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Abstract 10 

Tauopathies are a group of neurodegenerative diseases characterised by the progressive accumulation 11 

across the brain of hyperphosphorylated aggregates of the microtubule-associated protein tau that 12 

vary in isoform composition, structural conformation and localisation. Tau aggregates are most 13 

commonly deposited within neurons but can show differential association with astrocytes, depending 14 

on the disease. Astrocytes, the most abundant neural cells in the brain, play a major role in synapse 15 

and neuronal function, and are a key component of the glymphatic system and blood brain barrier. 16 

However, their contribution to tauopathy progression is not fully understood. Here we present a brief 17 

overview of the association of tau with astrocytes in tauopathies. We discuss findings that support a 18 

role for astrocytes in the uptake and spread of pathological tau, and we describe how alterations to 19 

astrocyte phenotype in tauopathies may cause functional alterations that impedes their ability to 20 

support neurons and/or cause neurotoxicity. The research reviewed here further highlights the 21 

importance of considering non-neuronal cells in neurodegeneration and suggests that astrocyte-22 

directed targets that may have utility for therapeutic intervention in tauopathies. 23 

Contribution to the field: Several neurodegenerative diseases, including Alzheimer’s disease are 24 

characterised by the presence of abnormal tau deposits in affected brain regions, that is closely 25 

associated with synapse loss and neurodegeneration. Astrocytes, the most abundant neural cell type 26 

are an intrinsic component of synapses and regulate neuronal circuits. Recent evidence has 27 

highlighted an important contribution of astrocytes to the prion-like propagation of abnormal tau in 28 

Alzheimer’s disease and related tauopathies. We discuss the evidence linking astrocytes with 29 

tauopathies, including their newly described roles in tau uptake/spread, highlighting the importance 30 

of continued work in this area.  31 

1 Introduction 32 

Tauopathies are a heterogeneous group of neurodegenerative diseases in which the deposition of 33 

hyperphosphorylated tau aggregates in affected brain regions accompanies synapse and neuron loss 34 

(Guo et al., 2016). Primary tauopathies exhibit tau aggregates as the predominant pathological 35 

hallmark and include a diverse family of frontal-temporal lobar dementia (FTLD) subtypes referred 36 

to as FTLD-tau, and includes progressive supranuclear palsy (PSP) and Pick’s disease (PiD). 37 
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Alzheimer’s disease (AD) is considered a secondary tauopathy owing to the presence of extracellular 38 

amyloid-beta (Aß) plaques, and is the most common cause of dementia (Prince et al., 2014).  39 

Tau proteins undergo several post-translational and other modifications in disease (Guo et al., 2016). 40 

Modified forms of tau spreads from the original site of deposition to anatomically connected regions 41 

by a “prion-like” mechanism, whereby tau proteopathic seeds passively recruit tau monomers (Jucker 42 

and Walker, 2018). The mechanisms underlying tau release, uptake and spread are not fully 43 

understood. It has long been acknowledged that in some tauopathies astrocytes accumulate tau 44 

leading to characteristic disease neuropathology. Accumulating evidence now suggests that 45 

astrocytes may actively participate in tau spread and/or clearance mechanisms by actively 46 

internalising tau. This review summarises the association of tau with astrocytes in tauopathies, and 47 

discusses the evidence implicating astrocytes in tau spread, as well as the impact of tauopathy brain 48 

environments on physiological astrocytic functions.  49 

2 Tau protein 50 

Human tau is encoded by the MAPT gene on chromosome 17 which comprises 16 exons. Exons 2, 3 51 

and 10 undergo alternative splicing to produce the six main tau isoforms present in the adult human 52 

central nervous system (CNS) (Andreadis, 2005). Alternative splicing of exon 10 gives rise to tau 53 

isoforms containing either three or four microtubule binding repeats (referred to as 3R or 4R tau) in 54 

the C-terminal region, and alternative splicing of exons 2 and 3 produces tau proteins with zero, one 55 

or two inserts in the N-terminal tail (0N, 1N or 2N tau, respectively). A conserved proline-rich 56 

domain is found between these two spliced regions and is known to be important for tau interactions 57 

with other proteins, including actin (He et al., 2009). Tau isoforms are developmentally regulated; the 58 

shortest 0N3R isoform is expressed in the fetal brain whereas in the adult human brain 3R and 4R 59 

isoforms are equally represented (Goedert and Jakes, 1990). Tau has a number of key functions, the 60 

most recognised of which is stabilising microtubules in the axons of neurons, however tau roles in 61 

other important physiological functions such as axonal transport, DNA protection, cell signalling at 62 

the membrane, and synaptic vesicle release, have been described (Wang and Mandelkow, 2016; Guo 63 

et al., 2017). Tau is primarily expressed in neurons (Binder, 1985), but is known to be expressed to a 64 

lesser extent in glial cells (Zhang et al., 2014; Darmanis et al., 2015; Seiberlich et al., 2015; 65 

McKenzie et al., 2018).  66 

Monomeric tau is water soluble and resists aggregation (Wang and Mandelkow, 2016). In 67 

tauopathies, tau undergoes extensive post-translational and other modifications including, but not 68 

limited to, phosphorylation, acetylation, nitration, SUMOylation, glycosylation, ubiquitination, 69 

cleavage and aggregation (Guo et al., 2017). The best studied of these is phosphorylation. There are 70 

85 potential phosphorylation sites in 2N4R tau (Hanger et al., 2009) and increased phosphorylation 71 

of tau, alongside other tau modifications, can reduce tau affinity for microtubules, increase 72 

cytoplasmic tau concentrations and  promote tau oligomerisation and aggregation (Guo et al., 2017). 73 

Differential extents of tau modifications lead to the accumulation of heterogeneous pools of modified 74 

tau between, and within, different tauopathies. Recently, Dujardin et al. (2020) found variations in 75 

relative abundance of soluble, oligomeric and seed-competent species of hyperphosphorylated tau in 76 

tauopathy brain. Specific post-translational modifications were found to influence tau seeding 77 

capacity, and tau seeding potential strongly correlated with the rate of clinical symptoms/disease 78 

progression. 79 

The isoform composition of tau aggregates, as well as the structure of tau filaments, also differs 80 

between tauopathies. In AD, both paired helical and straight filaments contain identical protofilament 81 
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cores comprising residues 306-378 that define the aggregatory seed/core (Fitzpatrick et al., 2017). 82 

This structure differs from the folds of tau filaments observed in Pick’s disease (Falcon et al., 2018) 83 

and tau filaments of chronic traumatic encephalopathy (CTE) have a unique hydrophobic core 84 

(Falcon et al., 2019). A novel fold in corticobasal degeneration (CBD) tau has now also been 85 

discovered (Zhang et al., 2020). These features may be important for the tau lesions that arise in 86 

different tauopathies (Table 1). 87 

3 Astrocytes in health and disease 88 

Astrocytes are organised into distinct domains, and each astrocyte can connect with thousands of 89 

neurons, allowing them to coordinate synaptic activity in the CNS (Parpura et al., 1994; Oberheim et 90 

al., 2006). Astrocytes were long considered as supporting cells in the brain, providing metabolic and 91 

nutritional support for neurons. However, astrocytes are critical for neuronal function due to their 92 

ability to sense changes in neuronal activity through their complement of cell surface receptors, and 93 

to modulate neuronal activity by releasing gliotransmitters and gliomodulators, as well as controlling 94 

the availability of glutamate, GABA and energy substrates (Parpura et al., 1994; Volterra and 95 

Meldolesi, 2005; Choi et al., 2014). Hence, astrocytes are now known to be actively involved in 96 

synaptic transmission (Santello et al., 2019), neural circuit maintenance (Mederos et al., 2018) and 97 

long-term potentiation (Lushnikova et al., 2009). In addition, astrocytic end-feet are a structural 98 

component of the blood-brain barrier (BBB), and together with endothelial cells and pericytes have a 99 

central role in the regulation of blood flow (Sofroniew and Vinters, 2010). Furthermore, astrocyte 100 

end-feet are crucial for the glymphatic system of the brain, a perivascular network that allows for 101 

exchange of interstitial and cerebrospinal fluid (CSF), providing a route for clearance of molecules 102 

and proteins including Aβ (Iliff et al., 2012; Simon et al., 2018).  103 

In the neurodegenerative brain, astrocytes undergo pathological changes in responses to changes in 104 

the local brain environment that precede neuronal loss (Kersaitis et al., 2004). These morphologically 105 

and functionally modified astrocytes are often termed ‘reactive’. Reactive astrocytes show 106 

considerable heterogeneity related to their localisation in the brain and the severity and length of 107 

injury/insult to their local environment (Zamanian et al., 2012).  Reactive astrocytes are traditionally 108 

characterised by increased levels of glial fibrillary acidic protein (GFAP), which allows cytoskeletal 109 

and morphological arrangements as astrocytes alter their function (Kamphuis et al., 2015; Acosta et 110 

al., 2017). The accumulation of GFAP-immunopositive astrocytes is common in neurodegenerative 111 

diseases. For example, reactive astrocytes are often found surrounding plaques in AD (Bouvier et al., 112 

2016; Osborn et al., 2016). Indeed, levels of GFAP-reactive astrocytes are closely associated with 113 

dementia in AD (Perez-Nievas et al., 2013). While increased GFAP is also found in aged brain 114 

(Wruck and Adjaye, 2020), new evidence suggests that there are subgroups of astrocytes, with 115 

varying levels of GFAP expression, that distinguish aging from AD, at least in mice (Habib et al., 116 

2020). Alterations in GFAP expression have also been noted in primary tauopathies including PSP, 117 

PiD and corticobasal degeneration (CBD) (Ferrer et al., 2014).  118 

Functional changes in reactive astrocytes are well-documented and include impaired gliotransmitter 119 

release (Piacentini et al., 2017), alterations in calcium signalling (Shigetomi et al., 2019), deficient 120 

ability to regulate glutamate levels at neuronal synapses and aberrant GABA release (Acosta et al., 121 

2017). In addition, astrocytes are now recognised to contribute to neuroinflammatory responses that 122 

accelerate the progression of neurodegenerative diseases (Phillips et al., 2014; Bouvier et al., 2016; 123 

Bright et al., 2019). For example, reactive astrocytes increase their production and release of pro-124 

inflammatory cytokines, complement components, and reactive oxygen species, alongside 125 

downregulating anti-inflammatory and repair proteins to induce neurotoxicity in diseased 126 
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environments (Lian et al., 2015; Bouvier et al., 2016; Leyns and Holtzman, 2017; Sadick and 127 

Liddelow, 2019). Recent seminal findings proposed that astrocytes respond to their local 128 

environment by adopting “A1-neurotoxic” or “A2-neuroprotective”  phenotypes (Liddelow et al., 129 

2017). Secretion of Il-1α, TNFα, and C1q by microglia in response to damage, induces astrocytes to 130 

upregulate their expression of a specific cluster of “A1” genes, lose their trophic and synaptic support 131 

for neurons, and induce neuron death (Liddelow et al., 2017). Markers of A1 astrocytes are 132 

upregulated in AD and other neurodegenerative diseases (Liddelow et al., 2017), strongly implicating 133 

microglia-astrocyte communications in neurodegeneration. However, it is likely that there is a 134 

spectrum of reactive astrocyte states in different brain regions, throughout aging and disease 135 

progression (Boisvert et al., 2018; Habib et al., 2020), similar to dynamic microglial responses in 136 

disease (Vainchtein and Molofsky, 2020).  137 

4 The association of astrocytes with tauopathy 138 

Tau aggregates accumulate in both neurons and astrocytes in different tauopathies. In AD, tau 139 

aggregates containing both 3R and 4R tau deposit as intraneuronal neurofibrillary tangles and there is 140 

scant evidence of astrocytic tau inclusions (Garwood et al., 2017). In contrast, astrocytic tau 141 

pathology is the defining feature of several FTLD-tau subtypes (Table 1). In PSP, a 142 

neuropathological diagnosis criterion is ‘tufted’ astrocytes that show 4R tau aggregates in their 143 

proximal processes (Cairns et al., 2007; Kovacs and Budka, 2010). CBD has extensive clinical 144 

overlap with PSP. In CBD, astrocytic plaques containing 4R tau deposits that mark distal and end 145 

processes are an exclusive feature in most (Forrest et al., 2019), but not all (Ling et al., 2020) cases. 146 

Thread-like tau-positive astrocytic processes are also common in CBD (Dickson et al., 2011; Ling et 147 

al., 2016). Argyrophilic grain disease (AGD) is a rare tauopathy that is characterised by 4R tau-148 

immunopositive astrocytes, described as thorn-shaped and fuzzy/bush-like, in the medial temporal 149 

lobe (Botez et al., 1999; Saito et al., 2004; Forrest et al., 2019). In contrast, PiD is typically 150 

characterised by neuronal 3R tau inclusions, predominantly in granular neurons in the hippocampus, 151 

frontal and temporal cortices (Dickson, 2001; Josephs et al., 2011). ‘Ramified’ astrocytes 152 

immunopositive for tau have also been reported in PiD, but they are not considered a major 153 

pathological hallmark of the disease (Dickson et al., 2011; Ferrer et al., 2014). Several rarer 154 

tauopathy subtypes that show 4R tau-immunopositive globular inclusions, predominantly in 155 

oligodendrocytes, and more rarely in the cytoplasm and proximal processes of astrocytes, are 156 

collectively termed globular glial tauopathy (GGT) (Ahmed et al., 2013).  157 

A spectrum of FTLD-tau subtypes that accumulate both 3R and 3R tau in neurofibrillary tangles 158 

(NFTs) typically occurring in cognitively normal aged individuals is referred as primary age-related 159 

tauopathy (PART) (Crary et al., 2014; Jellinger et al., 2015). Depending on the co-occurrence of Aß 160 

pathology, PART can be histologically classified as “definite PART” in the absence of Aß deposits, 161 

or “possible PART” when a limited number of Aß deposits are present (Crary et al., 2014). Although 162 

the neuropathological characteristics of PART can overlap with other tauopathies, particularly AD, 163 

PART shows a lower threshold of amyloid load, and appears to have a more limited impact on 164 

cognition (Crary et al., 2014). Tau pathology in PART is predominantly neuronal and found in the 165 

CA2 hippocampal subfield, with little evidence of astrocytic tau deposits (Crary et al., 2014; 166 

Jellinger, 2018). In contrast, age-related tau astrogliopathy (ARTAG) describes a spectrum of 167 

abnormal tau pathology, predominantly in the aged brain, that is characterised by thorn-shaped and 168 

granular or fuzzy astrocytes containing phosphorylated tau (Kovacs et al., 2016; Kovacs, 2018). 169 

ARTAG can present alongside more typical tau pathology in tauopathies such as CBD  (Kovacs et 170 

al., 2018, 2020), but is not always linked with dementia (Lace et al., 2012). In a recent detailed 171 

review, Kovacs et al. (2020) describe two distinct distribution patterns of ARTAG. They describe 172 
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ARTAG as a consequence of repeated mechanical damage (related to CTE), or chronic damage such 173 

as blood-brain barrier dysfunction. Furthermore, they propose that the location and type (white 174 

versus grey matter) of ARTAG pathology may result in decompensation of cognitive functions, the 175 

rate of which may be influenced by co-existing pathologies (Kovacs, 2020). It is important to note 176 

that the presence of astrocytic tau accumulations in the absence of dementia may suggest that tau-177 

containing astrocytes are not damaging in tau-associated neurodegeneration, or at least in ARTAG, 178 

and may internalise tau aggregates as a means of clearing damaging protein species.  179 

Finally, chronic traumatic encephalopathy (CTE) is caused by mild repetitive head injuries. 3R and 180 

4R tau-positive aggregates are common in CTE, however the tau aggregates that accumulate in 181 

astrocytes are predominantly 4R and localize in astrocytes near small vessels in the cerebral sulci of 182 

the frontal and temporal cortices (McKee et al., 2013, 2015; Stein et al., 2014). Thorn-shaped 183 

astrocytes are also observed subpial and periventricular regions, an interesting link to ARTAG 184 

(McKee et al., 2016; Kovacs et al., 2020).  185 

5 Do astrocytes contribute to tau pathology spread? 186 

Neurofibrillary tangles have long been acknowledged to follow a stereotypical temporospatial pattern 187 

of spread from the entorhinal cortex as AD progresses (Braak et al., 2011). Recent evidence indicates 188 

that differences in the tau species that deposit in characteristic tau lesions may confer specific 189 

neuronal vulnerabilities and/or prion-like spread of tau (Clavaguera et al., 2013; Dujardin et al., 190 

2020). Mouse models that express wild-type 3R and 4R human tau isoforms in appropriate ratios 191 

recapitulate the same cell type vulnerabilities that typify human tauopathies when injected with 192 

human tau extracts, including the development of tufted astrocytes in PSP tau-injected mice, and 193 

astroglial plaques in CBD tau-injected mice (He et al., 2020). These data raise the possibility that 194 

astrocytes actively contribute to the spread of pathological forms of tau, particularly in PSP and 195 

CBD. That tau spreads in a prion-like manner trans-synaptically along anatomical connections was 196 

elegantly shown in transgenic mice in which mutant human (P301L) FTLD-causing tau expression 197 

was restricted to layer II neurons in the entorhinal cortex. Following local tau aggregation, tau 198 

“seeds” were found to spread to the hippocampus and onwards as mice aged (De Calignon et al., 199 

2012; Liu et al., 2012). Notably, PHF1-positive tau was detected in GFAP-positive astrocytes in the 200 

hippocampus of older mice, suggesting that astrocytes internalise and may contribute to tau spread 201 

(De Calignon et al., 2012) (Figure 1). 202 

Heparan sulfate proteoglycans (HSPGs) are a well-conserved group of proteoglycans expressed on 203 

the cell surface of astrocytes and neurons (Turnbull et al., 2001; Sarrazin et al., 2011) that mediate 204 

targeted endocytosis (Turnbull et al., 2001), including that of purified prion proteins in vitro 205 

(Schonberger et al., 2003; Horonchik et al., 2005). HSPGs were recently shown to interact with 206 

protein aggregates including α-synuclein, Aβ and tau (Kanekiyo et al., 2011; Holmes et al., 2013; 207 

Ihse et al., 2017). HSPGs regulate the uptake of synthetic tau fibrils (Holmes et al., 2013) and human 208 

brain-derived tau (Puangmalai et al., 2020) in human immortalised cell lines and mouse primary 209 

neuronal cultures. HSPGs vary in the length of their glycosaminoglycan chains and sulfation 210 

patterns, properties that are important for tau uptake in human embryonic kidney cells (Stopschinski 211 

et al., 2018) and human iPSC derived neurons (Rauch et al., 2018). Interestingly, tau fibrils are 212 

efficiently internalised in a HSPG-dependent manner by primary astrocytes exogenously expressing 213 

transcription factor EB (TFEB), a master regulator of lysosomal biogenesis (Martini-Stoica et al., 214 

2018). In contrast, monomeric tau appears to be taken up by astrocytes using an HSPG-independent 215 

mechanism (Perea et al., 2019). Together this suggests that multiple mechanisms are involved in tau 216 



Astrocytes in Tauopathies 

 
6 

This is a provisional file, not the final typeset article 

uptake by astrocytes, that may be specific to tau aggregation state or conformation, as well as the 217 

HSPG profile of the cell type (Tselnicker et al., 2014).  218 

HSPGs can also partner with cell surface receptors to mediate the intake of protein aggregates. For 219 

example, HSPGs interact with members of the low-density lipoprotein receptor (LDLR) such as 220 

LRP1, to facilitate Aβ uptake and degradation by astrocytes (Kanekiyo and Bu, 2014; Liu et al., 221 

2017). Knockdown of LRP1 was recently shown to block the uptake of monomeric and oligomeric 222 

tau in a human neuroglioma cell line, and partially inhibit uptake of sonicated tau fibrils (Rauch et 223 

al., 2020), warranting further investigation into how astrocytic LRP1 may mediate tau uptake and 224 

spread in tauopathies. 225 

Astrocytes are an integral part of the glymphatic system of the brain, a clearance system of soluble 226 

proteins and solutes. The astrocytic water channel aquaporin-4 (AQP4), expressed at the astrocyte 227 

end feet, facilitates this process and is important for Aβ clearance (Benarroch, 2007; Iliff et al., 228 

2012). Disruption to AQP4 may also contribute to tauopathy progression. In a mouse model of CTE, 229 

knockout of AQP4 exacerbated neurofibrillary tau pathology and neurodegeneration (Iliff et al., 230 

2014). Distinct phosphorylation marks in AQP4 have been reported in human post-mortem ARTAG 231 

samples relative to controls (Ferrer et al., 2018) that are suggested to increase water permeability of 232 

AQP4. However, the functional implications of these modifications in ARTAG remain to be 233 

explored (Han et al., 1998; Kitchen et al., 2015).  A recent transcriptional analysis of cognitively-234 

impaired subjects and controls showed that components of the dystrophin-associated complex, which 235 

anchors AQP4 at the perivascular astrocytic end foot, are associated with phosphorylated tau levels in 236 

the temporal cortex (Simon et al., 2018). This analysis also revealed other astrocyte endfoot 237 

candidate genes that significantly correlate with temporal cortex tau pathology. The authors speculate 238 

that endfoot functions of astrocytes may play a role in the accumulation of tau aggregates throughout 239 

the brain. Although AQP4 might contribute to the clearance of aberrant proteins early in the disease 240 

process, this function could become impaired at later stages, hindering the clearance of pathogenic 241 

tau. 242 

6 Tau effects on astrocyte function 243 

In addition to potential roles in tau spread, internalisation of pathological forms of tau has been 244 

shown to disrupt a myriad of astrocytic functions, central for the maintenance and support of 245 

neurons.  Oligomeric tau uptake alters calcium signalling and gliotransmitter release (e.g. ATP) via 246 

Ca2+-dependant mechanisms to disrupt post-synaptic currents and downregulate pre- and post-247 

synaptic markers in neuronal-astrocyte co-cultures (Piacentini et al., 2017), together suggesting that 248 

tau-induced changes to astrocyte function are toxic to neighbouring neurons, at least in vitro. 249 

Astrocytes isolated from a transgenic tauopathy model (P301S) expressing a 4R mutant tau isoform 250 

also acquired early functional deficiencies that impaired their ability to support neurons in culture 251 

(Sidoryk-Wegrzynowicz et al., 2017). Astrocytes from mouse models of tauopathies also show 252 

altered expression of neuronally regulated genes (Hasel et al., 2018), indicating that the accumulation 253 

of abnormal tau species is sufficient to drive transcriptional and likely functional changes in 254 

astrocytes, via altered neuron-astrocyte interactions. In addition, human astrocytes differentiated from 255 

iPSCs harbouring FTD-causing MAPT mutations display an increased vulnerability to oxidative 256 

stress and elevated protein ubiquitination, alongside disease-associated transcriptomic alterations 257 

(Hallmann et al., 2017).  258 

The immune-related functions of astrocytes are a major contributor to neuroinflammatory response 259 

that directly alter neuronal integrity in neurodegenerative diseases (Sofroniew and Vinters, 2010). In 260 
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particular, the complement cascade, which also involves microglia, has an important role in the 261 

accumulation of beta-amyloid pathology (Veerhuis et al., 2011; Lian et al., 2016). C3 is a major 262 

component of the complement cascade and is highly expressed in reactive astrocytes (Liddelow et al., 263 

2017). C3, as well as its downstream receptor C3aR1, that is mainly expressed by microglia, (Zhang 264 

et al., 2014), is upregulated in postmortem tauopathy brain and correlates with cognitive decline 265 

during disease progression (Litvinchuk et al., 2018). Levels of C3 also correlate with tau amounts in 266 

AD CSF (Wu et al., 2019). Ablation of C3aR or C3 in mouse models of tauopathy reversed neuronal 267 

loss and neurodegeneration (Litvinchuk et al., 2018; Wu et al., 2019), alongside reduced numbers of 268 

GFAP-reactive hypertrophied astrocytes being apparent upon C3aR knockout (Litvinchuk et al., 269 

2018). These data indicate that complement activation downstream of astrocyte reactivity may be an 270 

important driver of tauopathy.  271 

Astrocytes, together with microglia, are also hypothesized to induce synaptic loss and neurotoxicity 272 

in tauopathies, as they do during development (Chung et al., 2013), through dysregulated synaptic 273 

pruning (Henstridge et al., 2019). Sleep deprivation is common in AD (Noble and Spires-Jones, 274 

2019), where it is believed to be both a cause and consequence of neurodegenerative changes (Noble 275 

and Spires-Jones, 2019). Sleep deprivation leads to enhanced tau release and spread (Holth et al., 276 

2019), alongside astrocyte-mediated synapse elimination (Bellessi et al., 2017). It is therefore 277 

possible that astrocyte engulfment of tau-containing synapses may be one route by which astrocytes 278 

contribute to tau spread in AD.   279 

Ultimately, cross-talk between astrocytes and microglia forms part of a complex innate immune 280 

response that may be exacerbated during tauopathies in response to protein aggregates. Deeper 281 

investigation of these pathways may reveal novel targets that can be exploited to slow or halt disease 282 

progression.  283 

7 Discussion 284 

Recent evidence has highlighted that altered astrocyte functions have detrimental consequences for 285 

neurons and may be a driver of neurodegenerative diseases. Astrocytes are closely associated with 286 

the accumulation of pathological forms of tau in tauopathies. There is some evidence that astrocytes 287 

internalise tau aggregates, via mechanisms that are not yet fully understood, and contribute to tau 288 

pathology spread across the brain and tau aggregate clearance via the glymphatic system. However, 289 

astrocytes show significant regional heterogeneity and more work is needed to better understand the 290 

contribution of different astrocyte subtypes in affected brain regions at different disease stages. Such 291 

understanding may aid in the development of astrocyte-targeted therapies for tauopathies. Astrocyte-292 

targeted therapeutic approaches have been well described elsewhere including by Sadik and 293 

Liddelow (2019), and could include antagonists that prevent tau uptake by astrocytes to reduce tau 294 

spread, agents that prevent the release of neurotoxic astrocyte secretions or their uptake by neurons, 295 

or therapies that restore physiological astrocyte functions including their trophic support for neurons 296 

and synapses, maintenance of the blood brain barrier, and roles in the glymphatic clearance of protein 297 

aggregates.  298 
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 641 

11 Figure legends 642 

Figure 1. Astrocytic mechanisms that may contribute to spread of tau pathology. 1) Tau monomers 643 

and aggregates are released from neurons via various mechanisms, including from the pre-synapse, 2) 644 

Astrocytes have specific HSPGs and receptors such as LDR1 that may mediate the uptake of tau 645 

aggregates, 3) These aggregates may be internalised and processed by various mechanisms, include 646 

lysosomal degradation, 4) Disruption of AQP4 in perivascular astrocytic end-feet may contribute to 647 

the disrupted tau clearance and the accumulation of tau aggregates in the CNS. 648 

HSPG, heparin sulfate proteoglycan; LDR1, low density lipoprotein receptor-related protein 1; 649 

AQP4, aquaporin-4 650 

  651 



  

12 Tables 652 

Disease PiD PSP CBD AGD GGT ARTAG AD PART CTE 

Common 

clinical 

symptoms 

Aphasia, 

several 

behavioural 

changes 

including and 

personality 

changes, 

cognitive 

changes at 

later stages of 

disease. 

Balance and 

motor deficits, 

dysphagia and 

aphagia. 

Motor 

problems 

(often one-

sided), 

aphagia, 

dysphagia. 

Amnestic mild 

cognitive 

impairment 

often 

accompanied 

by 

neuropsychiatr

ic symptoms. 

Behavioural 

changes, mood 

swings, short-

term memory 

loss. 

Often no  

cognitive 

impairment 

or dementia 

related 

symptoms. 

Focal 

pathology 

may 

correlate 

with 

specific 

deficits, 

especially in 

the presence 

of co-

pathology.  

Dementia; 

progressive 

episodic 

memory 

deficits; 

navigational 

and multi-

tasking 

difficulties; 

diverse 

behavioural 

and 

personality 

changes. 

Associated 

with 

cognitive 

impairment 

and mild 

AD-like 

symptoms.  

Behavioural 

changes, mood 

swings, short-

term memory 

loss. 

MAPT 

cause/risk 

Mostly 

sporadic; 

MAPT 

mutations 

(exon 9, 10, 

11, 12, 13 and 

intron 9, 10). 

Mostly sporadic,  

H1/H1c MAPT 

haplotype 

increases risk; 

MAPT 

mutations (exon 

1, 10, and intron 

10); 

 

Mostly 

sporadic; 

H1 MAPT 

haplotype 

increases risk;  

MAPT 

mutations 

(exon 10, 13 & 

intron 10); 

 

H1 MAPT 

haplotype may 

increase risk; 

MAPT 

mutations 

(exon 10) 

H1 MAPT 

haplotype;  

MAPT 

mutations 

(exons 1, 10, 

11, intron 10). 

Depending  

on sub-type 

and 

classificatio

n 

Mostly 

sporadic; 

APP, 

PSEN1, 

PSEN2; 

No MAPT 

mutations 

Depending 

on sub-type 

and 

classificatio

n 

Unknown 

(external causes) 

Primary tau 

isoforms that 

3R 4R 4R 4R 4R 4R 3R & 4R 3R & 4R 3R & 4R 
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accumulate in 

lesions 

Affected 

brain regions  

 

Frontal and 

temporal 

cortices. 

Precentral 

cortex, 

subcortex 

(globus pallidus, 

substantia nigra, 

pontine nuclei, 

subthalamic 

nuclei). 

 

Frontal and 

temporal 

cortices. 

Medial 

temporal lobe. 

Frontal, 

precentral 

and/or 

temporal 

cortices. 

Grey and/or 

white 

matter, 

perivascular

, subpial, 

subependym

al. 

Entorhinal 

cortex and 

hippocampu

s, spreading 

to most 

regions 

except the 

cerebellum. 

Entorhinal 

cortex, 

hippocampu

s. 

Begins focally at 

depths of 

cerebral sulci, 

spreads widely 

to frontal 

temporal lobes. 

Hallmark 

astrocytic tau 

pathology 

Ramified  

 

 

 

 

Tufted Astrocytic 

plaques 

Thorn-shaped 

& granular 

fuzzy/bush-

like 

Globular 

inclusions 

Thorn-

shaped & 

granular 

fuzzy 

None None Astrocytic 

tangles and 

some thorn-

shaped 

astrocytes. 

Cellular 

localisation of 

astrocytic tau 

inclusions 

Asymmetric 

3R 

(predominant) 

or 4R tau 

inclusions in 

cell bodies & 

proximal 

processes. 

Symmetric 4R 

tau inclusions in 

proximal 

processes. 

4R tau in 

distal 

processes and 

end feet; 

thread-like 

processes are 

also common. 

4R tau 

inclusions and 

diffuse 

staining in cell 

bodies & 

proximal-

distal 

processes. 

4R globular tau 

in cell bodies 

& proximal 

processes.  

4R tau 

inclusions 

and diffuse 

staining in 

cell bodies 

& proximal 

processes. 

n/a n/a Irregular p-tau 

lesions (around 

small vessels). 



Astrocytes in Tauopathies 

 

20 

This is a provisional file, not the final typeset article 

References Forrest et al., 

(2018; 2019); 

Dickson, 

(2001; 2011); ; 

Josephs et al., 

(2011); Ferrer 

et al., (2014). 

Forrest et al., 

(2018; 2019); 

Cairns et al., 

(2007); Kovacs 

and Budka, 

(2010). 

Forrest et al., 

(2018; 2019); 

Dickson et al., 

(2011); Ling et 

al., (2016). 

Forrest et al., 

(2018; 2019); 

Botez et al., 

(1999); Saito 

et al., (2004). 

Forrest et al., 

(2018; 2019); 

Ahmed et al., 

(2013). 

Forrest et 

al., (2018; 

2019); 

Kovacs et 

al., (2016, 

2017, 2018, 

2020). 

Guerreiro et 

al., (2012); 

Braak and 

Braak, 

(1991); 

Braak et al., 

(2011). 

 

Forrest et al., 

(2018; 

2019); Crary 

et al., 

(2014); 

Jellinger et 

al., (2015). 

Forrest et al., 

(2018; 2019); 

Stein et al., 

(2014); McKee 

et al., (2015; 

2016). 

 653 

Table 1:  Overview of the main clinical, genetic, molecular, and pathological features of tauopathies, including description of astrocyte 654 

abnormalities.  655 

PiD, Pick’s disease; PSP, progressive supranuclear palsy; CBD, corticobasal degeneration; AGD, argyrophilic grain disease; GGT, globular 656 

glial tauopathy; ARTAG, age-related tau astrogliopathy; AD, Alzheimer’s disease; PART, primary age‑related tauopathy; CTE, chronic 657 

traumatic encephalopathy; 3R, 3-repeat tau; 4R, 4-repeat tau. 658 
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