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ABSTRACT 
 
Introduction 

Ideally, health conditions causing the greatest global disease burden should attract increased 

research attention. We conducted a comprehensive global study investigating the number of 

randomised controlled trials (RCTs) published on different health conditions, and how this 

compares with the global disease burden that they impose. 

  

Methods 

We use machine learning to monitor PubMed daily, and find and analyse RCT reports. We 

assessed RCTs investigating the leading causes of morbidity and mortality from the Global 

Burden of Disease study. Using regression models, we compared numbers of actual RCTs in 

different health conditions to numbers predicted from their global disease burden (Disability-

Adjusted Life Years [DALYs]). We investigated whether RCT numbers differed for conditions 

disproportionately affecting countries with lower socio-economic development. 

  

Results 

We estimate 463,000 articles describing RCTs (95% prediction interval 439,000–485,000) were 

published from 1990 to July 2020. RCTs recruited a median of 72 participants (interquartile 

range 32–195). 82% of RCTs were conducted by researchers in the top fifth of countries by socio-

economic development. As DALYs increased for a particular health condition by 10%, the 

number of RCTs in the same year increased by 5% (3.2%–6.9%), but the association was weak 

(adjusted R2=0.13). Conditions disproportionately affecting countries with lower socio-economic 

development, including respiratory infections and tuberculosis (7 thousand RCTs below 

predicted) and enteric infections (10 thousand RCTs below predicted), appear relatively under-

researched for their disease burden. Each 10% shift in DALYs towards countries with low and 

middle socio-economic development was associated with a 4% reduction in RCTs (3.7%–4.9%). 

These disparities have not changed substantially over time. 

  

Conclusion 

Research priorities are not well optimized to reduce the global burden of disease. Most RCTs are 

produced by highly developed countries, and the health needs of these countries have been, on 

average, favoured. 

 

  



 

KEY QUESTIONS 

What is already known? 

● Prior studies have manually investigated the relationship between published research 
in different health conditions and the global burden of disease that they impose. 
 

● However, these analyses have been mostly limited to estimates of research funding 
from national funders, or smaller scale analysis of older publication records. 
 

● These studies have highlighted disparities in research relative to burden, but they are 
not sufficient to enable global targeting of research to optimise improvements in 
disease burden. 
 

What are the new findings? 

● We automatically process all of PubMed, allowing us to conduct a continually updated, 
comprehensive analysis of published reports of RCTs, including the number of 
participants per RCT and the health conditions studied. 
 

● We found that considerable disparities exist between the relative volume of evidence on 
some conditions and the global burden of disease that they impose, as calculated by the 
Global Burden of Disease study. 
 

● Further, our analysis suggests that there exists a smaller amount of evidence for 
conditions that impose a comparatively large burden of disease in lower-income 
countries. 

 
What do the new findings imply? 

● Looking at numbers of RCTs published, and the numbers of participants in these trials, 
it seems that research priorities are not optimized to reduce the global burden of 
disease, and that research for conditions affecting higher-income countries has, on 
average, been favoured. 
 

● The findings from this study could help research funders to focus research investment 
in areas where the largest reductions in disease burden could be made. 

 

Introduction 
The Global Burden of Disease (GBD) study has estimated the leading causes of death and 

disability worldwide.[1] Health inequalities have been defined as differences in health which are 

avoidable, remediable, and considered unjust.[2] A key strategy to reduce death and morbidity is 

to conduct randomized controlled trials (RCTs) to determine the effects of interventions for 

improving health.[3] However, RCTs are expensive and time-consuming, and there is necessarily 

a limit on the number and size of these types of study that can be carried out. There are very 



many factors which could reasonably affect which health problems are researched, not limited to: 

the existence of highly effective treatments for certain conditions (where poor implementation or 

availability is the problem); national governments prioritising conditions which affect their own 

country’s population; and the unpredictable nature of scientific breakthroughs in therapy. 

Pharmaceutical companies are likely to develop drugs which have the potential to be sold at 

profit; this can lead to neglect of conditions (e.g. infectious diseases) which disproportionately 

affect low income countries.[4] Nonetheless, a rational approach to funding research — reduce 

health inequalities and maximise global benefit — would take account of the global disease 

burden. 

 

Studies from the US and the UK have reported that disparities exist in national health research 

funding for certain conditions. Some conditions, such as diabetes and cancer, have attracted a 

comparatively generous amount of research funding in these countries relative to their national 

and global burden, whereas other conditions, such as stroke and respiratory diseases, have been 

relatively neglected.[5–8] In a later study, Evans and colleagues mapped the volume of research 

(RCTs and systematic reviews) published in 2005 to conditions studied in the Global Burden of 

Disease (GBD) study. They concluded that global Disability Adjusted Life Years (DALYs; a 

measure that incorporates the quality of lived years with respect to physical and mental 

functioning criteria) in 2004 did not explain any of the topic distribution of research articles 

published in the following year.[9] By contrast, Atal and colleagues examined 117,000 new 

registrations for clinical trials globally from 2006–2015, and reported that trials registered were 

proportionate to disease burden in high-income countries, but not in non-high income 

countries.[10] 

 

To our knowledge, there has been no comprehensive, global study comparing published research 

(both in terms of trial and participant numbers) with the relative burden of each condition. We 

address this gap by evaluating the total volume of evidence (numbers of RCTs and trial 

participants) published for clinical conditions via an automated analysis of all research articles 

indexed in PubMed (http://pubmed.ncbi.nlm.nih.gov) from 1990 onwards. Our system uses 

natural language processing to automatically identify text within articles that describes the 

conditions being studied, and maps these to GBD-defined categories. This permits comparison 

between the global disease burden and the amount of published evidence that exists for each 

condition, and could help prioritise research funding to relatively understudied conditions with 

high burden. Uniquely, as our method is fully automatic, we are able to analyse articles at large 



scale (classification of 100’s of thousands of documents), and with continuous, live updating — 

neither of which have been feasible so far with manual methods. 

Methods 
Overview 

We developed a machine learning system which maintains a live database of annotated RCT 

reports, named Trialstreamer. We have described the computational methods and accuracy of the 

system components in detail elsewhere,[11] and summarize the key points relevant to the current 

study below.  

 

Monitoring PubMed for RCTs in humans 

We first downloaded the full PubMed database (annual baseline data, from 11th December 2018) 

and then subsequently monitored and added all newly published articles daily. This comprises 

>30 million articles. We automatically identify the subset of articles that describe RCTs using a 

machine learning system, which operates over the text of the title and abstract, and the 

Publication Type database index.[12] Briefly, we ensemble a Support Vector Machine (SVM)[13] 

and a Convolutional Neural Network (CNN).[14] These machine learning models are trained1 on 

280,000 abstracts manually labelled as being RCTs or not by Cochrane Crowd,2 a collaborative 

citizen science project. We do not rely on the Publication Type index alone, as we have previously 

found it to miss a substantial proportion of the 5–7 most recent years of articles[11] (due to delay 

in manual indexing after publication). We next removed any RCTs that were not conducted in 

humans (e.g., animal or agricultural studies) using an SVM model. This model was trained using 

labelled abstracts from PubMed (labels derived as a function of whether the MeSH3 term 

‘Humans’ had been applied or not).  

 

Automatic information extraction 

To characterise the trial participants and outcomes, we first automatically extract ‘snippets’ of text 

(typically a few consecutive words within the abstract) describing these components. For this, we 

use a sequence tagging machine learning model (namely a Long Short-Term Memory network[15] 

 
1 Model ‘training’ describes the process of adjusting model parameters to align with (typically large amounts of) 
data. Here, the models consume text documents (abstracts), with manual labels designating whether these are 
RCTs or not. Once trained (i.e., once the parameters are estimated) the model can be applied to new, unseen 
abstracts to provide predictions. 
2 https://crowd.cochrane.org 
3 MeSH refers to the Medical Subject Headings vocabulary, maintained by the National Library of Medicine 
(NLM) and used for indexing articles in the MEDLINE database. 



followed by a conditional random field,[16] usually abbreviated to LSTM-CRF[17]).[18] This model 

was trained using a publicly available dataset called EBM-NLP, which comprises 5,000 RCT 

abstracts in which text spans relevant to the respective PICO characteristics (participants, 

interventions, comparators, and outcomes) were manually annotated. 

 

These text descriptions are then standardised to MeSH terms. This allows us to infer, for 

example, that ‘myocardial infarction’ and ‘heart attack’ refer to the same condition, and that both 

are subtypes of cardiovascular disease. To achieve this step, we use an approach similar to that 

described by Demner-Fushman and colleagues, in their MetaMap software.[19] This approach 

involves generating a large database of text synonyms for MeSH terms, done by finding 

alternative descriptions for each term in linked vocabularies. These synonyms are then sought in 

the extracted population and outcomes text spans.  

 

Linking RCTs with data on global disease burden 

In this study, we use the 22 level 2 categories defined by the GBD collaboration. These categories 

describe broad disease areas such as “Cardiovascular diseases”, and “Mental disorders” (the full 

list is provided in Table 1). The GBD collaboration makes available International Classification of 

Diseases (ICD-10) codes which define the scope of each category. We automatically link these 

ICD-10 codes to the equivalent MeSH terms using a tool and dataset named Metathesaurus, from 

the Unified Medical Language System (UMLS).[20] In brief, Metathesaurus provides a database 

of synonyms between different health science vocabularies, and thus lists of synonymous terms 

between ICD-10 and MeSH can be retrieved. One clinical author (IJM) manually checked all of 

the automatically generated mappings from MeSH to Global Burden of Disease category (both 

removing any errors from the automatic mapping, and adding links where they had been 

missed). This resulted in a final mapping of 5,256 parent MeSH terms to one of the 22 GBD 

categories. 

 

Descriptive statistics 

We report descriptive statistics for RCT counts and participant numbers. We use the country of 

the first author’s affiliation as a proxy for the country organising or funding the study. In order to 

capture trials addressing prevention, we also consider RCTs as relevant to the GBD category 

where rates of the health condition in question are identified as an outcome, even where 

participants did not have the condition at trial onset. For example, trials that recruited people with 

diabetes but measured the effects of an intervention on subsequent coronary heart disease were 

considered as relevant to both the ‘diabetes’ and ‘cardiovascular diseases’ categories. We also 



present separate estimates based on this distinction, that is, separating instances where a given 

GBD condition was found in the trial population (‘treatment’ trials) from those where it was 

inferred to describe an outcome (‘prevention’ trials). 

 

Estimating uncertainty due to prediction error 

We randomly sampled articles (titles and abstracts) from the finalised dataset, and two authors 

independently manually labelled these with respect to study design (RCT in humans vs. not; 500 

abstracts, done by IJM and BCW), Global Burden of Disease category (250 abstracts, done by IJM 

and VL), and number of participants randomized (500 abstracts, done by IJM and BCW). Authors 

then met to resolve discrepancies by consensus. We then used the bootstrap method to estimate 

95% prediction intervals for final counts, using the method described by Fox and 

colleagues.[21,22] In short, we use our manually labeled data to calculate 10,000 bootstrap 

estimates of the precision and recall of each labeling task.[23] These precision and recall estimates 

are then used to adjust the automated results from the full dataset (generating 10,000 adjusted 

count estimates for each classification task), which can be used to construct a 95% prediction 

interval. To evaluate uncertainty around extracted sample sizes we use a similar approach, except 

we used estimates of the absolute error taken from the manually labeled abstracts. We then 

simulated the effect of this error on the full dataset using the bootstrap method with 10,000 

iterations. These intervals permit assessment of the degree to which model misclassification and 

bias has affected the final results. 

 

Assessing associations between disease burden and published RCTs 

To examine associations between global disease burden and volume of evidence (both numbers 

of RCTs and participants), we used a series of linear regression models with log-transformed 

global DALYs as the predictor, and the log-transformed numbers of global RCTs as the 

dependent variable. We evaluate annual data on DALYs for each clinical condition for the full 

period available from the Global Burden of Disease study (1990–2017), and adjust for trends over 

time by incorporating the year as a categorical predictive variable. A detailed description 

alongside statistical code and data for these analyses is available at the Open Science Framework 

(DOI: 10.17605/osf.io/3db76). 

 

In our first regression analysis, we examined the association of global DALYs on RCT 

publications in the same year. We explored incorporating the year (as categorical variable) both as 

a fixed and a random effect, evaluating using the Hausman test. We compare observed RCT 

counts for each GBD condition with those predicted by the model. 



 

In our second regression analysis, we examine the effect of lag (given that RCTs will publish 

reports some time after measures of disease burden are known). Here we use finite length 

distributed lag models, and evaluate the association of global DALYs with up to 1, 2, 3, 4, and 5 

years lag on published RCTs in the index year. We compare models using the adjusted R2 

statistic, the Akaike information criterion (AIC), and Bayesian information criterion (BIC). 

 

In our third regression analysis, we add a variable to account for whether a particular condition 

tends to impose a disproportionate burden in high-income, rather than low and middle-income 

countries. 

We examine associations between socioeconomic status and evidence volume, using the Socio-

Demographic Index (SDI) of the country from the Global Burden of Disease study. As a metric of 

disparity in disease burden, we used the ratio of DALYs occurring in high SDI countries (the top 

fifth) to DALYs occurring in low and medium SDI countries (i.e., the bottom four fifths). 

 

Finally, we conducted a sensitivity analysis aiming to discover whether our results are sensitive to 

‘salami slicing’ (the practice of publishing results from a single trial across multiple publications, 

which could lead us to overestimate the evidence base). We first estimated the mean number of 

publications per RCT for each GBD condition, utilising the subset of articles which contained a 

unique trial registry identifier. Then we use these values to discount our estimate of RCT 

numbers for each GBD condition. We repeated our regression analyses with these discounted 

RCT numbers. 

Results 
We analysed records of 31,367,011 articles indexed in PubMed on July 27th 2020. We estimate that 

459,000 (1.5%) of these articles were reports of RCTs conducted in humans (95% prediction interval 

435,000 to 480,000). We show how these trials are distributed globally (by location of the first author) 

in Figure 1. The number of RCTs published for each of the 22 'level 2' disease categories from the 

2017 Global Burden of Disease study is presented in Table 1 and Figures 2 and 3. 

 

Mental disorders (ranked 2nd in terms of total DALYs) had the largest number of RCTs with 

50,000, followed by Cardiovascular diseases (ranked 1st) with 49,000. We separate the results 

from trials where the clinical condition occurred in the trial population (generally trials of 

treatment strategies for), and where the condition was a trial outcome (typically trials looking at 



prevention or diagnosis of the condition) in Table 1 and Figure 2. In all cases except for Mental 

disorders, the numbers of trials and participants in the ‘treatment’ trials exceeded those in the 

‘prevention’ trials. 



  

  

 
FIGURE 1: Global clinical trial publications by first author location, 1990–2017 



 
disease category 

Total RCTs, thousands, 
(95% prediction 
interval) [rank] 

RCTs with the condition as a 
population thousands, (95% 
prediction interval) [rank] 

RCTs with the condition as an outcome 
thousands, (95% prediction interval) [rank] 

DALYs (Disability-Adjusted 
Life Years), thousands 
[rank] 

Death), 
thousands [rank]  

YLDs (Years Lived with 
Disability), thousands [rank]  

YLLs (Years of Life Lost, 
thousands [rank] 

Mental disorders 55 (49–61) [1] 28 (25–31) [3] 40 (36–44) [1] 2,900 [11] <0.1 [21] 2,900 [2] 0.4 [21] 

Cardiovascular diseases 54 (49–60) [2] 37 (33–41) [1] 31 (28–34) [2] 8,700 [1] 410 [1] 710 [11] 8,000 [1] 

Other non-communicable diseases 39 (35–43) [3] 24 (21–26) [5] 20 (18–22) [4] 3,500 [6] 33 [15] 1,300 [6] 2,200 [9] 

Neurological disorders 39 (35–43) [4] 26 (23–28) [4] 20 (18–23) [3] 2,500 [12] 58 [7] 1,700 [3] 820 [17] 

Neoplasms 31 (28–34) [5] 29 (26–31) [2] 6 (6–7) [12] 5,400 [4] 210 [2] 150 [20] 5,200 [4] 

Maternal and neonatal disorders 24 (22–26) [6] 19 (17–21) [6] 13 (11–14) [5] 7,200 [2] 77 [5] 630 [13] 6,500 [2] 

Diabetes and kidney diseases 21 (19–23) [7] 18 (17–20) [7] 5 (4–5) [13] 2,200 [16] 52 [9] 900 [9] 1,300 [15] 

Unintentional injuries 18 (16–20) [8] 11 (10–12) [11] 9 (8–10) [8] 3,300 [7] 51 [10] 800 [10] 2,500 [7] 

Musculoskeletal disorders 18 (16–20) [9] 13 (12–15) [8] 7 (6–8) [10] 3,100 [8] 2 [19] 3,000 [1] 65 [19] 

Digestive diseases 17 (15–19) [10] 13 (12–14) [9] 7 (6–8) [11] 2,100 [18] 56 [8] 440 [14] 1,700 [14] 

Substance use disorders 17 (15–19) [11] 8 (7–8) [14] 12 (11–13) [6] 1,000 [22] 8 [18] 710 [12] 310 [18] 

Skin and subcutaneous diseases 16 (15–18) [12] 8 (7–9) [13] 12 (11–13) [7] 1,000 [21] 2 [20] 990 [7] 55 [20] 

Chronic respiratory diseases 14 (13–16) [13] 13 (11–14) [10] 4 (4–5) [15] 2,900 [10] 99 [4] 990 [8] 1,900 [12] 

Sense organ diseases 14 (13–16) [14] 8 (7–9) [12] 8 (7–9) [9] 1,400 [20] n/a 1,400 [4] n/a 

HIV/AIDS and sexually transmitted 
infections 

8 (7–9) [15] 7 (6–8) [15] 3 (3–4) [17] 2,500 [13] 41 [11] 130 [21] 2,300 [8] 

Respiratory infections and tuberculosis 8 (7–8) [16] 4 (3–4) [17] 5 (4–5) [14] 6,500 [3] 120 [3] 290 [17] 6,200 [3] 

Other infectious diseases 7 (6–8) [17] 5 (4–5) [16] 3 (2–3) [18] 3,000 [9] 39 [12] 110 [22] 2,900 [6] 

Nutritional deficiencies 5 (4–6) [18] 2 (1–2) [19] 4 (3–4) [16] 2,100 [17] 12 [17] 1,300 [5] 840 [16] 

Neglected tropical diseases and malaria 3 (3–4) [19] 2 (2–3) [18] 1 (1–1) [19] 2,300 [14] 27 [16] 410 [15] 1,900 [10] 

Self-harm and interpersonal violence 2 (1–2) [20] 0.8 (0.7–0.9) [20] 1.0 (0.9–1) [20] 2,000 [19] 37 [14] 180 [19] 1,900 [13] 

Enteric infections 1 (1–2) [21] 0.6 (0.5–0.7) [21] 0.8 (0.8–0.9) [21] 4,100 [5] 64 [6] 240 [18] 3,800 [5] 

Transport injuries 0.4 (0.4–0.5) [22] 0.2 (0.2–0.2) [22] 0.2 (0.2–0.2) [22] 2,200 [15] 38 [13] 300 [16] 1,900 [11] 

 
Table 1: RCTs in PubMed with estimates of trial population sizes, and comparison with measures of global disease burden. DALY=Disability-adjusted life year 

  



 

 
FIGURE 2: Disease categories causing the highest global burden (by DALY), with the number of RCTs published for each).  
 

  



 

 
FIGURE 3: Trends over time in RCT publications of the top fifteen categories by publication rates from 1990 to 2019 



 

 
 
 

 

Overall, we estimate the median number of participants randomized per RCT was 72, with 

interquartile range (IQR) 32 to 195. We show how the distribution of RCT sample sizes varies for each 

of the GBD categories in Figure 4. 

 

 
FIGURE 4: Number of participants recruited to RCTs pertaining to each of the Global Burden of 

Disease categories 

 



 

FIGURE 5: Total RCTs published globally from 1990–2017 against disability-adjusted life years in 

the same period 

 

In Figure 5 we scatter the volume of evidence estimated for conditions against the global burden that 

they impose (totals in period 1990–2017) for the 22 ‘level 2’ Global Burden of Disease categories. 

 

Our primary analysis found that, on average, increasing DALYs were associated with a statistically 

significant increase in RCT publication in the same year, but that variance was not well explained by 

the model (β=0.52 for log DALYs, 95% confidence interval 0.33 to 0.70; R2=0.13). This translates to an 

average increase in the number of RCTs published of 5% (3.2% to 6.9%) for each 10% increase in 

DALYs in the same year. We report differences between the expected versus observed number of 

RCTs and trial participants based on this model in Table 2. 
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Disease category Total 
[1990– 
2017] 

1990– 
1993 

1994– 
1997 

1998– 
2001 

2002– 
2005 

2006– 
2009 

2010– 
2013 

2014– 
2017 

Cardiovascular diseases +34,000 +2,400 +3,000 +3,600 +4,400 +5,100 +6,700 +8,300 

Chronic respiratory 
diseases 

+4,200 +370 +500 +670 +720 +710 +620 +630 

Diabetes and kidney 
diseases 

+10,000 +490 +710 +800 +1,200 +1,600 +2,400 +3,400 

Digestive diseases +7,700 +590 +850 +920 +1,100 +1,100 +1,400 +1,700 

Enteric infections -9,700 -950 -1,200 -1,200 -1,400 -1,500 -1,700 -1,800 

HIV/AIDS and sexually 
transmitted infections 

-1,100 -120 -180 -190 -400 -280 -51 +100 

Maternal and neonatal 
disorders 

+6,400 +120 +410 +440 +530 +670 +1,500 +2,700 

Mental disorders +38,000 +1,100 +1,900 +2,600 +4,100 +6,100 +9,200 +13,000 

Musculoskeletal disorders +5,900 +50 +130 +360 +780 +1,000 +1,600 +2,000 

Neglected tropical 
diseases and malaria 

-5,400 -470 -570 -650 -790 -880 -990 -1,100 

Neoplasms +14,000 +980 +1,300 +1,200 +1,700 +2,200 +3,000 +4,000 

Neurological disorders +25,000 +1,100 +1,700 +2,100 +2,800 +3,800 +5,600 +7,800 

Nutritional deficiencies -3,300 -380 -450 -460 -410 -520 -560 -530 

Other infectious diseases -2,500 -390 -400 -340 -350 -260 -350 -410 

Other non-communicable 
diseases 

+24,000 +890 +1,400 +1,800 +2,800 +3,900 +6,100 +7,400 

Respiratory infections and 
tuberculosis 

-7,000 -830 -980 -970 -1,100 -1,200 -1,100 -1,000 

Self-harm and 
interpersonal violence 

-6,800 -620 -840 -890 -920 -1,000 -1,200 -1,300 

Sense organ diseases +6,500 +470 +630 +800 +780 +1,000 +1,300 +1,500 

Skin and subcutaneous 
diseases 

+9,300 +660 +780 +980 +1,200 +1,500 +1,900 +2,300 

Substance use disorders +9,800 +370 +750 +870 +1,200 +1,700 +2,200 +2,700 

Transport injuries -8,000 -670 -840 -940 -1,100 -1,200 -1,500 -1,700 

Unintentional injuries +6,300 +91 +200 +310 +620 +840 +1,600 +2,600 

 
Table 2: Difference between measured number of RCTs, and number predicted based on global 
disease burden (negative numbers=fewer RCTs were published than predicted) 
 



 

We found that models incorporating between 3–5 years of lag had improved fit compared with the 

equivalent model with no lag effects (demonstrated by reduction in Akaike information criterion 

[AIC], Bayesian information criterion [BIC], and increase in adjusted R2). The model incorporating lag 

up to 3 years found an average 7.2% increase in published RCTs for every 10% increase in DALYs 

(adjusted R2=0.29). The models with lag up to 4, and up to 5 years gave near identical estimates and 

fit (full analysis results provided in the statistical appendix).  

 
We provide full results for our sensitivity analysis (where we adjust for the differential impact of 

RCTs producing multiple publications in each disease in our statistical appendix 

(https://osf.io/zf97n/). We found that RCTs with a registry identifier produced a mean of 1.3 

articles, but that there was variation between GBD categories (from 1.2 articles/RCT in nutritional 

deficiencies to 1.5 articles/RCT in cardiovascular diseases). Compared with our primary results, 

our sensitivity analysis found a near identical relationship between DALYs and published trials 

(β=0.48, 95% CI 0.30 to 0.66; R2=0.13). Adjusting for multiple publications did not affect which 

conditions were found to have relatively high or low associated RCT publications. 

 

In our final model, which examined the effect of the DALY location (ratio of DALYs in the top fifth of 

countries by socio-demographic index vs. the bottom four fifths), we found that DALYs, and the DALY 

location were both associated with increased RCT publications (βDALY=0.75, 95% CI 0.56 to 0.91, 

βlocation=0.44, 95% CI 0.38 to 0.51; adjusted R2 =0.33). This may be interpreted that for every 10% shift 

in DALYs towards high-income countries, the number of RCTs increased by 4% (3.7 to 4.9), and for 

every 10% increase in DALYs globally, RCTs increased by 7% (5.7 to 9.1). 

Discussion 
We present the results from a natural language processing system that we used to perform a 

large-scale, comprehensive, automated analysis of all published RCTs indexed in the PubMed 

database. We find the number of published RCTs covering health conditions correlates only 

weakly with the burden that they inflict globally. Some conditions (particularly respiratory 

infections and tuberculosis, enteric infections, and transport injuries) attract substantially fewer 

published RCTs than expected based on the global burden.  

 

Conditions with fewer RCTs and participants than expected tend to disproportionately affect 

countries with low- and medium socio-economic status. For instance, respiratory infections and 

tuberculosis, which had the largest disparity between global burden and number of published 



RCTs disproportionately affects populations in lower income countries.[24] By contrast, cancers 

and diabetes, for which there appears to be a relative abundance of evidence, are comparatively 

common in high-income countries, although this picture is changing over time.[25,26] In other 

words, the top fifth of countries by socio-demographic index, who conduct the vast majority of 

RCTs, are more closely matching RCT conduct with disease burden within their own countries 

(albeit still weakly). These findings suggest that a research funding strategy based on individual 

countries priorities does not optimally meet global needs. However, the picture is complex: global 

development has meant that the most important diseases affecting high-income countries (i.e. 

cardiovascular disease and cancers) have also become the top health priorities in low- and middle-

income countries a number of years later. 

 

The median number of participants per RCTs was 72 (i.e., a typical trial is likely to have around 

36 participants per arm, or fewer trials with >2 arms). Smaller trials can be conducted faster and 

at lower cost, and thus can be more responsive to need, but have important limitations.[27] Small 

trials are more susceptible to the effects of publication bias, and have a high likelihood of 

generating false positive, and false negative findings.[28] Meta-epidemiological studies have 

shown that trials with fewer than 100 participants per arm tend to exaggerate treatment effects, 

compared with larger ones.[29,30] Twenty-five years after Yusuf and colleagues called for larger, 

simpler RCTs,[31] unfortunately we find that a majority of published trials are likely to be too 

small to provide useful or definitive information. 

 

Recently published related work has used machine learning to extract sex data automatically from 

a large set of articles describing RCTs, finding evidence of systematic underrepresentation of 

women in trials.[32]Here, we broaden this approach by applying machine learning to infer the 

conditions and outcomes under study in trials and extracting corresponding sample sizes. By 

using our previously validated model[12] to automatically recognize reports of RCTs, we are able 

to continuously surveil the literature to maintain an up-to-date, comprehensive view of the 

evidence, which we make publicly available to facilitate further research. 

 

Prior work has investigated the relationship between burden of disease and NIH funding.[8,5] 

These efforts relied on manual compilation of data, which necessarily limited the scope of 

analysis. Additionally, these efforts could only analyze conditions for which funding data was 

available. The authors of the landmark 1999 NEJM study noted that data was not available for 

conditions making up 38% of the total DALY estimate at that time.[5] Conducting this analysis 

manually additionally precludes the realization of a “living” view of the evidence base. By 



contrast, we have developed a fully automated approach that facilitates comprehensive, real-time 

analysis of the published RCT literature. For illustration, at the time of writing (September 

2020), our system has indexed 158 RCTs examining treatments for covid-19. This contrasts with 

PubMed, which has indexed (largely manually) 58 with the equivalent MeSH terms. 

 

Because our coverage of diseases is broader than prior work on the relationship between funding 

and burden of disease, the results are not directly comparable. However, some findings do 

qualitatively align with findings from prior analyses of research funding. For example, we also 

find that diabetes generated a relatively generous number of RCTs, as do cancers (in general). 

Future analyses using the methods and data could examine specific conditions within the 

categories presented here, investigating, for example, whether stroke is adequately researched 

compared with coronary artery disease, or the distribution of trials relevant to different subtypes 

of cancer. 

 

Our analysis has some limitations. First, our primary analysis examines publications and not 

RCTs themselves. Our sensitivity analysis confirms previous findings that RCTs may generate 

more than one publication,[33] and so our estimates of publication numbers are likely to be an 

overestimate of the number of trials conducted. However, we found adjusting for estimates of 

duplicate publication made little difference to estimates of research done as a function of global 

burden. Second, the automated data extraction methods used here are only able to count explicit 

mentions of a disease or disorder, and explicit descriptions of participant numbers from the 

abstract, but abstracts do not always contain all the necessary information (in this study, for 

example, 34% of articles publications did not report the number of study participants). There is 

evidence of improvement over time after the publication of the CONSORT recommendations in 

1996.[34] 

 

Last, we restrict our enquiry to PubMed and therefore have not counted RCTs which have 

produced publications in journals not indexed in PubMed. PubMed tends to under-represent 

articles published in non-English languages (though includes some where an English-language 

translations abstracts exist). PubMed also does not index conference presentations or 

pharmaceutical company data repositories. By focusing on published articles, this analysis will by 

construction miss RCTs whose results are never published (although unpublished trial results 

are arguably not effectively contributing to reducing the global disease burden). Nonetheless, 

PubMed is reasonably comprehensive; and those RCT publications that it misses have been 

found to comprise a relatively small fraction of the available health research.[35,36] 



 

Why and how do some conditions attract relatively high numbers of RCTs and trial participants? 

Disparities in funding may not be the sole explanation: organisational and cultural differences 

within medical subdisciplines could plausibly play a role. National strategies exist for increasing 

participation in oncology research (e.g., 2008 guidance from the American Society of Clinical 

Oncology which set a target of >10% of patients participating in clinical trials[37]); a large 

proportion of research looking at how best to increase trial recruitment has arisen from cancer 

RCTs.[38] Further investigation of how the better performing medical disciplines achieve their 

high recruitment rates might uncover strategies which are more widely applicable. 

 

Clinical trials are one small part of tackling the global disease burden and the UN sustainable 

development goals, and this wider landscape needs to be considered when determining research 

priorities. For example, the provision of clean water is likely to be more important for preventing 

enteric infections than any specific health intervention, and probably does not require an RCT to 

prove it.[39] There may be other conditions (e.g., HIV[40]) where established treatments can 

enable those with the condition to have a normal lifespan without significant disability. This 

contrasts with some types of cancer (e.g. pancreatic cancer[41]), where we still lack reliably 

effective treatments. For pharmacological research, the ability to run new trials depends on the 

availability of new candidate drugs to test.[42] Such new candidate drugs depend upon 

unpredictable scientific breakthroughs, which will not neatly tally with global disease burden 

rankings. 

 

Nonetheless, this data on the relative attention attracted by different health conditions may 

provide a useful metric to consider alongside other indicators of research need. Given that the 

vast majority of trials are being conducted by the wealthiest 20% of countries, targeting national 

health priorities is not sufficient, and a global approach is needed. We publish daily updates of 

the figures in this paper at www.robotreviewer.net/stateoftheevidence, and make the source code 

and dataset freely available via the Open Science Framework (DOI: 10.17605/osf.io/3db76). 
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