
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Bayesian analysis of fluorescence lifetime imaging data

Rowley, Mark

Awarding institution:
King's College London

Download date: 28. Dec. 2024



This electronic theses or dissertation has been 

downloaded from the King’s Research Portal at  

https://kclpure.kcl.ac.uk/portal/  

 

 

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information 

derived from it may be published without proper acknowledgement. 

 

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk 

providing details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENSE AGREEMENT                                                                         

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 

Unported License. http://creativecommons.org/licenses/by-nc-nd/3.0/  

You are free to: 

 Share: to copy, distribute and transmit the work  
 
Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in 
any way that suggests that they endorse you or your use of the work).  

 Non Commercial: You may not use this work for commercial purposes. 

 No Derivative Works - You may not alter, transform, or build upon this work. 
 

Any of these conditions can be waived if you receive permission from the author. Your fair dealings 

and other rights are in no way affected by the above. 

 

 

 

 

 

 

 

 

 

Title:Bayesian analysis of fluorescence lifetime imaging data

Author:Mark Rowley



BAYESIAN ANALYSIS OF

FLUORESCENCE LIFETIME IMAGING

DATA

MARK IAN ROWLEY
2013

THIS THESIS IS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF PHD IN KING’S COLLEGE LONDON



I wish to thank the EPSRC/BBSRC (EP/C546105/1 and EP/C546113/1) for financial
support, and my supervisors B Vojnovic, T Coolen and P Barber for the opportunity to
work in this subject area and for many useful discussions. I am also indebted to many
people who make FLIM experiments in cells and tissue possible, including but not limited
to, the biologists, T Ng, G Weitsman, at the Randall and Cancer Divisions, KCL, and the
instrument builders, I Tullis, R Newman and J Prentice at the Gray Institute in Oxford.

ii



Abstract

The development of a novel photon-by-photon Bayesian analysis for time-domain
Fluorescence Lifetime Imaging Microscopy (FLIM) data, and its application to both
real experimental biological and synthetic data, is presented in this thesis. FLIM is
an intensity-independent and sensitive optical technique for studying the cellular envi-
ronment and can robustly exploit Förster Resonance Energy Transfer (FRET) to enable
protein-protein interactions to be located within living or fixed cells. Careful analysis
of fluorescence lifetime data, often comprising multi-exponential kinetics, is crucial to
elucidating FRET via FLIM.

The developed Bayesian analysis is demonstrated to offer more accurate fitting of data
with lower photon counts, allowing greater acquisition speeds. As well as revealing infor-
mation previously unobtainable, such as direct error estimates, fitting model probabilities,
and instrument response extraction, the developed approach allows for future extensions
which can exploit the full probability distribution. In a section of this work already pub-
lished [1], Bayesian mono-exponential analysis was shown to offer robust estimation with
greater precision at low total photon counts, estimating fluorescent lifetimes to a level of
accuracy not obtained using other techniques. Bayesian mono-exponential parameter es-
timates obtained with the developed Bayesian analysis are improved compared to those
obtained using maximum likelihood, least squares, and the phasor data fitting approaches.
In this work, Bayesian bi-exponential analysis based on an improved fully-analytic time-
domain FLIM system model is shown to also offer improved decay parameter estimates.

The developed analysis offers fluorescence decay model selection by exploiting the
hierarchical nature of Bayesian analysis. This innovation enables the quantitative determi-
nation of the likelihood of the data being due to mono- or bi-exponential decay processes,
for example. Model selection applied to FLIM promises to simplify processing where the
exact kinetics are not known. Finally, the determination of an approximated instrument
response function from observed fluorescence decay data alone is also possible.
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Introduction
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This thesis presents a Bayesian analysis for fluorescence lifetime imaging microscopy
(FLIM) data. FLIM is widely1 used in the biomedical sciences, and has been used exten-
sively for the study of protein-protein interactions and the molecular environment in the
laboratories in the Randall Division of Cell & Molecular Biophysics at King’s College
London and at the Gray Institute for Radiation Oncology and Biology at the University
of Oxford, where most of the work that has culminated in this thesis has been conducted.
The primary aim of the research was to develop a robust analysis technique for time-
domain FLIM data targeted particularly towards those situations when data is in short
supply and its analysis is not straightforward. The provision of a reliable technique can
thereby reduce the time taken to acquire such data and potentially allow a greater insight
into dynamic processes within cells and also reduce experiment time.

Although FLIM has found a niche in the life sciences for the study of protein-protein
interaction e.g. [2, 3], it has been used in a diverse range of studies outside of this area,
having found application in combustion research to study turbulent hot nitrogen flows [4],
in microfluidic system research to observe dynamic fluid mixing in real-time [5], for re-
fractive index sensing [6], and in viscosity measurements by using fluorescent molecular
rotors [7] in molecules and proteins. In the past decade FLIM has also been used in a
few less conventional settings, from a demonstration of its potential for the analysis of
gunshot residue in forensic science [8], to its use as a tool for the non-destructive anal-
ysis of Renaissance fresco paintings in Italy [9] and the fluorescence lifetime mapping
of Michelangelo’s David [10]. Indeed, even the humble tomato has been able to avoid
neither the advances of the wilt virus nucleosapid protein nor FLIM [11, 12].

Before embarking on the main subject matter of this thesis, time-resolved FLIM data
and its analysis, a concise introduction to fluorescence and some of the key technologies
that are essential to enabling FLIM is provided. Fluorescent proteins, their introduction
into the cellular environment as fluorescent probes, and the fundamental limits that restrict
the rate of emission and detection of fluorescence photons in FLIM, are discussed. A brief
history of the technical development of fluorescence microscopy is given in [13].

Fluorescence [14, 15] is one of a family of processes described by the phenomenon of
luminescence. Certain molecules emit light from electronically excited states generated

1As of March 2013, a search for publications including “FLIM” or “fluorescence lifetime” in the public
biomedical literature reference database “PubMed” (http://www.ncbi.nlm.nih.gov/pubmed) yields nearly
6000 publications, the number of publications per year having increased year-on-year in sixteen of the past
twenty years, and with 492 publications in 2012 alone.
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by e.g. physical (particularly absorption of optical or higher energy photons), mechan-
ical (e.g. friction), or chemical mechanisms. The generation of luminescence through
excitation of a molecule by light is a phenomenon termed photoluminescence, which is
usually divided into two categories, fluorescence and phosphorescence, depending on the
electronic configuration of the excited state and the specific emission pathway associated
with a molecules of specific substances. Fluorescence is the property of some atoms and
molecules to absorb light at a particular wavelength and to subsequently emit light at a
longer wavelength following a very short interval: the fluorescence lifetime. The process
of phosphorescence occurs in a similar way to fluorescence, but is associated with a much
longer excited state lifetime. The fluorescence process is determined by three important
events, all of which occur on timescales that are separated by several orders of magnitude.
Excitation of an appropriate molecule by an incoming photon happens in femtoseconds,
while vibrational relaxation of excited state molecule electrons to the lowest energy level
is much slower and is usually over in picosecond timescale. The final process, emission
of a less energetic, longer wavelength photon, compared to the excitation photon. The
return of the molecule to the ground state, occurs in nanoseconds. Other processes such
as delayed fluorescence and phosphorescence take much longer to return to the ground
state. They are included here for completeness, but are not exploited in the work pre-
sented here. A simplified Jablonski diagram [16, 17] illustrating the energy transition
processes occurring during luminescence is shown in Fig. 1.

An illustration of the shifting of the fluorescence emission spectra to longer, less en-
ergetic, wavelengths relative to the absorption spectra is shown in Fig. 2 (a). The dif-
ference between the peak excitation (absorption) and emission wavelengths is known as
the Stokes Shift [14, 15], as illustrated in Fig. 2 (a). In the case that there is spectral
overlap between the emission spectra of a fluorophore and the excitation spectra of a
chromophore, as shown in Fig. 2 (b), energy may be transferred non-radiatively between
the two by means of resonance energy transfer, as discussed below.

Förster (or fluorescence) resonance energy transfer (FRET) [18, 19] is the process by
which a fluorophore (the donor) in an excited state transfers energy non-radiatively to a
nearby chromophore (the acceptor). FRET occurs at donor-acceptor separations of be-
tween about 1 nm and 10 nm [20], and is therefore very well suited to studying biological
systems and has been described as a “spectroscopic ruler” [21]. The occurrence of res-
onance energy transfer requires that there be overlap between the emission spectra of a
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Figure 1: Energy transition processes occurring during luminescence, depicted as a
simplified Jablonski diagram: A Jablonski diagram illustrating the processes present
in fluorescence, that is, excitation from the ground state (S0), internal vibrational re-
laxation to the first excited state (S1), and the emission of a fluorescence photon for
a return to the ground state (S0). For completeness, the phosphorescence and delayed
fluorescence pathways are also shown.

donor fluorophore and the excitation spectra of an acceptor chromophore, as illustrated in
Fig. 2. The FRET process is illustrated in Fig. 3 by a simplified Jablonski diagram.

In Fig. 4, the use of FRET to study protein-protein interactions is illustrated. If two
proteins, for example, one labeled with blue fluorescent protein (BFP) (the donor) and
the other with green fluorescent protein (GFP) (the acceptor), physically interact, then
increased intensity at the acceptor emission maximum (510 nanometers) will be observed
when the complex is excited at the maximum absorbance wavelength (380 nanometers)
of the donor. Failure of the proteins to form a complex results in no acceptor (GFP)
fluorescence emission. An illustration of how intramolecular FRET can be used to detect
protein conformational change is shown in Fig. 5; by quantifying the FRET efficiency
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(a) Stokes Shift (b) FRET spectral overlap

Figure 2: Fluorescence emission and absorption spectra: In (a) an illustration of the
Stoke’s Shift, the difference between the peak excitation (absorption) and emission
wavelengths [14, 15], and in (b) an illustration of the spectral overlap between the
emission spectra of a donor fluorophore and the excitation spectra of an acceptor chro-
mophore as required for resonance energy transfer.

experimentally and applying Eqn. (1.1) the distance between the fluorochromes can be
determined and offer insight as to the structure of the protein.

In order to utilise fluorescence and FRET for microscopy it is necessary, therefore, to
excite a fluorescent substance in a sample and to detect the fluorescence emission. It is
also usually necessary to somehow introduce a fluorescent substance(s) into the sample,
as discussed below.

Since the development of immunofluorescence e.g. [22, 23], which enabled the dis-
tribution of specific molecules within a cell, having been tagged using antibodies labelled
with fluorescent dyes, to be visualised using fluorescence microscopy, the range of fluo-
rophores available to probe the the cellular environment has increased significantly. The
development of optimised fluorescent proteins as tags, which can be fused to a wide va-
riety of targets, has been key to making fluorescence microscopy the widely used tool
that it is in the biomedical sciences [24]. Using such fluorescent probes and fluorescence
microscopy techniques has enabled biological processes to be studied with unprecedented
spatial and temporal precision [25]. The green fluorescent protein2 (GFP) [26, 27] and its
variants, for example, can be fused to a wide variety of targets [24]. A cartoon illustration
of GFP is shown in Fig. 6, as is a picture of mice expressing enhanced GFP under UV-

2In 2008, The Nobel Prize for Chemistry was awarded to Osamu Shimomura, Martin Chalfie, and
Roger Y. Tsien, “for the discovery and development of the green fluorescent protein, GFP”. Having been
first discovered in the jellyfish Aequorea victoria [26], GFP is widely exploited for research in biochemistry
and cell biology [27].
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Figure 3: FRET, depicted as a simplified Jablonski diagram: Jablonski diagram illus-
trating coupled transitions involved between donor emission and acceptor absorption
occurring during Frster resonance energy transfer. For simplicity, higher vibrational
states present during donor excitation have been omitted.

illumination [28]. The interested reader is directed to e.g. [24, 29, 30, 25, 31] for reviews
of fluorescent probes, their benefits and limitations for imaging in cell biology, and their
importance to fluorescence microscopy-based research in the biomedical sciences. The
development of FRET biosensor probes, and their use for the study of protein-protein in-
teractions, protein conformational changes, and the concentrations of small molecules are
reviewed in e.g. [32, 33, 34].

Autofluorescence describes the fluorescent emission due to endogenous fluorophores
within a substance, and is often an unwanted source of interference in FLIM experiments
[35]. Such natural fluorescence is present in most organisms, and has been characterised,
amongst others, in rat hepatocytes, Drosophila melanogaster, numerous fungi, plants such
as maize, and alfalfa [35]. Autofluorescence has also been employed to the advantage of
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Figure 4: Intermolecular FRET: An illustration of protein-protein interaction de-
termination using FRET. If two proteins, one labeled with blue fluorescent pro-
tein (BFP) (the donor) and the other with green fluorescent protein (GFP) (the ac-
ceptor), physically interact, then increased intensity at the acceptor emission maxi-
mum (510 nanometers) will be observed when the complex is excited at the max-
imum absorbance wavelength (380 nanometers) of the donor. Failure of the pro-
teins to form a complex results in no acceptor (GFP) fluorescence emission. Fig-
ure from http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fret/fretintro.html
with permission.

basic research and diagnostics [36], for example, to study renal function [37], and as a
method for toxicity testing in cells [38].

The detection of the fluorescence emission from a sample is now discussed, hinting at
why a robust FLIM data analysis technique targeted particularly towards those situations
when data is in short supply, such as is introduced in this thesis, may be required.

The efficiency with which a particular fluorophore absorbs a photon of the excitation
light is a function of the molecular cross-section, and the likelihood of photon absorption
taking place is known as the extinction coefficient. Larger extinction coefficients indicate
that it is more likely that a photon of appropriate wavelength region is more likely to be ab-
sorbed. Absorption is linearly proportional to the excitation intensity for low fluorophore
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Figure 5: Intramolecular FRET: An illustration of intramolecular FRET for the de-
tection of protein conformational change, the donor fluorophore and acceptor chro-
mophore being sited at opposite ends of the same protein. In the native state, on
the left, the two fluorophores are sufficiently separated such that FRET does no oc-
cur, and, on the right, with the protein in a different confirmation and the donor and
acceptor in close proximity such that resonance energy transfer occurs. The pro-
tein conformational change can therefore inferred by the detection of FRET. Fig-
ure from http://micro.magnet.fsu.edu/primer/techniques/fluorescence/fret/fretintro.html
with permission.

concentrations and the average time during which the electric dipole of the fluorophore is
aligned with the excitation electromagnetic waves electric vector (polarisation).

The quantum yield of the fluorophore describes the ratio of the number of photons
emitted compared to those that are absorbed. Since, by definition, fluorophores emit some
light when they are excited, the quantum yield must have a value that exceeds zero and
cannot be higher than unity. Quantum yield values below 1 result from the loss of energy
through non-radiative pathways, (for example through heat or through energy required
for photo-chemical reactions). High quantum yields indicate a higher probability that re-
radiation, through fluorescence, will take place. In practice, fluorophores with quantum
yields in the range of 0.2-0.99 are used in fluorescence microscopy. The fluorophore ex-
tinction coefficient, its quantum yield, its fluorescence lifetime and the intensity of the
excitation source are factors of crucial importance that determine the utility of a particu-
lar fluorophore. Fundamental limits within the process of fluorescence provide limiting
values for these quantities [39, 40]. Fluorescence lifetimes represent a statistical overview
of a stochastic process, variations within which are slow compared to the rate of illumi-
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(a) GFP (b) ‘GFP mice’

Figure 6: Green Fluorescent Protein (GFP): In (a) a GFP model (left) and a picture of
a Aequorea victoria jellyfish [26, 27], and in (b) two mice expressing enhanced GFP
under UV-illumination flanking one plain mouse [28].

nation (photon flux). This results in a random delay with respect to the emission (with
respect to excitation) and no phase information from the illumination can be recovered
from fluorescence. Regardless of the light absorbed (e.g. laser light with high spatial
and temporal coherence) fluorescence is always temporally incoherent. The total fluores-
cence output F can be determined from the product of cross-section, quantum yield and
excitation intensity:

F = σQI (1)

where σ is the molecular absorption cross-section, Q is its quantum yield, and I is the
excitation light flux, typically 2− 3× 1020 photons sec−1 cm−2. A ‘typical’ fluorophore
has an absorption cross-section of ∼ 2× 10−16 cm2 molecule−1, and a quantum yield of
0.8, resulting in a value for F of 3.2× 104 photons per second per molecule.

A typical fluorescent molecule can emit about 104 photons before destructive quench-
ing takes place. Free radicals, generated as a by-product of excitation are responsible for
this destruction. Thus, the signal can be collected, using maximum illumination, for a few
seconds before the probe is destroyed. The collection time is longer when the illumination
flux is decreased, as it generally is in practice.

The time constants associated with absorption, relaxation and emission mean that sig-
nificant fluorescence from a population of molecules may last up to around 10 ns, though
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this is often somewhat shorter (e.g. the fluorophores used in this thesis have lifetimes of
∼ 2 ns). If we consider a maximum time constant of 10 ns, cycling between the ground
and excited states occurs at 108 photons per second. Any attempt to increase this is likely
to lead to saturation (i.e. the generation of a population inversion where more molecules
are in the excited state than are in the ground state). Imaging systems which rely on ex-
citation beam scanning often operate at excitation intensities close to saturation, though
in the instrument described in Section 1.2.1, this is not the case, as the usable emission
photon rates are limited by the counting rate of the detection system used.

Whether or not the fluorescence emission, in a given spectral emission band, can
yield a useful signal depends on the ability of the objective to collect the emission, on the
transmission characteristics of the optical system used, and on the quantum efficiency and
noise of the detector.

The concentration of fluorophores in a cell is now considered. When a high concentra-
tion is present, the fluorophores will self-quench through inter-molecular reactions, which
remove energy from the excited state without emission of fluorescence. A typical value
below which such self-quenching does not occur is 10−6 M [39, 40] and therefore the up-
per limit to molecule number is ∼ 106 molecules per cell, where a typical cell volume of
1 pl is assumed. The limit to the signal available is thus 1010 photons per cell, generated
by a maximum illumination of 1013 photons per second.

When detecting a photon, a statistical uncertainty is always present, irrespective of the
detector used, as described by Poisson statistics. When photon numbers are larger (e.g
& 15) the Poisson statistics are approximated by Gaussian statistics and both the noise
and the signal-to-noise ratio is equal to the square root of the photon count. The 1 µM
probe can thus be detected with a maximum signal-to-noise ratio of 105 when a perfect
detection system is used. However, when the distribution of fluorescence is to be imaged,
and when the fluorescence is to be sampled in time, the signal-to-noise ratio is reduced by
dividing by the square root of the number of space and time samples.

Fluorescence emission is isotropic and even the highest numerical aperture objectives
(1.4 NA oil immersion) can only collect ∼ 30% of the emitted light. Additional losses in
the optics of the instrument further reduce the available photons so that typically no more
than 10% of the emission is available for detection. The detector quantum efficiency,
DQE, which, in the case of electronic detectors, describes the likelihood of converting a
photon to an electron, rarely exceeds 80% (in the detectors used in this thesis, the detec-
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tor DQE ∼ 20%) further restricts the signal-to-noise ratio. We can thus record no more
than 108 − 109 counts at no more than 1012 − 1013 counts per second from the whole
cell. Imaging the cell across ∼ 104 pixels, provides us with a maximum pixel count
of 104 − 105 at a maximum count rate of 108 − 109. In practice, of course lower fluo-
rophore concentrations are often present and the collected counts and the collection rate
are consequently reduced. It is this low photon count availability that triggered the work
described here: while imaging can be performed with a reasonable signal-to-noise ratio,
determining lifetimes is considerably harder, always forcing a compromise between high
signal-to-noise ratios with low spatial resolution and vice-versa. Any time-dependant
changes are clearly even harder to determine. The ‘operating window’ available to ad-
vanced multi-dimensional fluorescence acquisition is narrow, but fortunately accessible
with modern instrumentation.

An interesting possible everyday use of FLIM was presented in [41] in which its
potential application as an anti-counterfeiting technology for paper money was demon-
strated; genuine U.S. Federal Reserve bank notes exhibit an intrinsic two component flu-
orescence decay “signature” that, it is suggested, differs little from note to note and de-
nomination to denomination, and is only ‘minimally influenced by wear-and-tear and/or
residual skin oils from regular handling’. Of the tested counterfeit $100 notes, four of
nine exhibited only a mono-exponential fluorescence decay and the remaining five could
be determined as not being genuine due to significant deviations in the longer decay com-
ponent lifetime. In essence, a simple model selection test to discriminate between a mono-
exponential decay and a bi-exponential decay (performed in [41] by visual inspection of
the fitted decay curve and residuals) was applied to identify the four of nine counterfeit
notes in the simple case that the counterfeits exhibited a mono-exponential decay. It is
noted in [41] that even should counterfeiters be able to acquire the fluorescence decay
“signature” of their counterfeits it would be difficult to tweak it in order to mimic that of
genuine notes.

In this work, Bayesian techniques are applied (both in theory and with implemented
software) with an intended use of studying the cellular environment through FLIM data.
These methods incorporate a detailed mathematical model of the practical arrangement
of excitation and detection from an imaging system. In order to aid readability, wher-
ever possible, any of the mathematical and technical intricacies required in this work are
detailed in the Appendices rather than the main body of the text.
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In the remainder of this introductory part of the thesis, FLIM is introduced in greater
detail and the existing analysis methods are discussed. The application of FLIM to
protein-protein interaction studies is discussed in Chapter 1, along with a description of
the most commonly used FLIM data acquisition methods, and a discussion of some of the
practicalities surrounding FLIM data analysis and how the analysis approach may impact
the rest of the experimental chain. This is followed in Chapter 2 by a review of the differ-
ent FLIM data analysis techniques that are currently commonly used for the quantification
of FLIM fluorescence decay signals, and the chapter contains an appraisal of their relative
advantages and shortcomings.

The theoretical development of the Bayesian analysis for time-domain FLIM is pre-
sented in Part II (Chapters 3, 4, & 5), beginning in Chapter 3 with a stand-alone intro-
duction to the Bayesian techniques which are the basis of the research presented here.
The introduction of the fully-analytic model for time-domain FLIM which is at the core
of this work follows in Chapter 4, and can be read independently or in conjunction with
Appendix A, which contains the step-by-step mathematical development of the model.
In Chapter 5 the Bayesian methodology is applied to the developed time-domain FLIM
system model for the purpose of fluorescence decay parameter estimation, fluorescence
decay parameter estimation with simultaneous FLIM instrument parameter estimation,
and fluorescence decay model selection.

The results of the application of the developed Bayesian algorithms are presented in
Part III (Chapters 6, 7, 8, & 9), in which the performance of the Bayesian algorithms is
demonstrated, using both real experimental data and synthetically generated data, and
compared to those of the commonly used time-domain FLIM data analysis methods.
The application of the Bayesian mono-exponential and bi-exponential fluorescence decay
analysis algorithms are discussed in Chapters 6 & 7 respectively. The results of applying
the developed Bayesian analysis for the simultaneous estimation of fluorescence decay
and FLIM instrument parameters are then presented in Chapter 8, for a number of dif-
ferent (plausible) synthetic instruments and also with the experimental data obtained for
[1]. In Chapter 9 the performance of the developed Bayesian fluorescence decay model
selection algorithm is discussed.

Part IV reflects upon the developed Bayesian techniques, critically discusses some of
the advantages they offer over established FLIM data analysis techniques, and provides
some suggestions for future research.
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Chapter 1

Fluorescence lifetime imaging
microscopy (FLIM)

Fluorescence lifetime imaging microscopy (FLIM) is a powerful optical technique that
finds its primary application in the biomedical sciences for the study of molecular envi-
ronments. The fluorescence lifetime of a fluorophore can depend on a range of biological
and chemical properties of interest [42]. Using FLIM to observe the spatial distribution of
fluorescence lifetimes of fluorophores within a sample provides a means of observing the
behaviour and variation of sample properties [43] such as ion concentrations, hydropho-
bicity, oxygen concentration, molecular binding, and molecular interaction, by energy
transfer when two proteins are close to each other.

In performing FLIM, fluorophores within a sample being studied are optically excited
and photons from the resulting fluorescence decay process(es) are detected. The fluores-
cence lifetime is the characteristic time that a fluorescent molecule remains in the excited
state before returning to its ground state, and is estimated (along with other parameters
that describe a fluorescent decay) by analysis of the detected photon data. Usually, a FLIM
image is formed by collecting FLIM data at many points over the sample being studied
[44] (either by laser scanning or otherwise), and the spatial variation of the fluorophores
and their lifetimes are mapped.

FLIM benefits from the significant advantage that the lifetime of a fluorescence decay
does not depend on fluorophore concentration nor on the excitation light or intensity [45].
FLIM is used in some laboratories, including in the Randall Division of Cell & Molecular
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Biophysics where this work has been conducted, in live and fixed cell and tissue imaging
studies as it is non-destructive and only minimally invasive [42]. In designing and set-
ting the expectations for a FLIM experiment there are, however, many conflicting ideals
which must be traded against each other, according to the sample being studied, the time
available, the availability and financial cost of equipment. In using FLIM to study, say,
protein-protein interactions the reliable analysis of fluorescence decay photon data for the
accurate quantification of an underlying fluorescence decay process is desired. The accu-
racy of the analysis is improved by acquiring data sets that contain large photon numbers
but the acquisition of such data sets requires either an increased imaging duration or a
more intense illumination on the sample or both. In imaging a sample for longer, the
temporal resolution at which dynamic processes can be studied is sacrificed whereas in
increasing the excitation power the sample itself may be sacrificed. It is clear that to ben-
efit from the many advantages FLIM offers, it is necessary to somehow balance the data
and accuracy requirements of an analysis with the data availability for the experiment.
We will see later why this tradeoff is particularly pertinent to many studies that employ
FLIM techniques, especially those in the biomedical sciences.

In the next section, the application of FLIM to Förster (or Fluorescence) Resonance
Energy Transfer (FRET) studies is discussed, followed by a discussion of some of the
other uses of FLIM. Attention then moves to the acquisition of FLIM data in both the
frequency-domain and the time-domain, the two most popular FLIM acquisition meth-
ods, without focusing heavily on the technical details. This chapter concludes with a
discussion of the need for accurate FLIM data analysis; this serves as an introduction to a
review of the past and present literature pertaining to fluorescence decay analysis, leading
on to the main subject of this thesis, the analysis of time-domain FLIM data acquired
using time correlated single photon counting (TCSPC) [46].
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1.1 Application of FLIM to fluorescence resonance en-
ergy transfer (FRET)

The use of FLIM to determine Förster (or fluorescence) resonance energy transfer (FRET)
[18, 19] is a versatile and sensitive optical technique for studying the cellular environment
and enables protein-protein interactions on the nanometer scale within living or fixed
cells to be located with a micrometer scale [47, 48]. FRET is the process by which a
fluorophore (the donor) in an excited state transfers energy non-radiatively to a nearby
chromophore (the acceptor), and can occur at separations of between about 1 nm and
10 nm [20]. The proportion of photons absorbed by the donor that are transferred to the
acceptor, the FRET efficiency E, is very sensitive to the separation r between the donor
and the acceptor, and is given by,

E = R6
0/
(
R6

0 + r6
)
, (1.1)

where R0 is the Förster critical distance (the distance at which the FRET efficiency is
50%). A reduction in the donor fluorescence lifetime occurs as a consequence of the
FRET process, with the FRET efficiency also being related to the fluorescence lifetime of
the donor in the presence of the acceptor τDA and the donor lifetime in the absence of the
acceptor τD, by the following,

E = 1− τDA/τD (1.2)

thereby enabling the separation of the donor and the acceptor to be inferred if the fluo-
rescent lifetimes τDA and τD are known. Careful analysis of FLIM data for the reliable
and accurate estimation of the fluorescent lifetimes τDA and τD (and the other param-
eters describing a fluorescence decay) is crucial to conducting FRET experiments via
fluorescence lifetime. The variation of the FRET efficiency with fluorophore separation
(Eqn. (1.1)) and with the lifetime of the quenched donor (Eqn. (1.2)) is shown in Fig. 1.1.

Typically, to quantify protein-protein interactions and study biological molecules that
are of interest using FLIM, fluorescent probes are introduced into the specimen being
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Figure 1.1: FLIM and FRET efficiency for measuring fluorophore separation: In (a) the
FRET efficiency as a function of the fluorescence lifetime of the donor in the presence
of the acceptor τDA and the donor lifetime in the absence of the acceptor τD (Eqn. (1.1)),
and in (b) the FRET efficiency as a function of the donor fluorophore and acceptor sep-
aration r and the Förster critical distance R0 (Eqn. (1.1)). The dotted lines illustrate that
by measuring a FRET efficiency of about 10% through the estimation of the lifetimes
τDA and τD it can be inferred that the donor and acceptor are separated by about 1.5R0.

studied and their spatial distributions are mapped using FLIM.
The interested reader is directed to the FRET reviews [49, 20, 32, 50, 51], which

include discussion of the determination of the Förster distance, FRET probes, methods
for applying FRET experimentally, and summaries of some of the various applications of
FRET in biomedical research, including the use of FRET to monitor protease activity in
(human immunodeficiency virus) HIV, and in the study of DNA structure.

1.2 Acquisition methods: time-resolved, frequency-
resolved

The two common techniques for FLIM employ data acquisition in the time-domain (e.g.
[52, 53, 54]), using ultra-short repetitive excitation pulses, and in the frequency-domain
(e.g. [15, 47, 48]) by means of a sinusoidally modulated excitation light source for il-
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lumination of the sample. Common to both time-domain and frequency-domain FLIM,
of course, are excitation sources and detectors; it is how this equipment is applied and
the form of the collected data that differ. The general principles behind the collection of
time-domain and frequency-domain data, how it is represented and why this influences
their analysis, are described here. The different technical solutions used to realise FLIM
are reviewed and compared in [44, 45].

1.2.1 Time-domain FLIM

In time-domain FLIM, one of the methods that can be used for data acquisition, and which
permits the accurate measurement of the detection time of single photons following peri-
odic pulsed excitation, is time-correlated single photon counting (TCSPC) [55]. It is also
possible to perform time-domain FLIM using other methods, such as with a time-gated
system e.g. [56, 57] or a using streak camera e.g. [58, 59, 43]. In TCSPC, over time,
after many periods of excitation, a data set comprising a collection of photon detection
times accumulates that reflects, in this case, a fluorescence decay process that is occurring
in the sample being studied. At its simplest, classical TCSPC is achieved by the suitable
arrangement of a photomultiplier (PMT), fast discriminators, a time-to-amplitude con-
verter (TAC), an analogue-to-digital converter (ADC), and a memory where the address
of each storage location corresponds to a detected time, in order that the detection time
of a single photon pulses can be obtained with high precision. A pulsed laser light source
provides periodic excitory illumination of the sample causing subsequent fluorescence
photon emission; the detection time (relative to the time of excitation) of a single pho-
ton pulse is then determined and recorded in memory. The cost, however, of detecting
photon arrival times with such high resolution is that the TCSPC hardware necessitates
that the likelihood of more than one photon being detected in a single excitation period is
negligible so as to avoid pulse pile-up affects [55]. Therefore, over the course of acquir-
ing TCSPC data there are far fewer excitation periods in which a photon is counted than
not. Additionally, following the detection of a photon the TCSPC hardware must recover;
during this ‘dead time’ the system is blind and photons cannot be counted [55]. Only one
photon event is counted in a single period in TCSPC, and therefore if the likelihood of
photon detection is too high early photons will be over-represented in the recorded data;
this effect of pulse pile-up is a principal cause of signal distortion [60]. A more detailed
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account of the technical details of TCSPC instrumentation and its configuration can be
found in [55, 46, 60].

In TCSPC FLIM the so called ‘photon distribution mode’ of data recording is most
commonly employed; the detected photon arrival times are recorded in a histogram (i.e.
the order of recording the detected photon arrival times is not preserved), each detection
event incrementing the photon count of a particular channel or bin, that is, an interval con-
tained in the overall measurement interval. In photon distribution mode, the accumulation
of the arrival times of many detected photons yields a distribution of photon probability
that is representative of the fluorescence decay, much like the example shown in Figure
1.2. Alternatively, in the ‘time-tag’ or ‘FIFO’ mode, arrival time data for each detected
photon is recorded sequentially (i.e. the ordering of detection of counted photons and
the experimental time are preserved), again each arrival time being recorded with high
temporal resolution. In the context of this work, perhaps the greatest potential advantage
of FIFO data recording is that the FIFO storage buffer can be continuously read, coupled
with online data analysis this could provide a feedback loop that may permit data acqui-
sition to be terminated once sufficiently confident that enough data has been collected to
enable sufficiently accurate parameter estimates.
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Figure 1.2: Time-domain FLIM: In (a) an intensity image, in (b) the time resolved pho-
ton counting histogram data from a typical pixel, and in (c) the corresponding lifetime
image. On application of an appropriate analysis algorithm (at each image pixel) to the
FLIM data can be fitted the characteristic fluorescence decay lifetime(s) can be esti-
mated and a fluorescence decay fitted to the recorded data.

A typical modern time-domain FLIM system that excites a sample at repetition fre-
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quencies between about 1 MHz and 100 MHz and incorporates a commercially available
state of the art TCSPC device, such as the SPC-8301, can record photon arrival times
within an accuracy of about 7 ps (FWHM) and supports a useful count rate of about
4 MHz [60]. Assuming that the TCSPC device is operating at the maximum useful count
rate, in acquiring data for, say, a 256 × 256 image a maximum of only about 60 photons
can be counted at each image pixel per second. It is quickly apparent that, using TC-
SPC FLIM, typically imaging must be performed for between a few seconds and even a
few minutes in order to collect sufficient photon counts at each pixel to permit a reliable
analysis. Obviously, any efforts to reduce the acquisition time by more effective analysis
when photon counts are not plentiful would enable dynamic processes to observed with a
greater temporal resolution and is also desirable for faster high-content high-throughput
screening applications.

Time-gated data acquisition is another time-domain FLIM technique where the sam-
ple undergoes periodic excitation and the detected fluorescence signal is recorded with
reference to the excitation. Time-gated techniques are usually targeted at providing fast
FLIM data acquisition, and are realised by detector(s) operating at very high count rates to
measure the fluorescence signal that occurs within typically between two and eight (e.g.
[56, 57, 61]) time-gates that are ‘opened’ in sequence following excitation. Of course,
the practical reality of counting at very high rates for time-gated data acquisition comes
with a compromise somewhere. Although, for example, the suitable arrangement of a
gated-intensifier phosphor screen and a CCD camera can provide high-count rate detec-
tion that evades the main issues that cause TCSPC data acquisition to be slow (namely
pulse pile-up and a significant dead-time), in practice, they are not very sensitive and
therefore require a strong signal for operation. In [61], using two time-gates and under
the assumption of a mono-exponential fluorescence decay at each of the 336 × 256 im-
age pixels that span the 32× 22 mm imaged field, a wide-field endoscopic FLIM system
capable of acquiring FLIM images at up to 29 Hz was demonstrated. In [56], it was
demonstrated that both mono- and bi-exponential decays could be accurately measured
using four- and eight-gate time-gating systems with non-uniform gate widths, and that,
on imaging a sample containing several different fluorescent dyes, lifetime differences of
0.3 ns could be detected.

1SPC-830, Becker & Hickl GmbH, Germany
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The ‘Galileo’ time-domain FLIM microscope

The in-house developed time-domain FLIM system, currently used at the Randall Di-
vision of Cell & Molecular Biophysics, King’s College London, with excitation be-
ing provided by a supercontinuum 40 MHz source (SC450-4, Fianium, UK) and pho-
ton counting performed using a SPC-830 TCSPC board (Becker & Hickl, Berlin, Ger-
many), is pictured in Fig. 1.3. Considerable details of the design, the various compo-
nents, development, and some of the research that has been carried out using ‘Galileo’
and other similar in-house developed systems are presented in [62] and on our group
website (http://users.ox.ac.uk/∼atdgroup).

Figure 1.3: The ‘Galileo’ time-domain FLIM microscope at King’s College London:
Pictured is an in-house developed time-domain FLIM system at the Randall Division
of Cell & Molecular Biophysics, King’s College London. Details of the design, the
various components, development, and some of the research that has been carried out
using ‘Galileo’ and other similar in-house developed systems are presented in [62] and
on our group website (http://users.ox.ac.uk/∼ atdgroup).

A schematic of the Galileo fluorescence microscope is shown in Fig. 1.4. A super-
continuum photonic fibre laser produces ‘white light’ (460-2000 nm) pulses (4 ps du-
ration) at a repetition rate of 40 MHz, delivering this through a fibre terminated with
a collimating lens; near infra-red components are removed by a pair of ‘hot’ mirrors,
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dumping the unwanted energy to a heatsink and using it to provide a reference signal to
the acquisition electronics. The resulting laser beam is passed through a beam expander
and a pinhole spatial filter before the required excitation wavelength band is selected.
The collimated excitation light is reflected by a dichromatic filter onto a galvanometer-
driven mirror scanner which scans the beam in the horizontal (line) direction. A pair of
relay lenses, acting as an afocal 1:1 telescope, make the vertical (frame) galvanometer
scanner axis appear to be at the same point in space as the line scanner. Together these
two scanners are focused onto an image plane by the scan lens. The tube lens provides
a collimated excitation beam onto the back focal plane of the objective, the horizontal
and vertical scans ‘pivoting’ about the same point in the back focal plane: an objective-
focused spot is thus scanned across the sample in the horizontal and vertical directions.
The resulting fluorescence is collected by the objective and produces a collimated beam
which follows the same path as the excitation beam until the dichromatic reflector, which
separates it and guides the fluorescence through a bandpass emission filter. A confocal
lens focuses the fluorescence through a confocal aperture and a photomultiplier collects
light passing through it. The photomultiplier provides a start signal to the TCSPC acqui-
sition electronics which are arranged to provide imaging information from frame, line and
pixel clocks provided by the scanner electronics. The latter can be programmed to pro-
vide the desired number of lines and pixels and the require scanning speed, which in turn
determines the pixel dwell time. For simplicity, the galvanometer scanners are depicted
to be in the same plane; in reality the two are rotated at 90 degrees with respect to each
other.
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Figure 1.4: The FLIM acquisition system used on Galileo: A schematic of the arrange-
ment of the components of the Galileo fluorescence microscope, an in-house developed
system [62] currently in use in the Randall Division, King’s College London.
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1.2.2 Frequency-domain FLIM

In frequency-domain FLIM the sample is excited continuously by a modulated light
source to result in delayed fluorescence emission, as illustrated in Fig. 1.5, and fluores-
cence lifetime(s) can be determined from from the phase and modulation changes [15].

Figure 1.5: Lifetime determination using frequency-domain FLIM: By using sinewave-
modulated excitation light (blue), of high enough modulation frequency to result in
delayed fluorescence emission (red), the fluorescence lifetime can be determined from
phase and modulation changes.

The fluorescence lifetime(s) are determined from the demodulation depth, or the re-
duction in amplitude relative to the mean signal, and the phase lag due to the fluorescence
waveform being delayed in time relative to the excitation waveform. The fluorescence
lifetime τ of a mono-exponential decay, for example, is related to the demodulation depth
M and the phase lag φ by the relations,

M =
1√

1 + ω2τ 2
, φ = tan−1(ωτ) (1.3)

where ω is the radial frequency of modulation [63]. The modulated excitation waveform
can be of any repetitive form and need not necessarily be sinusoidal as in the data anal-
ysis the repetitive signal can be decomposed into a Fourier series and each sinusoidal
harmonic component can be treated separately [15], although higher frequency harmon-
ics are effectively removed as the fluorophore acts as an effective low-pass filter [63]. The
fluorescence emission signal oscillates at the same high-frequencies as the corresponding
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Fourier components of the excitation light, but exhibits a demodulation and a phase lag at
each frequency. In acquiring frequency-domain FLIM data, frequency mixing is then em-
ployed in order that a gain modulated detector converts the high frequency fluorescence
signal (MHz) to a low frequency (10-100 Hz) or constant DC signal which is more easily
measured. There are two different frequency-domain FLIM acquisition methods result-
ing from different approaches to performing frequency mixing, the homodyne method
in which the mixing occurs at the exact frequency of the excitation modulation and the
heterodyne method in which mixing occurs at a frequency different to, but very close to,
the frequency of excitation [63]. In practice, these different detection methods offer two
different frequency-domain FLIM imaging modalities.

In frequency-domain FLIM, heterodyne detection is usually used in the scanning
mode of imaging, a focused excitation beam being scanned across the sample to col-
lect the image pixels sequentially. The measured signal is a difference, or cross correla-
tion, frequency oscillating at the difference between the light modulation and the detector
gain modulation [63]. Typically, in heterodyne frequency-domain FLIM only a single
frequency is used to modulate the excitation light at any one time. Wide-field imaging
can be realised in frequency-domain FLIM by employing homodyne detection as a gain-
modulated image intensifier and CCD detector can be used for where the data for each
image pixel is acquired simultaneously [63]. In practice, the detector gain is modulated
at the same frequency as the excitation and images are taken at a series of relative phase
offsets with the the phase shift and demodulation of the fluorescence emission being de-
termined by fitting a sinusoid to measured data signal.
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Chapter 2

Lifetime analysis and fitting

In this chapter FLIM data analysis is considered, from a theoretical perspective in Sec-
tion 2.1 with a review of the different lifetime analysis methods that have been developed
for the time- and the frequency-domain, and in Section 2.2 with respect to the many prac-
tical issues which may ultimately determine the success and uptake of an analysis method.

2.1 Signal fitting methods

There exists an abundance of literature pertaining to the acquisition and analysis of FLIM
data in both the frequency-domain and the time-domain. In 1991, regarding time-domain
fluorescence decay analysis, it was remarked in [64] that ‘the multiplicity of the method-
ologies which have already been developed, suggest clearly the uncertainty investigators
still feel regarding the validity of any one method of analysis, irrespective of the statis-
tical criteria used to buttress the results obtained’. A little over two decades have since
passed and rather than a single method for FLIM data analysis having become domi-
nant yet more analysis techniques have been introduced and applied to FLIM data, a
trend that reflects the increasing popularity and widespread use of FLIM in the biomed-
ical sciences. Despite some recent trends towards global analysis (e.g. [65, 66, 67]), the
development of alternative analysis techniques that do not rely on lifetime-fitting (e.g.
[68, 69, 70, 71]), and the deployment of alternative models (e.g. [72, 73]) to describe the
imaged fluorescence decay processes, a number of competing analysis techniques remain
in use, each having their own strengths and weaknesses, and no doubt advocates. It is the

25



(usually quantitative) description of a fluorescence process that is ultimately of interest,
it being unimportant whether the FLIM data has been acquired in the time-domain or the
frequency-domain and how they have subsequently been analysed. In this chapter the
competing FLIM data analysis algorithms are compared, their robustness and accuracy,
ease of implementation, and ease of interpretation all being considered.

In the time-domain, fluorescence decay data acquisition involves the collection of
photon emission times that have been counted as occurring within a particular channel
(or histogram bin) to yield a histogram of photon count against arrival time; the more
photons that are counted the more accurately the histogram represents the fluorescence
decay. The most commonly applied analysis methods for time-domain FLIM data involve
the direct fitting of a fluorescence decay model to the measured histogram. In this “direct”
fitting approach to time-domain FLIM data analysis a fluorescence decay model is fitted
directly to the photon counting histogram, the optimal fit being determined according to a
goodness-of-fit parameter which somehow quantifies the distance between the fit and the
measured photon counting histogram. The key ingredients of the direct fitting approach
are usually a measured instrument response function that characterizes the measurement
system and a fluorescence decay model which is typically of the form,

I(t) = Z +
L∑
`=1

A`e
−t/τ` (2.1)

where I(t) represents the fluorescence intensity (the photon count) at time t, Z represents
the constant background level, and each of the ` = 1, . . . , L decay component is de-
scribed by an initial intensity A` and a decay lifetime τ`. In the direct fitting approach, the
optimal fit is determined by finding those parameter values that optimise the goodness-
of-fit parameter; in performing such an analysis, iterative reconvolution with a (usually)
measured instrument response is typically performed numerically. In applying the direct
fitting approach, its statistical effectiveness will depend upon how the goodness-of-fit pa-
rameter is defined and its appropriateness to the nature of the time-domain FLIM data
being analysed. Much literature is available, as reviewed herein, detailing the intricacies
of the the direct fitting approach employing maximum likelihood estimation (ML) and
the least squares (LS) method for time-domain FLIM data analysis, and their respective
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benefits and drawbacks; a summary of the most pertinent findings follows.
As its name suggests, in the least-squares (LS) fitting approach, the goodness-of-fit

statistic is based upon minimising the squared distance between a set of measurements
and a proposed fit to those measurements. The LS method of parameter estimation was
considered, in 1993, to be the “gold standard” in fluorescence decay analysis [64] and re-
mains widely used today. In essence, all LS methods operate by seeking the minimum in
the χ2 statistic, of which there exist a few different approaches, the standard variants be-
ing Pearson’s “exact” and Neymen’s “reduced”. The stability of convergence of Pearson’s
“exact” χ2, which minimizes

∑
i{(oi − ei)

2/ei}, where oi and ei are the measured and
theoretically expected values of the ith channel respectively, has been shown to be acutely
sensitive to the initial guesses of parameter values [74]. Neyman’s “reduced” χ2 approach
minimizes the quantity

∑
i{(oi− ei)2/oi} and appears to be the most commonly used LS

approach in fluorescence decay analysis at the moment. However, the effectiveness of the
LS approach with small sample sizes has been often questioned due to the assumption of
Gaussian statistics in treating noise in the data (e.g. [75, 64, 74]). Ideally, the quantity χ2

should be weighted according to the standard deviation in each of the measured oi, that
is
∑

i{(oi − ei)
2/σi}, rather than using the Pearson or Neyman weighting [76], though

this is, of course, undefined for empty bins (i.e. those channels where oi = 0), a problem
that also exists with Neymen’s “reduced” χ2 statistic1 and is amplified as the “range of
observation or the number of bins increases” [77]. It is claimed in [76], that the issues
affecting the accuracy of standard LS predictions for small photon counts “are not due to
the Poisson distribution per se but are entirely due to the weighting used” and that regard-
less of the nature of the noise distribution a systematic bias is present [76]. A means of
handling bins that are either empty or have a very low photon count has been investigated
in [74], whereby “totalling the count in successive bins improves the estimation in the LS
method”. The solution proposed in [76] to counteract this systematic bias is to weight the
χ2 statistic using the outcomes of an initial preliminary fit to the data, and it is claimed
that such an approach offers a “precision similar to that of ML methods” [76]. A more
complicated approach is suggested in [77], having assessed different binning schemes it
is stated that “the best we have so far found involves first ordering the times in the data
set and then constructing the bin “walls” so as to include a specified number of counts

1The usual approach to handling empty bins and bins having a count less than some predefined minimum
is to set their count to some predefined minimum.

27



in each bin”. It is concluded in [77] that “with appropriate binning of the data, LS can
produce results comparable to those obtained from ML”, and, that “the LS scheme may
find greater utility in situations where background or multiple decays are present” despite
LS being more computationally intensive than ML [77]. It is clear that LS methods, espe-
cially for small sample sizes, depend strongly on the channel width. Data manipulation,
in order to obtain useful estimates, introduces additional computation and potentially loss
of information.

The ML direct fitting approach to the time-domain FLIM histogram is based on the
assumption that photon counting obeys Poisson statistics resulting in a goodness-of-fit
parameter given by χ2 = 2

∑
i[ei log(ei/oi) − (ei − oi)]. The ML method for a mono-

exponential fluorescence decay was examined in [75] and its performance compared
against LS and the “method of moments” estimator. In the case of mono-exponential
decay, it was concluded in [75], that “there appears to be no good reason to use a method
other than the simple algorithm derived for ML”. A very thorough analysis of ML meth-
ods for multi-exponential decays was presented a decade later in [64], and tools for the
determination of the number of exponential components and how accurately each can be
detected were introduced. It is claimed in [64] that ML “provides generally more accurate
estimates of lifetimes and fractions than does the standard LS approach especially when
the lifetime ratios between individual components are small”. More recently, in [74], life-
time and error estimates obtained using the ML method were found to be “almost indepen-
dent of the total [photon] count” and not to depend on the bin width. However, a hybrid
LS-ML analysis is suggested in [74] due to instability in ML algorithms as “convergence
of the fitting is critically dependent on the selection of initial guesses of the parameters”.
A weakness of the ML method is highlighted in [78], which states that “the likelihood
does not use information other than the data itself to infer the values of the parameters”
and so does not prohibit nonsense estimates as it does not account for such cases whereby
“a physical understanding of the circumstances surrounding an experiment can suggest
that some values of the parameters are impossible”. The ML method and a Bayesian
method, which does enable the easy incorporation of prior knowledge, are compared for
a mono-exponential decay in [79] using “an exact probability model of the photon arrival
times observed with background noise”, and although both approaches yield good esti-
mates it was concluded that “while either the Bayesian or ML procedures work well for
analyzing fluorescence emissions, the Bayesian methods provide more realistic measures
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of uncertainty in the fluorescent lifetimes for any combination of background noise and
fluorescence emission”.

Of course, regardless of whether using a direct fitting approach based on ML or LS,
or any other analysis technique for that matter, if Eqn. (2.1) does not faithfully represent
the observed data then quantification of the underlying fluorescence process is unlikely
to be successful; obviously, for example, the analysis of bi-exponential decay data with
a mono-exponential decay model may not offer any reliable insight into the underlying
fluorescence process. The responsibility of determination of the decay order is usually left
to the user and is performed by visual inspection of the residuals. An additional problem,
as discussed above, is the desire to quantify the parameters of a bi-exponential decay for
a FRET-based experiment combined with a lack of photon counts in the available data,
a frequently encountered situation in FLIM and one that could lead a user, particularly a
non-expert in analysis, to be too optimistic regarding the reliability of estimates that can
be extracted from low count data. In applying an overly complicated model to limited
data, the risk of over-fitting, that is fitting to noise in the data, is a concern.

Although the user may reasonably expect that the physics of the experimental system
have been rigourously modelled and that an analysis should be valid in all circumstances,
this is not actually the case for most FLIM analyses presented to date. It is striking that
although repetitive excitation in time-domain FLIM is acknowledged in the introductory
descriptions of almost all of the referenced papers that discuss time-domain FLIM analy-
sis methods, it is only incorporated formally into the analysis presented in [67] and [80];
its absence from the model being concealed in the assumption that all fluorescence had
completely decayed prior to subsequent excitation in the other works. It was noted in
[74] that although repetitive excitation can be accounted for, it makes parameter estima-
tion much more difficult. In [72] and [73] a slightly different approach to describing
the fluorescence decay process has been adopted, it being proposed that a distribution of
characteristic decay lifetimes is more effective for the study of heterogeneous fluorescent
populations than a discrete sum of decays each having their own distinct lifetime the dis-
crete sum of decay contributions (as is encoded in Eqn. (2.1)). The stretched exponential
approach of [72] incorporates a model of the form,

I(t) = I0e
(−t/τkww)1/h , (2.2)
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to describe a fluorescence decay process, where τkww is the characteristic timescale2 of
the decay and h is the heterogeneity parameter. It is claimed that the model captures
captures the scenario that the decay rate itself is time-dependent and therefore stretched
due to the presence of progressively depleted random sinks that capture excitations, but
it is also noted that it is important to realise that there are situations that directly lead to
a stretched-exponential decay even in the absence of energy transfer mechanisms (i.e. in
the absence of heterogeneity).

In applying a direct fitting approach to the measured time-domain histogram data the
choosing (or defining) of a goodness-of-fit parameter is equivalent to the imposing of a
‘noise model’ which describes the statistics of counting photons into bins on the analysis.
In applying a LS-based analysis, the noise model is implicitly chosen to be Gaussian,
a choice which certainly does not correspond to counting discrete events and only ap-
proximates the experimental reality when the number of photons counted is large (where
Gaussian statistics approximate Poisson statistics). In applying the ML approach to direct
fitting of time-domain data the goodness-of-fit parameter follows from the expectation
that the counting of photons into bins obeys Poisson statistics. Clearly, therefore, ML-
based direct fitting to the measured histogram is preferable to LS-based fitting, especially
at low total photon counts. However, it should be noted that although the application
of Poisson statistics to counted photon event data is certainly more appropriate than us-
ing Gaussian statistics, it has recently been shown that even Poissonian statistics cannot
necessarily be assumed of a counter that has a considerable dead time [81], such as may
be the case for some TCSPC hardware. Unfortunately, despite the known limitations of
the direct fitting LS-based analysis its use remains widespread in time-domain FLIM,
largely down to its ease of implementation and to the fact that it is packaged with popu-
lar commercial FLIM analysis implementations. The realisation of a ML-based analysis
by the simple adaption of a standard LS-based analysis using the Levenberg-Marquardt
algorithm is presented in [82].

In the rapid lifetime determination (RLD) technique (e.g. [57, 61]), the ratios of the
fluorescence signal recorded in different time-gates are used to estimate the fluorescence
decay parameter values. In the simplest possible case of a time-gated system having two

2“Also known as the Kohlrausch-Williams-Watts function, the stretched exponential function was first
studied by Kohlrausch in 1847 as an empirical description for the structural relaxation of glassy fibers and
subsequently used by G. Williams and D. C. Watts to describe dielectric relaxation in polymers” [72].
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gates of equal width and and an interval of ∆T between their respective opening, the
lifetime τ of a mono-exponential fluorescence decay is given by,

τ =
∆T

ln(I2/I1)
(2.3)

where I1 and I2 are the measured (integrated) fluorescence intensities of the early and the
late time-gate respectively; notice here that the effects of any background have not been
considered. Although very simple in both theory and implementation, the application
of such RLD techniques to obtain fluorescence decay parameter estimates very quickly
comes at the expense of accuracy; for mono-exponential decay data the simplicity of such
analysis being accompanied by an increase of about 30%-40% in the uncertainty of the
estimated decay lifetime compared than that obtained using a least squares analysis [83].
In [57] different gating schemes and the number of gates required to achieve a given (ex-
pected) uncertainty in fluorescence decay lifetime estimated are discussed, it being found
that four- and eight-gate configurations having non-uniform gate widths greatly improve
the sensitivity of the analysis and required about half as many total photon counts to ob-
tain an accuracy of 5% than does a two-gate system. Gating schemes for bi-exponential
decay parameter estimation have been explored in e.g. [84, 56].

In comparing TCSPC and time-gated data acquisition and conceptually extrapolating
from narrow TCSPC bins to wide time-gates, it is certainly worthwhile considering when
and whether acquiring data at a very high temporal resolution is advantageous; for ex-
ample, as memory is finite the subdivision of the TCSPC measurement interval to count
photons with a very high temporal resolution comes at the expense of the spatial resolu-
tion of the acquired image3.

In the frequency domain, the details of data analysis depend on the number of frequen-
cies at which data has been collected. In [85] the analysis of the frequency-dependent
modulation and phase data collected at multiple frequencies is considered for both a
mono-exponential fluorescence decay and a multi-exponential decay; LS analysis being
applied to fit sinusoids to the experimental data with the uncertainty in the measured

3The SPC-830 TCSPC card (Becker & Hickl GmbH, Germany), operating with 1 detector channel, can
record a 256 × 256 pixel image when the number of time channels (bins) that subdivide the measurement
interval is 256, but could offer a 1024 × 1024 pixel image recording if photons were counted into only 16
time channels instead [60].
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phase and modulation data being estimated from the difference between the measured
values and those calculated in known conditions.

Global analysis algorithms were utilized initially in frequency-domain FLIM data
analysis (e.g. [65, 86, 66]) and have since been developed for time-domain FLIM (e.g.
[67, 87, 88]) with the aim of enabling reliable fluorescence decay parameter estimates
to be obtained even in poor signal-to-noise conditions by exploiting the expected spa-
tial invariance of some of the properties of fluorescence decays across an image. The
global analysis algorithms presented in [65] and [67], for application in the frequency-
domain and the time-domain respectively, are both based on the assumption that the num-
ber of fluorescent molecule species present in an imaged sample is limited, and that their
lifetimes are not expected to vary spatially. The incorporation of such an assumption
into the analysis of poor signal-to-noise data should provide a means of counteracting
modest photon counts and significant noise in the collected data at each individual pixel.
In frequency-domain FLIM, an additional and significant advantage over conventional
frequency-domain analysis techniques of using a global analysis method is that the two
lifetimes of a bi-exponential fluorescence decay can be determined even when using a
single-frequency FLIM setup; thereby enabling FRET to be studied quantitatively from
single-frequency frequency-domain FLIM data [65]. In [65] a global analysis approach
was described that simultaneously fits the fractional contributions in all image pixels and
the spatially invariant lifetimes. A global analysis algorithm for time-domain FLIM is
presented in [87], “that is fast, provides quantitative results, ...and robustly handles time-
resolved images with low photon counts” [87], one particular advantage of such an anal-
ysis method is noted; “the fact that interacting fractions can be derived from transients of
only several hundred counts compared with several tens of thousands is indicative of the
power of the technique” [87].

In [89], a lifetime moments analysis (LiMA) is developed for frequency-domain
FLIM, providing a quantitative measure of lifetime heterogeneity. An estimator of the
width of the lifetime distribution is developed, offering insight into the lifetime distri-
bution heterogeneity in analogous way to the stretched exponential approach of [72] for
time-domain FLIM (Eqn. (2.2)). The analysis also demonstrates analytically that the
phase-determined and modulation-determined lifetimes (Eqn. (1.3)) diverge for a het-
erogenous lifetime distribution, a commonly reported experimental observation that had
previously had neither a “clear theoretical explanation or analytical solution”.
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Phasor analysis is a technique that has its origins in the analysis of frequency-domain
FLIM data (e.g. [90, 69]) and has since also been applied to time-domain FLIM data
in [70, 91]. The primary motivation behind the introduction of phasor analysis to FLIM
is that it is considered to offer a more intuitive representation of the experimental pro-
cess and this may have particular appeal with the non-expert user. In [70] the phasor
approach was applied to time-domain FLIM data, the photon counting histogram data be-
ing translated to the coordinate (g(ω), s(ω)) in phasor space by means of the following
transformations,

g(ω) =

∫∞
0
dt I(t)cos(ωt)∫∞

0
dt I(t)

, s(ω) =

∫∞
0
dt I(t)sin(ωt)∫∞

0
dt I(t)

(2.4)

where I(t) is the fluorescence decay model and ω is the excitation angular repetition fre-
quency. In performing FLIM data analysis using the phasor approach, the FLIM data
for each image pixel are mapped to a point in phasor space to create a phasor plot. A
user would then typically inspect the phasor plot for clustering and dispersion of phasors,
fluorescence lifetimes being interpreted with reference to the the so-called “universal cir-
cle” in phasor space, a half-circle on which the lifetimes of all purely mono-exponential
decays of the form I(t) = Ae−t/τ lie and within which the phasors of multi-component
decays reside. Although the graphical presentation of the FLIM image data that phasor
offers may well appeal to both the expert and non-expert user, it should also be noted that
in applying the phasor transforms (Eqn. (2.4)) to time-domain data using a decay model
of the form I(t) = Ae−t/τ , as is the case in [70], nowhere in the analysis is the influence
of the instrument response or a possible non-zero background signal acknowledged. This
may be only a minor issue if, across the whole FLIM image (or a sequence of images
should they be being compared), the instrument response is uniform and narrow and any
background count is negligible; something that may be solely true in laboratory-based
studies performed using a fixed microscope system but something that could not nec-
essarily be assumed and may more difficult to accomplish in, say, the potential clinical
applications of endoscopic FLIM. A supposedly complementary method of quantitative
FRET analysis that does not require lifetime fitting designed for use at high spatiotempo-
ral resolution is presented in [71], where the mathematical minimization of the quantity
of donor molecules undergoing FRET yields a new quantity, the minimal percentage of
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donor molecules involved in FRET that can be estimated using the average fluorescence
lifetime, hence “allowing fast acquisitions to be performed” [71]. This method is, ac-
cording to [71], complementary to phasor analysis. In considering phasor analysis, it is
worthwhile recalling once more that fluorescence lifetime is usually used as a proxy to
study some other (biological) property of interest and that the user is unlikely to be an ex-
pert in the analysis of FLIM data, something that may be especially so if FLIM becomes
more widely employed in clinical diagnostics. Despite its noted drawbacks for non-ideal
time-domain data phasor analysis has been developed primarily to present the data from
FLIM experiments in a way that should appeal to and be easily accessible to a non-expert
(in analysis) user. Certainly, the representation of analysis results to a user (and especially
a non-expert user) and how easily they can be interpreted should not be overlooked.

Another approach that obviates the requirement for fitting and is based on the La-
guerre expansion has been presented in [68, 92]. A FLIM method based on the Laguerre
expansion technique was proposed in [68], where it is stated that a “unique characteristic
of this approach is that it can reconstruct a fluorescence response of arbitrary form”. It
is noted in [68], however, that “although the results of the present study are encouraging,
...the proposed Laguerre method still need[s] to be thoroughly validated on a broad va-
riety of FLIM applications”, where it is also observed that “the Laguerre method needs
only half or less of the acquired delayed images available for the analysis of the mea-
sured FLIM data”. Enhancements to the Laguerre analysis of [68] are proposed in [92],
offering “a fully automated deconvolution method for TRFS [time-resolved fluorescence
spectroscopy] data analysis based on an iterative Laguerre expansion approach” and it is
believed the “method will facilitate the use of TRFS in applications where online data
analysis is required” [92].

The quantification of exponential decay processes is, of course, not peculiar to FLIM.
In employing nuclear magnetic resonance (NMR) techniques for studies in chemical and
biological sciences it is also usually necessary to quantify multi-exponential decays. In
[93] a Bayesian approach to exponential decay parameter estimation for NMR data is pre-
sented and in the related work, [94], the analysis is extended to provide a model selection
algorithm that can be used to determine quantitatively the number of exponential com-
ponents that contribute to a decay. Applied to a transverse relaxation study on rat brain
the model selection algorithm predicted that the relaxation data be due to a bi-exponential
process, in keeping with expectations from the literature for such a 23Na relaxation study
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and also from a qualitative analysis of the residuals [94]. In [95], a Bayesian approach
was applied for the purpose of burst identification in burst integrated fluorescence lifetime
(BIFL) experiments; the developed algorithm being able to quantify the probability that
some data be due to a background signal and probability that the data be due to a flu-
orescence burst, and was demonstrated to successfully identify fluorescence bursts from
simulated data having a 90% background (i.e. decay signal of only 10%). Bayesian analy-
sis has been successfully applied to the processing of biomedical data [78], and for model
selection and parameter estimation in systems biology (e.g. [96]). In [97], Bayesian tech-
niques have been applied to infer the composition of multiplexed Raman spectra data,
such as would be obtained in disease identification by using labelled DNA sequences.

Of course, no matter how well any estimation technique can perform and how accu-
rately it can analyze the properties of a fluorescence decay, in practical situations it is
wise to be mindful that there are numerous ways in which the acquired decay data can be
contaminated during its acquisition. The most obvious data contaminant arises from the
various delays, reflections, and data spreading inherent to, and at, any interfaces between
the experimental apparatus; their collective effect being termed the “instrument response
function”. In the above analyses, the effects of instrument response are handled by de-
convolution, either analytically in the model itself by using a function that approximates
the properties of the instrument response or more commonly numerically in the imple-
mentation of the estimation algorithms using the measured instrument response function.
However, far more subtle artefacts introduced by the TCSPC system should also be con-
sidered, such as “dead time”, which “does not only limit the maximum count rate [...], it
can also introduce distortions of the signal waveform and errors in the measured intensi-
ties” [60]. In a poorly configured TCSPC system, the dead time can introduce “pile-up”
([98, 99, 60]), such that “if the detection rate is so high that the detection of a second
photon within the recorded time interval becomes likely the signal waveform is distorted”
[60]. Aside from the optimal configuration of a TCSPC system for a particular experimen-
tal purpose, there are also other sensible measures that should be considered to give the
employed estimation technique the greatest chance of yielding useful estimates, such as
ensuring the measurement interval is well matched to the anticipated fluorescence decay.
It is suggested in [74] that (for LS analysis, at least) “the region of the multi-component
fitting should be sufficiently larger than the slowest decay time”, a finding that is echoed
in [100], which recommends that “in the presence of background, it is better to choose a
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larger measurement window to increase the significance of the last bins, here of about 30
lifetimes”.

Quite a number of different analysis methods have been discussed above, some of
the articles cited discuss how well or how poorly the presented analysis performs when
there is little data available. A convenient means of quantify, with just one statistic4, how
accurate the estimates that a particular analysis may offer was introduced in [57]; the
figure of merit F = (∆τ/τ).

√
I providing a measure of the sensitivity of the lifetime

analysis method, where ∆τ is the standard deviation of the determined lifetime τ , and
I is the number of photon counts (in the data yielding the lifetime estimate). In [101],
the photon economy and acquisition time are studied for a variety of both frequency- and
time-domain systems, and is used in this thesis (Section 6.1.1) for the comparison of the
developed Bayesian analysis with other methods.

It is evident, having surveyed much of the literature, that the effective analysis of fluo-
rescence decay is not a simple task. In the analysis of time-domain FLIM data, problems
are fewest for large sample sizes, where Gaussian statistics closely approximate Poisson
statistics, and both LS and ML have been shown to perform well (e.g. [75, 64, 77, 74]).
However, for small sample sizes, standard LS has been shown to yield poor estimates (e.g.
[75, 64, 74]), though data manipulation prior to analysis ([77, 74]) and a modification of
the LS weighting [76] have both been shown to improve LS estimates to the extent that
they are comparable with those from the ML method. It is clear that the analysis of FLIM
data is rarely a trivial problem, particularly so in practice where high expectations meet
low photon count data. It is also evident that the armoury of FLIM data analysis meth-
ods would be strengthened by the introduction of an algorithm that offers a clarity in the
assumptions made and a greater opportunity to include physical quirks of acquisition. A
method which offers robust error estimates and the joint probability distribution function
over the model parameters would be especially useful when data is in short supply.

In Part II a Bayesian method for the analysis of time-domain FLIM data is devel-
oped, incorporating a fully analytic time-domain FLIM system model which accounts
for the effects of repetitive excitation and includes an analytic approximation to model
the influence of the instrument in the data. In developing such a Bayesian analysis for

4It should be noted that although the photon economy statistic F can be extremely useful for comparing
how efficiently different analysis methods use the available data, in selecting a method it would be wise to
confirm that the parameter estimates do not exhibit any systematic bias as such would not be apparent on
inspection of F alone.
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fluorescence decay parameter estimation the probability distribution of all different com-
binations of decay parameter values becomes accessible. Not only are the most probable
decay parameters values available by locating the peak of the probability distribution but
also the probability distribution can be explored and the relative likelihoods of different
combinations of fluorescence decay parameter values can be assessed probabilistically.
Additionally, a reliable measure of the uncertainty in any of the parameter estimates be-
comes possible, something of great importance if parameter estimates are to be used with
confidence.

2.2 Expectations and practicalities

It is clear that, whether using time-domain or frequency-domain, at some point in a FLIM
experiment it becomes necessary to somehow extract the fluorescence lifetime(s) from the
collected data. The fluorescence lifetime(s) itself is unlikely to be a quantity of real inter-
est in an experiment, but rather acts as a proxy for some biological or chemical property
that is ultimately of interest (and that cannot usually be measured directly as effectively
inferred from other methods). The effectiveness of an experiment to quantify, say, protein-
protein interactions using FRET therefore depends crucially on the effectiveness of the
analysis method employed to extract fluorescence lifetimes from FLIM data. Although
this work is focussed mainly on the theoretical and technical development of a Bayesian
analysis for FLIM data, it is worthwhile considering from the point of view of an experi-
mentalist where data analysis sits in the experimental chain. In this section, some of the
practical and experimental issues that may be helped or hindered by an analysis method
and its implementation are highlighted.

Analysis of FLIM data is a statistical problem. Many different methods of analysis
have been previously studied and are applied to experimentally measured data to quantify
fluorescence decay in FLIM experiments. An ideal analysis method would be able to
produce extremely accurate and easily interpreted parameter estimates, be quick and be
easy to use, whilst also being easy to implement and conceptually easy to understand. In
reality, of course, no analysis or algorithm is likely to provide all of these features and it
is necessary for certain requirements to be prioritised at the expense of others.

Of course, it is desirable, if not essential, that an analysis method should always pro-
vide reliable fluorescence decay parameter estimates. However, it is understood that the
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accuracy of any analysis method and its fluorescence decay parameter estimates is lim-
ited by how much data are available for the analysis. The greatest accuracy possible from
analysis of the available data is always desirable. In a FLIM experiment, however, some-
times the time taken for an analysis to yield results may be more important than those
results being of best possible accuracy [102]. An experiment in which online analysis
provides a critical feedback loop, for example, would be such a situation where the accu-
racy of parameter estimates must be sacrificed in favour of speed of analysis (regardless
of the amount of data available); a slow analysis algorithm would not only be irksome
to an impatient user but also of no use for online data processing in such experiments.
Conversely, it may be that the most accurate results possible are desired when only very
limited data is available, such as if attempting to resolve dynamic processes that have
a time scale similar to an imaging duration that yields extremely challenging data. Of
course, just as the level of accuracy required and the time taken for analysis will differ
from experiment to experiment, the most appropriate analysis technique will also depend
upon the requirements of the experiment.

It is certainly also desirable that any analysis provide some measure of how much
confidence can be placed in the parameter estimates. Aside from the integrity of exper-
imentally obtained data, the measure of confidence in any estimated model parameter
values depends also on the particular data modeling approach utilized and the potentially
many nuances that are (intentionally or unintentionally) unaccounted for in any theoreti-
cal modeling of a physical process. It is imperative that the quality, or goodness, of any
fit to measured data can be critically assessed rather than a particular model and its pa-
rameter predictions being accepted with blind faith. Should such critical assessment be
somehow inherent to the analysis technique and not require user interaction or inspection
then all the better. Regarding typical FLIM imaging, an analysis that could not only yield
parameter estimates and a measure of their accuracy and reliability, but do so sufficiently
quickly as to enable online data processing that indicates when sufficient data has been
acquired at an image pixel could reduce imaging durations and also reduce the exposure
of the sample being studied to (excitation) radiation.

As considerable effort and time is expended in the experimental process prior to and
subsequent to acquiring FLIM data, it is wise to spend time in choosing the right anal-
ysis method. Most importantly, it is imperative that the wrong analysis is not applied
to some FLIM data and the potentially erroneous results then used in the formation of
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equally potentially erroneous conclusions regarding biology or chemistry (or whatever)
being studied.

Ultimately, though, a user will decide on which method to employ in the analysis
of their FLIM data. Sometimes, unfortunately, it may well be that factors far removed
from the accuracy of a methods estimates and its statistical robustness play a large part in
leading a user to adopt a particular FLIM analysis technique, particularly in the setting of a
busy multi-disciplinary laboratory. The ease of use5 of an algorithmic implementation6 of
an analysis technique could certainly prove persuasive, as could the ease of interpretation
of the resulting estimates. The speed with which an analysis can be performed is also
usually of considerable importance; many current studies that employ FLIM amass large
quantities of data and sometimes thousands of FLIM images must be analysed. Although
perhaps to the theorist these could be seen to be largely irrelevant concerns they are likely
to be of significance to the experimentalist and will ultimately have a bearing on whether
an algorithm gains traction in the community and enjoys widespread use or not regardless
of how good an analysis method may (or may not) be.

5Any requirement of user interaction in an implementation, for example, for the technical configuration
of an algorithm is more likely to be greeted as a complicating deterrent than a welcome freedom in the
analysis.

6The availability, cost, and ease of installation are all likely to be important in determining which soft-
ware package/analysis method a laboratory uses; although these issues aren’t of direct concern to this work
their importance should be at least noted.
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Part II

Probabilistic fitting: theory
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The primary purpose of this work is the quantitative characterization of fluorescence de-
cay processes. It is not usually possible to measure directly a set of parameters that
adequately and accurately describe a decay. However, by applying appropriate analy-
sis to data that can be directly measured, in this current work a set of photon counting
events, inferences regarding the nature of a decay process are possible. In following such
a methodology the intention is to be able to provide answers to a question such as “What

can we say about the underlying processes that generated these data?”. It is also natural
to ask questions like, “What can be based on what has been said?”, which is of particular
relevance when the decay characterization is not the end goal of a study, where the re-
sults of the characterization are built upon in further enquiries and subsequent inference.
“Should I have confidence in these predictions?” and “Could the analysis of my data be

better?” are perfectly reasonable (if not critical) questions to which Bayesian analysis is
able to provide quantitative answers. Bayesian analysis provides a systematic method of
relating data that can be directly measured to the underlying process generating the data.

The tools of Bayesian analysis are introduced in Chapter 3, in roughly the same order
as the questions above are posed, by firstly examining parameter inference and subse-
quently discussing model selection and optimization. In introducing Bayesian techniques
in this order their hierarchical nature and versatility become apparent. At the core of the
Bayesian analysis for time-resolved FLIM data presented in this work is the modelling of
the time-domain FLIM system, such as the system described in Section 1.2.1. In Chap-
ter 4, a time-domain FLIM system model relating the arrival time of a photon counting
event to a decay process and the measurement instrumentation is introduced. The de-
veloped FLIM system model differs fundamentally from those used in existing analysis
techniques in that periodic excitation is rigorously incorporated from the outset and that
it is fully analytic. The Bayesian methodologies introduced in Chapter 3 are applied in
Chapter 5 for fluorescence decay parameter inference, and through exploiting the com-
bination of the hierarchical properties of Bayesian analysis and the fully analytic FLIM
system model, additionally for the purposes of fluorescence decay model selection and
(FLIM system) instrument response determination.
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Chapter 3

Bayesian analysis

Bayesian analysis provides a systematic method for relating data that can be directly mea-
sured to the underlying process generating the data. At the root of the Bayesian analysis
techniques introduced lies conditional probability theory and, as such, the majority of this
work is concerned with describing, discussing, and investigating the likelihood of a pa-
rameter having a particular value conditioned on some data that, having been measured,
is known. The probability of an eventA conditioned on (or given that) that the occurrence
of event B is known is denoted by p(A|B) and is termed the conditional probability of A
given B.

3.1 Parameter inference

Consider a model having parametersw and a data setD = {x1, . . . , xp}, applying Bayes’
theorem the posterior probability distribution of the model parameters w conditioned on
the data D can be expressed in terms of the the likelihood of the data given a set of model
parameters:

p(w|D) =
p(w)p(D|w)∫

dw′ p(w′)p(D|w′) =
p(w)

∏p
µ=1 p(xµ|w)∫

dw′ p(w′)
∏p

µ=1 p(xµ|w′)
(3.1)

where the prior distribution p(w) encodes any prior knowledge regarding the model pa-
rameters w and the data likelihood given the model parameters, p(D|w), with the data
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assumed to be generated independently (i.e. p(D|w) =
∏p

µ=1 p(xµ|w)). Defining the
quantity S(w, D) = − ln [p(w)p(D|w)], the posterior can be written in the alternative
form:

p(w|D) =
e−S(w,D)∫
dw′ e−S(w′,D)

(3.2)

The most likely parameter valuesw? are those for which the quantity p(w|D) is greatest,
or equivalently those that give the minimum of S(w, D), such that:

S(w?, D) = argmin
w

S(w, D) = argmin
w

{− ln [p(w)p(D|w)]} (3.3)

The posterior distribution (Eqn. 3.1), however, encodes the parameter likelihood across
the entire parameter space and, therefore, considerably more than just the most probable
parameter values can be accessed. The posterior marginal distribution for any model
parameter can be obtained:

p(wi|D) =

∫
dw/dwi p(w)p(D|w)∫
dw′ p(w′)p(D|w′) (3.4)

where wi ∈ w and
∫
dw/dwi represents the integral over all model parameters w bar

the parameter wi. In much the same manner, parameter average values 〈wi〉 and standard
deviation ∆wi can be determined to yield predictions of the form wi = 〈wi〉 ± ∆wi,
where:

〈w`i 〉 =

∫
dw w`i p(w)p(D|w)∫
dw′ p(w′)p(D|w′) , ∆wi =

√
〈w2

i 〉 − 〈wi〉2 (3.5)

3.2 Model selection

In performing parameter inference as above, the role of the assumed model has not been
explicitly stated. The posterior distribution of Eqn. 3.1 informs of the likelihood of some

43



parameter valuesw given some data D. However, it could be considered that there is also
some hidden conditioning in Eqn. 3.1; the posterior distribution actually informs of the
probability of parameter values w conditioned not only on the data D but additionally
on the model that has been assumed. In this section, model selection is introduced, the
Bayesian formalism being employed to enable the most suitable model to be systemati-
cally chosen from an ensemble of candidate models. Denoting by HK the model having
parameters wK , the implicit assumption (Eqn. 3.1) of using a particular model in param-
eter inference is here formalised explicitly:

p(wK |D,HK) =
p(wK |HK)p(D|wK ,HK)∫

dw′K p(w′K |HK)p(D|w′K ,HK)

The Bayesian framework can be utilised to enable an informed selection as to the most
suitable model to be employed in any subsequent parameter inference, the quantity
p(HK |D) informing of the likelihood of modelHK given the data D:

p(HK |D) =
p(HK)

∫
dwK p(wK |HK)p(D|wK ,HK)∑

K′ p(HK′)
∫
dwK′ p(wK′ |HK′)p(D|wK′ ,HK′)

(3.6)

with the model itself now being the subject about which inference is made. In arriving
at Eqn. 3.6, the relation p(D|HK) =

∫
dwK p(wK |HK)p(D|wK ,HK) has been used

to remove the model parameters wK where again the data likelihood given the model
HK and its parameters wK assumes that the data has been generated independently (i.e.
p(D|wK ,HK) =

∏p
µ=1 p(xµ|wK ,HK)). It is possible to go yet further in determining

the most suitable model to describe some data D. The optimal hyperparameter value(s)
can also be sought using Bayesian techniques and this should certainly be considered for
small data sets when the influence of the prior distribution in most pronounced. Denoting
by αK the hyperparameters of model HK , their influence in conditioning the parameter
estimates is easily seen:

p(wK |D,HK ,αK) =
p(wK |HK ,αK)p(D|wK ,HK ,αK)∫

dw′K p(w′K |HK ,αK)p(D|w′K ,HK ,αK)
(3.7)
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Again, using the Bayesian framework, the most appropriate model to describe some data
D can be determined and optimized simultaneously:

p(HK ,αK |D) =
p(HK)p(αK)

∫
dwK p(wK |αK)p(D|wK ,HK)∑′

K p(H′K)p(α′K)
∫
dw′K p(w′K |α′K)p(D|w′K ,H′K)

(3.8)

In deploying the model selection and optimization techniques of this section, the main
problem that is usually encountered is the computation of the integrals. Fortunately, how-
ever, using suitable approximations as to the shape of the distribution under the integral,
such difficulties are at least eased.
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Chapter 4

Modelling a time resolved FLIM system

In this chapter a model that describes the FLIM system shall be developed. In time-
domain FLIM, a laser is usually used to periodically excite a sample, causing fluorescence
emission. Fluorescence decay photons are subsequently detected by a photon-counting
detector; their arrival times (relative to the pulsed excitation) being recorded with high
accuracy. Over time, a set of photon arrival times that represent the fluorescence emis-
sion, potentially , accumulates; it is such sets of arrival times that form the ‘data’ in our
Bayesian analysis of time-resolved FLIM data that will be introduced in Chapter 5. In
parameterizing the time-domain FLIM system for use in the Bayesian analysis of time-
resolved FLIM data, a model that captures the characteristics of the FLIM system as
accurately as possible, and relates a particular photon arrival time to a set of fluores-
cence decay and other model parameters (e.g. for characterisation of the system itself,
etc.) is developed. The time-domain FLIM system model assumes the role of the quan-
tity p(xµ|w) of Eqn. (3.1) of the general introduction to Bayesian analysis of Chapter 3,
where in this case the xµ being a particular (binned) photon arrival time and w a set (or
more usually a subset) of FLIM system model parameters. In the interest of developing
a model that remains generally applicable, those elements of the FLIM system that exert
little influence on the behaviour of typical time-domain FLIM system (and are easily con-
trolled experimentally through appropriate configuration of the FLIM system hardware)
are neglected; these are discussed in Section 4.5.

Considering the time-resolved FLIM system in the most simple terms, as illustrated
in Fig. 4.1, a sample undergoes repetitive excitation (repetition period Tm), emitting pho-
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Figure 4.1: The time-domain FLIM system; repetitive excitation, periodic fluorescence
decay, and photon counting: An illustration of the key components of the time-domain
FLIM system model for a FLIM system with repetition period Tm and a measurement
window of duration T , a typical instrument response, and a mono-exponential decay of
lifetime τ ≈ Tm/6. In the upper panel, periodic decay (dotted decays) as a consequence
of a sample being subjected to repetitive excitation at every nTm (n ≥ 0) in FLIM sys-
tem time, with the fluorescence photons being retarded and broadened on progressing
through the FLIM system apparatus (solid decays). In the bottom left panel, the fluores-
cence decay photon detection likelihood within the measurement interval [0, T ]; notice
that there is no likelihood of detecting a photon outside of the measurement interval (i.e.
in the interval (T, Tm]). In the bottom right panel, typical photon count data for such a
decay having about 1000 total photon counts, with photons being counted into 64 bins
of equal width subdividing the measurement interval.

tons which traverse a path through some experimental apparatus, before they are detected
with a specific quantum efficiency. It is neither desirable nor likely to be advantageous
to attempt to model independently the influence of all of the different components of a
time-domain FLIM system, such as that shown in Figures 1.3 and 1.4; instead, the effects
of the various components of the experimental system are considered here only in that it
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is assumed that the instrument introduces a delay of duration u to a signal, distributed ac-
cording to Γ(u). Any arrival time ∆t of a detected photon is determined with reference to
the most recent excitation pulse1, and is recorded as having being detected in an interval
(i.e. a bin). The following sections add details to the above description, beginning with
what goes in to the system (i.e. repetitive excitation), followed by what comes out of the

system (i.e. photon arrival times recorded in discrete time), and what happens inbetween

(i.e. sample signal responds to the excitation and instrument delays the signal). In the
interest of readability, wherever possible only the key assumptions that guide the model
development and significant results along the way are presented here; all intermediate
steps, technical and mathematical details can be found in full in Appendix A. In this anal-
ysis, the events that are analysed are photon arrival times that have been detected in the
measurement interval [0, T ], consequently the likelihood expressions that are normalised
over this interval.

4.1 Repetitive excitation

In modelling an experimental system based on periodic excitation and in which any col-
lected data consists of event times recorded on a periodic window, it is crucial that the
relationship between the recorded data and the underlying data generating process(es) be
captured. In the FLIM system considered here, it is the arrival time ∆t of a detected
photon that is recorded on a periodic time window of duration Tm (assumed to be aligned
with the periodic excitation), and it is the nature of an underlying fluorescence emission
process that is sought (see Fig. 4.2). Formalising this, the recorded photon arrival time
∆t determined with respect to the most recent excitation is given by:

∆t = t+ u− Tm.int

(
t+ u

Tm

)
(4.1)

where t is the actual emission time of a photon due to the fluorescence decay process, the
delay time u describes the latency between the actual emission process and that recorded
by the electronic time measurement system, and (with int(z) being the largest integer n ≤

1In practice, using reverse-start-stop TCSPC, it is actually the time between photon detection and the
next excitation that is measured, it then being trivial to represent such times with reference to the preceding
excitation pulse as the repetition period is known.
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Figure 4.2: Photon counting on a periodic measurement window: In the top panel a
mono-exponential fluorescence decay of lifetime Tm/2 is displayed (having been con-
volved with a typical instrument response), and in the middle panel the mapping from
photon event time t and the recorded event time ∆t for photons counted on a periodic
measurement window is shown. Notice that although photon counting events occurring
at t′, t′′ = t′ + Tm, and t′′′ = t′ + 2Tm occur at very different stages of the fluorescence
decay, all of them would result in the photon counting event time ∆t′ being recorded
at the measurement system due to the periodicity of the measurement window. In the
bottom panel, an illustration of the quantity Tm.int(t/Tm) which restricts the recorded
event time ∆t to values within the periodic excitation window. Note that in this example
an individual fluorescence decay has been isolated in order to consider only the role of
the periodic measurement window in the recorded photon counting event time (i.e. the
effects of repetitive excitation are neglected here).

z) the actual excitation time being given by Tm.int ((t+ u)/Tm). Observe that, having
defined ∆t in such a way, there are no assumptions restricting when in the fluorescence
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emission process a photon that is subsequently detected had been emitted; a recorded
arrival time ∆t could be due to a photon emitted a number of repetition periods earlier
than the most recent excitation pulse but delayed sufficiently as to be seen in the latest
window; or a recorded arrival time may be as a consequence of detected photon that
had been emitted due to excitation a period or more beforehand - the likelihood of such
situations depending on the fluorescence emission distribution p(t) and the instrument
response delay distribution Γ(u). Arrival times are recorded only during a measurement
interval of duration T ≤ Tm, and therefore ∆t ∈ [0, T ]. The probability of arrival time
∆t for a photon detected in the measurement interval [0, T ] on the periodic window, while
considering all possible emission times t and all possible delays u, is given by:

p(∆t) = θ(∆t)θ(T −∆t)

×


w0

T
+

(1− w0)
∞∫
0

dtdu p(t)Γ(u)δ
(

∆t− t− u+ Tm.int
(
t+u
Tm

))
T∫
0

d∆t′
∞∫
0

dtdu p(t)Γ(u)δ
(

∆t′ − t− u+ Tm.int
(
t+u
Tm

))

(4.2)

where the emission time t is distributed according to an arbitrary decay signal p(t), the
instrument response effects cause a delay u that is distributed according to Γ(u), and the
quantity w0 ∈ [0, 1] represents the contribution of a uniform background to the overall
signal. The step function is denoted by θ(x), with θ(x > 0) = 1 and θ(x ≤ 0) = 0, and
δ(x) represents the Delta function which exists only when x is equal to zero, such that∫
dx δ(x)f(x) = f(0) for any function f(x). In transforming (as explicitly detailed in

Appendix A.1) Eqn. (4.2), the influence that the repetitive nature of the system has on a
measured arrival time ∆t is instead captured in a summation in the following expression:

p(∆t) = θ(∆t)θ(T −∆t)


w0

T
+

(1− w0)
∑

`≥0

∞∫
0

ds Γ(`Tm + ∆t− s) p(s)

∑
`≥0

T∫
0

d∆t′
∞∫
0

ds Γ(`Tm + ∆t′ − s) p(s)

 (4.3)

The summation has the role of accounting for the history of the signal that may be appar-
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ent in the measurement interval, such that when ` = 0 any recorded arrival time is due to a
photon emitted and detected in the same measurement interval, when ` = 1 any detected
photon had been emitted in the repetition period immediately preceding the measurement
interval, when ` = 2 any detected photon emanated from the repetition period before that,
and so on (Fig. 4.3). Denoting by Λ(T, Tm) the normalisation constant for the term due
to fluorescence decay photons, Eqn. (4.3) can be written as,

p(∆t) = θ(∆t)θ(T −∆t)

w0

T
+

1− w0

Λ(T, Tm)

∞∫
0

ds p(s)
∑
`≥0

Γ(`Tm + ∆t− s)

 (4.4)

which remains completely general, incorporating a uniform background proportion w0,
the effects of repetitive excitation (through the summation), an arbitrary instrument re-
sponse Γ(u) and an arbitrary decay signal p(s). The intermediate steps in reaching
Eqn. (4.4) are presented in Appendix A.1.1.
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Figure 4.3: Repetitive excitation and accumulated fluorescence: (a) The contribution
of the first, second, and third terms in the summation over ` of the bin-likelihood
F (∆t ∈ bj|τ, bL

j , b
H
j , I), computed for a purely mono-exponential decay of lifetime

10 ns, a system having modulation period 12.5 ns and measurement interval 10.0 ns,
and incorporating a single-component instrument response approximation Γ(u) hav-
ing parameter values γ1 = 1.0, u1 = 1.0 ns, σ1 = 0.1 ns. (b) The bin-likelihood
F (∆t ∈ bj|τ, bL

j , b
H
j , I) including the first one hundred terms in the summation over `

for the system described in (a).
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4.2 Discrete time data

The FLIM data with which this analysis in concerned are actually recorded in discrete
time, a photon being determined to have arrived within an interval rather than at a unique
time. Accounting for the discrete time nature of such data, the likelihood of photon arrival
time ∆t being within an interval (i.e. a bin) is required. Defining a bin as being an interval
b = [bL, bH] ⊆ [0, T ] that lies within the measurement window, and adopting the shorthand
p(b) = p(∆t ∈ b), the likelihood of a photon arrival time ∆t falling in the bin b is given
by:

p(b) = |b|w0

T
+

1− w0

Λ(T, Tm)

bH∫
bL

d∆t

∞∫
0

ds p(s)
∑
`≥0

Γ(`Tm + ∆t− s) (4.5)

where |b| = bH − bL denotes the width of the interval. Again, notice that Eqn. (4.5) is
completely general for a system that generates discretised time-domain data due to the
repetitive excitation of a sample (and is subject to the distributions p(s) and Γ(u) being
normalised).

4.3 Multi-exponential decays

The model developed so far (Eqn. 4.5) describes the time-domain FLIM system, incor-
porating those effects imposed on the analysis by the design of the experimental system,
that is, repetitive excitation and the collection of photon arrival times in discrete time. The
introduction of a multi-exponential decay signal p(s) of the form:

p(s) = θ(s)

∑K
k=1

wk
τk
e−s/τk∑K

k=1wk
, wk ≥ 0, τk > 0 ∀ k = 1, . . . , K,

K∑
k=1

wk = 1− w0

(4.6)

into the model (Eqn. 4.5), yields:
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p(b) = |b|w0

T
+

K∑
k=1

wk
τkΛ(T, Tm)

bH∫
bL

d∆t
∑
`≥0

∞∫
0

ds Γ(`Tm + ∆t− s) e−s/τk ,

(w, τ ) ∈ ΩK (4.7)

where wk weights the contribution of an exponential decay of lifetime τk to the overall
signal, the factor 1− w0 has been absorbed due the requirement that

∑K
k=1 wk = 1− w0

and wk ∈ [0, 1] for all k. The collection of weight and lifetime parameters are denoted
by w = (w1, . . . , wK) and τ = (τ1, . . . , τK) respectively, and the set ΩK summarizes all
allowable values of the K weights and lifetimes,

ΩK =

{
wk, τk

∣∣∣∣∣wk ≥ 0, τk > 0, ∀ k = 1, . . . , K,
K∑
k=1

wk ≤ 1

}
. (4.8)

Of course, the accurate analysis of photon arrival time data requires that the effects of the
instrument response on the measured photon arrival times be considered, the instrument
being assumed to introduce a delay and an uncertainty into the precise time between the
physical photon generation and photon detection.

4.4 Analytic instrument response approximation

An approximation comprising a weighted sum of truncated Gaussian distributions is pro-
posed, with the aim that the asymmetry and other artifacts of a real instrument response
can be adequately captured:

Γ(u, I) =
I∑
i=1

γi
e−

1
2

(u−ui)2/σ2
i

σi
√

2π

2θ[u− δi]
1 + erf((ui − δi)/σi

√
2)
,

δi, ui, σi ≥ 0 ∀i, γi ∈ [0, 1] ∀i,
I∑
i=1

γi = 1 (4.9)
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where γi weights a truncated Gaussian distribution centered about a delay parameter
ui, of width σi and having a lower cut-off δi, the set I = {γi, ui, σi, δi|i = 1, . . . , I}
summarizes the instrument response parameters, and erf(x) denotes the error integral
erf(x) = (2/

√
π)
∫ x

0
dz e−z

2 . In defining this approximation the requirement for a suf-
ficiently good configurable approximation is balanced with the desire that the necessary
convolution integrals remain analytic. The inclusion of multiple instrument response com-
ponents in the approximation provides a means of capturing effects such as signal corrup-
tion by the detector, such as detector PMT afterpulsing [103, 104, 60], in the model. The
flexibility of the analytic instrument response approximation is demonstrated in Fig. 4.4,
as is the influence of an (exaggerated) instrument response function on the bin-likelihood.

The introduction of such an instrument response approximation into the model
(Eqn. 4.7) yields (with necessary integration performed analytically as detailed in Ap-
pendix A.1.4) the following final expression which describes the likelihood of a photon
arrival time ∆t being measured in the interval [bL, bH] for a system based on repetitive
excitation:

p(b) = |b|w0

T
+

K∑
k=1

wkF (τk, b
L, bH, I), (w, τ ) ∈ ΩK , w0 = 1−

K∑
k=1

wk (4.10)

where the fluorescence decay bin-likelihood F (τk, b
L, bH, I) is defined as,

F (τ, bL, bH, T, Tm, I) =
∑
i

F̃i(τ, b
L, bH, T, Tm, I) (4.11)

and is composed of contributions due to each of the instrument response components,

F̃i(τ, b
L, bH, T, Tm, I) =

1

Λ(T, Tm)
γ̃i
∑
`≥0

Ψi(τ, b
L, bH, T, Tm, I) (4.12)

The quantity Ψi(τ, b
L, bH, T, Tm, I) is given by the following,
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Ψi(τ, b
L, bH, T, Tm, I) =

θ[`Tm + bL − δi]
{
χ(`, δi, τ, Tm, σi, δi, ui)− χ(`, bL, τ, Tm, σi, δi, ui)

}
+ θ[`Tm + bH − δi]

{
χ(`, bH, τ, Tm, σi, δi, ui)− χ(`, δi, τ, Tm, σi, δi, ui)

}
(4.13)

and,

χ(`, t, τ, σ, δ, u) = erf

(
`Tm + t− u

σ
√

2

)
+ e−(`Tm+t−u)/τ+σ2/2τ2

[
erf

(
(u− `Tm − t)τ + σ2

στ
√

2

)
− erf

(
(u− δ)τ + σ2

στ
√

2

)]
(4.14)

and (for compactness):

γ̃i = γi

(
1 + erf((ui − δi)/σi

√
2)
)−1

(4.15)

It is worthy of note that, although the model (Eqn. (4.10)) incorporates rigorously any
history of the signal that may be present in the recorded arrival time data, in practice,
for decay lifetimes considerably smaller than the repetition period, the summation over `
need only include the first two terms. In the case that a decay lifetime is not significantly
smaller than the repetition period, the summation should include more terms as appropri-
ate. The influence of repetitive excitation is illustrated in Fig. 4.3, with the contribution of
the first three terms in the summation over ` shown in the case that the exponential decay
time τ is of the order of the modulation period Tm.

4.5 Why is this model different and what does it offer
that others don’t?

In this work, considerable effort has been expended to develop a detailed and fully analytic
model of a time-domain FLIM system, as described by Eqns. (4.10, 4.11, 4.14, 4.15). The
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Figure 4.4: Instrument response and photon arrival time bin-likelihood: (a) A three
component instrument response approximation Γ(u) having parameter values γ1 =
0.80, u1 = 1.00 ns, σ1 = 0.10 ns, γ2 = 0.15, u2 = 1.50 ns, σ2 = 0.15 ns, γ3 = 0.05,
u3 = 1.75 ns, σ3 = 0.20 ns. The side lobe is a consequence of the second and third
instrument response components, illustrating the flexibility of the analytic approxima-
tion employed in this work. (b) The bin-likelihood F (∆t ∈ bj|τ, bL

j , b
H
j , I) computed

for a purely mono-exponential decay signal of lifetime 2.0 ns, for a system having mod-
ulation period 12.5 ns, a measurement interval of 10.0 ns partitioned into 256 bins of
equal width, perturbed by the instrument response Γ(u) as detailed above. Notice, par-
ticularly around the peak of the bin-likelihood, that the influence of the side lobe of the
instrument response approximation is clearly apparent.

developed model incorporates, of course, a multi-exponential fluorescence decay process
and also accounts formally for at least those features that may have a considerable bearing
on parameter estimates when the model is used for the quantification of a fluorescence
decay process. On first inspection of the analytic FLIM system model it is often remarked
that the most striking difference is that that the equations which define the FLIM system
model appear to be much more complicated than those familiar from the traditional fitting
techniques often used for fluorescence decay analysis. The main reasons for there being
many more variables and an apparent complexity in Eqns. (4.10, 4.11, 4.14, 4.15) that do
not exist in the familiar approaches to fluorescence decay analysis are:

• A more complete approach:

The FLIM system model has been developed to more faithfully represent the time-
resolved FLIM system by formally incorporating the effects of repetitive excitation;
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this requires a variable to describe the repetition period (Tm) and a more sophisti-
cated definition of the photon arrival time ∆t = t + u − Tm.int ((t+ u)/Tm) that
avoids the assumption that any detected fluorescence decay photon had been a result
of the excitation at the beginning of the measurement window.

• A fully analytic approach:

The FLIM system model has been developed to be fully analytic thereby requiring
additional variables to realise an analytic approximation to the instrument response;
for the chosen approximation in this work the variables I = {γi, ui, σi, δi|i =

1, . . . , I} describe the weighted sum of set of truncated Gaussian distributions.
Much of the apparent complexity of the FLIM system model is a consequence of
it being fully analytic and as such the convolution integrals in Eqn. (4.7) have been
performed analytically; for the chosen instrument response approximation and a
multi-exponential decay signal this results in the error function integrals that appear
in Eqn. (4.14). Typically, in implementing the traditional fitting methods convolu-
tion of a measured instrument response with a proposed decay signal is performed
numerically and therefore there is no requirement for the computation of convolu-
tion integrals akin to those in Eqn. (4.7).

• A probabilistic approach:

As the intended application of the FLIM system model is within the Bayesian
framework, careful attention has been paid throughout its development to ensure
that all quantities that comprise the FLIM system model are appropriately nor-
malised. Particularly, as only those photon arrival times that can be measured are
considered in the analysis, the inclusion of a variable to describe the measurement
window (T ) is required.

In the remainder of this section a critical comparison of the FLIM system model with
the models used in other approaches to fluorescence decay analysis is undertaken, par-
ticularly the additional variables and the apparent complexity of the FLIM system model
are justified by demonstrating theoretically what the FLIM system model offers over the
other approaches to FLIM analysis that were discussed in Chapter 2.

In the direct fitting approach to time-domain FLIM data a fluorescence decay model is
fitted directly to the photon counting histogram, the optimal fit being determined accord-
ing to a goodness-of-fit parameter which somehow quantifies the distance between the fit
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and the measured photon counting histogram. The key ingredients of the direct fitting
approach are usually a measured instrument response function and a fluorescence decay
model which is typically of the form,

I(t) = Z +
L∑
`=1

A`e
−t/τ` (4.16)

where I(t) represents the fluorescence intensity (the photon count) at time t, Z repre-
sents the constant background level, and each decay component is described by an initial
intensity A` and a decay lifetime τ`. In the direct fitting approach, the optimal fit is de-
termined by finding those parameter values that minimise the goodness-of-fit parameter;
in performing such an analysis, the necessary deconvolution with a (usually) measured
instrument response is typically performed numerically.

Clearly, as both the direct fitting approach and the FLIM system model are designed
to be used for the quantification of a fluorescence decay process it is no surprise that they
do have similarities; although the conventional fluorescence decay model of Eqn. (4.16)
operates directly in units of photon counts and is applied directly to the photon count
histogram whereas the FLIM system model is probabilistic and applied for each counted
photon, the analogues between the fitting decay model (Eqn. (4.16)) and its Bayesian
counterpart (Eqn. (4.6)) are easily identifiable. However, the differences between the two
approaches are more numerous, as explored below.

As a measured instrument response is used in the direct fitting approach and the re-
quired convolution operations are performed numerically there are no counterpart vari-
ables in the direct fitting approach to those in Eqns. (4.10, 4.11, 4.14, 4.15) that describe
the analytic instrument response approximation of the FLIM system model. While it
could be argued that the integrity of the effects of the FLIM system in the data might be
better preserved by using the measured instrument response and performing numerical
integration for computation of the integrals in Eqn. (4.14), it should also be noted that the
measurement of an instrument response may not be straightforward (nor even possible
in some circumstances), and even then that the measurement itself may not be perfect.
Indeed, it is not always an accurate assumption that a reliable measured instrument re-
sponse is available for use in decay data analysis. It is also worthwhile remarking that,
although it is usually the quantification of a fluorescence decay process that is of interest,
the fluorescence decay variables hold no greater status than any of the other variables in
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the FLIM system model. The presence of those variables in Eqns. (4.10, 4.11, 4.14, 4.15)
that describe the instrument response approximation, and those defining the measurement
interval and repetition period, should certainly not be viewed as merely an additional
complication in the theory; the very presence of these variables enables properties of the
FLIM system to be approximated or potentially even optimised from the decay data. In
this work those variables that describe analytically an instrument response approximation
have been exploited in order that the optimal instrument response approximation can be
estimated from time resolved data alone (without any recall to the measured instrument
response even if such is available).

In contrast to the developed FLIM system model, where the multi-exponential decay
model and the analytic instrument response are combined in a framework (Eqn. (4.4)) that
rigourously respects repetitive excitation in time-domain FLIM to yield the likelihood of
a photon being counted at any time within the measurement window, in the direct fit-
ting approach the decay model and instrument response are combined without repetitive
excitation being accounted for. In neglecting the effects of repetitive excitation in the
analysis, the direct fitting approach that combines a fluorescence decay model of the form
of Eqn. (4.16) and a measured instrument response cannot account for any fluorescence
decay photons that may have been counted early in the measurement window (i.e. fluo-
rescence be non-negligible towards the end of an excitation period). In effect, the fact that
the counted photons actually emanate from a long train of fluorescence decays extending
back in time over many excitations is lost and (although it will always be formally incor-
rect) the analysis will only yield reliable decay parameter estimates when the fluorescence
is certain to be negligible towards the end of an excitation period (i.e. the lifetime of the
slowest fluorescence decay component is significantly less than the excitation period).
The variables T and Tm that do exist in the FLIM system model relations (Eqns. (4.10,
4.11, 4.14, 4.15)) but not in the direct fitting approach could be viewed as a replacement
for the need of ad hoc rules that must be obeyed for an analysis to be valid. The addition
of these variables is critical in this work and important in providing a more complete pic-
ture of the FLIM system than that of the assumptions on which conventional analyses are
based. Certainly, should the technology be available and there be a desire to perform an
experiment that does not meet the usually accepted restrictions (i.e. decay lifetime and
excitation period), then it would be a shame if that experiment not be progressed due to
an incomplete approach to data analysis.
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It is easy to see that it would not be possible for the direct fitting approach, which does
not account for repetitive excitation, to describe decay data arising from a fluorescence
decay such as that shown in Fig. 4.5, in which a baseline fluorescence accumulates over
time. One could decide to apply the direct fitting approach incorporating a decay model
of the form of Eqn. (4.16) only to data following the rise of the transient (for example,
in Fig. 4.3 for photons that would be counted after about 2.0 ns in the measurement win-
dow); this is however an unsatisfactory workaround that would almost certainly yield
incorrect background and initial intensity estimates. Although this may not be of signif-
icant importance for a mono-exponential analysis as these parameters are not usually of
much interest, should an estimate of the interacting fraction (i.e. A2/A1) be required for
a FRET study, then a bi-exponential analysis of data incorporating a fluorescence com-
ponent similar to that of Fig. 4.5 using the direct fitting approach would almost certainly
yield incorrect initial amplitudes and an incorrect FRET interacting fraction. In [67] the
influence of repetitive excitation was accounted for theoretically for use in the direct fit-
ting approach to yield a modified fluorescence decay model of the form (variable names
and index labels have been changed),

I(t) = Z + I0

L∑
`=1

R`α`e
−t/τ` , R` = 1 +

1

eTm/τ` − 1
,

∑
`

α = 1 (4.17)

where α` weights the contribution of the `th decay component to the overall fluores-
cence intensity and the factor R` accounts for the apparent increased initial amplitude as
a consequence of repetitive excitation. Although such a modified decay model does in-
corporate the influence of repetitive excitation and should yield correct initial amplitudes
when used as the basis of the direct fitting approach if applied only to the right data in the
measurement window, unless it were applied in a framework that somehow captures that
the instrument does not respond instantly and that fluorescence photons from a previous
repetition period will be counted in the measurement window, it cannot be successfully
applied to the entire measurement window (i.e. all of the recorded data).

In the phasor approach to time-resolved FLIM data, as presented in [70], a fluores-
cence intensity model I(t) is incorporated in defining the phasor coordinates,
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g(ω) =

∫∞
0
dt I(t) cos(ωt)∫∞

0
dt I(t)

, s(ω) =

∫∞
0
dt I(t) sin(ωt)∫∞

0
dt I(t)

(4.18)

where ω is the laser repetition angular frequency (i.e. ω = 2π/Tm). Obviously, should
the fluorescence intensity model be chosen to be of the form of Eqn. (4.16) then the argu-
ments regarding the limitations of the approach also apply. The mono-exponential phasor
analysis presented in [70] incorporates a model of the form I(t) = Ae−t/τ (notice that
a constant background component is not allowed for). It should also be observed that
(unless somewhere hidden in the fluorescence decay model I(t)) the effects of the instru-
ment response of the time resolved FLIM data is not considered in the phasor approach as
stated. As will be shown in Chapter 8 neglecting the influence of the instrument response
in data analysis has considerable risks.

In summary, although in some circumstances one can obtain good fluorescence decay
parameter estimates using, say, the direct fitting approach based on a model of the form
of Eqn. (4.16) this is certainly not true in all circumstances. It is not surprising that, no
matter how good a particular analysis technique may be (e.g. LS, ML, Bayesian analysis),
or even were a perfect analysis method to exist, without a sufficiently detailed model of the
time domain FLIM system then accurate fluorescence decay parameter estimates should
not be taken for granted.
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Figure 4.5: Accumulating fluorescence; repetitive excitation, periodic fluorescence de-
cay and photon counting with a slow decay: For a simulated mono-exponential decay
of lifetime Tm/2, a typical instrument response, and a FLIM system repetition period
of Tm, in the uppermost panel the initial sequence of periodic fluorescence decays (in
FLIM system time) as a consequence of repetitive excitation; notice particularly the in-
crease in photon likelihood at subsequent decay peaks as fluorescence accumulates with
passing FLIM system time. In the bottom left panel, the fluorescence decay photon
likelihood accounting for repetitive excitation of the FLIM system within the measure-
ment interval [0, T ]; observe again the accumulated fluorescence elevating the photon
likelihood over the entire measurement window and also the history of decays due to
previous excitations at the beginning of the measurement window. Typical photon count
data having about 1000 total photon counts is shown in the bottom right panel.
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Chapter 5

Bayesian analysis applied to time
resolved FLIM

In this chapter, the Bayesian framework is applied to the FLIM forward model developed
above (Eqn. (4.10)) with the purpose of quantifying probabilistically the source of some
fluorescence decay data and also to provide answers to (the usually unasked) questions
regarding the nature of both the fluorescence decay and of the FLIM instrument. In par-
ticular, the following are explored:

• Parameter estimation
What is the probability of a set of fluorescence decay model parameter values given
the data, the decay model, and the parameterized instrument response approxima-
tion?

• Model selection
How many exponential decay components are likely to have yielded the decay data?

• Instrument response determination
What is the most likely form of the instrument response function given the fluores-

cence decay data?

The following notation is introduced and shall be used throughout the remainder of this
document:

63



• The data
The data D = {(bj, cj)|j = 1, . . . ,M} comprise a set of M bin-count pairs (bj, cj)

where bj represents the jth bin (i.e. interval bj = [bL
j , b

H
j ] ∈ [0, T ]) and cj is the

number of photons recorded as having been counted into that bin. It is required that
none of the bins overlap (i.e. bj ∩ bk = ∅, ∀j 6= k) and that their union forms the
measurement interval (i.e. ∪Mj=1bj = [0, T ]).

• The decay model
The fluorescence decay model is denoted by HK , where K exponential decays of
lifetime τk contribute to the overall decay according to weight wk as defined by
Eqn. (4.6). The notation wK = (w1, . . . , wK) and τK = (τ1, . . . , τK) shall also be
used.

• The parameterized instrument response
The characteristics of the FLIM equipment are denoted by I = {γi, ui, σi, δi|i =

1, . . . , I}, which defines an instrument response approximation composed of I
weighted, truncated Gaussian distributions, as defined by Eqn. (4.9).

The Bayesian analysis developed in this section intentionally does not explicitly incorpo-
rate any particular form for the required prior distributions, in order that the expressions
developed remain general and can be used as a starting point and be suitably updated on
making specific the choice of prior distribution.

5.1 Decay parameter estimation

Most commonly, it is the fluorescence decay parameter value estimates that are of greatest
interest to the experimentalist, with both the decay model HK and the instrument param-
eters I being fixed having been either determined or assumed. The posterior distribution
gives the likelihood of fluorescence decay parameter values (wK , τK) given the data D,
the instrument response characteristics I, and the decay modelHK :
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p(wK , τK |D,HK ,αK , I)

=
p(wK , τK |HK ,αK)p(D|wK , τK ,HK , I)∫

dw′K
∫
dτ ′K p(w′K , τ

′
K |HK ,αK)p(D|w′K , τ ′K ,HK , I)

=
p(wK , τK |HK ,αK)

∏M
j=1 p(bj|wK , τK ,HK , I)cj∫

dw′K
∫
dτ ′K p(w′K , τ

′
K |HK ,αK)

∏M
j=1 p(bj|w′K , τ ′K ,HK , I)cj

(5.1)

Of course, as any parameter estimates (wK , τK) derived from Eqn. (5.1) are conditioned
not only on the dataD but also on the decay modelHK (and its hyperparametersαK) and
instrument response characterization I, it should be expected that they be most reason-
able when the appropriate HK and I have been employed throughout the analysis. The
Bayesian approach to determination of the decay model and instrument response charac-
teristics is developed in the following sections.

5.2 Decay model selection

Here, in order to address such questions as “Should I be using mono-exponential or bi-

exponential analysis?”, the Bayesian framework is employed to determine the most ap-
plicable fluorescence decay modelHK given the data, where it is assumed in this analysis
that the instrument response parametrization I has been appropriately determined. In
this work, the most probable decay model and the most probable hyperparameter(s) are
determined together, their posterior distribution offering a quantitative measure of the
likelihood of the recorded data being due to the model HK its hyperparameter(s) αK , as
given by,

p(HK ,αK |D, I)

=
p(HK ,αK)

∫
dwKdτK p(wK , τK |HK ,αK)p(D|HK ,wK , τK , I)∑

K′

∫
dαK′ p(HK′ ,αK′)

∫
dwK′dτK′ p(wK′ , τK′ |HK′ ,αK′)p(D|HK′ ,wK′ , τK′ , I)

(5.2)

where p(HK ,αK) is the prior probability of decay model HK and its hyperparameter(s)
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αK , and in the denominator the summation is over all candidate decay models. Using
Eqn. (5.2), the relative likelihood of candidate decay models can be obtained by the pair-
wise comparison of the evidence for those different models,

p(HK ,αK |D, I)

p(HK′ ,αK′|D, I)

=
p(HK ,αK)

p(HK′ ,αK′)

∫
dwKdτK p(wK , τK |HK ,αK)p(D|HK ,wK , τK , I)∫

dwK′dτK′ p(wK′ , τK′|HK′ ,αK′)p(D|HK′ ,wK′ , τK′ , I)
(5.3)

Alternatively, the most probable decay model and its hyperparameters conditioned on
the data can be sought by finding the maximum of Eqn. (5.2). Since p(HK ,αK) =

p(HK)p(αK |HK), the most probable decay model H?
K and its optimal hyperparameters

α?K are given by,

(H?
K ,α

?
K) = argmax

HK ,αK

[p(HK)p(αK |HK)Z(HK ,αK , I)]

= argmax
HK

[
p(HK) max

αK

[p(αK |HK)Z(HK ,αK , I)]

]
= argmax

HK
[p(HK)p(α?K |HK)Z(HK ,α

?
K , I)] , (5.4)

where the integral Z(HK ,αK , I) is given by,

Z(HK ,αK , I) =

∫
dwKdτK p(wK , τK |HK ,αK)p(D|HK ,wK , τK , I), (5.5)

the optimal hyperparameter(s) are given by,

α?K = argmax
αK

[p(αK |HK)Z(HK ,αK , I)] , (5.6)

and p(αK |HK) (the so-called hyperprior) is the prior distribution of the hyperparame-
ter(s) αK for the decay model HK . The expressions for fluorescence decay model se-
lection are developed further in Appendix A.2 for the decay model and prior specific
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to this work. In this work, the integrals that must be determined for model selection
(Eqns. 5.2, 5.3, 5.4, 5.6) are computed using a Gaussian approximation, as detailed in
Appendix A.2.1.

5.3 Instrument response determination

The measurement of an instrument response can sometimes be a difficult practical prob-
lem. This section develops the Bayesian determination of the instrument response ap-
proximation parameters from the fluorescence decay data itself, obviating the need for
any separate experiment with the sole purpose of measuring the instrument response. De-
noting by I = {ui, σi, δi|i = 1, . . . , I} the parameter values of the instrument response
approximation Γ(u) (Eqn. (4.9)), the posterior distribution of the instrument response
parameter values is given by:

p(I|D)

=
p(I)

∑
HK p(HK)

∫
dwK

∫
dτK p(wK , τK)p(D|HK ,wK , τK , I)∑

HK p(HK)
∫
dwK

∫
dτK p(wK , τK)p(D|HK ,wK , τK , I)

=
p(I)

∑
HK p(HK)

∫
dwK

∫
dτK p(wK , τK)

∏M
j=1 p(bj|HK ,wK , τK , I)cj∫

dI ′ p(I ′)∑HK p(HK)
∫
dwK

∫
dτK p(wK , τK)

∏M
j=1 p(bj|HK ,wK , τK , I ′)cj

(5.7)

Of course, should the data be acquired using a fluorophore known to exhibit a purely
mono-exponential decay, the above simplifies to yield:

p(I|D,H1) =
p(I)

∫
dw1

∫
dτ 1 p(w1, τ 1)

∏M
j=1 p(bj|w1, τ 1, I)cj∫

dI ′ p(I ′)
∫
dw1

∫
dτ 1 p(w1, τ 1)

∏M
j=1 p(bj|w1, τ 1, I ′)cj

(5.8)

Additionally, it is also possible to estimate the instrument response parameters at the
same time as estimating the fluorescence decay parameters (as has been previously im-
plemented and used to date). Again, under the assumption of a purely mono-exponential
decay, the posterior to be calculated simplifies yet further:

67



p(w1, τ 1, I|D,H1) =
p(I)p(w1, τ 1)

∏M
j=1 p(bj|w1, τ 1, I)cj∫

dI ′ p(I ′)
∫
dw′1

∫
dτ ′1 p(w

′
1, τ

′
1)
∏M

j=1 p(bj|w′1, τ ′1, I ′)cj
(5.9)
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Part III

Results

69



The desire for more accurate mono-exponential and bi-exponential fluorescence de-
cay parameter estimates with fewer photon counts provoked much of the work that has
lead to the fully analytic FLIM system model and the Bayesian decay analysis algo-
rithms as presented in Part II, and to the results presented here for mono-exponential
and bi-exponential fluorescence decay analysis (Chapters 6 & 7 respectively). However,
Bayesian analysis using the fully analytic FLIM system model is able to offer consider-
ably more than merely being an additional (and, as the reader may be persuaded in the
coming chapters, enhanced) decay analysis technique. The incorporation of parameters to
describe an approximation to the system IRF into the fully analytic FLIM system model
makes it possible to estimate the system IRF given the decay data alone, as is realised
by the Bayesian SID (simultaneous instrument and decay) algorithm. Additionally, the
hierarchical nature of Bayesian analysis readily permits the development of model selec-
tion analysis; in this work a Bayesian decay model selection algorithm that quantifies the
relative likelihoods of different decay orders (e.g. background only, mono-exponential
and bi-exponential) from the decay data is presented. Before discussing the performance
of the different Bayesian algorithms it is useful to first clarify the exact purpose of each
algorithm, which of the FLIM system model parameters the algorithm is used to esti-
mate, and which parameter values must be provided for a successful analysis. The fully
analytic FLIM system model developed in Part II contains variables that describe a multi-
exponential decay and variables that describe an analytic approximation to the instrument
response. As summarised below, each of the Bayesian analysis algorithms has been de-
veloped for the purpose of estimation of one or more of these groups of variables, and
requires that the values of all of the other variables be provided, as summarised below:

• Bayesian decay analysis for fluorescence decay parameter estimation:

Estimation of the optimal parameters that describe a fluorescence decay (Eqn. 4.6),
i.e. {wk, τk|k = 1, . . . , K}, where wk weights the contribution of an expo-
nential decay of lifetime τk to the overall signal having K components. For a
mono-exponential decay the Bayesian decay parameters are {w1, τ1} and for a bi-
exponential decay {w1, τ1, w2, τ2} and their conventional direct fitting counterparts
are {A1, τ1} and {A1, τ1, A2, τ2} respectively. The parameters which describe the
IRF approximation are required and should be optimal for effective Bayesian decay
analysis and the decay order K is set by the user.
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• Bayesian SID analysis for fluorescence decay and IRF approximation parameter

estimation:

Simultaneous estimation of the optimal fluorescence decay parameter values and
those parameters which describe the analytic IRF approximation (Eqn. 4.9), i.e.
I = {γi, ui, σi, δi|i = 1, . . . , I}, where γi weights the contribution of a truncated
Gaussian distribution centered about a delay parameter ui, of width σi and having
a lower cut-off δi, to an instrument response approximation comprised of I such
distributions. Bayesian SID analysis can be applied for either a mono-exponential
or a bi-exponential decay model.

• Bayesian decay model selection for fluorescence decay model order estimation:

Determination of the optimal decay model HK by estimation of the relative likeli-
hood of the decay data being due to a mono-exponential (H1) or bi-exponential (H2)
decay process. In applying the Bayesian decay model selection algorithm the op-
timal mono-exponential and bi-exponential fluorescence decay parameters are also
estimated; the algorithm requires that the optimal IRF approximation is provided.

The developed Bayesian mono-exponential and bi-exponential decay analysis algo-
rithms were tested against ML and LS, for mono-exponential data against phasor analysis,
and for bi-exponential data against global analysis, all approaches operating directly on
the accumulated histogram. The ML estimation routines were implemented as described
in [82], and are based on the modified Levenberg-Marquardt (MLM) algorithm. The LS
implementation is also based upon the MLM algorithm and is described in [67, 87]. Pha-
sor analysis (e.g. [90, 105]) was implemented incorporating automated background level
estimation at each pixel (using data before the rise of the transient), with Fourier compo-
nents computed using modulation frequency ω = 2π/m set according to the number of
time bins m that form the window of data to be analysed, and with the estimated back-
ground level being subtracted from the photon count at each bin of the data window. The
average of the phase and modulation lifetime values is reported. The bi-exponential global
analysis algorithm was implemented to operate under assumption that the decay lifetimes
are invariant over each analysed image. As the repetitive nature of TCSPC excitation is
not accounted for in any of the established analysis techniques used for comparison, in
order to avoid their potential effects the ML, LS, and phasor analysis routines all consider
only a window of the collected data that excludes time points before the rise of the tran-
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sient has occurred. Automated selection of the valid data window is discussed in [67]. The
Bayesian analysis routines operate on all of the available data, except for small portions
at the start and end of the transient, potentially corrupted by consequences of dithering
associated with the time-amplitude converter in the TCSPC electronics [60].

The Bayesian analysis algorithms were implemented in the C programming language
and incorporated into the TRI2 (Time Resolved Imaging 2) software package [67, 87], as
illustrated in Fig. 5.1. A significant amount of effort has been expended in developing
a “user-friendly” Bayesian implementation that is accessible without having knowledge
of the FLIM system model or the Bayesian analysis of Chapters 4 and 5 respectively, or
even of Bayesian analysis in general (Chapter 3). At the time of the initial integration of
the Bayesian algorithms into TRI2, efforts were made such that their operation should be
as similar as possible, from the point of view of user-interaction, to that of the existing
LS analysis algorithms, such that a user familiar with the LS routines should be able to
use the Bayesian algorithms without facing a steep learning curve. Indeed, one of the key
results of the work that has culminated in this thesis is the realisation of an accessible
implementation, as discussed in Appendix C. TRI2 also provides ML, LS, and phasor
analysis fitting routines for the analysis of time-resolved data and is widely used in the
laboratory in the Randall Division of Cell & Molecular Biophysics at King’s College
London and at the Gray Institute for Radiation Oncology and Biology at the University of
Oxford (where most of the work that has culminated in this thesis has been conducted).

The analysis algorithms were tested with simulated data of the expected signal from a
model of the TCSPC system which included a fixed background and the effect of repeti-
tive excitation [67] at 40 MHz; simulated Poisson noise was added to the convolution of a
raw fluorescence signal and a Gaussian excitation pulse to simulate realistic photon count
transients. Additionally, the algorithms were also compared with experimental biological
data, as detailed in Appendix B.2.

The performance of the developed Bayesian mono-exponential and bi-exponential de-
cay analysis algorithms is compared with established analysis techniques in Chapter 6 & 7
respectively. In comparing the parameter estimates of the different techniques both their
accuracy and precision are presented; the closeness to the true parameter value of the
average of a distribution of estimates providing a measure of accuracy of the parameter
estimates with the uncertainty being quantified by the standard deviation of the distribu-
tion of the estimates. All of the Bayesian fluorescence decay analysis results presented in
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Chapter 6 & 7 were obtained using the optimal IRF approximation as determined by appli-
cation of the Bayesian SID algorithm to representative very high total photon count data.
The results of the application of the Bayesian SID algorithm are presented in Chapter 8.
As Bayesian SID analysis is used to estimate the decay parameters and an approxima-
tion to the IRF given the decay data, in a typical analysis its application would usually
precede a Bayesian decay analysis in order to provide an optimal approximation to the
IRF for use by the Bayesian decay analysis algorithms. Bayesian decay model selection
could reasonably be used prior to or following a decay analysis, though as it builds upon
Bayesian decay analysis it is presented in Chapter 9. In order to present a digestible ac-
count of the performance of the Bayesian analysis algorithms the results presented and
the examples explored in the following chapters are focused both towards areas where
the Bayesian algorithms are likely to find useful purpose and offer an advantage over
other analysis techniques and to those where existing techniques either match or better
the overall performance of the Bayesian algorithms.
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Figure 5.1: Bayesian analysis of time-resolved data in TRI2: The results of mono-
exponential Bayesian analysis of an image pixel containing 648 photon counts; notice
that the mono-exponential Bayesian parameter estimates and their uncertainty, the fitted
fluorescence decay and its residuals, and also the Bayesian approximation to the instru-
ment response and the loaded measured instrument response, are all displayed to the
user.
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Chapter 6

Bayesian mono-exponential decay
analysis

In this chapter the results of the application of the mono-exponential Bayesian analysis
developed in Part II are presented. In addition to recapping the main results presented in
[1], some of the additional benefits that the Bayesian algorithms have over the other anal-
ysis techniques are explored in greater detail than was possible in [1]. In Section 6.1 the
key features of the developed Bayesian analysis are discussed, before the performance of
the mono-exponential Bayesian algorithm is compared with those of established analysis
techniques with a focus on the analysis of low count data; the application of Bayesian
analysis to discriminate between decay lifetimes is discussed in Section 6.1.1, the re-
silience of Bayesian lifetime estimates in the presence of significant background is dis-
cussed in Section 6.1.2. The application of the mono-exponential Bayesian algorithm to
experimental biological data is discussed in Section 6.2.

6.1 Low count synthetic data

The developed Bayesian analysis algorithms offer not only the provision of point esti-
mates that indicate the most probable decay parameter values, in the case of Bayesian
mono-exponential analysis the decay lifetime and background proportion, but the full
posterior distribution, as shown in Fig. 6.1 for a synthetic data set having a total of 39
photon counts with a background proportion of 10% and a decay lifetime of 2.0 ns. The
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fitted decay curve shown in Fig. 6.1 is based on the Bayesian estimated mono-exponential
most-probable lifetime value of 2.17 ns and background proportion of about 8%, it being
evident on inspection of the posterior distribution that there is quite significant uncertainty
in the decay parameter estimates (as would reasonably be expected for data having a to-
tal of only 39 photon counts); the posterior distribution extending between lifetimes of
about 1.5 ns and 3.0 ns and between background proportions of 0% and beyond 20%.
The uncertainty in the estimated lifetime determined to be 0.44 ns by integrating over the
posterior distribution.
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Figure 6.1: Bayesian fitting and the posterior distribution: In (a) simulated data hav-
ing 39 total photon counts and comprising a mono-exponential decay of lifetime 2.0 ns
and background count of 10% convolved with a typical instrument response, and the
Bayesian predicted fitted decay using the most-probable mono-exponential decay pa-
rameter values, and in (b) the corresponding posterior distribution and its projections
for the estimated background percentage and decay lifetime obtained using the Bayesian
mono-exponential analysis algorithm.

The primary use of the posterior distribution is the reliable quantification of the uncer-
tainty associated with parameter estimates, determined in this work by computation of the
standard deviation of its marginal distributions. However, the posterior can also be a use-
ful graphical aid to the analysis of decay data, especially at low total photon counts. The
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potential usefulness of the posterior distribution as an easily interpreted visual guide to un-
certainty in and any correlations between the estimated parameter values, and ultimately
how much confidence can be placed in a set of parameter estimates, is demonstrated fur-
ther in Fig. 6.2; for the analysis of synthetic data having approximately 10% background
and a mono-exponential decay of lifetime 2.0 ns (convolved with a typical instrument
response) the posterior distribution can be seen to concentrate around the true parame-
ter values as the total photon count is increased for sample pixels having total counts of
39, 108, and 465 photon counts respectively. The uncertainty in the estimated lifetime,
obtained by computation of the standard deviation of the lifetime marginal distribution,
being determined to be 0.44 ns, 0.26 ns, and 0.12 ns for the 39, 108, and 465 total photon
counts data sets respectively. It is also worthwhile noting that the posterior distribution-
estimated uncertainty in both of the decay parameter estimate is in close agreement with
the respective average uncertainties obtained on the analysis of many such similar data
sets.

The Bayesian determined optimal single Gaussian instrument response approxima-
tion was used in performing the Bayesian pixel by pixel analysis, having been determined
using the single high-count data set (about 5 million photon counts) resulting from sum-
ming the time resolved data from all of the image pixels and on the assumption of mono-
exponential decay data; the optimal single Gaussian approximation having been found to
have a FWHM width of 0.129 ns (i.e. a standard deviation of 0.055 ns) centered about a
delay of 2.067 ns. The same single Gaussian instrument response approximation was also
used in obtaining the results presented in Sections 6.1.1 and 6.1.2.

The performance of the developed mono-exponential Bayesian algorithm is compared
with that of ML, LS, and phasor analysis at low total photon counts for synthetic data com-
prising a decay of lifetime 2.0 ns and a uniform background of 10% and incorporating an
instrument response having a convolution width 0.15 ns at FWHM, as shown in Fig. 6.3;
it can be observed that the Bayesian estimates converge towards the true lifetime value
much more rapidly than the those of the other estimation methods. Mono-exponential
Bayesian analysis yields accurate decay lifetime estimates with a precision (measured ac-
cording to the standard deviation of the lifetime distribution) of about 10% at intensity
of about 200 total photon counts; a precision of about 15% is offered by ML and phasor
analysis at such a total photon count, and of about 20% by LS analysis. Intensities of
about 400 and 450 total photon counts are needed to achieve a precision of about 10% us-
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Figure 6.2: The posterior as a guide to parameter estimate uncertainty: Mono-
exponential Bayesian analysis of synthetic data having approximately 10% background
and a mono-exponential decay of lifetime 2.0 ns (convolved with a typical instrument
response). In (a) a data set having a total photon count of only 39 photon count and the
fitted fluorescence decay from the Bayesian mono-exponential predicted most probable
background proportion and lifetime parameter values, with the posterior distribution be-
neath. In (b) and (c) the same for data sets containing 108 and 465 total photon counts
respectively.

ing ML and phasor analysis respectively, and more that 500 total counts using LS. Under
such conditions, to achieve lifetime estimates to a precision of about 10%, the Bayesian
analysis would enable a decrease in the imaging duration of about a factor of two over that
required for ML or phasor analyses. The sensitivity of the lifetime estimation techniques
is now compared with reference to the F value [57]. The Bayesian-determined lifetime
estimates presented in Fig. 6.3 (a), offer an F value of about 1.43, and about 1.90, 2.63
and 2.24 for the ML, LS and phasor analysis estimates respectively. The Bayesian analy-
sis lifetime estimates are more narrowly distributed than those from the other estimation
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techniques (Fig. 6.3 (b)), and this is reflected in a smaller F number which indicates the
greater efficiency of the technique. The potential benefit of the improved sensitivity of-
fered by Bayesian analysis is demonstrated in Section 6.1.1, for a simulated lifetime based
sorting task.

The greater precision offered by the Bayesian lifetime estimates over those of ML,
LS, and phasor analysis, is demonstrated again in the next section images when applied to
the task of the identification of regions in an image based on different decay lifetimes in
those regions. In Section 6.1.2 the influence of background in the data on the performance
of the Bayesian algorithm is discussed.
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Figure 6.3: Increasing average total photon count: The estimated lifetime distribution
statistics for increasing total count, for the different analysis methods applied to syn-
thetic data having a decay of lifetime 2.0 ns, generated to yield an average total count
of between 10 and 200 counts at each pixel with a background of 10% (convolved with
a typical instrument response). In (a) the average value of the estimated lifetime distri-
bution, in (b) the standard deviation of the estimated lifetime distribution, in (c) the bias
of the lifetime estimates, and in (d) the percentage uncertainty of the estimates shown
for lifetime estimates having a bias of less than 5%. The analysis was performed on
synthetic 256 × 256 pixel images such that each data point represents the results from
216 transients.
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6.1.1 Lifetime-based sorting

The sensitivity of the developed mono-exponential Bayesian analysis is highlighted once
more in Fig. 6.4, the lifetime estimates of images comprising three panels, with each panel
separated in lifetime by 0.2 ns from its neighbour, are compared. At an average total count
of p = 100 counts (Fig. 6.4 (top row)) the three vertical panels are very nearly discernable
from each other by eye on inspecting the Bayesian analysis lifetime image, although the
estimated lifetime distribution does not reflect such structure. At the higher average inten-
sity of 1000 total photon counts (Fig. 6.4 (middle row)), the panels are clearly discernable
by eye on inspection of the estimated lifetime image for each of the methods, and ad-
ditionally the Bayesian analysis estimated lifetime distribution is clearly tri-modal. The
contrast metric (Imax− Imin)/(Imax + Imin) is used to quantifying the ease with which the
modes of the lifetime distribution are resolved, where Imax is the frequency at the dom-
inant mode and Imin is the lowest frequency between the modes. The contrast achieved
with an average total count using our Bayesian analysis is 0.26 between the 1.8 ns and
2.0 ns panels and 0.15 between the 2.0 ns and 2.2 ns panels; the reduction in contrast
between the panels with greater lifetime is due to increasing precision in the estimates
with increasing measurement interval. At this total count it is not yet possible to quantify
the contrast of the LS estimates as their distribution does not exhibit prominent separate
modes. On increasing the average total count further it becomes possible to quantify the
contrast between adjacent panels, for the sake of comparison, of all methods; at an aver-
age total count of 2500 (Fig. 6.4 (bottom row)), the contrast achieved between the 1.8 ns
and 2.0 ns panels using Bayesian analysis is 0.83, a figure that compares favourably with
those of ML, LS and phasor analysis estimates which yield contrast measures of 0.48,
0.18 and 0.61 respectively. It is also noticeable that the width of the estimated lifetime
distributions increases with increasing lifetime; a consequence of the ratio of the decay
lifetime to the measurement period [100, 74].
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Figure 6.4: Lifetime separation (I): Estimated lifetime images for the analysis of syn-
thetic images generated with decay lifetime of 1.8 ns (left panel), 2.0 ns (central panel),
and 2.2 ns (right panel), for the different analysis methods, at different intensities; (from
left to right) across the top row lifetime images from analysis of transients containing
about 100 total photon counts for ML, LS, phasor analysis, and Bayesian analysis re-
spectively, across the middle row the same for transients containing about 1000 total
photon counts, and across the bottom row for transients having about 2500 total photon
counts. The effects of an instrument response of FWHM width 0.15 ns and a uniform
background averaging about 0.02 counts/bin are present in all transients.
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Figure 6.5: Lifetime separation (II): Estimated lifetime distributions for the analysis of
synthetic images generated with decay lifetime of 1.8 ns (left panel), 2.0 ns (central
panel), and 2.2 ns (right panel), for the different analysis methods, in (a) for an average
intensity of 1000 total photon counts, and in (b) for transients containing an average of
about 2500 total photon counts.
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6.1.2 Low signal to noise data

In this section the performance of the Bayesian mono-exponential analysis in poor signal
to background conditions is discussed. The decay lifetime estimates obtained on the anal-
ysis of synthetic data sets having about 1000 total photon counts are shown in Fig. 6.6
for the different analysis methods for a range of signal to background proportions, the ex-
traction of a mono-exponential decay of lifetime 2.0 ns being an increasingly challenging
task as the background proportion is increased. On inspecting Fig. 6.6 (a), it is evident
that the Bayesian lifetime estimates remain closer to the ‘true’ lifetime as the background
proportion is increased; even when about half of the total counts are due to background
the Bayesian lifetime estimates are distributed around an average value of 2.00 ns (the
‘true’ value) with a standard deviation of 0.17 ns, whereas ML, LS, and phasor analysis,
all systematically overestimate the decay lifetime slightly with such a background pro-
portion. Although, of course, the precision of the mono-exponential Bayesian lifetime
estimates suffers as the decay signal becomes swamped by an increasing background, as
illustrated in Fig. 6.6 (b), it is clear that the mono-exponential Bayesian analysis retains
an advantage over the other analysis techniques and offers more accurate and more pre-
cise lifetime estimates regardless of the background proportion; for example, the ML, LS,
and phasor analysis lifetime estimates distributions have standard deviation of 0.23 ns,
0.26 ns, and 0.39 ns respectively. Notice also that the accuracy of phasor analysis lifetime
estimates degrades rapidly in the presence of background counts, most likely a symptom
of a background offset being determined at each pixel from the (very limited) data that
precedes the rise of the transient.

The superior performance of the developed Bayesian algorithm is even more apparent
at very low intensities, as illustrated in Fig. 6.7, which compares lifetime estimates ob-
tained with synthetic data having about 50 total photon counts and increasing background,
for the different analysis methods; observe that the Bayesian analysis lifetime estimates
do not deviate significantly from the actual lifetime value even when counts due to back-
ground account for about half of the total counts. Again, it is evident that the advantage
of the greater accuracy in lifetime estimates offered by the developed mono-exponential
Bayesian analysis is not diminished in the presence of a significant background.
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Figure 6.6: Influence of background on lifetime estimates (Intensity: 1000 counts):
Statistics of the estimated lifetime distribution for increasing background proportion
for an average total photon count of 1000 counts, for the different analysis methods. In
(a) the average estimated value of the estimated lifetime distribution, in (b) the standard
deviation of the estimated lifetime distribution, in (c) the bias of the lifetime estimates,
and in (d) the percentage uncertainty of the estimates shown for lifetime estimates hav-
ing a bias of less than 5%. In all cases the analysis was performed on synthetic 256×256
pixel images, generated to yield data corresponding to a mono-exponential decay of life-
time 2.0 ns at each pixel, and incorporating an instrument response with delay 2.0 ns
and FWHM width 0.15 ns.
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Figure 6.7: Influence of background on lifetime estimates (Intensity: 50 counts): Statis-
tics of the estimated lifetime distribution for increasing background proportion for an
average total photon count of 50 counts, for the different analysis methods. In (a) the av-
erage estimated value of the estimated lifetime distribution, in (b) the standard deviation
of the estimated lifetime distribution, in (c) the bias of the lifetime estimates, and in (d)
the percentage uncertainty of the estimates shown for lifetime estimates having a bias
of less than 10%. In all cases the analysis was performed on synthetic 256 × 256 pixel
images, generated to yield data corresponding to a lifetime τ = 2.0 ns decay at each
pixel, and incorporating an instrument response with delay 2.0 ns and FWHM width
0.15 ns.
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6.2 Low count data from human epithelial carcinoma
cells

In this section the results of the application of the mono-exponential Bayesian algorithm
to experimental biological data obtained on imaging a well-established biological model
system using cells which express GFP, having a fluorescence emission that follows a
mono-exponential decay with a lifetime of ∼ 2.2 ns, are presented. Human epithelial
carcinoma cells expressing cdc42-GFP were imaged for short durations as described in
Appendix B.2, and the performance of the mono-exponential Bayesian algorithm being
quantitatively compared with that of ML, LS, and phasor analysis, on analysis of the ac-
quired low photon count time-resolved data (at which this work is primarily targeted).
All analysis methods ultimately converge to a lifetime value of around 2.18 ns as the av-
erage total photon count increases although, inevitably, some deviations from this value
will be present and the effects of this biological noise are included in the lifetime distri-
butions shown. In addition to demonstrating the improvements in lifetime estimates that
mono-exponential Bayesian analysis offers over ML, LS, and phasor analysis, as origi-
nally shown in [1], the amenability of both the posterior distribution and the Bayesian
parameter estimate uncertainty maps as a graphical means of assessing the level of confi-
dence which can be placed in associated parameter estimates is illustrated.

The Bayesian determined optimal single Gaussian instrument response approxima-
tion was used in obtaining the Bayesian results presented here, having been determined
using the single high-count data set (about 35 million photon counts) resulting from sum-
ming the time resolved data from all of the image pixels and on the assumption of mono-
exponential decay data; the optimal single Gaussian approximation having been found to
have a FWHM width of 0.204 ns (i.e. a standard deviation of 0.086 ns) centered about a
delay of 2.341 ns. In Appendix B.2, the measured IRF and the Bayesian-determined ap-
proximation are compared for the Galileo time-resolved microscope (Section 1.2.1), the
system used to acquire the data presented here.

The Bayesian mono-exponential parameter estimates are shown for the analysis of a
low count image containing pixels having between about 35 and 350 total photon counts in
Fig. 6.8. The Bayesian decay lifetime estimates are centered around an average of 2.18 ns
with a standard deviation of 0.26 ns. The distribution of the associated uncertainty in the
lifetime estimates (Fig. 6.8 (e)) is peaked at about 0.28 ns and, as would be expected, bears
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Figure 6.8: Bayesian mono-exponential analysis of GFP data with low count data (I):
In (a) an intensity image of which pixels having a total photon count between about
35 and 350 were analysed using the mono-exponential Bayesian algorithm. In (b) and
(c) the background count Z and the initial decay amplitude A estimates respectively
as computed using the corresponding Bayesian estimates of the parameters w0 and τ ,
and (d) and (e) the mono-exponential decay lifetime τ estimates and their estimated
uncertainty ∆τ respectively. All image panels correspond to a field of view of 334 ×
334 µm.

a close resemblance to that of the intensity of the analysed image pixels (Fig. 6.8 (a));
regions of (relatively) high intensity having an uncertainty in the estimated lifetime as
small as about 0.1 ns and pixels having low total photon counts having uncertainty in their
lifetime estimates as great as about 0.5 ns. Although it is of no surprise that the precision
of parameter estimates shows variation spatially within an image (it usually being the
case that the more photon counts that are available for analysis the more accurate and
precise are any resulting parameter estimates), Fig. 6.8 (e) does highlight that the Bayesian
lifetime uncertainty map could certainly be useful as an easily interpreted graphical aid to
assessing whether all, some, or even none of the lifetime estimates within an image meet
the precision required for a particular investigation.

The lifetime estimates resulting from ML, LS, phasor analysis, and Bayesian analysis,
are shown in Fig. 6.9 for two low total photon count images. The lifetime estimates for
the very low intensity image in Fig. 6.9 (a), containing pixels that were analysed having
between 25 and 175 total photon counts, are distributed (around values close to the ‘true’
value of 2.18 ns) with a standard deviation of 0.70 ns, 1.17 ns, 0.91 ns, and 0.41 ns for
ML, LS, phasor analysis, and Bayesian analysis respectively; the tighter distribution due
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Figure 6.9: Mono-exponential analysis of GFP data with low count data (I): The esti-
mated lifetime distributions for the different estimation methods applied for the analysis
of GFP fluorescence decay data (2.18 ns); in (a) an intensity image of which pixels con-
taining between about 25 and 175 total photon counts were analysed (pixels having a
total count of less than 25 being masked and excluded from the analysis), and in (b),
(c), (d), and (e), the mono-exponential lifetime estimates obtained by ML, LS, phasor
analysis, and Bayesian analysis, of the time-resolved data. In (f) an intensity image
having total photon counts between about 45 and 400, with the corresponding mono-
exponential lifetime estimates due to ML, LS, phasor analysis, and Bayesian analysis,
shown in (g), (h), (i), and (j) respectively. The ‘true’ lifetime of 2.18 ns is indicated by
a black line in each lifetime image histogram. Each image panel corresponds to a field
of view of 334× 334 µm.

to Bayesian analysis being demonstrated by a cleaner lifetime image (Fig. 6.9 (e)) than
produced using the other analysis methods (Fig. 6.9 (b,c,d)). The analysis of the intensity
image in Fig. 6.9 (f) (the same data as for the Bayesian parameter estimates shown in
Fig. 6.8) yield estimated lifetime distribution having width of 0.36 ns, 0.59 ns, 0.38 ns,
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and 0.26 ns for ML, LS, phasor analysis, and Bayesian analysis respectively.
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Figure 6.10: Mono-exponential analysis of GFP data with low count data (II): The
mono-exponential decay lifetime estimates obtained using ML, LS, phasor analysis,
and Bayesian analysis, in (a), (b), (c), and (d) respectively, obtained on analysis of
experimental GFP data having intensities between 10 and 1000 total photon counts. The
‘true’ decay lifetime of 2.18 ns, to which all methods eventually converge, is indicated
by a solid line in each plot.

The mono-exponential decay lifetime estimates arising from the different analysis
methods are shown in Fig. 6.10 for intensities of between 10 and 1000 total photon counts.
It is evident that the Bayesian estimates are more tightly distributed around the ‘true’ life-
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time at lower total photon counts than for the other analysis techniques; even on visual
inspection the poor performance of LS analysis at low photon counts in comparison to
all other techniques is striking. It is also noticeable that for this data containing negli-
gible background phasor analysis performs more effectively than ML. As can be seen
in Fig. 6.11 (a), lifetime estimates to an precision of 0.2 ns are obtained using Bayesian
analysis at intensities of less than 200 photon counts, whereas ML, phasor analysis, and
LS, require about 300, 400, and 800 photon counts respectively before such precision is
achieved.
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Figure 6.11: Bayesian mono-exponential analysis for greater estimated lifetime accu-
racy with a reliable uncertainty measure: In (a) the standard deviation of the estimated
lifetime distributions for the different estimation methods applied for the analysis of
GFP fluorescence decay data for between 10 and 1000 total photon counts; as can be
seen in Fig. 6.10 Bayesian analysis offers tighter lifetime distributions than does ML,
LS, and phasor analysis. In (b) a comparison of the empirically obtained uncertainty
in lifetime estimates, as given by the standard deviation of the lifetime distribution ob-
tained (i.e. the curve in (a)), and the average of the Bayesian determined lifetime error
distribution.

The correspondence between the average Bayesian predicted uncertainty in a decay
lifetime estimate and the empirically obtained uncertainty in the lifetime is shown in
Fig. 6.11 (b); the predicted lifetime uncertainty being determined by application of the
mono-exponential Bayesian algorithm to an individual data set and the empirical lifetime
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uncertainty being accessible here as the lifetime across all acquired images should be
uniform (barring any biological heterogeneity). It is evident that the Bayesian predicted
lifetime uncertainty is in very close agreement with the lifetime estimates uncertainty
determined empirically.

The potential for and the advantages of the Bayesian estimated lifetime uncertainty
as an easily interpreted measure of the reliability of an analysis are highlighted for a se-
quence of images having increasing intensity in Fig. 6.12, this being especially relevant
given that the Bayesian lifetime uncertainty prediction (obtained on analysis of individual
data sets) is in such close agreement with the empirically obtained uncertainty (obtained
by determining uncertainty in lifetime estimates across a large number of data sets), as
shown in Fig. 6.11. It is clear, merely on visual inspection of the four Bayesian esti-
mated lifetime uncertainty maps, that the distribution of estimated uncertainty is easily
seen to shift towards lower values as the imaging duration is increased and consequently
the analysed image in which the greatest confidence can be placed is very easily located.
Additionally, any spatial variations that exist in the estimated lifetime uncertainty within
a single image are also easily detected on inspecting the Bayesian estimated lifetime un-
certainty maps; this could prove useful if only one or more regions of an image are of
interest and it is only the uncertainty in the estimated lifetimes in these regions that is
important. The Bayesian estimated lifetime uncertainty maps also offer the possibility
of excluding image pixels that have an uncertainty in the estimated decay lifetime greater
than an acceptable minimum uncertainty value from an analysis, in order that only regions
of an image that meet some pre-defined level of precision can be considered.
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Figure 6.12: Mono-exponential analysis of GFP data with low total count (II): A com-
parison of the ML goodness-of-fit parameter χ2 and the Bayesian estimated lifetime
uncertainty ∆τ for a sequence of images with, from left to right, increasing imaging
duration. In (a) an intensity image (avg. intensity of 425 photon counts) with the corre-
sponding ML goodness-of-fit and Bayesian estimated lifetime uncertainty maps directly
below. In (b) the same for an intensity image acquired on imaging the same field for a
slightly longer duration (avg. intensity of 641 photon counts), and in (c) and (d) avg.
intensities of 835 and 1045 photon counts respectively.
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Chapter 7

Bayesian bi-exponential decay analysis

In this chapter the performance of the Bayesian bi-exponential decay analysis algorithm
is evaluated and compared with that of the ML and LS analysis methods and with global
analysis. In performing bi-exponential decay analysis the objective is to accurately quan-
tify the lifetime and the contribution to the overall decay of both decay components. In
FRET studies using FLIM, biologically relevant quantities are often obtained using the
bi-exponential decay parameter estimates. The results discussed in this chapter are pre-
sented with reference to the FRET efficiency and the interacting fraction, quantities that
can be determined using the lifetime and initial amplitude estimates of the two decay com-
ponents, as defined below for a bi-exponential decay with one decay component having
lifetime τ1 and initial amplitude A1 and the other having lifetime τ2 and initial amplitude
A2:

• FRET efficiency: E = 1− τ2/τ1, τ1 > τ2.

• Interacting fraction: F2 = A2/A1.

In determining quantities such as the FRET efficiency and interacting fraction using
the estimated bi-exponential decay parameters values it should be expected that their accu-
racy and precision be limited by the accuracy and precision of the estimates on which they
depend. Of course, some bi-exponential decays are more amenable to accurate analysis
than others; intuitively, it would be reasonable to expect it to be more difficult to resolve
the two decay components if they have similar lifetimes (i.e. a low FRET efficiency) or
if one of the components dominates the decay (i.e. a very high or very low interacting
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fraction). In considering bi-exponential decay analysis it is acknowledged that an exhaus-
tive comparison of the different analysis techniques over the entire extent of the parameter
space has not been undertaken, rather, the comparisons have been targeted at those regions
of the parameter space that may prove most interesting. In Section 7.1 the effectiveness
of the different algorithms is considered for analysis of low total count synthetic decay
data for a bi-exponential decay having decay components with lifetimes that are well sep-
arated and with equal initial intensities. In section 7.1.1 the performance of the different
analysis methods is compared for different FRET efficiencies, and in Section 7.1.2 the
sensitivity of the different algorithms is studied as the interacting fraction is varied. The
results of the application of the Bayesian bi-exponential algorithm to real experimental
data is presented in Section 7.2. The data for which the results of bi-exponential param-
eter analysis are presented in this chapter shall also be the subject of the Bayesian decay
model selection algorithm, as presented in Chapter 9.

The developed Bayesian bi-exponential decay analysis algorithm yields the most
probable values for the bi-exponential decay parameters {w1, w2, τ1, τ2}, as defined in the
time-domain FLIM system model of Chapter 4. To aid the user familiar with estimates
obtained from the conventional direct fitting approach and to allow for easy comparison
of the Bayesian parameter estimates with those obtained using other analysis methods,
on successful completion of a Bayesian bi-exponential decay analysis, the most probable
parameter values from the more familiar direct fitting model {Z,A1, A2, τ1, τ2} are com-
puted and presented (both here in this work and also to the user in the developed software)
using the Bayesian parameter estimates.

In what follows, the estimated value of a bi-exponential decay parameter will fre-
quently be compared with its known value; to avoid confusion the true value of parameter
x shall be denoted by x?, for example, the known synthetic value of the lifetime τ2 shall
be denoted by τ ?2 . In discussing the bi-exponential parameter estimates the two decay
components shall be addressed as the slower component {A1, τ1} and the faster compo-
nent {A2, τ2}; at no point is any inference as to the absolute fastness or slowness of any
decay component intended.
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7.1 Low count synthetic data

In this section, the performance of the bi-exponential Bayesian analysis algorithm is com-
pared to that of ML, LS, and global analysis, for the analysis of synthetic decay data
having intensities between about 1000 and 10000 total photon counts; although such in-
tensities are an order of magnitude or so greater than those which were subject to mono-
exponential analysis for Chapter 6, it should be noted that such intensities would be con-
sidered to be in the low count regime for the purposes of bi-exponential analysis. The
results presented below and in Sections 7.1.1 and 7.1.2 were obtained using synthetic
data that simulated a TCSPC system having a repetition rate of 40 MHz (i.e. a repetition
period of 25.0 ns) and a measurement interval of 20.0 ns partitioned into 256 bins of equal
width; all transients incorporated the effects of a Gaussian instrument response having a
FWHM width of 0.15 ns, a uniform background of 0.5 counts per bin, and the addition of
Poisson noise at each bin.

The same Bayesian-determined optimal single Gaussian instrument response approx-
imation as was used for the analysis of synthetic data presented in Chapter 6, was also
used in performing the Bayesian analysis of synthetic data presented in this chapter. The
optimal single Gaussian approximation, having a FWHM width of 0.129 ns (i.e. a stan-
dard deviation of 0.055 ns) centered about a delay of 2.067 ns, was determined using a
single high-count data set (about 5 million photon counts).

The analysis algorithms were tested using data simulating a bi-exponential decay hav-
ing a FRET efficiency of E? = 0.75 (i.e. τ ?1 = 2.0 ns, τ ?2 = 0.5 ns) and an interacting
fraction of F ?

2 = 0.5 (i.e. A?1 = A?2). The decay parameter estimates and their statistics,
as presented in Figs. 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7, were obtained on the analysis of a
sequence of twenty-one synthetic 32×32 pixel images uniformly distributed between 500
and 10500 total counts per pixel, such that a total of 21504 transients were analysed. In
this section the performance of the Bayesian analysis algorithm, as applied independently
to every pixel of an analysed image, is also gauged against that of global analysis incorpo-
rating the assumption of decay lifetime invariance across the analysed image. Independent
estimates for all of the bi-exponential parameters (i.e. Z, A1, τ1, A2, τ2) were obtained
for each pixel of each of the analysed images on application of the ML, LS, and Bayesian
analysis algorithms. The global ML analysis algorithm yielded a single estimate for the
two decay component lifetimes (i.e. τ1, τ2) for each image, under the assumption of the
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lifetimes being invariant over each image, and independent estimates of the background
and initial amplitudes (i.e. Z, A1, A2) for each pixel of each of the analysed images. It
should be noted that the performance of global analysis depends on the size of the image
being analysed and whether the assumption of decay lifetime invariance over the image is
met; this assumption is met by the synthetic data analysed in this case which presents and
ideal case for the global ML analysis algorithm. It must also be stressed that the accuracy
and precision of the two decay component lifetimes as estimated by the global ML analy-
sis algorithm depend not only on the intensity at each individual pixel but also on the size
of the image (i.e. the number of pixels and the total photon count of the image), and so as
not to introduce confusion the accuracy and precision of the two decay component life-
times as estimated by global ML analysis are not directly compared with those obtained
using the ML, LS, and Bayesian algorithms as applied independently at each pixel. The
initial amplitude estimates and the resulting interacting fraction estimates, however, are
more amenable to direct comparison as they are obtained for each image pixel with all of
the analysis methods, their statistics are shown in Figs. 7.5 and 7.7.

The decay lifetime estimates of the different analysis methods are shown in Fig. 7.1
for intensities between about 1000 and 10000 photon counts; the estimated lifetime dis-
tributions converge to the true lifetime values (τ ?1 = 2.0 ns, τ ?2 = 0.5 ns) for all methods
as the intensity is increased, although it is evident that those due to ML and Bayesian
analysis do so at lower intensities than those of LS analysis. The Bayesian estimates
of both decay lifetimes are more tightly distributed than those obtained using ML; the
improvement is, however, not as pronounced as it was for mono-exponential analysis.
Global ML analysis produced decay lifetime estimates consistent with the true lifetimes
for each of the analysed synthetic 32× 32 pixel images, though demonstrated a tendency
to overestimate the faster lifetime τ2 (not shown).

The slightly greater precision, as measured by the width of the lifetime distributions
(Fig. 7.1), of the Bayesian lifetime estimates is shown in Fig. 7.2, which shows the width
of the distribution of lifetime estimates for intensities between about 1000 and 10000
photon counts for each of the different analysis methods; at an intensity of about 5000
total counts, the Bayesian analysis estimates of τ1 are distributed with a standard devi-
ation of 0.10 ns, the ML and LS estimates being distributed with standard deviation of
0.11 ns and 0.12 ns respectively. The Bayesian estimates of the lifetime τ2 are also more
tightly distributed than those obtained using ML and LS, having a standard deviation
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Figure 7.1: Bi-exponential decay lifetime estimation at low counts: Bi-exponential de-
cay lifetime estimates obtained using ML, LS, and Bayesian analysis for the analysis
of synthetic data simulating a bi-exponential decay having lifetimes of τ ?1 = 2.0 ns and
τ ?2 = 0.5 ns, present with equal initial amplitudes (i.e. A?1 = A?2), for intensities between
about 1000 and 10000 total photon counts. In (a), (b), and (c), the estimated lifetime τ1

obtained with ML, LS, and Bayesian analysis respectively, and in (d), (e), and (f), the
estimated lifetime τ2 obtained with ML, LS, and Bayesian analysis respectively with the
true lifetime being indicated by a dashed line in each plot. Notice that ML and Bayesian
analysis lifetime estimates are more precise than those of LS.

of 0.10 ns compared with about 0.12 ns for both ML and LS. Although on inspecting
Figs. 7.1 and 7.2 the advantage that Bayesian analysis offers over ML and LS may appear
meagre, it is worthwhile highlighting that to achieve an uncertainty of about 0.10 ns in
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Figure 7.2: Bi-exponential decay lifetime estimation precision at low counts: The un-
certainty, as measured by the standard deviation of the estimated lifetime distribution, in
the bi-exponential decay lifetime estimates obtained using ML, LS, and Bayesian anal-
ysis for the analysis of synthetic data simulating a bi-exponential decay having lifetimes
of τ ?1 = 2.0 ns and τ ?2 = 0.5 ns, present with equal initial amplitudes (i.e. A?1 = A?2), for
intensities between about 1000 and 10000 total photon counts. In (a) the width ∆τ1 of
the distribution of the estimated lifetime τ1 obtained with ML, LS, and Bayesian analy-
sis respectively for increasing total photon count and normalised to the known lifetime
τ ?1 , and in (b) the same for the lifetime τ2 (i.e. ∆τ2), normalised to the known lifetime
τ ?2 . The Bayesian estimates are more tightly distributed for both of the decay lifetimes.
In both cases, the normalised width is displayed only when the respective lifetime esti-
mates were not biased by more than 5% of the true value.

the estimation of the lifetime of the faster decay component an intensity exceeding about
6500 total counts for ML and about 7000 total counts for LS is required, and for the slow
component such precision is achieved at intensities greater than about 6000 and 8000 total
counts for ML and LS respectively; the Bayesian estimates offer this level of precision at
an intensity of about 5000 total counts.

The FRET efficiency estimated using the bi-exponential lifetime estimates of the dif-
ferent methods is shown in Fig. 7.3 for data having between about 1000 and 10000 total
photon counts. The effect of the propagation of the uncertainty in the estimated lifetimes
(Fig. 7.2) on the FRET efficiency estimated using the lifetime estimates of the differ-
ent methods is evident; the estimates of all methods converge to the true FRET efficiency
value ofE? = 0.75 as the intensity is increased, though it is clear that the FRET efficiency
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Figure 7.3: FRET efficiency determination at low counts: The FRET efficiency
(1 − τ2/τ1) as computed using the bi-exponential decay lifetime estimates obtained
using ML, LS, and Bayesian analysis for the analysis of synthetic data simulating a bi-
exponential decay having lifetimes of τ ?1 = 2.0 ns and τ ?2 = 0.5 ns, present with equal
initial amplitudes (i.e. A?1 = A?2), for intensities between about 1000 and 10000 total
photon counts. In (a), (b), and (c), the FRET efficiency as determined by ML, LS, and
Bayesian analysis respectively. The true FRET efficiency E? = 0.75 is indicated by a
dashed line in each plot. Observe that the Bayesian estimates are more tightly distributed
than those of ML and LS, a consequence of the superior decay lifetime estimates.

estimates determined using the Bayesian lifetime estimates are more tightly distributed
than those of ML and LS, this being especially evident at an intensity of about 5000 to-
tal counts. The greater precision of the FRET efficiency computed using the Bayesian
lifetime estimates is also demonstrated in Fig. 7.7 (a); at an intensity of about 5000 total
counts the FRET efficiency derived from Bayesian lifetime estimates is distributed with
a standard deviation of 0.035, whereas those derived using the estimates of ML and LS
analysis are both distributed with a standard deviations of 0.047. The FRET efficiency
determined from the global ML analysis decay lifetime estimates was consistent with the
true value (to within 5%) for each of the analysed synthetic 32 × 32 pixel images (not
shown); of course, such accuracy would not be achieved if the analysed images did meet
the lifetime invariance assumption necessary for successful global analysis and contained,
say, regions in which the decay lifetimes differed.

The estimated initial amplitude of the bi-exponential decay components are shown in
Fig. 7.4; although the distributions of the initial amplitude estimates can be observed to
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Figure 7.4: Bi-exponential decay component initial amplitude estimation at low counts:
Bi-exponential decay component initial amplitude estimates obtained using ML, LS,
and Bayesian analysis for the analysis of synthetic data simulating a bi-exponential
decay having lifetimes of τ ?1 = 2.0 ns and τ ?2 = 0.5 ns, present with equal initial
amplitudes (i.e. A?1 = A?2), for intensities between about 1000 and 10000 total photon
counts. In (a), (b), and (c), the estimated initial amplitude A1 of the decay component
having lifetime τ1 obtained with ML, LS, and Bayesian analysis respectively, and in (d),
(e), and (f), the estimated initial amplitude A2 for the faster decay component having
lifetime τ2 obtained with ML, LS, and Bayesian analysis respectively. The true initial
decay amplitudes A?1 and A?2 are indicated in each plot by a dashed line.

broaden as the intensity is increased, in fact the fractional uncertainty in the estimates
decreases, as is demonstrated in Fig. 7.5. There is little difference between the distribu-
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tions of the initial amplitude of the slower decay component for ML, LS, and Bayesian
analysis methods; the estimates of the initial amplitude of the faster component due to
Bayesian analysis can, however, be seen to be more tightly distributed than those due to
ML and LS analysis. The precision of the global ML analysis initial amplitude estimates
is superior to that offered by the ML, LS, and Bayesian analysis algorithms, all of which
also independently estimates the decay lifetimes at each image pixel; the more precise
initial amplitude estimates that global ML analysis offers yield superior estimation of the
interacting fraction, as shown in Fig. 7.7.
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Figure 7.5: Bi-exponential decay component initial amplitude estimation precision at
low counts: The uncertainty, as measured by the standard deviation of the estimated
initial amplitude distribution, in the bi-exponential initial amplitude estimates obtained
using ML, LS, and Bayesian analysis for the analysis of synthetic data simulating a
bi-exponential decay having lifetimes of τ ?1 = 2.0 ns and τ ?2 = 0.5 ns, present with
equal initial amplitudes (i.e. A?1 = A?2), for intensities between about 1000 and 10000
total photon counts. In (a) the width ∆A1/A

?
1 of the distribution of the estimated initial

amplitude A1 of the decay component having lifetime τ1 as obtained with ML, LS, and
Bayesian analysis respectively, and in (b) the same for the initial amplitude A2 for the
faster decay component having lifetime τ2. In all cases, the precision is displayed only
for estimates that are not biased by more than 5%. Observe that the Bayesian estimates
are more tightly distributed than those of ML and LS analysis for both of the estimated
initial amplitudes.

The greater precision offered by Bayesian analysis in the estimation of the initial am-
plitudes of the bi-exponential components, particularly the initial amplitude of the faster
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decay component, is illustrated in Fig. 7.5. The fractional error, as determined from the
width of the initial amplitude distribution, is not markedly different for the estimation of
the slower decay component for all of the methods, although Bayesian analysis is slightly
superior; the Bayesian estimates of the initial amplitude of the slower decay component
are distributed with a standard deviation of about 10% of its actual value when the initial
amplitude exceeds about 140 counts, the same accuracy is not obtained by ML and LS
analysis until the initial amplitude exceeds about 170 counts and 200 counts respectively.
The estimation of the initial amplitude of the faster decay component is noticeably more
precise using Bayesian analysis as compared to ML and LS analysis; estimates are dis-
tributed with a width of less than 10% of the true value for amplitudes greater than about
200 counts, the same level of precision is not obtained with ML and LS analysis until the
amplitude exceeds about 275 counts.
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Figure 7.6: Interacting fraction estimation at low counts: The interacting fraction
(A2/A1) as computed using the bi-exponential decay parameter estimates obtained us-
ing ML, LS, and Bayesian analysis for the analysis of synthetic data simulating a bi-
exponential decay having lifetimes of τ ?1 = 2.0 ns and τ ?2 = 0.5 ns, present with equal
initial amplitudes (i.e. A?1 = A?2), for intensities between about 1000 and 10000 total
photon counts. In (a), (b), and (c), the interacting fraction as determined by ML, LS,
and Bayesian analysis respectively. Observe that the ML and Bayesian estimates are
more tightly distributed than those of LS, a consequence of the superior estimation of
the initial amplitudes A1 and A2. The true interacting fraction F ?

2 = 0.5 is indicated by
a dashed line in each plot.

The interacting fraction estimates obtained using the different analysis methods are
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shown in Fig. 7.6 for intensities between about 1000 and 10000 total counts. The esti-
mates of the different methods converge to the true interacting fraction value of F ?

2 = 0.5

as the total photon count is increased; the Bayesian analysis and ML interacting fraction
estimates being more tightly distributed around the true value than those obtained using
LS analysis. The precision of the interacting fraction determined from the bi-exponential
parameter estimates due to the different analysis methods is shown in Fig. 7.7 (b); an un-
certainty of less than 0.05 in the determined interacting fraction is achieved with Bayesian
analysis at an intensity of about 4100 counts, it is not until the intensity approaches about
5000 total counts that the same level accuracy is obtained with ML and LS analysis. The
precision of the interacting fraction determined from global ML analysis initial amplitude
estimates is also shown; it is clear that global ML analysis yields more precise interact-
ing fraction estimates than do ML, LS, and Bayesian analysis. It should be noted again,
though, that the synthetic data analysed for this section presents the ideal case for global
analysis as the assumption of lifetime invariance is met for each analysed image; were
this not the case it is likely that any global analysis algorithm would determine incorrect
decay lifetimes and incorrect initial amplitudes.

In this section the performance of Bayesian bi-exponential analysis has been assessed
and compared to that of ML and LS analysis and also with global ML analysis. Although
the Bayesian bi-exponential analysis are superior to those obtained using the ML and
LS analysis methods, the improvement over the estimates obtained using ML analysis
is only marginal. The bi-exponential parameter estimates of ML and Bayesian analysis
and the FRET efficiency and interacting fraction values determined from them have been
demonstrated to be superior to those offered by LS. However, the marginal improvement
in precision that has been demonstrated comes at the cost of a substantial increase in the
time required for image analysis from seconds using ML and LS to hours using Bayesian
analysis. In circumstances where the intensity of acquired data is low and the greatest
possible accuracy and precision in the bi-exponential parameter estimates is required,
then application of the developed bi-exponential Bayesian analysis should be seriously
considered.
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Figure 7.7: FRET efficiency and interacting fraction estimation precision at low counts:
The uncertainty, as measured by the standard deviation of the estimated parameter dis-
tributions, in the FRET efficiency (1− τ2/τ1) and the interacting fraction (A2/A1) esti-
mates obtained using ML, LS, and Bayesian analysis for the analysis of data simulating
a bi-exponential decay having lifetimes of τ ?1 = 2.0 ns and τ ?2 = 0.5 ns, present with
equal initial amplitudes (i.e. A?1 = A?2), for intensities between about 1000 and 10000
total photon counts. In (a) the width ∆E of the distribution of the FRET efficiency com-
puted from the estimated decay lifetimes obtained with ML, LS, and Bayesian analysis
for increasing total photon count, and in (b) the uncertainty ∆F2 in the interacting frac-
tion as estimated using the initial amplitude estimates of the different analysis methods.
In all cases curves are plotted only within the range for which the estimates are biased
by no more than 5%.

7.1.1 FRET efficiency estimation

In this section the performance of the different bi-exponential analysis algorithms is com-
pared for the estimation of different FRET efficiencies, at a fixed interacting fraction. The
ML, LS, and Bayesian analysis algorithms were applied to data having different FRET
efficiencies, as generated by varying the ratio of the lifetimes of the bi-exponential de-
cay components (the lifetime of the slower decay component being fixed at τ ?1 =2.0 ns),
their initial amplitudes being fixed to yield an interacting fraction of one half. All of
the analysed transients were generated to have an intensity of about 10000 total photon
counts.

The estimated FRET efficiency due to the bi-exponential lifetime estimates of the dif-
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Figure 7.8: FRET efficiency estimation at different FRET efficiencies: In (a), (b), and
(c), the distribution of the FRET efficiency as determined using the bi-exponential decay
parameter estimates of ML, LS, and Bayesian analysis respectively; the true value being
indicated by the dashed line in each plot. Different FRET efficiencies were simulated
by varying the ratio of the lifetimes of the two decay components, with equal initial am-
plitudes fixed to yield an interacting fraction of one half. All of the analysed transients
were generated to have an intensity of about 10000 total photon counts.

ferent methods is shown in Fig. 7.8. It is evident that, for all of the different methods,
the higher the actual FRET efficiency the more precisely it can be determined from the
bi-exponential parameter estimates, the FRET efficiency estimates being most reliable
between actual FRET efficiencies of about 50% and 90%. The distribution of the FRET
efficiency estimates begins to disperse noticeably if the actual FRET efficiency is lower
than about 40%, for all of the analysis methods. It is worthy of note that at a very high
FRET efficiency (about 95%), when the decay lifetime of the faster component is ex-
tremely fast compared to that of the slower decay component, the distribution of FRET
efficiency estimates due to Bayesian analysis is far cleaner than those due to ML and LS
analysis, which both show estimates over the complete range of FRET efficiencies; seem-
ingly ML and LS may struggle to extract reliable parameter estimates in the presence of
a very fast decay component.

The interacting fraction as determined using the bi-exponential parameter estimates
from the different analysis methods is shown in Fig. 7.9. It is clear that below a FRET
efficiency of about 50%, at least at an intensity of about 10000 photon counts and for an
actual interacting fraction of 0.5, that none of the analysis methods are able to reliably es-
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Figure 7.9: Interacting fraction estimation at different FRET efficiencies: In (a), (b),
and (c), the distribution of the interacting fraction as determined using the bi-exponential
decay parameter estimates of ML, LS, and Bayesian analysis respectively; the true value
of F ?

2 = 0.5 being indicated by the dashed line in each plot. Different FRET efficiencies
were simulated by varying the ratio of the lifetimes of the two decay components, with
equal initial amplitudes fixed to yield an interacting fraction of one half. All of the
analysed transients were generated to have an intensity of about 10000 total photon
counts.

timate the interacting fraction, with the interacting fraction being most reliably estimated
between FRET efficiencies of about 50% and 90%. As was the case for FRET efficiency
estimation (Fig. 7.8), the interacting fraction estimates due to ML and LS analysis are
poor for the actual FRET efficiency of 95% (i.e. slower and faster decay component life-
times of τ ?1 = 2.0 ns and τ ?2 = 0.5 ns respectively), the corresponding Bayesian estimates,
although not quite as good as those obtained at a slightly lower FRET efficiency of about
90%, remain correct.

The precision of the FRET efficiency and interacting fraction as determined using the
bi-exponential parameter estimates of the different analysis methods is shown in Fig. 7.10.
The uncertainty ∆E in the FRET efficiency estimates is very slightly smaller when de-
termined using the Bayesian analysis bi-exponential parameter than when using the esti-
mates due to ML and LS analysis, with LS analysis providing the least precise FRET
efficiency estimates. The same is also true for estimation of the interacting fraction;
Bayesian analysis is slightly more precise than ML, and ML is slightly more precise
than LS analysis, it being clear that Bayesian analysis offers the greatest advantage for
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Figure 7.10: FRET efficiency and interacting fraction estimation precision at different
FRET efficiencies: The uncertainty, as measured by the standard deviation of the es-
timated parameter distributions, in (a) the FRET efficiency (1 − τ2/τ1) and in (b) the
interacting fraction (A2/A1) estimates obtained using ML, LS, and Bayesian analysis
for the analysis of data simulating a bi-exponential decay a fixed lifetime. Different
FRET efficiencies were simulated by varying the lifetime of the faster decay component
with the lifetime of the slower component being held fixed at 2.0 ns, the ratio of the ini-
tial amplitudes of the two decay components being equal to yield an interacting fraction
of one half. All of the analysed transients were generated to have an intensity of about
10000 total photon counts. In all cases the uncertainty is displayed only for estimates
having a bias that does not exceed 5%.

FRET efficiencies exceeding about 80%. The effect of the difference in precision for the
different analysis methods is evidenced by the estimated FRET efficiency and interacting
fraction maps at actual FRET efficiencies of 50% and 85%, as shown in Figs. 7.11 & 7.12.

The estimated FRET efficiency maps due to the different analysis methods are illus-
trated in Fig. 7.11 for actual FRET efficiencies of 50% and 85%. Although the difference
is negligible, both of the Bayesian images are slightly less noisy than their counterparts
due to ML and LS analysis. The difference being most pronounced at the higher FRET
efficiency of 85%, that is when the simulated bi-exponential decay components have life-
times τ ?1 = 2.0 ns and τ ?2 = 0.15 ns; the FRET efficiency distribution determined using
the Bayesian lifetime estimates have a standard deviation of 0.017 centered about an aver-
age value of 0.85, with the ML and LS determined FRET efficiency both being distributed
with a standard deviation of 0.026 and being centered about average values of 0.85 and
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Figure 7.11: FRET efficiency estimation at different FRET efficiencies: In the top row
the FRET efficiency (1 − τ2/τ1) maps due to ML, LS, and Bayesian analysis in (a),
(b), and (c) respectively, for a FRET efficiency of 85%. In the bottom row, the same
for a FRET efficiency of 50%. A FRET efficiency of 50% was simulated by setting
the lifetimes of the decay components to be 2.0 ns and 0.5 ns, the ratio of the initial
amplitudes of the two decay components being equal to yield an interacting fraction of
one half; the faster decay component lifetime was fixed to 0.15 ns to simulate a FRET
efficiency of 85%. All of the analysed transients were generated to have an intensity
of about 10000 total photon counts. At each different interacting fraction 210 transients
were analysed.

0.84 respectively. The determination of a FRET efficiency of 50% is more challenging
than that of 85% as the decay component lifetimes are closer together; using the Bayesian
analysis lifetime estimates the determined FRET efficiency distribution is centered about
an average of 0.52 and has a standard deviation of 0.057, the ML and LS lifetime esti-
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mates yield FRET efficiency distributions having standard deviations of 0.064 and 0.073
respectively (both also being centered around an average estimated FRET efficiency of
0.52).

ML LS Bayesian
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(a) ML
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Figure 7.12: Interacting fraction estimation and FRET efficiency: In the top row the
interacting fraction (A2/A1) maps due to ML, LS, and Bayesian analysis in (a), (b), and
(c) respectively, for a FRET efficiency of 85%. In the bottom row, the same for a FRET
efficiency of 50%. A FRET efficiency of 50% was simulated by setting the lifetimes
of the decay components to be 2.0 ns and 1.0 ns, the ratio of the initial amplitudes of
the two decay components being equal to yield an interacting fraction of 0.5; the faster
decay component lifetime was fixed to 0.15 ns to simulate a FRET efficiency of 85%.
All of the analysed transients were generated to have an intensity of about 10000 total
photon counts.
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In Fig. 7.12 the interacting fraction maps due to the different analysis methods are
shown for FRET efficiencies of 50% and 85%. The noticeably less noisy interacting frac-
tion image due to the Bayesian analysis bi-exponential parameter estimates at a FRET
efficiency of 85% is a consequence of the Bayesian-determined interacting fraction distri-
bution having a standard deviation of 0.021 and being centered about an average interact-
ing fraction value of 0.51, whereas the ML and LS distributions have a standard deviation
of 0.037 and 0.038 respectively with both being centered about an average value of 0.50.
The interacting fraction maps for the true FRET efficiency of 50%, that is for decay life-
times of τ ?1 = 2.0 ns and τ ?2 = 1.0 ns, are equally poor for all analysis methods and
demonstrate that obtaining reliable interacting fraction estimates at a FRET efficiency of
50% is challenging.

7.1.2 FRET interacting fraction estimation

In this section the performance of the different algorithms is compared for different inter-
acting fractions, at a fixed FRET efficiency. The analysis algorithms were applied to data
that simulated transients having different interacting fractions, generated by varying the
ratio of the initial amplitudes of the bi-exponential decay components, the lifetimes of the
decay components were fixed at 2.0 ns and 0.5 ns yielding a FRET efficiency of 75%. All
of the analysed transients were generated to have an intensity of about 10000 total photon
counts.

The distributions of the interacting fraction estimates as determined using the bi-
exponential decay parameter estimates of Bayesian analysis, ML, and LS, are shown in
Fig. 7.13, as the true interacting fraction is varied. The estimated interacting fraction
is distributed about the true interacting fraction value with a standard deviation of less
than about 0.05 for all analysis methods for interacting fractions greater than about 0.4,
as shown in Fig. 7.15; the Bayesian estimates are very slightly superior to those of the
other methods, and the ML estimates slightly more precise than those obtained with LS
analysis. The estimation of the interacting fraction is poor when it is less than about one
half, and degrades very quickly as it is decreased below about 0.3 for all analysis methods
(Fig. 7.15).

The estimation of the FRET efficiency is more precise using the Bayesian lifetime
estimates than those obtained using ML or LS over the tested interacting fraction range,
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Figure 7.13: Interacting fraction estimation at different interacting fractions: In (a), (b),
and (c), the distribution of the interacting fraction as determined using the bi-exponential
decay parameter estimates of ML, LS, and Bayesian analysis respectively; the true inter-
acting fraction value being indicated by the dashed line. Different interacting fractions
were simulated by varying the ratio of the initial amplitudes of the two decay compo-
nents, their lifetimes being fixed at 2.0 ns and 0.5 ns. All of the analysed transients were
generated to have an intensity of about 10000 total photon counts.

as can be seen in Fig. 7.14; the Bayesian determined FRET efficiency distribution remains
a little tighter than those of ML and LS as the interacting fraction is decreased. The
improvement in precision of the FRET efficiency is modest, however, as is also illustrated
in Fig. 7.15.

There is a range of interacting fractions for which all algorithms perform effectively
and yield reasonable FRET efficiency and interacting fraction estimates, as can be clearly
observed on inspecting Figs. 7.13, 7.15 & 7.14. When the interacting fraction is small
fewer photons from the fast decay component are counted and present in the analysed data
and therefore quantification of the contribution of the fast decay component to the overall
decay is more difficult than when the interacting fraction is relatively large. Similarly,
when the fast decay component dominates the overall decay, that is when the interacting
fraction approaches unity, relatively fewer photons from the slow decay component are
counted and therefore the accuracy and precision with which its lifetime and contribution
to the overall decay can be determined is degraded. It is apparent on inspecting the uncer-
tainty in the estimated FRET efficiency, as shown in Fig. 7.15, that that the most precise
estimates are obtained for interacting fractions greater than about 0.40 and less than about
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Figure 7.14: FRET efficiency estimation at different interacting fractions: In (a), (b),
and (c), the distribution of the FRET efficiency as determined using the bi-exponential
decay parameter estimates of ML, LS, and Bayesian analysis respectively; the true value
of 0.75 being indicated by the dashed line. Different interacting fractions were simulated
by varying the ratio of the initial amplitudes of the two decay components, their lifetimes
being fixed at 2.0 ns and 0.5 ns. All of the analysed transients were generated to have
an intensity of about 10000 total photon counts.

0.85. The precision of the FRET efficiency estimates degrades rapidly as the interacting
fraction is decreased below about 0.50 (Fig. 7.15), as can also be seen in the disperse
FRET efficiency distributions shown in Fig. 7.14 for all analysis methods for interacting
fractions of less than about one half. Although the accuracy and precision of both the
Bayesian estimated FRET efficiency and interacting fraction estimates are consistently
superior to those obtained with ML and LS over the range of interacting fractions, it is
unlikely that any advantage is sufficiently significant that Bayesian analysis would be
preferred over the other methods due to the time taken to perform Bayesian analysis.

7.2 Data from human breast cancer tissue

In this section the analysis of data collected as part of a study investigating intermolecular
FRET in breast tissue, carried out at the Randall, King’s College London, is discussed.
The intensity image shown in Fig. 7.16 was acquired by imaging a slice of breast cancer
tissue with directly labelled anti-ezrin IgG-Cy2 and anti-phospho PKCa (T250) IgG-Cy3
and corresponds to a 334 × 334 µm field of view (256 × 256 pixels); the Bayesian
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Figure 7.15: FRET efficiency and interacting fraction estimation precision: In (a) and
(b) the uncertainty, as measured by the standard deviation of the distributions shown in
Figs. 7.14 & 7.13, in the FRET efficiency and the interacting fraction estimates respec-
tively, for the different analysis methods. In all cases the uncertainty is displayed only
for estimates having a bias that does not exceed 5%.

bi-exponential lifetime and initial amplitude images obtained on analysis of the corre-
sponding time-resolved data are also shown.

In order to increase the available photon count for analysis it is sometimes necessary to
apply pixel-binning when analysing an image. When performing pixel-binning, the data
at each image pixel is replaced by the aggregation of the data at the pixel itself and data
from neighbouring pixels. As this procedure is applied for each of the individual pixels,
the total number of pixels that are to be analysed remains unchanged. To ensure sufficient
photon counts for the bi-exponential analysis presented in this section, 7×7 square pixel-
binning was applied, the data at each image pixel being replaced by the aggregated data
from a square having a width of seven pixels and a height of seven pixels (the size of
such a bin is illustrated in Fig. 7.16 (a)). Of course, in performing pixel-binning, photon
counts are increased at the expense of spatial resolution as the data from a cluster of pixels
is aggregated represents an average.

The bi-exponential Bayesian analysis estimates are now compared with those of ML,
LS, and global ML analysis, for the analysis of the time-resolved data of the breast tissue
image shown in Fig. 7.16 (a). The breast tissue sample was imaged using the Galileo
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Figure 7.16: Bayesian bi-exponential analysis of breast tissue data: In (a) an intensity
image having pixels with a total photon count of between about 130 and 1600 were
analysed (having invoked 7 × 7 spatial binning to provide sufficient photon counts for
a bi-exponential analysis) using the bi-exponential Bayesian algorithm. In (b) and (c)
the estimates of the initial decay amplitudes A1 and A2 respectively (as computed using
the corresponding Bayesian estimates of the parameters w1, w2, τ1 and τ2), and in (d)
and (e) the bi-exponential decay lifetime estimates τ1 and τ2 respectively. The size of
a 7 × 7 spatial bin is indicated in the top left corner of (a) by a red square. All of the
images correspond to a 334 × 334 µm field of view, and are 256 × 256 pixels.

microscope, the time-resolved data being acquired into 256 time bins (of equal width) that
subdivide a measurement interval of 15 ns. Image pixels having an intensity of less than
130 photon counts were masked and excluded from the analysis. As the intensity at each
image pixel was insufficient for a reliable analysis to be performed, 7 × 7 spatial binning
was invoked and the analyses were performed on time-resolved data having between about
15000 and 20000 total photon counts. The Bayesian determined optimal single Gaussian
instrument response approximation was used in performing the Bayesian pixel by pixel
analysis, having been determined using the single high-count data set (about 17 million
photon counts) resulting from summing the time resolved data from all of the image
pixels and on the assumption of bi-exponential decay data; the optimal single Gaussian
approximation having been found to have a FWHM width of 0.167 ns (i.e. a standard
deviation of 0.071 ns) centered about a delay of 2.255 ns.

The bi-exponential decay lifetime maps obtained on application of ML, LS, Bayesian
analysis, and global ML analysis, to the time-resolved data of the imaged breast tissue
sample (Fig. 7.16) are shown in Fig. 7.17. It is immediately clear that the Bayesian and
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Figure 7.17: Bi-exponential lifetime estimation: Bi-exponential decay lifetime estimates
obtained on application of ML, LS, Bayesian analysis, and global ML analysis, to time-
resolved data from breast cancer tissue. In (a), (b), (c), and (d), the τ1 lifetime maps due
to ML, LS, Bayesian analysis, and ML global analysis respectively, and in (e), (f), (g),
and (h) the corresponding τ2 lifetime maps.

global ML analysis estimates of the lifetime τ1 are considerably different to those of
both ML and LS; the Bayesian estimates are, to a reasonable approximation, normally
distributed around an average lifetime of 3.27 ns with a standard deviation of 0.17 ns, the
distributions of ML and LS estimates being peaked at the significantly shorter lifetimes of
2.92 ns and 2.89 ns respectively despite also having a considerable number of estimates at
lifetimes longer than those offered by Bayesian analysis, and global ML estimates a decay
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lifetime of 3.13 ns. The distribution of the faster component Bayesian lifetime estimates
is also markedly different to the distributions resulting from ML and LS analysis; the
Bayesian estimates are centered around an average lifetime value of 0.76 ns, lifetimes
of 0.58 ns and 0.46 ns being most frequently estimated by ML and LS respectively, and
a lifetime of 0.90 ns being estimated by global ML analysis. On observing the lifetime
maps resulting from the different analysis methods, it should be observed that the τ2 maps
from ML and LS are (excluding statistical noise) uniform across the image but that the
Bayesian analysis τ2 map is suggestive of regions of reduced lifetime towards the edge of
the tissue core (towards the left of the image). The uniform lifetime maps due to global
ML analysis demonstrate the assumption of spatially invariant lifetimes inherent to the
analysis.

The bi-exponential initial amplitude estimates are shown in Fig. 7.18 for the differ-
ent analysis methods. There is little difference between the A1 estimates of the different
methods, as can be seen on inspection of the initial amplitude A1 maps. The distribu-
tion of the Bayesian initial amplitude A1 estimates are centered around an average value
of 261.4 counts, the ML and LS distributions being centered around average values of
274.7 counts and 275.5 counts respectively, and the global ML analysis estimates having
an average initial amplitude of 267.5 counts. The estimates of the initial amplitude A2 of
the faster component do differ between the analysis methods; the Bayesian estimates are
centered around an average initial amplitudeA2 of 123.5 counts, the ML and LS estimates
having average values of 114.1 counts and and 112.4 counts respectively, and the global
ML analysis estimates having an average of 91.6 counts. The Bayesian analysis estimates
suggest a greater contribution from the faster component to the composite bi-exponential
decay than do the estimates of the other methods.

The FRET efficiency and interacting fraction maps computed from the lifetime and
initial amplitude estimates of the different analysis methods are shown in Fig. 7.19. The
FRET efficiency maps due to ML and LS both suggest that the FRET efficiency is uniform
across the image with no obvious regions of (relatively) low or high FRET efficiency, both
methods indicating an average FRET efficiency of about 79%. The uniform FRET effi-
ciency of 71% due to global ML analysis is a consequence of the assumption of lifetime
invariance across the image. The Bayesian estimated FRET efficiency map, however, is
suggestive of a higher FRET efficiency towards the edge of the tissue core than at its cen-
tre; most pixels having a FRET efficiency of about 75%. The average of the interacting
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Figure 7.18: Bi-exponential initial amplitude estimation: Bi-exponential initial ampli-
tude estimates obtained on application of ML, LS, Bayesian analysis, and global ML
analysis, to time-resolved data from breast cancer tissue. In (a), (b), (c), and (d), the A1

amplitude maps due to ML, LS, Bayesian analysis, and ML global analysis respectively,
and in (e), (f), (g), and (h) the corresponding A2 amplitude maps.

fraction estimates is about 29% for both ML and LS analysis, and about 32% and 26% for
Bayesian analysis and ML global analysis respectively. The Bayesian, and to a slightly
lesser extent the global ML analysis, interacting fraction maps suggest an increased oc-
currence of FRET towards the edge of the tissue core. However, neither the ML nor LS
interacting fraction maps suggest that any particular regions exhibit more FRET than oth-
ers. It should be noted that the band of higher FRET efficiency towards the edge of the
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Figure 7.19: FRET efficiency and interacting fraction estimation: The FRET efficiency
and interacting fraction maps obtained from the bi-exponential decay lifetime and initial
amplitude estimates due to ML, LS, and Bayesian analysis, for the analysis of breast
cancer tissue data. In (a), (b), (c), and (d), the FRET efficiency maps due to ML, LS,
Bayesian analysis, and global ML analysis, respectively, and in (e), (f), (g), and (h) the
corresponding interacting fraction maps for the different methods.

tissue core as suggested by the Bayesian analysis, is significantly broader than extent of
the 7× 7 spatial bin, and so is not likely to be an artefact of spatial binning.

The differences apparent in the interacting fraction and FRET efficiency maps due
to ML and LS, due to global ML analysis, and due to Bayesian analysis are sufficiently
pronounced that their respective parameter estimates may be used to support different
biological conclusions. The remainder of this section is devoted to attempting to shed
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light on why these differences between the Bayesian analysis estimates and ML, LS, and
global ML analysis may exist, especially given that the bi-exponential estimates offered
by the different analysis methods have been shown to be consistent with each other and
with expectation using synthetic data in Section 7.1. It is essential that all possible reasons
for the differences between the estimates of Bayesian analysis, global ML analysis, and
those of ML and LS are considered; the purpose of the acquisition and analysis of time
resolved data is to yield reliable decay parameter estimates from which reliable inference
regarding the underlying biology may be made.
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Figure 7.20: Bi-exponential uniform background estimation: The uniform background
estimates due to ML, LS, Bayesian analysis, and global ML analysis, for the analysis of
data acquired on imaging breast tissue. In (a), (b), (c), and (d), the estimated background
maps due to ML, LS, Bayesian analysis, and global ML analysis, respectively.

In attempting to trace the source of the differences in the estimated FRET efficiency
and interacting fraction due to ML and LS and due to Bayesian analysis, the plausibility
of the uniform background estimates of the different methods is first considered. The uni-
form background maps due to the different analysis methods are shown in Fig. 7.20, along
with the background estimates obtained on averaging the counts in the bins that precede
the rise of the transient1 at each pixel (i.e. the so called ‘pre-pulse’ portion of the measure-

1Although considerable effort has been expended in this work to develop a FLIM system model that
properly accounts for photon counts that may be present in the ‘pre-pulse’ portion of the measurement in-
terval as they may be due to slow fluorescence (i.e. the fluorescence may not have fully decayed during one
repetition period) and not due to background, the breast tissue data analysed for this section was acquired
with a repetition period of about 25 ns and the slow component of the fluorescence decay having a lifetime
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ment interval); it is evident that the Bayesian estimation of the uniform background differs
significantly from the estimation due to the other analysis methods, the Bayesian analysis
estimates are distributed around a peak uniform background value of about 1.0 counts/bin
but both ML and LS analysis are suggestive of a much higher background level, peaked
between about 3.0 counts/bin and 3.5 counts/bin, and global ML analysis estimating a
background of about 2.1 counts/bin. The background estimates obtained on averaging the
counts in the ‘pre-pulse’ portion of the measurement interval are distributed around an
average value of 1.35 counts/bin, and are in reasonably close agreement with those ob-
tained using Bayesian analysis. Inspection of the time resolved data (not shown) confirms
that the Bayesian estimated uniform background level is most consistent with experimen-
tal reality and that both ML and LS overestimate the background level considerably, and
global ML analysis slightly less so. It would be difficult to conceive, for such low life-
times and long excitation periods, of a reasonable explanation for background estimates
that are consistently greater than those obtained on averaging the counts in the ‘pre-pulse’
portion of the measurement interval; it is plausible that the estimated background be less
than the ‘pre-pulse’ determined background and that a slow decay component account for
the remainder of the measured intensity in the ‘pre-pulse’ region.

In an effort to force the use of credible background estimates in ML analysis the fol-
lowing approach was adopted; for each pixel, the background estimate was determined
from the so called ‘pre-pulse’ portion of the measurement interval and fixed for the subse-
quent estimation of the decay lifetimes and amplitudes. It is worthy of note that ML anal-
ysis with the background Z estimated from the ‘pre-pulse’ portion of the measurement
interval offered strikingly different FRET efficiency and interacting fraction maps. The
estimates obtained using ML analysis without ‘pre-pulse’ background estimation yield an
average FRET efficiency and interacting fraction of 79% and 29% respectively, but the
estimates obtained with ‘pre-pulse’ background estimation suggest a considerably lower
average FRET efficiency of 67% and a higher average interacting fraction of 36%. To
confuse matters yet further, global ML analysis with the background parameter fixed to
the average (over the entire image) of the ‘pre-pulse’ estimated background values yielded
lifetime estimates of 3.28 ns and 1.08 ns (i.e. a FRET efficiency of 67%), considerably
different to the estimates of 3.13 ns and 0.90 ns (FRET efficiency of 71%) obtained with-

not exceeding about 3.5 ns, it is not unreasonable to assume that such counts falling in the ‘pre-pulse’ region
are due to background.
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out fixing the background parameter value.
Unfortunately, as all of the different analysis methods yield very different results it

is neither possible to meaningfully compare the accuracy of the Bayesian estimates with
those from the other analysis methods nor to make any strong claim regarding the va-
lidity of any of the results; it should be noted, though, that the developed Bayesian bi-
exponential analysis makes use of all of the data in the measurement window, including
that in the ‘pre-pulse’ region, and yields estimates for the background Z that are credible,
whereas the established techniques do not. The lifetime and amplitude estimates that ac-
company the background estimates due to Bayesian analysis are, of course, sensitive to
the estimated background. It is not unreasonable though to suspect that if, for whatever
reason, the background is systematically over-estimated that this will have a bearing on
the credibility of the accompanying lifetime and amplitude estimates.
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Chapter 8

Bayesian simultaneous instrument and
decay (SID) analysis

In this chapter the role of the instrument response function (IRF) on decay data analysis
and parameter estimates is explored in detail. The IRF of a FLIM system is usually mea-
sured by recording reflected or scattered excitation light [106]. The IRF of most detectors
is wavelength dependent [107] and, therefore, the IRF measured at the excitation wave-
length may differ from that at the fluorescence emission wavelength. In [106], a method
of recording the IRF at the emission wavelength, by imaging a quenched Rose Bengal so-
lution having a lifetime of 16 ps, was demonstrated for a TCSPC FLIM system. However,
it should be noted that, in [106], it was found that for common detectors measurement of
the IRF using quenched Rose Bengal solution gave “practically the same results as with
scattering”. As the Bayesian SID (Simultaneous Instrument and Decay) analysis algo-
rithm estimates an IRF from the fluorescence decay data, wavelength dependence is not
an issue. The Bayesian SID algorithm may be useful when the IRF is not the same at
each image pixel, such as may be the case for some widefield imaging applications, and
in cases where the measurement of the IRF is not easy, for example, such as in endoscopic
FLIM.

The IRF, whether somehow measured or estimated from decay data or otherwise,
describes the likelihood that the experimental apparatus introduces a delay of a given
duration between the emission of a decay photon and its subsequent detection. Although
there are a few situations where the IRF can reasonably be ignored in decay analysis
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(e.g. a narrow IRF and relatively broad bins), the examples and analyses presented in
this chapter not only showcase Bayesian SID analysis but also serve to emphasize how
critically important the IRF is to obtaining good decay parameter estimates regardless
of the analysis technique employed, particularly in this work where parameter estimates
are sought when data is often in short supply. The effects of using not quite the correct
IRF on decay parameter estimates are demonstrated in Section 8.1 by means of a simple
example. In Section 8.2 the Bayesian estimation of the IRF from decay data alone is
investigated through three examples that simulate different IRFs, each posing a different
challenge to the algorithm. An analysis of the application of the Bayesian SID algorithm
to biological data, both from the viewpoint of a lifetime analysis and also as a means of
IRF estimation at low counts, is presented in Section 8.3, before the advantages of and
drawbacks inherent to Bayesian SID (and more generally to the approach of using an
analytic approximation of the IRF in analysis) are considered in Section 8.4.

Throughout this chapter, in describing the Gaussian instrument response components,
both the FWHM (full width at half maximum) and the standard deviation are presented,
and are related by FWHM = 2

√
2 ln 2 σ ≈ 2.35σ for a Gaussian distribution of standard

deviation σ.

8.1 Pitfalls of not using the correct instrument response

Is the signature of the experimental apparatus in the data really that important? It is
instructive, somewhat alarming even, to observe what can happen to decay parameter es-
timates when not using the correct IRF in decay analysis. In this example, the simplest
possible case of mono-exponential analysis is explored; two synthetically generated im-
ages, both containing at each pixel identical mono-exponential decays, but simulated to be
perturbed by slightly different instruments are analysed (using ML). One image (Image1)
simulates an IRF (IRF1) consisting of a single Gaussian and the other image (Image2)
simulates a slightly different IRF (IRF2) comprising a slightly wider Gaussian and a tail
to its right; such an instrument having the effect of spreading more arrival times towards
later bins (in the measurement interval). Although on visual inspection (Fig. 8.1) neither
IRF1 and IRF2 nor their respective perturbed decay signals appear to differ significantly,
the biasing of lifetime estimates obtained when using the wrong IRF for decay analysis is
clearly apparent (Fig. 8.2).
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Figure 8.1: Slightly different instruments, slightly different decays: In (a) the two syn-
thetically generated IRFs used for the generation of Image1 and Image2; IRF1 being
composed of a single Gaussian of FWHM 150 ps (standard deviation 64 ps), and
IRF2 being composed of a dominant component (ratio 10:1) that is slightly wider
than IRF1 and an additional component to simulate the tail to the right (being re-
tarded by a further 1.0 ns and having FWHM 1500 ps (standard deviation 640 ps).
In (b) the mono-exponential signal of lifetime τ = 2.0ns, having constant background
Z = 1.0 counts/bin and initial amplitude A = 100.0 counts, and the ideal (i.e. noise-
free) decay curves resulting from the convolution of IRF1 and IRF2. (Note that the time
scales in (a) and (b) differ in order that the differences between IRF1 and IRF2 can be
more easily seen.)

It is not surprising that the parameter estimates (Fig. 8.2), in this simple example the
constant background level and the mono-exponential lifetime, are sensitive to the IRF
used in the decay analysis. The lifetime estimates obtained if using IRF1 in the analysis
of IRF2 decay data are systematically overestimated while the background level is un-
derestimated. Intuitively, this seems reasonable and is fairly easily explained as follows;
when using IRF1 for the analysis of IRF2 decay data the presence of photon counts in
later bins is misinterpreted as being due to a longer decay lifetime, and as a consequence
of more photon counts being attributed to a slow decay then less counts are attributed to
background. A similar argument can be applied to explain the underestimation of the de-
cay lifetime and the overestimation of the background level if using IRF2 in the analysis
of IRF1 decay data. Reassuringly, the lifetime and background estimates are as should be
expected (not shown) when the images are analysed with the appropriate IRFs.
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Figure 8.2: Slightly incorrect analysis, very misleading decay estimates: In (a) the life-
time estimates resulting from analysis of Image1 (i.e. Decay1 data) using IRF2, and the
analysis of Image2 using IRF1 in analysis. It is clear that the analysis of Decay1 data
with IRF2 shows systematic underestimation of the lifetime parameter from the true
value of 2.0 ns. There is systematic overestimation of the lifetime when analysing De-
cay2 data with IRF1. In (b) the estimated constant background, which is overestimated
when using IRF2 in the analysis of Decay1 data, and underestimated when using IRF1
in the analysis of Decay2 data. With the incorporation of Poisson noise, for both images
each image pixel contains about 2800 photon counts.

The data isn’t that good anyway; is the signature of the experimental apparatus still

important in the low count regime? The example presented above illustrates clearly that
using an incorrect IRF in data analysis can have a significant impact on the reliability of
decay parameter estimates, and could potentially even distort the overall findings of an
experiment or study should the IRF used in analysis be crudely different from that of the
experimental system on which the data was acquired. However, the biased estimates pre-
sented in Fig. 8.2 were obtained on the analysis of data containing around 2800 photon
counts (per image pixel); not high count data but certainly not very low count data for a
mono-exponential analysis. The remainder of this section is devoted to considering the
importance of the IRF in the analysis of low photon count data; in particular to investigate
whether there comes a point1 where the uncertainty in any decay estimates is so signifi-

1Even the approximate total photon count at which such a point may be will obviously differ greatly from
case to case; for example, more photon counts are required for the accurate mono-exponential analysis of
data acquired with a significant background than with only a negligible background, and many more still
for a bi-exponential analysis.
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cant that it is not necessary to be overly concerned by the more intricate details such as
the accuracy of the IRF used for analysis. The example above is now extended in order to
provide insight as to whether the IRF remains important in the low photon count regime.
Data having between about 100 and 1000 total counts were simulated using the same two
IRFs (Fig. 8.1) and a mono-exponential decay of lifetime 2.0 ns; as previously data in-
corporating IRF1 were termed Decay1, and that in which IRF2 is simulated were termed
Decay2. In addition to analysis with the correct and the incorrect IRF, the low count data
was also analysed using no IRF at all. On inspecting Fig. 8.3, it is immediately evident
that the biasing of parameter estimates when analysing decay data with the wrong IRF
does not diminish with decreasing total photon counts, the decay lifetime being system-
atically underestimated when analysing Decay1 data with IRF2 and overestimated when
analysing Decay2 data with IRF1. However, it also apparent that the lifetime estimates
obtained from Decay1 data are almost no different when no IRF is used as compared
to when the correct IRF (IRF1) is employed in data analysis; this is accounted for by
IRF1 being symmetrical and relatively narrow compared to the bin width and thereby not
spreading the recorded photon arrival times greatly beyond the bins into which, without
any spreading, they would be anticipated anyway. The same is not true of the analy-
sis of Decay2 data with no IRF, however, with the decay lifetime being systematically
overestimated; again, intuitively, this is consistent with expectations as the Decay2 data
shall contain more photon counts in higher bins due to IRF2 having a tail to the right and
analysis without an IRF does not account for this.

Clearly, as this example, which was constructed for the simplest possible case of a
mono-exponential decay and instrument responses that can be described perfectly analyt-
ically, demonstrates, the importance of the IRF in analysis should not be underestimated.
In reality, with potentially multi-exponential decay signals and a less analytically perfect
instrument response, analysis problems are unlikely to diminish. With so many variables
inherent to a data acquisition system and the fluorescence decay, there is no definitive
answer as to whether or how important the IRF (or an accurate IRF measurement) is in ei-
ther the high or the low count regime. One may be fortunate and obtain perfectly reliable
estimates (e.g. decay lifetime(s)) without using the correct IRF in analysis; however, just
as one would be unlikely to have complete confidence in the results of an analysis without
having confidence in the data acquisition and the experimental protocol as a whole, one
should be wary that the integrity of any estimates may also be threatened by the IRF used
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Figure 8.3: Does the IRF influence parameter estimates greatly when total counts are
meagre?: In (a) lifetime estimates resulting from the analysis of data simulated to in-
corporate IRF1 (i.e. Decay1 data) when using the correct IRF (IRF1), an incorrect IRF
(IRF2), and no IRF at all, for low count data having between about 100 and 1000 total
photon counts. In (b) lifetime estimates from the analysis of data simulated with IRF2
(i.e. Decay2 data) when using the correct IRF (IRF2), an incorrect IRF (IRF1), and no
IRF at all.

in analysis.

8.2 Synthetic data examples

Suppose that the images analysed for the example in Section 8.1 were to contain data
acquired on real systems and that, for whatever reason, a lifetime analysis is required
but no information regarding the IRFs of the acquisition systems are available. Would
it be possible to proceed with a meaningful analysis? How could one best approach this
problem if all of the available algorithms require an IRF for analysis? Assume, for the
sake of argument, that the data had been previously collected but that fortunately access
to the acquisition system remains possible; one could with knowledge of the system in
its current state attempt to somehow approximate the IRF of the earlier state when the
data were acquired. Otherwise, if possible, one could measure the IRF and hope that it
does not differ significantly from that that would have been obtained at the time of data
acquisition and that will be inherent to the decay data. Should access to the acquisition
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system no longer be possible things are a little more difficult; one could somehow approx-
imate an IRF for use in analysis based on the IRF of a similar system, or, one could even
perform an analysis without any IRF in the hope that its influence on the data (and any
subsequent parameter estimates) is minimal. Some of these workarounds may even yield
useful decay estimates. However, all of them require additional (sometimes considerable)
effort and preferably access to the system with which the data were acquired. Crucially,
though, none make use of the most readily available and potentially reliable source of
information regarding the IRF at the time the data was acquired; the decay data itself. Of
course, the decay data contains information about both the decay process and the IRF of
the system on which the data were acquired. The Bayesian SID analysis developed in
Chapter 5 offers a means of extracting parameter estimates that describe both the decay
and the approximated IRF. Lifetime estimation would be possible using the Bayesian SID
algorithm in a case such as that described here (although, in this case, the IRF parameter
estimates would be incidental as it is a lifetime analysis that is desired), without resorting
to any of the methods required for the workarounds suggested.

The decay parameter estimates resulting from two slightly different approaches that
use the Bayesian SID algorithm for the analysis of Image1 (Section 8.1) are shown in
Fig. 8.4. The first, and most commonly used, approach employs the Bayesian SID al-
gorithm as a pre-step, assuming that the IRF (and implicitly the decay order) is uniform
across an image, to obtain the optimal IRF approximation from the large data set produced
on summing the data of each image pixel, for use in a subsequent standard Bayesian decay
analysis. The second approach is to apply the Bayesian SID algorithm independently at
each image pixel, thereby making no assumptions regarding uniformity of the IRF across
an image, and to estimate the optimal decay and IRF parameter values at each pixel.

On inspecting the lifetime and background estimate images in Fig. 8.4 and the esti-
mated lifetime distributions in Fig. 8.5, it is clear that the decay parameter estimates are
superior when Bayesian SID analysis is employed as a pre-step to a conventional decay
analysis that uses the optimal IRF approximation; the lifetime estimate distribution be-
ing centered around an average of 2.00 ns with standard deviation 0.05 ns. The lifetime
estimates for application of the Bayesian SID algorithm at each image pixel are centered
around an average of 2.04 ns with standard deviation 0.08 ns. Of course, it is worth bear-
ing in mind that the estimates are just that; in demanding of the Bayesian SID algorithm
the estimation of more model parameters (both decay parameters plus IRF parameters),
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Figure 8.4: Bayesian SID analysis in the absence of any IRF details: The decay pa-
rameter estimates obtained using the Bayesian SID algorithm without any information
regarding the IRF for the analysis of Image1 of Section 8.1 (having about 2800 total
photon counts at each image pixel). In (a) and (c) the lifetime and constant background
images respectively obtained using Bayesian mono-exponential analysis having as a
pre-step determined the optimal IRF parameter values using the Bayesian SID algorithm
on the single data set produced by summing the data of all image pixels. In (b) and (d)
the lifetime and background estimates obtained on the application of the Bayesian SID
algorithm at each image pixel.

with no additional information for analysis, it should not be surprising that the decay pa-
rameter estimates are not quite as good as those from decay analysis alone with an optimal
IRF approximation. When performing Bayesian SID analysis as a pre-step to a conven-
tional Bayesian decay analysis, the analysis yields decay parameter estimates given the
data and given the optimal IRF approximation; on the application of the Bayesian SID al-
gorithm alone the analysis yields decay parameter estimates and IRF parameter estimates
given the data.

The remainder of this chapter explores in greater detail the performance of the
Bayesian SID algorithm, exploring the results of analyses from a variety of synthetic
IRFs and also the results of analysis of real biological data.

8.2.1 Example 1: Single Gaussian

In this simple example the performance of the Bayesian SID algorithm is studied using
synthetic mono-exponential decay (of lifetime 2.0 ns) data incorporating an IRF com-

130



1.8 2.0 2.2
0

200

400

600

800

Tau [ns]

Fr
eq

ue
nc

y
Decay analysis
SID analysis

(a) Bayesian lifetime estimation

1.0 2.0 3.0 4.0
0

2

4

Time [ns]

IR
F

Actual IRF
SID analysis

(b) Bayesian IRF estimation

Figure 8.5: Bayesian SID analysis, two different approaches: Analysis of Image1 of
Section 8.1 (having about 2800 total photon counts at each image pixel) comprising a
single Gaussian IRF and a mono-exponential decay of lifetime 2.0 ns at each image
pixel. In (a) the lifetime estimates resulting from Bayesian SID analysis applied to each
image pixel and the estimates from a conventional Bayesian decay analysis using the
optimal IRF approximation (as determined by the Bayesian SID algorithm as a pre-
step). In (b) the actual synthetic IRF and the Bayesian SID approximation estimated
from high count data (about 107 total counts).

prised of a single Gaussian component of FWHM 212 ps (standard deviation 90 ps). In
order to observe almost the simplest possible case, no constant background is incorporated
in the simulated data so as to avoid any additional complications that this may cause.

On visual inspection of the IRF (Fig. 8.6), it is clear that it is symmetrical and will
most likely introduce a delay of between about 2.0 ns and 2.5 ns between the recorded
data and any fluorescence decay photons, with the majority of photons being delayed by
the duration at which the IRF peak is found (closer examination of the numerical data
shows this to be around 2.10 ns). It is also worthwhile studying the typical time resolved
data sets as shown in Fig. 8.6 and considering what information about any features of
the IRF are readily apparent. Inspecting the high count data set, it can be seen that the
rise in the transient does not occur instantaneously, happening between about 2.0 ns and
2.1 ns; it is easy to deduce therefore that the IRF inherent to the data does not merely
introduce a delay between decay photons and their recorded counterparts but also spreads
them (i.e. introduces some uncertainty into the data recorded). Very little can be gleaned
from observing the low count data set (having about 100 total photon counts), aside from
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Figure 8.6: A single Gaussian IRF: In (a) the synthetic IRF composed of a single Gaus-
sian distribution of FWHM 212 ps (standard deviation 90 ps). In (b) and (c) typical time
resolved data from the convolution of such an IRF with a mono-exponential decay of
lifetime 2.0 ns, having about 107 and 100 total photon counts respectively.

perhaps that the IRF introduces a delay into the data and only the most optimistic would
even attempt to quantify the delay on the basis of such data.

The Bayesian SID algorithm decay lifetime and IRF parameter estimates are shown
in Fig. 8.7 for data having between about 100 and 1000 total counts. As expected, the
parameter estimates improve as the total photon count increases, as is particularly evident
for the IRF width parameter, the Bayesian SID algorithm defaulting to the minimum width
value permitted by the implementation, most of the time, until the intensity exceeds about
300 total counts. Inspecting the distribution of Bayesian SID decay lifetime estimates
(Fig. 8.7), although most of the estimates are (at least within a reasonable uncertainty
given the low count nature of the data) close to the true decay lifetime of 2.0 ns, it is
also evident that in some cases the decay lifetime is significantly overestimated. The
tendency for the Bayesian SID algorithm to sometimes overestimate the decay lifetime
is more readily observed in Fig. 8.8, which shows the estimated lifetime distributions
for the Bayesian SID algorithm and for Bayesian decay analysis (using the optimal IRF
parameter values as determined by Bayesian SID analysis with very high count data (107

total photon counts)) for data containing about 1000 total photon counts; the estimates
from Bayesian decay analysis do not exceed about 2.2 ns whereas the distribution of
Bayesian SID estimates has a substantial tail extending to lifetimes of about 2.5 ns. The
introduction of the IRF width and delay parameters into the analysis model, it seems, has
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Figure 8.7: Bayesian SID analysis IRF and decay lifetime estimation with increasing to-
tal photon count (I): In (a) the Bayesian SID analysis estimates of the mono-exponential
decay lifetime parameter for increasing total photon count. In (b) and (c) the corre-
sponding (single Gaussian component) IRF delay and width parameter estimates re-
spectively. The dashed black lines show the true parameter values in each plot.

introduced unwanted correlations between the model parameters and has lead to the decay
lifetime being significantly overestimated at times. It is not easy to discern a correlation
between, say, an overestimated lifetime and an underestimated IRF parameter width. The
relationships between the decay lifetime and the decay background and the IRF delay
and width parameters are shown in Fig. 8.8; the background level estimates are roughly
symmetrical around the true decay lifetime, as are the IRF delay parameter estimates.
However, it does appear (Fig. 8.8) that if the decay lifetime is overestimated it is likely
that the IRF width is underestimated, this being particularly so for estimated lifetimes
longer than about 2.1 ns.

Of course, fortunately here it is considerably easier to inspect for any unwanted cor-
relations between decay and IRF parameter estimates as in this case the true parameter
values are known. Usually one wouldn’t be equipped with such knowledge, or equally
such a detailed analysis of parameter estimates may not be undertaken and correlations
not detected. It must be stressed that such unwanted correlations between model param-
eters cannot be disregarded as merely troublesome features in the estimates distribution;
in a real experiment and analysis such features may lead to an incorrect interpretation.
The existence of such unwanted correlations certainly reinforce the case for a reasonably
strong prior on the IRF parameters should any reliable information from, say, a measured

133



1.5 2.0 2.5
0

1000

2000

Tau [ns]

Fr
eq

ue
nc

y
[a

.u
.]

SID
Decay

(a)

2.0 2.1 2.2
1.5

2.0

2.5

Delay [ns]
Ta

u
[n

s]

0 15 30

Frequency [a.u.]

(b)

0.0 0.1 0.2
1.5

2.0

2.5

Width [ns]

Ta
u

[n
s]

0 15 30

Frequency [a.u.]

(c)

Figure 8.8: Bayesian analysis decay lifetime estimation with increasing total photon
count (II): In (a) the estimated lifetime distributions for the Bayesian SID algorithm
and for Bayesian decay analysis (using the optimal IRF parameter values as determined
by Bayesian SID analysis with very high count data (107 total photon counts)) for data
containing about 1000 total photon counts. In (b) the correlations between the Bayesian
SID estimated decay lifetime and IRF delay parameter, and in (c) the same for the IRF
width parameter for the mono-exponential decay data at low photon counts.

IRF be available. However, particularly on application of the Bayesian SID algorithm for
the analysis of low count data, should any evidence be available regarding any character-
istics of the instrument, such as the likely IRF width (or even the width of say a dominant
component), then it would certainly be reasonable to incorporate that in a strong prior
distribution over the IRF parameters.
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8.2.2 Example 2: Two resolvable Gaussian IRF components

In this example the performance of the Bayesian SID algorithm is studied using synthetic
mono-exponential decay (of lifetime 2.0 ns) data incorporating an IRF comprised of two
Gaussian components in a 4:1 ratio; both components being of width 90 ps (FWHM
212 ps) with the minor component being retarded by 1 ns relative to the dominant com-
ponent. It is clear merely on visual inspection of the IRF (Fig. 8.9) that it is composed
of two distinct (and easily resolved) components. Additionally, it is worthwhile studying
the typical time resolved data sets as shown in Fig. 8.9 and considering what informa-
tion about any features of the IRF are readily apparent. On visual inspection of the high
count data set, it would be reasonable to surmise that the IRF is comprised of at least two
distinct components (assuming an exponential decay signal of course). It is not possible,
however, to reach such a conclusion on inspecting the low count data set (having about
1000 photon counts in total).
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Figure 8.9: Two resolvable Gaussians: In (a) the synthetic IRF composed of two Gaus-
sian distributions in a 4:1 ratio, both components being of width 90 ps (FWHM 212 ps)
and the minor component being delayed by 1 ns relative to the dominant component.
In (b) and (c) typical time resolved data from the convolution of such an IRF with a
mono-exponential decay of lifetime 2.0 ns, having total counts of about 107 and 1000
respectively.

The IRF parameter estimates offered by Bayesian SID analysis of an image where
each pixel has data containing about 1000 total counts and another image with each pixel
having data sets of about 10000 total counts, are shown in Fig. 8.10. On inspecting the
IRF parameter estimate images for data having about 1000 total photon counts it is evident
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that although the estimates that define the dominant component are reasonably well de-
fined, and that at the majority of pixels the Bayesian SID analysis estimates do indicate an
IRF having two distinct components, for such low count data given the relative complex-
ity of the simulated instrument the IRF parameter estimates may not be sufficiently robust
to be of practical use; they do however offer a greater insight than does visual inspection
of the decay data. The estimates for data containing about 10000 total counts, though, are
tightly distributed other than the width of the minor component; the weighting of the dom-
inant component is centered around a value of 0.797 with standard deviation 0.043 (true
value 0.8), the delay and width of the dominant component are centered around average
values of 2.091 ns (optimal value 2.09 ns) and 0.084 ns with standard deviation 0.009 ns
and 0.008 ns respectively, and the delay and width of the minor component are centered
around the values 3.081 ns (optimal value 3.09 ns) and 0.079 ns with standard deviation
0.082 ns and 0.065 ns respectively. No such statistics are presented for the low count data
estimated parameter value distributions as they display multi-modal features (other than
the delay of the dominant component). It is clear though that even with data containing
around 10000 total counts that the width of the minor component is poorly estimated;
however, it should also be noted that the accompanying lifetime estimates (Fig. 8.11) are
well defined around the true value and compare reasonably well the estimates obtained
from conventional Bayesian mono-exponential decay analysis alone using the optimal
IRF approximation.

The Bayesian SID estimated decay lifetime images are shown in Fig. 8.11, as are the
lifetime images obtained from a Bayesian mono-exponential decay analysis (using the
optimal Bayesian SID estimated IRF, as obtained from a very high count data set having
about 107 total photon counts) of the same data. The cleaner lifetime images illustrate that
the estimates obtained from conventional Bayesian decay analysis using the optimal IRF
approximation are superior to those from Bayesian SID analysis; this should of course
be expected as five fewer model parameters are estimated from the same data. The more
tightly distributed estimates are especially apparent for the 1000 total counts per pixel
image, and less so for the higher count data image (each pixel having about 10000 total
counts). For the 10000 total counts data, the lifetime estimates of both conventional
Bayesian mono-exponential decay analysis and of Bayesian SID analysis are centered
around the true value of 2.0 ns, being distributed with standard deviation 0.038 ns for
Bayesian SID analysis and 0.024 ns for conventional decay analysis using the optimal
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IRF approximation.
The Bayesian SID decay lifetime estimates are shown with those obtained from mono-

exponential Bayesian decay analysis for intensities between about 1000 and 10000 total
photon counts in Fig. 8.12. It is evident that below about 3000 total counts the Bayesian
SID estimated lifetime may be prone to overestimation; further analysis may well show
that there is a correlation between an overestimated lifetime and one (or more) of the
estimated IRF parameters. As discussed in the previous example, should sufficient evi-
dence exist to justify the use of a strong prior over (at least some of) the IRF parameters
it may be possible to reduce unwanted correlations; regardless, caution should be exer-
cised, especially should no evidence be available to support the use of a strong prior on
the IRF parameters, and it should be acknowledged that unwanted correlations between
some model parameters may exist.

It is also evident (Fig. 8.13) that the parameter estimates that define the minor IRF
component are inferior to those of the dominant component; again, this is unsurprising as
the signature of the minor component in the decay data is less pronounced and such subtle
features may be far more difficult for even the most sophisticated analysis algorithms to
capture, especially at low counts where noise in the data has a greater influence.
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Figure 8.10: Bayesian SID analysis for a two-component Gaussian IRF approximation:
Two 32 × 32 pixel intensity images, one with each pixel having a total photon count
of about 1000 photon counts and the other with each pixel having about 10000 counts
were analysed with Bayesian SID algorithm, the IRF parameter estimate images for the
two-component IRF approximation are displayed. For the low count image, in (a) the
estimated weight of the dominant component (should be 0.8), in (b) the delay parameter
u1 of the dominant component, in (c) the delay parameter u2 of the minor component, in
(d) the width parameter σ1 of the dominant component, and in (e) the width parameter
σ2 respectively that describe the Gaussian IRF approximation. In (f), (g), (h), (i), and
(j), the corresponding estimates for the high photon count image.
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Figure 8.11: Bayesian SID analysis and Bayesian decay analysis lifetime estimates (I):
In (a) the estimated mono-exponential decay lifetime image from Bayesian SID analysis
of synthetic image containing mono-exponential decay (lifetime 2.0 ns) data having
about 1000 total counts at each of the 32 × 32 pixels, and in (b) the lifetime image
produced from conventional Bayesian decay analysis of the same image. In (c) and (d)
the Bayesian SID estimated lifetime and the Bayesian decay analysis lifetime images
respectively, produced from the analysis of data having about 10000 total counts at each
pixel.

1000 5000 10000

1.8

2.0

2.2

2.4

Intensity [counts]

Ta
u

[n
s]

0 50 100

Frequency [a.u.]

(a) SID analysis

1000 5000 10000

1.8

2.0

2.2

2.4

Intensity [counts]

Ta
u

[n
s]

0 50 100

Frequency [a.u.]

(b) Decay analysis

Figure 8.12: Bayesian SID analysis and Bayesian decay analysis lifetime estimates (II):
In (a) the Bayesian SID analysis estimates of the mono-exponential decay lifetime pa-
rameter for increasing intensity between about 1000 and 10000 total photon counts, and
in (b) the corresponding Bayesian decay analysis lifetime estimates obtained using the
optimal IRF approximation.
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Figure 8.13: Bayesian estimation of IRF parameters: The Bayesian SID estimates of
the two component IRF approximation parameters assuming a mono-exponential decay.
In (a), (b), and (c), the parameter estimates that define the dominant component of the
synthetic IRF, and in (d), (e), and (f), the parameter estimates that define the minor
component.
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8.2.3 Example 3: A tail to right

In this example the simulated IRF is composed of two Gaussian components in a 4:1
ratio; the dominant component being of FWHM 495 ps (standard deviation 210 ps) with
the minor component being retarded by 0.5 ns relative to the dominant component and
being of FWHM 1994 ps (standard deviation 846 ps) in order to construct the heavy tail
to the right; it should also be noted that the minor component extends a little to the left of
the dominant component thereby increasing the likelihood of early photon arrival times
being recorded. As previously, the Bayesian SID algorithm is studied using synthetic
mono-exponential decay (of lifetime 2.0 ns) data.
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Figure 8.14: An IRF with a heavy tail to the right: In (a) the synthetic IRF composed
of two Gaussian distributions in a 4:1 ratio, the dominant component being of FWHM
495 ps (standard deviation 210 ps) with the minor component being retarded by 0.5 ns
relative to the dominant component and being of FWHM 1994 ps (standard deviation
846 ps). In (b) and (c) typical time resolved data from the convolution of such an IRF
with a mono-exponential decay of lifetime 2.0 ns, having total counts of about 107 and
1000 respectively.

It is clear merely on visual inspection of the IRF (Fig. 8.14) that it is composed at least

two overlapping components and that there is is significant likelihood of photons being
delayed by a duration greater than that which would be attributed to the dominant com-
ponent. However, in this example it is far more difficult to extract as much information
about the IRF from the typical decay data, aside from it being clear that most photons are
delayed by more than about 2.0 ns and there is likely also to be some spreading of photon
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arrival times as evidenced by the non-instantaneous rise of the transient data. More subtly,
on comparing the high count data set with those of the previous examples it can be seen
that the transient rises more slowly than in the (Fig. 8.6, Fig. 8.9); this is a consequence
of the minor component extending to the left of the narrower dominant component and
thereby promoting the likelihood of recording photons a little earlier than those delayed
by the duration corresponding to the dominant peak.
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Figure 8.15: Bayesian and ML decay analysis lifetime estimates: For increasing inten-
sity between about 2000 and 20000 total photon counts, in (a) the lifetime estimates
from a standard Bayesian mono-exponential decay analysis using the optimal IRF ap-
proximation (as determined by Bayesian SID with data containing about 107 total pho-
ton counts), in (b) the Bayesian SID analysis estimates of the mono-exponential decay
lifetime parameter , and in (c) the lifetime estimates obtained from a ML analysis with-
out using an IRF.

The mono-exponential decay lifetime estimates are shown for increasing intensities in
Fig. 8.15 for standard Bayesian decay analysis (employing the optimal IRF approximation
as determined by Bayesian SID using a data set containing more than 107 total photon
counts), for Bayesian SID analysis, and for ML where no IRF has been used in the analysis
(i.e. the same conditions under which the Bayesian SID algorithm operates). As would be
expected at such intensities, the decay lifetime estimates obtained using standard Bayesian
decay analysis with an optimal IRF approximation are tightly distributed around the true
lifetime of 2.0 ns. It is clearly apparent that the Bayesian SID decay lifetime estimates are
far more widely distributed than obtained from the standard Bayesian decay analysis; this
is not surprising given that the parameters required to describe a two-component Gaussian
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IRF approximation are also estimated along with the decay parameters. It is also evident
that the Bayesian SID algorithm tends to systematically overestimate the decay lifetime,
the mode of the distributions being at a lifetime slightly longer (at about 2.03 ns) than the
true value of 2.0 ns even at an intensity of about 20000 total photon counts. Of course
it would be desirable that the Bayesian SID algorithm (or any other analysis technique
for that matter) would be able to extract extremely accurate (perfect) parameter estimates
from low count data incorporating such an IRF. It is necessary to be realistic as to what can
be achieved though; this is certainly a more challenging case than the previous examples,
the later photon arrival times actually due to the heavy tail to the right of the IRF being
attributed to a slower decay process (i.e. a longer lifetime). It should be noted that, even
at high counts conventional ML analysis is unable to provide accurate lifetime estimates
unless the measured IRF is provided; the lifetime estimates obtained from a ML analysis
that does not use an IRF are prone to a significant systematic overestimation, the mode of
the distribution being close to a value of 2.14 ns for all intensities investigated.

The dominant IRF component was estimated to be of width 200 ps (true value of
210 ps) and weighting 0.798 (true value of 0.8), with the minor component having a
width of 928 ps (true value 846 ps) and being retarded by 0.57 ns relative to the dominant
component (true value 0.50 ns). Intuitively, one might expect the overestimation of both
the width of the minor IRF component and its delay relative to the dominant component
to result in the underestimation of the decay lifetime; this is not observed on inspecting
the lifetime estimates obtained on application of Bayesian decay analysis using the opti-
mal IRF approximation, as shown in Fig. 8.15. The IRF parameter estimates offered by
Bayesian SID analysis at lower intensities are, in this example, however, fairly poor as
can be seen in Fig. 8.16. Although as intensity is increased the Bayesian SID algorithm
becomes more likely to recognise the minor IRF component (true weighting of 0.2), even
at an intensity of about 20000 total photon counts the Bayesian SID algorithm is most
likely to capture only a single component IRF from the decay data. However, with a data
set containing around 107 total photon counts, the optimal IRF approximation as deter-
mined by the Bayesian SID analysis of is in very close agreement with actual synthetic
IRF, as shown in Fig. 8.14.
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Figure 8.16: Bayesian estimation of IRF parameters: The Bayesian SID estimates of
the two component IRF approximation parameters assuming a mono-exponential decay.
In (a), (b), and (c), the parameter estimates that define the dominant component of the
synthetic IRF, and in (d), (e), and (f), the parameter estimates that define the minor
component.
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8.3 Low count data from human epithelial carcinoma
cells

In this section the performance of the Bayesian SID algorithm is investigated using
the low count mono-exponential data obtained for [1]. In studying the performance of
Bayesian SID analysis on such low count experimental biological data both the obtained
IRF parameter estimates and the lifetime estimates are examined. The IRF parameter es-
timates can be compared to the optimal2 Bayesian single component IRF approximation
obtained using a very high count data set (i.e. by binning all pixels in an image to yield
a single time-resolved data set). The lifetime estimates are compared to those obtained
from mono-exponential decay analysis using the optimal Bayesian single component IRF
and also from ML; the ‘true’ lifetime is taken to be 2.18 ns, the value that all techniques
were found to converge to in the analyses performed for [1].

The data were purposefully collected to have low intensities (relative to what would
usually be expected for an analysis to be deemed trustworthy using standard techniques)
at each image pixel; the data analysed for this section having between around 100 and
1000 total counts. Being mindful of the meagre total counts available, the results pre-
sented here are for Bayesian SID analysis under the assumption that the decay is purely
mono-exponential and that the IRF can, at least to a reasonable first approximation, be
represented by a single Gaussian. Although, of course, it may be that the real IRF would
be more accurately represented by two or more Gaussian components, it is necessary to
have realistic expectations as to what can be reliably3 estimated given the short supply of
data.

The optimal Bayesian single Gaussian IRF approximation, estimated from a data set
of more than 107 photon counts, is shown in Fig. 8.17, having a width of 0.087 ns (FWHM
0.205 ns) and being centered around a delay of 2.343 ns. Despite even the optimal single

2Of course, it is quite probable that the optimal Bayesian single component IRF approximation is less
a “gold” standard than a “silver” or even “bronze” standard, with more accurate approximations being
realised with the introduction of additional Gaussian components; however, for ease of comparison with the
estimates here the optimal single component IRF is employed as the ideal reference.

3It is sensible always to be vigilant against over-fitting and to balance what is desired from an analysis
with what is possible given the data available. Although additional parameters are easily introduced to,
say, model a bi-exponential decay and a multi-component IRF approximation, experience suggests that
meaningful parameter estimates would be harder to come by from the analysis of such low photon count
data using such a model.
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Figure 8.17: Bayesian SID analysis of high and low photon count data: In (a) the
experimentally measured IRF (normalised) and the optimal single Gaussian component
Bayesian SID approximated IRF, estimated from a very high count data set (107 total
counts); the single Gaussian being of width 0.087 ns (FWHM of 0.205 ns), centered
around a delay of 2.343 ns. In (b) the data and Bayesian SID fitted decay curve at a
pixel having a total of 366 photon counts. The mono-exponential lifetime estimated to
be 2.14 ± 0.13 ns. In (c) the single Gaussian Bayesian estimated IRF approximation
having a width of 0.064 ns (FWHM 0.151 ns) centered about a delay of 2.355 ns.

Gaussian approximation not showing a perfect correspondence with the measured IRF it
certainly does not seem unreasonable to use such an approximation in this case, given that
the measured IRF is (at least on visual inspection) very nearly symmetrical and not greatly
different in appearance to a Gaussian, particularly given the anticipated uncertainty in
parameter estimates due to the low count nature of the data.

The time resolved data from a typical pixel are shown in Fig. 8.17 along with the
estimated decay and the estimated and measured IRF for single pixel data; on visual in-
spection of the time resolved data, it would seem reasonable to say that obtaining accurate
parameter estimates from such data (having 366 total photon counts at the pixel chosen
for this example) is likely to prove challenging. The Bayesian SID algorithm does, how-
ever, yield a reasonable approximation to the measured IRF and also yields a respectable
lifetime estimate. The lifetime and IRF width and delay parameter estimates obtained
using Bayesian SID analysis of image pixels having photon counts between about 350
counts and 3500 counts are shown in Fig. 8.18, with most of the analysed pixels having
fewer than 1000 counts. It is clearly apparent that the Bayesian SID algorithm is able to
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consistently extract reasonable IRF and decay parameter estimates from such low count
data. The distribution of IRF delay estimates has an average of 2.342 ns and a standard
deviation of 0.019 ns. The width estimates are distributed about an average of 0.086 ns
with a standard deviation of 0.022 ns. The lifetime estimates are distributed about an
average of 2.19 ns with standard deviation 0.08 ns.
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Figure 8.18: Bayesian SID analysis of a low photon count image: In (a) an intensity
image of which pixels having a total photon count between about 345 and 3450 were
analysed with Bayesian SID algorithm. In (b) and (c) the delay and width parameter
estimates respectively that describe the Gaussian IRF approximation, and in (d) the
mono-exponential decay lifetime estimates obtained using the Bayesian SID algorithm.
The optimal Bayesian SID determined IRF delay and width parameter values and the
‘true’ decay lifetime are indicated by the dashed lines in the colour map beneath their
respective images.

The reliability of the Bayesian SID algorithm IRF parameter estimates at low photon
counts is studied in greater detail by collating a large number of estimates from the analy-
sis of seven images. In Fig. 8.19 the IRF width and delay parameter estimates are shown
for intensities between 100 and 1000 photon counts. It is clear that, even with the simplest
mono-exponential decay and single component IRF approximation, the Bayesian SID al-
gorithm struggles to estimate the IRF width parameter reliably below intensities of about
500 photon counts. The delay parameter, however, is reliably estimated even at intensi-
ties as low as 100 photon counts. It should also be observed that in those cases where
Bayesian SID analysis significantly underestimates the IRF width, the delay parameter is
also likely to be underestimated.
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Figure 8.19: Bayesian SID analysis IRF parameter estimation: The width and delay
parameter estimates that describe the single Gaussian IRF approximation employed for
this mono-exponential Bayesian SID analysis (optimal IRF delay and width values are
indicated by dashed lines). In (a) the estimated width of the Gaussian; observe that at be-
low an intensity of about 500 total counts the Bayesian SID algorithm is far more likely
to significantly underestimate the width, most often defaulting to the minimum permit-
ted value in the implementation. At higher intensities the estimates are spread around
the optimal value of 0.087 ns. In (b) the estimated delay parameter value around which
the Gaussian is centered; although the estimates are most tightly distributed around the
optimal value of 2.343 ns at the highest intensities (as would be expected), it should
also be noted that there does not appear to be any systematic bias even at very low in-
tensities. In (c) the interdependence of the delay and width parameter estimates; notice
that when the width is significantly underestimated, the delay parameter also tends to
be underestimated.

Considering now the mono-exponential decay lifetime estimates; it is pleasing to note
that the lifetime estimates resulting from Bayesian SID analysis are not very different to
those obtained from Bayesian decay analysis alone (using the optimal IRF approxima-
tion), as shown in Fig. 8.20. It is also striking that, despite the Bayesian SID lifetime
estimates being very slightly degraded in comparison to those obtained from Bayesian
decay analysis alone using the optimal approximated IRF, there remains a significant im-
provement over the estimates offered by ML (which uses the experimentally measured
IRF). The lifetime images obtained using the Bayesian SID algorithm, Bayesian decay
analysis alone with the optimal IRF approximation, and ML, are shown in Fig. 8.21 for
an intensity image of which most of the analysed pixels having between about 70 and 250
photon counts; although the lifetime distributions of all three analysis types are centered
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Figure 8.20: Comparing Bayesian SID analysis lifetime estimation (I): In (a) the mono-
exponential decay lifetime estimates obtained using Bayesian SID analysis under the
assumption of a single component Gaussian IRF. In (b) the Bayesian lifetime estimates
from mono-exponential decay analysis alone using the optimal single Gaussian IRF
approximation parameter values. In (c) the lifetime estimates obtained using ML and the
measured IRF. The ‘true’ decay lifetime of 2.18 ns is indicated by a dashed line in each
plot, with the average and standard deviation of the lifetime distributions superimposed
on the respective colour maps.

very closely around the true decay lifetime, the superiority of the Bayesian analyses (both
SID and decay alone) over ML at low photon counts is clearly illustrated by the cleaner
lifetime images. The Bayesian SID lifetime estimates distribution is centered about an
average of 2.18 ns with standard deviation 0.17 ns. The estimates derived from Bayesian
decay analysis alone (using the optimal IRF approximation) have an average of 2.16 ns
and a standard deviation of 0.15 ns. The ML estimates are centered about an average
lifetime of 2.17 ns with standard deviation 0.25 ns.

As demonstrated in Section 8.1, the IRF used in a decay analysis can have a significant
influence on decay parameter estimates. It should therefore not be completely surprising
that (unwanted) correlations may exist between Bayesian SID estimated IRF parameters
and decay parameters. The relationships between the Bayesian SID estimated IRF pa-
rameters and the decay lifetime are illustrated in Fig. 8.22. It is evident (particularly on
inspecting the histograms in (c) and (d) which are normalised across in order to reveal
trends that are otherwise not so apparent) that underestimation of both the IRF delay and
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Figure 8.21: Comparing Bayesian SID analysis lifetime estimation (II): In (a) an inten-
sity image of which pixels having an intensity between about 70 and 700 photon counts
were analysed to yield the following mono-exponential decay lifetime images; in (b)
the Bayesian SID algorithm decay lifetime estimates, in (c) the Bayesian decay analysis
lifetime estimates (using the optimal Bayesian SID approximated IRF), and in (d) the
ML lifetime estimates image (using the experimentally measured IRF). The ‘true’ decay
lifetime of 2.18 ns is indicated in the estimated lifetime distribution for each analysis
type.

width parameters is likely to be accompanied by an overestimated decay lifetime, whereas
an overestimation of either IRF parameter is likely to be partnered by an underestimated
decay lifetime.
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Figure 8.22: Bayesian SID analysis, lifetime and IRF parameter correlations: in (a) the
relationship between the estimated lifetime and the delay parameter, and in (b) the re-
lationship between the estimated IRF width and the decay lifetime. In (c) the estimated
lifetime distribution conditioned on the IRF delay parameter, and in (d) the estimated
lifetime distribution conditioned on the IRF delay parameter, showing that an overesti-
mation of the decay lifetime is likely to be accompanied by an underestimation of the
IRF width or/and decay parameter.
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8.4 Advantages and weaknesses in using an analytic IRF
model

It is clear that the IRF is important in the characterization of a decay signal from decay
data and that it is wise to guard against the biasing of parameter estimates by using the
best possible IRF available for analysis (whether measured or approximated). To what
degree the IRF is important and to what extent parameter estimates are biased by the use
of a wrong IRF in any analysis does, of course, depend on the specific characteristics of
the data and the acquisition system as a whole (e.g. the IRF width, the bin width, etc.).
It was shown in Section 8.1 that, even for a simple mono-exponential signal, using the
wrong IRF in decay analysis can lead to poor estimation of decay parameters. The utility
and effectiveness of Bayesian SID analysis, either for IRF determination or for decay
analysis (where the real IRF is unknown and any estimates that realise its approximation
are incidental), has been clearly demonstrated throughout this chapter using both synthetic
IRFs and synthetic data and with real biological data acquired on a real system. In this
section limitations and weaknesses inherent to Bayesian SID are considered, and where
possible suggestions are made as to how these may be overcome.

As the Bayesian SID algorithm estimates the IRF and the decay parameters simul-
taneously it is important to consider to what extent unwanted correlations between IRF
parameters and decay parameters could be present and how they may best be avoided.
For example, will Bayesian SID analysis be able to distinguish between data due to a
particular IRF width and lifetime, and the data due to a slightly faster decay but with a
wider IRF? In order to reduce the impact of such issues it would seem prudent to incor-
porate a prior on the IRF parameters that is based upon coarse estimates derived from
any measured IRF where available. It would be essential though, that in constructing any
such prior that it not be so strong as to effectively remove the possibility of some possible
IRF parameter estimates altogether. A possible compromise could be realised by a prior
that exerts a fairly strong influence on the parameters defining the dominant mode of the
IRF (as should be reasonably easily obtained by even a fairly crude analysis of a mea-
sured IRF), with the prior on the remaining parameters of other IRF components being
relatively weak.

In developing the IRF approximation upon which the Bayesian SID analysis is
founded (Section 4.4) the weighted superposition of any number of truncated Gaussian
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distributions has been chosen as a suitable solution as, although it may not be possible to
represent some arbitrarily jagged IRF4, such an approach should be able to represent most
real IRFs with a suitable number of Gaussian IRF components. The truncated Gaussian
distribution is appealing as it offers the significant advantage that our solution (result-
ing from the convolution of the analytically approximated IRF with an exponential decay
signal) remains fully analytic and incorporates error functions which ease the burden of
implementation.

It is evident that a subtle flaw does exist in the analysis when considering the Bayesian
SID algorithm at its most fundamental level; regardless of any apparent complexity, at the
heart of the algorithm are simply a sum of exponentials (to describe the decay) and a sum
of Gaussian distributions (to describe the IRF approximation). Although we can be fairly
confident that a fluorescence decay signal does not contain any Gaussian-like component,
the Bayesian SID analysis will falter should the IRF inherent in the data being analysed
contain an exponential-like term as such would become associated with the decay signal
itself.

Of course, theoretically, it may be that a real IRF can be perfectly well modelled by
a superposition of (potentially many) such truncated Gaussian distributions. It is fairer to
ask though, given that we are rarely likely to have an abundance of data, can a real IRF be
adequately modelled by the superposition of just a few such distributions? The strength of
the argument that it is possible to mimic almost any distribution with the superposition of
enough Gaussian distributions diminishes as rapidly as the number of parameters required
to describe those distributions grows. As elsewhere in this work, we therefore yearn for
the simplest possible (IRF) model and appeal to Occam’s Razor; instead enquiring as to
how few Gaussian distributions are required to adequately describe a particular IRF?

4It should be noted that the desire for a fully analytic solution is driven not merely by a yearning for
mathematical cleanliness, but in order to avoid the necessity to call upon computationally expensive nu-
merical integration techniques in any implementation. Additionally, when using sufficient components to
yield a good IRF approximation that adequately captures all pertinent features of the real IRF, it remains
to be seen whether parameter estimates would be improved by the use of a more elaborate approximation
other than in cases where the truncated Gaussian IRF approximation is obviously unsuitable, especially in
the low photon count regime at which this work is primarily targeted.
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Chapter 9

Bayesian decay model selection

In this chapter, the effectiveness of the Bayesian decay model selection to discriminate
between mono- and bi-exponential decay data by quantifying the relative probability of
each model, is demonstrated. Typically, a combination of factors will influence which
decay model is chosen for the analysis of experimental data. In choosing the decay model
the expectation of what it is believed to be is always likely to be significant, as is whether
the intensity of the acquired experimental data is sufficient to support a statistically signif-
icant analysis using such a model. The selected model is often justified by inspecting the
parameter estimates, and the closeness of the fits to the acquired data at a representative
sample of image pixels.

The Bayesian decay model selection analysis, as developed in Chapter 5, can be ap-
plied to determine the model that most-likely underlies the analysed time-resolved data
from any number of different models. In this work, a Bayesian decay model selection al-
gorithm that distinguishes between mono- and bi-exponential decay data is presented, the
Bayesian decay model selection algorithm having been developed to quantify the relative
probabilities of the two models. The developed Bayesian decay model selection algo-
rithm determines the most-probable decay modelH? from an ensemble that includes only
a mono-exponential decay modelH1 and a bi-exponential decay modelH2, as formalised
below (from Chapter 4, Eqn. (4.6)),

• Mono-exponential decay model
H1 : p(s) = θ(s) 1

τ1
e−s/τ1 , τ1 > 0.

• Bi-exponential decay model
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H2 : p(s) = θ(s) 1
w1+w2

[
w1

τ1
e−s/τ1 + w2

τ2
e−s/τ2

]
, w1 > 0, w2 ≥ 0, τ1 >

0, τ2 > 0.

It is important to appreciate the need to be precise in the interpretation and description
of the results of the developed Bayesian model selection algorithm; in this chapter the
Bayesian model selection algorithm has been applied on the assumption that an ensemble
including only mono-exponential and bi-exponential decay models is sufficient for the
analysed data. Although not necessarily always explicitly stated, it should be understood
that as the ensemble includes only mono-exponential and bi-exponential decay models, it
is not possible to make inferences regarding the likelihood of, say, a tri-exponential decay
(or some non-exponential decay process). Should there be a suspicion that decay data
under consideration is due to, say, a tri-exponential decay then the Bayesian algorithm
can be extended such that the relative likelihoods of a mono-exponential, bi-exponential,
and tri-exponential decay model are determined.

The results of the application of Bayesian model selection to the experimental biologi-
cal data, for which decay parameter analysis results were presented in Chapters 6 & 7, are
presented in Section 9.2; Bayesian model selection thereby reinforcing the validity of the
use of a mono-exponential decay model for the analysis of the human carcinoma cell data
(Chapter 6) and a bi-exponential decay model for the analysis of the human breast cancer
tissue data (Chapter 7). In Section 9.3 the performance of the Bayesian model selection
algorithm at low intensities is considered, its effectiveness in correctly classifying time-
resolved data as the FRET efficiency and interacting fraction of a synthetic bi-exponential
decay are varied in Sections 9.3.1 & 9.3.2 respectively. However, before considering the
performance of Bayesian decay model selection, the typical means of inferring which
decay model is most appropriate is discussed in Section 9.1.

9.1 Decay model selection by visual inspection

In this section, the justification for using a particular decay model based on comparisons
of the results of analysis using a selection of decay models is considered. The clues
available for selecting the most appropriate decay model, or at least avoiding a clearly
unsuitable decay model, from visual inspection of the analysis results are considered using
two synthetically generated data sets, one simulating a mono-exponential decay and the
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other a bi-exponential decay.
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Figure 9.1: Fitted decay and residuals as a visual aid for decay model selection: In
(a) synthetically generated mono-exponential decay data with accompanying fits and
residuals from mono- and bi-exponential analysis, and in (b) the same for synthetic
bi-exponential decay data. In (a) notice that it is not possible to resolve the mono- and
bi-exponential fits to the synthetic mono-exponential data. Notice in (a) that there are no
discernable differences between the residuals due to mono- and bi-exponential analysis
of mono-exponential decay data. It is clear in (b) that the residuals from mono- and
bi-exponential analysis of bi-exponential decay data differ considerably.

The fitted decays from a mono-exponential analysis and a bi-exponential analysis of
the two data sets are shown in Fig. 9.1, along with their respective data-weighted residuals.
The weighted residuals plot, which tracks the difference between the fitted and measured
photon count at each bin, offers a convenient graphical method of inspecting how well
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a particular model represents the data. Any obvious trends in the residuals distribution
suggests an inappropriate model, whereas a model can be considered to appropriately fit
the analysed data if the residual values are randomly distributed about the zero line.

There is no discernable difference between the fitted decays and their weighted resid-
uals due to mono- and bi-exponential analysis of the mono-exponential decay data, as can
be seen in Fig. 9.1 (a). Of course, a bi-exponential analysis is likely to yield a fitted decay
that more closely corresponds to the data than a mono-exponential analysis is able to of-
fer; the more parameters that a model has the easier it should be for it to closely fit some
given data. However, differences between a mono-exponential fit and the bi-exponential
model could be a consequence of the bi-exponential model “fitting to the noise” due to the
additional flexibility it afforded by having more model parameters. In an effort to guard
against such over-fitting it is usual to select the simplest of the models that adequately
describes the data. On visual inspection of the fitted decays and their respective residuals,
it would be likely that the data in Fig. 9.1 (a) would be correctly characterised as being
due to a mono-exponential decay process.

As can be seen in Fig. 9.1 (b), inspection of the fitted decays due to mono-exponential
and bi-exponential analysis of the bi-exponential decay data suggests that there is a clear
difference between the two analyses. It is apparent that the mono-exponential fit does
not follow the data as closely as does that due to bi-exponential analysis; the mono-
exponential model has been unable to capture the effects of the fast decay component
immediately following the peak of the transient. Mono-exponential analysis of the bi-
exponential decay data yields an estimated mono-exponential decay lifetime of 1.65 ns,
between the true bi-exponential decay lifetimes of 2.0 ns and 0.5 ns. It is obvious, on
visual inspection, that the residual values due to bi-exponential analysis are randomly dis-
tributed about the zero line. Inspection of the residuals suggests that a mono-exponential
model is not adequate for the description of the bi-exponential data; the mono-exponential
residuals indicate that on the rise of the transient the fitted photon count is over-estimated,
at the beginning of the decay of the fitted photon count is underestimated, and in the latter
half of the measurement window the fitted photon count is consistently overestimated.
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9.2 Applied to human breast cancer cells and tissue

In this section the effectiveness of the Bayesian decay model selection algorithm on its
application to experimental biological data, the same data which were analysed for the
decay parameter estimation results presented in Chapters 6 & 7 and assumed to be mono-
exponential and bi-exponential respectively, is demonstrated.

The Bayesian decay model selection algorithm was configured to determine, at each
image pixel, whether the time-resolved decay data were most likely to be due to a mono-
exponential or a bi-exponential fluorescence decay process and to estimate the relative
likelihood of the two decay models. The human epithelial carcinoma cells and the breast
tissue sample were both imaged using the Galileo microscope, the time resolved data
being acquired into 256 time bins (of equal width) that subdivide a measurement interval
of 15 ns. As the intensity at each image pixel was insufficient for a reliable bi-exponential
analysis to be performed, 7 × 7 spatial binning was invoked. The Bayesian determined
optimal single Gaussian instrument response approximation was used in both analyses.

The Bayesian decay model selection analysis strongly echoes the expectation that the
fluorescence emission from the human epithelial carcinoma cells expressing cdc42-GFP
closely follows a mono-exponential decay (Fig. 9.2 (b,c)); 93% of the analysed image
pixels being determined to be most likely due to a mono-exponential decay. On analysis
of the 37440 analysed pixels, 34796 pixels (93%) were deemed to be be due to a mono-
exponential decay model H1 and the remaining 2644 pixels (7%) classified as being due
to a bi-exponential decay processH2. On analysis of the human breast cancer tissue data,
Bayesian decay model selection is resoundingly supportive of the data being due to a bi-
exponential decay model (or, at least, not being due to a mono-exponential decay model).
All image pixels are classified as having bi-exponential decay data, and all with very close
to 100% probability. It should be stressed that the Bayesian model selection algorithm can
only determine the most likely model from those models against which the time-resolved
data is tested. In this case, only mono-exponential and bi-exponential decay models are
considered, that is, it is assumed that the decay process is not tri-exponential or of some
other form.

The fitted decays and residuals from mono-exponential and bi-exponential analyses of
both the human carcinoma cell data and the breast cancer tissue data are shown in Fig. 9.3;
similar arguments to those applied in Section 9.1 also suggest that the human carcinoma
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Figure 9.2: Bayesian decay model selection applied to human breast cancer cell and
tissue data: In (a) an intensity image from the human epithelial carcinoma cell data
analysed for Chapter 6 (mono-exponential analysis), in (b) the Bayesian determined
most probable decay model map, and in (c) the relative probability of the decay being
bi-exponential as opposed to mono-exponential. In (d) the intensity image of the human
breast cancer tissue analysed for Chapter 7 (bi-exponential analysis), and in (e) and (f)
the corresponding maps of the most probable decay model and the relative likelihood of
a bi-exponential model as compared to a mono-exponential model respectively.

cell data are mono-exponential and the breast cancer tissue data are bi-exponential.
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(b) Human breast cancer tissue data

Figure 9.3: Fitted decays and residuals from mono-exponential and bi-exponential anal-
ysis of human breast cancer cell and tissue data: Fitted decays and respective residuals
from mono-exponential and bi-exponential analysis of the human carcinoma cell data
in (a), and in (b) the same for the breast cancer tissue data.

9.3 Low count synthetic data

In this section the performance of the Bayesian model selection algorithm is assessed us-
ing synthetic data, for various FRET efficiencies in Section 9.3.1, for various interacting
fractions in Section 9.3.2, and for binary FRET detection for very low photon count data
in Section 9.4. The results presented in Sections 9.3.1 & 9.3.2 were obtained on appli-
cation of the Bayesian model selection algorithm to the same synthetic bi-exponential
data that had been subject to bi-exponential decay parameter analysis for Sections 7.1.1
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& 7.1.2 in Chapter 7. In Section 9.4 the effectiveness of Bayesian decay model selection
to characterise mono-exponential and bi-exponential decay data having intensities below
about 1000 photon counts is demonstrated.

Unless stated otherwise, the Bayesian model selection algorithm was tested using data
that simulated a TCSPC system having a repetition rate of 40 MHz and a measurement
interval of 20.0 ns partitioned into 256 bins of equal width. All of the analysed transients
were generated to incorporate the effects of a Gaussian instrument response, a uniform
background of 0.5 counts per bin, and the addition of Poisson noise at each bin.

9.3.1 Performance and FRET efficiency

In this section the results of the application of the Bayesian model selection algorithm
to synthetic bi-exponential data having various FRET efficiencies, at a fixed interacting
fraction, are presented; the bi-exponential decay parameter analysis estimates for the same
data was presented in Section 7.1.1. Transients with an intensity of about 10000 total
photon counts and having different FRET efficiencies were generated by varying the ratio
of the lifetimes of the bi-exponential decay components (with the lifetime of the slower
decay component fixed at 2.0 ns), the initial amplitudes of the decay components being
fixed to yield an interacting fraction of 0.5 in all cases.

The frequency with which the Bayesian decay model selection algorithm predicts a
bi-exponential decay to be the most-probable model is shown in Fig. 9.4, along with the
distribution of the probability assigned to the data being due to a bi-exponential decay.
The Bayesian model selection algorithm correctly predicts a bi-exponential decay model
for almost all of the analysed data when the FRET efficiency exceeds about 50%, that is,
when the bi-exponential decay lifetime τ1 of the slower decay component is more than
double the lifetime τ2 of the faster decay component. Bayesian model selection is more
likely to predict the data to be mono-exponential when the ratio of the bi-exponential
decay lifetimes are closer.

9.3.2 Performance and FRET interacting fraction

The results of the application of the Bayesian model selection algorithm to synthetic bi-
exponential data having various interacting fractions, at a fixed FRET efficiency, are pre-
sented in this section; the bi-exponential decay parameter analysis estimates for the same
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Figure 9.4: Bayesian decay model selection and FRET efficiency: In (a) the frequency
with which the Bayesian model selection algorithm predicts a bi-exponential decay to
be the most-probable model, and in (b) the distribution of the probability assigned to the
bi-exponential model. Different FRET efficiencies were simulated by varying the ratio
of the lifetimes of the bi-exponential decay components (the lifetime of the slower decay
component being fixed at 2.0 ns), the initial amplitudes of the decay components being
fixed to yield an interacting fraction of 0.5 in all cases. All of the analysed transients
were generated to have an intensity of about 10000 total photon counts. At each different
interacting fraction 210 transients were analysed.

data was presented in Section 7.1.2. Transients having different interacting fractions were
generated by varying the ratio of the initial amplitudes of the bi-exponential decay com-
ponents, the lifetimes of the decay components were fixed at 2.0 ns and 0.5 ns yielding a
FRET efficiency of 0.75. All of the analysed transients were generated to have an intensity
of about 10000 total photon counts.

The frequency with which the Bayesian decay model selection algorithm predicts a
bi-exponential decay to be the most-probable model is shown in Fig. 9.5, along with the
distribution of the probability assigned to the data being due to a bi-exponential decay. It
is evident that, at least at a FRET efficiency of 0.75 and an intensity of about 10000 total
counts, the Bayesian decay model selection algorithm correctly predicts a bi-exponential
decay model when the interacting fraction exceeds about 0.25. The Bayesian model se-
lection algorithm does not correctly extract a bi-exponential model for interacting fraction
values of less than about 20%, more frequently predicting instead that a mono-exponential
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Figure 9.5: Bayesian decay model selection and FRET interacting fraction: In (a) the
frequency with which the Bayesian model selection algorithm predicts a bi-exponential
decay to be the most-probable model, and in (b) the distribution of the probability as-
signed to the bi-exponential model. Different interacting fractions were simulated by
varying the ratio of the initial amplitudes of the two decay components, their lifetimes
being fixed at 2.0 ns and 0.5 ns. All of the analysed transients were generated to have
an intensity of about 10000 total photon counts. At each different interacting fraction
210 transients were analysed.

decay is inherent in the data. It should also be noted that the Bayesian model selection
algorithm correctly characterises the data as being due to a mono-exponential decay at the
extremes of the tested interacting fraction values (i.e. 0% and 100%).

The failure of the Bayesian model selection algorithm to determine the decay model
to be bi-exponential for interacting fractions smaller than about 0.3 is consistent with the
broadening of the distributions of the bi-exponential decay parameter estimates as shown
in Figs. 7.13 & 7.14 (Chapter 7). At interacting fractions lower than about 0.4 the uncer-
tainty in the Bayesian estimated FRET efficiency starts to increase significantly, as shown
in Fig. 7.15 (Chapter 7), and below interacting fractions of about 0.3 the accuracy of
the Bayesian estimated FRET efficiency is poor; the Bayesian model selection algorithm
prefers a bi-exponential model for description of the data but, as the larger uncertainty in
the Bayesian estimated FRET efficiency and interacting fraction, not always the correct
bi-exponential model.
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9.4 Binary determination of the occurrence of FRET

In this section the potential for the use of Bayesian model selection to sort between
low photon count mono-exponential and bi-exponential data is demonstrated. Mono-
exponential transients were generated to have a decay lifetime of τ1 = 2.0 ns. Bi-
exponential transients having a FRET efficiency of 75% and an interacting fraction of
0.5 were simulated by fixing the lifetimes of the decay components to be τ1 = 2.0 ns

and τ2 = 0.5 ns and their initial amplitudes to be equal. All of the analysed tran-
sients simulated a background-free system. The same Bayesian determined optimal single
Gaussian instrument response approximation was used for both the analysis of the mono-
exponential and the bi-exponential data.

The performance of Bayesian model selection to classify the synthetic low count data
as being mono-exponential or bi-exponential is shown in Fig. 9.6. The Bayesian model
selection algorithm correctly identifies the mono-exponential decay data to be mono-
exponential for more than 95% of analysed pixels, for intensities between about 100 and
1000 photon counts; there is a residual error rate of under 5%, which persists even as
the intensity is increased, where the mono-exponential data are misclassified as being
bi-exponential by the Bayesian model selection algorithm. The extraction of the correct
decay model proves to be more challenging for bi-exponential decay data at such low
intensities, however, at an intensity of about 500 photon counts the Bayesian model se-
lection algorithm is able to correctly identify the decay data to be bi-exponential for more
than 90% of analysed pixels. At intensities below about 200 photon counts the algorithm
is more likely to predicted the bi-exponential decay data to be mono-exponential.

Inspection of typical mono-exponential and bi-exponential decay data at such a low
intensity, and the corresponding fitted decays and their respective residuals, emphasises
just how difficult a task it would be to determine by visual inspection that the data are
actually due to a bi-exponential decay, as is illustrated in Fig. 9.7. The Bayesian model
selection algorithm correctly classifies the mono-exponential decay data (which has an
intensity of 478 photon counts) as being mono-exponential (Fig. 9.7 (a)), although it does
assign an 11% probability that the data may be due to a bi-exponential decay; on inspect-
ing the fitted mono-exponential and bi-exponential decays and their respective residuals,
and applying the same reasoning as applied in Section 9.1, it would be almost impos-
sible to disagree with the Bayesian prediction that the data is mono-exponential. The
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Figure 9.6: Bayesian decay model selection for binary FRET determination: In (a)
and (b) the frequency with which the Bayesian model selection algorithm predicts a
bi-exponential decay to be the most-probable model on application to to low intensity
mono-exponential and bi-exponential data respectively, and in (c) and (d) the distribu-
tion of the probability assigned to the model being bi-exponential. Mono-exponential
transients were generated to have a decay lifetime of τ1 = 2.0 ns. Bi-exponential tran-
sients having a FRET efficiency of 75% and an interacting fraction of one half were sim-
ulated by fixing the lifetimes of the decay components to be τ1 = 2.0 ns and τ2 = 0.5 ns
and their initial amplitudes to be equal. At each intensity 210 transients were analysed.
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Figure 9.7: Fitted decay and residuals as a visual aid for decay model selection at low
intensities: In (a) synthetically generated mono-exponential decay data with accompa-
nying fits and residuals from mono-exponential and bi-exponential analysis, and in (b)
the same for synthetic bi-exponential decay data. Notice that at an intensity of about
750 photon counts it is not possible to resolve the mono-exponential and bi-exponential
fit to either the mono-exponential or bi-exponential synthetic data, nor are there any dis-
cernable differences between the residuals due to mono-exponential and bi-exponential
analysis.

bi-exponential decay data has an intensity of 419 photon counts (Fig. 9.7 (b)); despite
the transient appearing to be very challenging for any form of analysis, Bayesian model
selection assigns a probability of 97% to the decay being bi-exponential and therefore
correctly predicted the decay to be bi-exponential. Clearly, it would very difficult to con-
fidently distinguish the decay as bi-exponential on the basis of visual inspection of the
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fitted decays and their respective residuals; for these data the only comment that could be
made in favour of a bi-exponential decay is that the bi-exponential residuals appear to be
very slightly more randomly distributed about the zero line than do the mono-exponential
residuals, the difference is though very slight.

650 850

Intensity [counts]

(a)

H1 H2

Most probable model

(b)

0.0 1.0

p(H2)

(c)

Figure 9.8: Bayesian decay model selection for FRET detection: Bayesian model selec-
tion images for the analysis of synthetic data having an intensity of about 750 photon
counts. The pixels in the left half of the intensity image in (a) contain mono-exponential
decay data, each generated to have a decay lifetime of τ1 = 2.0 ns, and the pixels in the
right half contain bi-exponential decay data, each generated to have a FRET efficiency
of 75% and an interacting fraction of one half by fixing the lifetimes of the decay com-
ponents to be τ1 = 2.0 ns and τ2 = 0.5 ns and their initial amplitudes to be equal. In (b)
and (c) the Bayesian predicted most probable decay model and the probability assigned
to the data being bi-exponential respectively.

The Bayesian model selection algorithm is able to successfully distinguish between
mono-exponential and bi-exponential decay data at very low intensities of about 750 pho-
ton counts, as shown in Fig. 9.8. The pixels in the left half of the image contain mono-
exponential decay data, each generated to have a decay lifetime of τ1 = 2.0 ns, and the
pixels in the right half contain bi-exponential decay data, each generated to have a FRET
efficiency of 75% and an interacting fraction of 0.5 by fixing the lifetimes of the decay
components to be τ1 = 2.0 ns and τ2 = 0.5 ns and their initial amplitudes to be equal. The
analysed transients were generated to simulate a TCSPC system having a repetition rate
of 40 MHz, a measurement interval of 20.0 ns partitioned into 256 bins of equal width,
and incorporated the effects of a Gaussian instrument response, no background (i.e. uni-
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form background of 0.0 counts per bin), and the effects of Poisson noise. Of the 2048
mono-exponential decays that were analysed 84 of them were incorrectly classified as be-
ing bi-exponential (i.e. false positives) and of the 2048 bi-exponential decays analysed 53
were classified as being mono-exponential (i.e. false negatives). Overall, the occurrence
of FRET was predicted with about 97% accuracy by Bayesian decay model selection; an
achievement that surely would not be possible by visual inspection of the fitted decays
and their residuals, even should the FLIM data analyst be blessed with an abundance of
time and even more patience.

Bayesian model selection could be used to sort between entities exhibiting either a
mono-exponential or a bi-exponential decay where only low intensity data is available.
Additionally, if the Bayesian decay model selection algorithm were to yield results suf-
ficiently quickly it could form part of an adaptive imaging scheme where the dwell time
at regions that are potentially undergoing FRET, having been classified as most-probably
bi-exponential, is increased at the expense of regions that are unlikely to be undergoing
FRET and have been classified as being most likely to be mono-exponential. Of course,
for such an analysis to be effective the interacting fraction and FRET efficiency of the bi-
exponential decay regions would need to be within the range where the model selection
algorithm is known to work well. Such an analysis may prove to be potentially very useful
in situations where the acquired data has insufficient photon counts for a bi-exponential
decay analysis to yield parameter estimates with an uncertainty small enough for them to
be useful, but where knowledge that FRET is occurring is beneficial.
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Part IV

Discussion
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The photon-by-photon Bayesian analysis for time-resolved FLIM data that has been
presented in this thesis has been developed with the intention of providing the best possi-
ble analysis of TCSPC FLIM data. The desire for such a gold standard analysis may have
initially been provoked by the need for more accurate mono- and bi-exponential decay
parameter estimates with fewer photon counts, but as has been demonstrated the exploita-
tion of the developed time-domain FLIM system model in the Bayesian framework is able
to offer considerably more than just robust parameter estimation. In concluding this the-
sis, the developed Bayesian analysis for time-domain FLIM data is now reviewed, from
its theoretical underpinnings through to its application to experimental biological data.
The appeal of the developed fully-analytic time-domain FLIM system model is consid-
ered, and the results of its application in a Bayesian framework for the purposes of mono-
and bi-exponential decay parameter estimation, instrument response determination, and
decay model selection are summarised. The potential advantages and disadvantages that
the developed Bayesian techniques may offer for FLIM data analysis are then discussed.

The fully analytic time-domain FLIM system model introduced in Part II incorporates
a multi-exponential decay, an analytic approximation to the instrument response, and rig-
orously accounts for the effects of repetitive excitation that is inherent to a time-resolved
system. The model describes the likelihood of a photon being counted into any of the
time-bins within the entire measurement interval; the application of the FLIM system
model for FLIM data analysis permits the use of all of the available data. The established
direct-fitting analysis approaches that fit a decay to the measured photon count histogram
sometimes operate only on the data between the peak of the transient and the end of the
measurement window, information present in the data at the beginning of the measure-
ment window sometimes being discarded and sometimes not being used correctly. In
developing a Bayesian analysis for FLIM data one of the primary objectives was to re-
duce the number of photon counts required for a trustworthy analysis, thereby facilitating
shorter imaging durations, it was therefore deemed essential that all available information
should be used. Acquiring data having a sufficient intensity to yield useful parameter esti-
mates is often difficult, and sometimes may not even be possible. It is obviously desirable
to make the best possible use of all of those photon counts that have been acquired. In
developing an analysis targeted at low intensity data, discarding useful information just
because the analysis is unable to handle it is not an option.

In striving to obtain the greatest possible benefit from TSCPC acquired data, and
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thereby the advantages the technique offers when performing FLIM to study the cellular
environment, effective analysis is especially required when total photon counts are mea-
gre. The benefit of the developed Bayesian analysis is most apparent at low total counts,
potentially offering shorter imaging durations, or an improved spatial resolution by re-
ducing the need for spatial binning, or both. In Part III the results of the application of
the developed Bayesian analysis algorithms to low photon count data were presented; in
Chapters 6 & 7 the developed Bayesian mono- and bi-exponential analysis algorithms
were shown to consistently provide lifetime estimates with a greater accuracy than those
of ML, LS, and phasor analysis, as discussed in greater detail below.

Bayesian mono-exponential analysis was shown to compare favourably with ML, LS,
and phasor analysis in Chapter 6, as was initially reported in [1] for an analysis based on
a FLIM system model that has since evolved. Bayesian mono-exponential analysis offers
robust estimation with greater precision at very low total photon counts, particularly in the
presence of significant background levels. Decay lifetime estimates within an accuracy of
20% with about 50 counts on the application of Bayesian mono-exponential analysis to
synthetic decay data incorporating a 10% uniform background, this level of precision is
not achieved with ML nor phasor analysis techniques with fewer than 100 photon counts.
The analysis of low photon count data, obtained by imaging human epithelial carcinoma
cells expressing cdc42-GFP, Bayesian analysis estimates the green fluorescent protein
(GFP) lifetime to a level of accuracy not obtained using ML or other techniques. The
robust performance and improved parameter estimates that Bayesian mono-exponential
offers suggest that its use should always be seriously considered; rather than arguing for
the use of Bayesian analysis on a case by case basis, such as for low count data, or for
data including a significant background, perhaps it should be that if Bayesian analysis is
not to be used for an analysis then a strong argument in favour of an alternative technique
should be available.

The advantages offered by the developed implementation of Bayesian mono-
exponential analysis are also highlighted in Chapter 6; the posterior distribution offers
considerably more information than just the most likely decay parameter values. The
Bayesian analysis implementation enables the posterior distribution to be explored graph-
ically, and also offers the decay parameter average values and a reliable measure of the
uncertainty associated with parameter estimates (Fig. 6.1). The visualisation of the poste-
rior distribution provides an appealing means of assessing the reliability of decay param-
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eter estimates, perhaps particularly appealing to a non-expert analyst, and could also offer
a graphical means of determining when data having sufficient intensity had been acquired
(Fig. 6.2). The uncertainty in the mono-exponential lifetime, as determined from the
posterior distribution, was shown to correspond closely with the empirically-determined
estimated uncertainty (Fig. 6.11); uncertainty maps indicate where within an image the
most and least reliable lifetime estimates are situated, another visualisation that could
prove useful both within a single image and also when applied to a sequence of images.

Bayesian bi-exponential analysis was shown in Chapter 7 to offer a modest improve-
ment in the accuracy of the decay parameter estimates compared to those of ML and LS
analysis. The Bayesian lifetime estimates were shown to converge to the true values at
slightly lower intensities than did those of ML and LS analysis (Fig. 7.2), for synthetic
data having a FRET efficiency of 75% and an interacting fraction of 0.5; for example,
Bayesian estimates of the lifetime of the faster decay component were achieved within an
accuracy of 20% at an intensity of about 5000 photon counts, estimates with such accuracy
not being achieved until intensities of about 6500 and 7000 photon counts with ML and
LS analysis respectively. The initial amplitude of the faster decay component also being
determined with less uncertainty (Fig. 7.4). The greater accuracy in the bi-exponential de-
cay parameter estimates yielding more accurate FRET efficiency and interacting fraction
determination (Fig. 7.7) The Bayesian FRET efficiency and interacting fraction estimates
also showed greater stability at very high FRET efficiencies than did those due to ML and
LS analysis (Fig. 7.10). On the application of Bayesian bi-exponential analysis to breast
cancer tissue data (Section 7.2) for comparison with ML and global ML analysis, a more
general difficulty faced in analysing multi-exponential decay data was encountered; three
different analysis methods each yielding very different results. In attempting to ascertain
why the results of the different methods are not consistent with each other, inspection of
the background estimates revealed only the Bayesian estimates to be consistent with the
data (and expectation for the microscope system), and also suggest a spatial variation of
FRET efficiency that ML and global ML analysis did not.

Although the results of the application of the Bayesian mono- and bi-exponential de-
cay analysis algorithms demonstrate that they do offer a robust analysis for FLIM data
with superior parameter estimates, it should be stressed that one of the key result of
this work, perhaps as significant as the improved mono- and bi-exponential decay pa-
rameter estimates, has been the development of the fully analytic time-domain FLIM
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system model. The developed fully analytic FLIM system model makes it possible to
quantify how change in one of the FLIM system variables will influence the system as
a whole. In this work, the fully analytic time-domain FLIM system model has been
exploited for simultaneous fluorescence decay and instrument response parameter esti-
mation, and also for fluorescence decay model selection without the need for numerical
integration. Having already discussed the improved analysis offered by the Bayesian
mono- and bi-exponential algorithms, attention now turns to the results of Bayesian SID
analysis (Chapter 8) and Bayesian decay model selection (Chapter 9).

A Bayesian decay model selection algorithm has been applied to distinguish between
mono- and bi-exponential decay data, quantifying the likelihood of the two models. On
application to low intensity (about 750 photon counts) synthetic decays, Bayesian model
selection was able to distinguish mono-exponential data from bi-exponential data with
97% accuracy, and may provide a means of determining where in a sample FRET is
likely to be occurring even if the intensity is not sufficient to provide statistically relevant
bi-exponential parameter estimates. The Bayesian model selection algorithm was demon-
strated to function effectively on the experimental biological data that were analysed for
Chapters 6 & 7; it is reassuring that 93% of analysed pixels of an image from the human
carcinoma cell data (Chapter 6) were determined to be mono-exponential given that the
samples were specifically prepared to yield a mono-exponential decay. On application to
the breast cancer tissue data (Chapter 7), Bayesian model selection predicted that all of
the analysed image pixels contain bi-exponential decay data, or at least that they do not
contain mono-exponential decay data. The reliability and accuracy of bi-exponential pa-
rameter estimates were shown to depend heavily on the FRET efficiency and interacting
fraction of the analysed decay (Chapter 7); Bayesian model selection was able to cor-
rectly classify bi-exponential data for decays having a FRET efficiency greater than about
50% and for decays having an interacting fraction of greater than about one third, values
consistent with the limit of stability of bi-exponential parameter estimates (for all anal-
ysis methods, at least at the tested intensity), and could be used as a guide as to when a
reliable bi-exponential analysis cannot be performed. As developed, the Bayesian decay
model selection algorithm is only able to distinguish between mono- and bi-exponential
decays; should it be desirable the implementation could be extended to offer model se-
lection between mono-, bi-, and tri-exponential decays (or other decay models if really
needed).
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The simultaneous estimation of decay and instrument response parameters has been
shown in Chapter 8 to be effective in determination of the instrument response approxi-
mation from the decay data alone. Indeed, for each of the different Bayesian algorithms,
every result presented in Part III was obtained with an optimal instrument response ap-
proximation determined by the Bayesian SID algorithm. Although the Bayesian SID
algorithm has been demonstrated to be useful both for determination of the optimal instru-
ment response approximation and for decay analysis when the actual instrument response
is not known, a drawback of the Bayesian SID algorithm as currently implemented is that
it must be configured with the appropriate decay model and the number of Gaussian com-
ponents that contribute to the instrument response approximation. A preferable approach,
that uses the decay data, would be based on Bayesian model selection to determine the
number of components required for the optimal instrument response approximation with
the decay model being assumed. Alternatively, an even more ambitious approach that
could be pursued for the determination of the optimal instrument response approximation
would be to determine the most-probable decay model, the optimal number of Gaussian
components and the most-probable parameter values for each component simultaneously.

The different Bayesian algorithms have been demonstrated to provide effective anal-
ysis, and in the case of decay parameter estimation Bayesian analysis has been shown to
offer estimates that compare favourably with those from ML, LS, and phasor analysis.
However, the results offered by Bayesian analysis do come at a cost; processing using the
developed Bayesian analysis algorithms takes considerably longer than it does with the
established methods, as summarised in Table 9.1.

Approximate analysis timings (per transient)
Decay model Bayesian ML LS Phasor analysis
Mono-exponential 1.70 ms 0.17 ms 0.10 ms 0.03 ms
Bi-exponential 457.81 ms 0.51 ms 0.31 ms -

Table 9.1: The approximate time required to perform Bayesian analysis, ML, LS, and phasor
analysis. All results were obtained using a 2.53 GHz Intel Quad Core CPU with the C code
compilation optimized for speed, average processing duration per transient is quoted from the
analysis of synthetically generated data.

Clearly, Bayesian bi-exponential analysis of anything more than just a handful of such
images would require the availability of considerable computing power or a lot of time
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and patience, or most likely both. Putting the timings quoted in Table 9.1 into perspective
for analysis of typical experimental data, it took about 64 seconds for a Bayesian mono-
exponential analysis of a single image from the human carcinoma cell data, whereas ML,
LS, and phasor analysis all provided estimates in under 16 seconds. The Bayesian bi-
exponential analysis of the breast cancer tissue data (Section 7.2) took almost 8 hours;
ML and LS analysis of the same data took about 37 seconds and 22 seconds respectively.
Significant efforts have been directed towards reducing the analysis duration, and the fig-
ures quoted in Table 9.1 are, in fact, based on an optimised ‘rapid’ implementation of the
Bayesian analysis algorithms. Given that it is when photon counts are in short supply that
Bayesian analysis offers the greatest advantage, should photon counts be plentiful then it
would be understandable if ML analysis would be preferred, waiting for Bayesian anal-
ysis with the advantage of only a slightly improved accuracy in the parameter estimates
will appeal only to a very patient minority. Regardless of timing, though, the use of LS
analysis could rarely be supported unless the data is of very high intensity, no alternative
analysis implementations are available, and it is acknowledged that superior parameter
estimates would be obtained with either ML or Bayesian analysis. Of course, as analysis
of the breast cancer tissue data has demonstrated, sometimes it may be that the results of
a Bayesian analysis may elucidate something that is not shown up by other methods, and
sometimes the results may be worth the wait.

The Bayesian analysis implementation that was used to obtain the results presented
here was developed primarily with robustness in mind. An accelerated Bayesian im-
plementation could be realised by use of GPUs (graphical processing units) for faster
computation, as has been achieved for number of medical imaging technologies [108],
and recently for faster analysis in high-density localization microscopy [109]. Although
in developing the Bayesian routines efforts were made to provide a ‘rapid’ implementa-
tion, it is certainly possible that the algorithms could be made considerably faster using
optimised parallel computation. The current ‘rapid’ implementation of the Bayesian al-
gorithms is, with only slight adaption, amenable to such an implementation.
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Appendices
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Appendix A

A fully analytic time-domain FLIM
system model

The development of the time-domain FLIM system model, as introduced in Chapter 4, is
presented here in greater detail. In Section A.1 a step-by-step development of the model
is presented, intermediate steps that have not been presented in the main body of this
work are outlined with a brief commentary as to the mathematical properties employed
at each stage of the model development. In Section A.2 the development of Bayesian
fluorescence decay model selection using a Gaussian approximation is given.

A.1 Step-by-step time-domain FLIM system model de-
velopment

This section provides a step-by-step the development of the model presented in Chap-
ter 4, offering a more expansive commentary of the model’s development and detailing
explicitly any mathematical tricks that have been employed.

A.1.1 Repetitive excitation in TCSPC FLIM

The photon arrival time data collected consists of the recorded time ∆t on a periodic
time window of duration Tm, of a photon with emission time t, that due to effects of
the experimental apparatus, may have been delayed by a delay time u. Arrival times
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are recorded only during a measurement interval of duration T ≤ Tm, and therefore
∆t ∈ [0, T ]. Formalising this, the recorded photon arrival time determined with respect
to the periodic window is given by,

∆t = t+ u− Tm.int

(
t+ u

Tm

)
(A.1.1)

The probability of photon arrival time ∆t being recorded in the measurement interval
[0, T ] on the periodic window is given by,

p(∆t) = θ(∆t)θ(T −∆t)
{w0

T

+(1− w0)

∫∫∞
0
dtdu p(t)Γ(u)δ

(
∆t− t− u+ Tm.int

(
t+u
Tm

))
∫ T

0
d∆t′

∫∫∞
0
dtdu p(t)Γ(u)δ

(
∆t′ − t− u+ Tm.int

(
t+u
Tm

))


(A.1.2)

where the emission time t is distributed according to the decay signal p(t), and the in-
strument response effects cause a delay u that is distributed according to Γ(u) (it being
assumed that the instrument can only introduce non-negative delays (i.e. Γ(u) = 0 if u <

0)). This expression can then be developed to the more generally useful expression of
Eqn. (A.1.3), where the influence of recording arrival times with respect to the periodic
window is captured by a summation. Rewriting the integral as follows,

∫ ∞
0

du Γ(u) δ

(
∆t− t− u+ Tm.int

(
t+ u

Tm

))
=
∑
`≥0

∫ ∞
0

du Γ(u) δ (∆t− t− u+ `Tm) δ`,int((t+u)/Tm)

=
∑
`≥0

Γ(∆t− t+ `Tm)

∫ ∞
0

du δ (∆t− t− u+ `Tm) δ`,int((t+u)/Tm)

=
∑
`≥0

Γ(∆t− t+ `Tm)θ[∆t− t+ `Tm]δ`,int((∆t+`Tm)/Tm)

=
∑
`≥0

Γ(∆t− t+ `Tm)δ`,int(`+∆t/Tm)θ[`+ (∆t− t)/Tm].
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where δ(x) represents the Dirac delta function which exists only when x is equal to zero
(i.e.

∫
dx δ(x)f(x) = f(0) for any function f(x)), δi,j is the Kronecker delta function

which exists only when i = j, and the step function is denoted by θ(x) with θ(x > 0) = 1

and θ(x ≤ 0) = 0. By definition, any observed photon arrival time ∆t ∈ [0, T ] must fall
within the measurement interval and therefore cannot exceed the modulation period Tm
(i.e. ∆t ≤ T ≤ Tm), consequently δ`,int(`+∆t/Tm) = δ`,` = 1 and the integral simplifies
further,

∫ ∞
0

du Γ(u)δ

(
∆t− t− u+ Tm.int

(
t+ u

Tm

))
=
∑
`≥0

Γ(∆t− t+ `Tm)θ[∆t− t+ `Tm]

Since the instrument response approximation Γ(u) is non-zero only for non-negative de-
lay times u (i.e. Γ(u) = 0 if u < 0), the above expression simplifies yet further, yielding,

∫ ∞
0

du Γ(u)δ

(
∆t− t− u+ Tm.int

(
t+ u

Tm

))
=
∑
`≥0

Γ(∆t− t+ `Tm)

Incorporating this result into Eqn. (A.1.2), the probability of photon arrival time ∆t being
recorded in the measurement interval [0, T ] on the periodic window is now given by,

p(∆t) = θ(∆t)θ(T −∆t)

{
w0

T
+

(1− w0)
∫∞

0
dt p(t)

∑
`≥0 Γ(∆t− t+ `Tm)∫ T

0
d∆t′

∫∞
0
dt p(t)

∑
`≥0 Γ(∆t′ − t+ `Tm)

}
.

(A.1.3)

Denoting by Λ(T, Tm) the normalisation constant in the term due to fluorescence decay
photons, the photon arrival time likelihood (Eqn. (A.1.3)) can be written as,
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p(∆t) = θ(∆t)θ(T −∆t)

w0

T
+

1− w0

Λ(T, Tm)

∞∫
0

dt p(t)
∑
`≥0

Γ(∆t− t+ `Tm)


(A.1.4)

Notice that Eqn. (A.1.4) is completely general, incorporates a uniform background pro-
portion w0, the effects of repetitive excitation (through the summation), an arbitrary in-
strument response Γ(u) and an arbitrary decay signal p(t). The normalisation constant
Λ(T, Tm) is derived in Appendix A.1.5 for the general case (insofar as is possible) and
then for the specific case where the instrument response and decay signal are of the form
chosen in this work.

A.1.2 Discrete time nature of time-domain FLIM data

In accounting for the discrete time nature of the recorded arrival time in our model, the
likelihood of photon arrival time ∆t falling in an interval (i.e. a bin), with a bin being
defined as the interval b = [bL, bH] ⊆ [0, T ], is required. Adopting the shorthand p(b) =

p(∆t ∈ b), the likelihood of a photon arrival time ∆t falling in the bin b = [bL, bH] is
given by,

p(b) =

∫ bH

bL
d∆t θ(∆t)θ(T −∆t)

{
w0

T
+

1− w0

Λ(T, Tm)

∫ ∞
0

dt p(t)
∑
`≥0

Γ(∆t− t+ `Tm)

}

=

∫ bH

bL
d∆t

{
w0

T
+

1− w0

Λ(T, Tm)

∫ ∞
0

dt p(t)
∑
`≥0

Γ(∆t− t+ `Tm)

}

=
w0

T
|b|+ 1− w0

Λ(T, Tm)

∫ bH

bL
d∆t

∫ ∞
0

dt p(t)
∑
`≥0

Γ(∆t− t+ `Tm) (A.1.5)

where the width of the interval is denoted by |b| = bH − bL. It is now convenient to de-
fine the general form of the “fluorescence decay bin-likelihood”, F̂ (τk, b

L, bH, T, Tm, I),
which describes the likelihood of a photon arrival time within the bin b due to the signal
(i.e. not due to the uniform background),
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F̂ (τk, b
L, bH, T, Tm, I) =

1

Λ(T, Tm)

∫ bH

bL
d∆t

∫ ∞
0

dt p(t)
∑
`≥0

Γ(∆t− t+ `Tm, I)

(A.1.6)

with I denoting any parameters required as arguments due to the approximated instrument
response. The bin-likelihood (Eqn. (A.1.5)) can now be written in the more compact form,

p(b) =
w0

T
|b|+ (1− w0)F̂ (τk, b

L, bH, T, Tm, I) (A.1.7)

The fluorescence decay bin-likelihood is developed for the chosen multi-exponential de-
cay signal and approximation to the instrument response in Sections A.1.3 & A.1.4.

A.1.3 A multi-exponential decay signal

The introduction of a multi-exponential decay signal p(t) of the form,

p(t) = θ(t)

∑K
k=1

wk
τk
e−t/τk∑K

k=1 wk
, wk ≥ 0 ∀k

into the general form of the fluorescence decay bin-likelihood (Eqn. (A.1.6)) yields the
following,

F̂ (τk, b
L, bH, T, Tm, I)

=
1∑K

k′=1wk′

K∑
k=1

wk
1

Λ(T, Tm)

∫ bH

bL
d∆t

∫ ∞
0

dt τ−1
k e−t/τk

∑
`≥0

Γ(∆t− t+ `Tm)

Since p(t) is invariant under overall rescaling (i.e. wk 7→ µwk ∀ k), we may choose to
require that

∑K
k=1 wk = 1− w0 in order that the above can be rewritten as,
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F̂ (τk, b
L, bH, T, Tm, I)

=
1

1− w0

K∑
k=1

wk
1

Λ(T, Tm)

∫ bH

bL
d∆t

∫ ∞
0

dt τ−1
k e−t/τk

∑
`≥0

Γ(∆t− t+ `Tm)

=
1

1− w0

K∑
k=1

wkF (τk, b
L, bH, T, Tm, I)

where the quantity F (τk, b
L, bH, T, Tm, I) is defined as,

F (τk, b
L, bH, T, Tm, I) =

1

Λ(T, Tm)

∫ bH

bL
d∆t

∫ ∞
0

dt τ−1
k e−t/τk

∑
`≥0

Γ(∆t− t+ `Tm, I)

(A.1.8)

with I denoting any parameters required as arguments due to the approximated instrument
response. The bin-likelihood can now be written as,

p(b) = |b|w0

T
+

K∑
k=1

wkF (τk, b
L, bH, T, Tm, I) (A.1.9)

The fluorescence decay bin-likelihoodF (τk, b
L, bH, T, Tm, I) is determined for the chosen

approximation to the instrument response in Section A.1.4.

A.1.4 Instrument response effects

In this section an instrument response approximation, comprising a weighted sum of trun-
cated Gaussian distributions, of the form,
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Γ(u, I) =
I∑
i=1

γi
e−

1
2

(u−ui)2/σ2
i

σi
√

2π

2θ[u− δi]
1 + erf((ui − δi)/σi

√
2)
,

δi, ui, σi ≥ 0 ∀i, γi ∈ [0, 1] ∀i,
I∑
i=1

γi = 1

(A.1.10)

is introduced into the model. The quantity γ̃i is defined, for compactness,

γ̃i = γi

(
1 + erf((ui − δi)/σi

√
2)
)−1

(A.1.11)

and the instrument response is written as follows,

Γ(u, I) =
I∑
i=1

Γ̃i(u, I), Γ̃i(u, I) =

√
2√
π

γ̃i
σi
e−

1
2

(u−ui)2/σ2
i θ[u− δi]. (A.1.12)

Incorporating the instrument response, the fluorescence decay bin-likelihood
(Eqn. (A.1.8)) is decomposed into the sum of contributions of each of the instru-
ment response components,

F (τ, bL, bH, T, Tm, I) =
∑
i

F̃i(τ, b
L, bH, T, Tm, I) (A.1.13)

where F̃i(τ, bL, bH, T, Tm, I) represents the contribution of the ith instrument response
component to the overall fluorescence decay bin-likelihood, and is given by,

F̃i(τ, b
L, bH, T, Tm, I) =

τ−1

Λ(T, Tm)

∫ bH

bL
d∆t

∑
`≥0

∫ ∞
0

dt e−t/τ Γ̃i(`Tm + ∆t− t)

(A.1.14)

Determining now the convolution of a component of the multi-exponential decay signal,
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having a decay lifetime τ , and the ith component of the instrument response approxima-
tion as follows,

∫ ∞
0

dt e−t/τ Γ̃i(`Tm + ∆t− t)

=

√
2√
π

γ̃i
σi

∫ ∞
0

dt e−
1
2

(`Tm+∆t−t−ui)2/σ2
i−t/τ θ[`Tm + ∆t− t− δi]

=

√
2√
π

γ̃i
σi
θ[`Tm + ∆t− δi]

∫ `Tm+∆t−δi

0

dt e−
1
2

(`Tm+∆t−t−ui)2/σ2
i−t/τ

=

√
2√
π
γ̃i e

ui/τ θ[`Tm + ∆t− δi] e−(`Tm+∆t)/τ

∫ (`Tm+∆t−ui)/σi

(δi−ui)/σi
du e−

1
2
u2+σiu/τ

=

√
2√
π
γ̃i e

ui/τ+σ2
i /2τ

2

θ[`Tm + ∆t− δi] e−(`Tm+∆t)/τ

∫ (`Tm+∆t−ui)/σi

(δi−ui)/σi
du e−

1
2

(u−σi/τ)2

=
2√
π
γ̃i e

ui/τ+σ2
i /2τ

2

θ[`Tm + ∆t− δi] e−(`Tm+∆t)/τ

∫ (`Tm+∆t−ui)/σi
√

2−σi/τ
√

2

(δi−ui)/σi
√

2−σi/τ
√

2

dv e−v
2

= γ̃i e
ui/τ+σ2

i /2τ
2

θ[`Tm + ∆t− δi] χ̃i(`,∆t, τ, Tm, σi, δi, ui) (A.1.15)

where the quantity χ̃i(`,∆t, τ, Tm, σi, δi, ui) is given by,

χ̃i(`,∆t, τ, Tm, σi, δi, ui)

= e−(`Tm+∆t)/τ

[
erf

(
(ui − δi)τ + σ2

i

σiτ
√

2

)
− erf

(
(ui − `Tm −∆t)τ + σ2

i

σiτ
√

2

)]
Notice that the term θ[`Tm + ∆t − δi] ensures that the integral is positive. The devel-
oped expression describes (without normalisation) the likelihood of a fluorescence de-
cay photon at time ∆t in the measurement interval. The fluorescence decay likelihood
(Eqn. (A.1.14)) due to the ith instrument response component can now be written as,
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F̃i(τ, b
L, bH, T, Tm, I)

=
τ−1

Λ(T, Tm)
γ̃i e

ui/τ+σ2
i /2τ

2
∑
`≥0

∫ bH

bL
d∆t χ̃i(`,∆t, τ, Tm, σi, δi, ui) θ[`Tm + ∆t− δi]

(A.1.16)

Observe that the term θ[`Tm + ∆t − δi] ensures that the fluorescence photon likelihood
is zero until the decay time `Tm + ∆t exceeds the cutoff parameter δi. In determining
the remaining integral, which accounts for the discrete time nature of TCSPC data, it is
convenient to incorporate the bin boundaries directly into the developed expression, as
follows,

∫ bH

bL
d∆t χ̃i(`,∆t, τ, Tm, σi, δi, ui) θ[`Tm + ∆t− δi]

=

∫ ∞
0

d∆t χ̃i(`,∆t, τ, Tm, σi, δi, ui) θ[∆t− (δi − `Tm)]θ[∆t− bL]θ[bH −∆t]

=


0, if bL ≤ bH ≤ δi − `Tm∫ bH
δi
d∆t χ̃i(`,∆t, τ, Tm, σi, δi, ui), if bL ≤ δi − `Tm ≤ bH∫ bH

bL
d∆t χ̃i(`,∆t, τ, Tm, σi, δi, ui), if δi − `Tm ≤ bL ≤ bH,

(A.1.17)

It is evident that if the time bin lies entirely before the cutoff there is no likelihood of a
fluorescence decay photon being counted into it, the likelihood of photon being counted
into a time bin which straddles the cutoff is determined by integrating between the cutoff
and the upper bin boundary, and if the time bin is entirely beyond the cutoff then the
likelihood of a photon arrival time in the bin is determined by integrating between the bin
boundary values. These conditions are encapsulated in the following,
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∫ bH

bL
d∆t χ̃(`,∆t, τ, Tm, σi, δi, ui)θ[`Tm + ∆t− δi]

= θ[`Tm + bL − δi]
∫ δi

bL
d∆t χ̃(`,∆t, τ, Tm, σi, δi, ui)

+ θ[`Tm + bH − δi]
∫ bH

δi

d∆t χ̃(`,∆t, τ, Tm, σi, δi, ui) (A.1.18)

Focussing now on the remaining integral:

∫
d∆t e−(`Tm+∆t)/τ

[
erf

(
(ui − δi)τ + σ2

i

σiτ
√

2

)
− erf

(
(ui − `Tm −∆t)τ + σ2

i

σiτ
√

2

)]
= −τ e−(`Tm+∆t)/τ

[
erf

(
(ui − δi)τ + σ2

i

σiτ
√

2

)
− erf

(
(ui − `Tm −∆t)τ + σ2

i

σiτ
√

2

)]
+ τ

∫
d∆t e−(`Tm+∆t)/τ d

d∆t

{
erf

(
(ui − δi)τ + σ2

i

σiτ
√

2

)
− erf

(
(ui − `Tm −∆t)τ + σ2

i

σiτ
√

2

)}
= −τ e−(`Tm+∆t)/τ

[
erf

(
(ui − δi)τ + σ2

i

σiτ
√

2

)
− erf

(
(ui − `Tm −∆t)τ + σ2

i

σiτ
√

2

)]
− τ

∫
d∆t e−(`Tm+∆t)/τ d

d∆t
erf

(
(ui − `Tm −∆t)τ + σ2

i

σiτ
√

2

)
= −τ e−(`Tm+∆t)/τ

[
erf

(
(ui − δi)τ + σ2

i

σiτ
√

2

)
− erf

(
(ui − `Tm −∆t)τ + σ2

i

σiτ
√

2

)]
+ τ

2

σi
√
π

∫
d∆t exp

(
−(`Tm + ∆t)/τ −

[
(ui − `Tm −∆t)/σi

√
2 + σi/τ

√
2
]2
)

= τ e−(`Tm+∆t)/τ

[
erf

(
(ui − `Tm −∆t)τ + σ2

i

σiτ
√

2

)
− erf

(
(ui − δi)τ + σ2

i

σiτ
√

2

)]
+ τ

2

σi
√
π
e−ui/τ−σ

2
i /2τ

2

∫
d∆t e−

1
2

(ui−`Tm−∆t)2/σ2
i

= τ e−(`Tm+∆t)/τ

[
erf

(
(ui − `Tm −∆t)τ + σ2

i

σiτ
√

2

)
− erf

(
(ui − δi)τ + σ2

i

σiτ
√

2

)]
− τ e−σ2

i /2τ
2−ui/τ erf

(
ui − `Tm −∆t

σi
√

2

)
Defining the quantity,
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χ(`, t, τ, Tm, σi, δi, ui)

= e−(`Tm+t−ui)/τ+σ2
i /2τ

2

[
erf

(
(ui − `Tm − t)τ + σ2

i

σiτ
√

2

)
− erf

(
(ui − δi)τ + σ2

i

σiτ
√

2

)]
− erf

(
ui − `Tm − t

σi
√

2

)
the integral can be written as follows (using Eqn. (A.1.18)), whilst also absorbing the
factor τ−1 eui/τ+σ2

i /2τ
2 from Eqn. (A.1.16),

τ−1 eui/τ+σ2
i /2τ

2

∫ bH

bL
d∆t χ̃i(`, t, τ, Tm, σi, δi, ui)θ[`Tm + ∆t− δi]

= θ[`Tm + bL − δi]
{
χ(`, δi, τ, Tm, σi, δi, ui)− χ(`, bL, τ, Tm, σi, δi, ui)

}
+ θ[`Tm + bH − δi]

{
χ(`, bH, τ, Tm, σi, δi, ui)− χ(`, δi, τ, Tm, σi, δi, ui)

}
(A.1.19)

Consequently, the fluorescence decay bin-likelihood due to the ith instrument response
component can be written as follows,

F̃i(τ, b
L, bH, T, Tm, I) =

1

Λ(T, Tm)
γ̃i
∑
`≥0

Ψi(τ, b
L, bH, T, Tm, σi, δi, ui) (A.1.20)

where the quantity Ψi(τ, b
L, bH, T, Tm, σi, δi, ui) is given by the following,

Ψi(τ, b
L, bH, T, Tm, σi, δi, ui) =

θ[`Tm + bL − δi]
{
χ(`, δi, τ, Tm, σi, δi, ui)− χ(`, bL, τ, Tm, σi, δi, ui)

}
+ θ[`Tm + bH − δi]

{
χ(`, bH, τ, Tm, σi, δi, ui)− χ(`, δi, τ, Tm, σi, δi, ui)

}
(A.1.21)

Incorporating this into the model yields the following expression for the bin-likelihood
(which includes the contribution of both background and a fluorescence decay signal),
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p(b) = |b|w0

T
+

K∑
k=1

wkF (τk, b
L, bH, T, Tm, I) (A.1.22)

where I = {γi, ui, σi, δi|i = 1, . . . , I} summarizes the parameters required for the ap-
proximation of the instrument response.

A.1.5 Normalisation of the fluorescence decay photon likelihood

The normalising factor Λ(T, Tm) for the fluorescence decay photon likelihood term of
Eqn. (A.1.4) depends on the specific form of the instrument response Γ(u) and the decay
signal p(t) chosen. However, it can be determined so far in the general case of arbitrary
instrument response and the decay signal, as follows,

Λ(T, Tm) =

∫ T

0

d∆t′
∫ ∞

0

dt p(t)
∑
`≥0

Γ(∆t′ − t+ `Tm)

=

∫ ∞
0

dt p(t)
∑
`≥0

∫ T

0

d∆t′ Γ(∆t′ − t+ `Tm)

=

∫ ∞
0

dt p(t)
∑
`≥0

∫ `Tm+T

`Tm

ds Γ(s− t)

=

∫ ∞
0

dt p(t)
∑
`≥0

{∫ `Tm+Tm

`Tm

ds Γ(s− t)−
∫ `Tm+Tm

`Tm+T

ds Γ(s− t)
}

=

∫ ∞
0

dt p(t)

∫ ∞
0

ds Γ(s− t)−
∫ ∞

0

dt p(t)
∑
`≥0

∫ Tm

T

ds Γ(`Tm + s− t)

= 1−
∫ ∞

0

dt p(t)
∑
`≥0

∫ Tm

T

ds Γ(`Tm + s− t) (A.1.23)

In reaching Eqn. (A.1.23) it is demanded that the distributions p(t) and Γ(u) are them-
selves both normalised. Observe that when the measurement interval spans the entire
modulation period (i.e. T = Tm) the normalisation constant Λ(T, Tm) = 1 as the in-
tegral term (Eqn. (A.1.23)) vanishes. However, usually, this cannot be assumed and the
integrals must be determined, as is done for the chosen decay signal and instrument re-
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sponse below. Rewriting Eqn. (A.1.23) to establish contact with the fluorescence decay
bin-likelihood expression developed above,

Λ(T, Tm) = 1−
∫ ∞

0

dt p(t)
∑
`≥0

∫ Tm

T

ds Γ(`Tm + s− t)

= 1−
∫ Tm

T

ds
∑
`≥0

∫ ∞
0

dt p(t) Γ(`Tm + s− t)

= 1− 1∑
`w`

∑
k

wk

∫ Tm

T

ds
∑
`≥0

∫ ∞
0

dt τ−1
k e−t/τk Γ(`Tm + s− t)

Recognising that an integral of the form,

G(T, Tm, τk, I) =

∫ Tm

T

ds
∑
`≥0

∫ ∞
0

dt τ−1
k e−t/τk Γ(`Tm + s− t), (A.1.24)

has been determined above (Sections A.1.3 & A.1.4), having appeared first in
Eqn. (A.1.8). The quantity to be determined in this case differs from that in Eqn. (A.1.8)
in that, of course, the normalising factor Λ(T, Tm) is absent, the integration variable s
here replaces the variable ∆t, and that the integral is over the interval [T, Tm] rather than
[bL, bH]. It is therefore possible, unsurprisingly given that the interval [T, Tm] is just an-
other time-bin within the measurement interval (although not one into which photons
are counted), to use the results developed above (Section A.1.3 & A.1.4) in reaching an
expression for the normalisation constant Λ(T, Tm).

Λ(T, Tm) = 1− 1∑
`w`

∑
k

wkG(T, Tm, τk, I)

where the quantity G(T, Tm, τk, I) is given by the following,
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G(T, Tm, τk, I) =
I∑
i=1

Gi(T, Tm, τk, I),

Gi(T, Tm, τk, I) = γ̃i
∑
`≥0

Ψi(τ, T, Tm, T, Tm, I)

having used Eqn. (A.1.20), and the quantity Ψi(τ, T, Tm, T, Tm, I) is as defined by
Eqn. (A.1.21). The remainder of this section explores some assorted properties of the
normalisation constant and also offers some simple approximations.

Assorted properties of the normalisation constant

1. Property (i) Maximal measurement interval

T = Tm : Λ(T, Tm)→ 1−
∫ ∞

0

dt p(t)
∑
`≥0

∫ (`+1)Tm−t

(`+1)Tm−t
du Γ(u) = 1 (A.1.25)

2. Property (ii) Vanishing measurement interval

lim
T→0

Λ(T, Tm)→ 1−
∫ ∞

0

dt p(t)
∑
`≥0

∫ (`+1)Tm−t

`Tm−t
du Γ(u)

= 1−
∫ ∞

0

dt p(t)

∫ ∞
−t

du Γ(u) = 0 (A.1.26)

3. Property (iii) Infinite modulation period

T = αTm, Tm →∞ : Λ(T, Tm)→ 1−
∫ ∞

0

dt p(t)
∑
`≥0

∫ (`+1)Tm−t

(`+α)Tm−t
du Γ(u) = 1

(A.1.27)
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Simple approximation of the normalisation constant

In order to ease the implementation of the fluorescence decay photon bin likelihood a
simple approximation for the normalization constant Λ(T, Tm) is desired. Intuitively,
the quantity Λ(T, Tm) compensates for photons that cannot be detected as the system is
‘blind’ in the interval [T, Tm]. Inevitably, the likelihood of such photons being present but
not detected depends on the decay signal itself and therefore it would seem reasonable
that the lifetime of the decay signal be somewhere captured in any approximation. Addi-
tionally, the extent to which the ‘tail’ of the decay signal persists into the ‘blind’ period
will depend on the extent to which the instrument retards the decay signal; it seems rea-
sonable to neglect the effects of the instrument response other than the introduction of a
delay to the observed decay signal (i.e. Γ(u) = δ(u− uc) with uc < T ), and therefore,

Λ̂(T, Tm)

= 1−
∫ ∞

0

dt p(t)
∑
`≥0

∫ `Tm+Tm−t

`Tm+T−t
du δ(u− uc)

= 1−
∫ ∞
−∞

du δ(u− uc)
∫ ∞

0

dt p(t)
∑
`≥0

θ[u− `Tm − T + t]θ[`Tm + Tm − t− u]

= 1−
∫ ∞

0

dt p(t)
∑
`≥0

θ[uc − `Tm − T + t]θ[`Tm + Tm − t− uc]

= 1−
∑
`≥0

∫ `Tm+Tm−uc

`Tm+T−uc
dt p(t)

Notice that the expression developed so far satisfies all of the required properties as stated
above.

∫ b

a

dt p(t) =
1∑
k wk

∑
k

wk(e
−a/τk − e−b/τk)

Inserting this into the expression developed so far yields the following simple approxima-
tion to the normalising factor Λ(T, Tm), as follows,
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Λ̂(T, Tm) = 1− 1∑
k wk

∑
k

wk(e
−(T−uc)/τk − e−(Tm−uc)/τk)

∑
`≥0

e−`Tm/τk

= 1− 1∑
k wk

∑
k

wk
(
e−(T−uc)/τk − e−(Tm−uc)/τk)∑

`≥0

(
e−Tm/τk

)`
= 1− 1∑

k wk

∑
k

wk
e−(T−uc)/τk − e−(Tm−uc)/τk

1− e−Tm/τk

=
1∑
k wk

∑
k

wk

{
1− e−(T−uc)/τk − e−(Tm−uc)/τk

1− e−Tm/τk
}

=
1∑
k wk

∑
k

wk
1− e−Tm/τk − e−(T−uc)/τk + e−(Tm−uc)/τk

1− e−Tm/τk (A.1.28)

which effectively averages the quantity (1 − e−T/τ )/(1 − e−Tm/τ ) over all signal com-
ponents. A yet further simplification results from instead computing Λ̂(T, Tm) using the
averaged signal component parameters, yielding the following,

Λ̃(T, Tm) =
1− e−Tm/〈τ〉 − e−(T−uc)/〈τ〉 + e−(Tm−uc)/〈τ〉

1− e−Tm/〈τ〉 , 〈τ〉 =
1

K

K∑
k=1

τk

(A.1.29)
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A.2 Fluorescence decay model selection using a Gaussian
approximation

The model selection formulae developed in Chapter 5 are developed here for the FLIM
system model of Chapter 4 and the fluorescence decay parameter prior distribution cho-
sen in this work. In seeking the most probable fluorescence decay model H?

K and its
hyperparameters α?K , as given by (Eqns. (5.4, 5.6)),

(H?
K ,α

?
K)

= argmax
HK

[
p(HK)p(α?K |HK)

∫
dwKdτK p(wK , τK |HK ,α

?
K)p(D|HK ,wK , τK , I)

]
(A.2.1)

where the optimal hyperparameter(s) α?K are determined according to,

α?K = argmax
αK

[
p(αK |HK)

∫
dwKdτK p(wK , τK |HK ,αK)p(D|HK ,wK , τK , I)

]
(A.2.2)

it is necessary to define an appropriate model prior p(HK) and hyperprior p(αK |HK).
The simplest approach to choosing p(α|HK) is to consider a maximum entropy prior
for the decay lifetime(s) τK with a fixed 〈τk〉 (i.e. independent of k) having only one
hyperparameter α, as given by,

p(τK) =
K∏
k=1

αe−ατkθ[τk] (A.2.3)

In this case, as there is no rationale for the single hyperparameter α to be dependent onK,
the hyperprior is independent of the decay model (i.e. p(αK |HK) = p(α)) and therefore,
updating Eqns. A.2.1, A.2.2 accordingly yields,
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(H?
K , α

?
K)

= argmax
HK

[
p(HK)p(α?)

∫
dwKdτK p(wK , τK |HK ,α

?
K)p(D|HK ,wK , τK , I)

]
(A.2.4)

where the optimal hyperparameter value α? is given by,

α?K = argmax
α>0

[
p(α)

∫
dwKdτK p(wK , τK |HK , α)p(D|HK ,wK , τK , I)

]
(A.2.5)

In choosing a sensible p(α), the relationship between α and the average decay lifetime τ
is considered,

p(τk) = θ[τk]αe
−ατk , τ =

∫ ∞
0

dτ p(τ)τ = α−1 (A.2.6)

Consider that, say, τ is distributed homogeneously between τ = 0 and τ = τmax, then,

p(α) =

∫ τmax

0

dτ
1

τmax

δ

(
α− 1

τ

)
=

∫ τmax

0

dτ
1

τmax

1

|τ−2|δ
(
τ − 1

α

)
=

1

α2
.

1

τmax

∫ τmax

0

dτ δ

(
τ − 1

α

)
=

1

α2
.

1

τmax

θ

[
α− 1

τmax

]
=
αmin

α2
θ [α− αmin] (A.2.7)

Inserting this into Eqn. (A.2.5), the optimal hyperparameter value α? is given by,

α?K = argmax
α>αmin

[
1

α2

∫
dwKdτK p(wK , τK |HK , α)p(D|HK ,wK , τK , I)

]
(A.2.8)
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A.2.1 Integral determination using a Gaussian approximation

In developing a Bayesian analysis for fluorescence decay model selection (Chapter 5), the
difficulties inherent in the computation of the required integrals (Eqn. 5.3),

ZK =

∫
ΩK

dwKdτK p(wK , τK |HK , α)p(D|HK ,wK , τK , I)

=

∫
ΩK

dwKdτK p(wK , τK |HK , α)
M∏
j=1

p(bj|HK ,wK , τK , I)cj (A.2.9)

have been eased by the use of a Gaussian approximation (see e.g. [110, 111]). This
section details the derivation of the second derivatives (i.e. the Hessian) required in such
an approximation. Defining S(wK , τK) = − ln [p(wK , τK)p(D|wK , τK)], the posterior
distribution can be written as,

p(wK , τK |D) =

p(wK , τK)p(D|wK , τK)∫
dwK

∫
dτK p(wK , τK)p(D|wK , τK)

=
1

ZK
e−S(wK ,τK), w, τ ∈ ΩK

(A.2.10)

where ZK is a normalization constant (termed the ‘evidence’). In making the Gaussian
approximation, a Taylor expansion is taken around the peak of the Gaussian, located at
(w?

K , τ
?
K), such that,

S(wK , τK) ≈

S(w?
K , τ

?
K) +

1

2
((wK , τK)− (w?

K , τ
?
K))TA((wK , τK)− (w?

K , τ
?
K)), w, τ ∈ ΩK

(A.2.11)

where the Hessian matrix and linear terms are absent as the the expansion is taken at
the minimum of S(wK , τK). In applying such an approximation, the ‘evidence’ ZK is
approximated by the quantity Z?

K as given by,
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Z?
K = e−S(w?

K ,τ ?K)(2π)K(det A)−1/2. (A.2.12)

Consequently, the task of computing an integral now involves finding the derivatives that
form the matrix A, which in this work is performed analytically.
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A.2.2 Determining the Hessian

The Hessian in the case of fluorescence decay model selection is the square matrix of
second-order partial derivatives, with respect to signal component weightswx and lifetime
τy where x, y ∈ {1, . . . , K}, of the minus log probability, as given by,

S(HK ,wK , τK , I) = α
∑
k

τk −
∑
j

cj ln p(bj|HK ,wK , τK , I) (A.2.13)

where the leading term is due to the incorporation of a maximum entropy prior on the
fluorescence decay parameters, and the bin-likelihood p(bj|HK ,wK , τK , I) is as defined
above (Eqn. (A.1.22)). Defining the Hessian elements in such a way that elements con-
taining weight only derivatives appear in the top left quadrant, lifetime only derivatives in
the bottom right quadrant, and cross derivatives elsewhere,

A =

(
A(w,w) A(w,τ)

A(τ,w) A(τ,τ)

)
, Aµν =



∂2S
∂wµ∂wν

, if µ ≤ K, ν ≤ K

∂2S
∂τµ∂wν

, if µ ≤ K, ν > K

∂2S
∂wµ∂τν

, if µ > K, ν ≤ K

∂2S
∂τµ∂τν

, if µ > K, ν > K

(A.2.14)

Clearly, A(w,τ) is the transpose of A(τ,w), and therefore the following three derivatives are
required,
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∂2S

∂wµ∂wν
=

−
∑
j

cj

{
∂2p(bj|wK , τK)/∂wµ∂wν

p(bj|wK , τK)
− ∂p(bj|wK , τK)/∂wµ

p(bj|wK , τK)

∂p(bj|wK , τK)/∂wν
p(bj|wK , τK)

}
(A.2.15)

∂2S

∂τµ∂wν
=

−
∑
j

cj

{
∂2p(bj|wK , τK)/∂τµ∂wν

p(bj|wK , τK)
− ∂p(bj|wK , τK)/∂τµ

p(bj|wK , τK)

∂p(bj|wK , τK)/∂wν
p(bj|wK , τK)

}
(A.2.16)

∂2S

∂τµ∂τν
=

−
∑
j

cj

{
∂2p(bj|wK , τK)/∂τµ∂τν

p(bj|wK , τK)
− ∂p(bj|wK , τK)/∂τµ

p(bj|wK , τK)

∂p(bj|wK , τK)/∂τν
p(bj|wK , τK)

}
(A.2.17)

where, in order to aid readability, the arguments that depend on neither the weight nor life-
time parameterswK and τK have been dropped. Turning attention now to the derivatives
of the bin likelihood, as given by,

p(b|HK ,wK , τK , I)

=
|b|
T

(
1−

∑
k

wk

)
+
∑
k

wk F (τk, b
L, bH, Tm, I)

=
|b|
T

(
1−

∑
k

wk

)
+
∑
k

wk
1

Λ

∑
i

γ̃i
∑
`≥0

Ψi(τk, b
L, bH, T, Tm, σi, δi, ui)

and developed in Appendix A.1. Different approximations of the normalising factor
Λ(wK , τK) were introduced in Section A.1.5 and, of course, the derivatives required for
the Hessian will differ depending on which approximation is used. The first derivatives
of the bin-likelihood are easily obtained and are given by,
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∂p(b)

∂wµ
=

1

Λ

∑
i

γ̃i
∑
`≥0

Ψi(τµ, b
L, bH, T, Tm, σi, δi, ui)−

|b|
T

− ∂Λ

∂wµ

1

Λ

(
p(b)− |b|

T

(
1−

∑
k

wk

))
(A.2.18)

∂p(b)

∂τµ
=

1

Λ
wµ
∑
i

γ̃i
∑
`≥0

∂

∂τµ
Ψi(τµ, b

L, bH, T, Tm, σi, δi, ui)

− ∂Λ

∂τµ

1

Λ

(
p(b)− |b|

T

(
1−

∑
k

wk

))
(A.2.19)

The second derivatives of the bin-likelihood, again for arbitrary normalising factor Λ

(which may or may not depend on the decay signal weight(s) and lifetime(s)), are as
follows,

∂2p(b)

∂wν∂wµ

=
∂

∂wν

{
1

Λ

[∑
i

γ̃i
∑
`≥0

Ψi(τµ, b
L, bH, T, Tm, σi, δi, ui)

− ∂Λ

∂wµ

(
p(b)− |b|

T

(
1−

∑
k

wk

))]}

= − 1

Λ

[
∂Λ

∂wν

(
∂p(b)

∂wµ
+
|b|
T

)
+

∂Λ

∂wµ

(
∂p(b)

∂wν
+
|b|
T

)
+

∂2Λ

∂wν∂wµ

(
p(b)− w0

|b|
T

)]
(A.2.20)

Using the lifetime derivative (Eqn. A.2.19) as a starting point, the mixed weight-lifetime
derivative is given by,
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∂2p(b)

∂wν∂τµ

=
∂

∂wν

{
1

Λ

[
wµ
∑
i

γ̃i
∑
`≥0

∂

∂τµ
Ψi(τµ, b

L, bH, T, Tm, σi, δi, ui)

− ∂Λ

∂τµ

(
p(b)− |b|

T

(
1−

∑
k

wk

))]}

= δµ,ν
1

Λ

∑
i

γ̃i
∑
`≥0

∂

∂τν
Ψi(τν , b

L, bH, T, Tm, σi, δi, ui)

− 1

Λ

[
∂Λ

∂wν

∂p(b)

∂τµ
+
∂Λ

∂τµ

(
∂p(b)

∂wν
+
|b|
T

)
+

∂2Λ

∂wν∂τµ

(
p(b)− w0

|b|
T

)]
(A.2.21)

The lifetime only second derivatives are given by,

∂2p(b)

∂τν∂τµ

=
∂

∂τν

{
1

Λ

[
wµ
∑
i

γ̃i
∑
`≥0

∂

∂τµ
Ψi(τµ, b

L, bH, T, Tm, σi, δi, ui)

− ∂Λ

∂τµ

(
p(b)− |b|

T

(
1−

∑
k

wk

))]}

= δµ,ν
1

Λ
wν
∑
i
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To proceed it is necessary to determine the (lifetime) derivatives of the quantity
Ψi(τ, b

L, bH, T, Tm, σi, δi, ui), as defined by Eqn. (A.1.21). Recalling that,

Ψi(τ, b
L, bH, T, Tm, σi, δi, ui) =

θ[`Tm + bL − δi]
{
χ(`, δi, τ, Tm, σi, δi, ui)− χ(`, bL, τ, Tm, σi, δi, ui)

}
+ θ[`Tm + bH − δi]

{
χ(`, bH, τ, Tm, σi, δi, ui)− χ(`, δi, τ, Tm, σi, δi, ui)

}
it is clear that this requires the first and second derivatives of the quantity
χ(`, t, τ, Tm, σ, δ, u) to be determined. Recalling that (Eqn. (A.1.20)),

χ(`, t, τ, Tm, σ, δ, u)

= e−(`Tm+t−u)/τ+ 1
2
σ2/τ2

[
erf

(
(u− `Tm − t)τ + σ2

στ
√

2

)
− erf

(
(u− δ)τ + σ2

στ
√

2

)]
− erf

(
u− `Tm − t

σ
√

2

)
and denoting by ψ = ψ(τ) the exponent, and by θ = θ(τ) and φ = φ(τ) the arguments to
the error functions, such that,

ψ = (u− `Tm − t)/τ +
1

2
σ2/τ 2,

θ =
1

σ
√

2

(
u− `Tm − t+

σ2

τ

)
,

φ =
1

σ
√

2

(
u− δ +

σ2

τ

)
the first derivative is determined to be,

∂χ

∂τ
=

∂

∂τ

{
eψ [erf (θ)− erf (φ)]

}
=
∂ψ

∂τ
χ+

2√
π

∂θ

∂τ

[
eψ−θ

2 − eψ−φ2
]
.

The required derivatives are easily determined to be,

201



∂ψ

∂τ
= − 1

τ 2

(
u− `Tm − t+ σ2/τ

)
,

∂θ

∂τ
=
∂φ

∂τ
= − 1

τ 2
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The second derivative of χ(t, τ) is determined in terms of the the variables ψ, θ and φ,
and their derivatives, and is given by,
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where the second derivatives of the quantities ψ, θ, and φ, are given by,
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Appendix B

Practical TCSPC FLIM: sample
preparation and data acquisition

B.1 Preparation of human epithelial carcinoma cells

Human epithelial carcinoma cells (A431) stably expressing cdc42-GFP [112] were grown
in Dulbecco’s modified Eagle’s medium containing 10% fetal calf serum. Cells were
seeded on a glass coverslip (50000 cells/ml) and 48 hours later were fixed with 4%
paraformaldehyde, treated with 1mg/ml NaBH4, then mounted with Mowiol (VWR, UK)
containing antifade agent and kept at -20 degC.

B.2 Low photon count data acquisition using Galileo mi-
croscope

Time domain FLIM was performed with an in-house system, excitation being provided
by a supercontinuum 40MHz source (SC450-4, Fianium, UK), pulse width ∼ 4 ps, and
photon counting performed using a SPC830 TCSPC board (Becker & Hickl, Berlin, Ger-
many). De-scanned detection was afforded by the use of a fast single-photon response,
photomultiplier tube (PMH-100-0, Becker & Hickl, Berlin, Germany) placed behind a
pinhole, parfocal with the image plane. The following filters were used in data acqui-
sition; 470 nm excitation filter (Semrock FF01-470/22-25, Laser 2000, UK), 495 nm
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dichromatic reflector (Semrock FF 495-Di02-25x36, Laser 2000, UK), and 510 nm emis-
sion filter (Semrock FF01-510/20-25, Laser 2000, UK) and an IR cut filter. To avoid
pulse pile-up, peak photon counting rates remained well below the maximum counting
rate offered by the TCSPC electronics[60], with average photon counting rates of the
order 104 − 105 photons/second. The photon arrival times, with respect to the approxi-
mately 40 MHz repetitive laser pulses, were binned into 256 time windows over a total
measurement period of 15 ns. Images were captured with a 0.75 NA objective lens (S
Fluor 20x/0.75 air, Nikon, UK) at 256× 256 pixels corresponding to 334× 334 µm at the
sample.

The measured instrument response function (IRF) for the Galileo microscope is shown
in Fig. B.1, along withe the Bayesian-determined optimal single Gaussian approximation.
The portion of the measured instrument response that was used to obtain the results pre-
sented in Part III for ML and LS analyses lies inside the vertical lines. It can be seen that
the Bayesian single Gaussian approximation and the measured IRF are in close agreement
within this region. The effects of detector afterpulsing can be seen in the measured IRF
on viewing on a log scale, the ridge to the right of the dominant IRF peak.
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Figure B.1: Measured IRF and single Gaussian approximation for Galileo micro-
scope: The measured IRF for the Galileo microscope (Section 1.2.1) and the Bayesian-
determined optimal single Gaussian approximation. The The Bayesian-determined op-
timal single Gaussian instrument response approximation was determined using a single
high-count data set (about 35 million photon counts), from the carcinoma cell data pre-
sented in Section 6.2, resulting from summing the time resolved data from all of the
image pixels and on the assumption of mono-exponential decay data; the optimal single
Gaussian approximation having been found to have a FWHM width of 0.204 ns (i.e. a
standard deviation of 0.086 ns) centered about a delay of 2.341 ns.
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Appendix C

Bayesian analysis implementation in C

This chapter provides a summary of the design of the implemented Bayesian analysis
algorithms (to realise the Bayesian analysis of Chapter 5), and their incorporation into
the existing TRI2 software package [87]. The Bayesian routines have been integrated
into TRI2 with the intention of providing an accessible implementation that can be used
without possessing any intricate knowledge of either the FLIM system model developed
in Chapter 4 or the Bayesian analysis of Chapter 5. At the time of the initial integration
of the Bayesian algorithms into TRI2, efforts were made such that their operation should
be as similar as possible, from the point of view of user-interaction, to that of the existing
LS analysis algorithms, such that a user familiar with the LS routines should be able to
use the Bayesian algorithms without facing a steep learning curve.

C.1 Bayesian user-interface in TRI2

The interface to the Bayesian implementation is now introduced, with the aid of screen
captures, before discussing some of the technical details of the Bayesian algorithms. On
loading a time-resolved image file, and launching the time-resolved analysis panel (and
selecting a pixel containing data), a significant amount of information regarding analysis
at the selected pixel is presented to the user, as shown in Fig. C.1. The decay param-
eter estimates resulting from the selected analysis type are shown in the ‘Fitted Param-
eters’ panel, the fitted decay is shown in the ‘Time Resolved Data and Fit’ panel, and
the weighted residuals are shown in the ‘Difference Between Data and Fit’ panel. In the
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‘Prompt/Excitation’ panel, the loaded instrument response and the approximated instru-
ment response used for the Bayesian analysis are displayed.

Figure C.1: Time-resolved fitting panel in TRI2: The results of mono-exponential
Bayesian analysis of an image pixel containing 648 photon counts; notice that the mono-
exponential Bayesian parameter estimates and their uncertainty, the fitted fluorescence
decay and its residuals, and also the Bayesian approximation to the instrument response
and the loaded measured instrument response, are all displayed to the user.

The ‘Bayesian Configuration’ panel, as shown in Fig. C.2, provides an interface to
input user-defined instrument response parameter values (e.g. should the user wish to
tweak those values determined from the Bayesian SID analysis (Chapter 8) and also al-
lows the measurement interval and repetition period to be defined (although usually such
microscope system configuration details are imported from metadata in the image file).
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The ‘Bayesian Configuration’ panel also provides the interface to a rapid Bayesian imple-
mentation, the details of which are discussed below.

Figure C.2: Bayesian configuration in TRI2: This interface stores the Bayesian instru-
ment response approximation parameter values, the repetition period (as accessed in
‘Laser details’), and provides access to the ‘rapid’ Bayesian implementation. To the
left of the panel, the ‘tree’ of source files dedicated to the Bayesian implementation is
shown.

The ‘Advanced Bayesian Configuration’ panel provides the interface to the optimi-
sation algorithms should the analysis be performed with standard rather than ‘rapid’ al-
gorithms. The panel also enables the Bayesian analysis to be performed with re-binned
time-resolved data, as is discussed below. The removal of data that may have been cor-
rupted by consequences of dithering associated with the time-amplitude converter in the
TCSPC electronics [60] is also possible from this panel.

Although, of course, the Bayesian algorithms do need to be configuration in order to
offer a successful analysis, it is worthwhile noting that (providing TRI2 has been installed
with suitable values for the Bayesian configuration parameters) the ‘mechanics’ of the
Bayesian analysis are neither presented to the user in the main time-resolved analysis
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Figure C.3: Advanced features for Bayesian analysis in TRI2: Re-binning of transient
data is possible from this interface.

panel nor should it usually be necessary for them to be modified.

C.2 Bayesian algorithm design

The Bayesian algorithms have been written using Visual Studio Express 2008 (Microsoft
Inc.) as the main development environment, and rely on National Instruments Labwin-
dows/CVI libraries and user-interface components for integration in TRI2. The Bayesian
analysis implementation is spread over more than thirty files, as much as possible of each
of the different functionalities (i.e. mono-exponential analysis, bi-exponential analysis,
Bayesian SID, decay model selection) are separated. All of the Bayesian algorithms have
been written with readability, and re-use and portability where appropriate, in mind. Rou-
tines that implement variants of an algorithm (e.g. standard mono-exponential analysis
and a faster mono-exponential method) have been written with a common interface such
that switching between variants merely requires setting the appropriate function pointer.
Similarly, all routines that search the parameter space for an optimal value, simulated
annealing and downhill simplex routines [113] in the current implementation, have been
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developed with identical interfaces, not only for the provision of compact code but also
for easy incorporation of additional methods if desired.

The routines have been written to offer robust analysis, and therefore validity checks
are made at numerous different points within an analysis. Wherever possible, on detection
of an analysis failure, an error code is passed back to the user interface to be translated to
meaningful text strings for interpretation by the user.

The interface between the Bayesian algorithms and TRI2 is confined to the files
bayes_Tri2Interface.c and bayes_Tri2Interface.h. All user-interface
values or settings that are required by the Bayesian routines are provided through generic
wrappers; for example, the following wrapper function,

int bayes_GetConfigParameterValueIrComponentsMax(void)

{

int val;

GetCtrlVal(BayesConfigPanel,BAYES_IR_COMPONENTS_MAX,&val);

return (val);

}

calls the TRI2 specific routine to obtain the requested value, and then provides it to the
Bayesian routine. In implementing the interface to the Bayesian routines in such a way,
the Bayesian routines can relatively easily be integrated into a different software package
if desired.

A significant number of configuration parameters (e.g. the instrument response ap-
proximation parameters, the measurement interval and repetition period, the number of
data bins and the data vector) are required by the Bayesian algorithms, although not each
routine requires ‘sight’ of every variable; such parameters populate structures and point-
ers are passed between the Bayesian routines in order that the number of arguments to a
routine is manageable and that the addition of new parameters requires only minor code
changes.

C.3 A rapid Bayesian analysis implementation

Two different modes of analysis have been implemented for decay parameter analysis;
‘standard’ and a ‘rapid’ parameter estimation. The standard analysis for mono- and bi-
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exponential parameter estimation uses the downhill simplex and simulated annealing min-
imisation algorithms [113], the decay parameters taking values in a ‘continuous’ param-
eter space. The ‘rapid’ analysis has been provided in order to reduce the time taken for
image analysis, and decay parameters are estimated using a discrete grid that samples the
continuous space.

In adopting such an approach, it is necessary to define the boundaries of the grid;
for mono-exponential analysis the boundaries are the minimum and maximum allowed
lifetimes, and the minimum and maximum background values; for bi-exponential analysis
the grid boundaries are defined by the maximum and minimum values of the two decay
weights and lifetimes (as can be seen in Fig. C.2). The fluorescence decay bin-likelihoods
need only be determined for those lifetimes on the ‘grid’, rather than for values from the
continuous parameter space as selected by the downhill simplex or simulated annealing
algorithms in the ‘standard’ implementation.

The optimal mono-exponential decay parameters are determined by an exhaustive
search of the grid. The implementation of ‘rapid’ mono-exponential analysis provides
a particularly rapid solution as, for reasonable grid sizes, the bin-likelihoods can be pre-
computed for each grid point; subsequent analysis of a transient requires only one mul-
tiplication and one addition for each bin. Unfortunately, for bi-exponential analysis, it is
not possible to pre-compute likelihoods for each point on a grid sufficiently expansive for
a reliable analysis; even with only four dimensions (a lifetime and weight for both of the
decays) the number of grid points becomes so large that the storage of such a grid is not
easily realised.

C.4 Bayesian analysis and transient re-binning

In Section C.1 the option for transient re-binning through the ‘Advanced Bayesian Con-
figuration’ panel was highlighted. As a means of performing Bayesian analysis more
quickly, transient re-binning, has been implemented such that, according to user pref-
erence, photon counts in adjacent bins are accumulated into a larger bin (i.e. transient
data in 256 bins could be re-binned to be in 16 bins, each spanning 16 of the original
256 bins). Applied to data from Chapter 6, Bayesian analysis of re-binned data is ob-
tained more quickly, and with little change in accuracy even with only 4 bins, as shown
in Fig. C.4.
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Figure C.4: Robust analysis with transient rebinning: Bayesian-estimated lifetime im-
ages for the analysis of synthetic images generated with decay lifetime of 1.8 ns (left
panel), 2.0 ns (central panel), and 2.2 ns (right panel), for the different re-binning
schemes. In (a) the data (as generated) with 256 time bins, in (b) the same data re-
binned into 8 bins, and (c) the same data re-binned into 4 bins. All of the analysed
transients were generated to have an intensity of about 1000 total photon counts.
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