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On the essential norms of Toeplitz operators with

continuous symbols
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Kingdom and Technische Universität Dresden, Fakultät Mathematik, 01062 Dresden,

Germany

Abstract

It is well known that the essential norm of a Toeplitz operator on the Hardy
space Hp(T), 1 < p < ∞ is greater than or equal to the L∞(T) norm of
its symbol. In 1988, A. Böttcher, N. Krupnik, and B. Silbermann posed the
question on whether or not equality holds in the case of continuous symbols.
We answer this question in the negative. On the other hand, we show that the
essential norm of a Toeplitz operator T (a) with a continuous symbol a is less

than or equal to 2|1−
2
p |‖a‖L∞ .

Keywords: Toeplitz operator, essential norm, measure of noncompactness,
bounded compact approximation property.
2020 MSC: 47B35, 47A30, 47H08, 46B28

1. Introduction

For Banach spaces X and Y , let B(X, Y ) and K(X, Y ) denote the sets of
bounded linear and compact linear operators from X to Y , respectively.

For A ∈ B(X, Y ), let

KerA := {x ∈ X| Ax = 0}, RanA := {Ax| x ∈ X}.

The operator A is called Fredholm if

dim KerA < +∞, dim (X/RanA) < +∞.

The essential spectrum of A ∈ B(X) := B(X,X) is the set

Spece(A) := {λ ∈ C : A− λI is not Fredholm}.
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The essential norm of A ∈ B(X, Y ) is defined as follows:

‖A‖e := inf{‖A−K‖ : K ∈ K(X, Y )}.

For any A ∈ B(X), Spece(A) and ‖A‖e are equal to the spectrum and the
norm of the corresponding element [A] of the Calkin algebra B(X)/K(X) (see,
e.g., [5, Sect. 4.3]). Hence the essential spectral radius of A ∈ B(X) is less
than or equal to its essential norm:

re(A) := sup {|λ| : λ ∈ Spece(A)} ≤ ‖A‖e. (1)

Let T be the unit circle: T := {z ∈ C : |z| = 1}. For a function f ∈ L1(T), let

f̂(k) =
1

2π

∫ π

−π
f
(
eiθ
)
e−ikθ dθ, k ∈ Z

be the Fourier coefficients of f . The Hardy spaces, the Riesz projection, and
the Toeplitz operator with the symbol a ∈ L∞(T) are defined in the usual way:

Hp(T) :=
{
f ∈ Lp(T) : f̂(k) = 0 for all k < 0

}
, 1 ≤ p ≤ ∞,

(Pf)
(
eiθ
)

:=
∑
k≥0

f̂(k)eikθ for f
(
eiθ
)

=
∞∑

k=−∞

f̂(k)eikθ,

T (a)f := P (af), f ∈ L1(T).

If 1 < p < ∞, the Riesz projection P : Lp(T) → Hp(T) is bounded (see, e.g.,
[11, Ch. 9]) and hence the Toeplitz operator

T (a) = PaI : Hp(T)→ Hp(T), 1 < p <∞, a ∈ L∞(T) (2)

is bounded. Everywhere in the paper, T (a) denotes operator (2).

Since

a(T)e :=

{
λ ∈ C :

1

a− λ
6∈ L∞(T)

}
⊆ Spece(T (a))

(see, e.g., [4, Theorem 2.30]), inequality (1) implies

‖a‖L∞ ≤ re(T (a)) ≤ ‖T (a)‖e. (3)

On the other hand,

‖T (a)‖e ≤ ‖T (a)‖ = ‖Pa I‖ ≤ ‖P‖‖a‖L∞ .

Since

‖P‖Lp→Lp =
1

sin π
p

2



(see [12]), one gets

‖a‖L∞ ≤ ‖T (a)‖e ≤
1

sin π
p

‖a‖L∞ . (4)

If p = 2, inequality (4) turns into the equality ‖T (a)‖e = ‖a‖L∞ . If a ≡ 1,
then ‖a‖L∞ = 1 = ‖T (a)‖e, so the first inequality in (4) is sharp. If

a
(
eiϑ
)

:= sin
π

p
± i cos

π

p
, ±ϑ ∈ (0, π),

then ‖a‖L∞ = 1, and it follows from the Gohberg-Krupnik theory of Toeplitz
operators with piecewise continuous symbols that

1

sin π
p

∈ Spece(T (a))

(see, e.g., [4, Theorem 5.39]). Hence

‖T (a)‖e ≥
1

sin π
p

(see (1)), and the second inequality in (4) is also sharp if one considers Toeplitz
operators with discontinuous symbols.

The situation is different in the case of continuous symbols. If a ∈ C(T), then
Spece(T (a)) = a(T) (see, e.g., [4, Theorem 2.42]). In particular, Spece(T (a))
does not depend on p. It is natural to ask whether ‖T (a)‖e depends on p for
a ∈ C(T). Since ‖T (a)‖e = ‖a‖L∞ for p = 2, this question can be rephrased
as follows: does the equality ‖T (a)‖e = ‖a‖L∞ hold for all p ∈ (1,∞) and all
a ∈ C(T)? This question was posed in [3, Sect. 7.6], where it was proved that

‖T (a)‖e = ‖a‖L∞ for all a ∈ (C +H∞)(T) ⇐⇒ ‖T (e−1)‖e = 1.

Here and below,
em(z) := zm , z ∈ C, m ∈ Z.

Note that for every f ∈ Hp(T),

f
(
eiθ
)

=
∞∑
n=0

f̂(n)einθ, θ ∈ [−π, π],

one has

e−1
(
eiθ
)
f
(
eiθ
)

= f̂(0)e−iθ +
∞∑
n=1

f̂(n)ei(n−1)θ,

and hence (
T (e−1)f

) (
eiθ
)

=
∞∑
n=1

f̂(n)ei(n−1)θ.
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If f̂(0) = 0, then

T (e−1)f = e−1f =⇒ |T (e−1)f | = |f | a.e. on T.

So, the equality ‖T (e−1)f‖Hp = ‖f‖Hp holds on a co-dimension one subspace
of Hp(T), and the equality ‖T (e−1)‖e = 1 looks plausible. Nevertheless, we
show that the answer to the above question is negative and ‖T (e−1)‖e > 1 for
every p 6= 2 (see Section 5).

The constant 1
sin π

p
in the right-hand side of (4) tends to infinity as p → 1

or ∞. It turns out that a better estimate holds for T (a) : Hp(T) → Hp(T),
1 < p <∞ if a ∈ (C +H∞)(T). Namely,

‖T (a)‖e ≤ 2|1−
2
p |‖a‖L∞ ≤ 2‖a‖L∞

(see Section 4).

The proof of our main results relies upon the use of measures of noncompact-
ness (see Section 2) and approximation properties of Hardy spaces (see Section
3).

2. Measures of noncompactness of a linear operator

For a bounded subset Ω of a Banach space Y , we denote by χ(Ω) the greatest
lower bound of the set of numbers r such that Ω can be covered by a finite
family of open balls of radius r.

For A ∈ B(X, Y ), set
‖A‖χ := χ (A(BX)) ,

where BX denotes the unit ball in X. Let

‖A‖m := inf
M ⊆ X closed linear subspace

dim(X/M) <∞

∥∥A|M∥∥,
where A|M denotes the restriction of A to M .

The measures of noncompactness ‖ ·‖χ and ‖ ·‖m have the following properties

1

2
‖A‖χ ≤ ‖A‖m ≤ 2‖A‖χ (5)

and
‖A‖χ ≤ ‖A‖e , ‖A‖m ≤ ‖A‖e (6)

(see [13, (3.7) and (3.29)]; note that there is a typo in [13, (3.7)], where the
factor 2 is missing in the right-hand side). The constants 1

2
and 2 in (5) are

optimal (see [1, 2.5.2 and 2.5.6]).

In general, ‖A‖e cannot be estimated above by ‖A‖χ or ‖A‖m (see [2]). Some
restrictions on the geometry of X or Y are needed for such estimates.
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Definition 2.1. A Banach space Z is said to have the bounded compact ap-
proximation property (BCAP) if there exists a constant M ∈ (0,+∞) such that
given any ε > 0 and any finite set F ⊂ Z, there exists an operator T ∈ K(Z)
such that

‖I − T‖ ≤M and ‖y − Ty‖ < ε, ∀y ∈ F. (7)

Here I is the identity map from Z to itself.

We say that Z has the dual compact approximation property (DCAP) if there
exists a constant M∗ ∈ (0,+∞) such that given any ε > 0 and any finite set
G ⊂ Z∗, there exists an operator T ∈ K(Z) such that

‖I − T‖ ≤M∗ and ‖z − T ∗z‖ < ε, ∀z ∈ G. (8)

The greatest lower bound of the constants M (constants M∗) for which (7)
( (8), respectively) holds will be denoted by M(Z) (by M∗(Z)).

It is easy to see that

Z has the DCAP =⇒ Z∗ has the BCAP and M(Z∗) ≤M∗(Z),

and that if Z is reflexive, then

Z has the DCAP ⇐⇒ Z∗ has the BCAP and M(Z∗) = M∗(Z).

Although we will apply the results of this Section only to reflexive spaces, we
consider here the general (non-reflexive) case.

A comprehensive study of various approximation properties can be found in
[14] (see also [8] for examples of function spaces that have the BCAP).

If Y has the BCAP, then

‖A‖e ≤M(Y )‖A‖χ , ∀A ∈ B(X, Y )

(see [13, Theorem 3.6]) and hence

‖A‖e ≤ 2M(Y )‖A‖m , ∀A ∈ B(X, Y )

(see (5)).

Theorem 2.2. If X has the DCAP, then

‖A‖e ≤M∗(X)‖A‖m , ∀A ∈ B(X, Y ). (9)

Proof. Take any ε > 0. According to the definition of ‖A‖m, there exists a
subspace M of X having finite codimension and such that

‖Ax‖ ≤ (‖A‖m + ε)‖x‖, ∀x ∈M. (10)

5



Let Q : X →M be a bounded projection onto M . Then I −Q is a finite rank
operator. Since (I −Q)∗ ∈ K(X∗), there exist z1, . . . , zn ∈ X∗ such that

min
k=1,...,n

‖(I −Q)∗z − zk‖ < ε (11)

for every z ∈ X∗ with ‖z‖ ≤ 1. Since X has the DCAP, there exists T ∈ K(X)
such that ‖I − T‖ ≤M∗(X) + ε and

‖zk − T ∗zk‖ < ε, k = 1, . . . , n.

Take any z ∈ X∗ with ‖z‖ ≤ 1 and choose k for which the minimum in (11) is
achieved. Then

‖(I − T )∗(I −Q)∗z‖ ≤ ‖(I − T )∗ ((I −Q)∗z − zk)‖+ ‖(I − T )∗zk‖
< ‖(I − T )∗‖ε+ ε = ‖I − T‖ε+ ε ≤ (M∗(X) + ε+ 1)ε.

Hence

‖(I −Q)(I − T )‖ = ‖(I − T )∗(I −Q)∗‖ < (M∗(X) + ε+ 1)ε.

Then using (10), one gets

‖AQ(I − T )x‖ ≤ (‖A‖m + ε)‖Q(I − T )x‖

≤ (‖A‖m + ε)
(
‖(I − T )x‖+ ‖(I −Q)(I − T )x‖

)
≤ (‖A‖m + ε) (M∗(X) + ε+ (M∗(X) + ε+ 1)ε)

for every x ∈ X with ‖x‖ ≤ 1. Since

A− AQ(I − T ) = A(I −Q) + AQT ∈ K(X, Y ),

the above implies

‖A‖e ≤ (‖A‖m + ε) (M∗(X) + ε+ (M∗(X) + ε+ 1)ε)

for any ε > 0. Passing to the limit as ε→ 0, one arrives at (9).

3. Approximation properties of Hardy spaces

Theorem 3.1. The Hardy space Hp = Hp(T), 1 < p < ∞ has the bounded
compact approximation and the dual compact approximation properties with

M(Hp),M∗(Hp) ≤ 2|1−
2
p | .
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Proof. Let

Kn

(
eiθ
)

:=
1

2π

n∑
k=−n

(
1− |k|

n+ 1

)
eikθ =

1

2π(n+ 1)

(
sin (n+1)θ

2

sin θ
2

)2

,

θ ∈ [−π, π], n = 0, 1, 2, . . .

be the n-th Fejér kernel, and let

(Knf)
(
eiϑ
)

:= (Kn ∗ f)
(
eiϑ
)

=

∫ π

−π
Kn

(
eiϑ−iθ

)
f
(
eiθ
)
dθ, ϑ ∈ [−π, π],

where f ∈ L1(T). It is well known that ‖Kn‖L1(T) = 1,

(Knf)
(
eiϑ
)

=
n∑

k=−n

f̂(k)

(
1− |k|

n+ 1

)
eikθ, (12)

where f̂(k) is the k-th Fourier coefficient of f , ‖Kn‖Lp→Lp = 1 for 1 ≤ p ≤ ∞,
Kn converge strongly to the identity operator on Lp(T), 1 ≤ p <∞ as n→∞,
and Kn map Hp(T) into itself (see, e.g., [11, Ch. 2]). It follows from (12)
and Parseval’s theorem that ‖I − Kn‖L2→L2 = 1. Since ‖I − Kn‖Lp→Lp ≤
1+‖Kn‖Lp→Lp = 2, the Riesz-Thorin interpolation theorem (see, e.g., [14, vol.
II, Theorem 2.b.14]) applied to L2(T) and L∞(T) implies

‖I −Kn‖Lp→Lp ≤ 21− 2
p , 2 ≤ p ≤ ∞.

Similarly, interpolating between L2(T) and L1(T), one gets

‖I −Kn‖Lp→Lp ≤ 2
2
p
−1 , 1 ≤ p ≤ 2.

The above inequalities imply that

‖I −Kn‖Hp→Hp ≤ 2|1−
2
p | , 1 ≤ p ≤ ∞.

It is easy to see that the adjoint to Kn : Hp(T)→ Hp(T), 1 < p <∞ operator
can be identified with Kn : Hp′(T) → Hp′(T), p′ = p

p−1 (see [6, §7.2]). Hence
the conditions in Definition 2.1 are satisfied for T = Kn with a sufficiently
large n.

If 1 < p < ∞, the Hardy space Hp(T) is reflexive. Although (Hp(T))∗ is
isomorphic to Hp′(T), these two spaces are not isometrically isomorphic, and
it is not clear whether or not M∗(Hp) = M(Hp′). Unfortunately, the exact
values of M(Hp), M∗(Hp) do not seem to be known.
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4. An upper estimate for the essential norm of a Toeplitz operator

Theorem 4.1. Let a ∈ (C+H∞)(T). Then the following holds for the Toeplitz
operator T (a) : Hp(T)→ Hp(T), 1 < p <∞,

‖T (a)‖m = ‖a‖L∞ , ‖T (a)‖e ≤ 2|1−
2
p |‖a‖L∞ . (13)

Proof. It is sufficient to prove the equality in (13) as the inequality then follows
from Theorems 2.2 and 3.1. Since ‖T (b)‖ ≤ ‖P‖‖b‖L∞ for any b ∈ L∞(T) and
functions of the form a = e−nh, h ∈ H∞(T), n ∈ N are dense in (C +H∞)(T)
(see, e.g., [10, Ch. IX, Theorem 2.2]), it is sufficient to prove (13) for such a
function. Let Hp

n(T) be the subspace of Hp(T) consisting of all functions with
the first n Fourier coefficients equal to 0. Then Hp

n(T) has codimension n and

‖T (a)f‖Hp = ‖af‖Hp ≤ ‖a‖L∞‖f‖Hp , ∀f ∈ Hp
n(T).

Hence ‖T (a)‖m ≤ ‖a‖L∞ . Since ‖T (a)‖m is greater than or equal to the
essential spectral radius of T (a) (see [13, §6]) and the latter is greater than or
equal to ‖a‖L∞ (see (3)), one has the opposite inequality ‖T (a)‖m ≥ ‖a‖L∞ .

5. The essential norm of the backward shift operator

Theorem 5.1. The following equalities hold for the Toeplitz operator T (e−1) :
Hp(T)→ Hp(T), 1 < p <∞,

‖T (e−1)‖χ = ‖T (e−1)‖e = ‖T (e−1)‖Hp→Hp .

Proof. Since
‖T (e−1)‖χ ≤ ‖T (e−1)‖e ≤ ‖T (e−1)‖Hp→Hp

(see (6)), it is sufficient to prove that ‖T (e−1)‖χ ≥ ‖T (e−1)‖Hp→Hp =: Cp. For
any ε > 0, there exists q ∈ Hp(T),

q
(
eiθ
)

=
∞∑
k=0

cke
ikθ = c0 +

∞∑
k=1

cke
ikθ =: c0 + q0

(
eiθ
)
, θ ∈ [−π, π],

such that ‖q‖Hp = 1 and

‖q0‖Hp = ‖e−1q0‖Hp = ‖T (e−1)q‖Hp ≥ Cp − ε.

Since eN , N ∈ N is an inner function and eN(0) = 0, one has ‖f ◦ eN‖Hp =
‖f‖Hp for any f ∈ Hp(T) (see [7, Theorem 5.5]). Hence ‖q ◦ eN‖Hp = 1 and

‖T (e−1)(q ◦ eN)‖Hp = ‖e−1(q0 ◦ eN)‖Hp = ‖q0 ◦ eN‖Hp ≥ Cp − ε.
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Take any finite set {ϕ1, . . . , ϕm} ⊂ Hp(T) and choose polynomials

ψj(z) :=

nj∑
k=0

ψj,kz
k, z ∈ C, j = 1, . . . ,m

such that ‖ϕj − ψj‖Hp ≤ ε. Then choose N ∈ N such that

N > max{n1, . . . , nm}+ 1 (14)

and set h := ‖f‖1−pHp |f |p−2f , where f = q0 ◦ eN . A standard calculation gives
‖h‖Lp′ = 1 and ∫ π

−π
(q0 ◦ eN)

(
eiθ
)
h
(
eiθ
)
dθ = ‖q0 ◦ eN‖Hp .

The Fourier series of h has the form∑
k∈Z

hke
ikNθ, hk ∈ C.

It follows from (14) that

{kN | k ∈ Z} ∩ {1, . . . , nj + 1} = ∅, j = 1, . . . ,m.

Hence ∫ π

−π
(e1ψj)

(
eiθ
)
h
(
eiθ
)
dθ = 0.

So, ∫ π

−π
(q0 ◦ eN − e1ψj)

(
eiθ
)
h
(
eiθ
)
dθ = ‖q0 ◦ eN‖Hp , j = 1, . . . ,m.

On the other hand, Hölder’s inequality implies∣∣∣∣∫ π

−π
(q0 ◦ eN − e1ψj)

(
eiθ
)
h
(
eiθ
)
dθ

∣∣∣∣ ≤ ‖q0 ◦ eN − e1ψj‖Hp ,

since ‖h‖Lp′ = 1. Hence

‖q0 ◦ eN − e1ψj‖Hp ≥ ‖q0 ◦ eN‖Hp

and

‖T (e−1)(q ◦ eN)− ϕj‖Hp = ‖e−1(q0 ◦ eN)− ϕj‖Hp = ‖q0 ◦ eN − e1ϕj‖Hp

≥ ‖q0 ◦ eN − e1ψj‖Hp − ε ≥ ‖q0 ◦ eN‖Hp − ε ≥ Cp − 2ε, j = 1, . . . ,m.

So, for every finite set {ϕ1, . . . , ϕm} ⊂ Hp(T), there exist an element of the
image of the unit ball T (e−1) (BHp) that lies at a distance at least Cp − 2ε
from every element of {ϕ1, . . . , ϕm}. This means that T (e−1) (BHp) cannot be
covered by a finite family of open balls of radius Cp − 2ε. Hence

‖T (e−1)‖χ ≥ Cp − 2ε = ‖T (e−1)‖Hp→Hp − 2ε, ∀ε > 0,

i.e. ‖T (e−1)‖χ ≥ ‖T (e−1)‖Hp→Hp .
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It is known that ‖T (e−1)‖Hp→Hp > 1 for p 6= 2 (see [3, § 7]). So, it follows
from Theorem 5.1 that

‖T (e−1)‖e > 1 = ‖e−1‖L∞ , p 6= 2. (15)

The exact value of ‖T (e−1)‖Hp→Hp does not seem to be known (see [9]), but
it follows from the proof of Theorem 3.1 that

‖T (e−1)‖Hp→Hp = ‖e−1(I −K0)‖Hp→Hp = ‖I −K0‖Hp→Hp ≤ 2|1−
2
p |

(see [3, 7.8] and [9]).

Acknowledgments. I am grateful to the anonymous referees for the con-
structive criticism and helpful suggestions.
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