King's Research Portal DOI: 10.3389/fneur.2020.572850 Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Reid, M., Beltran Lobo, P., Johnson, L., Gomez Perez-Nievas, B., & Noble, W. (2020). Astrocytes in Tauopathies. *Frontiers in Neurology*, *11*, Article 572850. https://doi.org/10.3389/fneur.2020.572850 Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. ### **General rights** Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. - •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. - •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Dec. 2024 - 2 Matthew J. Reid1, Paula Beltran-Lobo1, Louisa Johnson1, Beatriz Gomez Perez-Nievas1, - 3 Wendy Noble1* 1 - 4 1King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic - 5 and Clinical Neuroscience, 5 Cutcombe Road, London, SE5 9RX - **6** * Correspondence: - 7 Wendy Noble - 8 wendy.noble@kcl.ac.uk - 9 Keywords: tau, astrocyte, tauopathy, prion-like propagation, Alzheimer's disease, glia - 10 Abstract - 11 Tauopathies are a group of neurodegenerative diseases characterised by the progressive accumulation - across the brain of hyperphosphorylated aggregates of the microtubule-associated protein tau that - vary in isoform composition, structural conformation and localisation. Tau aggregates are most - 14 commonly deposited within neurons but can show differential association with astrocytes, depending - on the disease. Astrocytes, the most abundant neural cells in the brain, play a major role in synapse - and neuronal function, and are a key component of the glymphatic system and blood brain barrier. - However, their contribution to tauopathy progression is not fully understood. Here we present a brief - overview of the association of tau with astrocytes in tauopathies. We discuss findings that support a - role for astrocytes in the uptake and spread of pathological tau, and we describe how alterations to - astrocyte phenotype in tauopathies may cause functional alterations that impedes their ability to - support neurons and/or cause neurotoxicity. The research reviewed here further highlights the - 22 importance of considering non-neuronal cells in neurodegeneration and suggests that astrocyte- - 23 directed targets that may have utility for therapeutic intervention in tauopathies. - 24 **Contribution to the field:** Several neurodegenerative diseases, including Alzheimer's disease are - 25 characterised by the presence of abnormal tau deposits in affected brain regions, that is closely - associated with synapse loss and neurodegeneration. Astrocytes, the most abundant neural cell type - are an intrinsic component of synapses and regulate neuronal circuits. Recent evidence has - 28 highlighted an important contribution of astrocytes to the prion-like propagation of abnormal tau in - 29 Alzheimer's disease and related tauopathies. We discuss the evidence linking astrocytes with - 30 tauopathies, including their newly described roles in tau uptake/spread, highlighting the importance - 31 of continued work in this area. ### 1 Introduction 32 - Tauopathies are a heterogeneous group of neurodegenerative diseases in which the deposition of - 34 hyperphosphorylated tau aggregates in affected brain regions accompanies synapse and neuron loss - 35 (Guo et al., 2016). Primary tauopathies exhibit tau aggregates as the predominant pathological - 36 hallmark and include a diverse family of frontal-temporal lobar dementia (FTLD) subtypes referred - to as FTLD-tau, and includes progressive supranuclear palsy (PSP) and Pick's disease (PiD). - 38 Alzheimer's disease (AD) is considered a secondary tauopathy owing to the presence of extracellular - amyloid-beta (Aß) plagues, and is the most common cause of dementia (Prince et al., 2014). - 40 Tau proteins undergo several post-translational and other modifications in disease (Guo et al., 2016). - 41 Modified forms of tau spreads from the original site of deposition to anatomically connected regions - by a "prion-like" mechanism, whereby tau proteopathic seeds passively recruit tau monomers (Jucker - and Walker, 2018). The mechanisms underlying tau release, uptake and spread are not fully - 44 understood. It has long been acknowledged that in some tauopathies astrocytes accumulate tau - 45 leading to characteristic disease neuropathology. Accumulating evidence now suggests that - 46 astrocytes may actively participate in tau spread and/or clearance mechanisms by actively - 47 internalising tau. This review summarises the association of tau with astrocytes in tauopathies, and - discusses the evidence implicating astrocytes in tau spread, as well as the impact of tauopathy brain - 49 environments on physiological astrocytic functions. ### 2 Tau protein 50 - Human tau is encoded by the MAPT gene on chromosome 17 which comprises 16 exons. Exons 2, 3 - and 10 undergo alternative splicing to produce the six main tau isoforms present in the adult human - central nervous system (CNS) (Andreadis, 2005). Alternative splicing of exon 10 gives rise to tau - isoforms containing either three or four microtubule binding repeats (referred to as 3R or 4R tau) in - 55 the C-terminal region, and alternative splicing of exons 2 and 3 produces tau proteins with zero, one - or two inserts in the N-terminal tail (0N, 1N or 2N tau, respectively). A conserved proline-rich - 57 domain is found between these two spliced regions and is known to be important for tau interactions - with other proteins, including actin (He et al., 2009). Tau isoforms are developmentally regulated; the - shortest 0N3R isoform is expressed in the fetal brain whereas in the adult human brain 3R and 4R - 60 isoforms are equally represented (Goedert and Jakes, 1990). Tau has a number of key functions, the - most recognised of which is stabilising microtubules in the axons of neurons, however tau roles in - other important physiological functions such as axonal transport, DNA protection, cell signalling at - the membrane, and synaptic vesicle release, have been described (Wang and Mandelkow, 2016; Guo - et al., 2017). Tau is primarily expressed in neurons (Binder, 1985), but is known to be expressed to a - lesser extent in glial cells (Zhang et al., 2014; Darmanis et al., 2015; Seiberlich et al., 2015; - 66 McKenzie et al., 2018). - Monomeric tau is water soluble and resists aggregation (Wang and Mandelkow, 2016). In - 68 tauopathies, tau undergoes extensive post-translational and other modifications including, but not - 69 limited to, phosphorylation, acetylation, nitration, SUMOylation, glycosylation, ubiquitination, - 70 cleavage and aggregation (Guo et al., 2017). The best studied of these is phosphorylation. There are - 71 85 potential phosphorylation sites in 2N4R tau (Hanger et al., 2009) and increased phosphorylation - of tau, alongside other tau modifications, can reduce tau affinity for microtubules, increase - cytoplasmic tau concentrations and promote tau oligomerisation and aggregation (Guo et al., 2017). - 74 Differential extents of tau modifications lead to the accumulation of heterogeneous pools of modified - tau between, and within, different tauopathies. Recently, Dujardin et al. (2020) found variations in - 76 relative abundance of soluble, oligomeric and seed-competent species of hyperphosphorylated tau in - tauopathy brain. Specific post-translational modifications were found to influence tau seeding - 78 capacity, and tau seeding potential strongly correlated with the rate of clinical symptoms/disease - 79 progression. - 80 The isoform composition of tau aggregates, as well as the structure of tau filaments, also differs - 81 between tauopathies. In AD, both paired helical and straight filaments contain identical protofilament - 82 cores comprising residues 306-378 that define the aggregatory seed/core (Fitzpatrick et al., 2017). - This structure differs from the folds of tau filaments observed in Pick's disease (Falcon et al., 2018) 83 - 84 and tau filaments of chronic traumatic encephalopathy (CTE) have a unique hydrophobic core - 85 (Falcon et al., 2019). A novel fold in corticobasal degeneration (CBD) tau has now also been - discovered (Zhang et al., 2020). These features may be important for the tau lesions that arise in 86 - 87 different tauopathies (Table 1). 88 #### 3 Astrocytes in health and disease - 89 Astrocytes are organised into distinct domains, and each astrocyte can connect with thousands of - 90 neurons, allowing them to coordinate synaptic activity in the CNS (Parpura et al., 1994; Oberheim et - 91 al., 2006). Astrocytes were long considered as supporting cells in the brain, providing metabolic and - 92 nutritional support for neurons. However, astrocytes are critical for neuronal function due to their - 93 ability to sense changes in neuronal activity
through their complement of cell surface receptors, and - 94 to modulate neuronal activity by releasing gliotransmitters and gliomodulators, as well as controlling - 95 the availability of glutamate, GABA and energy substrates (Parpura et al., 1994; Volterra and - 96 Meldolesi, 2005; Choi et al., 2014). Hence, astrocytes are now known to be actively involved in - 97 synaptic transmission (Santello et al., 2019), neural circuit maintenance (Mederos et al., 2018) and - 98 long-term potentiation (Lushnikova et al., 2009). In addition, astrocytic end-feet are a structural - 99 component of the blood-brain barrier (BBB), and together with endothelial cells and pericytes have a - 100 central role in the regulation of blood flow (Sofroniew and Vinters, 2010). Furthermore, astrocyte - 101 end-feet are crucial for the glymphatic system of the brain, a perivascular network that allows for - 102 exchange of interstitial and cerebrospinal fluid (CSF), providing a route for clearance of molecules - 103 and proteins including Aβ (Iliff et al., 2012; Simon et al., 2018). - 104 In the neurodegenerative brain, astrocytes undergo pathological changes in responses to changes in - 105 the local brain environment that precede neuronal loss (Kersaitis et al., 2004). These morphologically - 106 and functionally modified astrocytes are often termed 'reactive'. Reactive astrocytes show - 107 considerable heterogeneity related to their localisation in the brain and the severity and length of - 108 injury/insult to their local environment (Zamanian et al., 2012). Reactive astrocytes are traditionally - 109 characterised by increased levels of glial fibrillary acidic protein (GFAP), which allows cytoskeletal - 110 and morphological arrangements as astrocytes alter their function (Kamphuis et al., 2015; Acosta et - 111 al., 2017). The accumulation of GFAP-immunopositive astrocytes is common in neurodegenerative - 112 diseases. For example, reactive astrocytes are often found surrounding plaques in AD (Bouvier et al., - 113 2016; Osborn et al., 2016). Indeed, levels of GFAP-reactive astrocytes are closely associated with - 114 dementia in AD (Perez-Nievas et al., 2013). While increased GFAP is also found in aged brain - 115 (Wruck and Adjaye, 2020), new evidence suggests that there are subgroups of astrocytes, with - 116 varying levels of GFAP expression, that distinguish aging from AD, at least in mice (Habib et al., - 2020). Alterations in GFAP expression have also been noted in primary tauopathies including PSP. 117 - 118 PiD and corticobasal degeneration (CBD) (Ferrer et al., 2014). - 119 Functional changes in reactive astrocytes are well-documented and include impaired gliotransmitter - 120 release (Piacentini et al., 2017), alterations in calcium signalling (Shigetomi et al., 2019), deficient - 121 ability to regulate glutamate levels at neuronal synapses and aberrant GABA release (Acosta et al., - 122 2017). In addition, astrocytes are now recognised to contribute to neuroinflammatory responses that - 123 accelerate the progression of neurodegenerative diseases (Phillips et al., 2014; Bouvier et al., 2016; - Bright et al., 2019). For example, reactive astrocytes increase their production and release of pro-124 - 125 inflammatory cytokines, complement components, and reactive oxygen species, alongside - 126 downregulating anti-inflammatory and repair proteins to induce neurotoxicity in diseased - environments (Lian et al., 2015; Bouvier et al., 2016; Leyns and Holtzman, 2017; Sadick and - Liddelow, 2019). Recent seminal findings proposed that astrocytes respond to their local - environment by adopting "A1-neurotoxic" or "A2-neuroprotective" phenotypes (Liddelow et al., - 130 2017). Secretion of Il-1α, TNFα, and C1q by microglia in response to damage, induces astrocytes to - upregulate their expression of a specific cluster of "A1" genes, lose their trophic and synaptic support - for neurons, and induce neuron death (Liddelow et al., 2017). Markers of A1 astrocytes are - upregulated in AD and other neurodegenerative diseases (Liddelow et al., 2017), strongly implicating - microglia-astrocyte communications in neurodegeneration. However, it is likely that there is a - spectrum of reactive astrocyte states in different brain regions, throughout aging and disease - progression (Boisvert et al., 2018; Habib et al., 2020), similar to dynamic microglial responses in - disease (Vainchtein and Molofsky, 2020). 138 ### 4 The association of astrocytes with tauopathy - Tau aggregates accumulate in both neurons and astrocytes in different tauopathies. In AD, tau - aggregates containing both 3R and 4R tau deposit as intraneuronal neurofibrillary tangles and there is - scant evidence of astrocytic tau inclusions (Garwood et al., 2017). In contrast, astrocytic tau - pathology is the defining feature of several FTLD-tau subtypes (Table 1). In PSP, a - neuropathological diagnosis criterion is 'tufted' astrocytes that show 4R tau aggregates in their - proximal processes (Cairns et al., 2007; Kovacs and Budka, 2010). CBD has extensive clinical - overlap with PSP. In CBD, astrocytic plaques containing 4R tau deposits that mark distal and end - processes are an exclusive feature in most (Forrest et al., 2019), but not all (Ling et al., 2020) cases. - 147 Thread-like tau-positive astrocytic processes are also common in CBD (Dickson et al., 2011; Ling et - al., 2016). Argyrophilic grain disease (AGD) is a rare tauopathy that is characterised by 4R tau- - immunopositive astrocytes, described as thorn-shaped and fuzzy/bush-like, in the medial temporal - lobe (Botez et al., 1999; Saito et al., 2004; Forrest et al., 2019). In contrast, PiD is typically - characterised by neuronal 3R tau inclusions, predominantly in granular neurons in the hippocampus, - 152 frontal and temporal cortices (Dickson, 2001; Josephs et al., 2011). 'Ramified' astrocytes - immunopositive for tau have also been reported in PiD, but they are not considered a major - pathological hallmark of the disease (Dickson et al., 2011; Ferrer et al., 2014). Several rarer - tauopathy subtypes that show 4R tau-immunopositive globular inclusions, predominantly in - oligodendrocytes, and more rarely in the cytoplasm and proximal processes of astrocytes, are - 157 collectively termed globular glial tauopathy (GGT) (Ahmed et al., 2013). - A spectrum of FTLD-tau subtypes that accumulate both 3R and 3R tau in neurofibrillary tangles - 159 (NFTs) typically occurring in cognitively normal aged individuals is referred as primary age-related - tauopathy (PART) (Crary et al., 2014; Jellinger et al., 2015). Depending on the co-occurrence of AB - pathology, PART can be histologically classified as "definite PART" in the absence of Aß deposits, - or "possible PART" when a limited number of Aß deposits are present (Crary et al., 2014). Although - the neuropathological characteristics of PART can overlap with other tauopathies, particularly AD, - PART shows a lower threshold of amyloid load, and appears to have a more limited impact on - cognition (Crary et al., 2014). Tau pathology in PART is predominantly neuronal and found in the - 166 CA2 hippocampal subfield, with little evidence of astrocytic tau deposits (Crary et al., 2014; - Jellinger, 2018). In contrast, age-related tau astrogliopathy (ARTAG) describes a spectrum of - abnormal tau pathology, predominantly in the aged brain, that is characterised by thorn-shaped and - granular or fuzzy astrocytes containing phosphorylated tau (Kovacs et al., 2016; Kovacs, 2018). - 170 ARTAG can present alongside more typical tau pathology in tauopathies such as CBD (Kovacs et - al., 2018, 2020), but is not always linked with dementia (Lace et al., 2012). In a recent detailed - 172 review, Kovacs et al. (2020) describe two distinct distribution patterns of ARTAG. They describe - 173 ARTAG as a consequence of repeated mechanical damage (related to CTE), or chronic damage such - as blood-brain barrier dysfunction. Furthermore, they propose that the location and type (white - versus grey matter) of ARTAG pathology may result in decompensation of cognitive functions, the - 176 rate of which may be influenced by co-existing pathologies (Kovacs, 2020). It is important to note - that the presence of astrocytic tau accumulations in the absence of dementia may suggest that tau- - 178 containing astrocytes are not damaging in tau-associated neurodegeneration, or at least in ARTAG, - and may internalise tau aggregates as a means of clearing damaging protein species. - Finally, chronic traumatic encephalopathy (CTE) is caused by mild repetitive head injuries. 3R and - 4R tau-positive aggregates are common in CTE, however the tau aggregates that accumulate in - astrocytes are predominantly 4R and localize in astrocytes near small vessels in the cerebral sulci of - the frontal and temporal cortices (McKee et al., 2013, 2015; Stein et al., 2014). Thorn-shaped - astrocytes are also observed subpial and periventricular regions, an interesting link to ARTAG - 185 (McKee et al., 2016; Kovacs et al., 2020). 186 ### 5 Do astrocytes contribute to tau pathology spread? - Neurofibrillary tangles have long been acknowledged to follow a stereotypical temporospatial pattern - of spread from the entorhinal cortex as AD progresses (Braak et al., 2011). Recent evidence indicates - that differences in the tau species that deposit in characteristic tau lesions may confer specific - neuronal vulnerabilities and/or prion-like spread of tau (Clavaguera et al., 2013; Dujardin et al., - 191 2020). Mouse models that express wild-type 3R and 4R human tau isoforms in appropriate ratios - recapitulate the same cell type vulnerabilities that typify human tauopathies when injected with - human tau extracts, including the development of tufted astrocytes in PSP tau-injected mice, and - astroglial plaques in CBD tau-injected mice (He et al., 2020). These data raise the possibility that - astrocytes actively
contribute to the spread of pathological forms of tau, particularly in PSP and - 196 CBD. That tau spreads in a prion-like manner trans-synaptically along anatomical connections was - elegantly shown in transgenic mice in which mutant human (P301L) FTLD-causing tau expression - was restricted to layer II neurons in the entorhinal cortex. Following local tau aggregation, tau - "seeds" were found to spread to the hippocampus and onwards as mice aged (De Calignon et al., - 200 2012; Liu et al., 2012). Notably, PHF1-positive tau was detected in GFAP-positive astrocytes in the - 201 hippocampus of older mice, suggesting that astrocytes internalise and may contribute to tau spread - 202 (De Calignon et al., 2012) (Figure 1). - Heparan sulfate proteoglycans (HSPGs) are a well-conserved group of proteoglycans expressed on - the cell surface of astrocytes and neurons (Turnbull et al., 2001; Sarrazin et al., 2011) that mediate - targeted endocytosis (Turnbull et al., 2001), including that of purified prion proteins in vitro - 206 (Schonberger et al., 2003; Horonchik et al., 2005). HSPGs were recently shown to interact with - protein aggregates including α-synuclein, Aβ and tau (Kanekiyo et al., 2011; Holmes et al., 2013; - Ihse et al., 2017). HSPGs regulate the uptake of synthetic tau fibrils (Holmes et al., 2013) and human - 200 lise et al., 2017). His Os regulate the uptake of synthetic tau norms (fronties et al., 2017) and numar - brain-derived tau (Puangmalai et al., 2020) in human immortalised cell lines and mouse primary - 210 neuronal cultures. HSPGs vary in the length of their glycosaminoglycan chains and sulfation - 211 patterns, properties that are important for tau uptake in human embryonic kidney cells (Stopschinski - et al., 2018) and human iPSC derived neurons (Rauch et al., 2018). Interestingly, tau fibrils are - 213 efficiently internalised in a HSPG-dependent manner by primary astrocytes exogenously expressing - 214 transcription factor EB (TFEB), a master regulator of lysosomal biogenesis (Martini-Stoica et al., - 215 2018). In contrast, monomeric tau appears to be taken up by astrocytes using an HSPG-independent - 216 mechanism (Perea et al., 2019). Together this suggests that multiple mechanisms are involved in tau - 217 uptake by astrocytes, that may be specific to tau aggregation state or conformation, as well as the - 218 HSPG profile of the cell type (Tselnicker et al., 2014). - 219 HSPGs can also partner with cell surface receptors to mediate the intake of protein aggregates. For - example, HSPGs interact with members of the low-density lipoprotein receptor (LDLR) such as - 221 LRP1, to facilitate Aβ uptake and degradation by astrocytes (Kanekiyo and Bu, 2014; Liu et al., - 222 2017). Knockdown of LRP1 was recently shown to block the uptake of monomeric and oligomeric - tau in a human neuroglioma cell line, and partially inhibit uptake of sonicated tau fibrils (Rauch et - al., 2020), warranting further investigation into how astrocytic LRP1 may mediate tau uptake and - spread in tauopathies. - Astrocytes are an integral part of the glymphatic system of the brain, a clearance system of soluble - proteins and solutes. The astrocytic water channel aquaporin-4 (AQP4), expressed at the astrocyte - end feet, facilitates this process and is important for Aβ clearance (Benarroch, 2007; Iliff et al., - 229 2012). Disruption to AQP4 may also contribute to tauopathy progression. In a mouse model of CTE, - 230 knockout of AQP4 exacerbated neurofibrillary tau pathology and neurodegeneration (Iliff et al., - 231 2014). Distinct phosphorylation marks in AQP4 have been reported in human post-mortem ARTAG - samples relative to controls (Ferrer et al., 2018) that are suggested to increase water permeability of - 233 AQP4. However, the functional implications of these modifications in ARTAG remain to be - explored (Han et al., 1998; Kitchen et al., 2015). A recent transcriptional analysis of cognitively- - 235 impaired subjects and controls showed that components of the dystrophin-associated complex, which - anchors AQP4 at the perivascular astrocytic end foot, are associated with phosphorylated tau levels in - the temporal cortex (Simon et al., 2018). This analysis also revealed other astrocyte endfoot - 238 candidate genes that significantly correlate with temporal cortex tau pathology. The authors speculate - that endfoot functions of astrocytes may play a role in the accumulation of tau aggregates throughout - the brain. Although AQP4 might contribute to the clearance of aberrant proteins early in the disease - process, this function could become impaired at later stages, hindering the clearance of pathogenic - 242 tau. 243 ### **6** Tau effects on astrocyte function - In addition to potential roles in tau spread, internalisation of pathological forms of tau has been - shown to disrupt a myriad of astrocytic functions, central for the maintenance and support of - 246 neurons. Oligomeric tau uptake alters calcium signalling and gliotransmitter release (e.g. ATP) via - 247 Ca2+-dependant mechanisms to disrupt post-synaptic currents and downregulate pre- and post- - synaptic markers in neuronal-astrocyte co-cultures (Piacentini et al., 2017), together suggesting that - 249 tau-induced changes to astrocyte function are toxic to neighbouring neurons, at least *in vitro*. - 250 Astrocytes isolated from a transgenic tauopathy model (P301S) expressing a 4R mutant tau isoform - also acquired early functional deficiencies that impaired their ability to support neurons in culture - 252 (Sidoryk-Wegrzynowicz et al., 2017). Astrocytes from mouse models of tauopathies also show - altered expression of neuronally regulated genes (Hasel et al., 2018), indicating that the accumulation - of abnormal tau species is sufficient to drive transcriptional and likely functional changes in - 255 astrocytes, via altered neuron-astrocyte interactions. In addition, human astrocytes differentiated from - 256 iPSCs harbouring FTD-causing MAPT mutations display an increased vulnerability to oxidative - stress and elevated protein ubiquitination, alongside disease-associated transcriptomic alterations - 258 (Hallmann et al., 2017). - 259 The immune-related functions of astrocytes are a major contributor to neuroinflammatory response - 260 that directly alter neuronal integrity in neurodegenerative diseases (Sofroniew and Vinters, 2010). In - 261 particular, the complement cascade, which also involves microglia, has an important role in the - accumulation of beta-amyloid pathology (Veerhuis et al., 2011; Lian et al., 2016). C3 is a major 262 - 263 component of the complement cascade and is highly expressed in reactive astrocytes (Liddelow et al., - 264 2017). C3, as well as its downstream receptor C3aR1, that is mainly expressed by microglia, (Zhang - 265 et al., 2014), is upregulated in postmortem tauopathy brain and correlates with cognitive decline - 266 during disease progression (Litvinchuk et al., 2018). Levels of C3 also correlate with tau amounts in - 267 AD CSF (Wu et al., 2019). Ablation of C3aR or C3 in mouse models of tauopathy reversed neuronal - 268 loss and neurodegeneration (Litvinchuk et al., 2018; Wu et al., 2019), alongside reduced numbers of - 269 GFAP-reactive hypertrophied astrocytes being apparent upon C3aR knockout (Litvinchuk et al., - 270 2018). These data indicate that complement activation downstream of astrocyte reactivity may be an - 271 important driver of tauopathy. - 272 Astrocytes, together with microglia, are also hypothesized to induce synaptic loss and neurotoxicity - 273 in tauopathies, as they do during development (Chung et al., 2013), through dysregulated synaptic - 274 pruning (Henstridge et al., 2019). Sleep deprivation is common in AD (Noble and Spires-Jones, - 275 2019), where it is believed to be both a cause and consequence of neurodegenerative changes (Noble - 276 and Spires-Jones, 2019). Sleep deprivation leads to enhanced tau release and spread (Holth et al., - 277 2019), alongside astrocyte-mediated synapse elimination (Bellessi et al., 2017). It is therefore - 278 possible that astrocyte engulfment of tau-containing synapses may be one route by which astrocytes - 279 contribute to tau spread in AD. - 280 Ultimately, cross-talk between astrocytes and microglia forms part of a complex innate immune - 281 response that may be exacerbated during tauopathies in response to protein aggregates. Deeper - 282 investigation of these pathways may reveal novel targets that can be exploited to slow or halt disease - 283 progression. #### 284 7 **Discussion** - 285 Recent evidence has highlighted that altered astrocyte functions have detrimental consequences for - 286 neurons and may be a driver of neurodegenerative diseases. Astrocytes are closely associated with - 287 the accumulation of pathological forms of tau in tauopathies. There is some evidence that astrocytes - 288 internalise tau aggregates, via mechanisms that are not yet fully understood, and contribute to tau - pathology spread across the brain and tau aggregate clearance via the glymphatic system. However, 289 - 290 astrocytes show significant regional heterogeneity and more work is needed to better understand the - 291 contribution of different astrocyte subtypes in affected brain regions at different disease stages. Such - 292 understanding may aid in the development of astrocyte-targeted therapies for tauopathies. Astrocyte- - 293 targeted therapeutic approaches have been well described elsewhere including by Sadik and - 294 Liddelow (2019), and could include antagonists that prevent tau uptake by astrocytes to reduce tau - 295 spread, agents that prevent the release of neurotoxic astrocyte secretions or their uptake by neurons, - 296 or therapies that restore physiological astrocyte functions including their trophic support for neurons - 297 and synapses, maintenance of the blood brain barrier, and roles in the glymphatic clearance of
protein - 298 aggregates. 299 302 #### 7 **Conflict of Interest** - 300 The authors declare that the research was conducted in the absence of any commercial or financial - 301 relationships that could be construed as a potential conflict of interest. #### 8 **Author Contributions** - 303 MJR, PBL, LJ, BGP-N and WN wrote and edited the manuscript. - **304 9 Funding** - Work in our laboratories is supported by funding from Alzheimer's Research UK, Medical Research - 306 Council, British Biotechnology and Biological Sciences Research Council, and the van Geest - 307 Charitable Foundation. - 308 10 References - Acosta, C., Anderson, H. D., and Anderson, C. M. (2017). Astrocyte dysfunction in Alzheimer - 310 disease. J. Neurosci. Res. 95, 2430–2447. doi:10.1002/jnr.24075. - 311 Ahmed, Z., Bigio, E. H., Budka, H., Dickson, D. W., Ferrer, I., Ghetti, B., et al. (2013). Globular - glial tauopathies (GGT): Consensus recommendations. *Acta Neuropathol.* 126, 537–544. - 313 doi:10.1007/s00401-013-1171-0. - Andreadis, A. (2005). Tau gene alternative splicing: Expression patterns, regulation and modulation - of function in normal brain and neurodegenerative diseases. *Biochim. Biophys. Acta Mol. Basis* - 316 Dis. 1739, 91–103. doi:10.1016/j.bbadis.2004.08.010. - Benarroch, E. E. (2007). Aquaporin-4, homeostasis, and neurologic disease. *Neurology* 69, 2266 LP - 318 2268. doi:10.1212/01.wnl.0000286385.59836.e2. - 319 Bellesi, M., de Vivo, L., Chini, M., Gilli, F., Tononi, G., and Cirelli, C. (2017). Sleep loss promotes - astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J. Neurosci. 37, - 321 5263–5273. doi: 10.1523/jneurosci.3981-16.2017 - Besser, L. M., Crary, J. F., Mock, C., and Kukull, W. A. (2017). Comparison of symptomatic and - asymptomatic persons with primary age-related tauopathy. *Neurology* 89, 1707–1715. - 324 doi:10.1212/WNL.0000000000004521. - 325 Binder, L. I. (1985). The distribution of tau in the mammalian central nervous system. J. Cell Biol. - 326 101, 1371–1378. doi:10.1083/jcb.101.4.1371. - Boisvert, M. M., Erikson, G. A., Shokhirev, M. N., and Allen, N. J. (2018). The Aging Astrocyte - Transcriptome from Multiple Regions of the Mouse Brain. *Cell Rep.* 22, 269–285. - 329 doi:10.1016/j.celrep.2017.12.039. - Botez, G., Probst, A., Ipsen, S., and Tolnay, M. (1999). Astrocytes expressing hyperphosphorylated - tau protein without glial fibrillary tangles in argyrophilic grain disease. *Acta Neuropathol.* 98, - 332 251–256. doi:10.1007/s004010051077. - Bouvier, D. S., Jones, E. V., Quesseveur, G., Davoli, M. A., Ferreira, T. A., Quirion, R., et al. (2016). - High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci. Rep. 6, 1–15. - 335 doi:10.1038/srep24544. - Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta - 337 *Neuropathol.* 82, 239–59. doi: 10.1111/j.1750-3639.1991.tb00661.x. - Braak, H., Thal, D. R., Ghebremedhin, E., and Del Tredici, K. (2011). Stages of the Pathologic - Process in Alzheimer Disease: Age Categories From 1 to 100 Years. J. Neuropathol. Exp. - 340 *Neurol.* 70, 960–969. doi:10.1097/NEN.0b013e318232a379. - 341 Bright, F., Ittner, L. M., and Halliday, G. M. (2019). Neuroinflammation in frontotemporal dementia. - 342 Nat. Rev. Neurol. 15. doi:10.1038/s41582-019-0231-z. - Cairns, N. J., Bigio, E. H., Mackenzie, I. R. A., Neumann, M., Lee, V. M. Y., Hatanpaa, K. J., et al. - 344 (2007). Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar - degeneration: Consensus of the Consortium for Frontotemporal Lobar Degeneration. *Acta* - 346 *Neuropathol.* 114, 5–22. doi:10.1007/s00401-007-0237-2. - Choi, S. S., Lee, H. J., Lim, I., Satoh, J. I., and Kim, S. U. (2014). Human astrocytes: Secretome - profiles of cytokines and chemokines. *PLoS One* 9. doi:10.1371/journal.pone.0092325. - Chung, W. S., Clarke, L. E., Wang, G. X., Stafford, B. K., Sher, A., Chakraborty, C., et al. (2013). - Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, - 351 394–400. doi: 10.1038/nature12776 - Clavaguera, F., Akatsu, H., Fraser, G., Crowther, R.A., Frank, S., Hench, J., et al. (2013). Brain - homogenates from human tauopathies induce tau inclusions in mouse brain. *Proc Natl Acad Sci* - 354 *USA*. 110(23), 9535-40. doi: 10.1073/pnas.1301175110. - 355 Crary, J. F., Trojanowski, J. Q., Schneider, J. A., Abisambra, J. F., Abner, E. L., Alafuzoff, I., et al. - 356 (2014). Primary age-related tauopathy (PART): a common pathology associated with human - 357 aging. Acta Neuropathol. 128, 755–766. doi:10.1007/s00401-014-1349-0. - Darmanis, S., Sloan, S. A., Zhang, Y., Enge, M., Caneda, C., Shuer, L. M., et al. (2015). A survey of - human brain transcriptome diversity at the single cell level. *Proc. Natl. Acad. Sci. U. S. A.* 112, - 360 7285–7290. doi:10.1073/pnas.1507125112. - De Calignon, A., Polydoro, M., Suárez-Calvet, M., William, C., Adamowicz, D. H., Kopeikina, K. J., - et al. (2012). Propagation of Tau Pathology in a Model of Early Alzheimer's Disease. *Neuron* - 363 73, 685–697. doi:10.1016/j.neuron.2011.11.033. - Dickson, D. W. (2001). Neuropathology of Pick's disease. *Neurology* 56, S16–S20. - 365 doi:10.1212/WNL.56.suppl_4.S16. - Dickson, D. W., Kouri, N., Murray, M. E., and Josephs, K. A. (2011). Neuropathology of - frontotemporal lobar degeneration-Tau (FTLD-Tau). J. Mol. Neurosci. 45, 384–389. - 368 doi:10.1007/s12031-011-9589-0. - Dujardin, S., Commins, C., Lathuiliere, A., Beerepoot, P., Fernandes, A. R., Kamath, T. V., et al. - 370 (2020). Tau molecular diversity contributes to clinical heterogeneity in Alzheimer's disease. - 371 *Nat. Med.* doi:10.1038/s41591-020-0938-9. - Falcon, B., Zhang, W., Murzin, A. G., Murshudov, G., Garringer, H. J., Vidal, R., et al. (2018). - 373 Structures of filaments from Pick's disease reveal a novel tau protein fold. *Nature* 561, 137– - 374 140. doi:10.1038/s41586-018-0454-y. - Falcon, B., Zivanov, J., Zhang, W., Murzin, A. G., Garringer, H. J., Vidal, R., et al. (2019). Novel tau - filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. *Nature*. - 377 doi:10.1038/s41586-019-1026-5. - Ferrer, I., García, M. A., González, I. L., Lucena, D. D., Villalonga, A. R., Tech, M. C., et al. (2018). - Aging-related tau astrogliopathy (ARTAG): Not only tau phosphorylation in astrocytes. *Brain* - 380 *Pathol.* doi:10.1111/bpa.12593. - Ferrer, I., López-González, I., Carmona, M., Arregui, L., Dalfó, E., Torrejón-Escribano, B., et al. - 382 (2014). Glial and neuronal tau pathology in tauopathies: Characterization of disease-specific - phenotypes and tau pathology progression. J. Neuropathol. Exp. Neurol. 73, 81–97. - 384 doi:10.1097/NEN.0000000000000030. - Fitzpatrick, A. W. P., Falcon, B., He, S., Murzin, A. G., Murshudov, G., Garringer, H. J., et al. - 386 (2017). Cryo-EM structures of tau filaments from Alzheimer's disease. *Nature* 547, 185–190. - 387 doi:10.1038/nature23002. - Forrest, S. L., Kril, J. J., and Halliday, G. M. (2019). Cellular and regional vulnerability in - frontotemporal tauopathies. *Acta Neuropathol.* 138, 705–727. doi:10.1007/s00401-019-02035-7. - 390 Forrest, S. L., Kril, J. J., Stevens, C. H., Kwok, J. B., Hallupp, M., Kim, W. S., et al. (2018). Retiring - the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal - 392 tauopathies. *Brain* 141, 521–534. doi:10.1093/brain/awx328. - Garwood, C. J., Ratcliffe, L. E., Simpson, J. E., Heath, P. R., Ince, P. G., and Wharton, S. B. (2017). - Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting - player with a central role. *Neuropathol. Appl. Neurobiol.* 43, 281–298. doi:10.1111/nan.12338. - Goedert, M., and Jakes, R. (1990). Expression of separate isoforms of human tau protein: correlation - with the tau pattern in brain and effects on tubulin polymerization. *EMBO J.* 9, 4225–4230. - 398 doi:10.1002/j.1460-2075.1990.tb07870.x. - 399 Guerreiro, R. J., Gustafson, D. R., and Hardy, J. (2012). The genetic architecture of Alzheimer's - disease: Beyond APP, PSENS and APOE. *Neurobiol. Aging* 33, 437–456. - 401 doi:10.1016/j.neurobiolaging.2010.03.025. - 402 Guo, T., Noble, W., and Hanger, D. P. (2017). Roles of tau protein in health and disease. *Acta* - 403 *Neuropathol.* 133, 665–704. doi:10.1007/s00401-017-1707-9. - Habib, N., McCabe, C., Medina, S., Varshavsky, M., Kitsberg, D., Dvir-Szternfeld, R., et al. (2020). - Disease-associated astrocytes in Alzheimer's disease and aging. *Nat. Neurosci.* - 406 doi:10.1038/s41593-020-0624-8. - Hallmann, A. L., Araúzo-Bravo, M. J., Mavrommatis, L., Ehrlich, M., Röpke, A., Brockhaus, J., et - al. (2017). Astrocyte pathology in a human neural stem cell model of frontotemporal dementia - 409 caused by mutant TAU protein. *Sci. Rep.* 7, 1–10. doi:10.1038/srep42991. - 410 Han, Z., Wax, M. B., and Patil, R. V (1998). Regulation of Aquaporin-4 Water Channels by Phorbol - Ester-dependent Protein Phosphorylation. J. Biol. Chem. 273, 6001–6004. - 412 doi:10.1074/jbc.273.11.6001. - Hanger, D. P., Anderton, B. H., and Noble, W. (2009). Tau phosphorylation: the therapeutic - challenge for neurodegenerative disease. *Trends Mol. Med.* 15, 112–119. - 415 doi:10.1016/j.molmed.2009.01.003. - 416 Hasel, P., Dando, O., Jiwaji, Z., Baxter, P., Todd, A.C., Heron, S., Márkus, N.M., McQueen, J., - Hampton, D.W., Torvell, M., Tiwari, S.S., McKay, S., Eraso-Pichot, A., Zorzano, A., Masgrau, - 418 R., Galea, E., Chandran, S., Wyllie, D.J.A., Simpson, T.I., Hardingham, G.E. (2017). Nat - 419 Commun. 8:15132. - 420 He, H. J., Wang, X. S., Pan, R., Wang, D. L., Liu, M. N., and He, R. Q. (2009). The proline-rich - domain of tau plays a role in interactions with actin. BMC Cell Biol. 10. doi:10.1186/1471- - 422 2121-10-81. - 423 He, Z., McBride, J. D., Xu, H., Changolkar, L., Kim, S. jung, Zhang, B., et al. (2020). Transmission - of tauopathy strains is independent of
their isoform composition. *Nat. Commun.* 11. - 425 doi:10.1038/s41467-019-13787-x. - 426 Henstridge, C.M., Tzioras, M., Paolicelli, R.C. (2019). Glial Contribution to Excitatory and - 427 Inhibitory Synapse Loss in Neurodegeneration. Front Cell Neurosci. 13:63. doi: - 428 10.3389/fncel.2019.00063. - Holmes, B. B., DeVos, S. L., Kfoury, N., Li, M., Jacks, R., Yanamandra, K., et al. (2013). Heparan - sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. - 431 *Proc. Natl. Acad. Sci.* 110, E3138–E3147. doi:10.1073/pnas.1301440110. - Holth, J.K., Fritschi, S.K., Wang, C., Pedersen, N.P., Cirrito, J.R., Mahan, T.E., Finn, M.B., Manis, - 433 M., Geerling, J.C., Fuller, P.M., Lucey, B.P., Holtzman, D.M. (2019). The sleep-wake cycle - regulates brain interstitial fluid tau in mice and CSF tau in humans. *Science*. 363(6429):880-884. - 435 doi: 10.1126/science.aav2546. - 436 Horonchik, L., Tzaban, S., Ben-Zaken, O., Yedidia, Y., Rouvinski, A., Papy-Garcia, D., et al. (2005). - Heparan sulfate is a cellular receptor for purified infectious prions. J. Biol. Chem. 280, 17062– - 438 17067. doi:10.1074/jbc.M500122200. - 439 Ihse, E., Yamakado, H., Wijk, X. M. Van, Lawrence, R., and Esko, J. D. (2017). Cellular - internalization of alpha-synuclein aggregates by cell surface heparan sulfate depends on - aggregate conformation and cell type. *Sci. Rep.*, 1–10. doi:10.1038/s41598-017-08720-5. - 442 Iliff, J. J., Chen, M. J., Plog, B. A., Zeppenfeld, D. M., Soltero, M., Yang, L., et al. (2014). - Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. - 444 *J. Neurosci.* 34, 16180–16193. doi:10.1523/JNEUROSCI.3020-14.2014. - 445 Iliff, J. J., Wang, M., Liao, Y., Plogg, B. A., Peng, W., Gundersen, G. A., et al. (2012). A - paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of - interstitial solutes, including amyloid β. Sci. Transl. Med. 4. doi:10.1126/scitranslmed.3003748. - Jellinger, K. A., Alafuzoff, I., Attems, J., Beach, T. G., Cairns, N. J., Crary, J. F., et al. (2015). - PART, a distinct tauopathy, different from classical sporadic Alzheimer disease. *Acta* - 450 *Neuropathol.* 129, 757–762. doi:10.1007/s00401-015-1407-2. - Jellinger, K. A., and Attems, J. (2007). Neurofibrillary tangle-predominant dementia: Comparison - with classical Alzheimer disease. Acta Neuropathol. 113, 107–117. doi:10.1007/s00401-006- - 453 0156-7. - Josephs, K. A., Hodges, J. R., Snowden, J. S., MacKenzie, I. R., Neumann, M., Mann, D. M., et al. - 455 (2011). Neuropathological background of phenotypical variability in frontotemporal dementia. - 456 *Acta Neuropathol.* 122, 137–153. doi:10.1007/s00401-011-0839-6. - Jucker, M., and Walker, L. C. (2018). Propagation and spread of pathogenic protein assemblies in - 458 neurodegenerative diseases. *Nat. Neurosci.* 21, 1341–1349. doi:10.1038/s41593-018-0238-6. - Kamphuis, W., Kooijman, L., Orre, M., Stassen, O., Pekny, M., and Hol, E. M. (2015). GFAP and - vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and - changes the transcriptional response of reactive glia in mouse model for Alzheimer's disease. - 462 *Glia* 63, 1036–1056. doi:10.1002/glia.22800. - Kanekiyo, T., and Bu, G. (2014). The low-density lipoprotein receptor-related protein 1 and amyloid- - β clearance in Alzheimer's disease. Front. Aging Neurosci. 6, 1–12. - 465 doi:10.3389/fnagi.2014.00093. - Kanekiyo, T., Zhang, J., Liu, Q., Liu, C. C., Zhang, L., and Bu, G. (2011). Heparan sulphate - proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major - pathways for neuronal amyloid-β uptake. J. Neurosci. 31, 1644–1651. - 469 doi:10.1523/JNEUROSCI.5491-10.2011. - 470 Kersaitis, C., Halliday, G. M., and Kril, J. J. (2004). Regional and cellular pathology in - frontotemporal dementia: Relationship to stage of disease in cases with and without Pick bodies. - *Acta Neuropathol.* 108, 515–523. doi:10.1007/s00401-004-0917-0. - 473 Kitchen, P., Day, R. E., Taylor, L. H. J., Salman, M. M., Bill, R. M., Conner, M. T., et al. (2015). - 474 Identification and Molecular Mechanisms of the Rapid Tonicity-induced Relocalization of the - 475 Aguaporin 4 Channel. J. Biol. Chem. 290, 16873–16881. doi:10.1074/jbc.M115.646034. - 476 Kovacs, G. G., and Budka, H. (2010). Current concepts of neuropathological diagnostics in practice: - Neurodegenerative diseases. Clin. Neuropathol. 29, 271–288. doi:10.5414/npp29271. - Kovacs, G. G., Ferrer, I., Grinberg, L. T., Alafuzoff, I., Attems, J., Budka, H., et al. (2016). Aging- - related tau astrogliopathy (ARTAG): harmonized evaluation strategy. *Acta Neuropathol.* 131, - 480 87–102. doi:10.1007/s00401-015-1509-x. - 481 Kovacs, G. G., Robinson, G. L., Xie, S.X., Lee, E.B., Grossman, M., Wolk, D.A., et al. (2017). - Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into - Brain Aging and Neurodegenerative Diseases. *J Neuropathol Exp Neurol.* 76(4), 270–288. doi: - 484 10.1093/jnen/nlx007 - 485 Kovacs, G. (2018). Understanding the Relevance of Aging-Related Tau Astrogliopathy (ARTAG). - 486 *Neuroglia* 1, 339–350. doi:10.3390/neuroglia1020023. - 487 Kovacs, G. G. (2020). Astroglia and Tau: New Perspectives. Front. Aging Neurosci. 12, 1–14. - 488 doi:10.3389/fnagi.2020.00096. - Lace, G., Ince, P. G., Brayne, C., Savva, G. M., Matthews, F. E., de Silva, R., et al. (2012). Mesial - 490 Temporal Astrocyte Tau Pathology in the MRC-CFAS Ageing Brain Cohort. *Dement. Geriatr.* - 491 *Cogn. Disord.* 34, 15–24. doi:10.1159/000341581. - 492 Lane, C. A., Hardy, J., and Schott, J. M. (2018). Alzheimer's disease. *Eur. J. Neurol.* 25, 59–70. - 493 doi:10.1111/ene.13439. - Leyns, C. E. G., and Holtzman, D. M. (2017). Glial contributions to neurodegeneration in - 495 tauopathies. *Mol. Neurodegener.* 12, 1–16. doi:10.1186/s13024-017-0192-x. - 496 Lian, H., Litvinchuk, A., Chiang, A. C. A., Aithmitti, N., Jankowsky, J. L., and Zheng, H. (2016). - 497 Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in - 498 mouse models of alzheimer's disease. *J. Neurosci.* 36, 577–589. - 499 doi:10.1523/JNEUROSCI.2117-15.2016. - Lian, H., Yang, L., Cole, A., Sun, L., Chiang, A. C. A., Fowler, S. W., et al. (2015). NFκB-Activated - Astroglial Release of Complement C3 Compromises Neuronal Morphology and Function - Associated with Alzheimer's Disease. *Neuron* 85, 101–115. doi:10.1016/j.neuron.2014.11.018. - Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., et al. - 504 (2017). Neurotoxic reactive astrocytes are induced by activated microglia. *Nature* 541, 481–487. - 505 doi:10.1038/nature21029. - Sadick, J.S., Liddelow, S.A. (2019). Don't forget astrocytes when targeting Alzheimer's disease. *Br J Pharmacol.* 176(18):3585-3598. doi: 10.1111/bph.14568. - 508 Ling, H., Kovacs, G. G., Vonsattel, J. P. G., Davey, K., Mok, K. Y., Hardy, J., et al. (2016). - Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. *Brain* - 510 139, 3237–3252. doi:10.1093/brain/aww256. - Litvinchuk, A., Wan, Y. W., Swartzlander, D. B., Chen, F., Cole, A., Propson, N. E., et al. (2018). - Complement C3aR Inactivation Attenuates Tau Pathology and Reverses an Immune Network - Deregulated in Tauopathy Models and Alzheimer's Disease. *Neuron* 100, 1337-1353.e5. - 514 doi:10.1016/j.neuron.2018.10.031. - Liu, C., Hu, J., Zhao, N., Wang, J., Wang, N., Cirrito, J. R., et al. (2017). Astrocytic LRP1 Mediates - Brain Aβ Clearance and Impacts Amyloid Deposition. J. Neurosci. 37, 4023–4031. - 517 doi:10.1523/JNEUROSCI.3442-16.2017. - Liu, L., Drouet, V., Wu, J. W., Witter, M. P., Small, S. A., Clelland, C., et al. (2012). Trans-synaptic - spread of tau pathology in vivo. *PLoS One* 7, 1–9. doi:10.1371/journal.pone.0031302. - Lushnikova, I., Skibo, G., Muller, D., and Nikonenko, I. (2009). Synaptic Potentiation Induces - Increased Glial Coverage of Excitatory Synapses in CA1 Hippocampus. 762, 753–762. - 522 doi:10.1002/hipo.20551. - 523 Martini-Stoica, H., Cole, A. L., Swartzlander, D. B., Chen, F., Wan, Y. W., Bajaj, L., et al. (2018). - 524 TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading. *J. Exp.* - 525 *Med.* 215, 2355–2377. doi:10.1084/jem.20172158. - McKee, A. C., Cairns, N. J., Dickson, D. W., Folkerth, R. D., Dirk Keene, C., Litvan, I., et al. (2016). - The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the - diagnosis of chronic traumatic encephalopathy. *Acta Neuropathol.* 131, 75–86. - 529 doi:10.1007/s00401-015-1515-z. - McKee, A. C., Stein, T. D., Kiernan, P. T., and Alvarez, V. E. (2015). The neuropathology of chronic - traumatic encephalopathy. *Brain Pathol.* 25, 350–364. doi:10.1111/bpa.12248. - McKee, A. C., Stein, T. D., Nowinski, C. J., Stern, R. A., Daneshvar, D. H., Alvarez, V. E., et al. - 533 (2013). The spectrum of disease in chronic traumatic encephalopathy. *Brain* 136, 43–64. - 534 doi:10.1093/brain/aws307. - McKenzie, A. T., Wang, M., Hauberg, M. E., Fullard, J. F., Kozlenkov, A., Keenan, A., et al. (2018). - Brain Cell Type Specific Gene Expression and Co-expression Network Architectures. *Sci. Rep.* - 537 8, 1–19. doi:10.1038/s41598-018-27293-5. - Mederos, S., González-Arias, C., and Perea, G. (2018). Astrocyte–Neuron Networks: A Multilane - Highway of Signaling for Homeostatic Brain Function. Front. Synaptic Neurosci. 10, 1–12. - 540 doi:10.3389/fnsyn.2018.00045. - Noble W, Spires-Jones TL. (2019). Sleep well to slow Alzheimer's progression? *Science*. - 542 363(6429):813-814. doi: 10.1126/science.aaw5583. - Oberheim, N. A., Wang, X., Goldman, S., and Nedergaard, M. (2006). Astrocytic complexity - distinguishes the human brain. *Trends Neurosci.* 29, 547–553. doi:10.1016/j.tins.2006.08.004. - Osborn, L. M., Kamphuis, W., Wadman, W. J., and Hol, E. M.
(2016). Astrogliosis: An integral - player in the pathogenesis of Alzheimer's disease. *Prog. Neurobiol.* 144, 121–141. - 547 doi:10.1016/j.pneurobio.2016.01.001. - Parpura, V., Basarsky, T. A., Liu, F., and Jeftinijatt, K. (1994). Glutamate-mediated astrocyte-neuron - signalling. *Nature* 369, 744–747. - Perea, J. R., López, E., Díez-Ballesteros, J. C., Ávila, J., Hernández, F., and Bolós, M. (2019). - Extracellular Monomeric Tau Is Internalized by Astrocytes. *Front. Neurosci.* 13, 1–7. - 552 doi:10.3389/fnins.2019.00442. - Perez-Nievas, B.G., Stein, T.D., Tai, H.C., Dols-Icardo, O., Scotton, T.C., Barroeta-Espar, I., et al. - 554 (2013). Dissecting phenotypic traits linked to human resilience to Alzheimer's pathology. *Brain*. - 555 136(Pt 8), 2510-26. doi: 10.1093/brain/awt171 - Piacentini, R., Li Puma, D. D., Mainardi, M., Lazzarino, G., Tavazzi, B., Arancio, O., et al. (2017). - Reduced gliotransmitter release from astrocytes mediates tau-induced synaptic dysfunction in - 558 cultured hippocampal neurons. *Glia* 65, 1302–1316. doi:10.1002/glia.23163. - Prince, M., Albanese, E., Guerchert, M., Prina, M., Ferri, C., Mazzotti, D. R., et al. (2014). World - Alzheimer Report 2014: Dementia and Risk Reduction, an Analysis of Protective and - Modifiable Factors. *Alzheimer's Dis. Int.* Available at: - https://www.alz.co.uk/research/WorldAlzheimerReport2014.pdf. - Puangmalai, N., Bhatt, N., Montalbano, M., Sengupta, U., Gaikwad, S., Mcallen, S., et al. (2020). - Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimer 's - disease, progressive supranuclear palsy and dementia with Lewy bodies. *Cell Death Dis.* - 566 doi:10.1038/s41419-020-2503-3. - 567 Rauch, J. N., Chen, J. J., Sorum, A. W., Miller, G. M., Sharf, T., See, S. K., et al. (2018). Tau - Internalization is Regulated by 6-O Sulfation on Heparan Sulfate Proteoglycans (HSPGs). *Sci.* - 569 Rep. 8, 1–10. doi:10.1038/s41598-018-24904-z. - Rauch, J. N., Luna, G., Guzman, E., Audouard, M., Challis, C., Sibih, Y. E., et al. (2020). LRP1 is a - 571 master regulator of tau uptake and spread. *Nature* 1, 1–5. doi:10.1038/s41586-020-2156-5. - Rodriguez, R. D., and Grinberg, L. T. (2015). Argyrophilic grain disease: An underestimated - 573 tauopathy. *Dement. Neuropsychol.* 9, 2–8. doi:10.1590/S1980-57642015DN91000002. - 574 Sadick, J. S., and Liddelow, S. A. (2019). Don't forget astrocytes when targeting Alzheimer's - 575 disease. Br. J. Pharmacol. 176, 3585–3598. doi:10.1111/bph.14568. - Saito, Y., Ruberu, N. N., Sawabe, M., Arai, T., Tanaka, N., Kakuta, Y., et al. (2004). Staging of - argyrophilic grains: An age-associated tauopathy. J. Neuropathol. Exp. Neurol. 63, 911–918. - 578 doi:10.1093/jnen/63.9.911. - 579 Santello, M., Toni, N., and Volterra, A. (2019). Astrocyte function from information processing to - cognition and cognitive impairment. Nat. Neurosci. 22, 154–166. doi:10.1038/s41593-018- - 581 0325-8. - Sarrazin, S., Lamanna, W. C., and Esko, J. D. (2011). Heparan Sulfate Proteoglycans. *Cold Spring* - 583 *Harb. Perspect. Biol.* 3, a004952–a004952. doi:10.1101/cshperspect.a004952. - Schonberger, O., Horonchik, L., Gabizon, R., Papy-Garcia, D., Barritault, D., and Taraboulos, A. - 585 (2003). Novel heparan mimetics potently inhibit the scrapie prion protein and its endocytosis. - 586 Biochem. Biophys. Res. Commun. 312, 473–479. doi:10.1016/j.bbrc.2003.10.150. - Seiberlich, V., Bauer, N. G., Schwarz, L., Ffrench-Constant, C., Goldbaum, O., and Richter- - Landsberg, C. (2015). Downregulation of the microtubule associated protein Tau impairs - process outgrowth and myelin basic protein mRNA transport in oligodendrocytes. *Glia* 63, - 590 1621–1635. doi:10.1002/glia.22832. - 591 Shigetomi, E., Saito, K., Sano, F., and Koizumi, S. C. (2019). Aberrant calcium signals in reactive - astrocytes: A key process in neurological disorders. *Int. J. Mol. Sci.* 20. - 593 doi:10.3390/ijms20040996. - 594 Sidoryk-Wegrzynowicz, M., Gerber, Y. N., Ries, M., Sastre, M., Tolkovsky, A. M., and Spillantini, - M. G. (2017). Astrocytes in mouse models of tauopathies acquire early deficits and lose - neurosupportive functions. *Acta Neuropathol. Commun.* 5, 89. doi:10.1186/s40478-017-0478-9. - 597 Simon, M. J., Wang, M. X., Murchison, C. F., Roese, N. E., Boespflug, E. L., Woltjer, R. L., et al. - 598 (2018). Transcriptional network analysis of human astrocytic endfoot genes reveals region- - specific associations with dementia status and tau pathology. Sci. Rep. 8, 1–16. - 600 doi:10.1038/s41598-018-30779-x. - Sofroniew, M. V, and Vinters, H. V (2010). Astrocytes: biology and pathology. *Acta Neuropathol*. - 602 119, 7–35. doi:10.1007/s00401-009-0619-8. - 603 Stein, T. D., Alvarez, V. E., and McKee, A. C. (2014). Chronic traumatic encephalopathy: a - spectrum of neuropathological changes following repetitive brain trauma in athletes and military - personnel. Alzheimers. Res. Ther. 6, 4. doi:10.1186/alzrt234. - Stopschinski, B. E., Holmes, B. B., Miller, G. M., Manon, V. A., Vaquer-Alicea, J., Prueitt, W. L., et - al. (2018). Specific glycosaminoglycan chain length and sulfation patterns are required for cell - 608 uptake of tau versus -synuclein and -amyloid aggregates. J. Biol. Chem. 293, 10826–10840. - 609 doi:10.1074/jbc.RA117.000378. - Tselnicker, I. F., Boisvert, M. M., and Allen, N. J. (2014). The role of neuronal versus astrocyte- - derived heparan sulfate proteoglycans in brain development and injury. *Biochem. Soc. Trans.* - 612 42, 1263–1269. doi:10.1042/BST20140166. - Turnbull, J., Powell, A., and Guimond, S. (2001). Heparan sulfate: Decoding a dynamic - multifunctional cell regulator. *Trends Cell Biol.* 11, 75–82. doi:10.1016/S0962-8924(00)01897- - 615 3. - Vainchtein, I. D., and Molofsky, A. V. (2020). Astrocytes and Microglia: In Sickness and in Health. - 617 *Trends Neurosci.* 43, 144–154. doi:10.1016/j.tins.2020.01.003. - Veerhuis, R., Nielsen, H. M., and Tenner, A. J. (2011). Complement in the brain. *Mol. Immunol.* 48, - 619 1592–1603. doi:10.1016/j.molimm.2011.04.003. - Volterra, A., and Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: The - revolution continues. *Nat. Rev. Neurosci.* 6, 626–640. doi:10.1038/nrn1722. - Wang, Y., and Mandelkow, E. (2016). Tau in physiology and pathology. *Nat. Rev. Neurosci.* 17, 5– - 623 21. doi:10.1038/nrn.2015.1. - Wruck, W., and Adjaye, J. (2020). Meta-analysis of human prefrontal cortex reveals activation of - 625 GFAP and decline of synaptic transmission in the aging brain. *Acta Neuropathol. Commun.* 8, - 626 1–18. doi:10.1186/s40478-020-00907-8. - Wu, T., Dejanovic, B., Gandham, V. D., Carano, R. A. D., Sheng, M., Hanson, J. E., et al. (2019). - 628 Complement C3 Is Activated in Human AD Brain and Is Required for Neurodegeneration in - Mouse Models of Amyloidosis and Tauopathy Article Complement C3 Is Activated in Human - AD Brain and Is Required for Neurodegeneration in Mouse Models of Amyloidosis and T. - 631 *CellReports* 28, 2111-2123.e6. doi:10.1016/j.celrep.2019.07.060. - Zamanian, J. L., Xu, L., Foo, L. C., Nouri, N., Zhou, L., Giffard, R. G., et al. (2012). Genomic - analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410. doi:10.1523/JNEUROSCI.6221- - 634 11.2012. - Zhang, W., Tarutani, A., Newell, K. L., Murzin, A. G., Matsubara, T., Falcon, B., et al. (2020). - Novel tau filament fold in corticobasal degeneration. *Nature* 580. doi:10.1038/s41586-020- - 637 2043-0. # **Running Title** | 638
639
640 | Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O'Keeffe, S., et al. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. <i>J. Neurosci.</i> 34, 11929–11947. doi:10.1523/JNEUROSCI.1860-14.2014. | | | | | | | | | |--|--|--|--|--|--|--|--|--|--| | 641 | | | | | | | | | | | 642 | 11 Figure legends | | | | | | | | | | 643
644
645
646
647
648 | Figure 1. Astrocytic mechanisms that may contribute to spread of tau pathology. 1) Tau monomers and aggregates are released from neurons via various mechanisms, including from the pre-synapse, 2) Astrocytes have specific HSPGs and receptors such as LDR1 that may mediate the uptake of tau aggregates, 3) These aggregates may be internalised and processed by various mechanisms, include lysosomal degradation, 4) Disruption of AQP4 in perivascular astrocytic end-feet may contribute to the disrupted tau clearance and the accumulation of tau aggregates in the CNS. | | | | | | | | | | 649
650 | HSPG, heparin sulfate proteoglycan; LDR1, low density lipoprotein receptor-related protein 1; AQP4, aquaporin-4 | | | | | | | | | | 651 | | | | | | | | | | ### **12 Tables** | Disease | PiD | PSP | CBD | AGD | GGT | ARTAG | AD | PART | CTE | |---------------------------|---|--|--|---|--
--|---|---|---| | Common clinical symptoms | Aphasia, several behavioural changes including and personality changes, cognitive changes at later stages of disease. | Balance and motor deficits, dysphagia and aphagia. | Motor
problems
(often one-
sided),
aphagia,
dysphagia. | Amnestic mild cognitive impairment often accompanied by neuropsychiatr ic symptoms. | Behavioural changes, mood swings, short-term memory loss. | Often no cognitive impairment or dementia related symptoms. Focal pathology may correlate with specific deficits, especially in the presence of copathology. | Dementia;
progressive
episodic
memory
deficits;
navigational
and multi-
tasking
difficulties;
diverse
behavioural
and
personality
changes. | Associated with cognitive impairment and mild AD-like symptoms. | Behavioural changes, mood swings, short-term memory loss. | | MAPT
cause/risk | Mostly sporadic; MAPT mutations (exon 9, 10, 11, 12, 13 and intron 9, 10). | Mostly sporadic, H1/H1c MAPT haplotype increases risk; MAPT mutations (exon 1, 10, and intron 10); | Mostly sporadic; H1 MAPT haplotype increases risk; MAPT mutations (exon 10, 13 & intron 10); | H1 MAPT
haplotype may
increase risk;
MAPT
mutations
(exon 10) | H1 MAPT haplotype; MAPT mutations (exons 1, 10, 11, intron 10). | Depending
on sub-type
and
classificatio
n | Mostly sporadic; APP, PSEN1, PSEN2; No MAPT mutations | Depending
on sub-type
and
classificatio
n | Unknown
(external causes) | | Primary tau isoforms that | 3R | 4R | 4R | 4R | 4R | 4R | 3R & 4R | 3R & 4R | 3R & 4R | ## **Running Title** | accumulate in lesions | | | | | | | | | | |---|---|---|---|--|---|--|--|----------------------------------|---| | Affected
brain regions | Frontal and temporal cortices. | Precentral cortex, subcortex (globus pallidus, substantia nigra, pontine nuclei, subthalamic nuclei). | Frontal and temporal cortices. | Medial temporal lobe. | Frontal,
precentral
and/or
temporal
cortices. | Grey and/or
white
matter,
perivascular
, subpial,
subependym
al. | Entorhinal cortex and hippocampu s, spreading to most regions except the cerebellum. | Entorhinal cortex, hippocampu s. | Begins focally at depths of cerebral sulci, spreads widely to frontal temporal lobes. | | Hallmark
astrocytic tau
pathology | Ramified | Tufted | Astrocytic plaques | Thorn-shaped
& granular
fuzzy/bush-
like | Globular inclusions | Thorn-
shaped &
granular
fuzzy | None | None | Astrocytic tangles and some thorn-shaped astrocytes. | | Cellular
localisation of
astrocytic tau
inclusions | Asymmetric 3R (predominant) or 4R tau inclusions in cell bodies & proximal processes. | Symmetric 4R tau inclusions in proximal processes. | 4R tau in distal processes and end feet; thread-like processes are also common. | 4R tau inclusions and diffuse staining in cell bodies & proximal-distal processes. | 4R globular tau in cell bodies & proximal processes. | 4R tau inclusions and diffuse staining in cell bodies & proximal processes. | n/a | n/a | Irregular p-tau
lesions (around
small vessels). | | References | Forrest et al., (2018; 2019); Dickson, (2001; 2011); ; Josephs et al., (2011); Ferrer et al., (2014). | Forrest et al., (2018; 2019);
Cairns et al., (2007); Kovacs
and Budka, (2010). | Forrest et al., (2018; 2019); Dickson et al., (2011); Ling et al., (2016). | Forrest et al., (2018; 2019);
Botez et al., (1999); Saito et al., (2004). | Forrest et al., (2018; 2019); Ahmed et al., (2013). | Forrest et al., (2018; 2019); Kovacs et al., (2016, 2017, 2018, 2020). | Guerreiro et
al., (2012);
Braak and
Braak,
(1991);
Braak et al.,
(2011). | Forrest et al., (2018; 2019); Crary et al., (2014); Jellinger et al., (2015). | Forrest et al., (2018; 2019);
Stein et al., (2014); McKee et al., (2015; 2016). | | |------------|---|--|--|--|---|--|--|---|--|--| |------------|---|--|--|--|---|--|--|---|--|--| 653 Table 1: Overview of the main clinical, genetic, molecular, and pathological features of tauopathies, including description of astrocyte abnormalities. PiD, Pick's disease; PSP, progressive supranuclear palsy; CBD, corticobasal degeneration; AGD, argyrophilic grain disease; GGT, globular glial tauopathy; ARTAG, age-related tau astrogliopathy; AD, Alzheimer's disease; PART, primary age-related tauopathy; CTE, chronic traumatic encephalopathy; 3R, 3-repeat tau; 4R, 4-repeat tau. 659