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 9 
Summary 10 

The urinary microbiome is a relatively unexplored niche that varies with gender. 11 

Urinary microbes, especially in ageing populations, are associated with morbidity. We 12 

present a large-scale study exploring factors defining urinary microbiome 13 

composition in community-dwelling older adult women without clinically active 14 

infection. Using 1600 twins, we estimate the contribution of genetic and 15 

environmental factors to microbiome variation. The urinary microbiome is distinct 16 

from nearby sites and unrelated to stool microbiome with more Actinobacteria, 17 

Fusobacteria and Proteobacteria, but fewer Bacteroidetes, Firmicutes and 18 

Verrumicrobia. A quarter of variants had heritability estimates greater than 10% with 19 

most heritable microbes having potential clinical relevance, including Escherichia-20 

Shigella linked to urinary tract infections. Age, menopausal status, prior UTI and host 21 

genetics were top factors defining the urobiome with increased microbial diversity 22 

tending to associate with older age. These findings highlight the distinct composition 23 

of the urinary microbiome and significant contributions of host genetics. 24 

 25 

Keywords: microbiome, genetics, urogenital tract, ageing 26 

 27 
Introduction 28 

The resident microbial community (microbiome) at different body sites continues to 29 

generate research interest, driven by evidence of a role in human physiology. The 30 

study of the urinary microbiome (urobiome) is much less established compared to the 31 

gut microbiome; perhaps due to the previous belief that the urine was sterile in the 32 

absence of a urinary tract infection. Recently, research has shown that this is not the 33 

case and that the urinary tract is in fact, another site with a microbiome, reflective of 34 

the microbes inhabiting the bladder and closely associated organs (Fouts et al., 2012; 35 

Wolfe et al., 2012; Whiteside et al.; 2015). A urinary microbiome has been found in 36 

in catheterized/aspirated urine (bladder microbiome) and voided urine, using both 37 
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enhanced quantitative cultures and DNA-based identification (16S marker 38 

studies/metagenomics), and samples from different populations (e.g Khasriya et al., 39 

2013 ; Hilt et al., 2014; Wu et al., 2017;  Adebayo et al., 2017; Kramer et al., 2018).  40 

Studies to date have largely focused on differences in the urobiome in relation to 41 

urinary tract conditions (Sihra et al., 2018; Wolfe & Brubaker, 2019) including 42 

urinary infections (UTI).  There is evidence for differences in the male and female 43 

urinary microbiomes (Bajic et al. 2018; Pearce et al., 2014). Women are much more 44 

likely to develop UTI, with a lifetime risk of up to 50% (Franco, 2005) compared to 45 

12% for men (Lee & Neild, 2007).  UTI is also the most common reason for antibiotic 46 

treatment in adult women, which has implications for urinary and other microbiomes 47 

and antimicrobial resistance. Early work has indicated that the non-infected state 48 

microbiome may influence resilience to infection (Pearce et al., 2015; Thomas-White 49 

et al., 2018). The present study is focused on understanding the major factors defining 50 

the urobiome in community dwelling women without active infection, who are not 51 

seeking clinical assessment.  52 

Previous studies involving urinary/bladder microbiomes have involved relatively 53 

small sample sizes (dozens or few hundreds of people) in hospital or clinic attending 54 

patients. For instance, results from our literature search (Jan 2015 to September 2018) 55 

included incontinence (Pearce et al., 2015, n=182); case-control studies on 56 

elderly/non-elderly patients (Liu et al., 2017; n=100); urinary tract infections 57 

(Moustafa et al., 2018; n=112,Price et al., 2016, n=150); cancer (Wang et al., 2017; 58 

n=65); overactive bladder (Wu et al., 2017; Fok et al., 2018; n=55-126); chronic 59 

kidney disease (Kramer et al, 2018; n=41); surgical transplant patients (Rani et al., 60 

2018, n=20); surgery (Thomas-White et al., 2018,n=104); and menopause (Curtiss et 61 

al., 2018; n=78). Reinforcing this, a recent review (covering studies up to 2016) 62 

carried out by Aragon et al. (2018) reported that the sample sizes in urinary 63 

microbiome studies varied between 8 to 60 for healthy controls and 10-197 for cases.  64 

Their report shows that many studies are commissioned on incontinence, bladder-65 

related and gynaecologic patients. Recently, Price et al (2019) have studied data from 66 

224 patients who were free from known urinary tract conditions, bladder problems or 67 

surgery.  68 
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Studies to date have not investigated the contribution of host factors, like age or 69 

genetics to the “normal” urinary tract microbiome.  Genetic factors have been shown 70 

to influence the gut microbiome (Goodrich et al., 2014, Luca et al., 2018), although 71 

environmental factors remain predominant (Rothchilds et al.,2018). The urine 72 

microbiome has an additional complexity, that is that many samples may be below the 73 

threshold for a detectable microbiome.   Few studies to date have included study of 74 

sequence negative samples; notably Pearce et al. (2015) reported that sequence-75 

negative samples were comparable in many characteristics to sequence-positive ones 76 

in incontinent individuals. 77 

We aimed to characterize the host influence on the urinary tract microbiome in 78 

women who are well. We analysed midstream urine samples from 1600 older females 79 

in the TwinsUK cohort recruited from the community for research, who had no 80 

apparent infection, and were not undergoing hospital treatment. We hypothesized that, 81 

in an unselected average population, (1) the inherent core urinary bacterial 82 

community could be defined (2) that the urobiome is influenced by host-specific 83 

genetic and environmental factors, (3) that some host-specific factors may relate to 84 

the microbial biomass in the urine. 85 

 86 

Results 87 

Urinary tract microbiome was distinct from proximal body sites and similar to other 88 

urine samples. 89 

Initially, we compared the overall composition of the urinary microbiome to other 90 

body sites , applying a similar analytical pipeline to 4 datasets of women older than 91 

45 years from published studies (Goodrich et al., 2014; Thomas-White et al., 2017; 92 

Pearce et al., 2014; Yatsunenko et al. 2012) (Methods, Data S1). Species diversity 93 

(Shannon index) was comparable in urine and the vaginal datasets and reduced 94 

relative to the stool(Fig 1A). Stool samples in the vast majority ordinated separately 95 

from urine samples, and the current study (urine3) was the most dissimilar to gut or 96 

vagina samples of the urine studies sampled (Fig 1B, Data S1). Repeating these 97 

diversity analyses with 100 randomly chosen samples each available for 3 datasets 98 

showed similar results (SFig1A,B). There was no clear correlation in stool and urine 99 
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microbiome dissimilarity for paired stool and urine samples from TwinsUK, even 100 

when obtained on the same day) (Mantel’s r≤0.02, p>0.1) (Fig 1C-D, Data 101 

S1,SFig1C). The urine studies also had some taxa differences (SFig1D). 102 

 103 

General description of TwinsUK urinary tract microbiome 104 

Urine samples from 1600 mainly postmenopausal women (mean age= 66.4) in the 105 

TwinsUK cohort were analysed, revealing 10955 taxa variants from filtered 16S data. 106 

Participant characteristics are shown in Table 1. There was a high level of variability 107 

in particular taxa present in an individual, with only 245 (2.2%) variants occurring in 108 

at least 5% of samples. The use of a compositionally-sensitive analysis improved the 109 

ranking of some abundant taxa as compared to common non-compositional analysis 110 

(SFig2A). To highlight potential intra-microbiome relationships, clusters of frequent 111 

(present in >20%), co-occuring proportionally-balanced species were predicted, 112 

resulting in 61clusters of common variants (hereafter referred to as the core taxa) 113 

(Fig2A). There were more Actinobacteria, Fusobacteria and Proteobacteria, but fewer 114 

Bacteroidetes, Firmicutes and Verrumicrobia in urine compared to gut microbiome 115 

(SFig 2B). 116 

Low read count (no reliably-detected microbiome (<2000 reads post-filtering)) (Data 117 

S2) associated with slightly younger age and lower level of health deficit; specifically, 118 

a ~20% increase in the chance of a detectable microbiome for unit increase in 119 

standardized age (p=0.0048, OR=1.21, CI=1.07 - 1.39) and ~14% increase for a unit 120 

increase in standardized frailty index (OR=1.144,CI=1.01-1.30,p=0.0359). There was 121 

no association between low read status and the number of previous Urinary Tract 122 

Infections (UTIs), recent antibiotics usage, surgery episodes or number of childbirth 123 

episodes (parity). Amplicon concentrations associated with parity (β=1.89,p=0.0035) 124 

but not other demographics (Data S2). 125 

 126 

Host genetics’ influences variation of urine microbiome   127 

Various measurements can be useful to detect host genetics effect. First, we used 128 

heritability, a quantitative measure of the contribution of additive genetics to 129 

variability in a phenotype, in this case the microbiome data. This showed considerable 130 

and significant genetic contribution to variance in the first principal coordinate of 131 

Bray-Curtis dissimilarities (PCo) (A=0.147) and 2nd PCo (A=0.356). When 132 
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accounting for phylogenetic closeness and dominant taxa using weighted unifrac 133 

dissimilarities (which captured as much as 57% of the variation), heritability of the 134 

first PC was estimated at 18% (A= 0.179, CI=0.05-0.415, p=0.003351; C=0.0049, 135 

E=0.8164, n=760 ). Significant heritability was maintained when controlling for age, 136 

history of UTI, menopause status and cohabitation (Data S3). Some clusters of 137 

frequent, co-occuring balanced microbial species showed particularly high heritability 138 

(Fig 2A). 139 

 140 

Second, we used a form of family segregation by applying constrained principal 141 

coordinates analysis on the Bray-Curtis dissimilarity, with the family identity as a 142 

factor, and then compared dissimilarities in identical and non-identical twins. The 143 

dissimilarity was lower for monozygotic twins (Fig 2B) (p=0.0022). The difference in 144 

the dispersion within a twin-pair (Euclidean distances to the median) in the 145 

unconstrained analysis of Bray-Curtis, was also lower for monozygotic pairs 146 

(SFig3A) (p=0.027) (Data S3). The first PCo was also associated with family identity 147 

(Kruskal-Wallis p=0.043).  Third, we compared ancestral origin of participants. The 148 

study population was primarily of British ancestry, with microbiome data available 149 

for 1141 British, 27 non British white, 19 SouthEast Asian, and 9 others, and 150 

therefore findings would need to be confirmed in other studies. We minimized 151 

imbalanced groups’ effect by subsampling (n=98-118) using 20-fold partition with 152 

resampling of non-British groups, and bootstrapping Kruskal-Wallis statistic. The 153 

second PCo of the microbiome diversity (Bray-Curtis) differed according to the 4 154 

major ancestry present (1st PC; p=0.156; 2nd PC p=0.000143, bootstrap averaged p= 155 

0.0081, percentileCI =(0.00003-0.1223),1000 replicates), as was the permanova test 156 

of Bray-Curtis dissimilarity between the ancestry groups (Fig. 2C , Data S3). 157 

 158 

Finally we analysed the heritability of the core microbiome.  The relative abundance 159 

of these common variants as a group were influenced by host genetics (heritability 160 

23%(CI=8.77-33.7, C=1.66E-12,E=0.76). Almost a quarter (59 of 245) of variants 161 

found in at least 5% of the participants had heritability estimates greater than 10% 162 

(STable1, SFig3B), though in five of these confidence intervals span zero.  Some of 163 

the most heritable variants some sequence similarity (SFig4).  One of such heritable 164 

variants, Lactobacillus iners AB-1 showed phylogenetic relatedness with 165 

Christenellaceae variant previously reported in the gut (SFig4). Another, 166 
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Escherichia_Shigella (A=0.165) is a potential culprit in urinary tract infection.  Based 167 

on this finding, we also tested the heritability of occurrence of prior urinary tract 168 

infections, finding prior UTI to be significantly heritable (A=0.273(0.399 for high 169 

recurrence), 95%CI=0.178 – 0.368, Data S3). 170 

Taken together, these four different sets of analyses support the hypothesis that host 171 

genetic factors influence the urinary tract microbiome. 172 

 173 

Host-related/environmental factors in urinary tract microbiome, especially age, have 174 

important effects  175 

The potential effects of multiple factors were assessed (Fig 3). Age, diet, recent 176 

antibiotic usage and overall health deficit were assessed in relation to the urobiome as 177 

they are known ‘host-specific’ influencers of gut microbiome variation.  Parity 178 

(previous number of births) and surgical history (had previous surgery or not) were 179 

assessed as host-related “environmental” factors as they could potentially alter 180 

structures in or proximal to the urinary tract. Previous history of UTI was also 181 

assessed.  182 

With increasing age, there is overall increase in alpha diversity (Shannon) (Table 1), 183 

which was robust to uneven sample sizes or exclusion of small number of participants 184 

aged <50 (0.10≥β≤0.22, 0.00027≤p≥0.0045). Age differed with beta diversity 185 

estimates (p<0.001), and was a main influencer of the ordination patterns of samples 186 

(Fig 3B). The core taxa and one-third (22) of the subclusters, differed with age 187 

(1.92E-30≤FDR≤0.046).  188 

Diet (Healthy Eating Index), health deficit (frailty index) and antibiotics usage did not 189 

produce significant associations in alpha diversity (Shannon) but borderline 190 

associations were found with changes in beta diversity (Bray-Curtis) (diet, p=0.052, 191 

n=1004; recent antibiotics usage, p=0.041,n=992; health deficit, p=0.031, n=1139). 192 

Parity trended toward an association with reduced alpha diversity (Shannon) 193 

(p=0.058,n=1047), and was significantly associated with beta diversity (Bray-Curtis) 194 

(p=0.026,n=1047); surgical history did not differ with Bray-Curtis or Shannon metrics 195 

(n=540). Occurrence of UTI differed with alpha diversity (p=0.0027) and beta 196 

diversity (p=0.001). Similar results were obtained using unweighted unifrac sample 197 

distances or controlling for other factors. 198 
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The contribution to variance that could be attributed to all factors, including host 199 

genetics was then examined (Fig 3A). For individuals with available data for genetic-200 

based kinship, microbiome data, and the phenotypes in the preceeding paragraph 201 

(n=545), unique contribution was obtained from R2 decomposition on microbiome 202 

Bray-Curtis beta diversity estimates, in permanova models (1000 permutations) 203 

controlling for other factors. The average for each factor was used after randomly 204 

rearranging all factors 20 times. Age was the top contributor, followed by menopause 205 

status, history of prior UTI and host genetics (Fig3A, Data S3). 206 

 207 

Metagenomes confirm overall 16S microbiome data variation 208 

In microbiome studies, metagenomes not only provide taxonomic information 209 

comparable to 16S analyses, they also offer deep insights into metabolic pathways 210 

and better species resolution. Using shotgun metagenome data for a subset of 178 211 

individuals, we also examined how closely the overall patterns of the 16S data are 212 

replicated in the metagenome data. The classified metagenome reads were 99.64% 213 

Bacteria (Data S4) and a greater number of urine metagenomes (total and per 214 

individual) were obtained than earlier reported in literature. Sample-sample variation 215 

or inter-sample distances in the microbiome data were highly correlated from 216 

metagenome and 16S data (Bray dissimilarities, Mantel’s r=0.799,p=0.001). Sixteen 217 

of the top 20 abundant taxa using 16S are also within the top 20 of the metagenome 218 

data. The core microbiome found in 16S data was largely recapitulated in the 219 

metagenomics analysis; 27 of the 31 genera (87%) forming the core taxa using 16S 220 

data were also replicated in the metagenome data. From this core, the total number of 221 

species identifiable approximately doubled (125 vs 61 in total, 94 vs 53 in the 222 

replicated genera) most likely to due to better species assignment. Given the choice of 223 

the subset for shotgun sequencing (Methods), heritability values were inflated (STable 224 

2). Considered together, the metagenomes largely mirror 16S data and consolidate 225 

results on heritability. 226 

 227 

Discussion 228 

In this study, we used a relatively larger, unselected community-based study 229 

population of women and sensitive approaches (amplicon sequence variants, 230 
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compositional clusters and environmental effect control in twin-pairs) to explore the 231 

influence of host factors on the urinary tract microbiome. These approaches 232 

strengthen deductions made here, for instance that age is associated with increasing 233 

urinary tract alpha diversity, contrary to previous studies (e.g. Curtiss et al., 2018; 234 

Kramer et al., 2018; Liu et al., 2017;Wang et al., 2017).   235 

Urine and other body sites 236 

The ordination patterns of the urine microbiomes support current thinking that the 237 

urobiome is a distinct site, similar to the observations that bladder microbiome (urine 238 

obtained directly by catheter) differ from vaginal or stool microbiome (Thomas-White 239 

et al., 2018; Wolfe & Brubaker, 2019). Here, the more divergent of the urine studies 240 

(Urine1 cohort) shared more vaginal taxa, involved patients with incontinence and 241 

collection was wholly catheterized, though had smaller sample size. In a very small 242 

minority of individuals where urine microbiome taxa appear closer to stool, this is 243 

most likely due to phylogenetic or genome similarity in species (as no such closeness 244 

occur with non-phylogenetic measures), rather than common demographics (Data S1). 245 

In all, the current study show clear dissimilarities in stool and midstream urine for the 246 

average unselected population.  247 

 248 

Host-related factors and host genetics’ contribution in urinary tract microbiome 249 

Parity (childbirth episodes), previous UTI occurrence, recent antibiotics usage and 250 

diet showed changes with urine microbiome diversity. Using heritability analysis, the 251 

current study showed a considerable genetic influence in the microbiome of ageing 252 

women, reaching almost a third of the variation, with the remainder of contribution 253 

largely due to variance unique to individuals. Some clinically important genera such 254 

as Escherichia (A=0.165) had variants with high heritability estimates, In addition, 255 

Lactobacillus iners (A=0.177), a commonly found vaginal and bladder microbe, was 256 

phylogenetically close to the heritable gut microbe Christenellaceae and heritable in 257 

urine.  258 

Previously, Rothschild and colleagues (2018) reported that environmental factors 259 

such as sharing household eclipse genetic influence in gut microbiome composition, 260 

while Goodrich and colleagues (2014) showed host genetics played roles in gut 261 

microbiome patterns of twin-pairs. The current study, indicates significant 262 

contributions of genetics to the pattern of urine microbial composition; and 263 
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controlling for cohabitation (participants asked if they live together or close with their 264 

sibling) and other known factors in urine microbial variation, did not alter the 265 

estimated the significant contributions to the pattern. Other parameters from this study 266 

bolster the observation of genetic influence: (1) samples of a member in a twin-pair 267 

were not extracted or sequenced in the same batch as the other member, (2) there was 268 

lower intra-twin difference distance among monozygotic pairs, and (3) the second 269 

PCo which had higher heritability than the first was the same PCo which differed 270 

along the lines of ethnic ancestry (though the proportion of white British was 271 

dominant). Thus we conclude that host genetics influenced variation in urinary 272 

microbiome composition in this population of women.  273 

Relative to other factors, only age, menopause status and prior history of current UTI 274 

were greater than the influence of genetics.  Incidental to our main purpose, we also 275 

report here that history of urinary tract infections itself has a significant heritability in 276 

humans as suggested in Scholes et al. (2000) using family records and in Norris et al. 277 

(2000) using dogs. The results here also show a projected shift in microbiome 278 

structure after five UTI episodes (Fig3E). 279 

 280 

Heritable urinary tract microbes 281 

While Corynebacterium variants were frequent among top core taxa and clusters with 282 

high heritability, the patterns detected for Lactobacillus and Escherichia variants 283 

deserve mention. Our study showed the Escherichia-Shigella taxon, renamed as such 284 

to reflect the extreme sequence similarity of Escherichia coli and Shigella, was part of 285 

the urinary tract microbiota in older women. In absence of diagnosed infections, the 286 

current study shows that presence of this taxon is influenced by (1) host genetic make 287 

up (its proportions had one of the top heritability estimates (A=0.17,CI=0.11-0.29) of 288 

all frequent urine microbial variants); and (2) age. Price et al. (2019) also recently 289 

reported that Escherichia urotype were more likely in older asymptomatic patients. 290 

These findings may have implications in the mixed success of E. coli vaccine trials 291 

(Huttner et al., 2017) and in diagnostics.  292 

 293 

The current study has limitations. Questionnaire data, which is subject to accurate 294 

recall and self-report by participants, was part of measures used in deriving variables 295 

such as UTI, diet and frailty. Another limitation may be the use of a single midstream 296 

urine sample set from an individual, and as such, prior microbiome stability 297 



 10 

information is unknown. Clearly, further research is needed to confirm if the findings 298 

also relate to the male urinary microbiome. 299 

 300 

To conclude, we report on the factors influencing composition of the urinary tract 301 

microbiome in unselected community-dwelling adult women. The urinary 302 

microbiome was distinct and apparently unrelated to stool microbiome.  It shows a 303 

significant contribution of host genetics. Key species known to be clinically relevant 304 

were among the most heritable microbes.  Age and menopausal status were the factors 305 

with greatest influence on the urinary microbiome in women. 306 
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Figure Legends 328 

Fig 1. Urinary tract microbiome in older women is mostly distinct from proximal 329 

body sites and unrelated to stool microbiome. Alpha diversity plots were based on 330 

Shannon index and beta diversity based on unweighted unifrac distances. (A) Alpha 331 
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diversity of urine microbiomes and other body sites. star symbol indicates 332 

significance compared to TwinsUK midstream urine. (B) Dissimilarities in urine 333 

microbiomes and other body sites. (C) Paired alpha diversity analysis of stool 334 

and urine collected at same time point (D) Differences in paired stool and urine 335 

microbiome from the same time point.  336 

 337 

Fig 2. Host genetics considerably influences variation of urine microbiome. (A) 338 

Heritability and interaction of core urinary tract microbes. Size of circles at each 339 

subcluster and intensity of rectangular bars at the tips represent increasing heritability 340 

of taxa. Neighbouring variants in a clade show co-abundance and clustering is not 341 

phylogenetic. Taxa are annotated to indicate different variants. (B) Microbiome 342 

dissimilarities within family of twin pairs. MZ-monozygotic; DZ-Dizygotic (C) 343 

Microbiome principal coordinates with ancestral origin. Ellipses represent 95% 344 

confidence interval. White British constitute>90% of individuals, and 345 

bootstrap/permanova testing were used due to imbalanced sizes.  346 

 347 

Fig 3. Top contributors to urinary microbiome variation. (A) Relative 348 

contributions to urinary microbiome. Bars represents average R2 for each variable, 349 

controlled for the presence of other factors. Microbial variation was measured using 350 

Bray-Curtis dissimilarities. Genetic PC was derived from principal components of 351 

SNP-based genetic kinship.  (B) Trends in individual Shannon diversity with age 352 

and prior number of UTI.  (C-E) Microbiome dissimilarities with top factors: (C) 353 

age (D) menopause (E) prior number of UTI.   354 

 355 

 356 

 357 

 358 

Tables  359 

Table 1. Summary of participants in TwinsUK urinary microbiome study 360 

Phenotype 

category 

Subcategory α-D index 

(mean±SD) 

Ave. no of unique 

taxa(mean±SD) 

No. of 

samples 

Age 

(mean±SD) 

Participants  2.01±1.05 65.7±48.8 1600 66.7±8.3 

Previous UTI 
occurrences 

0 times 2.14±1.0 66.1±43.1 393 67.6±8.2s 

1-4 times 2.02±1.04 67.5±51.0 719 65.9±7.8 

5-9 times 1.98±1.03 65.4±45.2 208 66.3±8.3 

10times > 1.79±1.17 60.0±53.9 201 65.7±8.3 



 12 

Ages <50-54 1.56±0.76 45.9±32.2 117 - 

55-59 1.86±1.13 61.7±49.7 210 - 

60-64 2.00±0.98 63.5±44.8 327 - 

65-69 2.04±1.03 66.0±49.8 409 - 

70-74 2.16±0.97 71.5±50.6 276 - 

75-79 2.26±1.12 74.5±50.1 170 - 

80-84 2.02±1.12 63.7±41.9 68 - 

85- 1.73±1.42 71.7±62.3 23 - 

RecentAntibiotic 

usage:3mths 

Yes 1.97±1.20ns 70.0±53.0ns 47 68.3±8.0ns 

No 2.03±1.06 66.0±49.0 945 66.6±8.3 

Frailty <0.15 2.05±1.01ns 67.0+49.0ns 511 65.9±7.5s 

0.15-0.29 1.99±1.05 64.8±49.0 834 66.1±8.0 

0.3-0.44 2.04±1.15 67.5±48.0 227 68.4±8.9 

>0.45 1.75±1.17 62.0±47.0 28 68.5±8.2 

      

Legend. α-D:  Shannon H index of alpha diversity; No. of taxa refers to number of unique sequence variant per 361 
sample i.e. no of potential species. Diversity measures were calculated after subsampling to 2000. S/NS indicates 362 
statistical significance or not for tests of a phenotype as a continuous variable. Post-hoc pairwise comparisons 363 
showed no difference in alpha diversity for individuals aged 75years and older. 364 
 365 

STAR Methods  366 

RESOURCE AVAILABILITY 367 

Lead Contact 368 

Further information and requests for resources and data should be directed to and will 369 

be fulfilled by the Lead Contact, Claire Steves (claire.j.steves@kcl.ac.uk). 370 

Materials Availability 371 

This study did not generate new unique reagents 372 

Data and Code Availability 373 

Raw sequence data is available from EBI’s European Nucleotide Archives with 374 

accession number ERP119822. Phenotype data is available on request from TwinsUK 375 

data access committee at http://twinsuk.ac.uk/resources-for-researchers/access-our-376 

data.html. Scripts and codes used are available at github.com/waleadebayo/urobiome-377 

host-genetics 378 

 379 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 380 

Cohort and Phenotypes 381 

The TwinsUK cohort has been described elsewhere (Verdi et al. 2019). It comprises 382 

over 14,000 volunteers in total over more than two decades, predominantly female 383 

(>80%) and middle-aged (mean age 59). Data were collected with visits to the 384 

Department of Twin Research and Genetic Epidemiology, King’s College London, 385 

resulting in biochemical, behavioral, dietary and socioeconomic cohort 386 

characterization. Participants in the cohort are community dwelling twin pairs, 387 
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recruited without any specific clinical phenotype. The current study included 1600 388 

individuals, and various demographics were examined. Medical history 389 

questionnaires were used to define age (from birth date), history of urinary tract 390 

infections (UTIs), cohabitation (live together or close neighbourhood), antibiotic 391 

usage, previous hysterectomy, previous oophorectomy, caesarian section and 392 

menopause status. The frailty index, calculated from clinical, physiological and 393 

mental domains (Livshits et al., 2017) was used as a measure of health deficit, and the 394 

Healthy Eating Index (Bowyer et al. 2018) based on food frequency questionnaires 395 

used to assess diet. 396 

METHOD DETAILS 397 

16S Microbiome Sequencing and Analysis 398 

Twin-pair samples were separated for processing. Extraction and Sequencing of 399 

samples along with 128 negative controls was performed at the Knight Lab, 400 

University of California San Diego using Earth Microbiome Project (EMP) protocols 401 

(http://www.earthmicrobiome.org/protocols-and-standards/16s) with the Qiagen 402 

MagAttract PowerSoil DNA kit. Amplicon PCR was performed on the V4 region of 403 

the 16S rRNA gene using the primer pair 515f to 806r with Golay error-correcting 404 

barcodes on the reverse primer. The barcoded amplicon pool was purified with the 405 

MO BIO UltraClean PCR cleanup kit and sequenced on the Illumina MiSeq platform. 406 

Sequence data were demultiplexed using the QIIME2 (Bolyen et al. 2019). Multilevel 407 

quality filtering procedures and data analysis were applied to remove potential 408 

contaminants (see below). Amplicon sequence variants (ASVs), were generated with 409 

DADA2(Callahan et al, 2016), filtered and analysed as individual taxa. They were 410 

also analysed as balances (Morton et al.,2017), essentially by forming clusters from 411 

highly frequent variants (presence in >20% of individuals) which were transformed 412 

compositionally, correlated and linked in an hierarchical fashion. ASVs are error-413 

corrected sequences and offer better sequence resolution in taxonomy assignment, 414 

which was done with Silva (v132) (Yilmaz et al., 2014). The current data was also 415 

compared to those of previous microbiome studies with similar age-range of 416 

participants after re-analysis of such data to produce ASVs (see below). Diversity 417 

analysis was carried out with Shannon index, unifrac and Bray-Curtis metrics, and 418 

permutational multivariate analysis of variance was used to test inter-sample 419 
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differences. Taxa counts were centred-log-ratio transformed after adding a 420 

pseudocount (van de Boogart et al. 2019). 421 

Filtering and removal of possible contaminants 422 

Initially, common QC processes were followed such as artifact removal, chimera 423 

checking, read-length trimming, and short-read discard. As low biomass microbiome 424 

tend to be influenced more by contaminants and cross-talk than high biomass sites 425 

such as gut, more steps were utilised.   426 

(a)Blank controls (n=105) were sequenced along with normal samples. 427 

 (b) Sequence variants (or potential taxa) were removed if the counts attributed to it in 428 

the blanks was more than 5% of the total counts for that taxa variant; OR if the 429 

number of blanks in which a sequence variant occur is more than 10% of the total 430 

number (blanks + actual samples). 431 

(c) Sequence variants were removed if they significantly exhibit a pattern such that its 432 

abundance was prevalent in blank controls that were sequenced along with normal 433 

samples (e.g. the variant occurs in 50% of blanks but only in 10% of normal samples) 434 

or a strong negative correlation (p<0.1) exist between the amplicon library 435 

concentration and the number of reads generated for a sequence variant, as 436 

implemented in Davis et al. (2018). Step (b) above was used to complement step c 437 

which could not deal with this. 438 

Subsequently, a sample with reads higher than 2000 was deemed to be reliably 439 

detected. Setting cut-off at 2000 reads is based on the fact that 440 

(1) It covers about 99.6% of diversity (Shannon) in rarefaction plots and 99.4% 441 

coverage (Good’s statistic) 442 

(2) it was much higher than any number reads still present in any blanks after QC and 443 

further filtering.  i.e. after all QC steps, 30 of 105 blanks sequenced still contained 444 

some reads,  90% of these 30 blanks had less than 335 reads, the mean was 152. 445 

Because the QC was rather rigorous, these reads are probably due to cross talk in 446 

sequencer rather than contaminants. 447 

We also briefly examined potential biological explanations for the occurrence of 448 

extremely-low DNA urine sample, apart from efficacy of technical protocols. 449 

Comparison of microbiome studies of similar age 450 

Raw sequence data used in Pearce et al. 2014 (Urine 1), Thomas-White et al. (2017) 451 

(Urine 2), Puerto Rico and Plantanal study described as part of Yatsunenko et al. 2012 452 

(Vaginal), Goodrich et al. 2014 (Gut), were obtained on request from authors or from 453 
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the EBI’s ENA database. These studies, also using 16S V4 region, generally sampled 454 

by requesting participants from the general population but some participants in the 455 

urine studies were recruited based on specific phenotype of interest. Each sequence 456 

set was analysed using the same bioinformatics pipeline described for the current 457 

study, and each dataset was subsetted to include only women aged 45 years and above 458 

to match current study. Re- analysis of these published datasets helped to avoid some 459 

data-induced differences in alpha diversity and create a uniform platform for 460 

comparison. Also, to minimise multi-study protocol variations and include as many 461 

sample as possible, ASV counts were subsampled to 1000 reads in all studies and also 462 

subsampled randomly to 100 subjects in each of two replicate sets (except Urine1 and 463 

vaginal with smaller participants, n=57 and 11,respectively). 464 

Metagenome Analysis 465 

Shotgun metagenomic sequencing was carried out for 178 of the participants with 466 

additional 14 blanks for quality control. The protocol involved 5ng DNA per reaction 467 

quantified using a PicoGreen fluorescence assay. After fragmentation, end repair and 468 

A-tailing, sequencing adapters and barcode indices are added following the iTru 469 

adapter protocol. Unique error-correcting i7 and i5 indices were used after 470 

purification, and indexed libraries were then purified again, quantified and 471 

normalized, prior to sequencing on the Illumina HiSeq4000 platform. The approach 472 

involved shallow shotgun methods (SHOGUN) (Hillman et al., 2018). This subset of 473 

participants included equal numbers of dizygotic pairs and monozygotic twin pairs, as 474 

well as equal numbers of twin pairs showing discordance and concordance in 16S 475 

microbial diversity (pair-to-pair difference in diversity (Shannon index) greater than 476 

3SD or lower than 1SD). This was expected to inflate heritability estimates. After 477 

quality control filtering (with average q ≥30), and mapped human reads’ removal 478 

(based on hg19) one sample was excluded, and the final data included 177 samples. 479 

Potential contaminants, eleven species, were removed for presence in blanks and 480 

constituting >2% (between 6% and 100%) of the abundance of that species. These 481 

‘contaminant’ species included Mycobacterium_iranicum, Gordonia_paraffinivorans, 482 

Staphylococcus_saprophyticus, 483 

Delftia_acidovorans,Corynebacterium_matruchotii,Staphylococcus_capitis, 484 

Acinetobacter_harbinensis, Corynebacterium_singulare, Cutibacterium_granulosum, 485 

Acinetobacter_towneri, and Cutibacterium_acnes. 486 

 487 
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Host genetics analyses 488 

Heritability was calculated using an ACE model in which the component of 489 

phenotypes explained by genetics in twin pairs was estimated. Samples from co-twin 490 

were separated into different batches for sample preparation and sequencing to 491 

remove the shared technical environment related to batching. This further solidified 492 

the deductions made from the analysis of the genetic effects. Discordance analysis, 493 

quantitative differences in microbiome for pairs of monozygotic and dizygotic twins, 494 

was approached using constrained principal coordinates as well as dispersions in 495 

microbiome variance. Where constrained principal coordinates analysis was used, 496 

microbiome data was ordinated with the family ID tested as a predictor, then the 497 

dissimilarity within a family was then extracted to compare twin types. Analysis on 498 

ethnic origin of participants was based on information obtained from questionnaires, 499 

and to reduce the impact of the large difference in the group sizes, partitions were 500 

created in which non-British groups were repeatedly sampled, before bootstrapped 501 

Kruskal-Wallis statistic were estimated. Also, as a confirmation, permutation-based 502 

testing were used for the original undivided data. To represent host genetic variation, 503 

first principal component from genome-based kinship matrix data were obtained. 504 

These analyses were carried out with plink1.9b, R base and R packages: vegan, mets, 505 

car, phyloseq(see Resources Table).  506 

 507 

QUANTIFICATION AND STATISTICAL ANALYSIS 508 

All statistical details and tests can be found in Results and Method Details sections 509 

following the contexts in which they were used. n represents number of individuals, 510 

SD represents one standard deviation, confidence intervals were set at 95%, and 511 

significance threshold was set at alpha less than 0.05. Throughout analysis, technical 512 

covariates, including extraction kit lots, mastermix kit lot, batch, extraction and 513 

sequencing processors, and depth/library sizes (sequence reads post-QC filtering) 514 

were controlled for. Visualizations were generated using ade4, ggplot2, graphlan2, 515 

decontam, FastTree and ggtree (see Resources Table). 516 

 517 

STable1. Heritability of midstream urine microbiome abundance in paired 518 

twins. Related to Figure 2. 519 

 520 



 17 

STable2. Heritability of urine metagenomes from diversity-discordant and 521 

diversity-concordant pairs of twins. Related to Figure 2. 522 

 523 
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