Philips EPIQ 7g and a x6-1 transducer.
The 3D ultrasound volumes were selected from 4D (3D+t)
image streams covering different parts of the placenta. The
annotations were produced manually by an expert sonogra-
pher. In total 67 annotated volumes were used in this experi-
ment. Volumes were chosen such that those coming from the
same patient covered different regions of the placenta and so
were not too similar to each other. Each volume was cropped
to 96x240x256 voxels and voxel intensities normalised to the
[0, 1] range. Figure 12 shows a typical case.

In this experiment the segmentation network is a 3D U-
net [33] and the relevant topological prior knowledge is that
the segmented placenta should form one single connected
component and there should be no loops/handles or cav-
ities within it, i.e. that β∗0 = 1 and β∗1 = β∗2 = 0. As the
total number of cases we have available is limited, we use
our method in the post-processing framework, minimising
the loss in Equation 5. Figure 11 shows that applying the
topological prior in post-processing, with λ = 0.005 results

in a consistent improvement in the Dice score of the seg-
mentations, with an average improvement (across a 13-fold
cross-validation) of 0.024. Figure 12 shows a typical case
without, and with the topological prior. Introducing this
prior dramatically reduces the number of small components
in the segmentation as well as loops and cavities in the large
component.

5 DISCUSSION

The key contribution of this work is to demonstrate that PH
is a viable tool for adding a topological loss function to train
CNNs to perform image and volume segmentation. We have
shown that by using a U-net-like network architecture and
supplementing traditional pixel-wise loss functions with
our topological loss function, the accuracy of the resulting
segmentations can be improved in terms of the pixel-wise
accuracy and also that there are significant improvements
in terms of their topological accuracy. Of course there will
be limits to the improvements that the topological loss can
make. If the predicted segmentation is already topologically
correct then it will make little or no difference. Conversely,
if the predicted segmentation is too far from the ground
truth it may not be possible to recover the correct topology
as gradient descent of the topological loss function will not
necessarily reach the global minimum. As a simple intuitive
example, if the output is expected to contain one connected
component and the predicted segmentation has more than
one large component, the network will not know which
to encourage and which to suppress. In practice we have
found that the ‘basin of attraction’ for our topological loss
function is large in that such failure cases are rare. Indeed, in
Experiment 2 we demonstrated that our PH based method
outperformed a range of comparative techniques at corrup-
tion levels above what we would expect to encounter in
realistic clinical scenarios. In order to be able to confidently
apply our method in different domains, we would advise a
similar analysis of robustness to noise/corruption levels to
be carried out.
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(a) Left: Uncorrupted image and ground-truth segmenta-
tion. Right: Corrupted image, the input to the network.

(b) Left: The predicted segmentation from the network
trained only with supervised learning. Right: The pre-
dicted segmentation from the network trained in a semi-
supervised manner, incorporating the topological prior.

(c) Left: The persistence barcode for the predicted seg-
mentation from the network trained only with super-
vised learning. Right: The persistence barcode for the pre-
dicted segmentation from the network trained in a semi-
supervised manner, incorporating the topological prior.

Fig. 9: Segmentations and barcodes with and without the
topological prior.

Although PH has been used in a wide variety of applica-
tions we believe that medical image analysis is a particularly
appealing one. This is because machine learning tasks in
medical imaging often deal with small datasets (due to
the expense of acquiring data, and privacy concerns with
sharing them) and hard to interpret or noisy images (due
to motion artefacts or the desire to acquire images quickly).
But they also often come equipped with highly informative
prior knowledge, since we know which anatomy is being
imaged, its approximate location in the image and the
parameters and protocols of the image acquisition. To be
able to make use of this prior knowledge we need to be
able to integrate it with powerful statistical methods such
as deep neural networks, and PH is a strong candidate for
bridging this gap. In general, our method is applicable in

(a) Left: Uncorrupted image and ground-truth segmenta-
tion. Right: Corrupted image, the input to the network.

(b) Left: The predicted segmentation from the network
trained only with supervised learning. Right: The pre-
dicted segmentation from the network trained in a semi-
supervised manner, incorporating the topological prior.

(c) Left: The persistence barcode for the predicted seg-
mentation from the network trained only with super-
vised learning. Right: The persistence barcode for the pre-
dicted segmentation from the network trained in a semi-
supervised manner, incorporating the topological prior.

Fig. 10: Segmentations and barcodes with and without the
topological prior.

cases where limited training data are available, but prior
knowledge of topological properties is available a priori. We
have demonstrated a number of such situations in medical
imaging. Beyond medical imaging, we believe that our
method could potentially be beneficial in other tasks such as
segmenting video images of pavements and aerial images
of roads [6] or astronomy, in all of which it is likely that
the topology of the structures being segmented would be
known.

In [4] we presented our preliminary work. The most
significant difference between our earlier method and this
presented work is that here we explicitly define a loss
function based on PH rather than using PH to derive a
gradient used in training. Our previous method had the
drawback that it was difficult to know whether or not gra-
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Fig. 11: The improvement in the Dice scores of the segmenta-
tions of the placenta when using the topological prior post-
processing. We split the dataset into 13 folds, training the
network on 12 and testing on the other 1. Each point here
is the average for each of the folds, which contain 5 or 6
volumes each. The difficulty of the segmentation task varies
significantly between volumes causing the wide range of
Dice scores between folds. Nonetheless, applying the topo-
logical prior in post-processing consistently improves the
resulting segmentations by an average of 0.024.

dient descent for the derived gradient converged and how
many steps this would take. Conversely, with the method
presented here, the scalar loss function allows the training
progress to be observed easily and to stop training when
the validation loss is minimised. By avoiding the iterative
process described in algorithm 1 in [4] we do not have to
choose the hyperparameter defining the number of pixels to
identify in that iterative process. The fact that the loss used
here is proportional to the squared length of the bars in
the barcode diagram means that longer unwanted bars are
naturally penalised more than shorter ones, removing the
need for thresholding on bar length, and resulting in quicker
training. Finally, in this work we demonstrate the viability
of this approach on 3D volumes, on imaging modalities
beyond CMR, and more than just one topological prior.

Calculating the persistent homology of each candidate
segmentation adds a computational cost to training the net-
work. The PH for a cubical complex of dimension d and with
V pixels/voxels can be computed in Θ(3dV + d2dV ) time
and Θ(d2dV ) memory [34]. It is worth noting here that we
require not just the birth/death thresholds for each feature
but also their gradients with respect to the input object. In
our experiments we found that calculating the PH on a batch
of 100 images of size 80x80 took approximately 10 seconds.
The calculation for 1 volume of size 96x240x256 took ap-
proximately 6 seconds. Whether this additional calculation
time is acceptable or not depends upon the application in
question. Using 3D segmentations to print patient-specific
models of anatomy is already a time-consuming process
and so adding seconds or even several minutes to the time
taken to perform segmentation is acceptable. Where seg-
mentations are required in real-time, the computational cost
of applying our method in the post-processing framework
may become prohibitive, at least in 3D. However the PH

(a) Left: an example 3D ultrasound volume. Right: the
ground-truth segmentation in red.

(b) Left: yellow-green contours showing the predicted seg-
mentation from the 3D U-net trained only with the Dice loss.
Right: blue contours showing the predicted segmentation
from the 3D U-net trained with the Dice and topological loss.

(c) Left: the persistence barcode diagram of the left segmenta-
tion in (b). Right: the persistence barcode diagram of the right
segmentation in (b).

Fig. 12: The segmentation provided by the network trained
with only the Dice loss has several connected compo-
nents outside of the main segmented object. Its persistence
barcode contains many bars demonstrating that there are
a large number of disconnected components segmented
throughout the volume. The topological loss function en-
courages the network to output a segmentation with fewer
connected components, as can be seen from the output
segmentation on the right. The corresponding persistence
barcode diagram has many fewer bars, demonstrating that
this output is closer, in a topological sense, to the ground
truth segmentation as well as having a higher Dice coeffi-
cient with the ground truth.

calculation is open to optimisation schemes in that it can be
much more quickly calculated on downsampled versions of
the proposed segmentation. Computational optimisation is
not the focus of this paper but we believe that it may be
possible to improve efficiency to the extent that it becomes
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acceptable for many applications.
Aside from the cardiac and placental segmentation prob-

lems demonstrated here, we believe that our approach will
be applicable to other tasks in which topology is relevant in
segmentation. Many neuroimaging pipelines begin with the
segmentation of the cortical surface from MR volumes of the
brain. In order to compare cortical surfaces the segmented
region must be a topological sphere. Current standard ap-
proaches involve retrospective topology correction [35] of
the segmentation in order to ensure this. Our approach
would consider the need for a topologically correct surface
to be segmented to be an inherent part of the segmentation
task itself. Similarly, vascular tree segmentation [36] is a
case where post-processing for topology correction could
be replaced with topological priors inside the network per-
forming segmentation.

In some applications, topological accuracy can be more
important than pixelwise accuracy. The ability to trade off
the two with a weighting parameter in the loss function is a
benefit of our approach. An example is in the segmentation
of CMR volumes of patients with congenital heart defects
for the purpose of patient-specific 3D printing [37], [38].
In this application, segmenting the septal walls of the atria
and ventricles with the correct thicknesses is often not vital
since the printing process places its own constraints on
these parameters. What is important though is correctly seg-
menting the holes between the chambers as these abnormal
connections are the details that are important to the surgeon
using the 3D model [39]. Therefore, topological accuracy is
more relevant to the task at hand than, for example, the
Dice coefficient, and so a user could adjust the loss func-
tion when training a network to perform the segmentation
task to reflect this. A further possible application-relevant
generalisation of our approach is multi-class segmentation
tasks, in which the topology of each class and also of the
boundaries between each class could be specified. This can
be thought of as applying PH to the problem tackled in
[40] in which the adjacencies of various brain regions are
specified as a prior.

One of the benefits of our topological loss function is that
it can suppress small false positive or false negative regions
in the predicted segmentation (because these would change
the topology of the segmentation). Other techniques exist
to suppress such regions, such as morphological operations
or CRF based techniques [31], [41]. However, whilst these
approaches can correct such local errors, they do not have
any notion of global topology, only local label smoothness.
The advantage of our PH-based approach is that the correct
global topology can be encouraged, whether or not this also
encourages label smoothness. For example, two large com-
ponents (such as chambers of the heart) may be encouraged
to join together using a small connecting region (such as a
structural defect) if the expected global topology specifies
that they should be a single component rather than two
separate components.

While our method attempts to add prior knowledge to
segmentation networks by creating a loss function which
measures the degree to which the network’s output adheres
to the prior, an alternative approach is to begin with a shape
model which has the desired shape and/or topology and
then to learn a deformation which fits that model to the

data. While shape models have a long history in medical
image analysis [42] traditional methods require solving an
optimisation problem at inference time. More recent work
such as [9] attempts to train a neural network to perform
the deformation required to fit a pre-defined shape model
to an image, such that at inference time only one forward
pass through the network is required and so inference takes
milliseconds rather than minutes or hours. Nonetheless
there is a fundamental limitation of all deformable model
methods, which is that there are limits on how much the ini-
tial shape model can deform. This is particularly important
when segmenting unusually shaped but topologically cor-
rect anatomy where large deformations would be required.

6 CONCLUSION

We have presented a loss function for training CNNs to
perform image segmentation which assesses the extent to
which the proposed segmentation adheres to our prior
knowledge of its topology. Using persistent homology, the
robustness of various topological features can be computed
in a manner which allows for gradient descent on the
weights of the network performing the segmentation. Our
experiments have shown that our approach is applicable to
2D images and 3D volumes, to CMR imaging and ultra-
sound, and that in these cases it improves the pixelwise and
topological accuracy of the resulting segmentations.
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[33] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ron-
neberger, “3D U-Net: learning dense volumetric segmentation
from sparse annotation,” in International conference on medical image
computing and computer-assisted intervention. Springer, 2016, pp.
424–432.

[34] H. Wagner, C. Chen, and E. Vuçini, “Efficient computation of
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