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ABSTRACT 

 

The number of neuroimaging studies has grown exponentially in recent years and their 

results are not always consistent. Meta-analyses are helpful to summarize this vast 

literature and also offer insights that are not apparent from the individual studies. While 

a number of suitable voxel-based meta-analytic methods for neuroimaging data had 

been developed at the time this thesis was conceived, they also suffered from a series 

of important drawbacks such as the separate analyses of positive (e.g. grey matter 

volume increases) and negative (e.g. grey matter volume reductions) findings, not 

accounting for the effect size, not taking sample size, intra-study variance or between-

study heterogeneity into account, and not allowing combination of reported peak 

coordinates and statistical parametric maps. 

The aim of this thesis was the development of a series of voxel-based meta-

analytic methods and software tools for neuroimaging studies, which overcame some 

of the limitations of previous methods. Specifically, this thesis includes: a) the 

development of a new voxel-based meta-analytic method, named signed differential 

mapping (SDM), which adopted and combined the various positive features of previous 

methods and also introduced a series of improvements and novel features; b) the 

subsequent development and adaptation of the method to allow addressing additional 

research questions, such as meta-analyses comparing several disorders, meta-

analyses of white matter volume or fractional anisotropy studies, and combination of 

various imaging modalities; and c) examples of applications of these methods.  

The methods and software derived from this thesis have been well received by 

the field. As of September 2012, more than thirty meta-analyses using SDM have been 

published, and the first study introducing the methods has been cited more than a 

hundred times. Suggestions for future research and further methodological 

development are discussed. 
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CHAPTER 1 

Introduction:                                                                                 

Meta-analytic methods for neuroimaging data 

 

 

The number of neuroimaging studies has grown exponentially in recent years. 

However, findings from different studies may sometimes be difficult to integrate 

into a coherent picture. Inconsistent results are not uncommon. Furthermore, a 

few influential studies might often eclipse robust findings from other studies. In 

other words, we may at times not see the forest for the trees. In this context, 

meta-analyses are helpful to combine and summarize the data of interest and 

potentially offer insights that are not immediately apparent from the individual 

studies. 

This introductory chapter aims to describe the main methods which have 

been used to summarize the results of neuroimaging studies, as well as their 

advantages and drawbacks. Section 1.1 introduces how a standard meta-

analysis is conducted, that is, when there is only one variable of interest, with 

an example from a meta-analysis of global brain volumes. This is important for 

a better appreciation of the pros and cons of the meta-analytic methods 
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reviewed later. Section 1.2 describes the meta-analyses of neuroimaging 

studies based on regions of interest (ROI) and their particular issues. Finally, 

section 1.3 introduces the various available voxel-based meta-analytic methods, 

which aim to overcome some of the limitations of the ROI-based methods but 

have, in turn, their own limitations. Note that this review includes methods 

available up to the point this thesis was conceived. Other methods have since 

become available and will be exposed later, in the final chapter.  

 

Chapters 1 and 8 were partially published in Biology of Mood & Anxiety 

Disorders under the title ‘Meta-analytic methods for neuroimaging data 

explained’ (Joaquim Radua and David Mataix-Cols 2012; 2:6). 

The definitive publisher-authenticated version is available online at 

http://www.biolmoodanxietydisord.com/content/2/1/6 License is appended at the 

end of this Chapter. 
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1.1 STANDARD META-ANALYSES 

 

Prior to any meta-analytic calculation, researchers conduct an exhaustive and 

critical literature search, often including contact with the authors of the original 

studies in order to retrieve important pieces of missing information. Then, 

researchers conduct a mathematical summary of the findings of the included 

studies (that is, the meta-analysis proper). Finally, researchers apply a series of 

tests, plots and subgroup analyses to assess the heterogeneity and robustness 

of the results. The latter step, along with the exhaustive and critical inclusion of 

studies, is of utmost importance in order to obtain unbiased meta-analytic 

conclusions. 

With the aim of introducing the logics of a standard meta-analysis, a 

meta-analysis of global grey matter volumes in patients with obsessive-

compulsive disorder (OCD) is used in this section as an example (see Table 

1.1). The included studies correspond to seven publications reporting global 

grey matter volume, which would be included in a published meta-analysis of 

voxel-based morphometry studies in OCD (see Chapter 2). 

 

1.1.1 Weighting of the studies 

In order to summarize these 7 studies, a simple meta-analysis could consist of 

calculating the mean difference in global grey matter volume between patients 
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and controls as reported in the original studies (Mulrow and Oxman 1996). 

Thus, Table 1.1 could be summarized by saying that the mean global grey 

matter volume is 8.4 mL smaller in patients than in healthy controls – this 

number is just the arithmetic mean of the differences shown in the table. 

The use of the arithmetic mean, however, may be too simplistic, because 

the different studies should have different weights. For example, the number of 

patients in study 4 is four times larger than the number of patients in study 1. 

Clearly, more weight should be given to study 4. Probably, it should be given 

about four times more weight, as it includes four times as many patients. 

Weighting the mean difference by the sample sizes of the studies, one 

would conclude that the mean global grey matter volume is 8.8 mL smaller in 

patients than in controls. Note that when we previously calculated the mean 

difference as the simple arithmetic mean, we were indeed assuming that all the 

studies had the same sample size. This erroneous assumption had only a minor 

effect here (we thought that the difference was about 5% smaller than what we 

Table 1.1 Global grey matter volumes in seven studies on OCD. 
 

 Patients  Controls  Patients + controls  Difference  Effect size 

 N Volume ± 

SD 

 N Volume ± SD  N Variance  Estimate Variance  Estimate Variance 

Study 1 18 773 ± 56  18 822 ± 56  36 3,114  -49 346  -0.854 0.122 

Study 2 55 685 ± 74  50 708 ± 72  105 5,323  -23 203  -0.313 0.039 

Study 3 25 850 ± 83  25 834 ± 71  50 5,997  +16 480  0.196 0.080 

Study 4 72 739 ± 82  72 763 ± 78  144 6,404   -24 178  -0.298 0.028 

Study 5 37 776 ± 69  26 747 ± 68  63 4,680  +29 307  0.418 0.067 

Study 6 19 827 ± 44  15 836 ± 63  34 3,041  -9 363  -0.179 0.120 

Study 7 71 740 ± 66  71 738 ± 63  142 4,119  +2 116  0.035 0.028 

 
All volumes are in milliliters. Study 1: by Carmona et al. (2007). Study 2: by van den Heuvel et al. (2009). Study 3: 
by Kim et al. (2001). Study 4: by Pujol et al. (2004). Study 5: by Szeszko et al. (2008). Study 6: by Valente et al. 
(2005). Study 7: by Yoo et al. (2008) 
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think now), but it could have important effects in other meta-analyses, especially 

if studies with smaller sample sizes inexplicably find more differences than 

studies with larger sample sizes – methods for detecting this kind of bias are 

introduced later. 

Unfortunately, weighting the calculations only by sample size would still 

be too simplistic, because the weight of a study should also include its 

precision. For example, study 1 included fewer patients than study 4, but its 

volume estimates seem more precise, as its sample variance is approximately 

the half than that in study 4 (see Patients + controls column in Table 1.1). The 

reason for this higher precision is usually unknown (maybe the sample was 

more homogenous; maybe the technical procedures were cleaner; maybe it 

was just chance); however, this precision must be taken into account by 

weighting by the inverse of the variance of the difference – which also includes 

the sample size. 

Weighting the mean difference by the inverse of the variance of the 

difference, one would conclude that the mean global grey matter volume is 8.9 

mL smaller in patients than in controls (z-value = -1.55, P = 0.121). When 

previously we did not weight by sample variance we were assuming that all the 

studies had the same variance, though in this case this assumption was 

acceptable because the variance of the studies is rather homogeneous.  

However, as explained in the next section, weighting the calculations 

only by the inverse of the variance of the difference may still be too simplistic.  
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1.1.2 Heterogeneity within studies 

Healthy individuals have different global grey matter volumes, that is, some 

have larger brains, some have thicker cortices, and so on. When conducting an 

analysis with original data, researchers are usually able to explain or model a 

part of this variability, but there is also a part of this variability that remains 

unexplained. This residual error may be due to unobserved variables, etiological 

heterogeneity within particular diagnoses, poor model fitting, or maybe just pure 

chance. This individual-based within-study variability cause the sample means 

to be variable, so that different studies obtain different results. 

However, within-study variability is not the only source of the between-

study variability or heterogeneity. Given the relatively small amount of robust 

findings in neuroimaging, it would be highly desirable that all researchers 

conducted their studies using the exact same inclusion criteria and methods so 

that all between-study variability was only related to the within-study variability. 

However, the fact is that clinical and methodological differences between 

studies are often substantial. 

On the one hand, patients included in the individual studies may have 

been sampled from clinically different populations; for example, one study of 

major depressive disorder may include outpatients with mild reactive depressive 

episodes while another study may be focused on inpatients suffering from 

severe endogenous depressions with melancholic symptoms. Similarly, patients 

in different studies may be receiving different treatments, or be in different 
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phases of the disorder (for example, having a first episode or having a history of 

multiple episodes). 

On the other hand, researchers may have been investigated similar but 

still different aspects of a disorder; for example, one study may have described 

the blood oxygen level-dependent (BOLD) brain response to a task involving a 

high memory load, while another study may be interest in the BOLD response 

to a task related to decision-making. Or even if studying the same particular 

cognitive function, each study may employ a particular statistical package, and 

its large set of associated assumptions. 

Finally, there may be a relevant part of the between-study heterogeneity 

which can be neither related to the within-study variability, nor explained by 

known clinical or methodological differences between studies. This is called 

residual heterogeneity. 

It is highly recommended to study the between-study variability or 

heterogeneity in any meta-analysis. For example, if the main analysis detects 

differences between patients and controls, it may be of interest to explore 

whether these differences depend on the severity of the disorder, or if they are 

related to special subtypes of the disorder. These questions may be assessed 

with meta-regressions. But even if the meta-analysis does not aim to explore 

the modulating effects of clinical variables on the main outcomes, heterogeneity 

should still be taken into account. 

Indeed, there is agreement on always including the residual 

heterogeneity in the weighting of the calculations (DerSimonian and Laird 1986; 



1. Introduction 
  
 

  
 

Page 42   

Fleiss and Gross 1991; Ades and Higgins 2005; Viechtbauer 2005). Meta-

analyses conducted this way are said to follow random-effects models, in 

opposition to the fixed-effects models presented in the previous section, which 

did not include heterogeneity. In the example of Table 1.1, the use of a random-

effects model would lead us to conclude that the mean global grey matter 

volume is 9.0 mL smaller in patients than in controls (z-value = -0.98, P = 0.328; 

see Figure 1.1, left). Note the increase of P-value in the random-effects model 

(from 0.121 to 0.328), thus better controlling the false positive rate. 

 

1.1.3 Other complementary analyses 

Some complementary plots and tests are recommended to help the reader 

assess the reliability and robustness of the findings (Elvik 1998). 

Figure 1.1 Forest (left) and funnel (right) plots of the mean differences in global grey matter 
volume between patients with obsessive-compulsive disorder and healthy controls (using a 
random-effects model). 
 

 
 
On the funnel plot, the included studies appear to be symmetrically distributed on either side of the mean 
difference, suggesting no publication bias towards positive or negative studies. 
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On the one hand, the meta-regressions may be useful for assessing if 

the findings are predominantly (or only) present in one group of patients, for 

example, in those with more severe forms of OCD. In this regard, specific meta-

analyses of subgroups of patients may further confirm these hypotheses or, 

also important, may state that the abnormalities are present in all subgroups of 

patients, increasing the robustness of the findings. Similarly, sensitivity analyses 

consisting of repeating the meta-analysis many times, each time with a different 

combination of studies, may be useful to assess whether the findings are driven 

by one or few studies. Finally, funnel plots (see Figure 1.1, right) may be useful 

for appraising whether studies with small samples report more statistically 

significant findings than studies with larger samples. This is typical of study 

areas that are prone to publication bias, where studies with small samples are 

only published if their results match a priori hypotheses. 

It is important to note that these kinds of tests and graphical aids are 

necessary but do not provide conclusive information, and should only be 

interpreted in the context of the field under investigation. A symmetrical funnel 

plot, for example, is not an amulet against publication bias, especially in some 

types of meta-analysis. ROI-based studies, for instance, may be more prone to 

be affected by publication biases, as the authors may decide which brain 

regions are reported and which are not. Conversely, an asymmetrical funnel 

plot would not necessarily invalidate a meta-analysis if publication bias appears 

unlikely. This may be the case of voxel-based studies, where the whole brain is 

included in the analysis.  
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1.1.4 Use of effect sizes 

Most meta-analyses do not use the raw volume differences as in the OCD 

example but, rather, they use standardized volume differences, that is, effect 

sizes (Hedges and Olkin 1985). Briefly, in structural neuroimaging studies, a 

raw difference is the difference in millilitres between patients’ and controls’ 

global grey matter volume, while a standardized difference is the difference in 

standard deviations – usually corrected for small sample size bias. 

This subtle difference has a series of consequences. First, the unit of 

measure (millilitres, in this case) is lost, which makes the interpretation of the 

findings less straightforward but indeed more comparable with other measures, 

for example, an effect size of d = 0.5 is considered ’medium’ independently of 

whether it refers to a difference in grey matter volume, in BOLD response or in 

Figure 1.2 Forest (left) and funnel (right) plots of the effect size of the differences in global 
grey matter volume between patients with obsessive-compulsive disorder and healthy 
controls (using a random-effects model). 
 

 
 
On the funnel plot, the included studies appear to be symmetrically distributed on either side of the mean 
difference, suggesting no publication bias towards positive or negative studies. 
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a questionnaire score. Using the data from Table 1.1, the effect size of the 

difference in global grey matter volume between patients and controls is d = -

0.122 (z-value = -0.93, P = 0.354; see Figure 1.2), which is below the 

conventional range of ‘small’ effect (0.2 to 0.3) (Cohen 1988). Second, a study 

reporting a larger difference may be found to have a smaller effect size, or vice 

versa, depending on the sample variance. For instance in Table 1.1, the raw 

difference is slightly larger in study 4 than in study 3, whilst the effect size is 

slightly larger in study 3 than in study 4. Third, and very important, the effect 

size can be directly derived from many statistics like a t-value or a P-value, 

which are much more often reported than sample statistics; that is, meta-

analytic researchers can often know the effect size but not the raw difference. 

This advantage usually allows a much more exhaustive inclusion of studies, 

thus clearly justifying the use of effect sizes in many meta-analyses. 
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1.2 META-ANALYSES BASED ON REGIONS OF INTEREST 

 

A ROI is a part of the brain that the authors of the study wish to investigate, 

usually based on a priori hypotheses. ROI-based studies usually select a set of 

few ROIs and manually delimitate them on the raw images. Researchers then 

analyze the volume of these ROIs, their mean BOLD response to a stimulus, 

their positron emission tomography (PET) ligand volume of distribution, or any 

other measure of interest. 

 

1.2.1 ROI-based meta-analyses 

A typical ROI-based meta-analysis can be viewed as a set of different meta-

analyses, each of them applied to a different ROI. These meta-analyses can 

usually be optimally conducted with all appropriate weightings and 

complementary analyses, as seen for example in the meta-analysis of regional 

brain volumes in OCD conducted by Rotge et al. (2009), in which the analyses 

are based on effect sizes and random-effects models and complemented with 

explicit assessments of the heterogeneity, several sensitivity analyses, funnel 

plots and meta-regressions. Unfortunately, each original study included in this 

meta-analysis only investigated a small set of brain regions, causing the meta-

analyses to include only a very small number of studies for each brain region. 

Indeed, only three or four studies could be included for highly relevant regions 

in contemporary biological models of the disorder, such as the putamen or the 
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anterior cingulate cortex. Other brain regions could not be meta-analyzed 

because they had been investigated by too few or no studies. Needless to say, 

this would not be the case for those ROI studies reporting whole brain results in 

online supplements or similar, but this is seldom the case. 

Moreover, it must be noted that some brain regions are more frequently 

studied than others, which causes the statistical power to differ depending on 

the brain region under study. In the example (Rotge, Guehl et al. 2009), while 

data from five studies or more were available for the orbitofrontal cortex, the 

thalamus and the caudate nuclei, some brain regions could not be meta-

analyzed at all.  

Ultimately, the authors of the original studies have a set of a priori 

hypotheses which influence their decision to investigate differences in a given 

brain region at the expense of other regions. These decisions determine the 

number of studies investigating that brain region, and thus the statistical power 

to detect that brain region as significantly different between patients and 

controls in a ROI-based meta-analysis. Publication bias is also a problem as 

studies failing to report statistically significant differences on hypothesized ROIs 

may be less likely to ever be become publicly available. A recent analysis of 

more than 450 ROI-based neuroimaging studies in psychiatry illustrates this 

point well (Ioannidis 2011). The author demonstrated that the number of studies 

reporting significant results was nearly the double than expected, suggesting 

strong publication biases in the ROI literature.  
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 Another consideration is the heterogeneous definition or the boundaries 

of the ROIs, which may differ from one study to the other (Rotge, Guehl et al. 

2009). However, this variability might have a relatively small impact on effect 

sizes, as boundary definitions are the same for the patients and controls 

included in each study. Furthermore, the spatial error may probably be 

counteracted by the higher anatomical accuracy achieved by the manual 

delimitation of the ROIs in the original studies (Uchida, Del-Ben et al. 2008; 

Bergouignan, Chupin et al. 2009). 

 

1.2.2 Label-based reviews 

Some authors have used a simplified type of ROI-based meta-analysis, 

consisting of just counting how many times a particular ROI is detected as 

significantly abnormal in patients versus healthy controls. This procedure has 

been called label-based review (Laird, McMillan et al. 2005). For example, in 

their functional neuroimaging meta-analysis of the brain’s response to emotional 

tasks, Phan et al. (2002) represented each activation peak as a dot in an atlas 

of the brain. They then divided the brain into twenty ROIs and counted how 

many studies had one or more activation peaks in each ROI.  

A fictitious example of such approach is shown in Figure 1.3A. Here, the 

studies would have reported that the patients with mood or anxiety disorders 

have increases of grey matter volume in the basal ganglia, extending to the 

anterior part of the right insula, as well as decreases of grey matter volume in 

the anterior cingulate and insular cortices. The authors of a label-based review 
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would have first plotted the peaks of the clusters of significant increase (red) or 

decrease (blue) of grey matter volume in a brain template. Then, they would 

divide the brain into several regions, for example, anterior cingulate gyrus, left 

and right inferior frontal gyri, insulas, superior temporal gyri, caudate nuclei, 

putamen nuclei, and so on. Finally, they would have counted how many peaks 

lay within each of these regions. 

This method may be useful when other approaches are not feasible, for 

example when not enough information is available for conducting a ROI-based 

or a voxel-based meta-analysis. Its simplicity, however, may conceal a series of 

important drawbacks which must be taken into account. First, no weighting of 

the studies is performed, which means that all studies are assumed to have the 

same sample size and precision. This is a strong and unrealistic assumption 

which may be violated in most meta-analyses. Fortunately, sample size 

information is always available, and so label-based meta-analyses should at 

least be weighted by sample size. Second, the findings of the studies are 

binarized (significant versus not-significant), leading to a loss of information on 

the magnitude of the raw differences or on the effect sizes. Third, it is not clear 

whether studies reporting opposite findings in a particular ROI (for example, 

volume decrease in some studies and volume increase in others) are 

adequately dealt with. Finally, they may be also affected by the particular issues 

of ROI-based meta-analyses described above. 
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Figure 1.3 Summary of label-based reviews and the main voxel-based meta-analytic 
methods available at the time the current thesis was conceived. 
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1.3 VOXEL-BASED META-ANALYSES 

 

Scanner three-dimensional images are composed of thousands of tiny cubes 

(or rectangular cuboids) called voxels, in the same way that digital photographs 

are composed of thousands of tiny squares called pixels. Voxel-based methods 

consist of conducting the meta-analytic calculations separately in each voxel of 

the brain, thus freeing the meta-analysis from aprioristic anatomical definitions. 

There are two different types of voxel-based meta-analyses, including image-

based and coordinate-based meta-analyses. 

 

1.3.1 Image-based meta-analyses 

An image-based meta-analysis should be understood as a voxel-based version 

of the standard meta-analysis, that is, it consists of thousands of standard meta-

analyses, each of them applied to a different voxel (Lazar, Luna et al. 2002). 

The data of each study is retrieved from its statistical parametric maps (the 

three-dimensional images resulting from the comparison between patients and 

controls), and thus include the whole brain. This technique shares some 

limitations with any voxel-based analysis, mainly relating to the massive number 

of statistical tests (that is, one test for each voxel). The correction of multiple 

comparisons is an unsolved issue, with current methods being either too liberal 

or too conservative. For this reason, thresholds based on uncorrected P-values 

and cluster-size are usually preferred (Wager, Lindquist et al. 2007). Also, such 
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massive-scale testing prevents a careful visual inspection of the analyses (for 

example, to describe relevant non-significant trends). 

However, the biggest drawback of image-based meta-analyses is that 

the statistical parametric maps of the original studies are seldom available, 

therefore seriously limiting the inclusion of studies. 

 

1.3.2 Coordinate-based meta-analyses 

Given the poor availability of statistical parametric maps, early meta-analyses of 

voxel-based studies consisted of label-based (rather than image-based) 

reviews, as discussed earlier. These methods quickly evolved to coordinate-

based meta-analyses, which in their simplest form consisted of counting, for 

each voxel, how many activation peaks had been reported within its 

surroundings (Wager, Phan et al. 2003). In the fictitious example, the dots of the 

label-based review (Figure 1.3A) would be replaced with spheres (Figure 1.3B, 

C), and the brain would not be divided into conventional regions but rather the 

number of spheres touching each voxel would be counted, thus obtaining a 

count for each voxel. It must be noted that calculations in activation likelihood 

estimate (ALE) (Turkeltaub, Eden et al. 2002) are not exactly based on counting 

the number of spheres but on computing the probability of a union, though in 

practice, the latter behaves like the former. 

The use of voxels rather than conventional divisions of the brain 

improved the anatomical localization of the findings. However, the first available 
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methods, namely ALE and kernel density analysis (KDA) (Wager, Phan et al. 

2003), had some additional issues which enlarged the list of drawbacks of label-

based reviews. Specifically, they only counted the total number of peaks, 

independently of whether they came from the same or different studies, and 

thus the analysis could not be weighted by sample size and a single study 

reporting many peaks in close proximity could drive the findings of the whole 

meta-analysis. 

These drawbacks led to the creation of a second generation of 

coordinate-based meta-analytic methods, mainly evolved versions of KDA, such 

as multilevel KDA (MKDA) (Wager, Barrett et al. 2007), as well as evolved 

versions of ALE (Ellison-Wright, Ellison-Wright et al. 2008), which overcame 

these limitations by separating the peaks of each study. Moreover, some of 

these new methods weighted the studies by their sample size and included a 

series of complementary analyses to assess the reliability and robustness of the 

findings. However, as detailed in the next section, these methods still had 

several relevant issues. 
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1.4 LIMITATIONS OF EXISTING VOXEL-BASED METHODS 

 

As shown in the previous section, there are two different types of voxel-based 

meta-analyses: those based on statistical parametric maps (i.e. images), and 

those based on the reported peak coordinates. Image-based meta-analyses are 

based on well-established statistical models and tests, but the images of the 

original studies are seldom available, therefore seriously limiting the inclusion of 

studies. 

Coordinate-based meta-analyses are more feasible, as they only require 

the reported peak coordinates. However, these coordinate-based methods are 

statistically more limited. 

First, it is not clear whether studies reporting opposite findings in a 

particular ROI (for example, volume decrease in some studies and volume 

increase in others) are adequately dealt with. This is an important limitation as a 

particular voxel may erroneously appear to be positive (e.g.  increased volume 

or BOLD) and negative (e.g. decreased volume or BOLD) at the same time, as 

seen in some published meta-analyses (Menzies, Chamberlain et al. 2008). 

Second, some methods do not perform weighting of the studies and may 

indeed only count the total number of peaks, which means that a single study 

reporting many peaks in close proximity may drive the findings of the whole 

analysis, and that all studies are assumed to have the same sample size and 
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precision. This is a strong and unrealistic assumption which may be violated in 

most meta-analysis. 

Finally, the findings of the studies are binarized (“significant” versus “not-

significant”), leading to a loss of information on the magnitude of the raw 

differences or on the effect sizes and preventing relevant complementary 

analyses such as meta-regression. 
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1.5 OVERALL AIM OF THE CURRENT THESIS 

 

As discussed in the previous section, at the time this thesis was conceived, the 

available voxel-based meta-analytical methods had important limitations. The 

main drive for this thesis was the development of a new meta-analytical method 

named signed differential mapping (SDM), that would adopt and combine the 

various positive features of the existing methods, but also introduce a series of 

improvements and novel features. Thus, the main aim was to develop and 

validate a method that would overcome some of these limitations. 

Subsequently, the method evolved and progressively incorporated new 

features, culminating in a new version of SDM called effect-size signed 

differential mapping (ES-SDM). Each of these incremental steps is summarised 

in the next section and will constitute a separate chapter of this thesis.  
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1.6 STRUCTURE OF THE THESIS 

 

This PhD thesis incorporates publications. This is an alternative route for 

submission of PhD thesis under new regulations of King’s College London 

(revised July 2011). Each chapter of this thesis therefore corresponds to one (or 

two) published paper. The published papers in final pfd format appear in the 

Appendix 3. For the purpose of this thesis, each paper has been reformatted 

so that the methods are presented first and the practical application of each 

method is illustrated with the use of an example. Thus, the appearance of the 

thesis is similar to a traditional PhD thesis. 

 

CHAPTER 2 details the development of the new voxel-based meta-

analytic method, signed differential mapping (SDM). It also includes a practical 

application of the method to study the regional grey matter volume in patients 

with obsessive-compulsive disorder (OCD). This study was published in the 

British Journal of Psychiatry under the title “Voxel-wise meta-analysis of grey 

matter changes in obsessive-compulsive disorder” (Joaquim Radua and David 

Mataix-Cols 2009; 195:393-402). At the time of submission of this thesis, this 

paper has received 89 citations in Scopus and 116 in Google Scholar. 
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CHAPTER 3 describes the generalization of the method to allow more 

complex statistical models such as comparisons between more than two groups 

or inclusion of covariates. It also includes a practical application of these models 

to study the regional grey matter volume in various anxiety disorders. This study 

was published in the Archives of General Psychiatry under the title “Meta-

analytical comparison of voxel-based morphometry studies in obsessive-

compulsive disorder vs. other anxiety disorders” (Joaquim Radua, Odile A. van 

den Heuvel, Simon Surguladze and David Mataix-Cols 2010; 67:701-711). At 

the time of submission, this paper has received 35 citations in Scopus and 59 in 

Google Scholar. 

 

CHAPTER 4 details an improved version of the method, effect-size 

signed differential mapping (ES-SDM), which can combine coordinates and 

statistical parametric maps and uses standard meta-analytic statistics. It also 

includes an empirical validation of the method. This study was published in 

European Psychiatry under the title “A new meta-analytic method for 

neuroimaging studies that combines reported peak coordinates and statistical 

parametric maps” (Joaquim Radua, David Mataix-Cols, Mary L. Phillips, 

Wissam El-Hage, Dina M. Kronhaus, Narcís Cardoner and Simon Surguladze 

2012; 27:605-611). At the time of submission, this paper has received 14 

citations in Google Scholar. 
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CHAPTER 5 describes the adaptation of the SDM method for meta-

analyzing white matter images. It also includes a practical application of the 

adapted method to study the regional white matter volume in the autism 

spectrum disorders (ASD). This study was published in Psychological Medicine 

under the title “Voxel-based meta-analysis of regional white matter volume 

differences in autism spectrum disorder vs. healthy controls” (Joaquim Radua, 

Esther Via, Marco Catani and David Mataix-Cols 2011; 41:1539-1550). At the 

time of submission, this paper has received 10 citations in Scopus and 26 in 

Google Scholar. 

 

CHAPTER 6 describes the adaptation of the ES-SDM method for meta-

analyzing Tract-Based Spatial Statistics (TBSS) Fractional Anisotropy (FA) 

images. It also includes a practical application of the adapted method to study 

the regional white matter development in adolescence. This meta-analysis was 

published as a companion study of an analysis of original data in Schizophrenia 

Bulletin under the title “White matter development in adolescence: diffusion 

tensor imaging and meta-analytic results” (Bart D. Peters, Philip R. Szeszko, 

Joaquim Radua, Toshikuza Ikuta, Patricia Gruner, Pamela Derosse, et al 2012; 

38:1308-1317). 

 

CHAPTER 7 describes an approach for combining voxel-based meta-

analyses involving different neuroimaging modalities, e.g. grey matter volume 

and functional response to attention tasks. It also includes an application of the 
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method to study such abnormalities in patients with a first episode of psychosis. 

The method for combining meta-analyses conducted in different modalities was 

accepted for publication in Current Medicinal Chemistry under the title “A 

general approach for combining voxel-based meta-analyses conducted in 

different neuroimaging modalities” (Joaquim Radua, Margarita Romeo, David 

Mataix-Cols and Paolo Fusar-Poli 2012; in Press). The application of the 

method was published in Neuroscience & Biobehavioral Reviews under the title 

“Multimodal meta-analysis of structural and functional brain changes in first 

episode psychosis and the effects of antipsychotic medication” (Joaquim 

Radua, Stefan Borgwardt, Alessandra Crescini, David Mataix-Cols, Andreas 

Meyer-Lindenberg, Philip K. McGuire, Paolo Fusar-Poli 2012; 36:2325:2333). 

 

Finally, CHAPTER 8 offers the general conclusions, as well as the 

strengths and limitations of the meta-analytic set of methods included in the 

thesis. This chapter also exposes other developments in the field since the time 

the thesis was first conceived. Suggestions for future research are also 

included. 

 

The APPENDICES 1, 2 and 3 include screenshots of the SDM software, 

an SDM tutorial, screenshots of the SDM Project website, and a copy of the 

published papers. 



1. Introduction 
  
 

  
 

Page 61   

1.7 REFERENCES 

 

Ades, A. E. and J. P. T. Higgins (2005). "The interpretation of random-effects 

meta-analysis in decision models." Medical Decision Making 25(6): 646-

654. 

Bergouignan, L., M. Chupin, et al. (2009). "Can voxel based morphometry, 

manual segmentation and automated segmentation equally detect 

hippocampal volume differences in acute depression?" Neuroimage 

45(1): 29-37. 

Carmona, S., N. Bassas, et al. (2007). "Pediatric OCD structural brain deficits in 

conflict monitoring circuits: a voxel-based morphometry study." Neurosci 

Lett 421(3): 218-223. 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, 

Lawrence Erlbaum Associates. 

DerSimonian, R. and N. Laird (1986). "Meta-analysis in clinical trials." Control 

Clin Trials 7(3): 177-188. 

Ellison-Wright, I., Z. Ellison-Wright, et al. (2008). "Structural brain change in 

Attention Deficit Hyperactivity Disorder identified by meta-analysis." 

BMC.Psychiatry 8: 51. 



1. Introduction 
  
 

  
 

Page 62   

Elvik, R. (1998). "Evaluating the statistical conclusion validity of weighted mean 

results in meta-analysis by analysing funnel graph diagrams." Accid Anal 

Prev 30(2): 255-266. 

Fleiss, J. L. and A. J. Gross (1991). "Meta-analysis in epidemiology, with special 

reference to studies of the association between exposure to 

environmental tobacco smoke and lung cancer: A critique." Journal of 

Clinical Epidemiology 44(2): 127-139. 

Hedges, L. V. and I. Olkin (1985). Statistical Methods for Meta-Analysis. 

Orlando, Academic Press. 

Ioannidis, J. P. A. (2011). "Excess significance bias in the literature on brain 

volume abnormalities." Arch Gen Psychiatry 68(8): 773-780. 

Kim, J. J., M. C. Lee, et al. (2001). "Grey matter abnormalities in obsessive-

compulsive disorder: statistical parametric mapping of segmented 

magnetic resonance images." Br J Psychiatry 179: 330-334. 

Laird, A. R., K. M. McMillan, et al. (2005). "A comparison of label-based review 

and ALE meta-analysis in the Stroop task." Hum Brain Mapp 25(1): 6-21. 

Lazar, N. A., B. Luna, et al. (2002). "Combining Brains: A Survey of Methods for 

Statistical Pooling of Information." Neuroimage 16(2): 538-550. 



1. Introduction 
  
 

  
 

Page 63   

Menzies, L., S. R. Chamberlain, et al. (2008). "Integrating evidence from 

neuroimaging and neuropsychological studies of obsessive-compulsive 

disorder: the orbitofronto-striatal model revisited." Neurosci Biobehav 

Rev 32(3): 525-549. 

Mulrow, C. D. and A. D. Oxman (1996). Cochrane Collaboration Handbook. 

Oxford, Cochrane Collaboration. 

Phan, K. L., T. Wager, et al. (2002). "Functional neuroanatomy of emotion: a 

meta-analysis of emotion activation studies in PET and fMRI." 

Neuroimage 16(2): 331-348. 

Pujol, J., C. Soriano-Mas, et al. (2004). "Mapping structural brain alterations in 

obsessive-compulsive disorder." Arch Gen Psychiatry 61(7): 720-730. 

Rotge, J. Y., D. Guehl, et al. (2009). "Meta-analysis of brain volume changes in 

obsessive-compulsive disorder." Biol Psychiatry 65(1): 75-83. 

Szeszko, P. R., C. Christian, et al. (2008). "Gray Matter Structural Alterations in 

Psychotropic Drug-Naive Pediatric Obsessive-Compulsive Disorder: An 

Optimized Voxel-Based Morphometry Study." Am J Psychiatry 165(10): 

1299-1307. 

Turkeltaub, P. E., G. F. Eden, et al. (2002). "Meta-analysis of the functional 

neuroanatomy of single-word reading: method and validation." 

Neuroimage 16(3 Pt 1): 765-780. 



1. Introduction 
  
 

  
 

Page 64   

Uchida, R. R., C. M. Del-Ben, et al. (2008). "Correlation between voxel based 

morphometry and manual volumetry in magnetic resonance images of 

the human brain." An Acad Bras Cienc 80(1): 149-156. 

Valente, A. A., Jr., E. C. Miguel, et al. (2005). "Regional gray matter 

abnormalities in obsessive-compulsive disorder: a voxel-based 

morphometry study." Biol Psychiatry 58(6): 479-487. 

van den Heuvel, O. A., P. L. Remijnse, et al. (2009). "The major symptom 

dimensions of obsessive-compulsive disorder are mediated by partially 

distinct neural systems." Brain 132(Pt 4): 853-868. 

Viechtbauer, W. (2005). "Bias and efficiency of meta-analytic variance 

estimators in the random-effects model." Journal of Educational and 

Behavioral Statistics 30(3): 261-293. 

Wager, T. D., L. Barrett, et al. (2007). The neuroimaging of emotion. Handbook 

of Emotions. New York, Guilford. 3rd ed. 

Wager, T. D., M. Lindquist, et al. (2007). "Meta-analysis of functional 

neuroimaging data: current and future directions." Soc Cogn Affect 

Neurosci 2(2): 150-158. 

Wager, T. D., K. L. Phan, et al. (2003). "Valence, gender, and lateralization of 

functional brain anatomy in emotion: a meta-analysis of findings from 

neuroimaging." Neuroimage 19(3): 513-531. 



1. Introduction 
  
 

  
 

Page 65   

Yoo, S. Y., M. S. Roh, et al. (2008). "Voxel-based morphometry study of gray 

matter abnormalities in obsessive-compulsive disorder." J Korean Med 

Sci 23(1): 24-30. 

 

 



Creative Commons 
 

Attribution 2.0 
 
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE LEGAL SERVICES. 
DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE 
COMMONS PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO 
WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES 
RESULTING FROM ITS USE. 
 
License 
 
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC 
LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. 
ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS 
PROHIBITED. 
 
BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE 
TERMS OF THIS LICENSE. THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF 
YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS. 
 
1. Definitions 
 

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its 
entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in 
themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be considered a 
Derivative Work (as defined below) for the purposes of this License. 

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a 
translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art 
reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or adapted, 
except that a work that constitutes a Collective Work will not be considered a Derivative Work for the purpose of this 
License. For the avoidance of doubt, where the Work is a musical composition or sound recording, the synchronization 
of the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose of 
this License. 

c. "Licensor" means the individual or entity that offers the Work under the terms of this License. 
d. "Original Author" means the individual or entity who created the Work. 
e. "Work" means the copyrightable work of authorship offered under the terms of this License. 
f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of 

this License with respect to the Work, or who has received express permission from the Licensor to exercise rights under 
this License despite a previous violation. 

 
2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other 
limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws. 
 
3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-
exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below: 
 

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as 
incorporated in the Collective Works; 

b. to create and reproduce Derivative Works; 
c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital 

audio transmission the Work including as incorporated in Collective Works; 
d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital 

audio transmission Derivative Works. 
e. For the avoidance of doubt, where the work is a musical composition: 

i. Performance Royalties Under Blanket Licenses. Licensor waives the exclusive right to collect, whether 
individually or via a performance rights society (e.g. ASCAP, BMI, SESAC), royalties for the public 
performance or public digital performance (e.g. webcast) of the Work. 

ii. Mechanical Rights and Statutory Royalties. Licensor waives the exclusive right to collect, whether 
individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any 
phonorecord You create from the Work ("cover version") and distribute, subject to the compulsory license 
created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions). 

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, 
Licensor waives the exclusive right to collect, whether individually or via a performance-rights society (e.g. 
SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work, subject to the compulsory 
license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other jurisdictions). 

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the 
right to make such modifications as are technically necessary to exercise the rights in other media and formats. All rights not 
expressly granted by Licensor are hereby reserved. 
 
4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following restrictions: 
 

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of 
this License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy or 
phonorecord of the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not 



offer or impose any terms on the Work that alter or restrict the terms of this License or the recipients' exercise of the 
rights granted hereunder. You may not sublicense the Work. You must keep intact all notices that refer to this License 
and to the disclaimer of warranties. You may not distribute, publicly display, publicly perform, or publicly digitally 
perform the Work with any technological measures that control access or use of the Work in a manner inconsistent with 
the terms of this License Agreement. The above applies to the Work as incorporated in a Collective Work, but this does 
not require the Collective Work apart from the Work itself to be made subject to the terms of this License. If You create 
a Collective Work, upon notice from any Licensor You must, to the extent practicable, remove from the Collective Work 
any reference to such Licensor or the Original Author, as requested. If You create a Derivative Work, upon notice from 
any Licensor You must, to the extent practicable, remove from the Derivative Work any reference to such Licensor or 
the Original Author, as requested. 

b. If you distribute, publicly display, publicly perform, or publicly digitally perform the Work or any Derivative Works or 
Collective Works, You must keep intact all copyright notices for the Work and give the Original Author credit 
reasonable to the medium or means You are utilizing by conveying the name (or pseudonym if applicable) of the 
Original Author if supplied; the title of the Work if supplied; to the extent reasonably practicable, the Uniform Resource 
Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright 
notice or licensing information for the Work; and in the case of a Derivative Work, a credit identifying the use of the 
Work in the Derivative Work (e.g., "French translation of the Work by Original Author," or "Screenplay based on 
original Work by Original Author"). Such credit may be implemented in any reasonable manner; provided, however, that 
in the case of a Derivative Work or Collective Work, at a minimum such credit will appear where any other comparable 
authorship credit appears and in a manner at least as prominent as such other comparable authorship credit. 

 
5. Representations, Warranties and Disclaimer 
 
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS 
AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, 
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, 
MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT 
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT 
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH 
EXCLUSION MAY NOT APPLY TO YOU. 
 
6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL 
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, 
PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF 
LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 
 
7. Termination 
 

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of this 
License. Individuals or entities who have received Derivative Works or Collective Works from You under this License, 
however, will not have their licenses terminated provided such individuals or entities remain in full compliance with 
those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License. 

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable 
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different 
license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to 
withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), 
and this License will continue in full force and effect unless terminated as stated above. 

 
8. Miscellaneous 
 

a. Each time You distribute or publicly digitally perform the Work or a Collective Work, the Licensor offers to the 
recipient a license to the Work on the same terms and conditions as the license granted to You under this License. 

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a license to the 
original Work on the same terms and conditions as the license granted to You under this License. 

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or 
enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, 
such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable. 

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent 
shall be in writing and signed by the party to be charged with such waiver or consent. 

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no 
understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound 
by any additional provisions that may appear in any communication from You. This License may not be modified 
without the mutual written agreement of the Licensor and You. 

 
Creative Commons is not a party to this License, and makes no warranty whatsoever in connection with the Work. Creative 
Commons will not be liable to You or any party on any legal theory for any damages whatsoever, including without limitation any 
general, special, incidental or consequential damages arising in connection to this license. Notwithstanding the foregoing two (2) 
sentences, if Creative Commons has expressly identified itself as the Licensor hereunder, it shall have all rights and obligations of 
Licensor. 
 
Except for the limited purpose of indicating to the public that the Work is licensed under the CCPL, neither party will use the 
trademark "Creative Commons" or any related trademark or logo of Creative Commons without the prior written consent of 
Creative Commons. Any permitted use will be in compliance with Creative Commons' then-current trademark usage guidelines, as 
may be published on its website or otherwise made available upon request from time to time. 
 
Creative Commons may be contacted at http://creativecommons.org/. 
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CHAPTER 2 

Development of a novel coordinate-based meta-

analysis method for neuroimaging studies 

 

 

2.1 THEORY 

 

2.1.1 The method of signed differential mapping 

As we have seen in Chapter 1, neuroimaging studies report, from each cluster 

of significant differences, the coordinates of the ‘voxel’ (i.e. the 3-dimensional 

pixel) where the difference between the patients and the healthy controls is 

maximum. The basic idea behind early voxel-based meta-analytic methods was 

‘counting’, for each voxel, how many times it is close ‘enough’ to the reported 

maxima and subsequently associating a probability to test the statistical 

significance. In other words, are there more studies reporting coordinates near 

that voxel than would be expected by chance? As reviewed in Chapter 1, at the 

time this thesis was conceived, two different methods were available to perform 

meta-analyses of neuroimaging data: activation likelihood estimate (ALE) 
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(Turkeltaub, Eden et al. 2002) and multilevel kernel density analysis (MKDA) 

(Wager, Lindquist et al. 2007). These two methods differ in a number of 

important ways and each has their own strengths and limitations. This chapter 

describes a new approach, signed differential mapping (SDM), which adopts 

and combines the various positive features of these two methods. In addition, 

SDM introduces a series of improvements and novel features that are 

summarised in Figure 2.1 and explained in detail below. 

 

Figure 2.1 Main features of the signed differential mapping (SDM) method for voxel-based 
meta-analysis of neuroimaging data 
 
Features adapted from the activation likelihood estimate (ALE) (Turkeltaub, Eden et al. 2002)  

a. The value assigned to each voxel is higher as the voxel is closer to the original 
coordinate. 

 
Features adapted from multilevel kernel density analysis (MKDA)  (Wager, Lindquist et al. 2007) 

a. Voxel values are limited to be as high as the voxel at the coordinate of a maximum in 
order to avoid biases towards studies reporting various coordinates in close proximity. 

b. Meta-analytic values are estimates of the values in the population of studies, unlike 
previous mathematically inconsistent estimators. 

c. Meta-analytic values are weighted by the sample size of the studies, i.e. large samples 
contribute more. 

 
Novel features of SDM 

a. Only those coordinates which are significant at the whole-brain level are included in 
order to avoid biases towards a priori brain regions. 

b. Coordinates from analyses with correction for multiple comparisons are preferred. 
c. The full-width at half maximum of the kernel is set at 25 mm in order to control for false-

positive results. 
d. Both positive and negative coordinates are reconstructed in the same map in order to 

avoid that a particular voxel can erroneously appear to be positive and negative at the 
same time. 

e. The new descriptive analysis of quartiles overcomes the unclear contribution of studies 
reporting no differences in the standard randomisation test. 

f. Analyses of subgroups are expanded and regression is introduced for clinical 
quantitative variables in order to better analyse the methodological and clinical 
heterogeneity of the included studies. 

 
Limitations (of all existing methods) 

a. Only summarised data (i.e. coordinates) are included from the studies – an analysis 
using all the raw data from the included studies would probably be more accurate. 

b. The breakdown of a cluster should not be understood as ‘all these regions are 
abnormal’ but as ‘one or more of these regions are abnormal’, because normal brain 
regions close to abnormal brain regions may artificially appear to be abnormal. 
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The first improvement introduced by SDM is a stricter selection of the 

reported peak coordinates to ensure that only regions that appear statistically 

significant at the whole-brain level are considered for inclusion in the meta-

analysis. This strict criterion is intended to avoid biases towards liberally 

thresholded brain regions because it is not uncommon in neuroimaging studies 

that the statistical threshold for some regions of interest is rather more liberal 

than for the rest of the brain. A fictitious example of such a bias is shown in 

Figure 2.2. 

Figure 2.2 A fictitious example of meta-analytic bias due to inclusion of studies with regionally 
heterogeneous thresholds 
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Another improvement related to the selection of peak coordinates is the 

systematic preference for results that are corrected for multiple comparisons. 

SDM establishes the following order of preference: a) whole-brain analyses with 

correction for multiple comparisons and at least one statistically significant 

coordinate; b) whole-brain analyses without correction for multiple comparisons 

and at least one statistically significant coordinate; c) whole-brain analyses with 

no statistically significant coordinates; d) if none of (a)–(c) apply, the study is 

discarded. 

Inclusion of analyses without correction for multiple comparisons does 

not bias the probability of finding significant results because the statistical 

analysis controls for the number of coordinates as described below. 

Coordinates reported in MNI (Montreal Neurological Institute) space are 

converted to Talairach space using the matrix transformations proposed by 

Lancaster (Lancaster, Tordesillas-Gutierrez et al. 2007), which have been 

shown to be more exact than earlier methods (Brett 1999). Coordinates 

reported in Talairach space which had been converted using earlier methods, 

are converted back to MNI space and subsequently converted to Talairach 

space using the matrix transformations.  

Once the coordinates are selected and converted, a map of the 

differences in grey matter is separately recreated for each study. This consists 

of assigning a value to the voxels close to each of the reported coordinates 

within a grey matter map (based on the Talairach Daemon (Lancaster, Woldorff 

et al. 2000), voxel size 2 x 2 x 2m3). SDM uses a 25 mm full-width at half 

maximum (FWHM) un-normalised Gaussian kernel: 
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where K is the un-normalized Gaussian kernel, FWHM is the full width at half 

maximum, and Dij is the distance between the ith voxel and the jth peak (Dij = 0 in 

the voxel containing the jth peak). 

It must be noted that this kernel is different in nature from the smoothing 

kernel used to smooth raw magnetic resonance images, since it is not intended 

to smooth any image but to assign indicators of proximity to reported 

coordinates. This kernel is adapted from that of ALE and preferred to that of 

MKDA because it assigns a higher value to the voxels closer to the reported 

coordinates. Full-width at half maximum is set at 25 mm because in previous 

simulations was found to have an excellent control of false positives – 

consistent with this simulation work, a study reported that the optimal FWHM for 

the previous methods was about 15-30mm (Salimi-Khorshidi, Smith et al. 2009). 

When a voxel can be assigned values from more than one coordinate in 

the same study these values are summed. An important downside of the sum of 

values is a bias towards studies reporting various coordinates in close 

proximity, as voxels can achieve rather large values (Wager, Lindquist et al. 

2007). Multilevel kernel density analysis elegantly overcomes this problem by 

limiting the values within one study to a maximum and SDM also incorporates 
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this feature. Thus, the value of each voxel is calculated as a restricted sum of 

the values given by the distances to its surrounding peaks: 

 

]1,1[    ,)( −∈=∑ i
j

ijjik SDMDKSSDM  

 

where SDMik is the SDM value of the ith voxel in the kth study, Sj is the sign of 

the jth peak (positive for increases, negative for decreases), Dij is the distance 

between the ith voxel and the jth peak of the kth study, and K( ) is the un-

normalized Gaussian kernel. 

A novelty of the method is that both positive and negative coordinates 

(i.e. both increases and decreases of grey matter) are reconstructed in the 

same map, resulting in a signed differential map. This is an important feature 

that prevents a particular voxel erroneously appearing to be positive (i.e. 

increased volume or activation) and negative (i.e. decreased volume or 

activation) at the same time. This problem is often seen in published studies 

using previous methods, e.g. (Menzies, Chamberlain et al. 2008). 

 Once all the studies have their signed differential map created, a meta-

analytic signed differential map is calculated. It must be noted that individual 

signed differential maps do not account for the variability within each study, 

indeed this is not reported, so that usual meta-analytic calculations are not 

applicable. However, MKDA overcomes this issue by defining the meta-analytic 
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value of a voxel as the proportion of studies reporting a coordinate around the 

voxel (weighted by the squared root of the sample size of each study so that 

studies with larger samples contribute more). Thus, the question to answer at 

each voxel is – are there more studies reporting coordinates around that voxel 

than would be expected by chance? SDM calculates the mean instead of the 

proportion of studies, although the meaning does not change: 
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where SDMi is the meta-analytic SDM value of the ith voxel, SDMik is the SDM 

value of the ith voxel in the kth study, wk is the weight of the kth study, and nk is 

the patient sample size of the kth study. 

Finally, a null distribution of the meta-analytic values is created to test 

which voxels have more studies reporting differences of grey matter around 

them than expected by chance. This is performed by means of Monte Carlo 

randomisations of the location of the coordinates (within a mask of grey matter 

plus 8 mm of white matter). The null distribution is generated at the whole-brain 

level to maximise statistical stability with relatively reduced computation time 

(almost 40 million values are obtained with 500 randomisations). It is 

recommended that researchers focus on results with uncorrected p < 0.001 

because previous simulations showed that uncorrected p < 0.001 or even 0.002 
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was, in this method, empirically equivalent to FDR-corrected p < 0.05. However, 

researchers could also formally correct for multiple comparisons by means of 

the false discovery rate (Genovese, Lazar et al. 2002). 

 

2.1.2 Descriptive analysis of quartiles 

The standard randomisation test described above checks if there are more 

studies reporting coordinates in a particular region than in the rest of the brain. 

However, this information might be incomplete without describing the actual 

proportion of studies reporting coordinates in the region (e.g. it is not the same 

that half of the studies report changes in a particular region than if only 5% do). 

To overcome this issue, a descriptive analysis of quartiles is conducted, e.g. 

values higher than 0 in the second quartile (median) map mean that at least 

50% of the studies found increases of grey matter near the voxel. Once again, 

the calculations are weighted by the square root of the sample size to make the 

studies with large samples contribute more. 

 

2.1.3 Sensitivity analysis 

In order to test the replicability of the results, a systematic whole-brain voxel-

based jack-knife sensitivity analysis is conducted. This consists of repeating the 

main statistical analysis many times but discarding one different study each 

time, i.e. removing one study and repeating the analyses, then putting that 

study back and removing another study and repeating the analysis, and so on. 
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The rationale of this test is that if a previously significant brain region remains 

significant in all or most of the combinations of studies it can be concluded that 

this finding is highly replicable. 

 

2.1.4 Analyses of subgroups 

In order to control for any possible methodological differences observed 

between the studies, the analysis is repeated several times including only those 

studies which are methodologically homogenous. 

 

2.1.5 Meta-regression 

The potential effect of several relevant sociodemographic and clinical variables 

is examined by means of linear regression, weighted by the squared root of the 

sample size and restricted to only predict possible SDM values (i.e. from -1 to 1) 

in the observed range of values of the variable: 
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where SDMi0 is the meta-analytic SDM value of the ith voxel corresponding to 

the minimum value of the modulator (e.g. minimum age), SDMi1 is the meta-

analytic SDM value of the ith voxel corresponding to the maximum value of the 

modulator (e.g. maximum age), SDMiβ is the difference between SDMi0 and 

SDMi1, wk is the weight of the kth study, xk is the value of the modulator in the kth 

study, and SDMik is the SDM value of the ith voxel in the kth study.  

It must be noted that the statistical significance of the findings derived 

from meta-regressions may be sometimes overshadowed by the abnormalities 

revealed in the main between-group analysis, for what more conservative 

thresholds are strongly recommended (see section 2.2.2.3). This issue is further 

expanded in the context of the general linear model presented in Chapter 3. 

 

2.1.6 Computational aspects 

Software for all the computations was developed by means of a C language 

program with a GTK graphical interface ( http://www.gtk.org/ ). The original 

Ubuntu GNU/Linux ( http://www.ubuntu.com/ ) version, as well as other 

operative system adapted versions is freely available at 

http://www.sdmproject.com/software . 
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2.2 EXAMPLE: APPLICATION OF THE METHOD 

 

To illustrate the practical uses of the new SDM method, this section describes a 

meta-analysis of voxel-based morphometry studies in obsessive-compulsive 

disorder (OCD). 

 

This study was published in the British Journal of Psychiatry under the title ‘Voxel-wise meta-analysis of grey 

matter changes in obsessive-compulsive disorder’ (Joaquim Radua and David Mataix-Cols 2009; 195:393-402). 

This is an author-produced electronic version of an article accepted for publication in the British Journal of 

Psychiatry. The definitive publisher-authenticated version is available online at http://bjp.rcpsych.org 

 

2.2.1 Introduction 

Current neuroanatomical models of OCD propose that specific cortico-striato-

thalamic circuits are involved in the mediation of its symptoms, but structural 

neuroimaging studies have only produced mixed evidence to support these 

models. It is not uncommon for different studies to report increased or reduced 

grey matter volumes in the same brain regions. For example, the volume of 

caudate nucleus has been reported to be decreased (Robinson, Wu et al. 

1995), normal (Aylward, Harris et al. 1996) or increased (Scarone, Colombo et 

al. 1992) in OCD patients vs. healthy controls. These inconsistencies can be 

partially attributed to the inclusion of small and heterogeneous samples of 
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participants with OCD, and also to substantial methodological differences 

between studies. Many morphometric studies in OCD have used manual 

(therefore subjective) or semi-automated methods to measure the volumes of 

brain regions defined a priori as being implicated in OCD, therefore preventing 

the exploration of other brain regions potentially implicated in the disorder. The 

recent development of fully-automated, whole-brain voxel-based morphometry 

methods (Ashburner and Friston 2000; Ashburner and Friston 2001; Mechelli, 

Price et al. 2005), which overcome some of the limitations of the region of 

interest approach, provide a powerful and unbiased tool to study the neural 

substrates of OCD. Unfortunately, recent applications of these novel methods to 

the study of OCD are often limited by relatively small sample sizes, resulting in 

insufficient statistical power. In this context, we considered it timely to conduct 

an exhaustive search of all published and unpublished voxel-based 

morphometry studies in OCD worldwide, and to perform a voxel-based 

quantitative meta-analysis using the SDM methods presented at the beginning 

of this chapter. 

 

2.2.2 Methods 

2.2.2.1 Inclusion of studies 

Included articles were obtained from exhaustive searches by the investigators in 

the Medline, PubMed, ScienceDirect and Scopus databases using the 

keywords ‘obsessive-compulsive disorder’ plus ‘morphometry’, ‘voxel-based’ or 

‘voxelwise’, as well as from hand searching in the reference lists of obtained 
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articles. In addition, the authors contacted 303 worldwide OCD experts by email 

(Mataix-Cols, Pertusa et al. 2007) requesting any unpublished voxel-based 

morphometry study in OCD that they wished to include in this meta-analysis. 

Studies comprising less than 10 individuals with OCD (Cecconi, Lopes et al. 

2008) and studies that re-analyzed previously published data (Cardoner, 

Soriano-Mas et al. 2007; Soriano-Mas, Pujol et al. 2007) were not included. 

Twelve studies performing whole-brain voxel-based comparisons of grey matter 

between individuals with OCD and healthy controls and completed before 1 

December 2008 were identified and included in the meta-analysis. These 

included 11 published papers and a previously unpublished analysis of a 

published paper (Soriano-Mas, Pujol et al. 2007) (new sample). The 

corresponding authors were contacted by email requesting any details not 

included in the original publications. After contacting the authors, no 

methodological ambiguities remained regarding the design or analysis of any of 

the studies. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) 

guidelines (Stroup, Berlin et al. 2000) are followed in the study. 

 

2.2.2.2 Global differences in grey matter volume 

Meta-analytical estimates of the differences in global grey matter volumes 

between the participants with OCD and the controls were calculated using a 

random-effects model with RevMan version 5 for Linux (The Nordic Cochrane 

Centre, Copenhagen). A heterogeneity analysis was performed to test if the 
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observed variance across studies was larger than that resulting from sampling 

error alone. 

 

2.2.2.3 Regional differences in grey matter volume 

Differences in regional grey matter volume between participants with OCD and 

controls were assessed with the SDM methods presented at the beginning of 

this chapter, including the mean analysis, the descriptive analysis of quartiles, 

and the subgroup and meta-regression analyses. 

It must be noted that the analysis of quartiles could be biased by the 

inclusion of studies that did not correct for multiple comparisons. Thus, only 

studies that performed such corrections are included (Pujol, Soriano-Mas et al. 

2004; Riffkin, Yucel et al. 2005; Valente, Miguel et al. 2005; Carmona, Bassas 

et al. 2007; Soriano-Mas, Pujol et al. 2007; Christian, Lencz et al. 2008; Gilbert, 

Keshavan et al. 2008; Gilbert, Mataix-Cols et al. 2008; van den Heuvel, 

Remijnse et al. 2009). 

The following analyses of subgroups were conducted: studies which 

acquired the images with a slice thickness of 1.2-1.5 mm, studies using a 12 

mm smoothing kernel, studies performing parametric and voxel-based statistical 

tests, studies performing an additional modulation step (i.e. inference of 

absolute grey matter volume instead of grey matter density), studies reporting 

coordinates corrected for multiple comparisons, and studies that included adult 

participants; unfortunately, paediatric studies were too few to be analysed 
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separately. Subgroup analyses regarding the procedure used for controlling for 

global volumes were not possible, as there were not enough studies using the 

same approach. Separate analysis depending on the magnetic strength of the 

scanner was not required as all studies used 1.5 Tesla scanners. 

Finally, variables explored by regression were the mean age, the mean 

Yale–Brown Obsessive–Compulsive Scale (YBOCS), the percentage of 

participants with a major depressive disorder, and the percentage of individuals 

receiving current antidepressant medication. The percentage of people 

receiving current antipsychotic medication was not considered because it was 

the same (0%) in all the studies. The following variables could not be studied 

because data was available for fewer than nine studies: mean years of 

education, mean age at onset, illness duration, percentage of participants with 

anxiety disorders other than OCD and percentage of participants having 

received past antidepressant or antipsychotic medication. 

The main output for each meta-regression was a map of the regression 

slope (e.g. the amount of grey matter change per unit increase in mean YBOCS 

score). In order to reduce spurious results, only those clusters showing a 

significant trend across participants with OCD along with a predicted significant 

difference with healthy individuals in studies at one of the extremes (e.g. a 

predicted significant grey matter difference with healthy individuals in studies 

with maximum YBOCS) are reported. Because of the small number of studies 

included in this meta-analysis and the number of regression models tested (n = 

6), a strict control of false positives is applied (Bonferroni correction: P = 
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0.001/6 = 0.00017). However, the meta-regression results should be taken with 

some caution because of the limited variability in the data. 

 

2.2.3 Results 

2.2.3.1 Included studies 

Twelve studies were included comprising 401 individuals with OCD and 376 

healthy controls. Of the 12 studies, 9 consisted of adult OCD samples and 3 of 

paediatric samples. The demographic and clinical characteristics of the 

participants are shown in Table 2.1. Further details and methodological aspects 

of each of the included studies can be found at 

http:/www.sdmproject.com/database . 

 

2.2.3.2 Global grey matter volumes 

Global grey matter volumes were obtained from seven studies including 297 

individuals with OCD and 277 healthy controls with similar characteristics to 

those of the overall sample (Kim, Lee et al. 2001; Pujol, Soriano-Mas et al. 

2004; Valente, Miguel et al. 2005; Carmona, Bassas et al. 2007; Szeszko, 

Christian et al. 2008; Yoo, Roh et al. 2008; van den Heuvel, Remijnse et al. 

2009). Heterogeneity analysis revealed that variance across studies was not 

only a result of sampling error alone (χ2 = 13.83, df = 6, P = 0.03). No 
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differences in global grey matter volume were found between individuals with 

OCD and healthy controls (Z = 1.00, P = 0.32). 

 

2.2.3.3 Regional differences in grey matter 

Coordinates for the SDM analyses were obtained from all the 12 studies 

representing 401 individuals with OCD and 376 healthy controls (Figure 2.3). 

Table 2.1 Demographic and clinical characteristics of the 12 studies included in the meta-
analysis. 
 

  Sociodemographic characteristics of 
OCD participants (and controls) 

 Clinical characteristics 
(OCD participants only) 

  n Mean 
age 

Males Right 
handed 

Years 
education 

 Age 
at 

onset 

Illness 
duration 

Y-
BOCS 
score 

Major 
depressive 

disorder 

Anxi-
ety 

Antide-
pressant 

              

Carmona et al. (2007)   18 
(18) 

12.9 
(13.0) 

72% 
(72%) 

83% 
(83%) 

N/A  N/A N/A 21.4 0% 33% 56% 

Christian et al. (2008)  21 
(21) 

38.0 
(38.9) 

71% 
(71%) 

67% 
(76%) 

14.6 
(14.9) 

 N/A N/A 27.0 33% N/A 81% 

Gilbert et al. (2008)  25 
(20) 

37.5 
(29.8) 

52% 
(45%) 

N/A N/A  29.5 8.0 26.9 36% 24% 80% 

Gilbert et al. (2008)  10 
(10) 

12.9 
(13.4) 

60% 
(60%) 

100% 
(100%) 

N/A  N/A N/A 26.5 0% N/A 0% 

van den Heuvel et al. (2009)  55 
(50) 

33.7 
(31.4) 

29% 
(40%) 

89% 
(90%) 

N/A  N/A N/A 22.8 18% N/A 0% 

Kim et al. (2001)  25 
(25) 

27.4 
(27.0) 

68% 
(68%) 

96% 
(96%) 

14.2 
(15.3) 

 19.0 8.4 24.2 16% 0% 0% 

Pujol et al. (2004)  72 
(72) 

29.8 
(30.1) 

56% 
(56%) 

85% 
(85%) 

13.2 
(14.0) 

 17.0 13.0 26.7 36% 19% 75% 

Riffkin et al. (2005)  18 
(18) 

36.1 
(34.6) 

44% 
(44%) 

94% 
(94%) 

12.1 
(13.4) 

 N/A N/A 23.3 N/A N/A 17% 

Soriano-Mas et al. (2007)  30 
(30) 

31.9 
(31.8) 

70% 
(53%) 

93% 
(90%) 

12.2 
(13.1) 

 19.7 11.3 21.0 13% 23% 87% 

Szeszko et al. (2008)  37 
(26) 

13.0 
(13.0) 

38% 
(35%) 

57% 
(65%) 

N/A  9.4 3.6 24.9 0% 24% 0% 

Valente et al. (2005)  19 
(15) 

32.7 
(32.3) 

53% 
(47%) 

89% 
(73%) 

11.7 
(10.4) 

 14.4 18.3 24.6 47% 84% 58% 

Yoo et al. (2008) 
 
 

 71 
(71) 

26.6 
(26.7) 

66% 
(66%) 

96% 
(100%) 

N/A  18.6 8.0 22.8 6% 4% 83% 

 
N/A: not available 
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As shown in Table 2.2 and Figure 2.4, individuals with OCD had 

significant bilateral (larger on the left) grey matter volume increases in the 

lenticular nucleus (mainly ventral anterior putamen) extending to the caudate 

nucleus, as well as in a small region in the right superior parietal lobule 

(Brodmann area 7). Participants with OCD also showed significant bilateral 

(larger on the right) grey matter volume decreases in dorsal medial 

Figure 2.3 Plots of all the significant coordinates included in the meta-analysis (n = 12 
studies). 
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Reported peak coordinates of grey matter increases (OCD>controls; black circles) and decreases (OCD<controls; 
white triangles) have been projected to the sagittal, coronal and axial planes. 
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frontal/anterior cingulate gyri, extending to the supplementary motor area and 

frontal eye fields (Brodmann areas 8, 32, 6 and 9). 

 

2.2.3.4 Descriptive analysis of quartiles 

Decreases of grey matter in dorsal mediofrontal/anterior cingulate gyri were 

detected in the median analysis (maximum at Talairach (20,32,38), SDM                  

-0.179), meaning that most of the studies had found some degree of decreased 

grey matter in the region. 

Table 2.2 Regional differences in grey matter volume between individuals with OCD and 
healthy controls. 
 

 Maximum  Cluster 

Talairach 
coordinates 

SDM 
value 

Uncorrected p-
value 

 Number of 
voxels 

Breakdown 
(number of voxels) 

 
Clusters of increased grey matter 

Left lenticular nucleus 
(mainly anterior putamen) 

 -18, 8, 0 0.248 0.000005  506 Left lenticular nucleus (464 voxels) 
Left caudate nucleus (41 voxels) 
Left subcallosal gyrus (1 voxels) 
 

Right superior parietal lobule 
and precuneus 
 

 14, -60, 62 0.210 0.00009  75 Right Brodmann area 7 (75 voxels) 
 

Right lenticular nucleus 
(mainly anterior putamen) 

 14, 10, -2 0.187 0.0003  68 Right lenticular nucleus (54 voxels) 
Right caudate nucleus (14 voxels) 
 

Clusters of decreased grey matter 

Right/left dMFG/ACG  4, 28, 36 -0.278 0.00002  385 Right Brodmann area 8 (93 voxels) 
Right Brodmann area 32 (96 voxels) 
Right Brodmann area 6 (34 voxels) 
Right Brodmann area 9 (22 voxels) 
 
Left Brodmann area 8 (59 voxels) 
Left Brodmann area 32 (41 voxels) 
Left Brodmann area 6 (26 voxels) 
Left Brodmann area 9 (14 voxels) 
 

 
Notes: Brodmann area 6 = supplementary motor cortex; Brodmann area 7 = somatosensory association cortex; Brodmann area 8 
= frontal eye fields; Brodmann area 9 = dorsal medial frontal gyrus; Brodmann areas 32 = dorsal anterior cingulate gyrus. All 
voxels with p < 0.001 uncorrected (SDM value thresholds of 0.163 for increases and of -0.183 for decreases). No significant voxels 
were found after FDR correction. 
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These findings were rather larger as expected in the first quartile analysis 

(maximum at Talairach (2,32,40), SDM -0.978), including several nearby 

clusters. 

Figure 2.4 Main increased (a) and decreased (b) grey matter regions in individuals with 
obsessive–compulsive disorder compared with healthy controls, and usual targets of 
capsulotomy / deep brain stimulation (c) and cingulotomy (d). 
 

 
 
(a) Increased grey matter in lenticular nuclei and caudate, (b) decreased grey matter in dorsal 
mediofrontal/anterior cingulate gyri, (c) target of capsulotomy and deep brain stimulation, (d) target of cingulotomy. 
Images (a) and (c) are shown in the axial plane (Z = -2); images (b) and (d) are shown in the sagittal plane (X = 4). 
Note that the clusters of grey matter increase in bilateral lenticular nuclei include the usual targets of capsulotomy 
and deep brain stimulation. Similarly, the meta-analytic cluster of grey matter decrease in dorsal mediofrontal 
gyri/anterior cingulate gyri includes the usual target of cingulotomy. Significant clusters and surgery targets have 
been overlaid to an MRIcron template for Linux ( http://www.mricro.com/mricron ) for display purposes only. 
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Increases of grey matter in the left lenticular nucleus were only detected 

in the third quartile analysis (maximum at Talairach (-22,16,2), SDM 0.743), 

meaning that at least 25% but less than 50% of the studies had found some 

degree of increased grey matter in this region. In this analysis, no changes of 

grey matter were detected in the right lenticular nucleus. 

 

2.2.3.5 Sensitivity analysis 

As seen in Table 2.3, whole-brain jack-knife sensitivity analysis showed that the 

grey matter increase in left lenticular nucleus and grey matter decrease in 

bilateral dorsal mediofrontal/anterior cingulate gyri were highly replicable, as 

these findings were preserved throughout all the 12 combinations of 11 studies. 

Grey matter increases in right lenticular nucleus and superior parietal cortex 

failed to emerge in two of the study combinations. No additional significant 

clusters were found in any of the 12 study combinations. 

 

2.2.3.6 Analyses of subgroups 

The above results remained largely unchanged when the analyses were 

repeated and limited to methodologically homogenous groups of studies (Table 

2.3). Only one additional significant cluster in the left cerebellum (maximum at 

Talairach (-12,-46,-12), SDM 0.179, P = 0.0002) emerged in the sub-analysis of 

studies reporting coordinates corrected for multiple comparisons. 
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Table 2.3 Analyses of subgroups and sensitivity analyses 
 
 Increased grey matter  Decreased 

grey matter 

 L lenticular 
nucleus 

R sup. parietal 
lobule 

R lenticular 
nucleus 

 R/L 
dMFG/ACG 

Studies with slice thickness ≤ 1.5mm at acquisition (n=9) 
(Kim, Lee et al. 2001; Riffkin, Yucel et al. 2005; Valente, 
Miguel et al. 2005; Christian, Lencz et al. 2008; Gilbert, 
Keshavan et al. 2008; Gilbert, Mataix-Cols et al. 2008; 
Szeszko, Christian et al. 2008; Yoo, Roh et al. 2008; van 
den Heuvel, Remijnse et al. 2009) 

Yes Yes No  No 

Studies using a 12mm smoothing kernel (n=7) 
(Kim, Lee et al. 2001; Pujol, Soriano-Mas et al. 2004; Valente, Miguel 
et al. 2005; Carmona, Bassas et al. 2007; Gilbert, Mataix-Cols et al. 
2008; Yoo, Roh et al. 2008; van den Heuvel, Remijnse et al. 2009) 

Yes No No  Yes(a) 

Studies with an additional modulation step (n=9) 
(Pujol, Soriano-Mas et al. 2004; Riffkin, Yucel et al. 2005; Valente, 
Miguel et al. 2005; Carmona, Bassas et al. 2007; Soriano-Mas, Pujol 
et al. 2007; Christian, Lencz et al. 2008; Gilbert, Mataix-Cols et al. 
2008; Szeszko, Christian et al. 2008; van den Heuvel, Remijnse et al. 
2009) 

Yes(b) No Yes(b)  Yes 

Studies performing parametric voxel-based statistics (n=11) 
(Kim, Lee et al. 2001; Pujol, Soriano-Mas et al. 2004; Valente, Miguel 
et al. 2005; Carmona, Bassas et al. 2007; Soriano-Mas, Pujol et al. 
2007; Christian, Lencz et al. 2008; Gilbert, Keshavan et al. 2008; 
Gilbert, Mataix-Cols et al. 2008; Szeszko, Christian et al. 2008; Yoo, 
Roh et al. 2008; van den Heuvel, Remijnse et al. 2009) 

Yes Yes Yes  Yes 

Studies with correction for multiple comparison (n=9) 
(Pujol, Soriano-Mas et al. 2004; Riffkin, Yucel et al. 2005; Valente, 
Miguel et al. 2005; Carmona, Bassas et al. 2007; Soriano-Mas, Pujol 
et al. 2007; Christian, Lencz et al. 2008; Gilbert, Keshavan et al. 2008; 
Gilbert, Mataix-Cols et al. 2008; van den Heuvel, Remijnse et al. 2009) 

Yes No Yes  Yes 

Studies in adult individuals (n=9) 
(Kim, Lee et al. 2001; Pujol, Soriano-Mas et al. 2004; Riffkin, Yucel et 
al. 2005; Soriano-Mas, Pujol et al. 2007; Christian, Lencz et al. 2008; 
Gilbert, Mataix-Cols et al. 2008; Yoo, Roh et al. 2008; van den Heuvel, 
Remijnse et al. 2009) 

Yes No No  Yes 

Jack-knife 
sensitivity analysis 
 

discarded study: 

Carmona et al. (2007) Yes Yes Yes  Yes 

Christian et al. (2008) Yes Yes Yes  Yes 

Gilbert et al. (2008) Yes Yes Yes  Yes 

Gilbert et al. (2008) Yes Yes Yes  Yes 

van den Heuvel et al. (2009) Yes Yes Yes  Yes 

Kim et al. (2001) Yes Yes Yes(c)  Yes 

Pujol et al. (2004) Yes Yes No  Yes(a) 

Riffkin et al. (2005) Yes Yes Yes  Yes 

Soriano-Mas et al. (2007) Yes Yes Yes  Yes(a) 

Szeszko et al. (2008) Yes No No  Yes 

Valente et al. (2005) Yes Yes Yes  Yes 

Yoo et al. (2008) Yes No Yes  Yes 

       

 
R, right; L, left; dMFG, dorsal medial frontal gyri; ACG, anterior cingulate gyri. Yes = brain region remains significantly 
increased/decreased in the subgroup analysis or after exclusion of the study in the jack-knife analysis. No = brain region is no 
longer significantly increased/decreased in the subgroup analysis or after exclusion of the study in the jack-knife analysis. (a) 
Maximum of the dMFG/ACG cluster was displaced to right cingulate gyrus when only studies using a 12mm smoothing kernel 
were included, or when either S7 or S9 was not included in the analysis. (b) Increases in bilateral lenticular nuclei were significant 
after FDR correction in the analysis of studies performing an additional modulation step. (c) Maximum of the right lenticular 
nucleus cluster was displaced to right caudate nucleus when S6 was not included in the analysis. 
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2.2.3.7 Meta-regression 

Regression analyses showed that mean age (available in all the studies) was 

not associated with OCD-related grey matter changes, at least linearly (slope 

smallest P = 0.0004). Symptom severity (YBOCS scores, available in all the 

studies) was associated with increased grey matter volumes in bilateral 

lenticular nuclei (left maximum slightly displaced to claustrum, Talairach                    

(-24,18,-6) and (20,14,0), SDM +0.106 and +0.116 per 1 point increase in mean 

YBOCS score, P = 0.0001 and P = 0.00004), with predicted grey matter 

increase in studies including individuals with more severe symptoms (maxima at 

Talairach (-20,14,-4) and (18,12,0), SDM 0.475 and 0.482, P = 0.000001 and P 

= 0.0000007) (Figure 2.5). 

The reported percentage of participants with comorbid major depressive 

disorder (available in all the studies but one (Riffkin, Yucel et al. 2005)), was 

found to be negatively associated with grey matter volumes in the right superior 

parietal lobule (maximum at Talairach (14,-58,62), SDM -0.146 per 10% 

increase in the percentage of people with comorbid major depressive disorder, 

P = 0.00014), with predicted grey matter increase in studies reporting no 

individuals with comorbid major depressive disorder (maximum at Talairach 

(14,-60,62), SDM 0.502, P = 0.000004). No effect of current antidepressant 

medication (available in all the studies) was detected (slope smallest P = 

0.003). 
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Figure 2.5 Meta-regression results showing an association between symptom severity 
(mean Yale–Brown Obsessive–Compulsive Scale (YBOCS) scores) and grey matter 
volume in left and right putamen 
 

 

Each study is represented as a dot, with larger dots symbolising greater sample sizes. The regression line (meta-
regression signed differential mapping (SDM) slope) is presented as a straight line. Note that the meta-regression 
SDM value is derived from the proportion of studies that reported grey matter changes near the voxel, so it is 
expected that the values of some of the studies are at 0 or near ±1 (instead of being close to the line). 
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2.2.4 Discussion 

To our knowledge, this is the first meta-analysis of voxel-based morphometry 

studies of grey matter volume in OCD. The study is timely given that a sufficient 

number of high-quality studies have only recently become available. The main 

strengths of the study are the unbiased inclusion of published as well as 

unpublished studies, even if their results were negative (i.e. when no significant 

differences between people with OCD and controls were found), and the 

development and implementation of the voxel-wise meta-analytic method 

presented at the beginning of the chapter. In order to facilitate replication and 

further analyses by other colleagues, an online database, which contains all the 

data and methodological details from every study included in this meta-analysis, 

has also been developed and it is readily accessible at 

http://www.sdmproject.com/database .  

 The main findings were that individuals with OCD had increased 

bilateral regional grey matter volumes in the lenticular nucleus (mainly ventral 

anterior putamen) extending to the caudate nucleus, as well as decreased 

bilateral regional grey matter volumes in dorsal mediofrontal/anterior cingulate 

gyri, extending to the supplementary motor area and frontal eye fields 

(Brodmann area 8, 32, 6 and 9). Descriptive analysis of quartiles further 

revealed that most of the studies had found some degree of grey matter 

decrease in dorsal mediofrontal/anterior cingulate gyri and at least 25% of the 

studies had found some degree of grey matter increase in left lenticular region. 

The findings remained largely unchanged when each study was removed from 

the analyses ‘only one at the time’ (jack-knife sensitivity analysis), as well as 
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when methodologically homogeneous studies were analysed separately, thus 

adding to the robustness of the findings. Current use of antidepressant 

medication did not influence the results. 

 The basal ganglia have long been hypothesised to play a key role in the 

mediation of obsessive-compulsive symptoms (Rapoport and Wise 1988). 

Indirect evidence is available from focal lesion studies, disorders of known basal 

ganglia pathology and, more recently, from neuroimaging studies (Baxter, 

Saxena et al. 1996; Saxena, Brody et al. 1998; Mataix-Cols and van den Heuvel 

2006). Structural neuroimaging studies have, however, been remarkably 

inconsistent, possibly because of the lack of sufficient sample sizes and 

methodological differences between the studies. This voxel-wise meta-analysis, 

which partially overcomes some of these problems, confirms that OCD is 

characterised by increased regional grey matter volumes in the basal ganglia, 

particularly the ventral, anterior part of the putamen, but also the caudate 

nucleus. Furthermore, meta-regression analyses showed that studies that 

included individuals with more severe OCD (YBOCS scores) were significantly 

more likely to report increased grey matter volumes in these regions. 

 The dorsal mediofrontal/anterior cingulate gyri region has also been 

implicated (usually hyperactive) in a wide range of functional neuroimaging 

studies in OCD, including resting state studies (Swedo, Schapiro et al. 1989; 

Perani, Colombo et al. 1995), symptom provocation studies (Rauch, Jenike et 

al. 1994; Breiter, Rauch et al. 1996; Mataix-Cols, Wooderson et al. 2004), and 

studies employing tasks requiring inhibitory control (Ursu, Stenger et al. 2003; 

Fitzgerald, Welsh et al. 2005; Maltby, Tolin et al. 2005; Yucel, Harrison et al. 
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2007). An important study by Yucel et al (2007) found reduced concentrations 

of neuronal N-acetylaspartate in the dorsal anterior cingulate gyri of people with 

OCD, which was inversely correlated with the level of activation in this region 

during a task of inhibitory control. The authors suggested that hyperactivations 

in the dorsal anterior cingulate gyri might therefore represent a secondary, 

compensatory response to neural abnormalities in this region. Our findings of 

reduced grey matter volume in this region are entirely consistent with this view 

and support current neuropsychological models of OCD whereby deficits in 

inhibitory processes would be primarily implicated in the disorder (Chamberlain, 

Blackwell et al. 2005). 

 It is striking that the regions identified in this meta-analysis are 

anatomically very close to the targets of surgical treatments for treatment-

refractory OCD. Indeed, our maxima of grey matter increase in anterior 

putamen (Figure 2.4A) are situated only 2-13mm mainly laterorostrally from the 

usual targets of capsulotomy and deep brain stimulation (Figure 2.4C) (Nuttin, 

Gabriels et al. 2003; Rauch, Dougherty et al. 2006; Liu, Zhang et al. 2008; 

Greenberg, Gabriels et al. 2010). Similarly, our maxima of grey matter decrease 

in dorsal mediofrontal/anterior cingulate gyri (Figure 2.4B) are situated just 2-

12mm mainly mediorostrally from the usual targets of cingulotomy (Figure 

2.4D) (Ballantine, Bouckoms et al. 1987; Spangler, Cosgrove et al. 1996; 

Dougherty, Baer et al. 2002; Kim, Lee et al. 2002; Kim, Chang et al. 2003; 

Greenspan, Coghill et al. 2008).  

 Taken together, these converging lines of evidence suggest that the 

basal ganglia and the dorsal mediofrontal/anterior cingulate gyri are implicated 
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in OCD. Studies in animals have shown that these two structures have dense 

direct anatomical connections (Alexander, Crutcher et al. 1990; Kunishio and 

Haber 1994). The evidence in humans is more indirect. For example, in one 

study, individuals undergoing cingulotomy experienced significant reductions in 

the volume of the caudate nucleus several months post-operatively, suggesting 

that there are direct connections between these structures in the human brain 

(Rauch, Kim et al. 2000). 

Some of the analyses also revealed increased grey matter volume in 

the right parietal cortex in people with OCD, although this finding was less 

robust. The meta-regression analyses further suggested that differences in this 

region may be particularly apparent in individuals with OCD but without 

comorbid depression. Although the parietal cortex is not a region traditionally 

implicated in OCD, recent reports suggest that its importance may have been 

overlooked (Menzies, Achard et al. 2007; Menzies, Chamberlain et al. 2008; 

Menzies, Williams et al. 2008; van den Heuvel, Remijnse et al. 2009). Our 

results would support this possibility, particularly in individuals without comorbid 

depression. 

 Interestingly, this meta-analysis did not reveal significant between-

group differences in the orbitofrontal cortex, a region that has been consistently 

implicated in functional neuroimaging studies of OCD and constitutes the basis 

of the most widely accepted neurobiological model of OCD (Baxter, Saxena et 

al. 1996; Saxena, Brody et al. 1998; Mataix-Cols and van den Heuvel 2006). 

There are several plausible explanations, which are not necessarily mutually 

exclusive, for the lack of structural changes in this structure. First, only 3 of the 
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12 studies included in this meta-analysis identified changes in this region (Pujol, 

Soriano-Mas et al. 2004; Szeszko, Christian et al. 2008; Yoo, Roh et al. 2008). 

Although this may be partially a result of technical difficulties in obtaining high-

quality images in this region, this seems unlikely since many functional 

neuroimaging studies, which are also susceptible to these same technical 

difficulties, have more frequently reported differences in activation in this region 

between participants with OCD and controls. Second, the precise location and 

direction of the changes in this region was heterogeneous across studies, with 

one study reporting grey matter reductions in lateral aspects of the orbitofrontal 

cortex (Yoo, Roh et al. 2008), one study reporting grey matter reductions in 

primarily medial aspects of the orbitofrontal cortex (Pujol, Soriano-Mas et al. 

2004) and one paediatric study reporting increases rather than decreases of 

grey matter volume in this region (Szeszko, Christian et al. 2008). The 

orbitofrontal cortex is indeed heterogeneous both in structure and function, and 

the precise role of its subterritories in OCD or its subtypes is unclear. Third, it is 

also possible that the recruitment of the orbitofrontal cortex in functional 

neuroimaging studies in OCD reflects secondary, perhaps compensatory, 

neural responses to cognitive or emotional challenges, rather than being 

crucially implicated in the aetiopathogenesis of the disorder. Although our 

results would support a dorsal prefrontostriatal, rather than an orbitofrontal 

cortex-striatal model of OCD, the role of the orbitofrontal cortex in the 

aetiopathogenesis of OCD cannot be fully ruled out. 

 This meta-analysis is unable to answer whether the reported changes 

precede the onset of the symptoms; that is, whether they represent a 
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vulnerability factor for the development of OCD or whether they represent the 

consequence of a chronic illness. The fact that studies with participants with 

more severe OCD found greater changes in the basal ganglia could suggest the 

latter and some limited evidence supports this possibility. Indeed, some studies 

have reported volumetric reductions in subcortical brain structures following 

successful treatment with serotonin reuptake inhibitors in OCD (Gilbert, Moore 

et al. 2000; Rosenberg, MacMaster et al. 2000). On the other hand, recent 

reports of structural brain changes in unaffected first-degree relatives of people 

with OCD would suggest an underlying familial vulnerability that may be 

symptom-independent (Menzies, Achard et al. 2007; Menzies, Williams et al. 

2008). Only large developmental studies that examine the association between 

brain structure and symptom onset longitudinally will be able to answer this 

question fully.  

 Another question unanswered by this meta-analysis is whether the 

reported changes are specific to OCD or whether they may be common to other 

psychiatric disorders (Mataix-Cols and van den Heuvel 2006). Of particular 

relevance to current discussions regarding the future classification of OCD in 

the next edition of the DSM is whether these changes are also seen in other 

anxiety disorders. Obsessive–compulsive disorder experts disagree on whether 

OCD should remain as one of the anxiety disorders or whether it should be 

classified separately in the DSM-V (Mataix-Cols, Pertusa et al. 2007). A voxel-

based meta-analytical comparison of structural and functional neuroimaging 

studies in OCD vs. other anxiety disorders may shed some light on this 

contentious question.  
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It is important to highlight several limitations of this study, some of which 

are inherent to all meta-analytical approaches. First, voxel-based meta-

analyses are based on summarised (i.e. coordinates from published studies) 

rather than raw data and this may result in less accurate results (Salimi-

Khorshidi, Smith et al. 2009). However, obtaining and analysing the raw images 

from these studies is logistically and technically difficult. Second, despite our 

attempts to contact worldwide OCD experts and include as many unpublished 

voxel-based morphometry studies as possible, even if their results were 

negative, the possibility of publication bias cannot be entirely ruled out. Third, it 

must be noted that normal brain regions close to abnormal brain regions may 

artificially appear to be abnormal. Therefore, the breakdown of a cluster should 

not be understood as ‘all these regions are abnormal’ but as ‘one or more of 

these regions are abnormal’. Fourth, most of the results were only significant 

before correction for multiple comparisons by the false discovery rate. However, 

previous simulation work established that uncorrected p < 0.001 or even 0.002 

was, in SDM method, empirically equivalent to corrected p < 0.05. Fifth, as 

mentioned above, regression analyses should be taken cautiously because they 

included a small number of studies and variability in the data was limited. 

Similarly, subgroup analyses by specific symptom subtypes or dimensions 

could not be performed. This is important since OCD is likely to be aetiologically 

heterogeneous (Mataix-Cols, Rosario-Campos et al. 2005) and preliminary 

evidence suggests that each of the major symptom dimensions of OCD may 

have partially distinct neural substrates (Mataix-Cols, Wooderson et al. 2004; 

Saxena, Brody et al. 2004; An, Mataix-Cols et al. 2009; van den Heuvel, 

Remijnse et al. 2009). 
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2.3 OVERALL DISCUSSION 

 

The number of neuroimaging studies has grown exponentially in recent years, 

making voxel-based meta-analytic methods useful to integrate a body of 

evidence which otherwise would be difficult to comprehend. However, previous 

voxel-based meta-analytic methods had a number of important limitations, such 

as including studies which employed spatially heterogeneous statistical 

thresholds, or not considering increases and decreases of grey matter volume 

or Blood Oxygen Level-Dependent (BOLD) response simultaneously. 

This chapter has introduced a new voxel-based meta-analytic method, 

SDM, which adopts and combines the various positive features of the previous 

methods and introduces a series of improvements and novel features aimed to 

overcome these limitations. Also, an example of a successful application of this 

new approach has been offered yielding highly plausible results. 

However, with all its innovations, the original SDM method still has a 

series of drawbacks that limit its utility. First, the original SDM method did not 

include the possibility of fitting more complex models such as multiple meta-

regressions or addition of covariates. Second, its brain templates were only 

suitable for meta-analyses of grey matter measures (either volume or function), 

but not white matter or tract-based spatial statistics (TBSS). Third, the original 

SDM method was not able to benefit from the richer information contained in the 

(seldom available) statistical maps. Finally, the method was only able to analyze 
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one neuroimaging modality (e.g. grey matter volume) at a time. These 

limitations of the original SDM method are addressed in the following chapters. 
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CHAPTER 3 

Implementation of the general linear model 

 

 

3.1 THEORY 

 

Chapter 2 presented the signed differential mapping (SDM) method for 

voxelwise meta-analyzing neuroimaging studies, and introduced the use of 

meta-regression by which the effects of a modulator (such as the mean 

symptom severity of the patients) could be studied (Radua and Mataix-Cols 

2009). However, the original version of the method did not include the possibility 

of fitting more complex models such as multiple meta-regressions, meta-

analytic comparisons of several groups of patients or the addition of covariates. 

This chapter introduces the general linear model to the SDM method, thus 

allowing multiple meta-regressions, comparisons of several groups of patients 

as well as the inclusion of covariates. 
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3.1.1. The general linear model 

The general linear model (GLM) is a generalization of several statistical tests 

aimed to assess differences between groups (e.g. equal-variance Student’s t-

test and ANOVA) or linear relationships (e.g. simple and multiple linear 

regressions). Interestingly, the GLM allows combination of several group 

classifications and continuous variables in the same model. 

Briefly, the GLM may be understood as a multiple regression in which 

categorical groups are coded as binary variables. For example, a comparison 

between two groups may be equivalently assessed by an equal-variance 

Student’s t-test or by a simple regression in which the value of the regressor is 

0 for individuals in one group and 1 for individuals in the other group, so that the 

regressor assesses the differences between both groups. 

Multiple regressions, and thus GLM, may be written as: 
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which may be rewritten in matrix form as: 
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where 
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A common approach to solve this system consists in discarding U and 

finding the value of β: 
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Once the values of β have been estimated, a series of contrasts may be 

used to statistically assess the hypotheses of interest. For example, in the 

abovementioned comparison between two groups, we would be interested in 

whether the difference between the groups, β1, is different than zero, so that the 

contrast to test would be: 

 

( )01 =β  
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which may be rewritten in matrix form as: 

 

OH =⋅ β  
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Creating such a contrast may seem unnecessary for this simple 

comparison, as we could just assess whether β1 is different than 0. However, 

contrasts allow the assessment of more complex hypotheses. If we aimed to 

assess whether there are differences between three groups, for instance, we 

could code the difference between the second and the first groups with β1, and 

the difference between the third and the first groups with β2. Then, the null 

hypotheses would be: 
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which may be rewritten in matrix form as: 

 

OH =⋅ β  
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Relevantly, this contrast allows the assessment of both hypotheses at 

once, i.e. equivalent to a classic one-way ANOVA. Indeed, the assessment of 

the contrast is also conducted with an ANOVA and its F statistic. 

 

3.1.2. Implementation in SDM meta-analyses 

To implement GLM in the SDM algorithms presented in Chapter 2, formulas 

above had to be modified in order that each study is weighted by the square 

root of its sample size. 
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This was achieved by including a weighting diagonal matrix W: 
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This formula can be rewritten after substitution of Y by the SDM values of the 

studies in the ith voxel, and β by SDMiβ, as: 
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or simply: 
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Contrast assessment had to be modified as well, so that multiple 

hypotheses are statistically assessed with the meta-analytic Q statistic 

(Cochran 1954) rather than with the F statistic. The formula of the Q statistic for 

the first two coefficients (1:2) is: 

 

2:1,
1

2:1,2:12:1, ββ i
T
i SDMBSDMQ ⋅⋅= −

 

 

where 

 

( ) 1−
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This Q statistic should not be confounded with the heterogeneity Q 

statistic presented in the next chapter. 

 

3.1.3 Considerations on the statistical significance 

The statistical significance of complex models should be taken with caution. On 

the one hand there is increased risk of false positives in case of multiple 

contrasts. Bonferroni or other approaches could be useful in these cases. On 
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the other hand, the statistical significance of some contrasts may be 

overshadowed by the abnormalities present in the main meta-analyses. This 

issue is developed further below. 

If a region is reported as abnormal in several studies, SDM values in a 

voxel of the region will probably range from 0 (in studies no reporting 

abnormalities) to relatively high values (in studies reporting an abnormality), 

thus allowing a potentially correct estimation of the contrasts of interest. 

Conversely, if a region is not reported abnormal in any study, SDM values will 

be constant (i.e. null) and thus coefficients other than the intercept will be 

estimated to be null. In other words, the power to detect complex effects is 

higher in those regions that show abnormalities than in those regions that do 

not. 

Unfortunately, false negative rates in regions with no reported 

abnormalities cannot be reduced by using more liberal thresholds, because 

contrasts will be estimated to be null independently of the threshold. However, 

false positive rates in regions with reported abnormalities may be minimized by 

using more conservative thresholds. Thus, it is strongly recommended to use 

conservative thresholds in contrasts whose statistical significance may be 

potentially inflated such as meta-regressions. 
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3.2 EXAMPLE: APPLICATION OF THE METHOD 

 

To illustrate the practical uses of the implementation of the general linear 

model, this section describes a meta-analytical comparison of voxel-based 

morphometry studies in obsessive-compulsive disorder (OCD) vs. other anxiety 

disorders. 

 

This study was published in the Archives of General Psychiatry under the title ‘Meta-

analytical comparison of voxel-based morphometry studies in OCD vs. other anxiety 

disorders’ (Joaquim Radua, Odile A van den Heuvel, Simon A Surguladze and David 

Mataix-Cols 2010; 67:701-711). The definitive publisher-authenticated version is 

available online at http://archpsyc.jamanetwork.com/article.aspx?articleid=211201 

 

3.2.1 Introduction 

Obsessive-compulsive disorder (OCD) is a common and disabling form of 

mental illness characterized by frequent obsessions and/or compulsions that 

are associated with high levels of distress and interference. Obsessive-

compulsive disorder is currently classified as an anxiety disorder in the DSM-IV-

TR (APA 2000). In the International Statistical Classification of Diseases, 10th 

Revision (WHO 1992), OCD is not listed as an anxiety disorder but remains 

classified under the broad umbrella of “neurotic, stress-related, and somatoform 
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disorders,” thus recognizing the historical inter-relationship between OCD and 

anxiety and their association with psychological distress. 

Consistent with this classification, OCD shares many features with other 

anxiety disorders (OADs), such as excessive fear of disorder-specific situations, 

dysfunctional over-estimation of threat, avoidance/escape and safety-seeking 

behaviours, and increased physiological arousal (Storch, Abramowitz et al. 

2008). Family studies show that OADs (particularly generalized anxiety disorder 

and agoraphobia), are more common in relatives of OCD-affected probands 

than in relatives of control probands, even after controlling for relative OCD 

diagnosis and proband diagnosis of the same anxiety disorder (Black, Noyes et 

al. 1992; Nestadt, Samuels et al. 2001; Bolton, Rijsdijk et al. 2007). A recent 

twin study showed that OCD shares a substantial proportion (55%) of its genetic 

liability with OADs but also has appreciable disorder-specific genetic and 

shared environmental influences (Tambs, Czajkowsky et al. 2009). 

Furthermore, OCD and OADs often respond to broadly similar pharmacological 

(selective serotonin reuptake inhibitors) and psychological (exposure-based) 

interventions. However, the status of OCD as an anxiety disorder has also been 

challenged in different ways over the years. Some suggested that OCD may be 

closer to the affective (Insel 1982) or even psychotic (Enright and Beech 1990) 

spectrum of disorders. More recently, a reclassification of OCD has been 

proposed whereby OCD should be removed from the anxiety disorders category 

on the basis that OCD is uniquely characterized by the presence of repetitive 

behaviours and the inability to resist urges and impulses (Hollander, Braun et al. 

2008). According to this view, obsessions and compulsions are the core 
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features of OCD and anxiety, simply an epiphenomenon. Furthermore, it is 

suggested that a new grouping is created that includes OCD as well as other 

disorders that are thought to share phenomenological and other features with 

OCD and that are currently classified elsewhere in the DSM (Hollander, Braun 

et al. 2008). Remarkably, a recent survey among worldwide OCD experts 

revealed a clear lack of consensus regarding whether OCD should remain or be 

removed from the anxiety disorders category in the DSM-V (Mataix-Cols, 

Pertusa et al. 2007). 

The research agenda for the DSM-V emphasizes the importance of 

applying the findings from basic and clinical neurosciences to guide psychiatric 

classification (APA, Kupfer et al. 2002). Neuroimaging tools have the potential 

to assist in such endeavours but, surprisingly, direct comparisons of brain 

function and structure between OCD and OADs are extremely rare (Rauch, 

Savage et al. 1997; van den Heuvel, Veltman et al. 2005). This paucity of data 

is partially due to different traditions in OCD and OADs research and the use of 

different experimental paradigms making comparisons difficult and precluding 

the establishment of a solid neuroscientific basis for classification (Mataix-Cols 

and van den Heuvel 2006). Indeed, while neuroimaging research in OCD has 

been long dominated by a predominant focus on the ventral prefrontal-striatal 

circuits, neuroimaging work in OADs has primarily focused on the amygdala-

hippocampus complex and related limbic regions (Mataix-Cols and van den 

Heuvel 2006). 

Structural magnetic resonance imaging studies are potentially more 

amenable to comparisons across the anxiety disorders because they are 
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paradigm-free but are not without their problems. Many morphometric studies in 

OCD and OADs have used manual or semi-automated methods to measure the 

volumes of brain regions defined a priori as being “abnormal”, therefore 

preventing the exploration of other brain regions potentially implicated in these 

disorders. The recent advent of fully-automated, whole-brain, voxel-based 

morphometry (VBM) methods (Ashburner and Friston 2000; Ashburner and 

Friston 2001; Mechelli, Price et al. 2005), which overcome some of the 

limitations of the region of interest approach, provide a powerful and unbiased 

tool to study the neural substrates of psychiatric disorders. Unfortunately, recent 

applications of these novel methods are often limited by relatively small sample 

sizes, resulting in insufficient statistical power and increased risk of false-

positive results. Recently developed voxel-based meta-analytical methods have 

the potential to quantify the reproducibility of neuroimaging findings and to 

generate insights difficult to observe in isolated studies (Costafreda, David et al. 

2009). 

In this study, an exhaustive search of all published and unpublished VBM 

studies in all anxiety disorders was conducted, and the general SDM algorithms 

presented in Chapter 2 (Radua and Mataix-Cols 2009) plus the methods 

described at the beginning of the chapter were applied to examine the extent to 

which OCD shares neural substrates with OADs. The null hypothesis assumed 

that no differences in regional grey matter volumes would be found between 

OCD and OADs. To facilitate replication and further analyses by other 

colleagues, a readily accessible online database, which contains all the data 
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and methodological details from every study included in this meta-analysis, was 

also developed. 

 

3.2.2 Methods 

3.2.2.1 Inclusion of studies 

Exhaustive literature searches of relevant articles published between 2001 (the 

date of the first VBM study in any anxiety disorder) and 2009 were conducted 

using the PubMed, ScienceDirect and Scopus databases. The search key 

words were “anxiety disorder,” “obsessive-compulsive disorder,” “panic 

disorder,” “agoraphobia,” “phobia,” and “stress disorder,” plus “morphometry,” 

“voxel-based.” or “voxelwise.” The key word “phobia” was intended to retrieve 

both specific and social phobias, and the key word “stress disorder” was 

intended to retrieve both acute stress disorder and posttraumatic stress disorder 

(PTSD). In addition, manual searches of the reference sections of the obtained 

articles were also conducted. Studies containing duplicated datasets, i.e. 

analyzed the same data in different articles and studies with fewer than 9 

patients were excluded. Next, the corresponding authors were contacted by e-

mail requesting any detail not included in the original manuscripts. MOOSE 

guidelines for meta-analyses of observational studies (Stroup, Berlin et al. 

2000) were followed in the study. 
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3.2.2.2 Comparison of global grey matter volumes  

Meta-analytical differences in global grey matter volumes were calculated using 

random-effects models with the MiMa function (Viechtbauer 2006) in R (R 

Development Core Team 2008). 

 

3.2.2.3 Comparison of regional grey matter volumes 

Regional differences in grey matter volume between patients and controls were 

analyzed using the general SDM algorithms presented in Chapter 2 (Radua and 

Mataix-Cols 2009) plus the methods described at the beginning of this chapter. 

An omnibus test (Q statistic (Cochran 1954)) was first employed to determine if 

there were differences in grey matter across the different anxiety disorders. 

Specifically, the Q statistic of the “anxiety disorder” factor was calculated in 

each voxel as it is usually calculated in standard meta-analyses, with the only 

difference that its statistical significance was determined by means of a 

randomization test (Radua and Mataix-Cols 2009). Age, percentage of male 

patients, age at onset, percentage of patients receiving medication and 

percentage of patients with comorbid major depressive disorder were 

considered potential confounders and included as covariates if they showed 

relevant differences across the different anxiety disorders (Cohen f ≥ 0.27 for 

continuous variables; Cramer φ ≥ 0.21 for binary variables). Missing values in 

these variables were obtained by imputation of the mean of the corresponding 

disorder. Variables with 20% or more missing values were discarded. Age of 

patients was included in its linear and quadratic forms (age + age squared, the 
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latter obtained from age sample mean and variance), as the developmental 

trajectories of some regions such as the medial prefrontal cortex are not linear 

(Shaw, Lerch et al. 2006). Brain regions with significant main effects of anxiety 

disorder were used to classify the disorders into 2 (or more) grey-matter-based 

groups of disorders.  

Next, standard SDM meta-analyses (Radua and Mataix-Cols 2009) were 

conducted separately in each group of disorders to describe the differences in 

grey matter between patients and healthy controls. These were complemented 

with additional analyses to assess the robustness of the findings (Radua and 

Mataix-Cols 2009). These included descriptive analyses of quartiles to find the 

actual proportion of studies reporting results in a particular brain region 

(regardless of p-values) and jack-knife sensitivity analyses to assess the 

replicability of the results. Finally, whole-brain differences in grey matter volume 

between groups of disorders were formally tested by calculating the difference 

between both groups of disorders in each voxel and determining its statistical 

significance using a randomization test (Radua and Mataix-Cols 2009). 

All analyses were conducted twice: first including all samples and 

subsequently including adult samples only. 
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3.2.3 Results 

3.2.3.1 Included studies and sample characteristics 

As shown in Figure 3.1, the search retrieved a total of 37 studies (17 OCD; 8 

panic disorder [PD]; 11 PTSD; 1 various anxiety disorders). Seven studies were 

discarded because they contained duplicated datasets (Cardoner, Soriano-Mas 

et al. 2007; Li, Chen et al. 2007; Soriano-Mas, Pujol et al. 2007; Asami, Hayano 

et al. 2008; Uchida, Del-Ben et al. 2008; Chen, Li et al. 2009) or fewer than 9 

patients (Cecconi, Lopes et al. 2008). 

Figure 3.1 Inclusion of studies. 
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After contacting the authors no methodological ambiguities remained 

regarding the design or analysis of 26 studies (14 OCD; 5 PD; 6 PTSD; 1 

various anxiety disorders), while 4 had to be excluded because of missing key 

information for our meta-analysis (i.e. peak coordinates from whole-brain 

analyses) (Emdad, Bonekamp et al. 2006; Jatzko, Rothenhofer et al. 2006; 

Protopopescu, Pan et al. 2006; Bryant, Felmingham et al. 2008). Therefore, 26 

high-quality studies could be included in this meta-analysis, of which 25 were 

published or accepted for publication and 1 was a previously unpublished sub-

analysis within a published article (Soriano-Mas, Pujol et al. 2007) (new 

sample). Twelve of the 14 OCD studies were included in our previous meta-

analysis conducted in December 2008 (Radua and Mataix-Cols 2009). 

Because the samples from 2 studies (Asami, Yamasue et al. 2009; 

Hayano, Nakamura et al. 2009) partially overlapped, the meta-analysis was 

conducted twice, i.e. once with each study. Since the results were identical, only 

the results including the first of these studies are reported (Asami, Yamasue et 

al. 2009). 

Combined, the studies included 639 patients with anxiety disorders (430 

with OCD, 106 with PD, 86 with PTSD, and 17 patients from a study on various 

anxiety disorders) and 737 healthy controls. The demographic and clinical 

characteristics of the participants in each study are shown in Table 3.1. Further 

details and methodological aspects of each of the included studies can be found 

at http://www.sdmproject.com/database . 
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No relevant differences between patients and controls were found in 

terms of age and sex, as the original studies were already well matched in this 

respect (Table 3.1). Because the age of the patients, as well as the percentage 

of patients receiving antidepressant medication, moderately varied across the 

different anxiety disorders (Cohen f = 0.30 and Cramer φ = 0.27, respectively), 

these potential confounds were controlled by including age, age squared, and 

percentage of patients receiving antidepressant medication as covariates in the 

omnibus test. Other reported medications were infrequent: anxiolytics (4.7%), 

Table 3.1 Demographic and clinical characteristics of the 26 voxel-based morphometry 
studies included in the meta-analysis. 
 
  Patients  Controls 
  Sample 

size 
Age, y, 

Mean (SD) 
Males, 

% 
Antidepressant 
Treatment, % 

Comorbid 
MDD, % 

 Sample 
size 

Age, y, 
Mean (SD) 

Males, 
% 

           
OCD studies 

Carmona et al.  18 12.9 (2.8) 72 56 0  18 13.0 (3.0) 72 
Christian et al.  21 38.0 (9.6) 71 81 33  21 38.9 (9.8) 71 
Gilbert et al.  25 37.5 (10.7) 52 80 36  20 29.8 (7.9) 45 
Gilbert et al   10 12.9 (2.7) 60 0 0  10 13.4 (2.6) 60 
Kim et al.  25 27.4 (7.0) 68 0 16  25 27.0 (6.2) 68 
Koprivova et al.   14 28.6 (6.1) 36 71 0  15 28.7 (6.5) 40 
Lazaro et al.  15 13.7 (2.5) 53 0 0  15 14.3 (2.5) 53 
Pujol et al.  72 29.8 (10.5) 56 75 36  72 30.1 (10.2) 56 
Riffkin et al.  18 36.1 (13.0) 44 17 N/A  18 34.5 (11.8) 44 
Soriano-Mas et al.  30 31.9 (9.3) 70 87 13  30 31.8 (10.2) 53 
Szeszko et al.  37 13.0 (2.7) 38 0 0  26 13.0 (2.6) 35 
Valente et al.  19 32.7 (8.8) 53 58 47  15 32.3 (11.8) 47 
van den Heuvel et al.  55 33.7 (9.2) 29 0 18  50 31.4 (7.6) 40 
Yoo et al.  71 26.6 (7.5) 66 83 6  71 26.7 (6.1) 66 
Subtotal  430 27.9 (11.5) 54 49 18a  406 27.4 (10.5) 54 
           

PD studies 
Asami et al.  24 37.0 (10.2) 38 80 13  24 37.0 (9.5) 38 
Hayano et al.  27 38.2 (9.9) 37 89 11  30 35.3(10.5) 30 
Massana et al.  18 36.8 (11.3) 39 N/A 0  18 36.7 (8.8) 44 
Uchida et al.  19 37.1 (9.8) 16 74 63  20 36.5 (9.9) 20 
Yoo et al.  18 33.3 (7.1) 50 N/A 0  18 32.0 (5.8) 61 
Subtotalb  79 36.1 (9.7) 35 77a 19  80 35.7 (8.8) 40 
           

PTSD studies 
Carrion et al.  19 11.5 (3.7) 58 26 11  22 11.1 (2.6) 55 
Chen et al.  12 34.6 (4.9) 33 0 0  12 33.2 (5.3) 33 
Corbo et al.  14 33.4 (12.1) 43 0 50  14 33.3 (12.3) 43 
Hakamata et al.  14 45.6 (6.2) 0 0 50  100 47.1 (5.7) 0 
Kasai et al.  18 52.8 (3.4) 100 N/A 56  23 51.8 (2.3) 100 
Yamasue et al.  9 44.6 (16.0) 56 0 11  16 44.4 (14.0) 63 
Subtotal  86 35.9 (16.7) 51 7a 31  187 41.3 (14.0) 29 
           

Various anxiety disorders 
Milham et al.  17 12.9 (2.3) 47 0 24  34 12.4 (2.2) 47 
           

 
N/A: not available; MDD: major depressive disorder; OCD: obsessive-compulsive disorder; PD: panic disorder; PTSD: 
posttraumatic stress disorder. SD: standard deviation. 
aResult obtained after imputation of missing values using the mean of the corresponding disorder. 
bResult obtained after excluding the study by Hayano et al. 
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amphetamines (0.5%), antipsychotics (n=1), guanfacine hydrochlorid (n=1), 

lithium (n=1), and thyroxine (n=1). 

The percentages of male and depressed patients were rather similar in 

the different disorders (Cramer φ = 0.09 and 0.11, respectively) and thus not 

included as covariates. Mean age at onset could not be considered because of 

a large proportion (44%) of missing values. 

Regarding comorbidity, 3.5% patients from OCD studies and 5.6% 

patients from PTSD studies had comorbid PD. One patient from a PTSD study 

had comorbid OCD, and 1 patient from an OCD study had comorbid PTSD. 

With the exception of major depressive episode (Table 3.1), other individual 

comorbid disorders were relatively infrequent: generalized anxiety disorder, 

6.3%; social phobia, 4.9%; and specific phobias, 1.9%. 

 

3.2.3.2 Global differences in grey matter volume 

Global grey matter volumes were obtained from 13 studies (9 OCD; 2 PD; 2 

PTSD) (Kim, Lee et al. 2001; Pujol, Soriano-Mas et al. 2004; Valente, Miguel et 

al. 2005; Carmona, Bassas et al. 2007; Hakamata, Matsuoka et al. 2007; 

Szeszko, Christian et al. 2008; Uchida, Del-Ben et al. 2008; Yoo, Roh et al. 

2008; Asami, Yamasue et al. 2009; Carrion, Weems et al. 2009; Koprivova , 

Hor cek et al. 2009; Lazaro, Bargallo et al. 2009; van den Heuvel, Remijnse et 

al. 2009). Comparisons across disorders and analyses in individual disorders 

other than OCD were not possible, as there were too few PD and PTSD studies 
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for analysis. No statistically significant differences in global grey matter volume 

were found between patients with OCD (n=326) and healthy controls (n=307) 

(unbiased Hedges (Hedges and Olkin 1985) d = -0.19; z = -1.51; P = 0.13). The 

same results emerged when the 3 paediatric OCD studies were excluded from 

the analysis (unbiased Hedges d = -0.15; z = -1.61; P = 0.11). 

 

3.2.3.3 Regional differences in grey matter volume across anxiety disorders 

Data for this analysis were obtained from 24 studies (14 OCD; 4 PD; 6 PTSD) 

including 595 patients (430 OCD; 79 PD; 86 PTSD) and 673 healthy controls. 

There was a main effect of anxiety disorder factor on grey matter volume in the 

left lenticular nucleus (mainly the anterior putamen) and right caudate extending 

to the lenticular nucleus (mainly the anterior putamen) (Table 3.2). When age 

was introduced as a linear covariate, the results remained unchanged but 

additional differences were also observed in a small bilateral region in the 

Table 3.2 Regions with significant differences in grey matter volumes across anxiety 
disorders (omnibus test)a 
 
 Talairach 

Coordinates, 
x, y, z 

P 
valueb 

Number 
of voxelsc 

OCD 
vs. 

controls 

PD 
vs. 

controls 

PTSD 
vs. 

controls 
       
Left lenticular nucleus 
(mainly anterior putamen) 
 

-24, 6, 0 < 0.001 286 +0.210 -0.199 -0.215 

Right caudate head 
(extending to lenticular 
nucleus) 
 

14, 16, 0 < 0.001 287 +0.143 -0.368 -0.009 

 
Abbreviations: OCD, obsessive-compulsive disorder; PD, panic disorder; PTSD, posttraumatic stress disorder; 
SDM, signed differential mapping. 
aValues in the OCD, PD and PTSD columns represent the difference in grey matter volume (SDM value) in 
patients vs. controls. Positive values represent increases and negative values represent decreases. 
bP values were obtained from a randomization test (Radua and Mataix-Cols 2009). 
c1 voxel = 8mm3. 
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ventro-medial frontal gyri Brodmann area 11/32 (Talairach coordinates [x,y,z] 

4,32,-12; P < 0.001; 46 voxels). When quadratic age (i.e. age + age squared) or 

the percentage of patients receiving antidepressant medication were introduced 

in the model, the results remained unchanged, i.e. only the left lenticular and 

right caudate (extending to lenticular) nuclei were significantly different across 

anxiety disorders. Finally, when 6 paediatric studies were excluded, the results 

also remained unchanged. 

Figure 3.2 Common and distinct neural correlates in obsessive-compulsive disorder (OCD) 
and other anxiety disorders (OADs). 
 

 
 
A, The coronal slices show significant differences across the different anxiety disorders in the bilateral lenticular nuclei (mainly the 
anterior putamen), with increased grey matter volume (orange) in OCD (first row) and decreased volume (cyan) in OADs (second 
row). The formal comparison between OCD and OADs confirmed these differences (third row). The sagittal slices show similarly 
decreased grey matter volumes in the dorsomedial frontal gyrus/anterior cingulate gyrus (ACG) region in the different anxiety 
disorders. Statistical threshold was set at P ≤ 0.001 and significant clusters have been overlaid on an MRIcron template                                  
( http://www.mricro.com/mricron ) for display purposes only. B, The bar graphs show the signed differential mapping (SDM) values 
of grey matter volume (as compared with healthy controls) in the putamen (first row) and ACG (second row) in each disorder 
derived from the omnibus test. PD indicates panic disorder; PTSD, posttraumatic stress disorder. 
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These omnibus tests were followed by inspection of grey matter volumes 

in the basal ganglia in OCD, PD and PTSD. As shown in Table 3.2 and Figure 

3.2, patients with OCD showed increased grey matter in the bilateral 

lenticular/caudate nuclei compared with controls, while both PD and PTSD 

showed decreased grey matter volume in these regions compared with controls.  

 

3.2.3.4 Regional differences in grey matter volume: OCD vs. healthy controls 

Data for this analysis were obtained from all 14 studies on OCD representing 

430 patients and 406 healthy controls. Consistent with the meta-analysis 

presented in Chapter 1, which included 12 of the 14 OCD studies available at 

that time (Radua and Mataix-Cols 2009), patients with OCD showed robust 

increased regional grey matter volumes in the bilateral lenticular / caudate 

nuclei and right superior parietal lobule. Decreased grey matter volumes were 

found in the bilateral dorso-medial frontal gyrus (dMFG) / anterior cingulate 

gyrus (ACG) (Table 3.3 and Figure 3.2). Results were similar after exclusion of 

4 paediatric OCD studies, with increased grey matter volumes in the left 

lentiform / caudate nucleus and decreased grey matter volumes in the bilateral 

dMFG/ACG. 
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The results remained largely unchanged in the analysis of quartiles with 

the exception of the superior parietal lobule, which was no longer significant. 

Whole-brain jack-knife sensitivity analysis showed that the grey matter increase 

in the left lenticular nucleus was highly replicable, as this finding was preserved 

in all combinations of studies. Grey matter decrease in the dMFG/ACG 

emerged in all but one combination of studies, whereas grey matter increases in 

the right lenticular nucleus and superior parietal lobule emerged in all but 2 

combinations of studies. 

 

3.2.3.5 Regional differences in grey matter volume: OADs vs. healthy controls 

Because the omnibus test revealed similar neural substrates in PD and PTSD, 

these disorders were collapsed together to form a new group called OADs and 

Table 3.3 Regions with significant differences in grey matter volume between patients with 
OCD and healthy controls. 
 
  Maximum  Clustera 
  Talairach 

Coordinates 
x, y, z 

SDM 
value 

P 
value 

 Number 
of voxelsb 

Breakdown 
(number of voxels) 

Clusters of increased grey matter 
Left lenticular / caudate nuclei 
(mainly anterior putamen) 
 

 -18, 8, 0 +0.226 < 0.001  517 Left putamen (390) 
Left pallidum (64) 
Left caudate nucleus (44) 
 

Right superior parietal lobule 
 

 14, -58, 60 +0.182 < 0.001  66 Right BA 7 (66) 
 

Right lenticular /caudate nuclei 
(mainly anterior putamen) 
 

 18, 10, -2 +0.173 < 0.001  99 Right putamen (74) 
Right caudate (16) 
 

Clusters of decreased grey matter 
Bilateral dMFG/ACG 
 

 2, 30, 38 -0.257 < 0.001  426 Bilateral BA 8 (170) 
Bilateral BA 32 (140) 
Bilateral BA 6 (70) 
Bilateral BA 9 (46) 
 

 
Abbreviations; ACG, anterior cingulate gyrus; BA, Brodmann area; dMFG, dorso-medial frontal gyrus; OCD, 
obsessive-compulsive disorder; SDM, signed differential mapping. 
aRegions smaller than 10 voxels are not shown. 1 voxel = 8mm3. 
bP values were obtained from a randomization test (Radua and Mataix-Cols 2009). 



3. Implementation of the general linear model 
 
 

 
 

Page 134  

used in all subsequent analyses. This group also included the study by Milham 

et al. (Milham, Nugent et al. 2005) on various paediatric anxiety disorders, 

making a total of 11 studies representing 199 patients and 301 healthy controls. 

As shown in Table 3.4 and Figure 3.2, individuals with OADs had significant 

grey matter volume decreases in the bilateral dMFG/ACG, bilateral posterior 

part of the ACG and left lenticular nucleus (mainly the rostral putamen). No 

increases of grey matter volume were detected. The results did not change 

when the study by Milham et al. (Milham, Nugent et al. 2005) or the 2 paediatric 

studies were excluded, but additional decreases of grey matter volume were 

also observed in the right insula extending to the lentiform nucleus (Talairach 

coordinates [x,y,z] 40,-8,2; SDM = -0.256; P = 0.001; 24 voxels) and the left 

middle temporal gyrus, Brodmann area 21/22 (Talairach coordinates [x,y,z] -

52,-42,6; SDM = -0.254; P = 0.001; 17 voxels). 

Table 3.4 Regions with significant differences in grey matter volume between patients with 
OADs and healthy controls. 
 
  Maximum  Clustera 
  Talairach 

Coordinates 
x, y, z 

SDM 
value 

P 
valueb 

 Number 
of voxels 

Breakdown 
(number of voxels) 

Clusters of increased grey matter 
(none) 
 

       

Clusters of decreased grey matter 
Bilateral dMFG/ACG 
 

 -2, 36, 20 -0.266 < 0.001  231 Bilateral BA 32 (116) 
Bilateral BA 9 (80) 
Bilateral BA 24 (35) 
 

Bilateral posterior part of the ACG 
 

 4, 0, 34 -0.251 < 0.001  205 Bilateral BA 24 (205) 
 

Left lenticular nucleus 
(mainly anterior putamen) 
 

 -26, 4, 0 -0.238 < 0.001  65 Left putamen (62) 
 

 
Abbreviations: ACG, anterior cingulate gyrus; BA, Brodmann area; dMFG, dorso-medial frontal gyrus; OADs, other 
anxiety disorders; SDM, signed differential mapping. 
aRegions smaller than 10 voxels are not shown. 1 voxel = 8mm3. 
bP values were obtained from a randomization test (Radua and Mataix-Cols 2009). 



3. Implementation of the general linear model 
 
 

 
 

Page 135  

In the quartiles / median analysis, decreases of grey matter were 

detected in the bilateral dMFG/ACG and bilateral lenticular/caudate nuclei, 

meaning that most of the studies had found some degree of decreased grey 

matter in or near these regions. No increases of grey matter were detected in 

the quartiles analyses. Finally, whole-brain jack-knife sensitivity analysis 

showed that the grey matter decrease in the bilateral dMFG/ACG was rather 

replicable, as these findings were preserved in 9 of the 11 combinations of 

studies. Grey matter decreases in the bilateral posterior part of the ACG and left 

lenticular nucleus emerged in all but 3 combinations of studies. 

 

 

 

Table 3.5 Regions with significant differences in grey matter volume between patients with 
OCD and patients with OADs. 
 
  Maximum  Clustera 
  Talairach 

Coordinates 
x, y, z 

SDM 
value 

P 
valueb 

 Number 
of voxels 

Breakdown 
(number of voxels) 

OCD > OADs 
Left lenticular nucleus 
(mainly anterior putamen) 
 

 -24, 6, 0 0.436 Undectable  651 Left putamen (472) 
Left pallidum (109) 
Left claustrum (43) 
Left caudate nucleus (15) 
 

Right lenticular nucleus 
(mainly anterior putamen) 
 

 18, 10, -2 0.315 < 0.001  392 Right putamen (213) 
Right caudate nucleus (103) 
Right pallidum (74) 
 

OADs > OCD 
Right dMFG/ACG 
 

 6, 24, 38 0.195 < 0.001  43 Right BA 8 (22) 
Right BA 32 (19) 
 

 
Abbreviations: ACG, anterior cingulate gyrus; BA, Brodmann area; dMFG, dorso-medial frontal gyrus; OADs, other 
anxiety disorders; OCD, obsessive-compulsive disorder; SDM, signed differential mapping. 
aRegions smaller than 10 voxels are not shown. 1 voxel = 8mm3. 
bP values were obtained from a randomization test (Radua and Mataix-Cols 2009). 
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3.2.3.6 Regional differences in grey matter volume: OCD vs. OADs 

The formal comparison between OCD and OADs largely confirmed the earlier-

mentioned findings (Table 3.5 and Figure 3.2). Patients with OCD had 

significantly greater grey matter volumes than patients with OADs in the 

bilateral lenticular/caudate nuclei and lower grey matter volumes in a small 

region in the right dMFG/ACG. The age, percentage of male patients, 

percentage of patients receiving an antidepressant medication and percentage 

of depressed patients were comparable between OCD and OADs (Cohen f = 

0.22 and Cramer φ = 0.07, 0.08, and 0.08, respectively) and thus not included 

as covariates. The results remained largely unchanged after exclusion of 6 

paediatric studies, with the exception that patients with OCD had significantly 

greater grey matter volumes in another small region in the bilateral dMFG/ACG, 

Brodmann area 24 (Talairach [x,y,z] -2,-4,34; SDM = -0.308; P < 0.001; 53 

voxels). 

 

3.2.4 Discussion 

While OCD is currently classified as an anxiety disorder in the DSM-IV-TR, 

there is a substantial disagreement in the field as to whether this should be 

retained in the DSM-V or whether OCD should be removed from the broad 

umbrella of anxiety disorders and placed elsewhere (Mataix-Cols, Pertusa et al. 

2007; Hollander, Braun et al. 2008; Storch, Abramowitz et al. 2008). The 

neurosciences have the potential to assist classification efforts by mapping the 
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common and distinct neural substrates of mental disorders. Several major 

conclusions can be drawn from the present meta-analysis of VBM studies. 

 

3.2.4.1 Shared neural substrates in OCD and OADs 

Patients with OCD and OADs showed decreased bilateral regional grey matter 

volumes in the dMFG/ACG compared with healthy controls. These findings 

were very robust as they consistently emerged using multiple statistical 

approaches and various sensitivity and subgroup analyses. A plethora of 

evidence from animal, lesion, and neuroimaging studies indicates that the 

dMFG/ACG is implicated in the mediation or modulation of both normal and 

pathological anxiety. For example, in humans, direct stimulation of the ACG 

evokes anxiety (Laitinen 1979). The thickness and degree of activation of the 

dorsal ACG are positively correlated with skin conductance responses during 

fear conditioning in healthy individuals (Milad, Quirk et al. 2007). Activation of 

this region is consistently seen during the processing of threat-related as well as 

other emotion-relevant stimuli (Bush, Luu et al. 2000; Phan, Wager et al. 2002), 

and seems important for the cognitive regulation of emotions (Phillips, Drevets 

et al. 2003; Phillips, Drevets et al. 2003; Ochsner and Gross 2005). The dorsal 

ACG also plays a key role in error monitoring, a process that may be common 

to most anxiety disorders, including OCD (Ursu, Stenger et al. 2003; Paulus, 

Feinstein et al. 2004; Maltby, Tolin et al. 2005). Activation in different ACG 

regions and the medial prefrontal cortex is associated with anticipatory anxiety 

both in healthy individuals (Chua, Krams et al. 1999; Straube, Schmidt et al. 
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2009) and patients with anxiety disorders (Straube, Mentzel et al. 2007). 

Functional neuroimaging studies of anxiety disorders, including OCD, have 

consistently found hyper-activation in the dMFG/ACG region using various 

symptom provocation procedures (Swedo, Schapiro et al. 1989; Rauch, Jenike 

et al. 1994; Perani, Colombo et al. 1995; Rauch, Savage et al. 1995; Breiter, 

Rauch et al. 1996; Rauch, Savage et al. 1997; Osuch, Ketter et al. 2000; 

Pissiota, Frans et al. 2003; Mataix-Cols, Wooderson et al. 2004). This 

hyperactivity is at least partially reversible with cognitive-behaviour therapy 

(Straube, Glauer et al. 2006; Saxena, Gorbis et al. 2009). Finally, the dorsal 

ACG region implicated in this meta-analysis corresponds to the target of 

anterior cingulotomy, an ablative surgical treatment that alleviates severe 

obsessive-compulsive symptoms, anxiety and depression (Jenike 1998). Taken 

together, these multiple lines of evidence suggest that this brain region is 

commonly implicated in all anxiety disorders including OCD. 

 

3.2.4.2 Differences between OCD and OADs 

Compared with healthy controls, individuals with OCD had increased bilateral 

regional grey matter volumes in the lenticular nuclei (mainly the ventral anterior 

putamen) extending to the caudate nuclei. Conversely, patients with OADs had 

decreased grey matter volumes (vs. healthy controls) in the left lenticular 

nucleus (mainly the ventral anterior putamen). The study of the differences in 

grey matter volume across the different anxiety disorders confirmed these 

findings: patients with OCD had increased bilateral grey matter volumes in the 
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lenticular nuclei, extending to the caudate on the right side, in comparison with 

OADs. These findings appeared to be robust as demonstrated by our 

descriptive analyses of medians and quartiles. The findings also remained 

largely unchanged when each study was removed from the analyses “only one 

at a time” (jack-knife sensitivity analysis) and when controlling for potential 

confounds such as age or antidepressant medication use. 

The basal ganglia have long been hypothesized to play a key role in the 

mediation of obsessive-compulsive symptoms (Rapoport and Wise 1988). 

Indirect evidence is available from focal lesion studies, disorders of known basal 

ganglia pathology, and, more recently, neuroimaging studies (Rauch, Jenike et 

al. 1994; Baxter, Saxena et al. 1996; Saxena, Brody et al. 1998; Mataix-Cols 

and van den Heuvel 2006). Conversely, the role of the basal ganglia in OADs 

has been largely neglected so far. This may be due to different research 

traditions in OCD vs. OADs (Mataix-Cols and van den Heuvel 2006). The 

results of this meta-analysis suggest that the basal ganglia are implicated in 

OADs too, though the direction of the results is opposite to that in OCD. The 

functional significance of these findings is unclear but it may be a reflection of 

unique features of OCD vs. OADs. One obvious possibility is that increased 

basal ganglia volumes reflect the repetitive nature of compulsions, which are 

pathognomonic in OCD. Chapter 2 included a meta-regression analysis 

showing a significant positive correlation between the volume of the basal 

ganglia and the severity of OCD symptoms (scores on the Yale-Brown 

Obsessive-Compulsive Scale) (Radua and Mataix-Cols 2009). Conversely, Yoo 
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et al. (2005) reported a significant negative correlation between the duration 

and severity of panic disorder symptoms and bilateral putamen volume. 

The identified region is anatomically very close to the usual targets of 

psychosurgical interventions for severe anxiety and depression, such as 

capsulotomy (Ruck, Andr‚ewitch et al. 2003; Ruck, Svanborg et al. 2005) and 

deep brain stimulation (Nuttin, Cosyns et al. 1999; Greenberg, Gabriels et al. 

2008). Our findings of increased grey matter volume in OCD and decreased 

grey matter volume in OADs suggest that these ablative procedures may be 

effective through the disruption of different pathological mechanisms. Indeed, 

these are relatively crude interventions that may result in anxiety reduction by 

restoring the balance of activity in the basal ganglia regardless of the exact 

nature of the dysfunction. 

This meta-analysis did not reveal consistent changes in limbic regions, 

such as the amygdala and hippocampus, in OADs. These changes would be 

expected from the existing PTSD (Kitayama, Vaccarino et al. 2005; Smith 2005; 

Karl, Schaefer et al. 2006) and PD (Massana, Serra-Grabulosa et al. 2003) 

literature. This may be related to limitations inherent to the VBM method. 

Indeed, standard VBM may not be as sensitive as manual segmentation 

methods or newer automated algorithms to detect volume changes in these 

regions (Bergouignan, Chupin et al. 2009). It is also possible that the high 

smoothing commonly used in VBM studies contributes to the poor sensitivity for 

volumetric changes in the small limbic structures (Uchida, Del-Ben et al. 2008). 
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3.2.4.3 Strengths and limitations 

The main strengths of this study are the unbiased inclusion of published as well 

as unpublished studies, even if their results were negative (i.e. when no 

significant differences between patients and controls were found), and the use 

of the novel voxel-wise meta-analytic method presented in Chapter 2 (Radua 

and Mataix-Cols 2009). This method has been further developed by the 

introduction of a new statistical approach for voxel-based meta-analysis, i.e. the 

GLM which allowed testing differences across different disorders with the Q 

statistic (Cochran 1954). The latter is an important new feature that effectively 

allows finding those brain regions in which significant differences exist across 

several disorders. Given the complexity of the classification of psychiatric 

disorders, this method should be useful to researchers planning to undertake 

meta-analytical comparisons between disorders – i.e. beyond simple binary 

comparisons. To facilitate replication and further analyses by other colleagues, 

an online database, which contains all the data and methodological details from 

every study included in this meta-analysis and that is readily accessible at 

http://www.sdmproject.com/database , was also developed. 

There are several limitations of this study, some of which are inherent to 

all meta-analytical approaches. First, despite our attempts to contact worldwide 

OCD and anxiety experts and include as many unpublished VBM studies as 

possible, even if their results were negative, the possibility of publication bias 

cannot be entirely ruled out. Second, voxel-based meta-analyses are based on 

summarized (i.e. coordinates from published studies) rather than raw data and 

this may result in less accurate results (Salimi-Khorshidi, Smith et al. 2009). 
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However, obtaining the raw images from the original studies is logistically 

difficult. Third, while our method provides excellent control for false positive 

results, it is more difficult to completely avoid false negative results. As 

mentioned earlier, VBM may lack sufficient sensitivity to detect differences in 

small limbic structures of relevance to anxiety disorders such as the 

hippocampus and the amygdala (Uchida, Del-Ben et al. 2008; Bergouignan, 

Chupin et al. 2009). Fourth, almost no data from some OADs, such as 

generalized anxiety disorder or specific phobias, are available (Milham, Nugent 

et al. 2005). We encourage other researchers to publish their VBM results in 

these disorders, even if these results do not conform to a-priori hypotheses. 

Finally, separate analyses of paediatric studies could not be performed because 

of the insufficient number of studies. The latter is important given the likely 

developmental effects on the neural systems underlying anxiety disorders 

(Gilbert, Akkal et al. 2009). When age was included as covariate in the omnibus 

test, potential differences across the anxiety disorders in the ventromedial 

frontal gyri were also shown, though these findings should be interpreted with 

caution given that most of the studies included adult samples with a limited 

mean age range (27-38 years). 

 

3.2.4.4 Conclusions 

To conclude, the results of this meta-analysis suggest common as well as 

distinct neural substrates in OCD and OADs. Both types of disorders are 

characterized by volumetric grey matter reductions in the dMFG/ACG, a finding 
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that is entirely consistent with numerous sources of evidence linking this brain 

structure with both normal and pathological anxiety. While the basal ganglia 

seem implicated both in OCD and OADs, the direction of the findings is 

diametrically opposite: OCD is characterized by increased grey matter volume 

in the basal ganglia whereas OADs is characterized by decreased grey matter 

volume in the basal ganglia, perhaps suggesting a common neural substrate 

but distinct neural mechanisms. In this regard, OCD and OADs may be 

conceptualized as opposite ends of a neurobiological spectrum. The functional 

significance of this finding is unclear but since the volume of the basal ganglia 

correlates with the severity of OCD (Radua and Mataix-Cols 2009), it may 

reflect the unique repetitive nature of compulsions, which are pathognomonic to 

OCD. 

The results have implications for the current debate surrounding the 

classification of OCD in DSM-V. Since there are neurobiological similarities as 

well as differences between OCD and OADs, our results support maintaining 

the current classification of OCD as an anxiety disorder while acknowledging its 

uniqueness. This conclusion is consistent with the current recommendations by 

the DSM-V Anxiety, Obsessive-Compulsive Spectrum, Post-Traumatic, and 

Dissociative Disorders Work Group (Phillips, Stein et al. 2009; Stein, Fineberg 

et al. 2009). Specifically, one proposal is to change the name of the anxiety 

disorders grouping to reflect the inclusion of both anxiety and obsessive-

compulsive disorders as partially independent but closely related entities (e.g. 

“anxiety and obsessive-compulsive disorders”) (Phillips, Stein et al. 2009). 

Another, not incompatible, proposal is to also broaden this category to include 
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other OCD and anxiety-related disorders, such as body dysmorphic disorder, 

hypochondriasis or hoarding disorder (e.g. “anxiety and obsessive-compulsive 

spectrum disorders”) (Mataix-Cols, Frost et al. 2009; Phillips, Stein et al. 2009). 

A similar approach is already adopted by International Statistical Classification 

of Diseases, 10th Revision (WHO 1992), and would have the obvious 

advantage of bringing the DSM and International Statistical Classification of 

Diseases systems closer together.  
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3.3 OVERALL DISCUSSION 

 

The previous chapter introduced an improved yet basic approach to conduct 

voxelwise meta-analyses of neuroimaging data. However, this approach did not 

allow addressing questions typically encountered by applied researchers in the 

neurosciences, such as meta-analytical comparisons between several groups, 

multiple meta-regressions or the inclusion of covariates. 

In this chapter, the statistical part of SDM has been rebuilt based on the 

general linear model (GLM) and the meta-analytic Q statistic (Cochran 1954), 

thus permitting the test of more sophisticated hypotheses than simple 

summaries of studies and simple meta-regressions. These methods have been 

illustrated in a study that meta-analytically compared grey matter volumes 

between various anxiety disorders. Other applications of the method include the 

meta-analytical comparison of various subtypes of Autism Spectrum Disorder 

(Via, Radua et al. 2011) and the use of multiple meta-regression methods to 

examine the relative impact of age and stimulant medication on grey matter 

volumes in Attention Deficit Hyperactivity Disorder (Nakao, Radua et al. 2011). 

Despite its increased sophistication, the GLM is not entirely free from 

limitations. First, as it name indicates, GLM only models linear relationships. 

Some non-linear relationships may be modelled using mathematical 

transformations, as exemplified in the meta-analysis presented in this chapter 

where age was included in its quadratic form (age + age squared). However, 

other non-linear relationships, as well as non-linear combinations of variables, 
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cannot be modelled. Second, GLM is a fixed-effects model and therefore, it can 

only partially account for heterogeneity. This particular limitation of the GLM is 

addressed in the following chapter. 
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CHAPTER 4 

Incorporation of effect sizes and statistical parametric 

maps 

 

 

4.1 INTRODUCTION 

 

This study was published in European Psychiatry under the title ‘A new meta-analytic 

method for neuroimaging studies that combines reported peak coordinates and statistical 

parametric maps’ (Joaquim Radua, David Mataix-Cols, Mary L. Phillips, Wissam El-

Hage, Dina M. Kronhaus, Narcís Cardoner and Simon Surguladze 2011; 27:605:611). 

The definitive publisher-authenticated version is available online at 

http://www.elsevier.com/journals/european-psychiatry/0924-9338 

 

As discussed in the introductory chapter, image-based meta-analyses 

exclusively employ statistical parametric maps in a similar way to that of 

standard meta-analyses (Lazar, Luna et al. 2002) do. In this context, a 

‘statistical parametric map’ refers to the brain image resulting from a group-level 
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analysis, or from the comparison between two groups. These methods benefit 

from the inclusion of full information from a given study (e.g. mean and variance 

in each voxel) and the use of well-established statistics based on within- and 

between-study variances – the latter known as ‘heterogeneity’. They are 

seriously limited, however, by the rare availability of the statistical parametric 

maps, thus making this kind of meta-analysis highly impractical and unfeasible. 

On the other hand, peak-probability methods such as activation likelihood 

estimate (ALE) or multilevel kernel density analysis (MKDA), as well as the 

signed differential mapping (SDM) method presented in Chapter 2, are 

exclusively based on the regional likelihood or frequency of reported peaks 

locations of significant activation clusters (Turkeltaub, Eden et al. 2002; Wager, 

Lindquist et al. 2007; Radua and Mataix-Cols 2009). In contrast to the image-

based methods, peak-probability methods allow investigators to conduct 

exhaustive meta-analyses of neuroimaging studies. While both peak-probability 

and SDM have enabled investigators to conduct exhaustive meta-analyses of 

neuroimaging studies and generate new insights, they are limited by the 

inclusion of relatively little information from each study, i.e. these methods all 

rely exclusively on reported peak coordinates, neglecting other important 

sources of information such as variance data.  

This chapter describes the development and validation of a new version 

of SDM, called effect-size signed differential mapping (ES-SDM). ES-SDM 

enables investigators to combine both peak coordinates and statistical 

parametric maps in the same meta-analysis and uses standard effect size and 

variance-based meta-analytic calculations (Cooper and Hedges 1994). The 
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validity of the method is assessed by comparing the results of a simulated 

meta-analysis of studies of the brain response to fearful faces with the results of 

a pooled analysis of the original individual data (i.e. the “gold standard” (Stewart 

and Parmar 1993; Lambert, Sutton et al. 2002; Higgins and Green 2009)). 
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4.2 METHODS 

The new version of SDM (ES-SDM) presented here includes a set of 

modifications regarding the pre-processing (use of effect size and variance, 

improved weighting of voxels close to a peak) and meta-analysis (use of 

random-effects models with explicit study of the heterogeneity), which allow the 

combination of peak coordinates and statistical parametric maps and the use of 

well-established standard statistics. For the sake of consistency, the new 

method is comprehensively presented in the following sections, including both 

the established features of the original SDM method presented in Chapter 2 

(Radua and Mataix-Cols 2009) and the new features introduced in this chapter. 

Before describing the algorithm details, it is worth highlighting that, rather 

than assigning voxels a conventional value (e.g. ‘0’ or ‘1’), ES-SDM assigns 

each voxel a measure of effect-size, namely the standardized mean (for one-

sample designs) and the standardized mean difference (for two-sample 

designs), known as Hedge’s δ and referred to as Hedge’s d (or g) at the sample 

level (Hedges 1981): 

σ
µµδ

σ
µδ 21      

−==
 

where µ is the one-sample mean, µ1 is the population mean of group 1 (e.g. 

patients), µ2 is the population mean of group 2 (e.g. healthy volunteers), and σ 

is the standard deviation. 
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The next three sections describe formulas for the distribution of the t 

statistic, the estimation of δ from the t statistic, and the estimation of the 

variance of d. The implementation of these formulas into the SDM algorithms is 

described in the section 4.2.4. 

 

4.2.1 Distribution of the t statistic 

It must be noted that neuroimaging pre-processing algorithms apply a Gaussian 

smoothing on the individual brain images, so that voxel values approximately 

follow a normal distribution N(µ,σ2). As the sample mean X  is an affine 

transformation of these values, it also follows a normal distribution: 
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where the affine transformation A, the column of means µ and the variance-

covariance matrix Σ are: 
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Fisher’s theorem states that the sample variance S2 divided by the 

population variance σ2 follows a χ2
n-1 distribution divided by n-1, and that this 

term is independent from the sample mean. It can be then derived that the one-

sample t statistic follows a non-central Tn-1,ncp distribution: 
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where the non-centrality parameter ncp is: 
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In paired two-sample designs (e.g. studies investigating the brain 

response to fearful vs. neutral faces in healthy volunteers), the voxel value 

difference Xd in each individual is also an affine transformation of the values in 

each condition (e.g. fearful minus neutral), thus also following a normal 

distribution: 
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where the affine transformation A, the column of means µ and the variance-

covariance matrix Σ are: 
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Therefore paired two-sample designs might be treated as one-sample 

designs, replacing individual voxel values by individual voxel differences. 
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Finally, in a comparison between two homocedastic groups a voxel value 

follows either a N(µ1,σ
2) (in the first sample, e.g. patients) or a N(µ2,σ

2) (in the 

second sample, e.g. healthy volunteers). The difference between both groups 

sample means 21 XX −  is once more an affine transformation of these individual 

values, so that it also follows a normal distribution: 

 

 ( ) 




















+⋅−=⋅Σ⋅⋅−

21

2
2121

11
,,~

nn
NAAANXX T σµµµ  

 

 

where the affine transformation A, the column of means µ and the variance-

covariance matrix Σ are: 
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Again, Fisher’s theorem can be used to derive that the two-sample t 

statistic follows a non-central Tn-2,ncp distribution: 
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where the non-centrality parameter ncp is: 
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If the sample sizes are equal, the unequal-variances two-sample t 

statistic coincides with the equal-variances two-sample t statistic, and thus the 

former can be treated as the latter: 
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Unequal-size unequal-variances unpaired two-sample t statistics are not 

considered here, but the general formula may be used as a good approximation 

when the differences in sample size or variance are small. 

 

4.2.2 Estimation of δ from the t statistic 

An estimator of the standardized mean δ (Hedges 1981) as a function of the 

one-sample t statistic could be: 
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However, d* is a biased estimator of δ (Hedges and Olkin 1985), as its 

expected value is: 
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which developing the expected value of a non-central Tn-1,ncp distribution is: 
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where Γ is the gamma function, and replacing ncp by (1) is: 
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An unbiased estimator d from t can be thus obtained as: 
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The validity of this formula and the magnitude of the bias can be readily 

checked with the script in R shown in Figure 4.1. 

Figure 4.1 Expected value of d (one-sample studies). 
 
randomizations = 5000 
ev_of_biased_d = function(delta, n) { 
 pop_sd = runif(1, 1, 10) # Set a random standard deviation 
 pop_mean_x = delta * pop_sd # Set the mean according to delta 
 x = matrix(rnorm(randomizations * n, pop_mean_x, pop_sd), nrow=n) # Generate random 
normally distributed voxel values 
 mean_x = apply(x, 2, mean) # Calculate t values 
 sd_x = apply(x, 2, sd) 
 t = mean_x / (sd_x * sqrt(1 / n)) 
 d = sqrt(1 / n) * t # Convert t values into d* values 
 mean(d) # Return the expected value of d* 
} 
ev_of_unbiased_d = function(delta, n) { 
 pop_sd = runif(1, 1, 10) # Set a random standard deviation 
 pop_mean_x = delta * pop_sd # Set the mean according to delta 
 x = matrix(rnorm(randomizations * n, pop_mean_x, pop_sd), nrow=n) # Generate random 
normally distributed voxel values 
 mean_x = apply(x, 2, mean) # Calculate t values 
 sd_x = apply(x, 2, sd) 
 t = mean_x / (sd_x * sqrt(1 / n)) 
 d = gamma((n - 1) / 2) / gamma((n - 2) / 2) * sqrt(2 / (n - 1)) * sqrt(1 / n) * t # 
Convert t values into d values 
 mean(d) # Return the expected value of d 
} 
ev_of_d = function(delta, n) { 
 cat("Expected value of d:\n") 
 cat("- Population delta =", round(delta, 2), "\n") # Print the parameters 
 cat("- Size of the sample =", n, "\n") 
 cat("- Expected value of biased d = ") # Print the expected values of d 
 cat(round(ev_of_biased_d(delta, n), 2), "\n") 
 cat("- Expected value of unbiased d = ") 
 cat(round(ev_of_unbiased_d(delta, n), 2), "\n") 
} 
# Usage: ev_of_d(delta, n), e.g.: 
ev_of_d(0, 10) 
ev_of_d(pi / 2, 10) 
ev_of_d(pi / 2, 25) 
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As regard to the standardized mean difference δ (Hedges 1981) , an 

estimator as a function of the two-sample t statistic could be: 
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though d* is again biased (Hedges and Olkin 1985), as its expected value is: 
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which developing the expected value of a non-central Tn-2,ncp distribution is: 
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and replacing ncp by (2) is: 

 

 

δ
σ

µµ
⋅−⋅








 −Γ








 −Γ
=

+⋅

−
⋅−⋅








 −Γ








 −Γ
⋅+=

2

2

2

2
2

3

112

2

2

2
2

3
11

21

21

21

n

n

n

nn

n

n

n

nn
 

 

Figure 4.2 Expected value of d (unpaired two-sample studies). 
 
randomizations = 5000 
ev_of_biased_d = function(delta, n1, n2) { 
 n = n1 + n2 
 pop_sd = runif(1, 1, 10) # Define a random population standard deviation 
 pop_mean_x2 = runif(1, -10, 10) # Define a random mean for the second population 
 pop_mean_x1 = delta * pop_sd + pop_mean_x2 # Define the mean of the first population 
according to the delta 
 x1 = matrix(rnorm(randomizations * n1, pop_mean_x1, pop_sd), nrow=n1) # Generate random 
normally distributed voxel values 
 x2 = matrix(rnorm(randomizations * n2, pop_mean_x2, pop_sd), nrow=n2) 
 mean_x1 = apply(x1, 2, mean) # Calculate the t values 
 mean_x2 = apply(x2, 2, mean) 
 var_x1 = apply(x1, 2, var) 
 var_x2 = apply(x2, 2, var) 
 s = sqrt((var_x1 * (n1 - 1) + var_x2 * (n2 - 1)) / (n - 2)) 
 t = (mean_x1 - mean_x2) / (s * sqrt(1 / n1 + 1 / n2)) 
 d = sqrt(1 / n1 + 1 / n2)*t # Convert t values into d* values 
 mean(d) # Return the expected value of d* 
} 
ev_of_unbiased_d = function(delta, n1, n2) { 
 n = n1 + n2 
 pop_sd = runif(1, 1, 10) # Define a random population standard deviation 
 pop_mean_x2 = runif(1, -10, 10) # Define a random mean for the second population 
 pop_mean_x1 = delta * pop_sd + pop_mean_x2 # Define the mean of the first population 
according to the delta 
 x1 = matrix(rnorm(randomizations * n1, pop_mean_x1, pop_sd), nrow=n1) # Generate random 
normally distributed voxel values 
 x2 = matrix(rnorm(randomizations * n2, pop_mean_x2, pop_sd), nrow=n2) 
 mean_x1 = apply(x1, 2, mean) # Calculate the t values 
 mean_x2 = apply(x2, 2, mean) 
 var_x1 = apply(x1, 2, var) 
 var_x2 = apply(x2, 2, var) 
 s = sqrt((var_x1 * (n1 - 1) + var_x2 * (n2 - 1)) / (n - 2)) 
 t = (mean_x1 - mean_x2) / (s * sqrt(1 / n1 + 1 / n2)) 
 d = gamma((n - 2) / 2) / gamma((n - 3) / 2) * sqrt(2 / (n - 2)) * sqrt(1 / n1 + 1 / n2) 
* t # Convert t values into d values 
 mean(d) # Return the expected value of d 
} 
est_of_d = function(delta, n1, n2) { 
 cat("Expected value of d:\n") 
 cat("- Population delta =", round(delta, 2), "\n") # Print the parameters 
 cat("- Size of the sample from the first population =", n1, "\n") 
 cat("- Size of the sample from the second population =", n2, "\n"); 
 cat("- Expected value of biased d = ") # Print the expected values of d 
 cat(round(ev_of_biased_d(delta, n1, n2), 2), "\n") 
 cat("- Expected value of unbiased d = ") 
 cat(round(ev_of_unbiased_d(delta, n1, n2), 2), "\n") 
} 
# Usage: est_of_d(delta, n1, n2), e.g.: 
est_of_d(0, 10, 10) 
est_of_d(pi / 2, 10, 10) 
est_of_d(pi / 2, 25, 25) 
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An unbiased estimator d from t can be thus obtained as: 
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The validity of this formula and the magnitude of the bias can be readily 

checked with the script in R shown in Figure 4.2. 

 

4.2.3 Estimation of the variance of d 

The variance of d in on-sample studies can be obtained replacing d by (3) as 

follows: 
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which developing the variance of a non-central T distribution is: 
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and replacing ncp by (1) is: 
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An estimator of the variance could be then obtained by substituting δ by d, but 

this estimator would be biased because the expected value of d2 is δ2 + Var(d): 
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An unbiased estimator of the variance of d from d can be thus obtained as: 

 

 

( ) 2

2

2

2

3

2

1
2

2
1ˆ d

n

n

n

d
n

darV ⋅−⋅

























 −Γ








 −Γ
−+=  

 

 

The validity of this formula and the magnitude of the bias can be readily 

checked with the script in R shown in Figure 4.3. 
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Figure 4.3 Calculation of the variance of d (one-sample studies). 
 
randomizations = 5000 
var_of_d_using_formula = function(delta, n) { 
 (gamma((n - 1) / 2) / gamma((n - 2) / 2))^2 * 2 / (n - 3) * (1 / n + delta^2) - delta^2 
# Return the result of the formula 
} 
var_of_d_using_simulations = function(delta, n) { 
 pop_sd = runif(1, 1, 10) # Define a random population standard deviation 
 pop_mean = delta * pop_sd # Define the mean according to the delta 
 x = matrix(rnorm(randomizations * n, pop_mean, pop_sd), nrow=n) # Generate random 
normally distributed voxel values 
 mean_x = apply(x, 2, mean) # Calculate t values 
 sd_x = apply(x, 2, sd) 
 t = mean_x / (sd_x * sqrt(1 / n)) 
 d = gamma((n - 1) / 2) / gamma((n - 2) / 2) * sqrt(2 / (n - 1)) * sqrt(1 / n) * t # 
Convert t values into d values 
 var(d) # Return the empirical variance of d 
} 
ev_of_biased_var_of_d = function(delta, n) { 
 pop_sd = runif(1, 1, 10) # Define a random population standard deviation 
 pop_mean = delta * pop_sd # Define the mean according to the delta 
 x = matrix(rnorm(randomizations * n, pop_mean, pop_sd), nrow=n) # Generate random 
normally distributed voxel values 
 mean_x = apply(x, 2, mean) # Calculate t values 
 sd_x = apply(x, 2, sd) 
 t = mean_x / (sd_x * sqrt(1 / n)) 
 d = gamma((n - 1) / 2) / gamma((n - 2) / 2) * sqrt(2 / (n - 1)) * sqrt(1 / n) * t # 
Convert t values into d values 
 var_d = (gamma((n - 1) / 2) / gamma((n - 2) / 2))^2 * 2 / (n - 3) * (1 / n + d^2) - d^2 
# Estimate the variance* of d 
 mean(var_d) # Return the expected value of the estimate of the variance* of d 
} 
ev_of_unbiased_var_of_d = function(delta, n) { 
 pop_sd = runif(1, 1, 10) # Define a random population standard deviation 
 pop_mean = delta * pop_sd # Define the mean according to the delta 
 x = matrix(rnorm(randomizations * n, pop_mean, pop_sd), nrow=n) # Generate random 
normally distributed voxel values 
 mean_x = apply(x, 2, mean) # Calculate t values 
 sd_x = apply(x, 2, sd) 
 t = mean_x / (sd_x * sqrt(1 / n)) 
 d = gamma((n - 1) / 2) / gamma((n - 2) / 2) * sqrt(2 / (n - 1)) * sqrt(1 / n) * t # 
Convert t values into d values 
 var_d = 1 / n + d^2 - (gamma((n - 2) / 2) / gamma((n - 1) / 2))^2 * (n - 3) / 2 * d^2 # 
Estimate the variance of d 
 mean(var_d) # Return the expected value of the estimate of the variance of d 
} 
var_of_d = function(delta, n) { 
 cat("Variance of d:\n") 
 cat("- Population delta =", round(delta, 2), "\n") # Print the parameters 
 cat("- Size of the sample =", n, "\n") 
 cat("- Variance of d knowing delta (using formula) = ") # Print the variance calculated 
with the formula 
 cat(round(var_of_d_using_formula(delta, n), 2), "\n") 
 cat("- Variance of d (using simulations) = ") # Print the variance obtained with the 
simulations 
 cat(round(var_of_d_using_simulations(delta, n), 2), "\n") 
 cat("- Expected value of the biased estimate of the variance of d = ") # Print the 
expected values of the estimates of the variance of d 
 cat(round(ev_of_biased_var_of_d(delta, n), 2), "\n") 
 cat("- Expected value of the unbiased estimate of the variance of d = ") 
 cat(round(ev_of_unbiased_var_of_d(delta, n), 2), "\n") 
} 
# Usage: var_of_d(delta, n), e.g.: 
var_of_d(0, 10) 
var_of_d(pi / 2, 10) 
var_of_d(pi / 2, 25) 
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Finally, the variance of d in two-sample studies can be obtained replacing 

d by (4) as follows: 
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which developing the variance of a non-central T distribution is: 
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and replacing ncp by (2) is: 
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An estimator of the variance could be then obtained by substituting δ by d, but 

this estimator would be again biased because the expected value of d2 is δ2 + 

Var(d): 
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An unbiased estimator of the variance of d from d can be thus obtained as: 
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The validity of this formula and the magnitude of the bias can be readily 

checked with the script in R shown in Figure 4.4. 
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Figure 4.4 Calculation of the variance of d (unpaired two-sample studies). 
 
randomizations = 5000 
var_of_d_using_formula = function(delta, n1, n2) { 
 n = n1 + n2 
 (gamma((n - 2) / 2) / gamma((n - 3) / 2))^2 * 2 / (n - 4) * (1 / n1 + 1 / n2 + delta^2) - delta^2 # Return the 
result of the formula 
} 
var_of_d_using_simulations = function(delta, n1, n2) { 
 n = n1 + n2 
 pop_sd = runif(1, 1, 10) # Define a random population standard deviation 
 pop_mean_x2 = runif(1, -10, 10) # Define a random mean for the second population 
 pop_mean_x1 = delta * pop_sd + pop_mean_x2 # Define the mean of the first population according to the delta 
 x1 = matrix(rnorm(randomizations * n1, pop_mean_x1, pop_sd), nrow=n1) # Generate random normally distributed 
voxel values 
 x2 = matrix(rnorm(randomizations * n2, pop_mean_x2, pop_sd), nrow=n2) 
 mean_x1 = apply(x1, 2, mean) # Calculate the t values 
 mean_x2 = apply(x2, 2, mean) 
 var_x1 = apply(x1, 2, var) 
 var_x2 = apply(x2, 2, var) 
 s = sqrt((var_x1 * (n1 - 1) + var_x2 * (n2 - 1)) / (n - 2)) 
 t = (mean_x1 - mean_x2) / (s * sqrt(1 / n1 + 1 / n2)) 
 d = gamma((n - 2) / 2) / gamma((n - 3) / 2) * sqrt(2 / (n - 2)) * sqrt(1 / n1 + 1 / n2) * t # Convert t values 
into d values 
 var(d) # Return the empirical variance of d 
} 
ev_of_biased_var_of_d = function(delta, n1, n2) { 
 n = n1 + n2 
 pop_sd = runif(1, 1, 10) # Define a random population standard deviation 
 pop_mean_x2 = runif(1, -10, 10) # Define a random mean for the second population 
 pop_mean_x1 = delta * pop_sd + pop_mean_x2 # Define the mean of the first population according to the delta 
 x1 = matrix(rnorm(randomizations * n1, pop_mean_x1, pop_sd), nrow=n1) # Generate random normally distributed 
voxel values 
 x2 = matrix(rnorm(randomizations * n2, pop_mean_x2, pop_sd), nrow=n2) 
 mean_x1 = apply(x1, 2, mean) # Calculate the t values 
 mean_x2 = apply(x2, 2, mean) 
 var_x1 = apply(x1, 2, var) 
 var_x2 = apply(x2, 2, var) 
 s = sqrt((var_x1 * (n1 - 1) + var_x2 * (n2 - 1)) / (n - 2)) 
 t = (mean_x1 - mean_x2) / (s * sqrt(1 / n1 + 1 / n2)) 
 d = gamma((n - 2) / 2) / gamma((n - 3) / 2) * sqrt(2 / (n - 2)) * sqrt(1 / n1 + 1 / n2) * t # Convert t values 
into d values 
 var_d = (gamma((n - 2) / 2) / gamma((n - 3) / 2))^2 * 2 / (n - 4) * (1 / n1 + 1 / n2 + d^2) - d^2 # Estimate 
the variance* of d 
 mean(var_d) # Return the expected value of the estimate of the variance* of d 
} 
ev_of_unbiased_var_of_d = function(delta, n1, n2) { 
 n = n1 + n2 
 pop_sd = runif(1, 1, 10) # Define a random population standard deviation 
 pop_mean_x2 = runif(1, -10, 10) # Define a random mean for the second population 
 pop_mean_x1 = delta * pop_sd + pop_mean_x2 # Define the mean of the first population according to the delta 
 x1 = matrix(rnorm(randomizations * n1, pop_mean_x1, pop_sd), nrow=n1) # Generate random normally distributed 
voxel values 
 x2 = matrix(rnorm(randomizations * n2, pop_mean_x2, pop_sd), nrow=n2) 
 mean_x1 = apply(x1, 2, mean) # Calculate the t values 
 mean_x2 = apply(x2, 2, mean) 
 var_x1 = apply(x1, 2, var) 
 var_x2 = apply(x2, 2, var) 
 s = sqrt((var_x1 * (n1 - 1) + var_x2 * (n2 - 1)) / (n - 2)) 
 t = (mean_x1 - mean_x2) / (s * sqrt(1 / n1 + 1 / n2)) 
 d = gamma((n - 2) / 2) / gamma((n - 3) / 2) * sqrt(2 / (n - 2)) * sqrt(1 / n1 + 1 / n2) * t # Convert t values 
into d values 
 var_d = 1 / n1 + 1 / n2 + d^2 - (gamma((n - 3) / 2) / gamma((n - 2) / 2))^2 * (n - 4) / 2 * d^2 # Estimate the 
variance of d 
 mean(var_d) # Return the expected value of the estimate of the variance of d 
} 
var_of_d = function(delta, n1, n2) { 
 cat("Variance of d:\n") 
 cat("- Population delta =", round(delta, 2), "\n") # Print the parameters 
 cat("- Size of the samples from the first population =", n1, "\n") 
 cat("- Size of the samples from the second population =", n2, "\n"); 
 cat("- Variance of d knowing delta (using formula) = ") # Print the variance calculated with the formula 
 cat(round(var_of_d_using_formula(delta, n1, n2), 2), "\n") 
 cat("- Variance of d (using simulations) = ") # Print the variance obtained with the simulations 
 cat(round(var_of_d_using_simulations(delta, n1, n2), 2), "\n") 
 cat("- Expected value of the biased estimate of the variance of d = ") # Print the expected values of the 
estimates of the variance of d 
 cat(round(ev_of_biased_var_of_d(delta, n1, n2), 2), "\n") 
 cat("- Expected value of the unbiased estimate of the variance of d = ") 
 cat(round(ev_of_unbiased_var_of_d(delta, n1, n2), 2),"\n") 
} 
# Usage: var_of_d(delta, n1, n2), e.g.: 
var_of_d(0, 10, 10) 
var_of_d(pi / 2, 10, 10) 
var_of_d(pi / 2, 25, 25) 
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4.2.4 Pre-processing 

Pre-processing of studies in ES-SDM consists of creating, for each study, a 

map of d values (Hedges and Olkin 1985) and a map of their variances. These 

maps are later combined to obtain the meta-analytic maps. 

If a t map is available, the conversion to unbiased effect size and 

variance maps is straightforward using the formulas described in sections 4.2.2 

and 4.2.3. These conversions were included in the SDM software library 

(available at http://www.sdmproject.com/ ) after NIfTI affine transformation and 

Talairach conversion using trilinear interpolation. Maps of statistics other than t 

values, such as z maps or probabilistic non-parametric maps, might also be 

included as long as they can be converted to t maps. Usual conversions have 

been already included in the SDM software to simplify the procedure. 

When a statistical parametric map is not available, the effect size can 

only be exactly calculated in those voxels containing a peak (applying the same 

conversions than in maps), while it must be estimated for the rest of the voxels. 

As in the original SDM method presented in Chapter 2 (Radua and Mataix-Cols 

2009), this estimation is conducted by assigning an effect size to each voxel 

depending on its distance to close peaks (≤20mm) by means of an un-

normalized Gaussian kernel K: 
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where FWHM is the full width at half maximum, and D is the distance between 

the voxel and the peak (D = 0 in the voxel containing the peak). Setting FWHM 

to 20mm, slightly narrower than in previous versions of SDM, is recommended 

because this setting was found to optimally balance sensitivity and specificity in 

ES-SDM (see section 4.3), and might account for several spatial errors such as 

coregistration mismatch or cluster size (the larger the cluster, the more error 

between the peak and the centre of the cluster) (Gartus, Geissler et al. 2007; 

Radua and Mataix-Cols 2010). It must be noted that although the kernel has a 

different aim in SDM (i.e. recreating the cluster of signed differences) than in 

peak-probability methods (i.e. establishing the probability of a peak), similar 

FWHM have been indeed recommended for ALE and MKDA (Salimi-Khorshidi, 

Smith et al. 2009; Radua and Mataix-Cols 2010). In ES-SDM, the kernel is 

multiplied by the effect size of the peak, and when a voxel can be assigned 

values from more than one coordinate in the same study, these values are 

averaged weighting by the square of the distance to each close peak. As shown 

in Figure 4.5, this weighted averaging results in more plausible estimations 

than in previous methods. 

Finally, if the t values of the peak coordinates are unknown, a threshold-

based imputation of the effect size might be conducted. This consists of 

estimating the mean effect-size of peaks from studies reporting t values, 

separately for each type of threshold (e.g. “corrected P = 0.05” and 

“uncorrected P = 0.001”). We recommend basing these estimations on careful 

meta-analyses, ensuring that enough studies are present in each threshold-type 

group and checking for plausible results and heterogeneity. For simplicity, 
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calculations are now automatically conducted within the ES-SDM software. In 

case that no studies can be used to estimate the mean effect-size of peaks, d = 

2π /5 = 1.26 (one-sample) and d = 2π /4 = 1.57 (two-sample) might represent 

plausible conventional effect size values for positive peaks with unknown t 

value, as they can be checked to ensure uncorrected p < 0.001. Similarly, d =               

-2π /5 (one-sample) and d = -2π /4 (two-sample) might represent plausible 

conventional effect size values for negative peaks. In this last case ES-SDM 

behaves like previous SDM versions. 

 

 

 

Figure 4.5 Peak-coordinates mapping in some voxel-based meta-analytic methods. 
 

 
 
True signal refers to the values obtained in the original study within a straight line of grey matter, e.g. difference in 
grey matter volume between patients and controls in a straight line of voxels from parietal cortex. True signal and 
peak heights have been scaled in each plot for graphical purposes. 
ALE: activation likelihood estimator. ES-SDM: effect size SDM. KDA: kernel density analysis. MKDA: multilevel 
KDA. SDM: signed differential mapping. 
 



4. Incorporation of effect sizes and maps 
 
 

 
 

Page 187  

4.2.5 Meta-analytical models 

A meta-analysis consists of combining the data from each study, e.g. 

calculating the mean of all the studies or fitting a general linear model. ES-SDM 

implements random-effects models in which each study is weighted by the 

inverse of the sum of its variance plus the between-study variance as obtained 

by the DerSimonian–Laird estimator (DerSimonian and Laird 1986), which is 

statistically comparable to the restricted maximum likelihood while much less 

computer-demanding (Viechtbauer 2005). Specifically, the heterogeneity Q 

statistic and the DerSimonian–Laird estimator are calculated with the following 

formulas: 
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where W are the weight matrixes, Var(di) is the vector of study effect-size 

variances, I is the identity matrix, Varbetween is the between-studies variance, B 

are the linear model B matrixes, X is the regressors matrix, β are the coefficient 

vectors, QH is the heterogeneity statistic, N is the number of studies, p is the 
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number of regressors (including the intercept or mean) and tr is the trace of the 

matrix. 

With this approach: a) studies with larger sample size or lower variability 

contribute more; b) effects are assumed to randomly vary between samples; 

and c) heterogeneity Q statistic maps can be used to explore those brain 

regions with higher heterogeneity. This heterogeneity Q statistic is commonly 

assessed in terms of a χ2 distribution, but for software and user conveniences 

its values are automatically converted to standard z values in ES-SDM. Please 

note that the heterogeneity Q statistic is not the same than the Q statistics 

presented in Chapter 3, which summarize the differences between more than 

two groups (or the effect of more than one regressor) (Radua, van den Heuvel 

et al. 2010). 

 

4.2.6 Assessment of the statistical significance 

Despite the fact that meta-analytic estimates are z values, assessment of their 

statistical significance is not straightforward. The systematic use of null effect 

sizes when pre-processing voxels far from any peak coordinate bias z values 

towards 0, making the standard test based on the normal distribution too 

conservative. Moreover, previous randomization tests based on randomizing 

the location of the peaks (Radua and Mataix-Cols 2009) are not applicable here 

because of the potential use of statistical parametric maps. 
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To solve this issue, the randomization test was modified so that instead 

of randomizing the location of the peaks, it randomizes the location of the 

voxels within the standard SDM grey matter template. Thus, the null hypothesis 

assumes that effect-sizes (rather than only peaks) are randomly distributed 

throughout the brain. In practice, this approach is similar to that adopted by 

newer versions of ALE, i.e. picking a random voxel from study 1, then picking a 

random voxel from study 2, then picking a random voxel from study 3, etc. until 

one voxel is selected from each study (Eickhoff, Laird et al. 2009). Interestingly, 

this test empirically showed to be much more reliable than the previous one, 

returning a high statistical stability with just 20 permutations (each of them 

retrieving 77,850 voxel values for the null distribution). Table 4.1 shows the fast 

convergence of the statistical thresholds in the data used to validate the 

method. 

Table 4.1 ES-SDM thresholds (z values) obtained in the validation work. 
 

Number of 
permutations 

Only peaks 
(with t value) 

20% statistical 
parametric maps 

100% statistical 
parametric maps 

Only peaks 
without t value 

1 1.202 1.239 2.180 1.018 
2 1.204 1.244 2.167 1.016 
3 1.203 1.249 2.166 1.022 
4 1.200 1.250 2.171 1.025 
5 1.200 1.250 2.167 1.029 
6 1.201 1.254 2.168 1.030 
7 1.206 1.254 2.168 1.030 
8 1.206 1.258 2.164 1.030 
9 1.206 1.255 2.165 1.030 
10 1.207 1.254 2.164 1.030 
11 1.207 1.252 2.164 1.032 
12 1.207 1.252 2.164 1.032 
13 1.207 1.253 2.166 1.032 
14 1.206 1.252 2.165 1.031 
15 1.206 1.252 2.168 1.030 
16 1.207 1.250 2.168 1.029 
17 1.206 1.250 2.167 1.028 
18 1.207 1.251 2.169 1.029 
19 1.207 1.250 2.170 1.030 
20 1.207 1.250 2.173 1.030 
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Corrected p-values in neuroimaging are known to be critically affected by 

methodological factors such as the use of one or other correction method (e.g. 

FDR, family wise error (FWE), cluster-based, etc.), or the selection of one or 

another template (with more or less voxels, or with one shape or another). It is 

not uncommon in original neuroimaging studies, for example, that a FWE-

corrected p-value is about 0.9 and the corresponding FDR-corrected p-value is 

about 0.01 (see for example (Bonilha, Rorden et al. 2004)). Thus, it is not 

recommended that meta-analytic researchers solely rely on (uncorrected or 

corrected) p-values, but it is strongly suggested that they use the combination of 

two thresholds and complement the analysis with several tests to assess the 

robustness and heterogeneity of the findings (Radua and Mataix-Cols 2009). 

Based on the empirical validation detailed in section 4.3, a main threshold of 

uncorrected P = 0.005 is proposed, as this was found to optimally balance 

sensitivity and specificity and to be an approximate equivalent to corrected p-

value = 0.05 (indeed 0.025) in ES-SDM. Of course, this equivalence is only 

approximate, so that some thresholding error is expected when using this 

approach, and researchers might prefer to use other thresholds. To reduce the 

possibility of false positive results, an additional z-based threshold (e.g. z > 1) is 

suggested. It must be noted that z > 1 would be associated to a clearly non-

significant p-value under the standard normal distribution, but this is not the 

case under the empirical distributions found by the permutation tests, as the use 

of null effect sizes when pre-processing voxels far from any peak coordinate 

makes z > 1 much more unlikely (i.e. associated to a much lower p-value). 

Importantly, the inclusion of studies with no findings would cause a decrease of 
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all z values which would cause a number of voxels cease to be detected as 

“significant”. 

 

4.2.7 Complementary analyses 

As in previous SDM versions, complementary analyses such as jack-knife, 

subgroups, meta-regression and covariate analyses (Radua and Mataix-Cols 

2009; Radua, van den Heuvel et al. 2010) are strongly recommended to assess 

the robustness and heterogeneity of the results. Briefly, jack-knife sensitivity 

analyses consists of repeating the analysis discarding (only) one study each 

time, and is used to assess the reproducibility of the results. Meta-regression 

and covariate analyses are used to look for potential confounding variables and 

moderators. 

Of special interest is the now available combination of heterogeneity Q 

maps and meta-regression in order to correctly explore the meta-analytic 

heterogeneity. Similarly to the main outcome maps, it must be highlighted that 

heterogeneity Q maps only show which brain regions present significant 

between-study heterogeneity as compared to the global set of voxels, even if 

they are only marginally heterogeneous. It is also important to note that regions 

with differences between patients and controls may be falsely detected as 

heterogeneous because of the discrepancy between the real effect sizes from 

studies reporting peaks and the null effect sizes from studies not reporting 

peaks. 
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4.2.8 Validation of ES-SDM 

Assessment of the validity of the method required the comparison of the results 

of an ES-SDM meta-analysis with the results of a reference analysis. In a study 

of peak-probability methods, Salimi-Khorshidi et al. used an image-based meta-

analysis as the reference analysis (Salimi-Khorshidi, Smith et al. 2009). 

However, this possibility was discarded because one of the aims of this study 

was, precisely, to assess the validity of image-based ES-SDM meta-analyses. 

As an alternative, a pooled analysis of the original individual data was 

employed, as this analysis can be considered the “gold standard” (Stewart and 

Parmar 1993; Lambert, Sutton et al. 2002; Higgins and Green 2009). 

First, data of 91 healthy participants in functional magnetic resonance 

imaging (fMRI) experiments of fearful face processing were allocated to 10 

subgroups and standard fMRI analyses were conducted in each subgroup. 

Second, the data pertaining to these 10 subgroups were meta-analyzed with 

ES-SDM software - emulating thus the standard meta-analytical procedure of 

10 studies. Finally, the results of this simulated “meta-analysis” were compared 

with the results of the pooled analysis of all these participants’ data taken 

together (i.e. the “true map”). 

Ninety-one right-handed white Caucasian healthy individuals (46 males; 

age = 32.5±9, range 19-56 years), with no personal or family history of 

psychiatric disorder participated in this study. Exclusion criteria were current or 

past substance abuse, head injury, mental retardation, or any pre-existing 

psychiatric or neurological diagnosis. The study was approved by the Ethics 
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Committee of the Institute of Psychiatry, King’s College London. Participants 

were given full details about the experimental protocol and gave their written 

informed consent before the beginning of the experiments. 

The fMRI stimuli were blocks of dynamic emotional facial expressions of 

fear, consisting of short (1 sec) black and white movie clips based on the 

NimStim set of facial pictures ( http://www.macbrain.org/ ), alternated with 

blocks of dynamic geometric figures (ovals). The participants were requested to 

press a button with their index finger as soon as they saw a colour filter at the 

end of each black and white movie clip. This instruction was aimed to ensure 

that participants were attending to the stimuli and to favour an implicit emotional 

processing. 

All imaging acquisition was performed on a General Electric Signa 3 

Tesla scanner (Milwaukee, WI, USA) at the Centre for Neuroimaging Research 

of the Institute of Psychiatry (London, UK). Reliable image quality was obtained 

by using a semi-automated quality control procedure. A quadrature birdcage 

headcoil was used for radiofrequency transmission and reception. For blood 

oxygen level-dependent (BOLD) functional imaging, 189 T2*-weighted whole-

brain volumes were acquired during the task. For high-resolution gradient-echo 

structural imaging, a whole brain volume was acquired in the intercommissural 

plane consisting of 38 slices: TR = 2000 ms, TE = 25 ms, flip angle = 80°, slice 

thickness = 2.4 mm, interslice gap = 1.0 mm, image acquisition matrix = 642, in-

plane spatial resolution = 3.75 × 3.75 mm2. The EPI data set provided complete 

brain coverage. 
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Functional images were first motion-corrected by registering them to their 

mean with SPM5 (Wellcome Department of Cognitive Neurology, London, UK). 

The structural image was then coregistered to the mean functional image and 

segmented into grey matter, white matter and cerebro-spinal fluid. The 

normalization parameters to the standard MNI space obtained in this 

segmentation were applied to the functional images, thus providing a grey 

matter-optimized normalization. Finally, the functional images were smoothed 

with an 8mm-FWHM Gaussian kernel and modelled by the different 

experimental conditions with a standard hemodynamic response function. At the 

end of the first-level analysis there was one contrast map per each individual, 

representing the BOLD response to the perception of dynamic fearful faces as 

compared to dynamic ovals. 

Contrast images were included into a standard SPM second-level (i.e. 

group) analyses and thresholded with uncorrected P < 0.001 and cluster extent 

≥ 10 voxels. Participants were allocated to 10 subgroups by scan date order, 

i.e. the first 9 participants scanned were allocated to the first subgroup, the next 

9 participants to the second subgroup, and so on, with the last subgroup 

composed of 10 rather than 9 participants. These subgroups should be 

understood as the samples included in a meta-analysis. We also conducted a 

group analysis including all 91 participants, i.e. a pooled analysis, which should 

be understood as the reference or “true” map. 

Finally, the group data was subjected to the following meta-analytical 

procedures: ALE, original SDM, ES-SDM using only coordinates, ES-SDM 

using both coordinates and images, and ES-SDM using only images. Results 
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from these meta-analyses were compared with the results of the pooled 

analysis (after Talairach conversion by trilinear interpolation) by means of the 

following statistics (Salimi-Khorshidi, Smith et al. 2009): Dice similarity 

coefficient (a measure of overlap between the two images) (Dice 1945), 

sensitivity (i.e. the proportion of significant voxels in the pooled analysis 

detected as significant in the meta-analysis) and false positive rate (i.e. the 

proportion of non-significant voxels in the pooled analysis detected as 

significant in the meta-analysis). In order to test the adequacy of the statistical 

threshold (uncorrected P ≤ 0.005) and FWHM (20mm), the above ES-SDM 

validation was repeated setting uncorrected P ≤ 0.001, 0.005 or 0.010, and 

FWHM = 10mm, 15mm, 20mm, 25mm or 30mm. 
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4.3 RESULTS 

 

As shown in Figure 4.6 F (pooled analysis), the perception of dynamic fearful 

faces was associated with activation of bilateral occipital visual areas and 

amygdala (see Tables 4.2 to 4.12 for detailed results of the SPM analyses). 

The new ES-SDM method showed a good overlap with this analysis (47-74%), 

with an adequate sensitivity (52-100%) and control of false positives (1.5-3.5%) 

(Figure 4.6 C-E, Table 4.13). ALE showed a lower overlap (29%), and the 

original SDM-based maps lay somewhere in between those of ALE and ES-

SDM (see Table 4.13 for detailed results). 

Both the overlap and sensitivity were substantially higher when the 

statistical parametric maps replaced the peak coordinates, with clear 

improvements already apparent when using statistical parametric maps from 

just few samples. For instance, the sensitivity increased from 55% to 73% when 

including the statistical parametric map of the first subgroup, and to 87% when 

also including the statistical parametric map of the second subgroup. The 

omission of t values neither relevantly decreased the overlap or sensitivity, nor 

increased the false positive rate of coordinate-based meta-analyses. 

A more conservative threshold (P = 0.001) resulted in a large reduction 

of overlap and sensitivity. Conversely, a more liberal threshold (P = 0.010)
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 resulted in slightly higher sensitivity, higher false positive rate and similar 

overlap. Regarding the smoothing kernel (FWHM), the use of narrower kernels 

(FWHM = 10mm) resulted in a large reduction of overlap and sensitivity, while 

the use of wider kernels (FWHM = 30mm) resulted in an inferior overlap. 

Figure 4.6 Validation of ES-SDM. 
 

 
 
Significant activations to fearful faces (as compared to ovals) in the different meta-analytic 
methods and in the pooled analysis of individual original data are presented in red. Brain 
axial slices are in Talairach space (z = -19). Results from the ALE meta-analysis (A) 
showed a 29% overlap with the true map (F). Results from the original SDM meta-analysis 
(B) showed a 49% overlap with the true map (F). Results from the ES-SDM meta-analyses 
(C-E) showed 47-74% overlap with the true map (F). 
 
ALE: activation likelihood estimator. ES-SDM: effect size SDM. SDM: signed differential 
mapping. 
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Thresholds were very stable from the first permutations (Table 4.1). As 

expected for the systematic use of null effect sizes when pre-processing voxels 

far from any peak coordinate, thresholds were clearly lower as more 

coordinates rather than statistical parametric maps were included in the meta-

analysis. 

Table 4.2. Results from fMRI analysis in subgroup 1 (participants 1-9) 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
Right occipitotemporocerebellar region      
Right fusiform gyrus (BA 37) 48 -48 -20 8.31 < 0.001 
Right fusiform gyrus (BA 37) 51 -68 -14 6.14 < 0.001 
Right middle temporal gyrus (BA 39) 58 -58 10 5.91 < 0.001 
      
 
 
Table 4.3. Results from fMRI analysis in subgroup 2 (participants 10-18) 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
Right occipitotemporocerebellar region      
Right inferior occipital gyrus (BA 17) 27 -99 -7 7.22 < 0.001 
      
 
 
Table 4.4. Results from fMRI analysis in subgroup 3 (participants 19-27) 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
Right occipitotemporocerebellar region      
Right cerebellum (culmen) 44 -48 -24 9.28 < 0.001 
      
 
 
Table 4.5. Results from fMRI analysis in subgroup 4 (participants 28-36) 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
(none)      
      
 
 
Table 4.6. Results from fMRI analysis in subgroup 5 (participants 37-45) 
 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
Left occipitotemporocerebellar region      
Left middle temporal gyrus (BA 39) -51 -68 17 7.21 < 0.001 
      
 
Threshold: uncorrected P < 0.001, cluster extent ≥ 10 voxels 
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Table 4.7. Results from fMRI analysis in subgroup 6 (participants 46-54) 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
Left occipitotemporocerebellar region      
Left cerebellum (declive) -37 -85 -14 7.03 < 0.001 
Left cerebellum (declive) -37 -78 -20 6.12 < 0.001 
Left lingual gyrus (BA 17) -17 -99 -10 5.92 < 0.001 
      
Right occipitotemporocerebellar region      
Right fusiform gyrus (BA 37) 48 -44 -20 6.28 < 0.001 
      
 
 
Table 4.8. Results from fMRI analysis in subgroup 7 (participants 55-63) 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
(none)      
      
 
 
Table 4.9. Results from fMRI analysis in subgroup 8 (participants 64-72) 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
Left occipitotemporocerebellar region      
Left inferior occipital gyrus (BA 18) -37 -95 -10 9.13 < 0.001 
Left cerebellum (culmen) -44 -41 -34 7.86 < 0.001 
Left cerebellum (declive) -41 -75 -17 5.34 < 0.001 
      
Right frontal region      
Right middle frontal gyrus (BA 11) 24 27 -20 7.06 < 0.001 
Right inferior frontal gyrus (BA 47) 31 24 -24 5.56 < 0.001 
      
Right occipitotemporocerebellar region      
Right lingual gyrus (BA 17) 17 -102 -10 6.98 < 0.001 
Right fusiform gyrus (BA 18) 27 -95 -10 5.98 < 0.001 
Right cerebellum (declive) 37 -88 -17 5.47 < 0.001 
      
Right insular region      
Right insula (BA 13) 48 -20 0 6.53 < 0.001 
      
Left frontal region      
Left inferior frontal gyrus (BA 47) -41 24 -17 5.43 < 0.001 
Left inferior frontal gyrus (BA 47) -51 27 -10 4.86 0.001 
      
 
Threshold: uncorrected P < 0.001, cluster extent ≥ 10 voxels 
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Table 4.10. Results from fMRI analysis in subgroup 9 (participants 73-81) 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
Right occipitotemporocerebellar region      
Right cerebellum (culmen) 48 -48 -27 6.31 < 0.001 
Right fusiform gyrus (BA 36) 48 -37 -24 6.14 < 0.001 
      
 
 
Table 4.11. Results from fMRI analysis in subgroup 10 (participants 82-91) 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
Left frontal region      
Left middle frontal gyrus (BA 6) -37 -3 48 8.88 < 0.001 
Left precentral gyrus (BA 6) -48 3 44 8.46 < 0.001 
Left precentral gyrus (BA 6) -37 0 37 6.55 < 0.001 
      
Right occipitotemporocerebellar region      
Right cerebellum (declive) 27 -85 -14 7.58 < 0.001 
      
Right frontal region      
Right middle frontal gyrus (BA 6) 34 0 54 7.42 < 0.001 
      
Left occipitotemporocerebellar region      
Left cerebellum (culmen) -3 -34 -3 7.18 < 0.001 
Left cerebellum (culmen) -41 -44 -31 6.59 < 0.001 
Left fusiform gyrus (BA 36) -48 -41 -27 5.90 < 0.001 
Left cerebellum (tuber) -44 -65 -24 5.68 < 0.001 
      
 
 
Table 4.12. Results from fMRI analysis in all subgroups (“pooled analysis”) 
 
 MNI(x) MNI(y) MNI(z) T value P value 
      
Right occipitotemporocerebellar region      
Right cerebellum (culmen) 48 -51 -24 12.17 < 0.001 
Right middle occipital gyrus (BA 18) 44 -82 -7 10.34 < 0.001 
Right inferior occipital gyrus (BA 18) 27 -95 -7 9.18 < 0.001 
Right cerebellum (declive) 7 -75 -7 3.62 < 0.001 
Right middle temporal gyrus (BA 21) 54 -41 10 3.62 < 0.001 
      
Left occipitotemporocerebellar region      
Left cerebellum (declive) -41 -78 -14 9.24 < 0.001 
Left cerebellum (culmen) -44 -44 -24 8.94 < 0.001 
Left cerebellum (declive) -44 -68 -20 8.16 < 0.001 
Left superior temporal gyrus (BA 22) -58 -51 10 5.18 < 0.001 
Left middle temporal gyrus (BA 19) -41 -65 17 3.59 < 0.001 
      
Right amygdala / parahippocampal region      
Right parahippocampal gyrus (BA 34) 17 0 -20 4.53 < 0.001 
Right uncus (BA 34) 20 3 -27 3.81 < 0.001 
      
Left amygdala / parahippocampal region      
Left parahippocampal gyrus (BA 34) -17 0 -24 3.69 < 0.001 
      
 
Threshold: uncorrected P < 0.001, cluster extent ≥ 10 voxels 
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Table 4.13 Validation of ES-SDM. 
 
 Overlap 

(a) 
Sensitivity False positives 

rate 
    
ES-SDM with default settings:    

Only peaks (with t value) 47.0 % 55.1 % 2.5 % 
10% statistical parametric maps (b) 65.5 % 72.7 % 1.5 % 
20% statistical parametric maps (b) 72.0 % 86.7 % 1.7 % 
30% statistical parametric maps (b) 73.8 % 92.5 % 1.8 % 
40% statistical parametric maps (b) 69.5 % 95.6 % 2.5 % 
50% statistical parametric maps (b) 67.2 % 96.9 % 2.9 % 
60% statistical parametric maps (b) 68.3 % 98.0 % 2.8 % 
70% statistical parametric maps (b) 65.7 % 98.6 % 3.2 % 
80% statistical parametric maps (b) 66.0 % 99.3 % 3.2 % 
90% statistical parametric maps (b) 63.8 % 100 % 3.5 % 
100% statistical parametric maps 64.0 % 100 % 3.5 % 
Only peaks without t value 48.5 % 51.6 % 1.9 % 
    

ES-SDM with other settings:    
P = 0.001 (only peaks with t value) 36.0 % 30.5 % 1.2 % 
P = 0.005 (only peaks with t value) 47.0 % 55.1 % 2.5 % 
P = 0.010 (only peaks with t value) 48.4 % 64.7 % 3.2 % 
FWHM = 10mm (only peaks with t value) 40.7 % 31.9 % 0.8 % 
FWHM = 15mm (only peaks with t value) 47.2 % 45.0 % 1.4 % 
FWHM = 20mm (only peaks with t value) 47.0 % 55.1 % 2.5 % 
FWHM = 25mm (only peaks with t value) 41.8 % 54.6 % 3.3 % 
FWHM = 30mm (only peaks with t value) 38.8 % 55.7 % 4.1 % 

    
Other methods:    

ALE (FWHM = 10mm, FDR = 0.05) 28.9 % 19.9 % 0.6 % 
Original SDM (FWHM = 25mm, P = 
0.001) 

49.0 % 51.3 % 1.8 % 

    
 
(a) Overlap is defined as the Dice similarity coefficient (Dice 1945). 
(b) The statistical parametric map of the first subgroup was used for testing “10% statistical parametric maps”, the 
statistical parametric maps of the first 2 subgroups were used for testing “20% statistical parametric maps”, and so 
on. 
ALE: activation likelihood estimator. ES-SDM: effect size signed differential mapping. FDR: false discovery rate. 
FWHM: full width at half maximum. SDM: signed differential mapping. 
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4.4 DISCUSSION 

 

This chapter introduced a new version of the SDM meta-analytic method, ES-

SDM. Its main innovations are the possibility of combining peak coordinates and 

statistical parametric maps in the same meta-analysis, as well as the use of 

well-established statistics accounting for within- and between-study variance. 

The software is freely available at http://www.sdmproject.com/ . 

To validate the new version the results of a simulated meta-analysis of 

the data pertaining to 10 subgroups of participants were compared with the 

results of the pooled analysis of all 91 participants together. Results from the 

pooled analysis were fully consistent with previous literature on the neural 

networks involved in fearful faces perception (Fusar-Poli, Placentino et al. 2009; 

Radua, Phillips et al. 2010). ES-SDM showed a good overlap with the pooled 

analysis, indicating that this method was able to replicate, to a great extent, the 

results obtained when the original individual data were available. It also showed 

an adequate sensitivity and control of false positives. 

As expected, overlap and sensitivity were substantially higher when peak 

coordinates were replaced by statistical parametric maps. Importantly, this 

effect was already observed when statistical parametric maps were used from 

only few samples, using peak coordinates for the rest of samples. The crucial 

implication is that a meta-analysis can be substantially improved by including 

statistical parametric maps, instead of coordinates, even from just one sample. 
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Overlap and sensitivity were similar when peak coordinates without t 

value, or with t value, were used. This lack of significant improvement when 

using t values might indicate that the use of effect sizes has limited influence on 

the results. A potential explanation for this might be that the effect sizes are 

indeed rather similar across the different peak-coordinates of a study, as all of 

them are above a statistical threshold. 

The overlap and sensitivity of ES-SDM were higher than those of ALE, 

comparable to the original SDM when only coordinates were included and 

higher than both previous methods when statistical parametric maps were also 

included. It must be noted that the sensitivity values should not be directly 

extrapolated to publication-based meta-analyses. On the one hand, samples of 

such meta-analyses might be more heterogeneous, thus decreasing the 

sensitivity of any meta-analytic method. On the other hand, a publication-based 

meta-analysis typically includes more studies and with larger samples, a fact 

which substantially increases the sensitivity. In any case, ALE, original SDM 

and the different settings of ES-SDM meta-analyses were tested using the 

same 10 samples, and therefore their results are comparable. 

 

4.4.1 Limitations 

Some limitations of the new ES-SDM method must be highlighted. First, while 

threshold-based imputation procedures do not bias the results towards studies 

using one or another threshold type, they are associated to a variable degree of 

imprecision. However, it must be noted that this imprecision is lower than that in 
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previous coordinate-based methods, which assigned the same effect-size to all 

studies – the simplicity of some methods might conceal the artificially constant 

effect-sizes but not its effects, e.g. methods based on counting peaks are 

mathematically equivalent to methods setting an effect-size of “1” to all peaks. 

Furthermore, according to the validation data, the use of effect sizes, even if 

necessary for the most of the new features, only has limited influence on the 

results. Second, ES-SDM assumes effect sizes to come from homogenous t 

contrasts, while they might come from different covariate models or from 

different raw statistics. However, this is a limitation of all coordinate-based 

methods (all of them combine peaks from different origin), which could be 

controlled by SDM covariate analyses if relevant. And again, this limitation 

might have a subtle relevance as the effect sizes only have limited influence on 

the results. Finally, as in any other coordinate-based method, the inclusion of 

more or fewer secondary peaks will cause the recreated effect-size maps to be 

more or less precise. 

 

4.4.2 Conclusions 

To conclude, ES-SDM is a new version of the SDM meta-analytic method, 

based on well-established statistics accounting for within- and between-study 

variance, which allows combining both peak coordinates and statistical 

parametric maps in the same meta-analysis. The new version has been shown 

to be valid and superior to previous coordinate-based meta-analytical methods. 
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Default settings have been shown to optimize the sensitivity while protecting 

against the false positives. 
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CHAPTER 5 

Meta-analysis of studies investigating white matter 

volume or water diffusivity 

 

 

5.1 THEORY 

 

One of the limitations of signed differential mapping (SDM) (Radua and Mataix-

Cols 2009), effect size SDM (ES-SDM) (Radua, Mataix-Cols et al. 2012) and 

other existing voxel-based meta-analytic algorithms such as activation likelihood 

estimate (ALE) (Turkeltaub, Eden et al. 2002) and multilevel kernel density 

analysis (MKDA) (Wager, Lindquist et al. 2007) was that they are limited to 

meta-analyses of grey matter studies. Relevant neuroimaging modalities such 

as regional white-matter volumes (white matter voxel-based morphometry, 

VBM) or the set of measures derived from analyses of water diffusitivity (e.g. 

fractional anisotropy, FA) (Beaulieu 2002) could not be assessed with these 

existing methods. This chapter presents the adaptation of SDM for its 

application to white matter measures. 
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5.1.1 Justification 

To appreciate the importance of adapting SDM (and, by extension all voxel-

based methods) for the meta-analysis of white-matter studies, it must be noted 

that the null hypothesis of the standard randomization test presented in Chapter 

2 (Radua and Mataix-Cols 2009) is that peak coordinates are uniformly 

distributed throughout all the grey matter of the brain. The test consists of 

randomly relocating the original peak coordinates in all grey matter voxels as 

defined by a grey matter randomization template, and comparing the original 

values with the values obtained from these randomizations (Wager, Lindquist et 

al. 2007). 

However, if the aim is to assess the statistical significance of white 

(rather than grey) matter volumes or fractional anisotropy values, a specific 

white matter randomization template is needed. Although some authors have 

employed grey matter or whole brain templates to meta-analyze white matter 

volumes or other measures (Di, Chan et al. 2009), this is clearly inadequate, 

because the corresponding null hypothesis would assume that white matter 

peak coordinates are uniformly distribute throughout all the grey matter of the 

brain. The effects of such practice are that white matter peaks show artificially 

concentrated in some regions of the brain (i.e. in the white matter) while not in 

other regions (i.e. in the grey matter), leading to increased false positive rates. 

The use of a grey matter randomization template to assess white matter 

parameters would be equivalent to the use of the body weight variance to 

assess the statistical significance of body height differences. 



5. Adaptation for white matter 
 
 

 
 

Page 213 

5.1.2 Creation of the white matter templates 

The white matter mask was created with the standard parameters for grey 

matter masks (Wager, Lindquist et al. 2007), but including white instead of grey 

matter. Specifically, a map of white matter was created based on the Talairach 

Daemon (Lancaster, Woldorff et al. 2000), with a voxel size = 2 x 2 x 2m3. In 

addition, a randomization map consisting of the mask of white matter plus an 

8mm margin of grey matter was created. 

These new templates were included in a new readily available version of 

SDM software ( http://www.sdmproject.com/ ) to allow other researchers to 

conduct statistically correct voxel-based meta-analyses of white matter studies. 
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5.2 EXAMPLE: APPLICATION OF THE METHOD 

 

To illustrate the practical uses of these new templates, this section describes a 

meta-analysis of white matter voxel-based morphometry studies in autism 

spectrum disorders (ASD). 

 

This study was published in Psychological Medicine under the title ‘Voxel-based meta-analysis of regional 

white-matter volume differences in autism spectrum disorder versus healthy controls’ (Joaquim Radua, Esther 

Via, Marco Catani and David Mataix-Cols 2011; 41:1539-1550). The definitive publisher-authenticated version 

is available online at http://journals.cambridge.org/action/displayAbstract?fileId=S0033291710002187 Copyright 

© Cambridge University Press 2010 

 

5.2.1 Introduction 

ASD, including autism and Asperger’s syndrome, are characterized by 

impairments in social interaction, communication and imagination, as well as a 

rigid, repetitive pattern of behaviour (Wing 1996; APA 2000). The prevalence of 

ASD has been recently estimated to be approximately 9 per 1,000 children, and 

is more frequent in males (ADDMNS 2009). In adults, the prevalence of ASD 

might be similar (Brugha, McManus et al. 2009). 

The precise aetiology of ASD is unknown but it is thought to have a 

strong genetic basis (Volkmar, Klin et al. 1998; Abrahams and Geschwind 
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2008). There is a large body of evidence highlighting the role of abnormal brain 

development in ASD (Schultz 2005). For example, structural neuroimaging 

studies have identified several brain systems implicated in the disorder, 

including the cerebellum, visual cortex, amygdala and hippocampus (Abell, 

Krams et al. 1999; McAlonan, Daly et al. 2002; Waiter, Williams et al. 2004; 

Brieber, Neufang et al. 2007; Craig, Zaman et al. 2007; Bonilha, Cendes et al. 

2008; Ke, Hong et al. 2008; McAlonan, Suckling et al. 2008; Toal, Daly et al. 

2009). Functional neuroimaging studies have reported reduced activations in 

the amygdala and related limbic regions including the cingulate cortex (Baron-

Cohen, Ring et al. 1999; Pierce, Muller et al. 2001; Ashwin, Baron-Cohen et al. 

2007), all of which are thought to be consistent with the deficits in social 

behavior that are characteristic of the disorder (Baron-Cohen, Ring et al. 2000). 

A complementary and potentially more informative approach would be to 

identify systems-level or “supraregional” brain abnormalities in ASD, rather than 

within discrete brain regions. Cortical and subcortical regions that are altered in 

ASD are interconnected through a complex system of short and long-range 

tracts running within the white matter of each hemisphere. Regional white 

matter abnormalities in ASD have been investigated using different methods 

including a region of interest approach on structural magnetic resonance 

imaging (MRI) scans (e.g. T2-wieghted images) and more recent tract specific 

dissections of diffusion tensor imaging (DTI) datasets. These approaches are 

mainly hypothesis-driven and therefore have been usually limited to single 

structures such as the corpus callosum (Piven, Bailey et al. 1997; Hardan, 

Minshew et al. 2000), cerebellar tracts (Catani, Jones et al. 2008) and the 
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cingulum (Pugliese, Catani et al. 2009). This paucity of research might be 

partially due to the difficulties of manually delimitating some white matter 

regions, which is time consuming and requires extensive anatomical knowledge 

(Waiter, Williams et al. 2005). 

The recent development of fully-automated, whole-brain, voxel-based 

morphometry (VBM) methods (Ashburner and Friston 2000; Ashburner and 

Friston 2001; Mechelli, Price et al. 2005), which overcome the difficulties in the 

manual delimitation of white matter regions, provides a powerful tool to study 

the potential changes in white matter volume in ASD. Unfortunately, recent 

applications of these novel methods to the study of white matter volumetric 

changes in ASD are often limited by relatively small sample sizes, resulting in 

insufficient statistical power. In this context, we considered it timely to perform a 

voxel-based quantitative meta-analysis of all published VBM studies in ASD 

reporting changes in white matter volume. This was conducted with the SDM 

methods described in the previous chapters (Radua and Mataix-Cols 2009; 

Radua, van den Heuvel et al. 2010), plus the white matter templates presented 

at the beginning of this chapter. In order to facilitate replication and further 

analyses by other colleagues, a readily accessible online database                                      

( http:/www.sdmproject.com/database ), which contains all the data and 

methodological details from every study included in this meta-analysis, was also 

developed. 
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5.2.2 Methods 

5.2.2.1 Criteria for inclusion and exclusion of studies 

We conducted a comprehensive literature search of studies conducting VBM 

comparisons between patients with ASD and healthy controls published 

between 2002 –the date of the first white matter VBM study in ASD– and 

September 2010 using the PubMed, ScienceDirect, Web of Knowledge and 

Scopus databases. The search keywords were “Asperger” or “autism”, plus 

“morphometry”, “voxel-based” or “voxelwise”. In addition, the authors also 

conducted manual searches within several review papers and the reference 

sections of the obtained articles. Studies containing duplicated datasets, i.e. 

analyzed the same data in different manuscripts and studies with fewer than 10 

patients were excluded. Next, the corresponding authors were contacted by 

email requesting any details not included in the original manuscripts. MOOSE 

guidelines for meta-analyses of observational studies (Stroup, Berlin et al. 

2000) were followed in the study.  

 

5.2.2.2 Comparison of global and regional white matter volumes 

Meta-analytical differences in global white matter volumes were calculated 

using standard random-effects models with the “globals” procedure in SDM 

software ( http://www.sdmproject.com/ ), which uses restricted maximum-

likelihood estimation of the variance, a fitting method which has been 
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recommended over previous ones for its good balance between unbiasedness 

and efficiency (Viechtbauer 2005). 

Regional differences in white matter volume between patients and 

controls were analyzed using the SDM methods described in the previous 

chapters (Radua and Mataix-Cols 2009; Radua, van den Heuvel et al. 2010), 

plus the white matter templates presented at the beginning of this chapter. The 

main analysis was complemented with additional analyses to assess the 

robustness of the findings (Radua and Mataix-Cols 2009), namely descriptive 

analyses of quartiles to find the actual proportion of studies reporting results in a 

particular brain region (regardless of p-values) and jack-knife sensitivity 

analyses to assess the reproducibility of the results. Reproducibility of the 

results was also assessed by separately analyzing paediatric and adult 

samples, though formal statistical tests could not be performed given the small 

number of studies in each group. 

 

5.2.2.3 Localization of changes in white matter volume 

A DTI derived atlas (Catani and Thiebaut de Schotten 2010) was used to 

optimally localize the changes in white matter volume detected in the meta-

analysis. This atlas provides digital maps of long range white matter tracts 

normalized in a common space of reference. The maps are derived from virtual 

in vivo dissections (Catani, Howard et al. 2002; Catani and Thiebaut de 2008) of 

diffusion tensor datasets and provide information on the degree of anatomical 

variability within the normal population by quantifying the percentage of overlap 
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for each single voxel (e.g. 50%, 75% and >90%). The results from the VBM 

meta-analyses were therefore overlapped on the digital masks of each tract 

provided in the atlas to localize the regional differences.  

 

5.2.3 Results 

5.2.3.1 Included studies and sample characteristics 

As shown in Figure 5.1, the search retrieved a total of 17 publications or 

abstracts comprising 19 studies (that is, independent comparisons between 

ASD and healthy control samples). Three publications were discarded because 

they contained duplicated datasets (McAlonan, Cheung et al. 2005), fewer than 

Figure 5.1 Inclusion of studies. 
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10 patients (Yamasue, Ishijima et al. 2005) or a mixed control group that 

included healthy controls, children with reading disability and children with 

benign macrocephaly (Bigler, Abildskov et al. 2010). After contacting the 

authors no methodological ambiguities remained regarding the design or 

analysis of 11 publications comprising 13 independent comparisons, while 3 

studies had to be excluded due to missing key information for our meta-analysis 

(i.e. peak coordinates from whole-brain analyses) (Schmitz, Daly et al. 2007; 

Hong, Ke et al. 2008; Langen, Schnack et al. 2009). Therefore, thirteen high-

quality datasets could be included in this meta-analysis, of which 6 consisted of 

adult ASD samples and 7 of pediatric or adolescent samples. There was a 

partial sample overlap between two studies (McAlonan, Daly et al. 2002; Toal, 

Daly et al. 2009). For this reason the meta-analysis was first conducted with all 

studies and then repeated excluding the latter study. Finally, a potential overlap 

in the samples of two other studies could not be discarded (Ke, Hong et al. 

2008; Ke, Tang et al. 2009), and for this reason the meta-analysis was also 

repeated excluding the latter. 
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Combined, the studies included 246 patients with ASD (125 autism; 84 

Asperger; 37 unknown) and 237 healthy controls. Patients comprised 133 

adults (45 autism; 66 Asperger; 22 unknown) and 113 children/adolescents (80 

autism; 18 Asperger; 15 unknown). As shown in Table 5.1, no relevant 

differences between patients and controls were found in terms of age and 

gender, as the original studies were already well matched in this respect. Full IQ 

was slightly lower in the ASD group, though this difference was largely due to a 

single study in which the patients had a rather low IQ (Boddaert, Chabane et al. 

Table 5.1 Demographic and clinical characteristics of the 13 voxel-based morphometry 
datasets included in the meta-analysis. 
 
  Methodological aspects  Patients  Controls 

  Software 
name 

Threshold  N Age 
(SD) 

Males Full IQ 
(SD) 

Autism Asperger  N Age 
(SD) 

Males Full IQ 
(SD) 

                

Boddaert et al.   SPM99 P < 0.05 
corrected 

 21 9.3 
(2.2) 

76% 42 
(21) 

100% 0%  12 10.8 
(2.7) 

58% N/A 

Bonilha et al.   SPM5 P < 0.05 
corrected 

 12 12.4 
(4.0) 

100% N/A 100% 0%  16 13.2 
(5.0) 

100% N/A 

Craig et al.   SPM2 
+ XBAMM 

< 1 false-positive 
cluster 

 14 37.9 
(11.4) 

0% 103 
(17) 

29% 71%  19 35.0 
(14.0) 

0% 111 
(14) 

Ecker et al.   SPM5 P < 0.001 
uncorrected 

 22 27.0 
(7.0) 

100% 104 
(15) 

N/A N/A  22 28.0 
(7.0) 

100% 111 
(10) 

Hyde et al.   CIVET P < 0.05 
corrected 

 15 22.7 
(6.4) 

100% 100 
(13) 

100% 0%  15 19.2 
(5.0) 

100% 107 
(12) 

Ke et al.   SPM5 P < 0.001 
uncorrected 

 17 8.9 
(2.0) 

82% 109 
(19) 

100% 0%  15 9.7 
(1.7) 

80% 110 
(19) 

Ke et al.   SPM5 P < 0.001 
uncorrected 

 12 8.8 
(2.3) 

100% 101 
(19) 

100% 0%  10 9.4 
(2.1) 

100% 100 
(18) 

McAlonan et al. 2002  XBAMM < 1 false-positive 
cluster 

 17 32.0 
(10.0) 

N/A 96 
(15) 

0% 100%  24 33.0 
(7.0) 

92% 114 
(14) 

McAlonan et al. 2009                

(Asperger sample)  XBAMM < 1 false-positive 
cluster 

 18 11.2 
(2.5) 

83% N/A 0% 100%  55 10.7 
(2.7) 

85% N/A 

(autism sample)  XBAMM < 1 false-positive 
cluster 

 18 11.6 
(3.0) 

83% N/A 100% 0%      

Toal et al.                 

(Asperger sample)  SPM2 
+ XBAMM 

< 1 false-positive 
cluster 

 39 32.0 
(12.0) 

90% 106 
(15) 

0% 100%  33 32.0 
(9.0) 

91% 105 
(12) 

(autism sample)  SPM2 
+ XBAMM 

< 1 false-positive 
cluster 

 26 30.0 
(8.0) 

81% 84 
(23) 

100% 0%      

Waiter et al.   SPM2 P < 0.05 
corrected 

 15 15.2 
(2.2) 

100% 100 
(22) 

N/A N/A  16 15.5 
(1.6) 

100% 100 
(18) 

                

Total     246 21.4 
(12.5) 

84% (a) 94 (a) 
(25) 

60% (a) 40% (a)  237 20.4 
(11.9) 

83% 108 (a) 
(14) 

                

 
CIVET: an image processing environment. N/A: not available; IQ: intelligence quotient. SPM: statistical parametric 
mapping. XBAMM: brain activation and morphological mapping. 
(a) Result obtained after imputation of missing values using the mean. 



5. Adaptation for white matter 
 
 

 
 

Page 222 

2004). Therefore, the meta-analysis was also repeated excluding this study in 

order to remove the potential confounding effects of IQ. Further details of each 

of the included studies, such as comorbid conditions, medication status or 

diagnostic criteria, can be found at http:/www.sdmproject.com/database . 

 

5.2.3.2 Global differences in white matter volume 

Global white matter volumes were available from 5 independent datasets within 

4 publications (Waiter, Williams et al. 2005; Hyde, Samson et al. 2009; 

McAlonan, Cheung et al. 2009; Ecker, Rocha-Rego et al. 2010). No statistically 

significant differences in global white matter volume were found between ASD 

patients (n=87) and healthy controls (n=108) (unbiased Hedges (Hedges and 

Olkin 1985) d = -0.10, z = -0.70, P = 0.481). This was true for both 

pediatric/adolescent (d = -0.12, z = -0.67, P = 0.501) (Waiter, Williams et al. 

2005; McAlonan, Cheung et al. 2009) and adult (d = -0.05, z = -0.18, P = 0.857) 

(Hyde, Samson et al. 2009; Ecker, Rocha-Rego et al. 2010) samples. No 

significant heterogeneity was found in any of the analyses (all studies: Q = 2.16, 

4 df, P = 0.707; children/adolescents: Q = 0.77, 2 df, P = 0.680; adults: Q = 

1.35, 1 df, P = 0.245). 

 

 5.2.3.3 Regional differences in white matter volume 

Data for this analysis was obtained from all the studies included in the meta-

analysis. As shown in Table 5.2 and Figure 5.2, ASD patients showed a large 
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increase of white matter volume (1,187 voxels, maximum at [34,-2,32], SDM = 

0.160) in the right centrum semiovale, comprising the arcuate fasciculus as well 

as a small part of extreme capsule. Patients also showed a moderately large 

increase of white matter volume (418 voxels, maximum at [-26,6,-4], SDM = 

0.159) in the left external/extreme capsule, comprising the inferior fronto-

occipital and the uncinate fasciculi. These increases of white matter volume 

were separately detected in both pediatric and adult samples (right increase 

maxima: [38,-4,40], SDM = 0.122 in children and [30,-6,22], SDM = 0.337 in 

adults; left increase maxima: [-28,4,-2], SDM = 0.159 in children and [-32,-14,-

6], SDM = 0.215 in adults), although formal statistical tests could not be 

performed due to an insufficient number of studies. 

Finally, a small decrease of white matter volume (15 voxels) in right 

anterior cingulum and the corpus callosum was also detected. 

Table 5.2 Regional differences in white matter volume between individuals with autistic 
spectrum disorders and healthy controls. 
 
 Maximum  Cluster  Jackknife sensitivity 

analysis 
 Talairach 

coordinates 
SDM 
value 

Uncorrected 
P 

 Number 
of voxels 

DTI atlas-
derived 

main tracts 

 Combinations of 
studies detecting the 

difference 
         
Increase of white matter volume (ASD > healthy) 

R centrum 
semiovale 
 

34,-2,32 0.160 0.00001  1187 R arcuate 
fasciculus 
R extreme 
capsule 
 

 12 out of 13 

L external/extreme 
capsule 
 

-26,6,-4 0.159 0.00001  418 L uncinate 
fasciculus 
L inferior fronto-
occipital 
fasciculus 
 

 12 out of 13 

Decrease of white matter volume (ASD < healthy) 
R anterior 
cingulum 
 

-4,24,20 -0.254 0.0006  15 R anterior 
cingulum / 
corpus 
callosum 

 

 9 out of 13 

 
DTI: diffusion tensor imaging. L: left; R: right; SDM: signed differential mapping. 
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The results remained largely unchanged in the analysis of quartiles, with 

the specified white matter increases detected in the third quartile map (i.e. at 

least 25% of the studies had found some increase in those regions) and the 

anterior cingulum/corpus callosum decrease in the median map. Whole-brain 

jack-knife sensitivity analysis showed that the results were highly replicable, as 

Figure 5.2 Main decreased white matter regions in individuals with autistic spectrum 
disorders compared with healthy controls. 
 

 
 
Localization of the white matter changes in the right arcuate fasciculus (top left), the left inferior fronto-occipital 
fasciculus (bottom left) and the left uncinate fasciculus (top right). A-C) Overlapping between the white matter 
maps of the meta-analysis (white area) and the digital maps of the corresponding fasciculus derived from an atlas 
of human brain connections (Catani and Thiebaut de Schotten 2010). The different colors indicate the percentage 
of overlap of the voxel containing the fibres of the fasciculus in the normal population. The green voxels represent 
voxels that are visited by a statistically significant number of fibres of the fasciculus in the normal population after 
family wise error (FWE) correction. D) Tractography reconstruction of the fasciculus, modified from Catani et al. 
(Catani, Howard et al. 2002). 
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white matter increases in right arcuate fasciculus and in left inferior fronto-

occipital/uncinate fasciculi were preserved in all but one combinations of 

studies. Conversely, white matter decrease in anterior cingulum/corpus 

callosum failed to emerge in 4 combinations of studies. Finally, findings were 

nearly identical when the studies which had a potential sample overlap (Ke, 

Tang et al. 2009; Toal, Daly et al. 2009) or included patients with very low IQ 

(Boddaert, Chabane et al. 2004) were excluded from the analyses, with the 

exception of the white matter volume decrease in anterior cingulum/corpus 

callosum, which was no longer significant after the exclusion of Toal et al. 

(2009) and Ke et al. (2009). 

 

5.2.4 Discussion 

To our knowledge, this is the first meta-analysis of VBM studies of white matter 

volume in ASD. The study is timely given that a sufficient number of high-quality 

studies have only recently become available. The main findings were that 

individuals with ASD consistently display increases of white matter volume in 

right arcuate fasciculus and left inferior fronto-occipital and uncinate fasciculi. 

These results were obtained in both pediatric/adolescent and adult samples. 

The arcuate fasciculus is a white matter bundle connecting perisylvian 

areas in the frontal, parietal and temporal lobes (Figure 5.2 top left). In the left 

hemisphere, it connects the classic brain language regions: Wernicke’s territory 

in the superior temporal gyrus, Broca’s territory in the inferior frontal gyrus, and 

the recently confirmed Geschwind’s territory in the inferior parietal lobule 
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(Catani, Jones et al. 2005; Makris, Kennedy et al. 2005). In the right 

hemisphere, it participates to visuo-spatial processing and other aspects of 

language, including affective prosody and semantics (Heilman, Scholes et al. 

1975; Ross and Monnot 2008). Lesions to the right arcuate fasciculus impair 

understanding and production of modulation of pitch, intonation contours, 

melody, cadence, loudness, tempo, stress, accent and pauses (Tucker, Watson 

et al. 1977; Bowers, Coslett et al. 1987). Prosody is used to transmit information 

above and beyond verbal-linguistic intent and to clarify the meaning of 

potentially ambiguous sentences by the judicious use of pauses and stresses 

(Ross 2010). Our findings of increased white matter in this region could 

represent the anatomical correlate of some of the verbal and non-verbal 

communication impairments observed in ASD (Koning and Magill-Evans 2001; 

Shriberg, Paul et al. 2001). Recent DTI studies in patients with ASD have found 

abnormal diffusivities in the arcuate fasciculus suggesting that changes in 

volume detected by VBM studies could be accompanied by microstructural 

abnormalities of the axonal membranes and/or myelin (Kumar, Sundaram et al. 

2009; Fletcher, Whitaker et al. 2010; Knaus, Silver et al. 2010). 

The uncinate fasciculus (Figure 5.2 bottom left) is a hook-shaped 

bundle that connects the inferior frontal gyrus and the inferior surfaces of the 

frontal lobe with the anterior portions of the temporal lobe including the cortical 

nuclei of the amygdala (Ebeling and von Cramon 1992; Hasan, Iftikhar et al. 

2009). It has traditionally been considered to be part of the limbic system and is 

known for its involvement in human emotion processing, memory and language 

functions (Schmahmann, Pandya et al. 2007), all of which are impaired in ASD. 
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Our findings of increased white matter in these regions are thus consistent with 

a substantial body of evidence from both structural (Stanfield, McIntosh et al. 

2008) and functional (Baron-Cohen, Ring et al. 1999; Monk, Weng et al. 2010) 

neuroimaging studies implicating the amygdala and related limbic structures in 

ASD. Also, several DTI studies in patients with ASD have found abnormalities in 

this fasciculus (Kumar, Sundaram et al. 2009; Pugliese, Catani et al. 2009). 

These abnormal limbic circuits may be related to some of the social and 

communication impairments typically found in people with ASD (Damasio and 

Maurer 1978; Courchesne and Pierce 2005; Wickelgren 2005). A recent DTI 

tractography study found abnormalities in the uncinate fasciculus of adults with 

psychopathy (Craig, Catani et al. 2009). These anatomical changes correlated 

with the severity of antisocial behavior, suggesting that uncinate abnormalities 

may underpin the neurobiological basis of social impairment irrespective of the 

etiology. Finally changes in these uncinate connections may also account for 

the much higher prevalence than would be expected in the general population, 

of emotional disorders, particularly anxiety and mood disorders in ASD 

(Ghaziuddin and Greden 1998; Ghaziuddin, Weidmer-Mikhail et al. 1998; 

Gadow, Devincent et al. 2005). Less is known about the inferior fronto-occipital 

fasciculus (Figure 5.2 top right), though it has been suggested that it may also 

be involved in language as its electrical stimulation induces semantic 

paraphasias (i.e., errors with regard to the meaning of the word target) (Duffau, 

Gatignol et al. 2005). 

A small decrease of white matter in anterior cingulum / corpus callosum 

was also detected, though the jackknife sensitivity analysis suggested that this 
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may be a less robust finding. Nevertheless, this finding echoes some other 

studies reporting decreased volume of the anterior cingulum and corpus 

callosum using manual delimitation methods (Haznedar, Buchsbaum et al. 

1997; Cody, Pelphrey et al. 2002; Stanfield, McIntosh et al. 2008), as well as 

DTI methods (Alexander, Lee et al. 2007; Kumar, Sundaram et al. 2009). The 

adjacent cingulate cortex has a well documented role in social cognition 

(Hadland, Rushworth et al. 2003; Shinozaki, Hanakawa et al. 2007) and has 

been found to be hypoactivated in patients with ASD while performing social 

tasks (Di Martino, Ross et al. 2009). 

It is important to highlight that all but one of the studies included in this 

meta-analysis recruited patients who, on average, had normal IQ. The exclusion 

of the only study that recruited individuals with mental retardation (Boddaert, 

Chabane et al. 2004) from the meta-analysis did not modify the results. 

Therefore, it is fair to conclude that our results may only apply to individuals with 

‘high functioning’ ASD. Whether patients with lower IQs will display a different 

set of volumetric changes remains to be investigated. 

 

5.2.4.1 Strengths and limitations  

A major strength of the study is the use of the new white matter-specific 

templates presented at the beginning of this chapter. These templates were 

needed to randomly relocate the white matter peak coordinates in a white 

matter template, as using a grey matter randomization template to assess 

differences in white matter volumes would be statistically incorrect. We hope 
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that the creation of a publicly available database with all the data and 

methodological details from every study included in this meta-analysis                      

( http://www.sdmproject.com/database ) will facilitate future reviews and meta-

analyses as the body of evidence continues to grow. 

There are also several limitations, some of which inherent to all meta-

analytical approaches. First, voxel-based meta-analyses are based on 

summarized (i.e. coordinates from published studies) rather than raw data and 

this may result in less accurate results (Salimi-Khorshidi, Smith et al. 2009). 

However, obtaining the raw images from the original studies is logistically 

difficult. Second, the different studies included in this meta-analysis used 

different statistical thresholds. However, it must be noted that, while thresholds 

involving correction for multiple comparisons are usually preferred, the inclusion 

of studies with more liberal thresholds is still statistically correct. Indeed, SDM 

pre-processing uses the coordinates of the voxels with highest differences to 

approximately recreate the statistical parametric map, but does not make 

assumptions about whether these differences were significant or not. Third, 

while voxel-wise meta-analytical methods provide excellent control for false 

positive results, it is more difficult to completely avoid false negative results 

(Salimi-Khorshidi, Smith et al. 2009). Forth, there are some inherent limitations 

to the VBM method, such as reduced effectiveness to detect spatially complex 

and subtle group differences (Davatzikos 2004). Fifth, some of the included 

studies reported white matter density rather than volume. It must be noted that 

white matter density might be understood as a type of white matter volume 

which has not been corrected by the distorting effects of the normalization to the 
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stereotactic space; therefore, its inclusion in the meta-analysis is valid (it is also 

a “volume”) although it may add a source of noise. Sixth, there were too few 

studies to conduct separate sub-analyses in children/adolescents and adults 

with ASD, although descriptive analyses suggested that the results were similar 

in these two age groups. Because the mean age of the ‘pediatric’ subgroup was 

11.0±3.3 years, one remaining question is whether younger patients with ASD 

may show a distinctive pattern of volumetric changes. Indeed, global brain 

volume increases in ASD have been mainly reported in childhood autism and 

thought to be related to an early acceleration in brain growth (Courchesne, 

Karns et al. 2001; Aylward, Minshew et al. 2002; Carper, Moses et al. 2002; 

Hazlett, Poe et al. 2005) but might not persist into adulthood (Aylward, Minshew 

et al. 2002). Finally, a formal comparison between the two main subtypes of 

ASD (i.e. autism and Asperger syndrome) was not possible due to insufficient 

number of studies. This might be important as some studies have suggested 

that there may be some differences in brain structure and function between 

these subtypes (Ghaziuddin, Leininger et al. 1995; Ghaziuddin and Mountain-

Kimchi 2004; Kwon, Ow et al. 2004), although this evidence is still preliminary 

and the distinction remains a matter of debate (Howlin 2003; Klin, Pauls et al. 

2005; Volkmar, State et al. 2009). Even less is known about the neural 

substrates of the miscellaneous pervasive developmental disorder not 

otherwise specified (PDD NOS) category, despite being by far the most 

prevalent (Volkmar, State et al. 2009). 
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5.2.4.2 Conclusions 

Taken together, results from this meta-analysis suggest that patients with ASD 

display increases of white matter volume in specific white matter tracts, known 

to be important for language and social cognition. Whether the results apply to 

individuals with lower IQ or younger age and whether there are meaningful 

neurobiological differences between the subtypes of ASD remains to be 

investigated. Similarly, direct comparisons with other neuro-developmental 

disorders are needed in order to establish the specificity of the findings. 
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5.3 OVERALL DISCUSSION 

 

Voxel-based meta-analytic software packages have been traditionally limited to 

the study of grey matter, comprising either brain functions in healthy people, or 

(structural or functional) grey matter abnormalities in patients with 

neuropsychiatric disorders. However, there is also a growing body of 

neuroimaging research aimed to investigate white matter abnormalities, for 

instance differences in regional white matter volume, or changes related to 

water diffusivity and axonal myelin integrity. 

This chapter described the adaptation of SDM for its application to meta-

analyze studies investigating white matter abnormalities. This consisted of the 

creation of specific templates for white matter, following the same standard 

parameters that were used to create the templates for grey matter studies in 

Chapter 2. As an example, these methods were applied to white matter voxel-

based morphometry studies in autism spectrum disorders. Another example of 

the application of these methods is a meta-analysis of the white matter voxel-

based morphometry studies in schizophrenia (Bora, Fornito et al. 2011). 

The hope is that these new templates, already available in the SDM 

online library, will allow researchers to conduct voxel-based meta-analyses of a 

range of white matter studies. However, not all white matter studies can be 

included in a meta-analysis that uses the templates presented in this chapter. 

There is a set of published water diffusivity studies that do not investigate the 

entire white matter but only its main tracts (Smith, Jenkinson et al. 2006). The 
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inclusion of these studies would bias the results towards the main tracts. This 

issue is addressed in the next chapter. 
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CHAPTER 6 

Meta-analyses of studies using tract-based spatial 

statistics (TBSS) 

 

 

6.1 THEORY 

 

6.1.1 Tract-based spatial statistics (TBSS) 

An interesting application of magnetic resonance imaging is the study of the 

integrity of the white matter tracts in patients with neuropsychiatric disorders. 

Briefly, this consists in assessing the degree of anisotropy in the diffusion of 

water molecules, as the membrane of the axons restricts the motion of the 

water molecules in directions other than those of the tract. The most common 

index of such anisotropy is fractional anisotropy (FA). In case of tract 

abnormalities (e.g. myelin loss or fibre incoherence), water freely diffuses in any 

direction, thus resulting in a decrease of the observed FA (Beaulieu 2002). 

Comparisons of FA between patients and controls can be conducted as 

standard voxel-based analyses, but an increasingly common alternative 

consists on projecting the values of the voxels into one-dimensional tracts, and 

then conducting the comparisons on these tracts (i.e. tract-based spatial 
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statistics, TBSS, http://www.fmrib.ox.ac.uk/fsl/tbss/ ) (Smith, Jenkinson et al. 

2006). In other words, each tract is represented by a single line in which each 

point summarizes the maximum FA of the perpendicularly surrounding voxels. 

Unfortunately, while voxel-based FA studies are meta-analyzable with 

the template presented in Chapter 5 (Radua, Via et al. 2011), meta-analyses of 

TBSS studies are less straightforward. Despite the fact that the skeletons of 

tracts are based on the same MNI template, they only cover the main white 

matter tracts of the brain and are spatially optimized for each study, and thus do 

not completely overlap across studies (Figure 6.1). 

Taking advantage of the new capabilities of the effect-size signed 

differential mapping (ES-SDM) algorithms presented in Chapter 4 (Radua, 

Mataix-Cols et al. 2012), this chapter describes the adaptation of ES-SDM in 

order to allow meta-analyses of TBSS studies. This adaptation consisted of: a) 

Figure 6.1 Lack of complete spatial overlap between the skeletons of two studies of fractional 
anisotropy (FA) employing ‘tract-based spatial statistics’ (TBSS) 
 

 
 

The skeleton of one study is shown in red and the skeleton of the other study in blue. 
 
Note that raw pixel-based skeletons have been smoothed and thresholded for graphical purposes. 
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creating a new TBSS template for SDM; and b), developing a new indirect 

approach to pre-process the TBSS statistical maps. 

 

6.1.2 Creation of the meta-analytic TBSS template 

The process of creation of the new template was similar to those of the grey 

and white matter templates described in Chapters 2 and 5 (Radua and Mataix-

Cols 2009; Radua, Via et al. 2011). Specifically, the process consisted of taking 

the MNI template FMRIB58 FA skeleton included in the FMRIB software library 

of neuroimaging tools (FSL; http://www.fmrib.ox.ac.uk/fsl/ ), converting it into 

Talairach space, and saving the coordinates in the SDM 2 x 2 x 2m3 voxel-size 

format. 

As explained in the following sections, meta-analyses of TBSS studies 

should be conducted with the ES-SDM approach described in Chapter 4 

(Radua, Mataix-Cols et al. 2012), for what no randomization mask would be 

needed. Nevertheless, this was also created for the sake of completion. 

 

6.1.3 New pre-processing algorithms for TBSS meta-analyses 

Despite the fact that the TBSS skeletons of different studies are based on the 

same MNI skeleton, they are spatially optimized for each study, resulting in 

slight spatial differences which prevent a direct overlap of the FA maps. The 

“line” corresponding to the corpus callosum, for example, may be slightly 

superiorly placed in one study as compared to another. Figure 6.1 shows an 

example of the lack of complete overlap from two TBSS studies. 
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In order to allow a correct overlap of the skeletons of the different 

studies, the tracts are “thickened” so that they occupy all the tract space defined 

in the new ES-SDM TBSS template. This is achieved with a two-step 

procedure: a) retrieval of a large number (e.g. 5,000) of low-thresholded local 

peaks from the original t-statistical maps; and b) incorporation of these peaks 

into the peak-based pre-processing procedure to reconstruct the effect-size 

maps. With this indirect approach, all recreated effect-size maps correctly 

overlap. 

In the practical application described next, the Linux / FSL script shown 

in Figure 6.2 was used to retrieve the peaks. The resulting text files contained a 

mass number of t-values and coordinates. A conventional spreadsheet, like 

Excel, was then used to combine the files, discard surplus information and set 

negative peak t-values as negative. 

Figure 6.2 Linux / FSL script used to retrieve the peaks. 
 
 
 
# Retrieve the local positive peaks 
cluster -i ${1} --mm -n 100000 --olmax=${1}_pos.txt -t 0.1 
 
# Create a negative image to subsequently extract negative peaks 
fslmaths ${1} -mul -1 ${1}_neg.nii.gz 
 
# Retrieve the local negative peaks 
cluster -i ${1}_neg --mm -n 100000 --olmax=${1}_neg.txt -t 0.1 
 
# Remove the negative image 
rm ${1}_neg.nii.gz 
 
 
 
Note: the first argument ( ${1} ) is the name of the t-statistical TBSS map. 
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6.2 EXAMPLE: APPLICATION OF THE METHOD 

 

To illustrate the use of the new ES-SDM TBSS template and pre-processing 

algorithm, this section describes a meta-analysis of TBSS studies investigating 

the development of white matter in adolescence. 

This study was published in Schizophrenia Bulletin under the title ‘White matter development 

in adolescence: Diffusion tensor imaging and meta-analytic results’ (Bart D. Peters, Philip R. 

Szeszko, Joaquim Radua, Toshikuza Ikuta, Patricia Gruner, Pamela Derosse, Jian-Ping 

Zhang, Antonio Giorgio, Deqiang Qiu, Susan F. Tapert, Jens Brauer, Miya R. Asato, P.L. 

Khong, Anthony C. James, Juan A. Gallego and Anil K. Malhotra 2012; 38:1308-1317). This is 

a pre-copy-editing, author-produced PDF of an article accepted for publication in 

Schizophrenia Bulletin following peer review. The definitive publisher-authenticated version is 

available online at http://schizophreniabulletin.oxfordjournals.org/content/38/6/1308.long 

 

Note that this publication combines the findings of an analysis of original FA data with the 

results of an ES-SDM TBSS meta-analysis. The PhD candidate was mainly involved in the 

adaptation of ES-SDM for TBSS studies and performing the meta-analysis in close 

collaboration with the first author, Dr Peters. Interestingly, there was a convergence of the 

findings of the analysis of original data and the results of the meta-analysis. 

 

6.2.1 Introduction 

Schizophrenia is considered a neurodevelopmental disorder (Insel 2010), and 

abnormal trajectories of brain development in adolescence have been 

associated with the typical onset of psychosis in late adolescence (Shaw, 

Gogtay et al. 2010). Therefore, study of normal brain maturation across 
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adolescence may provide critical insights into the developmental processes 

involved in the disorder. Considering the strong evidence for brain white matter 

(WM) abnormalities in schizophrenia (Peters, Blaas et al. 2010; Walterfang, 

Velakoulis et al. 2011), study of normal adolescent WM development is highly 

relevant. In particular diffusion tensor imaging (DTI), an MRI measure sensitive 

to microstructural WM changes (Beaulieu 2002), has demonstrated WM 

abnormalities in first-episode and medication-naïve patients and patients at 

clinical high risk for psychosis, suggesting a primary role for WM abnormalities 

in the disease process (Peters, Blaas et al. 2010). Moreover, microstructural 

integrity of specific WM tracts is found to be associated with severity of positive 

symptoms, negative symptoms, or neurocognitive dysfunction in first-episode 

and recent-onset patients, and predictive of psychosis and functional outcome 

in individuals at high risk for psychosis (Peters, Blaas et al. 2010). For example, 

reduced integrity of the superior longitudinal fasciculus (SLF) correlated with 

poorer verbal working memory performance in recent-onset patients (Karlsgodt, 

van Erp et al. 2008). In adolescents at high risk for psychosis, microstructural 

integrity of the inferior longitudinal fasciculus (ILF) predicted social and role 

functioning at 15 month follow-up, and interestingly, failed to show the same 

age-related changes as observed in healthy controls (Karlsgodt, Niendam et al. 

2009). 

Early structural MRI studies have demonstrated global increases in WM 

volume across the lobes (Giedd, Blumenthal et al. 1999), and specific increases 

in WM density of the corticospinal tract (CST) and SLF from childhood into 

adolescence (Paus, Zijdenbos et al. 1999). DTI has demonstrated significant 

increases in fractional anisotropy (FA) from childhood into adolescence and 
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early adulthood (Ashtari, Cervellione et al. 2007; Snook, Plewes et al. 2007), 

suggestive of increasing myelination, fibre packing density, axon diameter or 

fibre coherence (Beaulieu 2002). Voxel-based analyses (VBA) identified FA 

increases in several WM areas, including the posterior limbs of the internal 

capsule (PLIC), left SLF, right cingulum, posterior corpus callosum (CC), and 

left prefrontal WM (Ashtari, Cervellione et al. 2007; Snook, Plewes et al. 2007). 

While VBA has the advantages of unbiased, automated, whole brain 

analyses, limitations include partial volume effects and mis-registration errors. 

Tract-based spatial statistics (TBSS), a variant of VBA designed for DTI data 

(Smith, Jenkinson et al. 2006), minimizes these limitations. Several TBSS 

studies have confirmed increases in FA from childhood into adolescence and 

early adulthood (Giorgio, Watkins et al. 2008; Qiu, Tan et al. 2008; Asato, 

Terwilliger et al. 2010; Bava, Thayer et al. 2010; Brauer, Anwander et al. 2011). 

However, while specific tracts were identified in different studies, clear findings 

are not evident. One study found significant FA increases in the body of the CC 

and right superior corona radiata (sCR) (Giorgio, Watkins et al. 2008), while 

another study did not observe FA increases in the CC, but found increases in 

the right sCR, right PLIC, right SLF, and right anterior thalamic radiation (ATR) 

(Bava, Thayer et al. 2010). Other studies identified more widespread FA 

changes, which included the left SLF (Asato, Terwilliger et al. 2010; Brauer, 

Anwander et al. 2011), anterior limbs of the internal capsule (ALIC) (Qiu, Tan et 

al. 2008), bilateral ILF/inferior fronto-occipital fasciculus (IFOF) (Asato, 

Terwilliger et al. 2010), and right cingulum (Brauer, Anwander et al. 2011). 

These data suggest that FA increases are notable across adolescent 
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development, but variable results limit the specificity, and thus interpretation of 

these findings. 

Therefore, the present study aimed to determine which WM tracts, as 

measured with TBSS, show the most consistent change across adolescence. 

For this purpose, a cohort of 8-21 year-old healthy subjects was assessed using 

DTI, and age-related FA changes were examined with TBSS. Next, the first 

meta-analysis of TBSS studies on healthy adolescent WM development was 

conducted to assess the results in the context of the larger sample sizes 

available with meta-analysis. As normal development is associated with 

changes in frontal lobe functioning (Galvan, Hare et al. 2006), we hypothesized 

that WM tracts connecting the frontal lobe with other cortical and subcortical 

regions would exhibit the most pronounced FA increases. In addition, this study 

evaluated the relationship between neurocognitive performance and the WM 

tracts that were identified in both the original sample and the meta-analysis, to 

provide data on the functional consequences of WM tract development. Finally, 

results are discussed in the context of DTI findings in schizophrenia, to examine 

the extent to which WM regions that actively develop during adolescence may 

also be implicated in the early stages of the disorder. 

 

6.2.2 Methods for the analysis of original DTI-TBSS data 

6.2.2.1 Participants 

Seventy-eight healthy individuals (53% females) between the ages of 8 and 21 

years (mean 15.3±3.7) were recruited through local advertisements and by 

word of mouth. Age distribution was as follows: 8-12 years, n = 16 (21%); 13-17 
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years, n = 33 (42%); 18-21 years, n = 29 (37%). Written informed consent was 

obtained from participants or if the participant was a minor, from a parent or 

guardian; all minors provided assent. Participants had no current or past history 

of a DSM-IV axis I psychiatric disorder as assessed by structured or semi-

structured diagnostic interview. Other exclusion criteria included: (1) intellectual 

disability; (2) learning disability; (3) medications with known adverse cognitive 

effects; (4) MRI contraindications; (5) pregnancy; (6) significant medical illness 

that could affect brain structure. Mean full scale IQ was 106±12, as measured 

using the Wechsler Abbreviated Scale of Intelligence (WASI) for 60 subjects 

and estimated from the Wide Range Achievement Test (WRAT-3) for 12 

subjects (data missing for 6 subjects). Handedness was determined using the 

Edinburgh Handedness Inventory, and median laterality quotient was 0.88 

(range -1 to 1; data missing for 8 subjects). Subjects were administered a 

battery of neurocognitive tests designed to assess attention, executive 

functions, language ability, visuospatial processing, sensorimotor functions, 

memory and learning. This study was approved by the Institutional Review 

Board of the North Shore – Long Island Jewish Health System. 

 

6.2.2.2 DTI Acquisition 

MRI exams were conducted at North Shore University Hospital, Manhasset, NY, 

on a 3T GE scanner (GE Signa HDx; General Electric, Milwaukee, Wisconsin). 

DTI data were acquired using single shot echo planner imaging, and a double 

spin echo to decrease distortions due to eddy currents, with the following 

parameters: TR = 14000ms, TE = minimum, matrix = 128x128, FOV = 240mm, 
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slice thickness = 2.5mm, 51 continuous AC-PC aligned axial slices. A total of 36 

DTI volumes were obtained for each subject that included 31 volumes with 

diffusion gradients applied along 31 non-collinear directions (b = 1000 s/mm2) 

and 5 volumes without diffusion weighting.  

 

6.2.2.3 DTI processing and analysis 

All scans were reviewed by a radiologist to ensure that no gross abnormalities 

were evident. All images were visually inspected and four subjects were 

excluded due to significant motion artefacts. DTI data were processed and 

analyzed using the FMRIB Software Library (FSL)                                                            

( http://www.fmrib.ox.ac.uk/fsl/ ). Head motion and eddy current induced 

distortions were corrected through affine registration of the diffusion-weighted 

images to the first B0 image. The gradient directions were corrected according 

to the rotation parameters. Next, non-brain tissue was removed using the Brain 

Extraction Tool. The DTIFIT tool was then used to fit a diffusion tensor model to 

the raw diffusion data at each voxel, fitting the model with weighted least 

squares. 

Voxel-wise statistical analysis of the FA data was carried out using TBSS 

in FSL (Smith, Jenkinson et al. 2006). First, all subjects' FA data were aligned 

into a common space through nonlinear registration to a target image. Because 

of the age-range of our subjects, registration was done by aligning every FA 

image to every other one, to identify the "most representative" subject, and 

using this as the target image. The target image was then affine-aligned into 

MNI152 standard space, and every image was transformed into 1x1x1mm 
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MNI152 space by combining the obtained nonlinear and linear transformation 

parameters. Next, the mean FA image was created and thinned to create a 

mean FA skeleton which represents the centres of all tracts common to the 

group. The FA threshold for the mean FA skeleton was set at 0.2. Each 

subject's aligned FA data were then projected onto this skeleton and the 

resulting data were fed into voxel-wise cross-subject statistics. To test for local 

correlations between age and FA, permutation-based testing was done and 

inference on the statistic maps carried out using threshold-free cluster 

enhancement (Smith and Nichols 2009). The null distribution was built up over 

5000 random permutations across the image. The clusters were then 

thresholded at a level of P < 0.05, which is fully corrected for multiple 

comparisons (i.e. family-wise error). Anatomical localization of significant WM 

clusters was determined with the probabilistic cortical, subcortical and WM 

tractography atlases provided in FSL, and an MRI atlas of human WM anatomy 

(Mori, Wakana et al. 2005).  

 

6.2.3 Methods for the meta-analysis of DTI-TBSS studies 

A literature search was performed in PubMed (National Library of Medicine; 

http://www.pubmed.com/ ) using the terms ‘Diffusion Tensor Imaging’ AND 

(‘Adolescence OR Development*’). Articles that met inclusion criteria were 

cross-referenced to identify additional studies. Inclusion criteria were: (1) 

application of DTI to assess age-related WM changes in healthy subjects; (2) 

mean age of subjects between 12 and 18 years or inclusion of a child group 

(mean age < 12 years) and a young adult group (mean age > 18 years) for 
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group comparison; (3) analysis of DTI images with TBSS; (4) direct analyses of 

age-FA relationships, either through correlation or group comparison. Studies 

that conducted only age-FA correlations in WM areas that had first 

demonstrated a relationship between FA and a cognitive measure were not 

included. WM FA was the primary DTI measure of interest. Only TBSS results 

that were corrected for multiple comparisons or used a cluster-size threshold 

were included for meta-analysis. 

Meta-analysis was conducted with the special algorithms detailed at the 

beginning of this chapter. T-statistic images were provided by the primary 

authors of three studies (Giorgio, Watkins et al. 2008; Qiu, Tan et al. 2008; 

Bava, Thayer et al. 2010), while for the other two studies we used the peak 

coordinates (Asato, Terwilliger et al. 2010; Brauer, Anwander et al. 2011). 

Based on the empirical validation of ES-SDM described in Chapter 4 (Radua, 

Mataix-Cols et al. 2012), an uncorrected P = 0.005 was used as the main 

threshold. To further reduce the possibility of false positive results, a peak-

height threshold of Z > 1 and extent threshold of 10 voxels were also applied. 

Furthermore, to assess the robustness of findings, sensitivity analyses 

(repeating the meta-analysis leaving one study out each time) were conducted. 

 

6.2.4 Methods for the common analyses 

Tracts that showed significant age-associated increases in FA in both the 

original  sample and the meta-analysis were then investigated in relationship to 

neurocognitive function in the sample. Appropriate neurocognitive tests were 

selected based on reports from the literature relating specific test performance 
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to implicated tracts. Tracts were segmented using probabilistic tractography in 

each subject’s native space (Behrens, Woolrich et al. 2003). Seed regions, way 

points and target regions were drawn on FSL’s MNI152 T1 and FMRIB58 FA 

templates and then transferred to subjects’ native space, using the parameters 

obtained through affine registration of the b0 images to the MNI152 T1 

template. After tractography, each tract was thresholded at a normalized 

probability value, and mean FA of each tract was extracted.  

The relationship between FA and test performance was analyzed using 

linear regression. Because FA and neurocognitive performance are both known 

to improve with age and an association between them could merely arise from 

their association with age, we also tested whether age-related FA changes 

mediate age-related changes in test performance using a mediation model 

(Baron and Kenny 1986). Hierarchical linear regression was performed with age 

first entered as predictor of test performance, and then FA added as a second 

predictor. FA was considered to be a partial mediator of test performance when 

(1) FA was a significant predictor of test performance after adjusting for age; (2) 

FA partially explained an observed age effect, that is, an association between 

age and test performance was attenuated when FA was entered into the model. 

Raw scores of test performances were used. 

Statistical tests were conducted in the Statistical Package for the Social 

Sciences (SPSS), version 11.5.1 (IBM, USA; http://www.spss.com/ ). 
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6.2.5 Results 

6.2.5.1 Analysis of original data 

Overall, significant increases in FA with age were observed bilaterally in deep 

and superficial WM (P < 0.05, corrected; see Figure 6.3A and Table 6.1). In the 

left hemisphere, a cluster of 13,154 voxels included frontal, parietal, temporal 

and occipital WM, and association, projection and interhemispheric pathways. 

In the right hemisphere, a cluster comprised of 2,842 voxels and a cluster of 

861 voxels also included parietal, temporal, frontal and occipital WM, and 

Figure 6.3 Age-related increases in fractional anisotropy. 
 

 
 
(A) Age-related increases in fractional anisotropy (FA) in 78 healthy subjects 8-21 years old (x = -36, y = -16, z = 
31). Significant clusters (red) are overlaid on the mean FA image of all subjects (P < 0.05, corrected).  
 
(B) Age-related increases in FA of the bilateral superior longitudinal fasciculus (SLF) in a meta-analysis of studies 
on healthy adolescent white matter development (x = -36, y = -19, z = 30). Significant clusters (red) are overlaid 
on an MRIcron template ( http://www.mricro.com/mricron ) for display purposes (P < 0.005, Z > 1, > 10 voxels). 
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association, projection and interhemispheric pathways. No significant decreases 

in FA with age were observed. Findings were most significant in the left SLF, 

temporal ILF, frontal IFOF, and frontal ATR (P < 0.025, corrected). 

An asymmetry in the distribution of FA changes was also reflected in the 

number of significant voxels per hemisphere: in the left hemisphere a total of 

13,523 voxels showed a significant relationship with age, and in the right 

hemisphere 4,046 voxels. To explore asymmetry in the strength of the age-FA 

associations, mean FA of the significant voxels in the left hemisphere and the 

right hemisphere were separately correlated with age. Correlations for the left 

hemisphere (r = 0.691, P < 0.001) and the right hemisphere (r = 0.592, P < 

0.001) were significantly different (Steiger procedure; t = 2.96, P = 0.004). 

Table 6.1 White matter clusters showing a positive correlation between age and fractional 
anisotropy in 78 healthy subjects (8-21 years). 
 

Cluster Peak-Coordinate 
(MNI x, y, z) 

Cluster 
Size 

(voxels) 

Hemisphere; 
Lobe 

White Matter Tract 

1 -43, -5, -15 13,154 Left; Frontal, 
Temporal, 
Parietal, 
Occipital 

ATR/ALIC, CC genu & splenium, CR 
posterior & superior, CST, EC, F-minor, 
IFOF, ILF, PLIC, 
PTR/OR/F-major, SLF/AF (frontal and 
parietal), Tapetum, UF 

2 38, -44, 5 2,842 Right; Parietal, 
Temporal, 
Occipital 

CC splenium, CR posterior, CST, IC 
retrolenticular, IFOF & ILF (occipito-
temporal),  PTR/OR, SLF/AF (temporal) 

3 37, -14, 30 861 Right; Parietal, 
Frontal 

SLF (fronto-parietal) 

4 -31, -11, -26 345 Left; Temporal (Parahippocampal WM, anterior; 
Hippocampal WM) 

5 43, -22, 38 234 Right; Parietal (Postcentral gyrus WM) 

6 30, -14, 25 109 Right; Parietal CR superior, EC, SLF 

7 -40, 7, -35 20 Left; Temporal Temporal pole 

8 -39, 6, -26 4 Left; Temporal UF 

 
AF, arcuate fasciculus; ALIC, anterior limb of the internal capsule; ATR, anterior thalamic radiation; CC, corpus 
callosum; CR, corona radiata; CST, cortico-spinal tract; EC, external capsule; F, forceps; IFOF, inferior fronto-
occipital fasciculus; ILF, inferior longitudinal fasciculus; OR, optic radiation; PLIC, posterior limb of internal 
capsule; PTR, posterior thalamic radiation; SLF, superior longitudinal fasciculus; UF, uncinate fasciculus; WM, 
white matter. 
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6.2.5.2 Meta-analysis 

Seven identified studies met the inclusion criteria for the meta-analysis. One 

study was excluded because did not report direct age-FA correlations, but a 

voxel-wise ‘developmental timing quotient’ (Colby, Van Horn et al. 2010). 

Another study was excluded because the subjects of that study showed 

complete overlap with a previous study (Giorgio, Watkins et al. 2008; Giorgio, 

Watkins et al. 2009). Thus, five studies were included in the meta-analysis (see 

Table 6.2) (Giorgio, Watkins et al. 2008; Qiu, Tan et al. 2008; Asato, Terwilliger 

et al. 2010; Bava, Thayer et al. 2010; Brauer, Anwander et al. 2011). Asato et 

al. performed group-comparisons of different age groups, as well as continuous 

age-FA correlations across all subjects (Asato, Terwilliger et al. 2010). The 

latter analysis was included in the meta-analysis.  

Table 6.2 Studies included in meta-analysis of diffusion tensor imaging studies on healthy 
white matter development. 
 

Study Age N Sex 
(% F) 

MR Field 
Strength 

Slice  
Thickness 

Diffusion 
Directions 

Mean±SD Range 

Asato et al. 2010 15.5±4.5 8-28 114 55 3T 4mm 6 (NEX = 14) 

Bava et al. 2010 17.8±1.4 16-21 22 32 3T 3mm 15 (NEX = 4) 

Brauer et al. 2010 7.0±1.1  
27.8±2.7a  

6-9 
24-32 

20 50 3T 1.7mm 60 

Giorgio et al. 2008 16.0±1.8 13.5-21 42 48 1.5T 2.5mm 60 

Qiu et al.  2008 10.3±0.5  
22.8±2.3a 

9-12  
19-26 

51 47 3T 3mm 6 (NEX = 4) 

 
NEX, number of excitations; F, Female. 
a Mean age for two separate age groups with a bimodal age distribution. 
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Meta-analysis of these five studies showed significant FA increases in 

the fronto-parietal sections of the bilateral SLF, bilateral ILF, bilateral ALIC 

(mainly in the left hemisphere) containing the ATR, left cingulate/body of the 

CC, and bilateral PLIC (see Table 6.3). It must be noted here that the ILF runs 

close to the IFOF in this part of the temporal lobe, and therefore this cluster may 

have included some inferior parts of the IFOF. Of the identified eight clusters, 

the cluster in the right PLIC and ALIC/ATR, and the cluster in the left 

cingulate/body of the CC did not correspond to regions found in the original 

sample. The other six clusters corresponded closely with regions found in the 

sample. When the results from the sample were included in the meta-analysis, 

the results were the same regarding location, size and significance of the 

Table 6.3 White matter clusters showing a positive association between age and fractional 
anisotropy in a meta-analysis of studies on healthy adolescent development. 
 

Cluster Peak-
Coordinate (MNI 

x, y, z) 

Cluster 
Size 

(voxels) 

Z-value P-Value1 
(uncorrected) 

White Matter  
Area/Tract 

1 41, -20, 33 79 3.9 P < 0.00001 Superior Longitudinal Fasciculus, 
Right 

2 -37, -15, 27 71 3.6 P = 0.00001 Superior Longitudinal Fasciculus, 
Left 

3 48, -19, -20 33 3.4 P = 0.00008 Inferior Longitudinal Fasciculus, 
Right 

4 -16, 16, -2 22 3.3 P = 0.00015 Anterior Limb of Internal Capsule/ 
Anterior Thalamic Radiation, Left 

5 -45, -12, -27 28 3.2 P = 0.00033 Inferior Longitudinal Fasciculus, 
Left 

6 12, 2, 5 17 3.1 P = 0.00071 Posterior and Anterior Limbs of 
Internal Capsule/ Anterior 
Thalamic Radiation, Right 

7 -9, 7, 27 11 3.0 P = 0.00119 Cingulate/ Corpus Callosum, Left 

8 -16, -7, 4 15 2.9 P = 0.00171 Posterior Limb of Internal 
Capsule, Left 

 
Note: Zucker Hillside data not included 
 
1 P-values were obtained with a permutation test. 
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clusters, with the exception that the cluster in the left cingulate/body of the CC 

was no longer significant.  

There was no asymmetry observed in the distribution of the significant 

clusters in the meta-analysis, except for few more significant voxels in the left 

ALIC as compared to the right ALIC. 

Sensitivity analyses showed that the identified WM tracts were consistent 

across the different studies. The bilateral SLF was highly consistent, 

independent from any individual study being discarded, and comprised the two 

largest clusters (see Figure 6.3B). The left ILF was no longer significant when 

the largest study was excluded from the analysis (Asato, Terwilliger et al. 2010), 

and the right ALIC and PLIC were no longer significant when either the largest 

study or one study with medium sample size was excluded (Qiu, Tan et al. 

2008; Asato, Terwilliger et al. 2010). The left ALIC was no longer significant 

when either of the two studies with medium sample sizes was excluded 

(Giorgio, Watkins et al. 2008; Qiu, Tan et al. 2008), as well as the left PLIC 

when one of these studies was excluded (Qiu, Tan et al. 2008).  

 

6.2.5.3 Neurocognitive correlates of SLF development 

As the SLF was the most consistent and robust finding in the original  sample 

and in the meta-analysis, we assessed the relationship between FA of the SLF 

and neurocognitive domains, which have previously been related to SLF WM 

integrity: verbal fluency (controlled oral word association test) (Phillips, Clark et 

al. 2010), reading ability (WRAT-3) (Hoeft, McCandliss et al. 2010), vocabulary 

(WASI vocabulary score) (Tamnes, Ostby et al. 2010), verbal working memory 
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(University of Maryland letter-number span) (Karlsgodt, van Erp et al. 2008; 

Ostby, Tamnes et al. 2011), and spatial working memory (Wechsler Memory 

Scale 3 spatial span) (Vestergaard, Madsen et al. 2010). The left and right SLF 

were tracked in each subject with probabilistic tractography (Behrens, Woolrich 

et al. 2003), by placing a seed region in the frontal part of the SLF (just anterior 

to the precentral gyrus), a way point in the frontal SLF just posterior to the seed 

region, a second way point in the middle temporal gyrus (MTG), and an 

exclusion mask that terminated fibres running anterior to the seed region, 

inferior to the way point in the MTG or into MTG grey matter. The bilateral SLF 

of each subject was then thresholded at a normalized probability value of 0.01 

(see Figure 6.4A). FA-neurocognition relationships could not be assessed in all 

subjects due to either failure of the probabilistic tractography algorithm (n = 12) 

and/or missing neurocognitive data (n = 14 for verbal fluency; n = 12 for reading 

ability, verbal working memory and spatial working memory; n = 18 for 

vocabulary).  

As results were similar for the left and right SLF, results are presented for 

mean FA of the bilateral SLF. FA of the SLF significantly predicted verbal 

fluency (beta = 0.436, t = 3.6, P = 0.001; n = 56) and verbal working memory 

performance (beta = 0.313, t = 2.5, P = 0.018; n = 57). There were trends for FA 

to predict reading ability (beta = 0.257, t = 2.0, P = 0.053; n = 57) and spatial 

working memory performance (beta = 0.227, t = 1.7, P = 0.089; n = 57), but not 

vocabulary (P > 0.1; n = 51). Next, verbal fluency and verbal working memory 

performance were each entered in a separate mediation model with age and FA 

as predictor variables. FA of the SLF partially mediated increases in verbal 

fluency as a function of increasing age: (1) age was a significant predictor of 
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verbal fluency (beta = 0.443, t = 3.6 , P = 0.001), and this correlation was 

reduced when FA of the SLF was added to the model (beta = 0.302 t = 2.2, P = 

0.030); (2) FA was a significant predictor of verbal fluency independent of the 

age effect (beta = 0.287, t = 2.1, P = 0.039) (see Figure 6.4B and Figure 6.5). 

Age was also a significant predictor of verbal working memory performance 

(beta = 0.513, t = 4.4, P < 0.001), but FA of the SLF was not a predictor of 

verbal working memory performance independent of the age effect (beta = 

0.071, t = 0.5, P = 0.604). 

Because language function has been associated with structural 

lateralization, we explored the effects of lateralization of the SLF on the 

examined language-related measures (i.e. verbal fluency, verbal working 

memory, reading ability, and vocabulary). Lateralization of FA values in the SLF 

Figure 6.4 Left superior longitudinal fasciculus as visualized with probabilistic tractography 
and relationship of its fractional anisotropy with age and verbal fluency 
 

 
 
 (A)  Left superior longitudinal fasciculus (SLF) as visualized with probabilistic tractography; averaged from 66 
healthy subjects 8-21 years old, and overlaid on the MNI152 T1 template for display purposes. 
 
(B) Fractional anisotropy (FA) of the bilateral SLF partially mediated an observed relationship between age and 
verbal fluency. Strength of the relationships is indicated by the standardized regression coefficients (P < 0.05). 
Age and FA of the SLF were both significant predictors of verbal fluency performance, but the coefficient for age 
was reduced from 0.443 to 0.302 by the presence of the SLF, which in turn was a significant predictor of verbal 
fluency independent of the age effect. 
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([FA left SLF – FA right SLF] / [FA left SLF + FA right SLF] / 2) was not 

significantly associated with these measures (P > 0.1).   

When the analysis was restricted to right-handed subjects (Edinburgh 

lateralization index > 0.7) there appeared a trend for lateralization to predict 

poorer verbal working memory performance (beta = -0.286, t = -1.9, P = 0.067). 

Figure 6.5 Correlations between fractional anisotropy (FA) of the superior longitudinal 
fasciculus (SLF), age and verbal fluency in 8-21 year old healthy subjects 
 

 
 
 
Top panel: age significantly predicted FA of the SLF (beta = 0.492, t = 4.3, P < 0.001; n = 56). 
 
Middle panel: age significantly predicted verbal fluency (not adjusted for FA; beta = 0.443, t = 3.6 , P = 0.001; n = 
56). 
 
Bottom panel: FA was a significant predictor of verbal fluency (not adjusted for age; beta = 0.436, t = 3.6, P = 
0.001; n = 56). 
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6.2.6 Discussion 

This study reports bilateral increases in FA with age in a large sample of healthy 

children, adolescents and young-adults, with an asymmetric distribution 

favouring the left hemisphere. This is consistent with previous DTI-TBSS 

studies that have investigated WM development from childhood into early 

adulthood, although the identified WM tracts partially vary between the study 

reported here and other studies (Giorgio, Watkins et al. 2008; Qiu, Tan et al. 

2008; Asato, Terwilliger et al. 2010; Bava, Thayer et al. 2010; Brauer, 

Anwander et al. 2011). This variation in findings may be related to the 

differences in age range of included subjects, DTI methodology, and inter-

individual differences in WM development. A meta-analysis of these studies 

was therefore performed to identify which fibre tracts show the most 

pronounced development across adolescence. The meta-analysis identified 

increases in FA that were most consistent and robust in the bilateral SLF, and 

less consistent in the bilateral ILF, ALIC/ATR, and posterior PLIC. A left>right 

asymmetry of age effects on FA was not confirmed by the meta-analysis. 

These results concur with findings of DTI studies that have utilized other 

analysis approaches than TBSS to study healthy WM development. Several DTI 

tractography studies have also observed FA increases from childhood into early 

adulthood in the SLF (Lebel, Walker et al. 2008; Giorgio, Watkins et al. 2009; 

Verhoeven, Sage et al. 2009), ILF (Giorgio, Watkins et al. 2009; Verhoeven, 

Sage et al. 2009), ALIC (Lebel, Walker et al. 2008), and ATR (Verhoeven, Sage 

et al. 2009). In conventional VBA studies, the most consistently identified areas 

of change between childhood and early adulthood were the left SLF and the 

bilateral PLIC (Ashtari, Cervellione et al. 2007; Snook, Plewes et al. 2007). A 
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pronounced FA increase in the SLF during adolescence concurs with the cross-

sectional analysis by Lebel et al., who calculated that, while FA values of major 

WM tracts reach their plateau at different age periods, the SLF peaks between 

15 and 20 years of age (Lebel, Walker et al. 2008). The uncinate fasciculus and 

the cingulate were calculated to mature last in early adulthood (Lebel, Walker et 

al. 2008). Therefore it may be considered unexpected that this study did not 

identify significant changes in these tracts. This apparent discrepancy may be 

related to the mean age and age range of the included samples, which focused 

the present study on detecting FA changes in middle to late adolescence. In a 

longitudinal follow-up study, Lebel et al. confirmed substantial FA increases in 

the SLF between 8 and 22 years of age, while the uncinate showed much less 

FA increases in this period and the cingulate somewhat more increases than 

the uncinate, but to a lesser extent than the SLF (Lebel and Beaulieu 2011). 

This observed protracted development of the uncinate fasciculus and cingulate 

with more gradual FA increases from childhood into early adulthood suggests, 

together with the results of this study, that adolescence is not a key period in 

which these tracts undergo most active development. 

Neurocognitive correlates of the SLF were tested in the original sample 

to identify which cognitive functions the SLF serves during healthy 

development. Among five neurocognitive tests in the domains of language and 

working memory, FA of the SLF was significantly associated with performance 

on a verbal fluency test, and partially mediated increases in verbal fluency as a 

function of increasing age. This finding is in agreement with a previous DTI 

study in young adults that found an association between SLF WM integrity and 

verbal fluency (Phillips, Clark et al. 2010). Indeed, there is substantial evidence 
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from neuroimaging studies that the SLF plays a critical role in human language 

development. For example, Brauer et al. (2011) found in adults that the SLF 

connects the language network of Broca’s and Wernicke’s areas, while in 

children the language network also included a ventral pathway through the 

external capsule, suggesting that language development is paralleled by 

maturation of the SLF. Moreover, in children with dyslexia, improvement in 

reading skills was predicted by higher FA in the right SLF, compared to children 

without dyslexia (Hoeft, McCandliss et al. 2010). In this study, higher FA of the 

SLF predicted better reading ability at trend level, but did not predict vocabulary 

score, in contrast with a previous DTI study in healthy children (Tamnes, Ostby 

et al. 2010). Three segments of the dorsal language network have been 

identified with DTI tractography in healthy adults, consisting of a ‘direct’ pathway 

between Wernicke’s and Broca’s area (i.e. the SLF), and two ‘indirect’ 

segments in close proximity to the direct pathway, connecting Broca’s area with 

the inferior parietal lobe (IPL) and the IPL with Wernicke’s area (Catani, Allin et 

al. 2007). The SLF as obtained with the tractography algorithm used in this 

study most likely comprised the ‘direct’ pathway, because this pathway runs 

continuously from frontal to temporal, corresponding with the frontal seed region 

and temporal way point.  

FA of the SLF did not predict spatial working memory performance in this 

study, contrary to another DTI study in healthy children (Vestergaard, Madsen 

et al. 2010). However, an association between verbal working memory 

performance and FA of the SLF was observed, which is consistent with 

previous DTI studies that have implicated the SLF in verbal working memory 

performance in healthy children, adolescents and young adults (Karlsgodt, van 
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Erp et al. 2008; Ostby, Tamnes et al. 2011). Working memory may be served by 

other components of the SLF than those associated with language (Makris, 

Kennedy et al. 2005). A detailed tractography study of the SLF in healthy adults 

identified two subcomponents of the SLF additional to the central core of the 

SLF (as measured in this study), which connected several parietal and frontal 

areas including the dorsolateral prefrontal cortex (Makris, Kennedy et al. 2005). 

In this study, FA of the SLF was no longer a significant predictor of verbal 

working memory performance after adjusting for age. This is an important 

dilemma in developmental studies: increases in neurocognitive performance 

potentially correlate with growth of neural structures simply because of their 

association with age, yet correcting for age leads to the association with brain 

structure being co-varied out.  

Little effect of lateralization of FA values in the SLF on measures of 

language function was found. Catani et al. found in healthy adults that leftward 

lateralization of the reconstructed fibres of the SLF was associated with lower 

verbal recall score (Catani, Allin et al. 2007). These results indicate that 

language function is not significantly associated with lateralization of FA in the 

SLF, while a more symmetric distribution of SLF fibres may be advantageous 

for remembering words. 

The SLF has been implicated in the pathophysiology of schizophrenia, 

and the results of this study suggest that abnormal development of the SLF 

during adolescence may play a key role in the pathophysiology of the disorder. 

In patients with first-episode or recent-onset schizophrenia and patients at 

clinical high risk for psychosis, reduced FA was identified in the SLF, and 

correlated with poorer verbal working memory performance in the recent-onset 
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patients (Karlsgodt, van Erp et al. 2008; Karlsgodt, Niendam et al. 2009; Perez-

Iglesias, Tordesillas-Gutierrez et al. 2009). Higher FA values in the SLF have 

been related to auditory hallucinations in chronic patients (Hubl, Koenig et al. 

2004). A key role for the SLF in schizophrenia is consistent with its role in 

working memory and language, as these faculties are significantly compromised 

in patients and their relatives (Snitz, Macdonald et al. 2006; Greenwood, Braff 

et al. 2007). Indeed, it has been proposed that the emergence of language 

during human evolution has been fundamental to the evolution of schizophrenia 

(Crow 2000). 

A possible limitation of the meta-analysis is the difference in age range 

between the studies. Nonetheless, despite these differences in age range, all 

studies included the period of late adolescence/early adulthood. A second 

limitation is the limited number of TBSS studies that were available for the 

meta-analysis. A significant strength of our meta-analysis, however, is that 

original t-statistic maps were available for most of the included studies, thus 

allowing significantly more accurate results than if estimations had been 

conducted from only a few reported peak coordinates. The t-statistic images 

were not available for two studies (Giorgio, Watkins et al. 2008; Bava, Thayer et 

al. 2010), but in the validation study of ES-SDM (see Chapter 4) it was found 

that including t-statistic images for as few as 10-20% of the studies greatly 

enhances the sensitivity of the meta-analysis (Radua, Mataix-Cols et al. 2012). 

In conclusion, DTI has provided valuable insights into healthy WM 

development in adolescence. Findings with TBSS highlight increasing 

connectivity in the SLF during this period and implicate the SLF as a specific 

target for neurodevelopmental disorders such as schizophrenia. The functional 
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correlates of WM changes remain a critically understudied area, especially 

regarding the cognitive, emotional and behavioural changes that occur in 

adolescence. Our results confirm the role of the SLF in language development, 

and to some extent in verbal working memory. Other important future areas of 

investigation concern those genes that play a role in WM maturation, and how 

risk genes may contribute to development of WM abnormalities. Large studies 

applying multi-modal imaging, combined with genomics and comprehensive 

clinical and neurocognitive assessments can answer these questions. 

Moreover, longitudinal designs will have greater power to provide more insight 

into the WM trajectories that may contribute to neurodevelopmental disorders. 
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6.3 OVERALL DISCUSSION 

 

An increasingly-used statistical approach to assess the integrity of the white 

matter tracts consists on projecting the values of the voxels into one-

dimensional tracts, and then conducting the comparisons on these tracts (i.e. 

‘tract-based spatial statistics’, TBSS). Unfortunately, the meta-analysis of such 

studies is not straightforward because the tracts of individual studies show an 

incomplete overlap. 

This chapter described the creation of a TBSS meta-analytic template as 

well as a new procedure to allow TBSS meta-analyses. Briefly, the latter 

consists of retrieving a mass number of low-thresholded local peaks from the 

original t-statistical maps and then incorporating the effect size of these peaks 

into the ES-SDM algorithms introduced in Chapter 4. Also, a practical 

application of the method to the study of white matter fractional anisotropy 

changes during adolescence has been presented, showing considerable 

promise. 
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CHAPTER 7 

Multi-modal meta-analyses 

 

 

7.1 THEORY 

 

This method was published in Current Medicinal Chemistry under the title 

‘A general approach for combining voxel-based meta-analyses conducted 

in different neuroimaging modalities’ (Joaquim Radua, Margarita Romeo, 

David Mataix-Cols and Paolo Fusar-Poli 2012; in Press). 

Please find the publisher-authenticated version at: 

http://dx.doi.org/10.2174/0929867311320030017
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7.2 EXAMPLE: APPLICATION OF THE METHOD 

 

To illustrate the practical uses of the new algorithm, this section describes a 

multi-modal meta-analysis of structural and functional MRI studies in first 

episode of psychosis (FEP).  

 

This study was published in Neuroscience & Biobehavioral Reviews under the 

title ‘Multimodal meta-analysis of structural and functional brain changes in first 

episode psychosis and the effects of antipsychotic medication’ (Joaquim Radua, 

Stefan Borgwardt, Alessandra Crescini, David Mataix-Cols, Andreas Meyer-

Lindenberg, Philip McGuire and Paolo Fusar-Poli 2012; 36:2325:2333). 

The definitive publisher-authenticated version is available online at 

http://dx.doi.org/10.1016/j.neubiorev.2012.07.012 

 

7.2.1 Introduction 

Neuroimaging studies in early psychosis promise to identify core 

neurobiological alterations at the onset of the disorder (Fusar-Poli, Allen et al. 

2008; McGuire, Howes et al. 2008). However, despite the impressive growth of 

functional and structural studies, neuroimaging has yet to become an 

established as diagnostic, let alone prognostic, instrument in this area, partly as 
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a result of significant heterogeneity across the findings from research studies 

(Fusar-Poli and Broome 2006). These inconsistent and conflicting findings may 

be the result of inter-study differences in sampling methods, sociodemographic 

and clinical characteristics, and imaging parameters. In addition, recent 

evidence has indicated that even brief term treatment with antipsychotics can 

affect both the function (Fusar-Poli, Broome et al. 2007) and the structure 

(Smieskova, Fusar-Poli et al. 2009) of the brain during the early phase of the 

disorder. 

To address these issues, we previously conducted meta-analyses of 

structural and functional neuroimaging studies in the early phase of psychosis 

or in medication-naïve psychotic subjects (Fusar-Poli, Perez et al. 2007; Fusar-

Poli, Borgwardt et al. 2011; Fusar-Poli, Radua et al. 2011). In much of this 

research, there is an implicit assumption that structural abnormalities are linked 

to functional abnormalities in the brain regions found so affected, or the 

functional circuits in which they take part. However, this is not necessarily the 

case since volumetric changes can occur without clear functional correlates, for 

example as a consequence of nutritional or hydration status, or other confounds 

(e.g. (Weinberger and McClure 2002)), and vice versa. To understand the 

systems-level neurobiology of first episode psychosis (FEP), it is therefore 

important to know which brain regions, if any, show conjoint abnormalities in 

both structure and function. There is some evidence from individual studies 

indicating that reduction of regional grey matter volume (GMV) is associated 

with an impaired brain function during cognitive tasks during the Ultra High Risk 

(UHR) phase (Fusar-Poli, Broome et al. 2011). Although some individual 

multimodal studies in early psychosis are available (Fusar-Poli, Broome et al. 
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2009; Fusar-Poli, Howes et al. 2009; Fusar-Poli, Howes et al. 2010; Fusar-Poli, 

Stone et al. 2011), this issue is yet to be addressed across multiple studies, 

using a meta-analytical approach.  

The novel multimodal voxel-based meta-analytical method presented at 

the beginning of the chapter was applied to overcome this limitation. 

Specifically, the hypothesis tested in this study was that FEP patients would 

show both structural and functional alterations in the same brain regions. On the 

basis of the new multimodal meta-analytical method, structural and functional 

findings were summarized in a single meta-analytic map, by assessing which 

brain regions showed both structural and functional abnormalities in subjects 

with a FEP. A number of potential confounding factors, including exposure to 

antipsychotics, were also investigated. 

 

7.2.2. Methods 

7.2.2.1 Search strategies  

A systematic search strategy was used to identify relevant studies. Two 

independent researchers (PFP, AC) conducted a two-step literature search. 

First, a PubMed and Embase search was performed to identify putative studies 

reporting structural or functional imaging studies in subjects with a FEP. 

Consistent with the cross-diagnostic approach in the early phases of psychosis 

(Fusar-Poli, Bechdolf et al. 2012), FEP was defined as including both 

schizophrenia spectrum psychoses (schizophrenia, schizoaffective, 

schizophreniform) and affective psychoses (bipolar psychosis and psychotic 

depression) (Fusar-Poli, Borgwardt et al. 2011; Fusar-Poli, Bechdolf et al. 
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2012). The search was conducted up to June 2011, with no time span specified 

for date of publication. The following search terms were used: “psychosis”, 

“schizophrenia”, “MRI” (magnetic resonance imaging), “fMRI” (functional MRI), 

“PET” (positron emission tomography), and “SPECT” (single photon emission 

computed tomography). In a second step the reference lists of the articles 

included in the review were manually checked for any studies not identified by 

the computerized literature search. Although there was no language restriction, 

all the included papers were in English. 

 

7.2.2.2 Selection criteria 

Studies were included if they met the following criteria: (a) were reported in an 

original paper in a peer-reviewed journal, (b) had involved subjects with a FEP 

and a control group, (c) had employed whole brain structural or functional 

imaging in both groups. To minimize the heterogeneity of the functional imaging 

paradigms, only studies employing cognitive tasks were included. Studies not 

using cognitive paradigms or only reporting region of interests (ROIs) findings 

were excluded. Similarly, coordinates relative to analyses employing small 

volume corrections (SVC) in preselected ROIs were not included. Authors of 

studies where Talairach or Montreal Neurological Institute (MNI) coordinates 

(necessary for the voxel-level quantitative meta-analysis) were not explicitly 

reported were contacted to reduce the possibility of a biased sample set. In 

cases where the same or similar samples were used in separate papers, only 

data from the analysis of the largest sample were included. Studies were 

independently ascertained and checked by the two researchers and inclusion 
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and exclusion criteria were evaluated by consensus. To achieve a high 

standard of reporting ‘Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses’ (PRISMA) guidelines were adopted. 

 

7.2.2.3 Recorded variables 

The recorded variables for each article included in the meta-analysis were: 

assessment instruments, sample size, gender, mean age of participants, 

imaging package employed, full width at half maximum (FWHM) of the 

smoothing kernel, magnet intensity and exposure to antipsychotics. The 

statistical significance of the main findings and the method employed to correct 

the whole-brain results for multiple comparisons were also recorded. These 

data are comprehensively reported in the Table 7.2 to assist the reader in 

forming an independent view on the following discussion.  

 

7.2.2.4 Standard meta-analyses of structural and functional abnormalities 

Separate voxel-based meta-analyses of regional GMV and functional brain 

response abnormalities were conducted with the effect-size version of SDM 

(ES-SDM) exposed in Chapter 4 (Radua and Mataix-Cols 2009; Radua and 

Mataix-Cols 2012; Radua, Mataix-Cols et al. 2012), which has been already 

used to meta-analyze studies on several neuropsychiatric disorders including 

schizophrenia and bipolar disorder (Bora, Fornito et al. 2010; Bora, Fornito et al. 

2011; Palaniyappan, Balain et al. 2012). Default ES-SDM kernel size and 

thresholds were used (FWHM=20mm, voxel P=0.005, peak height Z=1, cluster 

extent=10 voxels) (Radua, Mataix-Cols et al. 2012).  
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Robustness of the significant results was assessed by means of 

exploration of the residual heterogeneity, as well as by jack-knife and subgroup 

analyses. Specifically, the funnel plots of the peaks of maximum heterogeneity 

were examined in order to check whether findings might had been driven by few 

or small noisy studies, or to detect any gross abnormality such as studies 

reporting opposite results (Radua, Mataix-Cols et al. 2012). As regard to the 

jack-knife analyses, these consisted of systematically repeating the meta-

analyses after excluding one study at a time. Finally, separate subgroup 

analyses were conducted for those studies using 1.5 Tesla (T) scanners, those 

studies using statistical parametric mapping (SPM) software, those studies 

using typical smoothing kernels (12mm in VBM, 8mm in fMRI), those studies 

correcting for multiple comparisons, those studies where most of the patients 

were males, and in the functional meta-analysis, those studies using MRI 

scanners and those employing memory tasks. 

It must be noted that as shown in Figure 7.6, patients may have different 

functional abnormalities which all would be detected as increases of the blood-

oxygen-level dependent (BOLD) response, i.e. “patients > controls”. In this 

meta-analysis, differences in that direction were understood as either 

hyperactivations or failures of deactivation. 
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7.2.2.5 Multimodal analysis of structural and functional response 

In order to summarize structural and functional findings in a single meta-analytic 

map, this study assessed which brain regions showed both structural and 

functional abnormalities using the method presented at the beginning of the 

chapter. It must be noted that our analysis did not aim to detect correlations 

between structural and functional abnormalities, either in the same or different 

regions – as it could be the case when a structural damage in a given cortical 

region produces a functional alteration in another brain region. Rather, the aim 

of this study was to localize those brain regions which display both structural 

and functional abnormalities in FEP. It could be, for instance, that some patients 

present structural but not functional impairment, whilst other patients show 

functional but not structural impairment. In that case, the meta-analysis should 

Figure 7.6 Examples of BOLD response abnormalities which would be detected as an increase 
of the BOLD response (i.e. patients > controls) 
 

 
 
Red curves: simulated BOLD responses in patients. Black curves: simulated BOLD responses in healthy controls. 
 
Note: As shown in the figure, patients may have different functional abnormalities which all would be detected as 
an increase of the BOLD response, i.e. patients > controls. One abnormality may consist in patients showing 
stronger activations than controls (i.e. patients hyper-activate, panel A). Conversely, another abnormality may 
consist in patients showing weaker deactivations than controls (i.e. patients fail to deactivate, panel B). Finally, 
there is room for more sophisticated abnormalities, such as patients displaying activations whilst controls 
deactivate, or any of these abnormalities be explained by anomalies of the baseline activity (e.g. panel C). 
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detect both structural and functional impairments, and thus signal the region as 

multi-modally-affected. 

 

7.2.2.6 Meta-regression analysis 

The following variables were explored by means of meta-regression: mean age 

of the patients, and use of antipsychotic medication (percentages of naïve- and 

drug-free patients). As in previous meta-analyses, in order to minimize the 

detection of spurious relationships the probability threshold was decreased to 

0.0005, abnormalities were required to be detected both in the slope and in one 

of the extremes of the regressor (e.g. in studies where 0% or where 100% of 

the patients were receiving medication), and findings in regions other than those 

detected in the main analyses were discarded (Radua and Mataix-Cols 2009). 

Finally, regression plots were visually inspected to discard fittings driven by too 

few studies. 
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7.2.3. Results 

7.2.3.1 Number of studies found 

Forty-three studies met inclusion criteria (Figure 7.7). Specifically, in the 

structural meta-analysis 965 FEP subjects (mean age 24, range 15-35 years; 

34% females; 76% receiving antipsychotic treatment), matched with 1040 

controls (mean age 26, range 15-35 years; 34% females), were included. The 

cognitive tasks functional imaging cohort included 362 FEP subjects (mean age 

26, range 19-36 years; 31% females; 53% receiving antipsychotic treatment), 

matched with 403 controls (mean age 27, range 23-39 years; 39% females). 

Figure 7.7 Diagram of studies included in the present meta-analysis 
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Cognitive tasks according to the clustering based on the MATRICS domains 

(Fusar-Poli, Deste et al. 2012) were attention (5), processing speed (1), verbal 

fluency (5), working memory (6), visual memory (1). The vast majority of the 

studies included in the meta-analysis recruited healthy subjects in the control 

group. All the contrasts included consisted in pairwise comparisons between 

patients and well-matched controls. Details of the included studies are 

presented in the Table 7.2. 

 

7.2.3.2 Changes in regional grey matter volume 

Patients with a FEP showed large and robust bilateral decreases of GMV in a 

peri-Sylvian cluster that included the insula, operculum and the superior 

temporal gyrus, and in the medial frontal and anterior cingulate cortices (Figure 

7.8A and Table 7.3). Patients had relatively greater GMV than controls in the 

Figure 7.8 Separate meta-analyses of structural and functional abnormalities in first psychotic 
episode 
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right lingual gyrus and left precentral gyrus. The analyses of robustness showed 

that all these results were highly replicable (Table 7.4). 

 

 

 

Table 7.3 Grey matter volume abnormalities in first psychotic episode 
 
 Talairach 

Coordinates 
SDM 

z-value (a) 
P Value (b) No. of 

voxels (c) 
Breakdown 

(No. of voxels) (c) 
      
Increases of GMV (patients > controls) 
 

     

Right lingual gyrus 14,-94, -8 1.905 0.00001 306 Right BA 18 (193) 
Right BA 17 (101) 

 
Left precentral gyrus -8,-18, 66 1.550 0.0003 111 Left BA 6 (67) 

Left BA 4 (30) 
Left BA 3 (14) 

 
Decreases of GMV (patients < controls) 
 

     

Left insula / middle and superior temporal 
/ precentral gyri 

-42,  6,  8 -4.536 ~0 1696 Left BA 13 (347) 
Left BA 22 (268) 
Left BA 44 (145) 
Left BA 9 (142) 
Left BA 6 (125) 

Left BA 38 (124) 
Left BA 21 (123) 
Left BA 47 (85) 
Left BA 45 (62) 
Left BA 41 (58) 
Left BA 43 (46) 
Left BA 8 (37) 
Left BA 46 (33) 
Left BA 42 (22) 
Left BA 4 (12) 
Left BA 40 (10) 

 
Right insula / middle and superior 
temporal / precentral gyri 

46,  2,-10 -4.349 0.0000003 699 Right BA 13 (185) 
Right BA 22 (124) 
Right BA 44 (102) 
Right BA 41 (42) 
Right BA 47 (41) 
Right BA 45 (39) 
Right BA 38 (38) 
Right BA 21 (32) 
Right BA 40 (29) 
Right BA 42 (16) 

 
Medial frontal / anterior cingulate cortices 4,  2, 36 -3.540 0.00006 600 Bilateral BA 24 (222) 

Bilateral BA 32 (186) 
Right BA 8 (53) 

Bilateral BA 10 (51) 
Bilateral BA 9 (49) 

Right BA 6 (31) 
 

 
(a) Voxel probability threshold: p = 0.005 
(b) Peak height threshold: z = 1 
(c) Cluster extent threshold: 100 voxels. Regions with less than 10 voxels are not reported in the cluster breakdown. 
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7.2.3.3 Changes in regional brain response to cognitive tasks 

Patients with a FEP showed functional abnormalities in the right insula / 

superior temporal gyrus, as well as in the medial frontal / anterior cingulate 

cortices. However, the basis of the difference in activation varied within these 

clusters. In the anterior part of the right insula and in the dorsal anterior 

Table 7.4 Grey matter volume abnormalities in first psychotic episode: robustness analyses 
 
 GMV increase  GMV decrease 
 R lingual 

gyrus 
L precentral 

gyrus 
 L insula / 

temporal 
gyrus 

R insula / 
temporal gyrus 

Medial frontal / 
anterior 

cingulate 
Jackknife analysis       
All studies but Berge et al. Yes Yes  Yes Yes Yes 
All studies but Chua et al. Yes Yes  Yes Yes Yes 
All studies but de Castro-Manglano et al. Yes Yes  Yes Yes Yes 
All studies but Douaud et al. Yes Yes  Yes Yes Yes 
All studies but Farrow et al. Yes Yes  Yes Yes Yes 
All studies but Janssen et al. Yes Yes  Yes Yes Yes 
All studies but Jayakumar et al. Yes Yes  Yes Yes Yes 
All studies but Job et al. Yes Yes  Yes Yes Yes 
All studies but Kasparek et al. Yes Yes  Yes Yes Yes 
All studies but Kubicki et al. Yes Yes  Yes Yes Yes 
All studies but Lui et al. Yes Yes  Yes Yes Yes 
All studies but Mane et al. Yes Yes  Yes Yes Yes 
All studies but Meda et al. Yes Yes  Yes Yes Yes 
All studies but Meisenzah et al.l Yes Yes  Yes Yes Yes 
All studies but Molina et al. Yes Yes  Yes Yes Yes 
All studies but Morgan et al. Yes Yes  Yes Yes Yes 
All studies but Prased et al. Yes Yes  Yes Yes Yes 
All studies but Salgado-Pineda et al. Yes Yes  Yes Yes Yes 
All studies but Schaufelberger et al. Yes Yes  Yes Yes Yes 
All studies but Kasparek et al. Yes Yes  Yes Yes Yes 
All studies but Smesny et al. Yes Yes  Yes Yes Yes 
All studies but Venkatasubramanian et al. Yes Yes  Yes Yes Yes 
All studies but Whitford et al. Yes Yes  Yes Yes Yes 
All studies but Witthaus et al. Yes Yes  Yes Yes Yes 
All studies but Yoshihara et al. Yes Yes  Yes Yes Yes 
       
 25 out of 25 25 out of 25  25 out of 25 25 out of 25 25 out of 25 
       
Subgroup analyses       
Studies using 1.5T scanners 
(n = 22, 88%) 

Yes No  Yes Yes Yes 

Studies using SPM software 
(n = 22, 88%) 

Yes Yes  Yes Yes Yes 

Studies applying 12mm FWHM 
(n = 15, 60%) 

Yes Yes  Yes Yes No 

Studies correcting for multiple compari-
sons (n = 18, 72%) 

Yes Yes  Yes Yes Yes 

Studies where most of the patients were 
males (n = 22, 88%) 

Yes Yes  Yes Yes Yes 

       
Heterogeneity analysis       
 
The heterogeneity analysis showed moderate levels of heterogeneity in bilateral insulae (peaks at 42,10,2 and -50,4,-2), though 
funnel plots did not reveal that insular findings could be driven by few or small noisy studies. Indeed, as many as 9 and 12 studies 
(right and left respectively), with both large and small standard errors, had reported GMV decreases in the bilateral peaks of 
maximum heterogeneity. 
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cingulate cortex there was hypoactivation relative to controls, whereas in the 

right basal ganglia / thalamus extending to the posterior part of the insula and in 

the medial frontal cortex, there was a relative reduction in deactivation (Figure 

7.8B and Table 7.5). Patients also showed reductions in deactivation in the 

right inferior frontal and left precentral gyri, as well as hypoactivation in left 

precuneus. Also, a non-significant trend towards functional abnormalities in left 

insula was observed. The analyses of robustness showed that all these results  

 

 

Table 7.5 Cognitive tasks brain response abnormalities in first psychotic episode(d) 
 
 Talairach 

Coordinates 
SDM 

z-value (a) 
P Value 

(b) 
No. of 

voxels (c) 
Breakdown 

(No. of voxels) (c) 
      
Hypoactivations (patients < controls) 
 

     

Right anterior insula / middle frontal / 
superior temporal gyrus 

44, 16, 30 -2.590 0.0000
1 

170 Right BA 9 (141) 
Right BA 6 (23) 

 
 38,  0, 14 -2.202 0.0001 58 Right BA 13 (49) 

 
 54, -2, -6 -1.734 0.002 16 Right BA 22 (10) 

 
Anterior cingulate cortex 4, 26, 32 -1.994 0.0005 174 Bilateral BA 32 (111) 

Bilateral BA 9 (23) 
Bilateral BA 6 (21) 
Bilateral BA 8 (17) 

 
Left precuneus -18,-72, 50 -1.868 0.001 52 Left BA 7 (49) 

 
Hyperactivations / Failures of deactivation 
(patients > controls) 
 

     

Right basal ganglia / thalamus / posterior 
insula 

28,-20,  4 1.868 0.0001 94 Right thalamus (42) 
Right putamen (39) 
Right pallidum (10) 

 
 30,-30, 18 1.458 0.002 21 Right BA 13 (15) 

 
Right inferior frontal / superior temporal 
gyrus 

34,  6,-14 1.547 0.001 21 Right BA 38 (16) 
 

Left precentral gyrus / inferior parietal 
lobule 

-46,-26, 42 1.429 0.002 73 Left BA 2 (47) 
Left BA 40 (23) 

 
 -50, -2, 48 1.370 0.003 18 Left BA 6 (17) 

 
Medial frontal cortex -8, 50, 12 1.403 0.002 86 Left BA 10 (63) 

Left BA 9 (23) 
 

      
 
(a) Voxel probability threshold: p = 0.005 
(b) Peak height threshold: z = 1 
(c) Cluster extent threshold: 10 voxels. Regions with less than 10 voxels are not reported in the cluster breakdown. 
(d) A non-significant trend towards functional abnormalities in left insula was also observed (peaks at -46,-26,42 and -42, 12, 28, 
Z=1.43 and -1.64, P=0.002 and 0.003) 



7. Multimodal meta-analyses 
 
 

 
 

Page 318  

were highly replicable, with the possible exception of the abnormalities in right 

inferior frontal gyrus (Table 7.6). 

 

7.2.3.4 Multimodal analysis of grey matter volume and brain response 

The multimodal analysis showed conjoint abnormalities (large and robust 

decreases of GMV together with differences in activation/deactivation), in 

Table 7.6 Cognitive tasks brain response abnormalities in first psychotic episode: robustness 
analyses 
 

 Hypoactivions  Hyperactivations / Failures of deactivation 
 R 

anterior 
insula 

Anterior 
cingulate 

L 
precuneus 

 R 
posterior 

insula 

R 
inferior 
frontal 

L precentral / 
inferior 
parietal 

Medial 
frontal 

         
Jackknife analysis         
All studies but Achim et al. Yes Yes Yes  Yes No Yes Yes 
All studies but Ashton et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Boksman et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Broome et al. 2009 Yes Yes Yes  Yes Yes Yes Yes 
All studies but Guerrero Pedraza et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Jones et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Keedy et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but MacDonald et al. Yes Yes Yes  Yes Yes Yes No 
All studies but Nejad et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Schaufelberger et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Scheuerecker et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Schneider et al. Yes Yes No  No No Yes Yes 
All studies but Snitz et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Strakowski et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Tan et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Woodward et al. Yes Yes Yes  Yes Yes Yes Yes 
All studies but Yoon et al. Yes Yes Yes  Yes Yes Yes Yes 

         
 18 

out of  
18 

18 
out of 

18 

17 
out of 

18 

 17 
out of 

18 

16 
out of 

18 

18 
out of 

18 

17 
out of 

18 
         
Subgroup analyses         
Studies using 1.5T scanners 
(n = 10, 56%) 

No No No  Yes No No No 

Studies using SPM software 
(n = 7, 39%) 

Yes No No  Yes Yes No No 

Studies applying 7-8mm FWHM 
(n = 12, 67%) 

Yes Yes No  No No No Yes 

Studies correcting for multiple 
comparisons (n = 11, 61%) 

Yes No No  No No No Yes 

Studies using MRI scanners 
(n=17, 94%) 

Yes Yes Yes  Yes Yes Yes Yes 

Studies employing memory tasks 
(n=8, 44%) 

Yes No(a) Yes  Yes Yes Yes No(a) 

Studies where most of the patients 
were males (n = 15, 88%) 

Yes No Yes  Yes Yes Yes Yes 

         
Heterogeneity analysis         
 
The heterogeneity analysis showed moderate levels of heterogeneity in the anterior cingulate cortex and the superior part of the right insula 
cluster, though funnel plots did not reveal that insular findings could be driven by few or small noisy studies. Indeed, as many as 6 studies, 
with both large and small standard errors, had reported hypoactivation in the peak of maximum heterogeneity within the right insula cluster. 
In the anterior cingulate cortex, heterogeneity seemed to be due to studies finding nearby abnormalities in both directions. 
 
         
 
(a) Medial frontal / anterior cingulate cortex could only be detected as a non-significant trend (peaks at -6,42,10 and 6,16,48, 
Z=1.15 and -1.32, P=0.009 and 0.013). 
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bilateral insulae / superior temporal gyri, as well as in medial frontal / perigenual 

anterior cingulate cortices. These regions comprised subregions of 

hypoactivation and subregions of reduced deactivation. Specifically, the anterior 

parts of the insulae and the dorsal part of the medial frontal / anterior cingulate 

cortices showed hypoactivation, whereas the posterior parts of the insulae and 

the ventral part of the medial frontal / anterior cingulate cortices showed 

reductions in deactivation (Figure 7.9 and Table 7.7). 

Figure 7.9 Multimodal meta-analysis of structural and functional abnormalities in first psychotic 
episode 
 



7. Multimodal meta-analyses 
 
 

 
 

Page 320  

 

 

 

Table 7.7 Multimodal structural and functional abnormalities in first psychotic episode 
 

 Talairach 
Coordinates 

P Value 
(a,b) 

No. of 
voxels (c) 

Breakdown 
(No. of voxels) (c) 

     
Increases of GM + functional abnormalities 
 

    

(none) 
 

    

Decreases of GM + hypoactivations 
 

    

Anterior part of right insula / superior temporal gyrus 42,  0, 12 ~0 439 Right BA 22 (136) 
Right BA 13 (112) 
Right BA 44 (47) 
Right BA 21 (38) 
Right BA 6 (35) 
Right BA 9 (31) 
Right BA 38 (13) 
 

 34, 24,  0 0.0001 44 Right BA 47 (26) 
Right BA 13 (10) 
 

Anterior part of left insula / superior temporal / 
precentral gyrus 

-40, 12, 34 ~0 407 Left BA 13 (126) 
Left BA 9 (109) 
Left BA 6 (57) 
Left BA 22 (57) 
Left BA 43 (22) 
 

Dorsal part of medial frontal / anterior cingulate gyrus 4, 22, 30 ~0 644 Bilateral BA 32 (322) 
Bilateral BA 24 (95) 
Bilateral BA 9 (88) 
Bilateral BA 8 (63) 
Bilateral BA 6 (43) 
Right BA 6 (31) 
 

Decreases of GM + hyperactivations / failures of deactivation 
 

    

Posterior part of right insula / superior temporal gyrus 34,  4,-12 ~0 �Ĥ�Rig Right BA 38 (41) 
Right BA 13 (28) 
 

 38,-30, 16 ~0 173 Right BA 13 (109) 
Right BA 41 (59) 
 

 50, 20, 10 0.0001 18 Right BA 45 (12) 
 

 56,-16, 32 0.0002 72 Right BA 4 (30) 
Right BA 3 (15) 
Right BA 2 (15) 
 

Posterior part of left superior temporal / postcentral 
gyrus 

-58,-22, 14 0.00005 243 Left BA 42 (106) 
Left BA 40 (66) 
Left BA 41 (27) 
Left BA 22 (25) 
Left BA 43 (11) 
 

Ventral part of medial frontal / anterior cingulate gyrus -14, 40, 10 0.0001 117 Bilateral BA 32 (38) 
Bilateral BA 10 (31) 
Left BA 9 (27) 
Left BA 24 (17) 
 

     
 
(a) Voxel probability threshold: p = 0.0025 
(b) Peak height threshold: p = 0.00025 
(c) Cluster extent threshold: 10 voxels. Regions with less than 10 voxels are not reported in the cluster breakdown. 
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7.2.3.5 Meta-regression 

Meta-regression analyses showed that the GMV in medial frontal / anterior 

cingulate cortices and left insular clusters were significantly more severely 

decreased in medicated patients (Table 7.8). Indeed, 75% of the studies in 

Table 7.8 Grey matter volume abnormalities in first psychotic episode: meta-regression 
analyses 

 
 Talairach 

Coordinates 
SDM 

z-value 
(a) 

P Value 
(b) 

No. of 
voxels 

(c) 

Breakdown 
(No. of voxels) (c) 

      
 
EFFECTS OF AGE 
 

     

Specific GMV decreases in young patients 
(young patients < old patients and controls) 
 

     

Left middle frontal gyrus (within the superior 
part of the left insula cluster) 
 

-32, 10, 46 -4.121 0.00001 64 Left BA 6 (57) 
 

Specific GMV decreases in old patients 
(old patients < young patients and controls) 
 

     

Right insula 44, -2,  0 -3.527 0.000001 141 Right BA 13 (96) 
Right BA 22 (18) 
Right BA 44 (14) 

 
 
EFFECTS OF ANTIPSYCHOTIC MEDICATION 
 

     

Specific GMV decreases in patients having 
received antipsychotics (non naive patients < 
naive patients and controls) 
 

     

Left middle frontal gyrus (within the 
superior part of the left insula cluster) 

-52, 28, 32 -2.533 0.00002 43 Left BA 9 (25) 
Left BA 46 (18) 

 
 -52, 12, 36 -2.432 0.00004 50 Left BA 9 (30) 

Left BA 8 (20) 
 

Medial frontal / anterior cingulate cortices -4, 16, 30 -2.426 0.00004 90 Bilateral BA 24 (63) 
Left BA 32 (27) 

 
Specific GMV decreases in patients receiving 
antipsychotics (medicated patients < medicated 
patients and controls) 
 

     

Medial frontal / anterior cingulate cortices -4, 16, 30 -3.757 0.000001 179 Left BA 32 (68) 
Bilateral BA 8 (51) 
Bilateral BA 24 (37) 
Bilateral BA 6 (20) 

 
 2, 54,  6 -3.071 0.00005 32 Bilateral BA 10 (32) 

 
Left middle frontal gyrus (within the 
superior part of the left insula cluster) 

-46, 10, 38 -3.077 0.00005 32 Left BA 8 (16) 
Left BA 9 (14) 

 
      

 
(a) Voxel probability threshold: p = 0.0005, for both one intercept and the slope 
(b) Peak height threshold: z = 1 
(c) Cluster extent threshold: 10 voxels. Regions with less than 10 voxels are not reported in the cluster breakdown. 
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which most of the patients were receiving or had received antipsychotic 

medication reported some GMV decrease around the regression peaks, whilst 

only 25% of the studies in which most of the patients were drug-naïve or drug-

free reported such abnormalities (Figure 7.10). However, antipsychotic-naïve 

patients still showed significant GMV decrease in medial frontal / anterior 

cingulate cortices and bilateral insula when compared to healthy controls. 

Figure 7.10 Effect size of the differences of grey matter volume between antipsychotic-naïve 
patients and controls (green bars) and between medicated patients and controls (red bars) in 
the four peaks of multimodal abnormality in anterior cingulated cortex (ACC) and left insula. No 
differences between naïve and medicated patients were found in right insula (not shown in the 
plot). 
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Similarly, meta-regression analyses in the functional dataset showed that 

abnormalities in right insular cluster were more severe in medicated patients 

(Table 7.9), though these should be taken with caution given the proximity of 

clusters with opposite findings (hypoactivations vs. hyperactivations / failures of 

deactivation).  

Additional meta-regression findings included a more severe decrease of 

right insula volume in older patients, and a weaker relationship between 

younger patients and decreased left insular volume, which was found to be 

driven by few studies. There were no substantial age differences between 

medicated and unmedicated samples (medicated patients: 24 years; 

unmedicated patients: 26 years). 

 

Table 7.9 Cognitive tasks brain response abnormalities in first psychotic episode: meta-
regression analyses 

 
 Talairach 

Coordinates 
SDM 

z-value (a) 
P Value 

(b) 
No. of 

voxels (c) 
Breakdown 

(No. of voxels) (c) 
      
 
EFFECTS OF AGE 
 

     

(none) 
 

     

 
EFFECTS OF ANTIPSYCHOTIC MEDICATION 
 

     

Specific hypoactivations in patients having 
received antipsychotics (non naive patients < 
naive patients and controls) 
 

     

Right insula 40,  4, -8 -3.340 0.000004 121 Right BA 13 (73) 
Right claustrum (15) 

 
Specific hypoactivations in patients receiving 
antipsychotics (medicated patients < medicated 
patients and controls) 
 

     

Right insula 40,  4, -8 -3.506 0.000006 67 Right BA 13 (43) 
Right claustrum (11) 

 
      
 
(a) Voxel probability threshold: p = 0.0005, for both one intercept and the slope 
(b) Peak height threshold: z = 1 
(c) Cluster extent threshold: 10 voxels. Regions with less than 10 voxels are not reported in the cluster breakdown. 
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7.2.4. Discussion 

This is to our knowledge the first multimodal neuroimaging meta-analysis which 

combines information from whole brain studies investigating GMV and studies 

investigating the functional brain response to cognitive tasks to more 

consistently localize the neural substrates of the FEP. To allow colleagues to 

apply this multimodal meta-analytic technique to study other neuropsychiatric 

disorders, this function has been included in the SDM software package               

( http://www.sdmproject.com/ ). 

The main findings of the present study were that patients with a FEP 

showed decreases in GMV and altered brain response in the medial frontal / 

perigenual anterior cingulate cortices and in bilateral insulae (Figure 7.9 and 

Table 1). The changes in functional response were hypoactivations in those 

subparts of the medial frontal / anterior cingulate cortices and insulae where 

healthy controls show activations, whilst failures to deactivation in those 

subparts where healthy controls show deactivations. These results were 

consistently detected in the several tests conducted to assess the robustness of 

the findings. 

Reduction in anterior cingulate cortex volume has been observed in 

psychotic disorders in association with impairments in emotional processing and 

higher executive functions (for a review see Baiano et al.(Baiano, David et al. 

2007)). The anterior cingulate cortex is crucial for integrating cognitive and 

emotional processes in support of goal-directed behavior. This functional 

diversity of the anterior cingulate cortex, which encompasses executive, social 

cognitive and affective functions, is in line with the findings of abnormal brain 
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response in the same region, suggesting that alterations in this area may partly 

explain the difficulties in cognitive and emotional integration that characterize 

the clinical manifestations of psychosis (Fornito, Yucel et al. 2009). Very similar 

subdivisions of anterior pericingulate cortex to that observed here have been 

obtained through examining the connectivity of this region with amygdala 

(Pezawas, Meyer-Lindenberg et al. 2005), again pointing to a role of these 

alterations in emotional regulation. However, the exact implication of this region 

in human cognition and neuropsychiatry disorders is far more complex 

extending to the processing of effects of errors, conflict, error likelihood, 

volatility, and reward (Alexander and Brown 2011). The complex neurocognitive 

profile of medial frontal and anterior cingulate cortices has been recently 

summarized in a unifying model focusing on a single mechanism, “unexpected 

non-occurrence”, which reflects the negative component of a prediction error 

signal for both aversive and rewarding events (Alexander and Brown 2011). 

Neuropathological research has supported a core role for anterior cingulate 

cortex dysfunction in psychosis revealing alterations in the cellular and synaptic 

architecture of the region (Todtenkopf, Vincent et al. 2005). A recent SDM 

voxel-based meta-analysis confirmed anterior cingulate cortex (and insular) 

GMV reductions in subjects presenting a FEP, suggesting that the general 

salience and emotional regulation network is abnormal from the onset of the 

illness in schizophrenia (Bora, Fornito et al. 2011). Our group has previously 

showed anterior cingulate cortex alterations are already evident prior the onset 

of disease during the prodromal phase and play a crucial role in psychosis 

transition (Borgwardt, McGuire et al. 2008). There is also specific functional 

imaging evidence indicating abnormal anterior cingulate cortex engagement in 
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the early phases of psychosis (Boksman, Theberge et al. 2005; Tan, Choo et al. 

2005), in subjects at genetic risk for psychosis (Callicott, Egan et al. 2003; 

Whalley, Simonotto et al. 2006) and in subjects at clinical risk for psychosis 

(Broome, Matthiasson et al. 2009); for a comprehensive review of anterior 

cingulate cortex in emerging psychosis see Rothlisberger et al. (2012). 

Similarly, involvement of the insular cortex is a common finding in 

neuroanatomical studies of schizophrenia. The insula is a cortical structure with 

extensive connections to many areas of the cortex and limbic system, especially 

amygdala. It integrates external sensory input with the limbic system and is 

integral to the awareness of the body's state (interoception) (Wylie and 

Tregellas 2010). Many deficits observed in schizophrenia involve these 

functions and may relate to insula pathology, including the processing of both 

visual and auditory emotional information, bodily hallucinations and 

coenaesthesia, altered pain perception, and neuronal representations of the 

self. Additional evidence confirms that insula alterations are crucial to the 

development from a high risk state to frank psychosis (Takahashi, Wood et al. 

2009; Fusar-Poli, Radua et al. 2011; Smieskova, Fusar-Poli et al. 2011) and 

may be secondary to neurofunctional activation of insular areas during 

experiencing auditory hallucinations (O'Daly, Frangou et al. 2007). 

However, the anterior cingulate cortex and the insula play a crucial role in 

emotional processing and structural and functional alterations in these areas 

have been consistently demonstrated in a range of anxiety disorders (Paulus 

and Stein 2006; Milad, Quirk et al. 2007; Radua, van den Heuvel et al. 2010). 

Thus, our findings may also represent the neural correlates of the high levels of 

stress and anxiety that are usually associated with the first onset of frank 
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psychotic symptoms. Of interest, an impact of environmental risk factors linked 

to social stress, such as urban birth, has recently been shown on the same 

cingulate subregions identified here (Lederbogen, Kirsch et al. 2011). 

Furthermore, cingulate-amygdala interactions are altered in genetic variants 

associated with increased risk of mental illness (although not specifically 

schizophrenia) in the context of environmental adversity (Pezawas, Meyer-

Lindenberg et al. 2005). This interpretation of the findings is consistent with the 

post-traumatic stress literature suggesting that exposure to traumatic life events 

is associated with structural abnormalities in various limbic and paralimbic brain 

regions including the cingulate cortex and the insula, after controlling for genetic 

factors (Kasai, Yamasue et al. 2008). It is also important to note that the exact 

specificity of our findings in relation to the development of schizophreniform vs 

bipolar disorders is mostly unknown (Yu, Cheung et al. 2010). 

The mechanistic interpretation of the multimodal findings of this study is 

highly speculative. On the one hand, if a region has half the grey matter it 

should have, it could be that it needed half the baseline blood flow, i.e. 

assuming that each ml of grey matter needs a fixed amount of blood flow. 

However, if baseline blood flow is low, a relative increase of blood glow may 

show as an absolute hypo-increase of blood flow, and thus as hypo-activation. 

On the other hand, a reduction of grey matter could also be accompanied by a 

compensatory hyperfunctionality of the remaining grey matter, which could 

involve a higher vascularisation and thus even show as hyper-activation. In any 

case it is important to remember that BOLD fMRI (which is the modality from 

which the majority of the data reviewed originates) has no defined zero but 

contrasts, in the usual approach, two conditions statistically. This means that an 
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activation or deactivation strongly depends on what the comparator condition is. 

It is, however, noteworthy that our meta-analysis does depict a differentiation 

between subgenual and supragenual cingulate compartments, and between 

anterior and posterior insula, indicating that even though there may not be an 

easily depictable relationship between grey matter and activation in any given 

condition, across conditions, our meta-analysis identifies functional subdivisions 

of the structurally abnormal regions that map onto known neuroanatomy and 

functional circuits. Interpretations are different if the functional damage is 

assumed to appear before the decrease in grey matter. In that case, one could 

hypothesize that hyperfunctionality may lead to a decrease in grey matter by 

exhaustion, whilst hypo-functionality may lead to the same situation due to 

some sort of mechanism to avoid neuronal underemployment. 

Schizophrenia is associated with 14% increase of striatal dopamine 

synthesis capacity and antipsychotic treatment is the mainstream clinical 

approach in the field (Fusar-Poli and Meyer-Lindenberg 2012; Fusar-Poli and 

Meyer-Lindenberg 2012). Under these premises, GMV abnormalities were 

found to be significantly more severe in medicated patients (Figure 7.10). This 

result is in line with evidence from imaging studies indicating antipsychotic 

treatment can influence GMV (Ho, Andreasen et al. 2011) and neural activity 

(Lui, Li et al. 2010) in psychosis. Recent structural imaging studies have further 

clarified that antipsychotic exposure can affect GMV even at the onset of the 

disease, in the early phases of psychosis, influencing the structure of temporal 

and prefrontal cortex (Smieskova, Fusar-Poli et al. 2009). In line with these 

findings, functional imaging studies have indicated that short-term or acute 

antipsychotic treatment can alter the neurophysiological cortical response 
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during cognitive functioning (Fusar-Poli, Broome et al. 2007). Antipsychotics 

can reduce frontal cerebral blood flow, and frontal hypoperfusion could be a 

mechanism underlying smaller brain tissue volumes (Ho, Andreasen et al. 

2011). The differences detected can reflect long-lasting changes in brain 

volume caused by antipsychotic medication but also compensatory processes 

associated with the underlying disease process. Although a consistent effect of 

antipsychotic medication was shown in these areas, it did not account for the 

whole magnitude of GMV alterations. Our data therefore support a model in 

which antipsychotics target regions of key pathology in early psychosis, but do 

not necessarily suggest that drug treatment causes these alterations. Indeed, 

about 25% of the studies in which most of the patients were drug-naïve reported 

abnormalities in the same brain regions. Our recent voxel-based meta-analysis 

of VBM studies in drug-naïve subjects at high clinical risk for psychosis or with a 

confirmed psychosis onset was also associated with GMV decreases in 

temporo-insular and anterior cingulate cortex regions (Fusar-Poli, Radua et al. 

2011). However, it cannot be fully ruled out that antipsychotic medications may 

cause some of the observed alterations (Knowles, David et al. 2010). Of 

interest, anterior cingulate cortex function and structure has been reported to be 

especially sensitive to remedial antipsychotic treatment in psychosis (Lahti, 

Weiler et al. 2009; Stip, Mancini-Marie et al. 2009). As there is evidence 

indicating that few weeks of antipsychotic treatment modulate the anterior 

cingulate cortex response (Lahti, Holcomb et al. 2004; Snitz, MacDonald et al. 

2005), the question of the functional significance of dynamic prefrontal changes 

in the first phases of psychosis may have some potential clinical implications for 

early interventions.  
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This study has some limitations. First, whilst voxel-wise meta-analytical 

methods provide excellent control for false positive results, it is more difficult to 

avoid false negative results (Radua, Mataix-Cols et al. 2012). We cannot 

therefore exclude the possibility that we were unable to detect some group 

differences because of limited statistical power. Indeed, this could be the case 

for the separate meta-analysis of functional abnormalities, where a lower 

number of studies could be included and insular/temporal abnormalities only 

reached statistical significance in the right hemisphere. Second, some of the 

included VBM studies reported grey matter density rather than volume. Grey 

matter density might be understood as a type of GMV that has not been 

corrected by the distorting effects of the normalisation to the stereotactic space; 

therefore, its inclusion in the meta-analysis is valid (it is also a “volume”) 

although it could add a source of heterogeneity. Other methodological 

differences such as the use of one or another smoothing kernel (see Table 7.2) 

may further contribute to this heterogeneity. Third, the included functional 

imaging studies had employed different cognitive tasks to evoke the brain 

response of interest, which could result in a source of heterogeneity. However, 

studies not employing cognitive paradigms were excluded in order to minimize 

this heterogeneity, and a separate subgroup analysis of only those studies 

employing memory tasks yielded nearly identical results. In fact, our finding that 

insular and medial frontal / anterior cingulate cortices were found to be 

consistently functionally abnormal in FEP is especially remarkable given that 

the employed tasks have little or no emotional component and do not primarily 

activate these particular structures. The results may therefore have been quite 

different if a salience processing task, or an emotional faces task had been 
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used to provide the fMRI data. Fourth, the meaning of GMV alterations in the 

adolescent and young adult’s is unclear and may have been confounded by 

factors including other medication types as antidepressants, consumption of 

alcohol, tobacco or illicit drugs as cannabis, and socioeconomic status. Fifth, it 

cannot be discarded that the medication effects could be confounded by factors 

such as duration and severity of psychosis, socioeconomic status or 

neurocognitive variables. Unfortunately, only few studies reported these data, 

preventing a covariate analysis. Similarly, only few studies reported the actual 

medication doses, for what a meta-regression with chlorpromazine equivalents 

was not feasible. It is also possible that the greater abnormalities in medicated 

patients could be related to a selection bias of relatively well patients able to be 

scanned without treatment. Sixth, this study did not aim to detect correlations 

between structural and functional abnormalities, but rather, to localize those 

brain regions in which the disorder is associated with both structural and 

functional abnormalities. Future studies are encouraged in order to investigate 

the spatial and temporal relationships between the structure and function of the 

regions detected in this meta-analysis. Finally, our criterion of conjoint functional 

and structural abnormalities is stringent and regions with meta-analytic support 

for either functional or structural changes in early psychosis, but not both, 

should still be considered in the pathophysiology of the illness.  

 

7.2.4.1 Conclusions 

Results from our multimodal meta-analysis demonstrate a close relationship 

between structural and functional brain alterations in subjects with a first 
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episode of psychosis. In the medial frontal / anterior cingulate cortices, and in 

the bilateral insulae, patients showed a decrease in grey matter volume as well 

as abnormal functional response. Some of these changes may be partially 

related to treatment with antipsychotic medication.  
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7.3 OVERALL DISCUSSION 

 

Despite the development of several voxel-based meta-analytic methods, the 

different neuroimaging modalities are still summarized separately, preventing 

the visualization of the global picture of brain abnormalities in a given 

neuropsychiatric disorder. This chapter has introduced a novel approach to 

meta-analytically detect those brain regions that are affected across two or 

more imaging modalities. Interestingly, this approach may be applied to any 

type of meta-analytical method, and can be easily implemented in nearly any 

neuroimaging software library. It is hoped that, with this tool, researchers will be 

able to provide an advanced description of the brain complexity and thus 

ultimately increase the level of basic knowledge underlying the major 

neuropsychiatric disorders. 

It must be highlighted that this method does not aim to detect correlations 

between abnormalities in two modalities, but rather, to localize those brain 

regions in which the disorder is associated with abnormalities in both modalities. 
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CHAPTER 8 

General conclusions and suggestions for future 

research 

 

 

8.1 SUMMARY AND CONCLUSIONS 

 

The main types of meta-analytic methods available for neuroimaging studies 

were reviewed in Chapter 1. Region of interest (ROI) and voxel-based methods 

each have advantages and disadvantages. Specifically, ROI-based meta-

analyses use optimal statistical methods which use effect-sizes and assess the 

between-study heterogeneity, but they usually have a limited and likely biased 

inclusion of studies (Ioannidis 2011). Conversely, voxel-based meta-analyses 

usually have a more exhaustive and unbiased inclusion of studies, but their 

statistical methods are less accurate. The aim of this thesis was to develop a 

series of new methods to overcome some of the limitations of the methods that 

were in existence at the time this thesis was conceived. 
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8.1.1 The new voxel-based meta-analytic method 

This new approach, called signed differential mapping (SDM, see Chapter 2), 

addressed part of the between-study heterogeneity not considered by previous 

voxel-based meta-analytic methods, by reconstructing positive and negative 

maps in the same image thus counteracting the effects of studies reporting 

findings in opposite directions (Radua and Mataix-Cols 2010), and by 

incorporating meta-regression methods (Radua and Mataix-Cols 2009). 

Subsequently, the method was modified to allow estimation of more complex 

linear models such as meta-comparisons of groups, multiple meta-regressions, 

or inclusion of covariates (see Chapter 3) (Radua, van den Heuvel et al. 2010). 

Chapter 4 introduced a newer effect-size version of SDM (ES-SDM) 

designed with the aim of allowing the combination of studies from which images 

(statistical parametric maps) are available with studies from which only peak 

coordinates are reported. This method allows a more exhaustive inclusion of 

studies, as well as more accurate findings because it weights the calculations 

by both sample-size and study precision, incorporates effect-sizes and fully 

addresses between-study heterogeneity (Radua, Mataix-Cols et al. 2012). This 

is achieved by first using peak coordinates and their statistical values to 

recreate the statistical parametric maps, and then conducting an image-based 

meta-analysis. 
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In a meta-analysis of the blood oxygen level-dependent (BOLD) 

response to emotional facial stimuli (Radua, Mataix-Cols et al. 2012), the 

sensitivity of ES-SDM (55%) was similar to that of SDM (51%) when only using 

peak coordinates. However, the inclusion of the statistical parametric maps led 

to a gradual and substantial increase of the sensitivity of ES-SDM (73% when 

the statistical parametric map of one study was included, 87% when the 

statistical parametric maps of two studies were included, 93% when the 

statistical parametric maps of three studies were included, etcetera). Therefore, 

given the potential of this new method, authors are encouraged to make their 

Figure 8.1 Summary of the main available voxel-based meta-analytic methods. 
 

 
 
Increases and decreases of grey matter volume are fictitious and have been manually plotted over a MRICroN 
template to illustrate the main features of the different methods. 
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statistical parametric maps widely available to the community on their lab 

websites or via other means. 

Figure 8.1 and Table 8.1 show the main differences between previous 

methods and SDM / ES-SDM. 

Table 8.1 Comparison of the main meta-analytic methods for neuroimaging studies 
comparing patients and controls. 
 
  Voxel-based meta-analysis 

  

ROI-based 
meta-analysis 

 
KDA / old ALE  

MKDA / new 
ALE 

 SDM  ES-SDM 

Selection of studies           

Exhaustive 
inclusion of 
studies 

Limited, as 
information for a 

given brain region is 
present in few or no 

studies 

 
Probable, as far as the included studies investigate the whole brain 

and not only some ROIs 
(in which case should be discarded) 

 

More probable, 
because statistical 

parametric maps can 
also be included 

          

Unbiased 
inclusion of 
studies 

Limited, as 
information is only 

available for regions 
hypothesized a priori 

 
Probable, as far as the included studies do not use different statistical thresholds for 

different parts of the brain 
(this is a strict inclusion criterion in SDM and ES-SDM) 

          

Statistical analyses           

Weighting of 
the studies 

Complete (sample 
size and study 

precision) 
 None  Partial (only sample size)  

Complete (sample 
size and study 

precision) 

          

Control of the 
heterogeneity 

Residual 
heterogeneity is 

correctly included in 
the analyses 

 

Residual heterogeneity is not 
controlled and increases and decreases 

are not counteracted, potentially 
leading to voxels being detected as 
increased and decreased at the same 

time 

 

Residual 
heterogeneity is not 

accounted but 
increases and 
decreases are 
counteracted 

 

Residual 
heterogeneity is 

correctly included in 
the weightings 

          

Study of the 
heterogeneity 

Possible, by means 
of meta-regressions 

and subgroup 
analyses 

 Limited to subgroup analyses  
Possible, by means of meta-regressions and 

subgroup analyses 

          

Correction for 
multiple 
comparisons 

Possible  
Not possible, questionable or limited to conventional voxel-thresholds cluster-based 

methods 

          

Description of 
the effect sizes 

Possible  Not possible  
Possible though limited to pseudo-effect 
sizes based on the proportion of studies 

reporting significant findings 
 Possible 

          

Description of 
relevant non-
significant 
trends 

Possible, as the 
number of ROIs is 

manageable 

Not possible, or limited to the visual inspection of liberally thresholded maps, as the 
number of voxels is too massive for a more accurate individual inspection 

           

 
ALE: activation likelihood estimation; ES-SDM: effect-size signed differential mapping; KDA: kernel density 
analysis; MKDA: multilevel kernel density analysis; ROI: region of interest; SDM: signed differential mapping 
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8.1.2 The multimodal adaptations 

Concurrent innovations of the SDM methods included the possibility of 

conducting meta-analyses of imaging modalities other than functional magnetic 

resonance imaging (fMRI) and grey matter volume. Specifically, SDM and 

especially ES-SDM were adapted for their use with studies voxel-wise and tract-

wise investigating white matter volume or water diffusivity (Radua, Via et al. 

2010; Peters, Szeszko et al. 2012), thus allowing meta-analyses which were not 

possible with previous methods (see Chapters 5 and 6). 

Finally, a strategy for combining the findings of meta-analyses conducted 

in different modalities was also developed (Chapter 7). The aim of such 

approach is to detect key regional abnormalities which show impairments of 

both grey matter volume and function (or any other combination of modalities) 

(Radua, Borgwardt et al. 2012; Radua, Romeo et al. 2012). Future clinical 

studies are encouraged to assess, for each of the regions detected in a 

multimodal meta-analysis, the clinical significance of structural but not functional 

impairment, the clinical significance of functional but not structural impairment, 

and the clinical significance of having both structural and functional 

impairments. Ultimately, multivariate classifications of this kind may improve 

diagnostic and/or prognostic classifications. 
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8.1.3 Main limitations 

Although voxel-based meta-analyses minimize the effects of selectively 

reporting certain regions of interest, they are not totally immune to publication 

bias, as negative results may still be less likely to be published (what is known 

as the file drawer problem). Authors of the original papers are strongly 

encouraged to publish their results even if they perceive them as being 

disappointing or they do not find differences between patients and controls 

(Borgwardt, Radua et al. 2012). 

Two other relevant limitations of the method, expanded upon in section 

8.2, are some spatial imprecision associated to the recreation of clusters, and 

the lack of a formal correction for multiple comparisons. 

 

8.1.4 Parallel evolution of other meta-analytical methods  

It is important to note that, during the timeframe of the current thesis, other 

methods have also evolved and become progressively more sophisticated, thus 

dealing with some of their initial limitations. 

Activation likelihood estimate (ALE), as well as an evolved-version of 

kernel density analysis (KDA) called parametric voxel-based meta-analysis 

(PVM), introduced computationally fast methods to derive the statistical 

significance of the results (Costafreda, David et al. 2009; Eickhoff, Bzdok et al. 

2011). Furthermore, ALE replaced the false discovery rate (FDR) correction for 

multiple comparisons by the family-wise error rate (FWE) correction and the 
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cluster-level significance (Eickhoff, Bzdok et al. 2011) present in multilevel KDA 

(Wager, Lindquist et al. 2007). Finally, PVM has recently adopted the effect-size 

approach developed by ES-SDM (Radua, Mataix-Cols et al. 2012), though with 

some notable differences (Costafreda 2012). 

In parallel with the development of these methods, several freely-

available website-based databases of neuroimaging data have been made 

available. These online databases may be classified in three groups, namely: a) 

sets of original data (e.g. the raw scanner images from several samples of 

individuals); b) summary statistics from the studies included in one meta-

analysis (e.g. the mean±sd ROI volumes); and c) sets of summary statistics of 

virtually all published studies. 

The online sets of original data are composed of the raw and/or pre-

processed brain images, along with the demographic and clinical characteristics 

of each of the many anonymous participants. These databases may be used by 

researchers to conduct their studies, thus being a useful resource for highly 

accurate data analyses. It must be noted, however, that analyses derived from 

these datasets should not be strictly considered ‘meta-analyses’, as they do not 

necessarily exhaustively include all available data. Examples of these datasets 

are BRAINNet ( http://www.brainnet.net/ ), the fMRI Data Center                                  

( http://www.fmridc.org/ ) and OpenfMRI ( http://www.openfmri.org/ ). 

Online databases containing the summary statistics from the studies 

included in particular meta-analyses represent a more interactive (and often 

complete) alternative to the traditional “supplementary material” that 

accompanies published meta-analysis. Importantly, these online data may be 

used by other researchers to conduct updated or secondary analyses. 
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Outstanding examples of this type of databases are the Bipolar Disorder 

Neuroimaging Database ( http://www.bipolardatabase.org/ ) and the Major 

Depressive Disorder Neuroimaging Database                                  

( http://www.depressiondatabase.org/ ) by Kempton and colleagues (Kempton, 

Geddes et al. 2008; Kempton, Salvador et al. 2011). 

Finally, many sets of summary statistics of virtually all published 

neuroimaging studies exist, allowing a rapid retrieval of specific data in order to 

facilitate the meta-analytic process. The developers of BrainMap                                

( http://www.brainmap.org/ ), for instance, have been building and updating an 

impressive database of neuroimaging findings since 1987 (Laird, Lancaster et 

al. 2005). Other available databases are the AMAT toolbox                                          

( http://www.antoniahamilton.com/amat.html ), the Internet Brain Volume 

Database ( http://www.cma.mgh.harvard.edu/ibvd ) and the Surface 

Management System Database ( http://sumsdb.wustl.edu/sums/index.jsp ). 

Two promising online developments, the Brede Database                                   

( http://neuro.imm.dtu.dk/services/brededatabase ) (Nielsen, Hansen et al. 

2004; Nielsen, Kempton et al. 2012) and NeuroSynth                                                     

( http://www.neurosynth.org/ ) (Yarkoni, Poldrack et al. 2011), deserve special 

mentioning. These packages contain a set of summary statistics together with 

online functions aimed at conducting real-time meta-analyses online. 

Unfortunately, extraction of coordinates in NeuroSynth from publications is not 

manually verified, which may bias the results towards those regions that the 

authors of the original articles want to emphasize in the tables of the 

manuscripts. However, when the goal is to obtain a very fast and preliminary 

meta-analysis of the literature, NeuroSynth may be one of the first options. 
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8.2 SUGGESTIONS FOR FUTURE DEVELOPMENT 

 

8.2.1 Recreation of the study maps 

An important aspect of ES-SDM that requires improvement is the recreation of 

the maps of those studies from which only coordinates are available. Simpler 

voxel-based meta-analytic methods such as KDA or PVM base these 

recreations on creating a solid sphere centred at the cluster peak (Wager, Phan 

et al. 2003). ALE and SDM try to conduct this step more realistically by using a 

smoothed sphere so that voxels closer to a peak are estimated to have values 

more similar to that of the peak. ES-SDM further improves this recreation with 

the use of effect-sizes and a more sophisticated algorithm in which those voxels 

close to more than one peak have values similar to those of both peaks. 

However, even ES-SDM recreations may not benefit from all information 

available. 

In the future, voxel-based meta-analytic methods might potentially also 

incorporate the reported size of the clusters, as well as the shape of the clusters 

as printed in the two-dimensional figures included in the original manuscripts. 

Also, recreations might benefit from the knowledge that spheres created by the 

different local peaks of the same cluster should overlap, whilst spheres created 

by local peaks from different clusters should not overlap. Finally, future methods 

might use a set of aprioristic information, such as the regional distribution of 

spatial covariance in each neuroimaging modality. 
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Unfortunately, the implementation of these potential improvements may 

be hampered by a set of difficulties, which could ultimately introduce more 

noise, rather than remove noise as intended. For example, visual tasks usually 

produce large horseshoe-shaped clusters of activation in bilateral fusiform / 

occipital regions (Surguladze, Radua et al. 2012). With the aim of preserving 

such cluster size, researchers might try to recreate the cluster with huge 

spheres (Figure 8.2A and B). However, this approach could result in 

erroneously detecting activation in the midline, as shown in Figure 8.2C. It must 

be noted that this type of spatial imprecision may be acceptable when it is the 

result of smaller spheres, because the distance between the real activation and 

the meta-analytic findings is in the range of few millimetres; in the example, 

however, the imprecision is in the range of a several centimetres. 

In some cases, the meta-analytic researcher could manually deform the 

spheres displayed in Figure 8.2B so that they reach the specific shapes 

displayed in the two-dimensional published pictures (probably similar to that in 

Figure 8.2A). However, these adjustments would open the door to a high 

degree of subjectivity. One researcher might deform one local sphere in one 

direction; another researcher might prefer to deform another local sphere in the 

opposite direction; and so on. In other cases, no printed figures would be 

available to the meta-analytic researcher, for what only aprioristic knowledge 

about spatial covariance in the specific modality could partially help deform the 

spheres in the adequate directions. 
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Thus, valid and objective implementation of these potential 

improvements may probably require a set of sophisticated algorithms which 

objectively combine cluster sizes, scanned two-dimensional pictures, and 

specific a priori modal information. 

Figure 8.2 Fictional example of erroneous meta-analytic localization due to the use of huge 
spheres to recreate huge clusters. 
 

 

 

 
 
A. Localization of the horseshoe-shaped cluster of activation (pale orange area) and the reported peak 
coordinates in the different studies included in a meta-analysis (red orange dots). 
 
B. Recreation of the cluster with a huge sphere for the reported peak of each study. 
 
C. Region with higher meta-analytic activation values, which would probably reach statistical significance. 
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8.2.2 Correction for multiple comparisons 

An unsolved issue in ES-SDM, as well as in any voxel-based analysis, is the 

correction for multiple comparisons. 

Voxel-based neuroimaging analyses conduct a statistical test for each of 

their thousands of voxels, for what applying the standard threshold P < 0.05 

without correcting for multiple comparisons would lead to a high rate of false 

positive findings, while conducting a standard Bonferroni correction for multiple 

comparisons would lead to a huge rate of false negative findings precluding the 

detection of any true effect. 

Several approaches have been developed to deal with this issue. A 

simple strategy, currently recommended in ES-SDM (Radua, Mataix-Cols et al. 

2012), consists in using a more stringent but fixed threshold, namely P < 0.005 

or P < 0.001. Researchers use this stringent threshold with the aim to minimize 

the number of false positive findings, and thus counteracting the effects of 

multiple comparisons. However, given that this strategy does not imply a formal 

correction for multiple comparisons and that it is relatively liberal, results from 

such strategy are usually known as “uncorrected”. 

Other approaches combine standard corrections for multiple 

comparisons with methods to alleviate their stringency, namely cluster-based 

statistics (Bullmore, Suckling et al. 1999; Hayasaka and Nichols 2003) and 

Gaussian random fields (GRF) (Worsley and Friston 1995). These approaches 

are much more sophisticated and usually preferred, though not free from their 

own issues. 
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In its simplest form, cluster-based statistics consist in setting a 

conventional threshold for the voxels (e.g. P < 0.05), grouping the significant 

voxels in clusters, and estimating the probability associated to the size of each 

cluster. The idea is that true effects usually involve a substantial amount of 

voxels and thus form large clusters, which are unlikely to appear by chance – 

i.e. they are considered statistically significant. Conversely, spurious false 

positive findings are usually in the form of small clusters, which are likely to 

appear and thus considered non-significant. 

Unfortunately, cluster-based statistics have been found to be biased 

towards detecting findings in some brain regions while not detecting findings in 

others (Worsley, Andermann et al. 1999; Good, Johnsrude et al. 2001; Mechelli, 

Price et al. 2005). Some regions of the brain are large and homogeneous, 

implying that a large amount of voxels behave like one. In these regions, both 

true and false positive clusters are large and thus considered statistically 

significant. On the contrary, some other regions are small and independent from 

their neighbouring regions, so that both true and false positive clusters are small 

and discarded. The mask used to define the grey matter may further help the 

formation of large clusters in some regions while prevent it in other regions. 

This issue was partially addressed with the introduction of the GRF 

theory (Worsley and Friston 1995), which can be applied without including the 

extent of the clusters (Mechelli, Price et al. 2005). However, this theory 

assumes the error fields are a reasonable approximation to an underlying 

continuous random field with a multivariate Gaussian distribution. Moreover, its 

combination with standard corrections for multiple comparisons such as the  
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FDR (Benjamini and Yekutieli 2001) has been shown to be inappropriate 

(Chumbley and Friston 2009). 

To sum up, sophisticated methods such as cluster-based statistics and 

GRF are more elegant and usually preferred, but they have been progressively 

shown to hide a number of issues. One clear recommendation deriving from the 

work presented in this thesis is the importance of assessing the reliability of a 

meta-analysis employing a series of complementary analyses, rather than 

exclusively relying on any form of ultimately arbitrary p-value. 

 

8.2.3 Further fine-tuning 

Finally, there is room for fine-tuning the ES-SDM algorithms and brain 

templates. Future research, for instance, could aim to improve the treatment of 

studies with no information in a given voxel, which at the moment are just 

assumed to have a null effect size. This and other improvements may 

potentially result in an increase of the sensitivity of the method. 
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8.3 GENERAL RECOMMENDATIONS FOR META-ANALYTICAL 

RESEARCHERS 

 

The experience gathered during the development of the methods presented in 

this thesis, has lead to a series of simple recommendations, which are thought 

to improve the researchers’ confidence in the results of their meta-analyses. In 

any voxel-based meta-analysis of neuroimaging data, whether employing ES-

SDM or any other available method, authors should aim to: 1) only include 

studies which explored the whole brain; 2) ensure that the same threshold 

throughout the whole brain was used within each included study; and 3) explore 

the robustness of the findings with several complementary analyses, for 

example, sensitivity analyses, quantification of the between-study 

heterogeneity, funnel plots of the values extracted from the meta-analytic 

clusters or their peaks, and so on, just like in any standard meta-analysis. 
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APPENDIX 1 

The Signed Differential Mapping software 

 

A1.1 Sample screenshots of the software 
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A1.2 Effect-size SDM Tutorial 

 

The aim of this tutorial is to show, in a step by step basis, how to conduct meta-

analyses using SDM software. To this end, you will perform some of the 

analyses conducted in: Radua J and Mataix-Cols D. Voxel-wise meta-analysis 

of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry 2009; 

195:393-402. Note however that these analyses will be conducted with the 

updated, effect-size-based algorithms (ES-SDM) described in: Radua J et al. A 

new meta-analytic method for neuroimaging studies that combines reported 

peak coordinates and statistical parametric maps. Eur Psychiatry, in Press. 

Note also that this tutorial is distributed in the hope that it will be useful, but 

without any warranty on the accuracy of the text and data. 

 

A1.2.1 Before executing the software 

We have invested a lot of time and effort to improve accuracy of SDM method 

and software. However, calculations might be biased if the following exclusion 

criterion for peak coordinates is not considered when conducting the searches 

and contacts with the authors: 

“While different studies may employ different thresholds, you 

should ensure that within one study the same threshold was used 

throughout the whole brain” 
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This is of utmost importance because it is not uncommon in neuroimaging 

studies that some regions (e.g. a priori regions of interest) are more liberally 

thresholded than the rest of the brain. 

 

A1.2.2 Preparation of the files 

Effect-size SDM allows the combination of statistical maps (in NIfTI format, 

obtained from e.g. SPM or FSL software) and peak coordinates (e.g. reported in 

the papers). For this tutorial we will only use peak coordinates, and for your 

convenience, their text files have been already prepared in the folder containing 

this PDF (if you don't find these files please download the software again from 

http://www.sdmproject.com/software). Take a look at the names and contents of 

these text files: coordinates are written in a separate text file for each study, and 

the filename is just a very short identification of the study (e.g. the name of the 

first author), plus a dot, plus the stereotactic space of the coordinates (“mni”, 

“mni2tal”, or “tal”), plus a dot, plus “txt”. These are some of the sample text files: 

Carmona.mni.txt 
 

40,39,21,-5.52 
 
 

Gilbert.mni.txt 
 

-26,40,36,-5.73 
6,4,72,-4.28 

-48,2,36,-3.64 
50,34,20,-5.17 
20,26,48,-3.65 
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Note that each line specifies a coordinate and its t statistic. The 

coordinate is defined by the first three values (e.g. “40,39,21”), and the t statistic 

by the forth value (e.g. “-5.52”). Note also that the extension of these two 

sample files is *.mni.txt, for what these coordinates are understood to be in MNI 

space. 

The t statistic is a positive number in case that represents a region where 

patients have more grey matter than controls (or where patients hyper-activate, 

or where participants activate as compared to baseline, etcetera), while a 

negative number in case that represents a region where patients have less grey 

matter than controls (or where patients hypo-activate, or where participants 

deactivate as compared to baseline, etcetera). 

In a real meta-analysis you would have scanned the original papers of 

these two studies, and noted that they reported z scores instead of t statistics. 

However, z scores were converted to t statistics using the online converter 

which may be found at http://www.sdmproject.com/utilities/?show=Statistics 

(this website utility may be easily accessed by pressing the [Convert to t values] 

button within the SDM software). 

In case that the studies had no reported any measure related to effect 

size (t statistic, z score, p value, etcetera), you should write a “p” for positive 

peaks (i.e. patients have more grey matter than controls) and an “n” for negative 

peaks (i.e. patients have less grey matter than controls). The SDM software 

conducts a pre-analysis to estimate the effect size of these peaks – see Radua 

J et al. A new meta-analytic method for neuroimaging studies that combines 
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reported peak coordinates and statistical parametric maps. Eur Psychiatry, in 

Press for details. 

 

IMPORTANT: Statistical maps are preferred to any coordinate text file. In case 

that such images are obtained, use the [Convert images] button within the SDM 

software to prepare them for the analysis. Please contact us in case of 

questions (a contact form may be found at http://www.sdmproject.com/). 

 

 

A1.2.3 Preparation of the SDM software 

In this step you should first specify a working folder for the meta-analysis, and 

second create an SDM table specifying the names of the studies and their 

sample sizes, as well as optional variables. The latter has been already 

prepared for you in this tutorial. 

 

� Start the SDM software: 

 Linux users: to start the software click a file called “sdm” in the SDM 

software folder. If the program does not execute follow the instructions to 

change file permissions which may be found at 

http://www.sdmproject.com/software/?show=Linux 
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 Windows users: to start the software click a file called “sdm.exe” in the 

SDM software folder. If you don't find this file, look for a file called “sdm” 

whose icon is a green brain. 

 

One or two red warnings might be printed in the screen if you haven’t used 

this software before: one complaining about the working folder, and another 

complaining about the MRIcron program. 

 

� To specify the working folder for the meta-analysis, click the button [Change 

folder / meta-analysis] button, look for the folder containing this PDF, and 

click [Open]. 

A dialog similar to the following one should appear: 
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� If SDM software did not found MRIcron (or FSLView) program, you can 

manually specify its location by clicking the [Tools] menu, clicking [Settings], 

clicking the selection box at the right of [Brain viewer folder], selecting 

[Other…], looking for the folder which contains the MRIcron or FSLView 

program (typically something like “C:\Program Files\MRIcroN” in Windows), 

clicking [Open], and clicking [OK]. 

A dialog similar to the following one should appear: 
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� To create or edit the SDM table, click the button [SDM table editor] button. 

A window similar to the following one should appear: 

 

 

Each row in the SDM table specifies one study. In this example, the first 

column sets the identification of the study (exactly the same than in the text 

files), the second column specifies the size of the patients’ sample (“n1”), the 

third column the size of the controls’ sample (“n2”), the 4th-7th columns optional 

global grey matter values, the 8th-9th columns optional variables, and the 10th 

column a special optional variable called “threshold”, which may be used to 

specify the threshold type (e.g. “uncorrected” vs “corrected”) used in each 

study. 
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A1.2.4 “Globals” analysis 

Prior to the voxel-based meta-analysis, you will conduct an analysis of the 

global grey matter volumes. To this end, the following variables must be defined 

in the SDM table: “n1” and “n2” (sample size of the patients’ and the controls’ 

groups), “mean1” and “mean2” (global grey matter means), and “sd1” and “sd2” 

(global grey matter standard deviations). 

 

� To conduct the “globals” analysis, click the button [Globals], and click [OK] 

twice. 

A dialog similar to the following one should appear: 

 

 

This will create and automatically open a web-like file called 

“globals_MyGlobals.htm” with many standard meta-analytic measures for global 

grey matter. The most important are the mean (Hedge’s δ along with its 
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corresponding Z and P values and the confidence interval) and the analysis of 

heterogeneity (τ and its corresponding Q and P values). 

Note that you could have selected indicators for subgroup comparisons, 

covariates, and a filter for subgroup analysis. If one variable is selected, the 

program will create a coefficient called “0” which estimates the global grey 

matter volume at the minimum value of the variable, a coefficient called “1” 

which estimates the global grey matter volume at the maximum value of the 

variable, and a coefficient called “1m0” which estimates the difference in global 

grey matter volume between the maximum and the minimum values of the 

variable. If two variables are selected, “10” means the maximum value of the 

first variable and the minimum of the second, while “01” means the minimum 

value of the first variable and the maximum of the second. In this case, the two-

variable Q statistic is also computed, with a meaning similar to the F of an 

ANOVA. 

 

A1.2.5 Pre-processing 

In this step SDM will use the coordinates’ text files to recreate the effect-size 

brain maps of the original studies. Voxels from these brain maps will be then 

randomly permuted to create Monte Carlo brain maps, useful for estimating the 

null distributions of the subsequent analyses. 
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� To pre-process the studies, click the button [Preprocessing], select the [VBM 

- gray matter] template, and click [OK]. 

A dialog similar to the following one should appear: 

 

 

This will create a system file called “sdm_main.sdm” which contains the 

maps of the studies, a system file called “sdm_nd.sdm” which contains the null 

distributions of subsequent analyses, and a set of “sdm_r*.sdm” system files 

which contain the Monte Carlo maps. Notice that you specified only 1 

randomization, but in a real meta-analysis several randomizations are 

recommended. 

For checking purposes, this procedure will also create a set of 

“pp_*.nii.gz” NIfTI files which contain the recreated maps, and a web-like file 

called “pp.htm” which will be automatically opened. You should check that the 

absolute maximum and minimum peaks reported in the summary of “pp.htm” 
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approximately correspond to those reported in the original manuscripts. Pay 

special attention to check the side (left vs. right). 

 

Note: It is highly recommended to use the new effect-size SDM algorithms. In 

case that you wish to use the original SDM algorithms you should indicate so by 

selecting the [Original, old method] mode in the preprocessing dialog. 

 

 

A1.2.6 Mean analysis 

Now it's time to conduct the mean analysis, which is usually the main outcome 

of a meta-analysis. In this tutorial, the mean analysis represents the weighted 

mean differences in regional grey matter between patients with OCD and 

healthy controls. 

 



Appendix 1. The software 
  
 

 
 

Page 378 

� To conduct the mean analysis, click the button [Mean], specify a name for 

this analysis (we will call it “mean”) and click [OK]. 

A dialog similar to the following one should appear: 

 

 

This will create the mean and the between-study heterogeneity (QH) 

maps within the “sdm_main.sdm” file, the null distribution for these maps within 

the “sdm_nd.sdm” file, and new web-like files called “mean_z.htm” and 

“mean_QH_z.htm” with the statistical thresholds obtained after calculating the 

mean and the heterogeneity in each set of Monte Carlo maps. 
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� To threshold and see the results, click the button [Threshold], click [OK], 

select the “mean_z” map, and click [OK]. 

A dialog similar to the following one should appear: 

 

 

This will create and automatically open a web-like file called something 

like “mean_z_p0.00500_1.000_10.htm” with many statistics, coordinates and 

brain regional breakdowns, and will also start the MRIcron or FSLView program 

to visually inspect them. The following images will be also created: 

• mean_p0.00500_pos.nii.gz (a NIfTI file of positive statistically significant 

differences) 

• mean_p0.00500_pos_p.nii.gz (a NIfTI file of the p-values of the positive 

differences) 

• mean_p0.00500_pos_logp.nii.gz (a NIfTI file of the minus log10 p-values of 

the positive differences) 
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• mean_p0.00500_neg.nii.gz (a NIfTI file of negative statistically significant 

differences). 

• mean_p0.00500_neg_p.nii.gz (a NIfTI file of the p-values of the negative 

differences) 

• mean_p0.00500_neg_logp.nii.gz (a NIfTI file of the minus log10 p-values of 

the negative differences) 

 

Important: Please notice that the p values of SDM z scores have been found 

using randomizations, and they are usually much different from the p values 

associated to standard z scores! 

 

 

A1.2.7 Visual inspection of heterogeneity 

The new effect-size SDM algorithms allow a visual inspection of the brain 

regions with more inter-study heterogeneity. To obtain a map of the 

heterogeneity (in which QH statistics have been converted into z scores), click 

the button [Threshold], click [OK], and select the “mean_QH_z” map. 

This map should be only taken for guidance, e.g. to know which brain 

regions are more heterogeneous. Its exact values, however, should be taken 

with caution as the recreation of maps from peak coordinates might result in 

highly inflated statistics. 
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Important: It is strongly recommended to extract values from relevant peaks 

(see later), and inspect their funnel plots with Excel, R or any other program that 

you use for standard meta-analyses. Note however that studies with null z 

scores (i.e. because no peak coordinates were reported in the proximity of the 

voxel) will all be in a straight line, thus creating “artificially ugly” plots! 

 

 

A1.2.8 Subgroup analysis of adult samples 

This is similar to the mean analysis, with the exception that you will specify the 

“adults” filter in order that only studies with adult samples are included in the 

analysis. 

� To conduct the subgroup analysis, click the button [Mean], specify a name 

for this analysis (we will call it “adults”), select the “adults” filter, and click 

[OK]. 

� To threshold and see the results, click the button [Threshold], click [OK], 

select the “adults_z” map, and click [OK]. 

 

Tip: Please notice that you will be able to threshold any time any result from 

previous analyses, you do not have to conduct the calculations again! 
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A1.2.9 Jackknife sensitivity analysis 

This is again similar to the mean analysis, with the exception that you will select 

the “Jackknife” option. 

 

� To conduct the jackknife analysis, click the button [Mean] button, specify a 

name for this analysis (we will call it “mean” again), select the “Jackknife” 

option, and click [OK]. 

A dialog similar to the following one should appear: 

 

 

The software will repeat the mean analysis several times, including each 

time all the studies but one. The names of the resulting maps will be “mean”, 

plus “JK”, plus the name of the discarded study. E.g. the analysis including all 

the studies but “Carmona” will be called “meanJKCarmona”. 

 



Appendix 1. The software 
  
 

 
 

Page 383 

� To threshold and see the results, click the [Threshold] button, click [OK], 

select one of the maps (e.g. “meanJKCarmona_z”), and click [OK]. 

 

A1.2.10 Meta-regression by YBOCS 

The last analysis will be a weighted regression of voxel values across the 

studies by the YBOCS of the corresponding patients’ samples. 

 

� To conduct the regression analysis, click the button [Linear model], select 

[Meta-regression] and click [OK], specify a name for this analysis (e.g. 

“ybocs”), select “YBOCS” as the regressor, and click [OK]. 

A dialog similar to the following one should appear: 

 

 

This will create three maps: “ybocs_1” (differences between patients with 

maximum YBOCS and healthy controls), “ybocs_0” (differences between 

patients with minimum YBOCS and healthy controls), and “ybocs_1m0” 
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(differences between patients with maximum YBOCS and patients with 

minimum YBOCS). 

 

� To threshold and see the results, click the button [Threshold] button, click 

[OK], select one of the analyses (e.g. “ybocs_1_z”), specify a conservative 

probability, and click [OK]. 

 

Please remember that statistical significance of these meta-regressions 

should be taken with caution. 

 

A1.2.11 Extraction of values 

Extraction of values is useful for creating graphics such as funnel or meta-

regression plots with Microsoft Excel, R or similar software, either for creating a 

figure for the publication, or for visually inspecting the heterogeneity or 

publication bias. You should first create a mask which includes the voxel or 

region from where you want to extract the values, and then extract these values 

using the mask. In this tutorial you will extract values from the voxel (20,14,0), 

located in right lentiform nucleus. 
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a) Creation of the mask 

� To create the mask, click the [Create a mask] button, click [OK], specify a 

name for the mask (e.g. “rLentif”), type the coordinate (X = 20, Y = 14, Z = 

0), and click [OK]. 

A dialog similar to the following one should appear: 

 

 

This will create a file called “mask_rLentif.sdm” which contains the mask. 

Note that you can copy this file to the folder of another meta-analysis in order to 

avoid creating it again. 
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b) Extraction of values 

� To extract the values using this mask, click the [Extract] button, select 

“rLentif”, and click [Open]. 

A dialog similar to the following one should appear: 

 

 

This will create and automatically open a web-like file called 

“extract_rLentif.htm” with the grey matter values of each map in this voxel. 
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APPENDIX 2 

The Signed Differential Mapping project website 

 

A2.1 Screenshot of the home page 
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A2.2 Screenshots of the software downloads 
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A2.3 Screenshots of the manual 
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A2.1 Sample screenshots of the database 
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A2.5 Screenshots of other sections 
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