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Understanding the feasibility of network edge caching through
measurements

Abstract
Recent developments in both hardware industry to bring down the cost/size of the user
devices and in content systems to deliver various forms of content have resulted in the
burdening of the Internet. In this work, we study how to tackle this growing network burden,
leveraging local content access patterns, and the presence of edge caches and computes. The
analysis is done through the data gathered from three new and trending applications: (i) on-
demand video streaming (ii) live video streaming and (iii) decentralised social web, with
the analysis being carried out on BBC iPlayer, Facebook Live and Mastodon respectively.

Our proposition is – careful planning to share content at the edge would not only earn
significant traffic savings but also improves resiliency due to a redundant availability of
content. We notice that the traffic load of on-demand video traffic can be decreased by
up to 70% by strategic content sharing at the edge and 22% of upload live-traffic can be
saved just by offloading the content to the edge and sharing amongst the local viewers. We
also find, instead of popularity based content replication in the decentralised social web
(which happens at present based on the federating nodes), strategic placements are much
more efficient. For example, random replication of content in 5 different nodes improves
the content availability by 68% even when 25 most popular nodes are down.

Thus, we investigate the spread of diverse media content arising from three different
popular applications and propose how to optimally serve the content making use of the
storage available at network edge.

Thesis Supervisor: Prof. Nishanth Sastry
Thesis Examiners: Dr. Marwan Fayed

Prof. S. Keshav
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Chapter 1

Introduction

I
n recent years, the growth of the Internet has transformed the way a content item is

delivered through a service provider’s infrastructure and how we, as users, interact with

the content item. Internet, built as a connection of tens of thousands of routers and au-

tonomous systems, was introduced envisaging host-host communication rather than content

delivery/distribution. However, a large proportion of the present day’s Internet is filled with

content which mainly comes as videos and this staggering increase in data traffic has raised

questions on efficiency and resilience of the Internet infrastructure. For example, with the

fixed-line networks having a heavy burden of video traffic – Over 75% of North American

traffic is streaming video and audio, and 31% of it comes just from one service: Netflix [13].

In the United Kingdom (UK), video streaming application from the British Broadcasting

Corporation (BBC), BBC iPlayer, is one of the largest applications on the nation’s networks,

used by nearly one in three adults, according to the UK communications regulator Ofcom1.

Such huge loads have led to highly confrontational battles between content providers such

as Netflix and fixed-line ISPs such as Comcast2. Some of these disputes are being resolved

with bilateral deals (e.g., Netflix and Comcast3) and/or in-network caches (e.g., BBC with

major UK Internet Service Provider (ISP)4). However, it takes time to find such solutions,

and they have to be decided on a case-by-case basis. Furthermore, there are cases of atypical

events which see a spike in the traffic during a certain point of time [14], where the perfor-

mance of operators’ network plummets delivering a poor Quality of Experience (QoE). Such

additional traffic requires capacity provisioning and may involve expensive commissioning

1https://www.ofcom.org.uk/__data/assets/pdf_file/0024/26826/cmr_uk_2016.pdf
2https://www.wired.com/2014/02/comcast-netflix/
3http://www.tubefilter.com/2016/07/06/netflix-comcast-x1-deal/
4https://gigaom.com/2007/12/23/419-bbc-to-cache-iplayer-downloads-with-isps-could-soothe-net-neutrality-fe/
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of additional resources, such as fibre to the home, or close to the edge, eventually leading

to complexity and the soaring cost of content delivery.

While on the one hand, scaling content distribution is becoming challenging, on the other

hand applications that deliver a multitude of content forms is also increasing. For example,

TikTok, a popular video-sharing social networking service, which got launched during the

second half of 2018 garnered 1 billion downloads by the end of 2019 accounting for 1.5% for

global mobile traffic and got ranked at 11 in terms of global downstream data usage [15].

One of the commonly considered solutions to alleviate this network burden of application

traffic is to distribute the load from the core to the edge devices. The first push towards

distributing the load in content delivery started with the introduction of edge Content

Delivery Network (CDN), then to ISP CDN and now more towards the very edge i.e., the

user devices. This natural shift from content provider’s infrastructure to service provider’s

infrastructure and more recently to user-owned infrastructure not just ensures low latency

and high throughput content delivery but also helps in improving user privacy [16, 17].

Thus, it is really important to carefully design and enhance caching techniques to achieve

seamless content delivery.

In this work, we study a spectrum of content systems that operate on three different

production chains. We evaluate the traffic savings and identify mechanisms to improve the

resiliency of content systems.

A1 An organisation owns both the application and content production.

Production companies such as Netflix, the BBC produce and deliver the content through

a proprietary application managed by the organisation. Thus the application, as well as

the hosted content, are operated by the same organisation. Typically, for companies that

operate on original content, the revenue is generated through the subscription-based model.

In Chapter 3, we consider a similar case of the BBC iPlayer, the second most popular on

demand streaming service in the UK, where the content is owned and distributed by the

BBC. We show the similarities of content item access within a neighbourhood and show

the amount of traffic savings achieved through sharing the caches.

A2 Application owned by an organisation but users produce the content.

Unlike traditional content systems where an organisation manages both the content and

the infrastructure, we have moved into an era where users carry a small content production

unit in their pockets. With the introduction of Youtube in early 2000, we have seen a rise

in User Generated Content (UGC). Services like Youtube provide an infrastructure where

users can upload and access the videos in most of the globe over the Internet. The recent

introduction of social live broadcasts within social media like Facebook, Twitter, etc. have
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enabled the users to stream a live video even from a mobile phone. In chapter 4, we explore

live broadcasts that were streamed by users from their mobile devices to the popular social

networking platform, Facebook.

A3 Users own both application and the content system.

Traditional peer-to-peer sharing, where both the devices and the content belong to the

users, e.g., LifeSocial.KOM [18] and PeerSON [19], did not take off partly due to challenges

related to both performance [20] and reliability [21]. Following this, there is a recent growth

of decentralised systems that rely on a server-based federated model, typically a server being

managed by amateur users (called as administrators) and not by an organisation. These

“independent” servers weave together to form a decentralised web, and a user willing to use

the platform can join one of these servers. In chapter 5, we measure the presence of such

servers hosting a decentralised social web application, Mastodon.

On content placement strategies. The work aims to derive insights from the data

collected from these diverse set of applications A1, A2, A3 and thereby, measure the network

benefits of caching and sharing the content amongst the edge devices. For applications A1

and A2 caching strategies at the edge work well to achieve traffic savings. Whereas for A3,

we show instead of the current content replication scheme which is based on federation

policy, random content replication works better for improving content availability. Based

on the results, the work provides foundations for co-operation amongst such edge devices,

irrespective of who owns the device/infrastructure and discusses the case of content sharing

at the edge.

� 1.1 Thesis Statement

Several works focus on a complementary approach as a content placement scheme that

makes better use of resources at the edge, rather than just offloading mobile edge traffic to

fixed-line broadband, or investing on network upgrades. Our thesis is that –

Storage available with the edge devices can be used optimally to achieve significant

traffic savings and as well to improve the resiliency of a content system.

To validate this, we perform a large scale data dissection of three prominent platforms -

BBC iPlayer, Facebook Live, and Mastodon intending to show how content sharing, caching

and replication at the network edge (respectively) can help in improving the content system.
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� 1.2 Research Goals

Based on the problem statement, we identify three primary goals with each of the goal

carrying a set of research questions as below.

Research Goal 1: Measuring the performance of sharing at the network edge for on

demand streaming

With video packets representing 56% of global Internet traffic [13], our first research

goal is aimed towards handling this traffic growth through designing an effective content

sharing mechanism. This would allow the video streamers within a neighbourhood to cache

and share a content item. The design involves measuring the extent of savings that can be

achieved by caching at the very last hop of the network, on a device in users’ homes, and

then connecting the caches to increase content sharing. To effectively build such a design,

the questions that of interest are:

RQ 1.1: Are there sufficient users within a neighbourhood to share a content item?

RQ 1.2: To what extent do users within a neighbourhood watch similar content items?

RQ 1.3: How to optimally share the content items, and to what extent can savings be

achieved?

Research Goal 2: Measuring the performance of edge caching for Social Live Broadcasts

Gaining popularity of new category video application called social live broadcasts result

in both upstream and downstream traffic. The second goal is to perform a broad charac-

terisation of social live broadcasts and highlight relevant implications for mobile live social

video delivery derived from the observations. The research questions in this context are:

RQ 2.1: How popular are social live broadcasts from a global perspective?

RQ 2.2: Can content caching help bringing down the upload bandwidth, if so, by how

much?

RQ 2.3: How social live broadcasts can benefit from existing mobile edge computing

paradigms?
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Research Goal 3: Measuring the performance of content replication for Decentralised

Social Web

Technologies providing better transparency, openness and democracy on the web is ever

demanding, and Decentralised web (DW) is once such initiative. The third goal is to

measure a DW application, Mastodon and study the content related aspects. This involves

the following research questions.

RQ 3.1: What is the presence of DW and whether there is active user participation?

RQ 3.2: Is DW really decentralised, if not, is/why there a shift towards centralisation?

RQ 3.3: Is DW resilient to network failures, if not, what are the possible reasons and

how to effectively improve content availability?

� 1.3 Methodology & Challenges

To address the questions presented in Section 1.2, we first do a review of existing works in

the area of content caching at the network edge. We then identify real-world applications

and collect data on how users use the platform. It is well known that multiple platforms

provide the same service, but with different user interfaces and features. For example,

applications like Twitter (periscope), Youtube, etc. offer the option to stream social live

broadcast. In the scope of this thesis, we have chosen the platforms as case studies based

on the scale at which the platform operates. For example, in the case of the BBC iPlayer,

it is one of the top catch-up Television (TV) services in the UK, second only to YouTube5.

Whereas in the case of Facebook live, it is a feature embedded within the top-ranked social

media, Facebook and every user of Facebook is actively/passively a user of Facebook live.

Mastodon forms the largest decentralised social media out of all the existing ones with close

to 2 million users. We then do a broad characterisation of these platforms and evaluate

the content caching mechanisms to reduce the backhaul traffic as well as to improve the

resiliency of the content system through trace-driven simulations. The focus of this thesis is

mainly motivated by the necessity to counteract the growing traffic from diverse applications

that users consume.

While guaranteeing correct inference from any data poses challenges, understanding

network related access logs and web scraped data presents several problems. We present

here some of the key challenges faced during the data collection. While there were no user

surveys involved, the data contained user traffic; thus, the analysis needed to be carried out

without compromising user privacy.

5http://mediatel.co.uk/newsline/2014/03/28/nielsen-data-report-february-2014/
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� 1.3.1 Data Anonymisation and Integrity

In the case of passively monitored logs obtained from an organisation, most parts of the

data are anonymised. The main intention behind such an action is to protect the privacy

of users accessing the platform. As explained in Chapter 3, the on demand streaming data

shared by the BBC iPlayer had the Internet Protocol (IP) addresses of users masked, and

the geo-location of accesses to the video streaming service were shared at postcode level.

This information helped in better understanding of data without having effects on user

privacy.

However, there are some cases where it becomes necessary to coalesce two or more

datasets to arrive at valuable insights. For example, in Chapter 3, the user access from

the BBC iPlayer is mapped to wireless access points collected from a war-driven dataset.

We had to take necessary steps (cf. Section 3.2) to not lose the statistical properties of the

data without any compromise to user privacy.

� 1.3.2 Data Consistency

While scraping data from the web, we had to validate the consistency in data manually

during initial phases and oversee the crawler as any updates to an Application Program-

ming Interface (API) of the host application can break the data collection. During the

preprocessing stage, as well as after the data collection has finished, the data consistency

needs to be checked. In Chapter 4, we show a noise has been added to the data by the

platform while exhibiting geo-coordinate positions of the users.

� 1.3.3 Data Storage and Ethics

Given that we now have the data from various platforms that operate at a large scale,

it is vital to derive useful observations from the data. Starting from data collection, to

parsing the data from a raw file and storing it as a formatted data requires a good compute

power and optimal processing. Moreover, storing data at a single place (due to the security

considerations) makes storage as a bottleneck.

It is essential to take certain precautions while collecting and handling the data. For

example, we collected the publicly available data from wigle.net to get the list of Wi-

Fi access points within a geographical region and facebook.com/live/6 to collect all the

publicly available global broadcasts with viewer information, even without logging in to the

corresponding platforms. As a further precautionary step, we also anonymised the user-

name, video identifiers before the analysis and did not publish any other user information.

In the case of Mastodon, we were collecting publicly available user posts from thousands

6Facebook has recently deprecated the link, which used to be like – https://web.archive.org/web/

20180120090913/https://www.facebook.com/live/

wigle.net
facebook.com/live/
https://web.archive.org/web/20180120090913/https://www.facebook.com/live/
https://web.archive.org/web/20180120090913/https://www.facebook.com/live/
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of hosts from various parts of the world. We anonymised the data before analysis, stored

the results within a secure silo, and removed any text content posted by the user before

examining the data.

Other common challenges in data collection include rate limits set by the platform and

code failures. While these are hard to overcome, some measures, such as slowing down the

rate at which a crawler operates and being a part of community managing the platform, were

taken. For example, in the case of Mastodon, we were a part of administrators community,

which helped in thwarting a cache-fill issue7.

� 1.4 Contributions

The key contributions from the thesis fall into three categories which aim to address the

presented research questions (Section 1.2).

• Performance of content sharing at the network edge for on demand stream-

ing: Chapter 3 lays out the feasibility of content sharing at the network edge based

on real world access to an on demand streaming platform. The chapter identifies

a new mechanism for content sharing at the edge which can be managed by any of

service provider, content provider or the network operator.

• Performance of content caching mechanism at the network edge for live

streaming: We show in Chapter 4, social live broadcasts from the application

exhibits similar properties as on demand videos with 46% of the videos goes unwatched

while live. The chapter identifies new opportunities to save upload traffic in live videos.

• Performance of content replication scheme for decentralised social shar-

ing: Chapter 5 identifies the challenges to the resiliency of the decentralised web

and proposes a content replication mechanism to improve the resiliency and content

availability of the decentralised web.

� 1.5 List of Publications

During the course of my PhD, I had the following 13 publications (first author and main

contributor in 7). Chapter 3 is based on [5, 10]. [10] extends a version published as an

invited paper in [9]. Chapter 4 and Chapter 5 are based on [8]and [1], respectively.

7https://lists.ffdn.org/wws/arc/mastodon-admin/2019-04/msg00000.html

https://lists.ffdn.org/wws/arc/mastodon-admin/2019-04/msg00000.html
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Chapter 2

Background

C
omputer systems implement caching as a small block of memory which is used to store

data temporarily and can be accessed relatively faster than the main memory. The

motivation behind a cache was to improve the access time during the future requests to

the data. The overall system performance is enhanced by studying the access patterns to

the data and instruction cache. Earlier designs, even before the Internet era, focused on

improving the data requested by a hardware or software component found in the cache

memory or simply put, to improve the cache hit [23].

� 2.1 Web Caching: A Brief History

As the Internet traffic had started to evolve and with the introduction of transport pro-

tocols [24], the concept of memory caching found its way through networking systems.

Distributed file system protocols such as Network File System (NFS) [25] and Andrew File

System (AFS) [26] relied on caching. Domain Name System (DNS) adopted caching [27] to

make IP address lookups faster. Web objects such as Hypertext Markup Language (HTML)

web pages, media content were replicated and hosted in smaller web servers across the globe

as cache points. These replicas helped especially popular web services and while serving

static web objects, to bring down the network bandwidth usage, access time/web page load

time and congestion at the server [28]. As applied in computing systems, to have an effective

cache, (i) the client requests should exhibit both temporal and spatial locality of reference

and (ii) the cost of caching in terms of bandwidth, access time and server load should be

lesser than that of direct retrieval from the central server. The latter can also include the

hardware and software cost as well as the cache server management cost. Initial web caches

were in the form the browser caches, proxy caches and surrogates.

26
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Browser caches. Browsers benefit from having a small built-in storage, which is used to

store the web objects. An user decides the amount of memory allotted for the cache and

whether or not the browser/website can use the cache. Typically, the cache is limited and

local to a browser that cannot of shared across users. However, the recent introduction

of mechanisms like web torrents [29] has changed this ideology and enable users to share

caches over browsers.

Proxy caches. Unlike the browser caches, caching proxies were introduced to serve tens

to thousands of users. Caching proxies were found to be beneficial, especially for large

organisations such as ISPs, schools and corporations [30]. A cache proxy sits between the

client and server, creating two Transmission Control Protocol (TCP) connections between

the server and the client. Any request from a client would go through the proxy, and if

cannot be served by the cache in proxy, the client request is forwarded to the origin server.

Surrogates. During the late 1990s, with the growing adoption of CDN, intermediate

servers with advanced mechanisms such as reverse proxies, server accelerators were intro-

duced. Such servers assumed the role of an origin server and were pooled together under

a broad terminology called surrogates. RFC3040 [31], defines surrogates as intermediary

servers to which the origin servers delegate the authority to operate on its behalf. Further,

surrogates can be deployed at any point of the network, and the internal cache in surrogates

typically delivers the response.

� 2.1.1 Intercache Protocols

In general, a cache should not just be reachable to clients and servers, but also other caches.

A hierarchical caching structure (explained in Section 2.1.2) paves the way for a cache to

serve many clients, the client being another cache or the end user [32]. When a local cache

cannot serve a client request, the request is subsequently passed to the next level in the

hierarchy until it reaches the origin server. An alternative co-operative caching architecture

was also thought of where proxy cache peers co-operate to serve the request (Section 2.1.2).

Several specialised protocols were designed to aid request forwarding among the peers and

facilitate the request re-directions. We discuss four such intercache protocols below.

The Internet Cache Protocol

Internet Cache Protocol (ICP) [33] was the first-ever intercache protocol, has its roots from

the Harvest project [34] and is generally a User Datagram Protocol (UDP)-based query

response protocol. This lightweight protocol is used by a cache to probing the predetermined

set of neighbour caches to check the presence of requested web object in the cache. The

querying cache then forwards the request to first responding cache with the web object. If
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none of the neighbouring peers have the object, and then the request is routed to the origin

server or a parent cache of the peers.

As expected ICP was not efficient as cache misses can incur additional delays while

serving a web object. ICP can also receive spurious responses, thereby consuming additional

processor cycles and bandwidth. Despite the shortcomings, ICP was adopted widely at that

time due to its simplicity. Other protocols were built to improve the performance of ICP.

The Cache Array Routing Protocol

Cache Array Routing Protocol (CARP) [35] uses a deterministic algorithm, unlike the

realtime query in ICP, to choose the next hop. This algorithmic approach makes CARP an

algorithm to maximize hit ratios and minimize latency while achieving efficient and scalable

load balancing. As the request arrives, CARP calculates a score for every proxy cache

and the request is forwarded to the cache with the highest score. The score calculation is

predominantly based on two methods: (i) DNS round-robin, where a hostname is mapped to

multiple IPs, and the IPs are chosen using round-robin technique and (ii) Uniform Resource

Locator (URL) Hashing, where all the URLs are deterministically partitioned among the

set of caches.

The Hypertext Caching Protocol

Hypertext Caching Protocol (HTCP) [36] builds on ICP as a UDP-based query response

protocol and has a rich message structure aimed to pass more information and improve

the overall performance. Unlike ICP, which just sends the request, HTCP sends the en-

tire Hypertext Transfer Protocol (HTTP) headers. HTCP also supported authentication

between the peers through shared secret keys and MD5 hashing.

Cache Digests

Cache digests [37] are supposedly the compact representation of a cache’s presence among

the neighbours. This representation eliminates the per-request delays encountered in ICP

and HTCP. The trade-off is increased memory usage and inaccuracies in predictions. Cache

digests use Bloom Filters [38] to encode set of object URLs in the cache using hash functions.

� 2.1.2 Early Caching Topologies

Clusters.

A cache cluster is a tightly coupled collection of caching proxies, usually configured as a sin-

gle service. Often the caches in a cluster are physically and topologically close to each other,

for example, servers in the same rack with network interfaces having the same subnet can
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form a cache cluster. Cache clusters were predominantly used as (i) hot spares, for example,

primary and secondary DNS (ii) Load-sharing and improving throughput (iii) Improve disk

and bandwidth utilization.

Hierarchies.

Alternatively, loosely coupled layered caches that are connected and co-operate are called

cache hierarchies. If a cache miss happens in the lower layers, then the request is forwarded

to higher layers until the request reaches the origin server. Any two caches can be related as

a parent (peers), child and sibling (neighbouring cache). A child cache forward the hit misses

to the parent, whereas sibling caches are designed for one-hop lookup, and the requests are

never forwarded to peers of siblings. While there can be a performance improvement [32],

hierarchical co-operation face issues such as routing overhead when the number of hops

increases, trusting neighbour and as well as parent caches. Forwarding loops are also not

uncommon in this setting.

Mesh.

Meshes are also loosely coupled caches and are very similar to hierarchies; however, the

topology is flat. The concept of neighbouring caches still applies to meshes but not parent

or child caches.

� 2.2 Content Delivery Networks

As the user population connected to the Internet increased, the number of caching proxies

started to grow. Caching methods at that time were found ineffective and were challenging

to manage at scale. Increase in webpages with dynamic content [39] and inconsistency of

cached responses, lead to the proliferation of CDN [40], also known as Content Distribution

Network. CDN mainly acts as surrogates to cache content, thereby reducing origin server

load, reducing latency for end users, and increasing throughput. Further CDNs help in

scaling the web, improve fault tolerance and server better during disperse flash-crowd events.

CDN has now become an integral part of the Internet ecosystem and is expected to

serve 71% of data traffic by next year (2021) [41]. Over the past two decades, several

works focused on optimizing the performance factors of a CDN includes [42] - (i) Where to

deploy the servers to optimize the performance? (infrastructure management) (ii) Which

content items should be cached, and what caching policies should the CDN perform? (con-

tent distribution and management) (iii) How to route the content to end users (routing

management) and (iv) How to monitor and account for the performance/pricing of CDN?
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Figure 2-1: Taxonomy of Cache and Content Distribution research in CDN (adopted
from [43, 44])

(accountability). The work presented in this thesis is relevant to cache and content distri-

bution management.

� 2.2.1 Content Distribution and Management

Content distribution and management are treated as a backbone of an efficient CDN de-

ployment. The activities include:

• Server/Surrogate Organisation to ensure the placement of edge servers at strategic

locations such they are closer to the user.

• Content Selection and Delivery to decide optimal delivery based on incoming user

requests.

• Content Organisation comprising of offloading content from the origin-server and

caching techniques.

Server Organisation

As the QoE for accessing a content item by end users heavily rely on the location of sur-

rogate servers, it is essential to choose the location of servers carefully. The surrogates,

also known as replica servers, can either be dedicated servers or storage space in a shared

infrastructure. Optimal replica server placements allow to reduce the latency of content

delivery and minimize the overall bandwidth consumption.

Several techniques are proposed and deployed by the CDNs in the past for optimal server

placement. The placement is usually formulated as an optimization problem with an object
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to reduce the cost or improve the Quality of service (QoS) of the replica servers. The cost

can mainly include (i) deployment cost i.e., cost for leasing or building the compute, storage

and network infrastructure (ii) network cost i.e., the cost for delivering content between

the replicas and users as well as origin servers [45, 46]. Improving the QoS is usually

determined by identifying the network topology [47] such as flat [48–50] or hierarchical [51,

52] and network performance based on latency [53, 54], number of hops [50], bandwidth

and link quality. Energy-aware replica placements [55] were also proposed.

Replica deployment mechanisms for the emerging cloud-based CDN and Network Func-

tion Virtualization (NFV) based CDNs follow similar approaches for optimal server place-

ments [56].

Content Selection and Delivery

Content Delivery involves an appropriate selection of content predominantly to enable a

reduction in load time by end-users. For example, the CDN can be used to store just

some content of a webpage such as images (partial replication) or the entire content (full

replication). While the latter approach is simplistic, it is not optimal or feasible to maintain

consistency across replications, given the increase in the size of webpages and the number

of replicas. Whereas, partial-site delivery enables delivering only the selected objects (such

as embedded videos, javascript, etc.) rather than the whole page. The partial caching of

web objects improves the performance of origin servers as well as the QoE for end users as

heavy objects get loaded from a close-by replica.

More generally, partial replication of web objects to the CDN can be empirical, popu-

larity, object, and cluster-based replication. In an empirical approach, the administrator of

CDN selects the content based on some heuristics, usually an observed decision. Whereas in

popularity based replication, popular objects get replicated. This approach is better than

the empirical method, however, the popularity of objects vary over time, and the strategy

does not work for newly available content. Object based approach is a greedy approach

where content gets replicated based on an objective function [57]. Cluster-based approach

replicates the clusters of web content based on the number of access or correlation among

the content. The clusters are identified through users sessions (users having similar brows-

ing patterns) [58] or URL-based [59]. More recently, reinforcement learning has also been

considered for optimal content caching and outsourcing [60].

Content Management

The core performance of content distribution, thereby the CDN, relies on content manage-

ment. The content management includes (i) content placement and (ii) cache management.
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Content placement. After choosing the location of replica servers and the web objects

to replicate, it is quintessential to decide how these replication servers get content from the

origin server. Pull-based reactive approaches or push-based proactive approaches are used

for such content placement.

As the name suggests, the push-based approach depends on the pre-fetching of content

from the origin servers to the surrogates. In the push-based approach, proactive algorithms,

based on the content selection techniques, pre-emptively store content in surrogate servers

to meet estimated demand. Co-operative content placement algorithms are used to inter-

connect with neighbouring surrogates and serve the cache misses. Whereas, in the pull

based approach, the content is pulled from the origin server as the end users request.

The efficiency of content placement algorithms depends on the cost-effective determi-

nation of which content to replicate on which surrogates. Initial works included random

placement, greedy-global replication and popularity-based replication [61] to serve static

web objects efficiently. However, the growth in dynamic content, mainly in the form of

videos and the proliferation of cloud CDNs has changed the landscape of content placement

in traditional CDNs [44].

Cache management. Content placement, in turn, depends on the caching policies of

a CDN. These policies have been a business secret by commercial CDNs, mainly due to

the fact that a CDN performs multiple content delivery services such as video streaming,

software downloads, accelerated mobile pages, etc. each of which would require to have

different policies.

Even before the proliferation of CDN, co-operative web caching has been studied (sur-

vey can be found here [62]). Initial proposals on techniques for CDN caching includes

sharing cache digests of content the servers hold [37], maintaining a global list of content

repository [63] or hashing techniques [64] or more recently, bloom filters [65]. For cache

management, LRU is found to be an effective mechanism given its simplicity in terms of

implementation and its innate ability to keep track of temporal access patterns [66]. New

mechanisms include maximizing cache hit density [67] and lightweight machine learning

approach for making optimal cache decision [60, 68] to improve cache hits.

� 2.2.2 Challenges

Performance of content delivery in CDN was studied in the past works, including [40, 69,

70]. Improving the CDN performance were discussed at an aggregate level [40, 71–75] as

well at an individual server level [76–80]. Many recent works also focus on improving cache

management for content, especially videos, to derive better performance from the CDN [81–

83]. Alternative CDN design patterns were also evolved to improve traditional CDN as
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cloud-based CDN, Mobile CDN, Telco CDN and Hybrid CDN. User access patterns of

watching videos and sharing content in online social networks also pave the way to enhance

QoE when CDN serves a content item.

On the other hand, several challenges are faced by modern day cloud-based CDNs espe-

cially to handle the growing content traffic [84, 85] as follows:

Latency. The stringent growing requirement of latency-sensitive applications such as ve-

hicular communication and remote surgery have high real-time requirements. Traditional

cloud could not handle such delay constraints [3].

Bandwidth. Massive data transfers to the cloud for processing can choke the network,

causing significant pressure on network bandwidth.

Resilience. With growing internet services, maintaining Service Level Agreement (SLA)

is a severe challenge to cloud providers.

Energy. As the number of user sessions and the bytes transmitted to the cloud increases,

the energy consumption of data centres go high.

Data Security and Privacy. Centralised analytics of the data lead to monitoring users’

day-to-day activity.

The focus of this thesis would remain on bandwidth and resiliency challenges faced in

the cloud era and how caching at the edge can effectively handle these issues.

� 2.3 Caching at the Network Edge

Content caching was introduced to handle the growing traffic explosion problem, especially

due to multimedia traffic and repeated requests for popular content items and to alleviate the

network burden. This led the network research community to investigate caching techniques

for content item accessed via a network operator’s infrastructure (both mobile and fixed-

line). From an ISP’s perspective, this can improve the QoE for an end user. Strategically

filling the caches would not just reduce the load of a CDN, but also results in significant

traffic and energy savings, thereby bringing down the costs.

Several works have been proposed on this line of the study proposing Where, What and

How to cache.

Where? The options include (i) caching at the core of the network, for example, Evolved

Packet Core (EPC) in 4G networks or (ii) caching at the network edge, for example, base

stations in cellular networks and Wi-Fi access points in fixed-line networks and (iii) on the

user devices itself to enable sharing over peer-to-peer and device-to-device techniques as

well as proactive offload to mobile devices, are also considered.
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What? There has been a tremendous increase in content production proportionally to raise

to the content consumption. Though the storage cost is low compared to that of bandwidth

cost, caching all the items is almost impossible given the scale of content production. Thus

it becomes necessary also to consider what content item to store in the cache. One of the

many ways to cache is based on the popularity of a content item. Past works ([83] and

references within) suggest a majority of content items are unpopular and very few items are

popular, depicting a long tail distribution. Other ways include caching on the user devices

based on user interest to watch the content item [86, 87].

How? Bringing together the cache retention and eviction policies with the network topol-

ogy (e.g., when there is co-operation among various cache points) and available storage

determines the gains achieved through caching.

Adopting caching techniques at the network edge has been considered one of the alter-

native solutions to tackle the challenges presented in Section 2.2.2. In the course of this

thesis, we define the network edge based on Shi et al. [88] as follows:

Definition: Network Edge

Edge is defined as any computing and network resources along the path between data

sources and cloud data centres, and edge is a continuum.

Especially in the field of wireless communications, the benefits of edge caching has been

studied from multiple aspects: for alleviating network burden to capacity enhancement to

improving security and user privacy [89].

� 2.3.1 Video Caching

Over-the-Top (OTT) video streaming applications are considered as a major contributor

to Internet traffic due to the larger file sizes being delivered. CDNs are primarily used to

serve this video traffic. The popularity of these video applications and a multitude of video

formats (e.g., live streaming, 360◦ videos) have paved forward research on caching for video

delivery at the network edge. Early works on video caching were done through scheduled

buffering at the end user device [90, 91] to improve the video delivery. Peer-to-peer protocols

were introduced to prefetch streaming media content [92], later got improved for optimally

placing the media files across the serving peers for on-demand video delivery [93, 94]. Even

though there were several improvements then on such peer-assisted CDNs, the challenge

of playback stalls during the streaming remained mainly due to inconsistent arrival rate of

peers [20]. The two main reasons behind difficulty in arriving at caching decision on peers

are: (i) stitching the chunks across peers to enable a seamless video delivery (ii) availability
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of multiple video encoding schemes based on users’ needs in terms of video quality. The

latter becomes even harder when encoding like Scalable Video Coding (SVC) [95] adds a

constraint of multiple layers fetched from different caches [96]. This led to optimal routing

to fetch the cached video to reduce network latency [97] and peer-assisted hybrid CDNs [98].

Further collaboration of cache servers at mobile switching centres [99] was also proposed to

share the resources optimally.

The focus has recently shifted to leverage edge for caching and sharing resources.

Karamshuk et al. [86] introduced proactive offload of videos to the mobile devices when

there is better connectivity (say Wi-Fi) such that the users can watch the video programmes

during the commute. Alternatively, Nencioni et al. proposed to proactively store videos on

the edge devices such as set-top boxes [100, 101] based on user interest and showed signif-

icant traffic savings based on real-world user access to a catch-up television platform. [8]

extended this to social live broadcasts and showed benefits of caching a video at the edge

for traffic savings. A case for joint optimization of content placement and sharing amongst

the neighbourhood edge devices was provided by [10]. More recently [102] proposed joint

caching and transcoding of videos at the edge and strategically sharing via X2 interface [103]

in cellular base stations, where [104] as caching video chunks based on bitrate and popularity

of the video at the edge.

� 2.3.2 ICN Architectures

Traditional host-centric data delivery model requires the host information and sometimes

the content meta-data to fetch a content item. Also, it is worth noting that host-centric

caching techniques lack identifying the unique objects across the sources, making the caching

process ineffective. For example, multiple copies of the same content item can be present

in the same server that hosts several service/content providers.

To overcome such pitfalls, sICN proposes an alternate networking architecture to this

host-centric paradigm and is considered as a promising solution, especially for handling the

growing video traffic. ICN provides clean-slate network design, and the main idea is to de-

couple the data source from the content, making the content identified by the ‘name’ rather

than its location. A detailed survey of ICN architectures and addressing the content with

their naming schemes is presented in [105] alongside how the content item is transported

and routed, and the support for caching, mobility and security.

Content caching

The main features of ICN are regarded as (i) Transparency : ICN architectures use trans-

parent naming conventions, often self-certifiable, removing the barrier of sharing a cache

between the applications. (ii) Granularity : large files are saved as chunks, and the caching
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operation is performed on these chunks. This enables efficient usage of the memory content

and accumulation at closer caching points when interest is made from the particular con-

sumer. (iii) Ubiquitous ICN follows a general caching structure, and the caching operation

is performed on every storage element within a network.

Making optimal cache placement to reduce high cache redundancy and achieving the

caching features of the ICN is quite challenging. Based on the location of the content, the

caching mechanisms can be categorised as – on-path caching and off-path caching [106]. In

the case of on-path caching, a content item is cached based on the decision at a specific

node, the decision being made with the help of content requests. However, off-path caching

can replicate the content anywhere, regardless of the path between the content producer

and the consumer.

Off-Path Caching. Following an explicit cache coordination [107] decision, the content

object is cached based on the access pattern of the object, network cache topology and

cache’s storage availability. Explicit cache coordination has three conventional approaches:

global coordination (cache coordination involves all cache nodes), path coordination (co-

ordination only consists of the cache nodes along the path from the request hit place to

the requesting client) and neighbourhood coordination (coordination takes place among a

node’s neighbourhood).

On-Path Caching. Most of the ICN architectures are built with on-path caching support.

This technique follows implicit cache coordination i.e., on-path caching decisions apply only

to the requested content and only the path between the content provider and the consumer

is considered. On-Path Caching focus on granularity aspect, and a content item can be

cached at three levels:

• Object level : Full objects can be cached at the intermediary nodes along the path of

delivery.

• Chunk level : Similar to the object level caching technique, but the granularity of the

name is different and the process requires more memory.

• Packet level : Each packet has a name somehow related to the object it corresponds

to. The process requires more computation.

A list of prevalent on-path and off-path caching techniques is presented in Table 2-1.

Content Discovery

The next obvious question in ICN is how to efficiently discover a cached content item, which

has been studied in [108–112]. Initial techniques included a hybrid forwarding strategy [108]

to handle cached and non-cached content items. Flooding mechanism is used to deliver the
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popular content item whereas non-popular items are delivered through the shortest path

from the origin. Later, [110] used bloom filter for content discovery, facilitating content

exchange between the neighbouring caches. The idea of scope-flooding technique proposed

in [108] was extended by Wang et al. [111, 112]. A multicast signal is propagated from

the requesting node to discover the content. The discovery radius is set based on content

popularity.

� 2.3.3 Heterogeneous networks and D2D Caching

Being different from web caching and CDN caching, edge caching possesses novel research

challenges. The number of users connected to the edge device varies due to heterogeneity

in the edge device deployments; for example, it can be a Wi-Fi access point used by a small

number of users or a cellular base station providing connectivity to an entire area. Further,

when the users are mobile, the demand for edge cache varies rapidly over time depending on

the deployment. Another factor to consider is that a user can be in an access range of several

edge devices. The volatility in user access patterns and the network conditions, especially

in case wireless networks, make it difficult to arrive at caching decisions. Several aspects

of content caching at the edge in heterogeneous networks have been studied in the past.

Proactive caching of content items at the cellular edge, i.e., a small cell base station was

proposed [113] to bring down the delay in content delivery. Similar to this, Yang et al. [114]

proposed cache-based content delivery in a three-tier Heterogeneous Networks (HetNet)s

where the edge components include cache-enabled base stations, relays, and Device-to-

Device (D2D) pairs. The ideas got extended from the perspectives of mobility [115] and

multi-path routing [116]. It has been found that caching on-device or at a base station

depends heavily on user density connected to the network and popularity distribution of

the content items [117].

� 2.3.4 Co-operation at the Edge

Co-operative caching has been seen from different perspectives in the past. Initial works

assumed co-operation of various entities such as ISPs, CDNs and the users, thereby enabling

content to be served by a set of interconnected caches [118–124]. However, in a real-world

setting, it is quite hard to bring together the storage resources across the entities and

enable co-operation. Further, incentive mechanisms to take part in the co-operation plays

a vital role. For example, Dai et al. [99] proposed an auctioning mechanism through which

cache servers deployed by content and service providers can co-operate. The incentive for

peer-to-peer content sharing has been explored through energy credits in [7], achieving a

carbon-neutral strategy for content sharing.
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� 2.3.5 Inference at the Edge

Sophisticated Artificial Intelligence (AI) enabled platforms are widely used by several popu-

lar real-time services like visual object detection and speech recognition. Several works [125–

127] focused on bringing machine learning inference tasks to the edge aimed at bringing

down the end-to-end delay. There are other works on bringing the applications with lower

computation requirements to the edge [125, 127] or improving the computing infrastructure

at the network edge [126].

However, inference tasks are still compute-intensive, and low end-to-end delay require-

ments mean that this inference would need to be performed close to the user, to stay

under overall end-to-end delay requirements of such applications. Several recent works

have shown that moving computation capabilities and application hosting support towards

the edge of the network can significantly reduce network delays for a number of impor-

tant inference applications. However, most evaluations typically assume that the edge is

located on the node closest to the user, typically the eNodeB [128]. Further, they either

show that given current hardware, an improvement from moving to the edge is negligible

for compute-intensive applications [125, 127]. Or, they show that significant gains can be

obtained when compute resources are available [126]. [3] proposed a hybrid approach to

route the requests such as there exists a balance between the available compute facility the

edge and latency/bandwidth requirements of the applications.

� 2.4 Measurement & Content: State-of-the-art

� 2.4.1 Network Measurements

Since the inception of the Internet, network measurement techniques are carried out to

collect useful information on network performance [129–132]. This not only helps to study

network characteristics such as network traffic, understanding topology, protocol perfor-

mance but also to envisage carrying out network operations such as network expansion,

failure detection, etc.

Typically, two kinds of measurement techniques are undertaken to study the networks

(i) active and (ii) passive measurement system. Active measurement systems involve in-

jecting probe packets within an operational network and usually tracking the packet traf-

fic to arrive at any conclusions on network performance. Active measurements are quite

considered to interfere with the actual traffic in a network, thereby, tend to affect the

network/system performance and the results from collected data. Whereas, in case of pas-

sive measurement, which does not usually interfere with traffic, rather the data traffic is

monitored from one/several vantage points within an operational network. In both cases,
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the data collection mechanism needs to be carefully designed. In the case of active mea-

surements, the probe packets can interfere with existing traffic and leave an unintended

consequence (e.g., queuing delays, denial-of-service attacks). With passive measurements,

a serious challenge is to monitor the packet traffic as the network starts to operate at scale,

especially while expanding the capacity.

Tools and Metrics

Several existing tools help in performing both active and passive measurements. Common

key performance metrics that are monitored during active measurements are Round Trip

Time (RTT), available bandwidth, packet loss and jitter. Tools used in active measurements

include ping, traceroute and iPerf. Ping provides the RTT between two nodes on the

Internet, typically using Internet Control Message Protocol (ICMP) and UDP packets.

Hping3 [133] is a slightly sophisticated tool which uses TCP syn-acks to deduce the network

delay. The traceroute application identifies the hops between a source and destination that

a packet transited with the RTT, whereas the iperf tool is mainly used for bandwidth

measurements. Other tools include Pathchar [134], Pathload [135], Netalyzr [136] etc.

which bring together a multitude of measurements.

Passive measurement techniques are usually incorporated by content, service and infras-

tructure providers [137, 138] as they are reliant on access existing monitoring equipment in

an operational network. Wide-scale adoption of Software-defined networking (SDN) has en-

abled to passively monitor the network without a need for deploying additional monitoring

systems.

Online Measurements

An alternative way to measure these platforms but without performing active or passive

measurement is to collect data from the content and infrastructure providers who had been

monitoring the network and publishing it. This includes content level data such as user

posts, social network etc. which mainly helps in understanding the user behaviour accessing

a platform. Other active measurement results that provide network characteristics are also

made available online. They are usually fetched to web crawl (nerd stats from Youtube8), or

APIs provided by the platform (e.g., WiGLE wardriven data, Center for Applied Internet

Data Analysis (CAIDA)). Few other share data collected by the providers, mainly through

the passive measurements, with the academic community for research purposes. In such

cases, data sharing policy and data anonymization are usually in place to avoid any data

breaches and privacy implications. Mechanisms such as differential privacy [139] are used

for such data anonymization.

8https://support.google.com/youtube/thread/3284269?hl=en

https://support.google.com/youtube/thread/3284269?hl=en
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Data collection and data sharing techniques have become the common approaches

adopted by measurement studies at scale. This thesis heavily relies on such data collection.

Some of the challenges faced while capturing data and analysing has been explained in

Section 1.3.

� 2.4.2 Studying the Content Systems

In the course of this thesis, we study the opportunities to improve the performance of On

demand streaming, Live streaming and Decentralised social sharing through caching.

On demand streaming

A straightforward way to measure the performance of video streaming is to conduct active

measurements (cf. Section 2.4.1). While this mimics the end-user behaviour and sheds

light mainly on access network bottlenecks, experimenting at scale still remains a challenge.

Several studies [140–144] have also focused on studying the traffic at the middle mile, such as

passive data collected by ISP. While the ISP viewpoint provides a good insight of topology

and traffic proportions across applications, the studies are often limited to one or two ISPs

due to the data sharing policy of ISPs. Also, it is worth noting that due to encryption

policies at the content provider’s end, it becomes hard to map the content item to data

traffic. In Chapter 3, we adopt a first-mile approach and observe the end user behaviour

from content providers perspective to identify the benefits of content sharing at the network

edge.

To handle the growing appetite for on demand content, several novel edge caching ar-

chitectures have been proposed. The main principle behind most of these edge caching

techniques is to store the content closer to the user focusing on a specific mechanism for

content discovery (e.g., via content-naming or HTTP/DNS redirection mechanisms) and

access technology (e.g., cellular or wired). Numerous suggestions have also been made

to cache at several parts of the network, ranging from caching at all intermediate nodes

between the requester and the serving node [145, 146] to caching selectively on the most

central nodes [147] and hybrid approaches [148].

Our work overlaps with studies looking at improving the performance of on demand

video streaming through caching content items. For instance, [149] looked at factors that

affect the nationwide adoption of the BBC iPlayer streaming application. [98] uses Peer-

to-Peer (P2P) swarms within each ISP to offload traffic from the content provider’s server

(but not the ISP). [86] preloads content on mobile phones, thereby offloading traffic from

cellular networks (and minimising the user’s consumption of mobile data), but adds traffic

to the user’s traditional broadband ISP. The work by Nencioni et al. [100] uses set-top
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boxes to speculatively record content for future access and completely offloads requests for

such content from the network.

Chapter 3 follows a line of work looking at traffic savings for the BBC content accesses.

We extend the idea of content caching at the network edge and show sharing the caches

between such edge devices can help in bringing down the backhaul traffic. Because our

proposal relies on distributed caches, it needs to solve the content placement problem of

what content to cache where. Moreover, we analyse the performance of caching strategies

across different districts of varying population densities. Based on the insights from the

skewed nature of content access, we introduce a content sharing framework, Wi-Stitch. Wi-

Stitch serves as an architecture to construct a highly efficient content sharing infrastructure

at the very edge.

Live streaming

Live streaming platforms, such as Periscope, Facebook Live, departs from the traditional

UGC model of interaction, allowing users to live broadcast from their mobile device and

online social network (unlike simply uploading videos). Similar to studies looking at the

UGC [150–152], we dissect Facebook (FB) live, a prominent live streaming platform. These

include user behaviour analysis [153, 154] to understand consumption patterns [22, 155–

158]. This allows for a number of new lines of exploration, particularly relating to how live

videos are created and consumed by social ties.

Perhaps the most famous user generated live streaming platform of the day is Twitch,

which has seen increasing research attention [159–161]. The platform streams live computer

gameplay but differs from FB Live in that it is not mobile, nor integrated within a social

network. We take inspiration from the above works but emphasise social live broadcasts

platforms such as FB Live and Periscope [162, 163] are distinct from these systems in a

number of ways. They allow any user to broadcast themselves (usually from a mobile device)

to their friends and possibly other interested parties. Unlike traditional user generated video

platforms, live social streaming drives consumption in real-time. Critically, this is done

through direct integration with a social network, notifying online users of the broadcast.

There have been a small set of studies looking at the geographical properties of video

access. Li et al. looked at the location of viewers watching PPTV in China [164]. They

found that a significant portion of videos gets at least 70% of their views from just 3 out

of 33 provincial locations. Similar studies have been performed for YouTube, finding that

users tend to access videos nearby to them [165]. Whereas studies have been done looking

at spatial localities on Facebook [166] and Twitter [167], these studies have not inspected

live broadcasts.
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The major part of our work also investigates the geographical properties of these social

broadcast and consumption. In Chapter 4, we dive into questions regarding user locations

of brocasters and viewers, which is provided through FB API, to understand their impact on

content creation and consumption. We study the integration of live social broadcast with a

platform like FB which conflates two factors impacting spatial access patterns: (i) Content

locality, which is the propensity for content generated nearby to be more relevant to a user;

and (ii) Social locality, which is the propensity of the content generated by friends to be

more relevant.

Decentralised Social Networks

Several efforts have worked toward building distributed social network platforms. At first,

these were largely peer-to-peer, e.g., LifeSocial.KOM [18] and PeerSON [19], and relied on

entirely decentralised protocols. Unfortunately, they did not achieve widespread adoption

partly due to challenges related to both performance [20] and reliability [21]. Thus, a

new wave of DW platforms has emerged that rely on a server-based federated model, e.g.,

Mastodon. Before that, the most successful platform was Diaspora, which saw growth

around 2011 [168]. Diaspora offers Facebook-like functionality using a federated model

similar to Mastodon. However, unlike Mastodon, it relies on bespoke protocols (rather

than standards), and its user population has since stagnated.

Since Diaspora’s creation, several (semi-)standard federation protocols have been pro-

posed allowing instances to exchange data [169]. These include OStatus [170], which allows

real-time interaction between instances; WebFinger [171] for discovering information about

entities on other instances; and ActivityPub [172] for publishing information about social

activities. Attempts have also been made to standardise the format of these data structures,

e.g., ActivityStreams [173]. This standardisation efforts have had a dramatic impact on the

DW. For example, both Mastodon and PeerTube use ActivityStreams and ActivityPub;

thus, they can exchange data. An overview of these various protocols can be found in [174].

Several works have also looked at security and privacy in the DW [175, 176], mostly

around securing data management. For example, various projects have attempted to de-

centralise data, e.g., DataBox [177], SOLID [178], and SocialGate [179]. These operate

local datastores for individual users, e.g., running on a physical home appliance. Applica-

tions wishing to access user data must be granted permission, potentially through a prior

negotiation mechanism.

A number of measurement studies have analysed “centralised” social networks like Face-

book [180] and Twitter [181–183]. These have revealed a range of properties, including

attributes of the social graph and content generation. Bielenberg et al. performed the first

study of a DW application, Diaspora [184]. When inspecting its growth, they found a net-
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work far smaller than the one we observe on Mastodon. There has been a small set of recent

works that focus on Mastodon. Zignani et al. collected and released Mastodon datasets,

as well as exploring several features, e.g., the social graph, placement of instances and con-

tent warnings [185, 186]. Also, studies have focused on friend recommendations [187] and

sentiment analysis [188].

We complement these works with a focus on availability, covering the key aspects of the

federation. We also inspect the nature and deployment of instances, as well as their topical

interests. To the best of our knowledge, Chapter 5 constitutes the largest study to date of

Mastodon.



Chapter 3

On Demand Streaming and Content

Sharing

E
xploiting the fact that user settlements are clumped and user interest to access the

content items is skewed, in this chapter we extract how the most common edge device,

Wi-Fi, is distributed in the user settlements and identify the traffic benefits of users sharing

content items. We deal with an application of kind A1, where both content production and

the network managed by an organisation.

� 3.1 Introduction

Designs for future networks are driven by expansionist calls for more capacity [189]. Among

other factors, these calls are driven by numerous statistics about the growth of video con-

sumption [190], such as the Cisco Visual Networking Index which forecasts a drastic 82%

increase in cellular video streaming. Although several new technologies and novel air in-

terfaces such as mmWave and massive MIMO are being developed to meet these demands

of future networks, many of these do not work well indoors. This poses a problem because

over 80% of content consumption is predicted to happen indoors [191].

It is generally acknowledged [189, 192] that indoor capacity demands will need to be

met using extremely small indoor cells, coupled with offloading to existing fixed-line broad-

band connections or investing in expensive new backhaul using fibre-to-the-home. This

combination of fixed-line and cellular infrastructure, known as “fixed-mobile convergence”,

is expected to be a key part of future networks [193–195]. Indeed, ETSI renamed the MEC

45
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(a) Boston (b) Cambridge (c) Eden

(d) Hammersmith (e) Luton (f) Milton Keynes

Figure 3-1: Heatmap showing the clumped dispersion of home Wi-Fi access points across
six districts in the United Kingdom, indicating a potential density of caches

working group recently as Multi-access Edge Computing9, specifically to “address fixed

access implementation of the MEC Server (especially Wi-Fi)”.

Unfortunately, the growing demand for videos requires additional capacity provisioning

and may involve expensive commissioning of additional resources, such as fibre to the home,

or close to the edge. This results in increased complexity and cost of content delivery.

Numerous suggestions have also been made to cache at several parts of the network, rang-

ing from caching at all intermediate nodes between the requester and the serving node [145,

146] to caching selectively on the most central nodes [147] and hybrid approaches [148].

We wish to turn this thinking and ask whether, and to what extent, savings can be

achieved by caching at the very last hop of the network, on a device in users’ homes, and

then connecting the caches together to increase sharing. This approach has several potential

benefits: Developing and deploying caches on intermediate nodes in the network requires

careful network planning and provisioning, as well as co-operation from ISPs, whereas caches

can be deployed much more easily at the edge, even without ISP involvement. Indeed, some

versions of media streaming devices such as Google Chromecast and Apple TV come with

attached storage, which can serve as caches. Set-top boxes and game consoles with huge

amounts of storage are increasingly connected to Wi-Fi and the Internet.

9https://www.etsi.org/technologies/multi-access-edge-computing

https://www.etsi.org/technologies/multi-access-edge-computing
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Therefore, in this chapter, we call for a complementary approach that makes better

use of resources at the edge, rather than just offloading mobile edge traffic [101, 105, 196]

to fixed-line broadband, or investing in network upgrades. We argue that the capacity

needs of video content in converged networks can be gracefully handled by leveraging two

fundamental aspects of how consumer end-points are distributed, and how they consume

content: First, users are typically organised into relatively dense clusters, in cities and

villages (cf. Figure 3-1). This has led to the so-called “chaotic” deployment of Wi-Fi [197],

where end users are often within the range of a multitude of their neighbours’ access points.

Thus, by sharing caches with neighbours, we can stitch together a content delivery network

at the edge.

Second, anecdotally, as well as through several studies (e.g., [149]), it is known that

interest in content items is highly skewed towards a few extremely popular items. Therefore,

it is entirely possible that the items requested by a user have already been requested by

a geographically close neighbour. The caches can be passively populated by the first user

who watches that item and shares with other users who are within wireless range of the

first user.

In deciding where to cache, a fundamental tension needs to be resolved: Caching close to

the edge keeps the content close to the user, and therefore decreases redundant transmissions

of the same content in the rest of the network, freeing up the core. However, most networks

are organised in a tree-like distribution hierarchy with fewer and fewer users served by

distribution points closer to the edge. Thus, a cache close to the edge serves fewer users

than a cache that is more central, and proactively making a copy close to the edge may prove

unnecessary if no other user underneath that caching point requests the item. Hence this

calls for more selective and efficient caching by intelligently choosing cache locations [147,

148] and optimising content placement [198]. In section 3.3.5, we explain how the content

can be placed based on the radio distance between the edge devices and storage availability

within each edge device. We also evaluate the savings based on access to the dataset and

show up to 70% of the traffic can be saved through optimal sharing of the content.

Based on these insights, we present Wi-Stitch, an architecture for content delivery in

the converged mobile edge. Wi-Stitch caches content at the very edge of the network, in

users’ homes and uses high bandwidth 5G edge technologies such as mmWave [193] or

traditional Wi-Fi mesh networks [199] to share content efficiently between neighbours. Wi-

Stitch can be operated either by the Fixed-line ISP, the Mobile Network Operator (MNO)

that has provisioned indoor small cells, using the Fixed-line ISP as backhaul or directly

by the Content Provider (CP), without the involvement of either the MNO or the Fixed-

line ISP. In each case, the entity operating Wi-Stitch deploys and manages caches on their

customers’ homes, and redirects content requests to neighbours’ caches as appropriate. We
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envision that the cache would be attached to, say, the ISP’s modem in the user’s home, the

small cell station operated by the MNO, or a media streaming device operated by the CP

(some, such as versions of Google Chromecast and Apple TV, already come with attached

storage, but need to be interconnected with neighbours).

The chapter follows a line of work looking at traffic savings for BBC content accesses.

For instance, [149] looked at factors that affect nationwide take-up of the BBC iPlayer

streaming application. [98] used P2P swarms within each ISP to offload traffic from the

content provider’s server (but not the ISP), showcasing the traffic benefits. Nencioni et

al. [100] uses set-top boxes to speculatively record content for future access and completely

offloads requests for such content from the network. Here we look in detail on how co-

operation amongst the end user devices can help alleviate the network burden as compared

to fetching from a CDN.

� 3.2 Dataset

Typically, content sharing over wireless medium can happen across all the neighbours within

range of each other, or conservatively, just the customers of a single ISP. Since the latter

case results in a lesser density of access points, the savings are obviously going to be smaller.

Therefore, as a case study, we focus mainly on the sharing possible among customers of one

major nationwide ISP, British Telecom (BT). We proceed with our study making use of

two large datasets:

Table 3-1: Details of the BBC iPlayer dataset

July

Number of Users 25 M
Number of IP addresses 17 M

Number of Sessions 215 M

� 3.2.1 BBC iPlayer.

BBC iPlayer is a widely used video streaming application in the UK and is available for

both web and mobile platforms. Most of the BBC broadcast programmes are streamed

using iPlayer for on-demand streaming across the UK. Content within iPlayer can be

available for up to a month, depending on licensing terms and other policies. During the

period of consideration, iPlayer was one of the top video sites in the country, second only

to YouTube10. However, unlike YouTube, BBC iPlayer hosts ad-free HD content, and TV

shows much longer than the average YouTube video. Our data reported the equivalent of

10http://mediatel.co.uk/newsline/2014/03/28/nielsen-data-report-february-2014/
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over 40% of the UK’s population accessing the iPlayer. It is also worth noting that BBC

iPlayer is accessible only from the country’s IP addresses11.

We consider a snapshot of access logs to BBC iPlayer during July 2014 (cf. Table 3-1).

The access logs have been collected by aggregating over “heartbeats” generated regularly

(every 10-30 seconds) or on a user action (e.g., video window resize or pause) between iPlayer

client software and a statistics server. All data have been anonymised before analysis. Each

record in the dataset contains information about a user’s session in the following format:

<network-id, isp, geographic region, user-id, content-id, content genre, session start time,

duration>

The anonymised network-id identifies each unique IP address seen in our trace separately.

The ISP and geo-region corresponding to this IP address was resolved before anonymisa-

tion using the Réseaux IP Européens Network Coordination Centre (RIPE) and MaxMind

databases respectively. Multiple Autonomous System (AS) belonging to the same ISP or

cellular network have been manually identified and merged together for the provider we

consider12. This also takes into account various mergers and acquisitions that are not yet

reflected in RIPE. The anonymised user-id is based on long-term cookies (with a four year

expiration date), that uniquely identifies each user agent separately. A single user might

have more than one user-id if they use more than one device, or even if they use more than

one browser to access iPlayer. Users might also get multiple IDs if their cookies expire.

However, we refer to users as identified by the user-ids. The other fields contain various

information about the session, such as session start time, session duration (in seconds) and

the id of the video being watched.

We focus on accesses from the six administrative districts as shown in Table 3-2 and

from BT customers, a subset of 3-1. The considered districts vary in terms of population

densities13, ranging from Hammersmith and Fulham (HF) in London, one of the ten most

densely populated areas in the country with a population density of more than 10,000

people per square kilometre, to Eden, which has the least population density in all of the

UK. Table 3-2 also gives the population density, as well as the density of accesses (number

of requests and number of users making the requests) from each area.

� 3.2.2 WiGLE

WiGLE is an open-sourced platform that uses crowdsourcing to collect the locations of

wireless Access Point (AP)s across the globe14. As of mid 2020 around 650M Wi-Fi access

11Although there are known ways to break such restrictions, e.g., using Virtual Private Network (VPN) end points,
we believe that these constitute a minority of accesses in comparison with the volume of accesses within the country.

12For e.g., https://conversation.which.co.uk/technology/bt-ee-merger-mobile-phone-market-competition-o2-three/
13https://en.wikipedia.org/wiki/List_of_English_districts_by_population_density
14The dataset of Wi-Fi access points used in the work can be requested from https://rebrand.ly/wi-stitch/

https://conversation.which.co.uk/technology/bt-ee-merger-mobile-phone-market-competition-o2-three/
https://en.wikipedia.org/wiki/List_of_English_districts_by_population_density
https://rebrand.ly/wi-stitch/
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District Area Pop. density #IP #Content Mean Content
(sq.km) persons/sq. km address requests request/IP

Hammersmith and Fulham (HF) 16.40 11 213 19K 630K 33.15
Luton 43.35 4 993 41K 567K 13.82
Cambridge 40.70 3 193 41K 709K 17.29
Milton Keynes (MK) 308.63 847 71K 781K 11.0
Boston 364.90 183 15K 142K 9.46
Eden 2142.00 25 5K 90K 18.0

Table 3-2: Content access to BBC iPlayer from British Telecom customers in various loca-
tions

SSID Count

Auto-BTWiFi 18K
BTWi-fi 42K
BTOpenzone-B 100K
BTOpenzone-H 130K
BT-Fon 231K
BTOpenzone 250K
BTWIFI 570K
BTWifi-X 1M
BTWiFi-with-FON 1.6M

Table 3-3: Most common BT SSID prefixes as found in WiGLE as of mid-2016 (does not
include the SSIDs customised by the user)

points and ≈ 47M from the UK15. We use the Service Set Identifiers (SSID)s, Global Po-

sitioning System (GPS) coordinates and timestamps of first and last detection to identify

the BT APs in the considered districts. We identify ≈ 4M BT access points based on the

patterns. SSID strings assigned by default (e.g., “BTHub3-XWX9”). Due to historical rea-

sons, several different string patterns are observed, with the most common types of SSIDs,

as shown in Table 3-3. Our method does not capture SSIDs which have been changed from

the default by its users and therefore can be considered as a lower bound of the sharing

possible in each region.

Mapping the datasets. The districts in Table 3-2 are grouped into cells of ≈100m ra-

dius, which is conservatively sufficient for accessing neighbouring Wi-Fi access points within

the cell. This is the typical range for new technologies such as mmWave [193], and also

well within the range for Wi-Fi-based mesh networks [200]. Note that our iPlayer data is

anonymised, and while location information of the accesses exists (computed by IP geolo-

cation, down to postcode or borough level resolution), this does not give the exact latitude

and longitude of the access. Thus, we map the location of iPlayer requests to WiGLE access

15https://wigle.net/stats#geostats

https://wigle.net/stats#geostats
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Figure 3-2: Dispersion of Wi-Fi access points in 37 adjacent cells at Hammersmith and
Fulham

points within that location at random and use this combined dataset. We have checked that

the results reported here are robust regardless of the exact mapping, by verifying the results

are consistent over 50 different random mappings. Figure 3-2 shows the adjacent cells from

Hammersmith and Fulham with the dispersion of Wi-Fi access points within the cells.

Although BBC iPlayer is currently an OTT streaming service using traditional CDNs,

we use trace-driven simulations to explore the potential benefits of wireless sharing to bring

down the backhaul traffic.

� 3.3 Exploring traffic savings from sharing

To understand the potential savings of content sharing, we first use WiGLE data to estimate

the number of users who would be able to share with each other in cells across administrative

districts with different population densities. Then we compute possible traffic savings by

simulating content sharing within cells of different sizes. Finally, we examine the bounds on

this savings if cache storage is limited and formulate an optimisation problem for placing

the content to achieve maximum traffic savings.

� 3.3.1 Distribution of Access Points

As shown in Figure 3-1, users are clumped together in tightly knit clusters, even in the least

densely populated areas such as Eden and Boston. Figure 3-3 formalises this, considering

cells of a fixed 200m diameter, and plotting the distribution of the numbers of users found

in such cells in each of the administrative districts. The distributions are plotted as box

plots, with a central line showing the median, the ends of the boxes showing the 25th and
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Figure 3-3: Number of users within cells of 200m diameter, considering British Telecom
(BT) customers (shaded blue) and all users (red)

75th percentile, and whiskers extending from the 5th to the 95th percentile. We show both

the numbers of BT customers that can be found in cells (in blue), as well as customers of

all ISPs (in red), which is clearly a much larger figure. The median number of BT users in

a cell ranges from 75 in Boston, a coastal city in Lincolnshire, England, to over 860 users

in HF in London.

� 3.3.2 Potential bounds on savings

Next, we ask how much traffic savings can be achieved given the distribution of cell sizes we

observe. The districts are grouped into cells having a range of populations, and we check

what savings can be obtained by simulating the following scenario: Each user who requests

a content item first attempts to find it within the cell. If a copy is found, then it can be

served locally, contributing to the traffic savings. The first request to a content item from

the cell is served by BBC servers and cached at the edge device for later use by any other

user within the cell who requests the same content item. Initially, we assume that there

are no storage constraints. We relax this later on and ask how the savings are curtailed by

limitations of storage. We map the location of iPlayer requests to WiGLE access points as

explained in Section 3.2

Figure 3-4 shows how the traffic savings increase as the number of users in a cell soar,

and there are no storage constraints, leading up to ≈70% savings. The figure also shows

that savings evolve in a similar way across cells of various different population densities. To

test why this is the case, we fitted power law distributions to the content access requests

from different cells and found that the power law exponent is similar across the regions. The

distribution of power law coefficients across cells was tightly concentrated, with most cells

having a power law exponent between 2 and 3. Thus we find similar levels of concentration
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in accesses towards popular content items. The one exception is HF, whose traffic savings

stands above the other locations. This behaviour can be explained from Table 3-2, where

we see that the number of requests per user is higher for HF than in other locations. In

other words, users in this metropolitan London location are heavier users of iPlayer than

in other places, leading to a larger and more diverse cache, which in turn leads to a better

hit rate and more traffic savings overall.

Figure 3-4: Traffic Savings with 95% Confidence Interval (CI) across the districts with n
users in a cell when the content is opportunistically cached in the local device and made
available for the whole cell

� 3.3.3 Effect of storage limits

The savings in Figure 3-4 are a result of opportunistic caching assuming an infinite store.

To check the effect of storage limits, we compared various common cache replacement

strategies, namely Least recently used (LRU), Least Frequently Used (LFU), and First In

First Out (FIFO). Further, we check the performance of these traditional cache update

algorithms against an oracle that can look into the future to determine which items will be

accessed and how often, and thus can make the best possible cache replacements.

Figure 3-5 shows the performance of various cache replacement techniques. To check how

the performance varies for different cell sizes, we show the traffic incurred across storage

levels for a cell with population n=120, 240 and 360 (which covers typical cells in most areas

except for HF, where savings are higher than other places). Storage levels are varied from

0% (no cache) to 100%, which is the cache size corresponding to the actual data consumed

by the users within that cell in that month.
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Figure 3-5: Traffic Incurred for several edge cache store policies, across cells of varying user
population n (n=120, 240 and 360)

Note that there is a minimum level of traffic that cannot be avoided since the first

user in the cell always has to fetch the item from the origin server. As expected, Oracle

performs better than the other techniques, and bottoms out to the minimum traffic levels

achievable quickly. However, it is interesting to observe that all the other policies also

converge to this minimum level – i.e., given reasonable amounts of storage, it is possible to

approximate the best possible cache replacement policy (oracle) and pick the “best” items

to replace under a particular storage constraint, using various well-known heuristics such

as LRU, LFU and FIFO.

As found in other similar studies [201, 202] on effective cache replacement schemes, LRU

is the best performing of these policies and can approximate the Oracle even with only a

small amount of storage (≈20% of total data used), followed closely by FIFO. Unexpectedly,

we see FIFO performing better than LFU. We conjecture that this may be due to the

periodic nature of iPlayer content – as newer episodes of TV shows come online, interest in

older episodes wanes, and therefore it becomes less likely that there will be a future access

request for older episodes. In other words, interest in content items may naturally follow a

rough FIFO order. Although an episode has been frequently accessed in the past, it may be

unlikely to be accessed as much as a less frequently used but newer episode, making FIFO

a better policy than LFU.

� 3.3.4 On Scalability of Sharing

While Section 3.3.2 indicated a large potential for traffic savings due to shared interests

and sufficient neighbours, in order to realise the traffic savings, it is equally important that

the sharing infrastructure is able to support the peak demand of iPlayer usage at a time.

Peak demand is captured in Figure 3-6 for a random 2K people (more than the maximum

number of users in any given cell of users who can access each other over Wi-Fi), across



3.3. EXPLORING TRAFFIC SAVINGS FROM SHARING 55

Figure 3-6: Simultaneous accesses across the location over a week (at 2 minute interval)
with the lines indicating the 98th percentile of total accesses

the six districts. Note that on any given time, the maximum number of connections is

typically no more 3–5 across the cell, and in the worst case, is only about 27 simultaneous

connections surprisingly at Eden. We conjecture that this is a result of the on-demand

nature of access which spreads the load over time, leading to lower peak loads [100]. Thus

each cell typically has to support only a handful of simultaneous connections with content

served by neighbours, well within reach of Wi-Fi.

� 3.3.5 Towards strategic content caching and sharing at the Edge

Given that, sharing the infrastructure and a strategic content placement would help in

achieving traffic savings with even handling the peak demand, in this section, we look

further into how this strategic content caching can be performed.

The content can be stored in a centralised or decentralised fashion, and the content

placement for this can happen through coordinated or uncoordinated approaches. In a

centralised cache, there is a single cache for the entire cell (e.g., a cache on the base station

in a traditional cellular setup). In the decentralised cache, storage is distributed on all

the nodes within a cell. The mechanisms for an example case of sharing over the cellular

infrastructure has been presented in Figure 3-7. With a coordinated approach, a decision is

made on where (i.e., which node) to store each content item, based on storage constraints

on all the nodes, reachability (quality of wireless link) to its neighbours, and the probability

that its neighbours access that item. The uncoordinated approach caches data reactively:

For each content accessed, the accessing node first attempts to find it on neighbouring
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Macro Base Station

BBC iPlayer Servers

FBS + DVR/STB

Macro Base Station

BBC iPlayer Servers

FBS + DVR/STB

Figure 3-7: (a) A centralised caching mechanism where there is a single cache for a cell at
the base station. (b) A distributed caching mechanism with cache located on all the nodes
within a cell.

caches, and accesses from the origin server if not found locally. This is then cached locally if

storage is available on the node and then made available to neighbours. We first formulate

an optimisation problem for managing coordinated content placement in a decentralised

implementation and contrast with various other content placement schemes. Whereas our

approach solves one particular optimisation problem (i.e., maximising traffic savings), it

would be interesting to combine some of these alternate approaches, if other optimisation

goals are important. We focus on traffic savings as we consider here video streaming as an

application; however, the traffic optimisation goal can be substitute with latency-related

parameters to reduce overall delay in accessing the content item. One other reason behind

our choice is that the data provided by the BBC carried traffic-related statistics rather than

delay related statistics. Intuitively, the traffic savings achieved by sharing content items at

the edge brings down the energy/bandwidth costs for network operators as well as CDN [7].

Formulation

To have optimal content placement for minimal traffic flow at the backhaul, we consider

the two main parameters, (i) storage within a node and (ii) resource availability between

the nodes that share the content. Traffic at the backhaul can be given by:

TBH = T1 + T2 (3.1)

where T1 is the traffic consumed due to the mandatory first access to the content c from a

repository C. T2 is the traffic consumed when the content is available with any of neigh-

bours but cannot be fetched from the neighbour due to lack of resource (e.g., sub-channel)

availability. T1 and T2 for a cell containing N edge devices can be given by:
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T1 =
∑
i,c

xic|c|, i ∈ N, c ∈ C (3.2)

|c| indicates the size of the content and xic is a binary decision variable that represents

whether to store the content c at node i.

T2 =
∑
i,c

(1− νic)πic|c| (3.3)

where πic indicates the probability of content c being watched by i and directly depends

on the accuracy of the prediction technique used. νic is a binary variable that indicates

whether the content is available locally (i.e., on node i or any of its neighbours). This is

calculated as follows:

νic =


1, if

∑
j∈N

xjc(1− poutageji ) ≥ 1

0, otherwise

(3.4)

where poutageji is the outage probability of link between i and j as derived in [5].

Thus, the optimisation problem for minimizing the traffic at the backhaul can be given

by,

min
x

TBH , (3.5a)

subject to
∑
c

xic|c| ≤ Si, ∀i (3.5b)

where content storage management in each node is taken care by the constraint on Si (the

storage at node i). Thus, each content c is optimally placed in a node i based on decision

variable xic in such a way to minimize TBH .

Evaluation

To understand the potential benefits of the content sharing through a coordinated

placement (equation 3.5a), we compare the traffic savings with that of an uncoordinated

placement and across centralised (e.g., [113]) and decentralised approaches.

Setup. Equation 3.5a provides a generic optimisation problem, that can be applied to a

wide range of on demand streaming platforms. In this context, we consider BBC iPlayer
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Figure 3-8: Traffic savings for various combinations of operation {centralised, decentralised}
x {coordinated, uncoordinated} approaches

data which contains the user access to the videos, comprising mostly of catch-up TV shows

mapped to the real-world location of the edge devices as explained in Section 3.2. This en-

sures content-related parameters such as the size of the video (storage of the node), bitrate

at which the video is streamed (the capacity requirements between the nodes) are extracted

from real-world settings. Apart from assumptions on wireless conditions for sharing de-

scribed in Table 3-4, for evaluating poutage
ij , we use WiGLE (section 3.2.2) data to calculate

the distance between the nodes. Note that, due to the effect of interference, the power at

which an access point can transmit, depends on the location where it is deployed [203].

In this case, this is assumed as 100 milliwatts, given that Hammersmith and Fulham is a

densely populated area. The formulated non-linear optimisation problem is solved using

Solving Constraint Integer Programs (SCIP) [204].

Figure 3-8 shows the traffic incurred based on the storage level across each of the nodes

for centralised and decentralised mechanisms. It is quite clear from the figure that at lower

storage levels, the coordinated placement outperforms the uncoordinated approach for both

centralised and decentralised approaches. This also validates that our optimisation problem

tends to achieve the upper bound of savings – the optimum traffic saving of ≈40% can be

achieved even at a lower combined store of ≈10%.

Figure 3-8 also shows that even with uncoordinated (reactive) content caching we can

achieve a close to optimal traffic savings with an additional store of 10% - 15%. It is

worth noting that the coordinated approach also depends on the prediction capability of the

node. We plot the savings from a coordinated decentralised cache setting with respect to the

prediction power by adjusting the accuracy of the content prediction algorithm. A predictor

with accuracy lower than 50% leads to spurious cache storage decisions that actually increase

traffic over the baseline of no caches. At higher levels of accuracy, performance edges closer
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Parameter Value

Total Bandwidth (B) 22 MHz
Average path loss 35.3 + 37.6 log(dij)
Fading model Rayleigh
Total number of channels 14
Shadowing Log-normal (µ=0-dB, σ=8-dB)
Total Transmission power 20 dBm
Background noise power 1
Distance between the nodes (dij) 15m - 150m

Table 3-4: Parameters used in the content sharing simulation

to the Oracle. State of the art content access prediction algorithms reach accuracies of

nearly 95% [86]; thus, we may expect close to Oracle-like savings (within 10% of optimal).

� 3.4 Wi-Stitch: A framework for content sharing

Based on the insight gathered so far, in this section, we propose a content sharing framework

called Wi-Stitch. Wi-Stitch exploits the current chaotic/clustered deployment of wireless

infrastructure as well as the locality of interest to enable collaborative cache sharing in con-

verged edge networks. Wi-Stitch enables a distributed content delivery network at the very

edge of the network, through caches in users’ homes. We ask and answer three questions:

who controls Wi-Stitch, how Wi-Stitch caches are managed and populated, and how does

a client retrieve content from Wi-Stitch.

Who controls Wi-Stitch, and how? Wi-Stitch may be operated by several kinds of

entities: A fixed-line ISP could offer Wi-Stitch as a value added service, for its own customers

using streaming video services, as well as for mobile customers of MNOs who are using its

infrastructure as backhaul in small cells. In this case, the cache can be attached to ISP-

owned Wi-Fi routers or Digital Subscriber Line (DSL)/cable modems. Alternately, MNOs

can deploy Wi-Stitch for their customers, attaching the caches to small cell base stations.

Similarly, some Content Providers may have a hardware footprint in the user’s home and

these typically come equipped with storage (e.g., X-Box and other gaming stations, Apple

TV and certain versions of Chromecast) and can deploy Wi-Stitch as well. However, they

would need to interconnect with each other, either by deploying a parallel Wi-Fi mesh

network or by reusing the ISP’s Wi-Fi router.

In each case, the goal of the operating entity is to present a unified view of the distributed

caches as a single virtualised cache. This may be done using several approaches: One

possibility is to use Information-Centric approaches (e.g., [205, 206]) to route users’ requests

for content to the appropriate caches. A second possibility is to use HTTP- or DNS-level
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redirections similar to current CDNs [207]. A third possibility is to currently popular SDN

and NFV technologies to implement the caches as a virtualised network function [208].

Wi-Stitch is agnostic to which entity deploys it, or which technology is used to realise

the connectivity. Rather, the suitability of Wi-Stitch and the savings realised through this

approach depends strongly on how well the caches between neighbours can be shared, which

we evaluate in Section 3.3.

How are caches managed and populated? Wi-Stitch is based on the insight that

human settlements are clumped together, with a number of homes often located within

close proximity of other homes. Thus, Wi-Stitch endeavours to stitch together a number of

caches in neighbouring homes into a “cell” which is managed as a single virtualised cache

such that the content of every home being made available to every other home within the

cell. This could be enabled by connecting such caches using a wireless mesh network [199].

We consider a straightforward approach where Wi-Stitch caches in user homes are reac-

tively populated when the user watches a content item. Thus, gains are dependent on the

overlap between neighbours’ content viewing patterns. In certain cases, it may be possible

to proactively populate content. For instance, BBC programmes are also broadcast over

the air, and this has been exploited for proactive caching [101].

How are cached items retrieved by clients? Wi-Stitch maintains a mapping of which

content item has been delivered to which nodes, and redirects content requests to the appro-

priate cache. This could be done transparently to the client (e.g., using ICN primitives if

adopting an ICN solution, using SDN rewriting at the home router if using SDN (e.g. [199]),

or with the content provider using HTTP or DNS redirection). Alternately, the client could

actively be involved and connect to the appropriate access point to directly access the

content from there.

Thus, the chapter highlights the benefits of strategic content sharing at the edge in the

form of traffic savings for a widely used on-demand streaming application.



Chapter 4

Live Broadcasts and Content Caching

E
xperiencing videos as and when they are produced is becoming a trend, and these videos

are often called as “Live” videos. Typically users broadcast live videos over social

media, making the video a “social live broadcast”. In this chapter, we explore Facebook

Live, an application that falls under the category A2 and exploits the benefits of caching at

the edge.

� 4.1 Introduction

Besides the content produced by a production media like BBC (Section 3.1), online sharing

of user-generated content is now a day-to-day activity for many users around the world [191].

Whereas traditionally this has followed a “static” upload model (where users create a video

offline and then upload their content on a platform like YouTube, BBC for on-demand view-

ing), recent years have seen a noticeable shift towards live equivalents. Mobile applications

such as Facebook Live, Periscope and Instagram Live allow users to easily broadcast their

activities to a potentially global audience. We term this medium social live broadcast and

distinguish it from more traditional forms of live streaming such as Twitch, which are not

based on social platforms and are not impacted by the various cultural and demographic

implications of social graph-based delivery.

One prominent example of the live social broadcast is Facebook Live. The platform is

simple: it allows any Facebook user to “go live” and stream their mobile camera feed to

friends (and others if public). An interesting twist is that the video optionally remains

available after the broadcast, to be viewed on-demand, thus offering functionality similar

to traditional user-generated platforms like YouTube. From a user behaviour perspective,

Facebook Live is a particularly powerful platform due to the presence of both amateur and

61
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professional users, and the combination of live and non-live video delivery. Further, with

a strong social network and a global reach, Facebook allows us to extract social features

and geographical patterns. From an infrastructural perspective, it also opens up several

challenges and opportunities, e.g., to exploit social localities for edge caching.

In this Chapter, we make two broad contributions. First, we characterise user behaviour

in the mobile live social broadcast. Second, where appropriate, we highlight relevant impli-

cations for mobile live social video delivery derived from our observations. To this end, we

have collected a large-scale dataset covering one month of activity on Facebook Live. This

dataset encompasses not only information regarding access patterns but also geographical

indicators on where broadcasters and viewers are located. To the best of our knowledge,

we are the first to study Facebook Live and, importantly, the first to derive key systems in-

sights. Whereas the limited body of past research has focused on performance aspects [162,

163], we strive to understand its end user characteristics, as well as how this might create

architectural design opportunities.

We begin by characterising broadcaster and viewer properties (Section 4.3). We quantify

Facebook Live’s popularity, observing 3.2 million accounts performing broadcasts, with a

peak of 62 million online viewers (Section 4.3.1). We identify three types of broadcasts.

The majority (95%) are from social users on Facebook’s mobile app, whilst the minority

are from Facebook page accounts (4%) and applications using Facebook’s third party API

(1%). Although social users typically perform short broadcasts, we find a non-negligible

number of mobile users with broadcast sessions exceeding one hour (Section 4.3.2). However,

nearly half of these streams go unwatched, even for regular broadcasters. Despite this, we

find that the Facebook app uploads all content regardless of viewers, wasting user device

battery and network resources. We, therefore, propose a simple scheme, whereby content

is locally cached on a device until viewers arrive. We find that 21.91% (21.33TB) of data

could be offloaded from delivery through this simple innovation (Section 4.3.3).

We then dissect the geographical patterns of both broadcasters and viewers (Section 4.4).

We confirm that Facebook Live has a global reach (Section 4.4.1). The majority of popular

broadcasters are based in Europe, South East Asia, Brazil and the East Coast of the United

States. Driven by social properties, most broadcasts are highly localised. For example, 8%

of viewers are within a city-level radius of 25KM from the broadcaster, accounting for 1.57M

viewers. That said, we also observe a significant proportion of international consumption

too (overall, 39.8% of viewers are domestic, and the remaining are international). There

are some distinct power players here. For example, residents in the United States stream

a disproportionate amount of broadcasts to Mexico and Canada. This highlights well the

social properties of Facebook Live, whereby users tend to consume directly from friends

(who may be in different countries due to immigration).
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Finally, we refocus our attention on user engagement (Section 4.5). We find that pop-

ular broadcasts consistently garner views rapidly. However, this is not the norm — the

median view count typically remains below ten throughout the entire duration of streams.

We also compare this against archived on-demand videos, i.e., streams that were live but

subsequently made available for later viewing. We find that, in fact, most engagement

(comments, likes, shares) happen after a stream has been archived, thereby demoting the

importance of the live component. We finally combine the above observations to question

to what extent Facebook Live is truly live, social and broadcasting.

� 4.2 Dataset

To explore Facebook Live, it is first necessary to collect a large and meaningful dataset

of both the broadcasters and viewers. Hence, we begin by describing the data collection

methodology employed.

� 4.2.1 Data Capture Methodology

We have written a crawler that automatically collects information on publicly accessible

Facebook broadcasts. These are taken from the Facebook Live map16 which publishes

broadcasts in realtime. The data collection used the Scarpy17 framework18. A sample

screenshot of the map is provided in Figure 4-1. It can be seen that map provides various

information such as the unique id of live broadcast, duration of the video, live number of

viewers, details of broadcaster and geo-coordinates of the broadcaster and viewers watching

the video.

The crawler collects this data every two minutes, providing a periodic snapshot of all

geo-tagged public streams in the system (including their metadata). This was executed

between 7-Nov-2016 and 2-Dec-2016, resulting in 3TB of data.19 This covered 6.5 million

broadcasts by 3.29 million unique broadcasters and viewed by a peak of 62 million users.

Amongst several events captured, our dataset covered the US Presidential election of Nov

2016, Thanksgiving (26th November) and Armistice Day (11th November).

On Facebook Live, a broadcaster can go live using any of the following three mecha-

nisms: (i) From App: Users or pages can create live streams using the Facebook App or

Facebook Mentions20 from their Android or iOS devices. Note that the feature of going

16fb.com/live
17https://scrapy.org/
18the code to collect data can be found here: https://rebrand.ly/fb_crawl
19Note that between 18-Nov and 22-Nov the measurements ceased. This was due to an unavoidable server failure.

Consequently, this time period is omitted from our later analysis.
20https://newsroom.fb.com/news/2015/08/connect-with-public-figures-through-live/

https://scrapy.org/
https://rebrand.ly/fb_crawl
https://newsroom.fb.com/news/2015/08/connect-with-public-figures-through-live/
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Figure 4-1: Live map, as published by Facebook, showing the global broadcasts and the
reach of live videos.

Attribute Total NA EU AS AF SA OC

# of broadcasts 6.5 M 1.9 M 707 K 2.66 M 117 K 810 K 52 K
# of broadcasters 3.29 M 856 K 336 K 1.35 M 64.6 K 418 K 25.4 K

# of broadcasts 61 K 15.2 K 8.2 K 23 K 1.5 K 6.4 K 426
with over 100 views
# of broadcasters 19 K 4.8 K 3 K 6.5 K 522 2.5 K 163
with over 100 views

Peak # of viewers 60 M 17.6 M 7.39 M 20 M 1 M 6.8 M 387 K

Table 4-1: Summary of dataset separated across continents. Peak view counts are computed
cumulatively across all videos in a snapshot (originating on the continent).

live from the browser was introduced three months after the crawl.21

(ii) From Publisher tools22: Facebook Pages23 can use this feature, allowing them to

use any external device or software to stream the live content.

(iii) Using Developer API: Developers can use the live API24 and embed it in their

application to broadcast their content through Facebook.

95%, 4% and <1% of broadcasts belong to each of these above categories respectively.

For every broadcast, the following data is collected every two minutes:

• Broadcaster metadata: This carries the broadcaster’s user details such as the

username and the geo-tag coordinates (cf. Section 4.2.2). The broadcaster can be

either an individual user account or, alternatively, a Facebook Page (typically created

for organisations, e.g., political parties). In the latter case, we also collect information

21https://newsroom.fb.com/news/2017/03/new-ways-to-go-live-now-from-your-computer/
22https://www.facebook.com/facebookmedia/get-started/live
23https://www.facebook.com/business/learn/facebook-page-basics
24https://developers.facebook.com/docs/videos/live-video

https://newsroom.fb.com/news/2017/03/new-ways-to-go-live-now-from-your-computer/
https://www.facebook.com/facebookmedia/get-started/live
https://www.facebook.com/business/learn/facebook-page-basics
https://developers.facebook.com/docs/videos/live-video
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about the category of the broadcast page, e.g., Media, Sport, Shopping etc. Geo-tags

are added by the user based on their GPS coordinates; if a user does not share location

information explicitly, any publicly accessible location information in their profile will

be used.

• Viewer information: The number of live viewers per broadcast, as well as the

location coordinates of the viewers (returned by Facebook).

Engagement attributes are also collected, namely the number of likes, shares and com-

ments during the broadcast. After eight months we then revisited any videos that had been

archived for later on-demand access, collecting the number of likes, shares, comments and

the bitrate (46.1% of live streams were archived). Table 4-1 provides a summary of the

dataset across different regions.

To give context regarding the types of content material, we briefly inspect the categorical

tags within the Page broadcasts. Figure 4-2 presents the fraction of broadcasts that fall into

each category, as well as the fraction of the overall viewership that each category attracts.

Media, which covers things like news and TV content, gains by far the highest viewership

(over 50%), despite constituting less than 20% of broadcasts. “Religious Place of Worship”

is second most popular by the number of broadcasters, driven by the US and Brazil where

they constitute over 30% of the streams. Measuring across the world, however, 40% of the

religious broadcasts do not garner even a single view. Other content types ranging from

arts to shopping can be seen of assorted popularities.

� 4.2.2 On Facebook’s geo-coordinates

As stated above, we collect geo-coordinates for viewers and broadcasters. These are used

by Facebook to visualise locations on a public map for users. Before continuing, it is

important to validate the fidelity of these coordinates and explain the level of sampling

Facebook utilises when returning locations of viewers. Every broadcast is accompanied by

a longitude-latitude pair from where the broadcast happens and the viewer locations are

reported for the broadcasts that have greater than 100 views.

All the broadcasters have geo-tags, whilst the mean percentage of viewers that also have

locations reported is 55%, with a standard deviation of 12.83. We regularly observe broad-

casters reporting multiple locations per broadcast (this could be because the user has moved

or because Facebook has introduced noise to protect the location privacy of broadcasters).

To explore this, for each broadcast, we take all reported coordinates for the broadcaster and

compute the centroid of the coordinates [209]. We then calculate the maximum distance

between the centroid and all geo-coordinates reported — this gives the upper bound of

any noise potentially introduced. Figure 4-3 presents a Cumulative Distribution Function
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Figure 4-2: Fraction of broadcasters and viewers for each category. Note that “Other” is a
category provided by Facebook.

(CDF) of the results. We find that no broadcaster reports a distance that varies greater

than 7 KM from the centroid. This indicates that any noise (if introduced) will only un-

dermine accuracy by this upper bound; this is sufficiently accurate to allow global-scale geo

analysis. Finally, we convert each geo-coordinate into its country of origin using country

polygons. For subsequent statistics related to distance, we utilise Vincenty’s formula for

computing the distance between coordinates [210].

� 4.2.3 On Facebook’s infrastructure

Before continuing, we briefly outline how Facebook Live operates from an infrastructural

perspective [211]. When users go live, they are redirected to their closest Point of Presence

(PoP) using Real-Time Messaging Protocol (Secured) (RTMP(S)). Video data is adaptively

encoded by the Facebook mobile application and then uploaded to a data centre via the

PoP. Typically, data is uploaded in a high definition format, but the quality is degraded

in cases of poor connectivity. Any users wishing to view the stream download a manifest

file, and begins requesting listed video chunks via Facebook’s CDN (mainly Akamai), where

caching also takes place.
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Figure 4-3: CDF of maximum distance from the centroid of locations reported for each
broadcaster, as well as the mean and median distance between reported locations per broad-
cast.

� 4.3 Characterising Live Broadcasts

We begin by characterising the global activities of broadcasters and their viewerships on

Facebook Live.

� 4.3.1 How popular is Facebook Live?

First, we look at the overall popularity of the platform, as measured by the number of

broadcasters and viewers. Figure 4-4 presents an hourly time series across our dataset. It

counts both the number of broadcasts (Y1-axis) and viewers (Y2-axis). We see a roughly

stable trend for viewers, but erratic trends for broadcasters. This is largely due to a high

number of broadcasts in November 2016 due to the US Presidential elections. We also

observe periodic spikes in utilisation – these centre on weekends, indicating the social nature

of the broadcast platform.

Whereas the above quantifies how popular Facebook Live is, it does not demonstrate the

popularity of individual broadcasters. This is typically a more important metric for users

wishing to use their broadcasts for promotion. Figure 4-5a presents a CDF of the peak view

counts25 for each broadcast. Two lines are present: (i) Broadcasts by User accounts, which

are generated by individual Facebook users on their mobile device and (ii) Broadcasts by

Page accounts, which are generated by Facebook Pages.

It can be seen that Page broadcasts gain significantly more viewers than typical user

broadcasts. To add further context, Table 4-2 presents the Top 10 broadcasters, ranked by

25Note that the number of viewers changes as viewers join and leave a broadcast. Since our trace collects data at
2-minute intervals, we show the peak number of viewers recorded.
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Figure 4-4: Cumulative number of broadcasters and viewers per hour during the measure-
ment period. Note that between 18th and 22nd November, monitoring ceased due to a
failure in our crawler.

peak viewing figures. It can be seen that 7 out of the Top 10 broadcasters are Pages. Even

though Page broadcasters only contribute 4.26% of the streams, they collect almost 35%

of all views. In stark contrast, we find that 41.5% of user broadcasts never gain a single

viewer, whilst 55.35% of broadcasters have at least one stream that remains unwatched. In

fact, the median view count for user broadcasts is just 1. This raises questions regarding

the extent that Facebook Live is actually used as a social broadcast medium in practice, as

opposed to a unicast stream that is seen by one or even zero viewers.

Figure 4-5: (a) CDF of peak view counts (for broadcasts with a view count greater than 1).
Broadcasts are separated into those generated by Users and Pages. 41.47% and 37.39% of
the user and page videos go unwatched; 9% of user videos and 5% of page videos get just a
single view. (b) Size of uploaded broadcast files, for user, page and app videos, as well as
videos with 0 or 1 viewers.
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Figure 4-6: CDF of broadcast duration. Broadcasts are separated into streams generated
by Page accounts and User accounts, as well as popular (>100 peak views) and unpopular
(0 views) streams.

To study this further, we separate all users into buckets based on the total number of

broadcasts they have performed. For each bucket, we compute the fraction of broadcasts

that gained zero viewers, one viewer and >1 viewers. Figure 4-7 presents our findings as a

stacked bar chart; buckets are plotted on the X-axis, and the fraction of broadcasts with zero

views is plotted on the Y-axis. We also plot the number of samples in each bucket on the Y2-

axis. Unsurprisingly we find on the Y2-axis that the number of broadcasters in each bucket

decreases as the threshold for the number of broadcasts increases. Focusing on the Y1-axis,

we find, as expected, that the heavy users who broadcast more have a lower proportion of

unwatched streams. However, we observe that all user groups generate unwatched material.

This extends to users who generate tens of broadcasts. This confirms that unwatched

material is not simply created by experimental users who just try-out Facebook Live once.

Instead, it is a persistent characteristic of broadcasters. For example, for users with ten

broadcasts, we find that 29.56% of broadcasts gain 0 viewers, 7.9% gain one viewer and the

remainder gain above one viewer. Interestingly, the graph also demonstrates a valley-like

trend, whereby users with a small number of broadcasts largely gain 0 viewers (45.8% for

below five broadcasts), whilst users with a high number of broadcasters also generate a lot

of unwatched streams (36.35% for above 100 broadcasts). Users who fall in the middle of the

spectrum (40–50 broadcasts) have the lowest proportion of unwatched material. Although

this observation is impacted by the smaller sample sizes for user groups with large numbers of

broadcasts (as shown on the Y2-axis), our manual inspection reveals that such “unpopular”

users tend to generate large numbers of uninteresting material, e.g., unprocessed personal

diaries. It should also be noted that the generation of unwatched material is not exclusive
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to mobile users; some categories of Page streams exhibit similar properties, e.g., 40% of

“Religious” streams from Page accounts are never viewed, and 13% for “Media” streams.

Overall, 37.4% of Page streams have zero views.

Figure 4-7: Distribution of the number of peak viewers (Y1-axis on the left) bucketed based
on the broadcast(s) made by a user. Y2-axis (on the right) shows the total number of
broadcasters falling under a bucket of total broadcasts performed.

Handle Type Viewers Description Category Verified

@zuck User 48471 Facebook founder User Yes
@GilmoreGirls Page 39162 Popular TV drama TV Programme Yes
@buzzfeedtasty Page 34369 Food news outlet Media Yes
@pena6789 User 16952 Adult content User NA
@WhiteHouse Page 16124 Official WH page Historical Landmark Yes
@FoxNews Page 14721 News outlet Media Yes
@bendeac User 13289 Romanian Actor User No
@RealMadrid Page 12783 Popular football team Sports Team Yes
@WesternJournalism Page 10507 News outlet Media Yes
@BuzzFeed Page 10276 News outlet Media Yes

Table 4-2: Top broadcasters based on median view count.

� 4.3.2 How long are broadcasts?

The previous section has highlighted that nearly half of all user broadcasts are never viewed.

We next inspect the durations of these broadcasts to understand the resources consumed

(both in terms of user time and upload volume). Figure 4-6 presents a CDF of the duration of

broadcasts separated into a number of groups. App broadcasts are, by far, the longest with

53.46% exceeding half an hour. This is largely driven by the fact that most apps broadcast
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computer gameplay. Broadcasts performed by Pages also tend to be substantially longer in

duration than User broadcasts. Almost 30% of the Page broadcasts exceed half an hour,

compared to just 6% for User broadcasts (where 77.34% are under 10 minutes).

This trend may be partly driven by the greater popularity of Page streams (cf. Figure 4-

5a). To examine this more closely for mobile users, Figure 4-5a breaks User broadcasts into

two groups: (i) Popular, which gain over 100 viewers at peak; and (ii) Unpopular, which

are never viewed. In-line with our previous statement, we see that more popular streams

broadcast for longer. 25% of these streams last longer than half an hour, whereas this is

just 2% for unpopular streams. Critically, however, we still find a non-negligible number

of unwatched streams that broadcast for extended periods (80k videos are longer than 20

minutes).

Currently, streams with zero views are live streamed to Facebook’s infrastructure re-

gardless of their popularity. This observation suggests significant waste in network, client

and server resources. For example, the average duration for unwatched streams is five and

a half minutes. With a bitrate of 500kbps, this would generate 18MB of needless traffic

per broadcast (with battery and network costs). This, therefore, raises the question of how

such content is delivered. Whereas uploads are obviously necessary for archived streams

(i.e., ones that remain on a user’s profile), this is profligate for live streams that are not

archived. This is because such data is immediately discarded without anybody ever seeing

it. Importantly, we find that only 41.7% of unwatched streams are actually archived — for

the remainder, it is unnecessary to waste device resources in performing the live upload to

the PoP. This observation leads us to inspect the size of the archived videos (i.e., videos

marked by the users as being available for on-demand viewing later on) to understand the

precise volume of this upload process. Figure 4-5b presents the distribution of file sizes for

all archived videos. The median file size for broadcasts with zero views is 8.57 MB, with

45% exceeding 10 MB.

� 4.3.3 Is broadcast really necessary?

Combining the above observations, we see that Facebook Live is predominantly (95%)

used by mobile users to broadcast content. Pages garner a disproportionate number of

viewers, whilst 41.47% of user broadcasts languish in obscurity, never being viewed. These

observations indicate that the current “cloud-based” model of delivery is misplaced. As it

stands, the Facebook mobile app uploads content regardless of view counts. This opens

up interesting opportunities for hyper-local storage. For example, video content can be

cached locally on the mobile device, and only uploaded once the first viewer arrives26.

26To entice new viewers, a short GIF or video highlight of a few seconds can be shown, to indicate the ongoing
video broadcast.
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Upon the completion of a broadcast, users are given the option of archiving the content.

Live content that is not watched and not archived can be cached locally and then discarded

after broadcast. If the user wishes to archive the video, it can be automatically uploaded

to Facebook when convenient (e.g., via Wi-Fi). This simple change would reduce the use

of battery and network for the 55.58% of broadcasters who (at least once) generate an

unwatched video. It would also save an average of 5.84MB per upload. Note that this also

covers broadcasters who generate any video chunks that are never watched. For example,

44.1% of streams in their first 2 minutes have zero viewers, out of which 7.8% continue

to garner viewers later. Hence, such users need not upload the first chunks until a viewer

arrives27.

� 4.4 Geographical Exploration

The previous section has highlighted the nature of social broadcast, focussing on a large

number of unwatched and unpopular streams. Next, we inspect the opposite end of the

spectrum — highly popular streams. A unique aspect of Facebook Live is that it provides

the locations of stream viewers for broadcasts with an audience of 100+. This allows us to

understand the geographical relationship between broadcasters and viewers.

� 4.4.1 Where are the users?

We begin by inspecting the locations of users to understand where Facebook Live’s userbase

is. Figure 4-8 presents viewer (blue) and broadcaster (green) locations for any streams that

garner above 100 viewers. This covers 45K broadcasts and 20.3 million viewers. The map

shows a significant spread of broadcasters (green) with a focus on East Coast US, Brazil,

Europe and South East Asia. It can be seen that most major conurbations are covered.

A particularly nice feature of the dataset is that locations are based on mobile GPS-based

geo-tags (rather than IP address). This gives us accurate geographical vantage into regions

such as China, which typically access Facebook via VPN (thereby changing their reported

IP geolocation). It can be seen that despite the blocking of Facebook, there are a number

of users in China. In the rest of this section, we focus on the top 19 countries measured by

broadcasters and consumers. These countries are obtained taking the union of the top 15

countries in terms of broadcasters and top 15 in terms of consumers.

Figure 4-9 presents the percentage of broadcasters and viewers based on each of the

top 19 countries. A clear ranking can be observed; the US dominates both the number of

broadcasters and viewers, followed by Thailand and Vietnam. The latter is particularly

27In the current Facebook live design, new viewers cannot rewind on a live stream; thus these first chunks need not
be uploaded even after the first viewers arrive.
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Figure 4-8: Locations of influential broadcasters (>100 viewers) and the respective viewers
across the globe

interesting, as in many cases, we find that the number of viewers and broadcasters in

a country do not necessarily correlate. For instance, whereas, in the US or Brazil, the

fraction of viewers and broadcasters are relatively similar, Thailand generates a significant

proportion of the world’s broadcasts (11.26%), but only constitutes 8% of the viewers.

Conversely, in Turkey, there are significant fraction of viewers (7.1% of the world’s viewers),

but only 2.94% of broadcasters. Similar observations can be made across many other

countries, including Korea, Peru and Romania. Through manual inspection, we find a

number of potential reasons. For instance, Turkey blocks access to Facebook; therefore,

most users are likely accessing it via circumvention tools. Whereas Turkish users may be

keen on consuming content, they may be less willing to expose themselves by broadcasting

on a censored medium. In the case of Thailand, we find that a notable portion of adult

content is being streamed, and this niche content attracts a globally distributed viewership

(rather than just in Thailand).

� 4.4.2 How far away are viewers?

Although the above reveals the locations of broadcasters and viewers, it does not show their

relationships. From a systems-perspective, this is critical for optimising delay-intolerant

communications as ideally viewers, broadcasters and any intermediate servers would be

within short distances. Regarding the latter, there have been a number of recent proposals

regarding the placement of servers within cell towers and local network point-of-presences,
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Figure 4-9: Contribution of broadcasters and viewers from top-accessed countries.

i.e., so-called mobile edge computing [196, 212, 213]. Thus, we next inspect the distance

that viewers are from the broadcasters they watch. Figure 4-12a presents CDFs of the

distance between the broadcasters and their viewers for user accounts. We separate broad-

casters into their respective countries. In cases where the distribution plateaus, typically

the broadcasters and viewers are separated by an ocean (e.g., in the case of the Philippines,

this is the distance across the Pacific to reach US-based viewers, who constitute 9% of the

country’s audience).

It can be seen that a notable subset of broadcasters are hyper-local to their consumers.

This is shown well in Figure 4-10, which presents a heatmap of viewer locations relative to

the broadcaster. Overall, 8% of viewers are within 25 KM of the broadcaster and constitute

a city-level locality. South Korea is the most extreme in this regard; 11% of viewers are

within 25KM, with 4% actually under 5KM. We can also inspect the opposite end of the

spectrum. 11.35% of viewers are over 10,000 KM away from their broadcaster. Here,

subtle differences can be seen between broadcasters from different countries. For example,

broadcasters from the Philippines, a tiny island in the middle of Western Pacific, tend

to be further away from their viewers (only 37.81% of viewers are closer than 1000 KM),

whereas Turkish broadcasters generally garner more nearby viewers (52.71% are closer than

1000 KM). As previously discussed, this local content consumption suggests that live social

streaming would be well placed to benefit from technologies such as mobile edge computing.

� 4.4.3 Domestic or international?

It should be remembered that distance can be deceptive due to the various sizes of individ-

ual countries. Since we expect infrastructure to be confined within country borders, we next
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Figure 4-10: Number of viewers (binned at 500m) within a radius of 5KM, 25KM and 40KM
when all the broadcasters location are shifted to the origin.

separate all broadcasters and viewers into their respective countries. Figure 4-12b presents

the fraction of the views for videos of a country which come from domestic viewers. This is

computed as follows: For a given country, we take the total view count of all videos broad-

casted from that country. We then present the fraction of these views that are domestic,

i.e., from viewers in the same country as the broadcaster. In some cases (e.g., Thailand,

Vietnam), over 80% of views are domestic, suggesting strong language, social and cultural

ties drive consumption. In other cases, under 20% of viewers are domestic (e.g., Germany).

This suggests such countries generate highly popular international content. However, we

note that almost all videos have a non-trivial local viewership; and thus would benefit from

caching locally in the country of broadcast, regardless of whether the video also has an

international appeal or not.

To explore the international views, Figure 4-11 presents a heat map of the non-domestic

views. Each cell in the matrix represents the fraction of views for videos of a country which

come from a specific consumer country. For the sake of clarity, the fraction of domestic views

(where the producer and consumer are from the same country) are not plotted. Further,

only the top 19 producers and consumers are shown; thus, the fraction of the heat map

values across all consumers might not add up to 1.

It can immediately be seen that a small number of countries stand-out in regards to

the global reach of their content. The US is the most prominent, with a particularly

large build-up of viewers in Mexico and Canada. This is not surprising considering the

high degrees of immigration and cultural overlap between these three countries. Despite

our prior observation about local consumption, Thailand and Vietnam also have a large



4.5. UNDERSTANDING ENGAGEMENT 76

Figure 4-11: Fraction of views from users in a different country from the broadcaster, shown
as a heat map of content broadcast from one country consumed in another country, plotted
for the union of top 15 producers and consumers.

number of viewers from other countries. Much like the US, this is driven by a large number

of broadcasts in the country.

Before concluding, we note that Figure 4-11 is intended to illustrate some interesting

international trends and is not a complete picture – for instance, countries like Germany

and Turkey, which have a high proportion of non-domestic views (Figure 4-12b) do not

show up with high values in this heat map because the viewers for the video broadcasts

from these countries are not amongst the top 15 consumers.

� 4.5 Understanding Engagement

Our final analysis briefly explores engagement factors. We explore the extent to which views

and other social engagement measures such as numbers of likes, comments and shares evolve

over the lifetime of a video, both during the live broadcast, as well as afterwards, and draw

implications for mobile live casting. The main takeaway is that most of the engagement

happens after the live broadcast, lending further support to the idea that Facebook Live

can be treated similarly to an on-demand service, as opposed to a live broadcast.

� 4.5.1 Evolution of views over time

First, we capture the instantaneous number of viewers for all broadcasts. We do this until

minute 34 (≈95% of videos end before 34 minutes). The number of viewers depends to
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Figure 4-12: Geographical footprint: (a) CDF of distance between the broadcasters of their
viewers. Multiple plots are presented for broadcasters in different countries (b) Fraction of
views from users in the same country as the broadcaster.

some extent on the quality of the video, but also upon the duration – longer videos have

a higher chance of catching friends who come online and notice the live broadcast. Yet,

many of them may lose interest and leave after some time, so the later minutes of the

video may lack sufficient viewers. To avoid introducing bias through the varying sample

size across each time interval bucket, we randomly pick 100k videos for each time intervals

and study the distribution of viewer counts.

Figure 4-13: View evolution over two minute intervals

Figure 4-13 shows a box-and-whisker plot of the number of viewers in each interval

across the videos. Each box extends from the lower to upper quartile values of the number

of viewers, with a line at the median. The whiskers extend from the box to show the

range of the data. Flier points past the end of the whiskers are not shown for clarity. The
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Figure 4-14: Distribution of engagement metrics (shares, likes, comments) across all broad-
cast streams.

viewer counts increase after the first interval, and there is a larger variance in the later

time buckets, indicating that sufficiently interesting longer videos accumulate viewers over

time. But the median number of viewers remains comfortably under 10, even after 20–30

minutes of the broadcast, again underscoring that it is not very difficult to support most

live broadcasts.

� 4.5.2 Social engagement

A key feature of Facebook Live is the ability for viewers to interact with broadcasters. This

comes in the form of likes, shares and comments. In a sense, this offers an alternative

measure of popularity when compared to the earlier discussion of viewer counts.

Figure 4-14 presents the distribution of these engagement metrics for all broadcasts. The

figure presents these metrics across three time windows: (i) During the live broadcast; (ii) a

day later for videos that have been archived on-demand; and (iii) eight months later. The

pattern indicates the type of engagement, whilst the grayscale colour separates broadcasts

into four popularity groups – those that get 0 engagement (likes/comments/shares), 1–10

engagements, 11–100 engagements or more than 100 engagements.

Most of the engagement happens after the live broadcast. It is therefore questionable to

what extent this is a live platform. On average, during the live broadcast, videos receive

6.7 likes, 8.4 comments and 0.54 shares. One day after broadcast, the engagement counts

jump to 29.84 likes, 16.33 comments, and 1.33 shares. These numbers do not change much

in the next eight months; thus, the majority of interaction happens in the one day after

broadcast. Notice that about 40% (47%) of videos collect no likes (comments) during the
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live broadcast, but this number drops to 3% (16%) after a day. From an infrastructure

design perspective, this interaction pattern makes it easier to support social engagement,

since on-demand is easier to manager than live streaming, which requires synchronisation

of the display of likes and comments across all viewers at the point in the stream where the

interaction happened.

We note that during the live broadcasts, comments tend to outnumber likes, but the

engagement after the broadcast tends to be through likes. Comments represent a much

stronger form of engagement; thus we conjecture that users who watch and interact with

the live stream may be close friends of the user, whereas the later engagement could be

from other friends or the general public.

Thus, in this chapter, we explored the usage of Facebook Live in terms of three major

factors: video characteristics; the geography of broadcasters and viewers; and the social

engagement.



Chapter 5

Decentralised web and Content

Replication

There is a recent growth in applications where both application hosting and content

are managed by amateurs. Even though there involve a lot of problems as every-

thing, from reliability to content moderation, is supposed to be operated by users, these

systems have the main benefit of preserving user privacy. In this chapter, we explore one

such application called Mastodon that belongs to category A3 and enables socialising in

a decentralised fashion. We pinpoint the impact of having a random content replication

scheme instead of present mechanism to ensure the resilience of the content system.

� 5.1 Introduction

The “Decentralised Web” (DW) is an evolving concept, which encompasses technologies

broadly aimed at providing greater transparency, openness, and democracy on the web [214].

Today, well known social DW platforms include Mastodon (a microblogging service), Dias-

pora (a social network), Hubzilla (a cyberlocker), and PeerTube (a video sharing platform).

Some of these services offer decentralised equivalents to web giants like Twitter and Face-

book, mostly through the introduction of two key innovations.

First, they decompose their service offerings into independent servers (“instances”) that

anybody can easily bootstrap. In the simplest case, these instances allow users to regis-

ter and interact with each other locally (e.g., sharing videos), but they also allow cross-

instance interaction via the second innovation, i.e., federation. This involves building on

decentralised protocols to let instances interact and aggregate their users to offer a globally

integrated service. Centralisation leads to a single entity or a small set of entities to own the

80
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data and technology with decision-making abilities moving to the centre of an organisation.

Thus centralised ownership and administration holds a single point of control and innately

lacks resilience to failures.

DW platforms intend to overcome these problems and offer a number of benefits. For

example, data is spread among many independent instances, thus possibly making privacy-

intrusive data mining more difficult. Data ownership is more transparent, and the lack

of centralisation could make the overall system more robust against technical, legal or

regulatory attacks. However, these properties may also bring inherent challenges that are

difficult to avoid, particularly when considering the natural pressures towards centralisation

in both social [215, 216] and economic [217] systems. For example, it is unclear how such

systems can securely scale-up, how wide-area malicious activity might be detected (e.g.,

spam bots), or how users can be protected from data loss during instance outages/failures.

As the largest and most popular DW application [218, 219], we choose Mastodon as a

relevant example to study some of these challenges in-the-wild. Mastodon is a decentralised

microblogging platform, with features similar to Twitter. Anybody can set up an indepen-

dent instance by installing the necessary software on a server. Once an instance has been

created, users can sign up and begin posting “toots,” which are shared with followers. Via

federation, they can also follow accounts registered with other remote instances. Unlike tra-

ditional social networks, this creates an inter-domain (federated) model, not that dissimilar

to the inter-domain model of the email system.

In this chapter, we present a large-scale (case) study of the DW aiming to understand the

feasibility and challenges of running decentralised social web systems. We use a 15-month

dataset covering Mastodon’s instance-level and user-level activity, covering 67 million toots.

Our analysis is performed across two key axes: (i) We explore the deployment and nature

of instances, and how the uncoordinated nature of instance administrators drive system

behaviours (Section 4.3); and (ii) We measure how federation impacts these properties and

introduces unstudied availability challenges (Section 5.5). A common theme across our

findings is the discovery of various pressures that drive greater centralisation; we therefore

also explore techniques that could reduce this propensity.

Main Findings. Overall, our main findings include:

1. Mastodon enjoys active participation from both administrators and users. There is a

wide range of instance types, with tech and gaming communities being quite promi-

nent. Certain topics (e.g., journalism) are covered by many instances, yet have few

users. In contrast, other topics (e.g., adult material) have a small number of instances

but a large number of users.
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Figure 5-1: Flowchart explaining when a toot is placed on the federated timeline of a user.

2. There are user-driven pressures towards centralisation. Popularity in Mastodon

is heavily skewed towards a few instances, driving implicit forms of centralisation.

10% of instances host almost half of the users. This means that a small subset of

administrators has a disproportionate impact on the federated system.

3. There are infrastructure-driven pressures towards centralisation. Due to the sim-

plicity and low costs, there is a notable location of instances within small set of hosting

providers. We find that failures in these ASes can create a ripple effect that fragments

the wider federated graph. We observe 6 cases of these AS-wide outages within our

measurement period. We also observe regular outages by individual instances (likely

due to the voluntary nature of many administrators). Again, this has a notable im-

pact: 11% of instances are unavailable for half of our measurement period.

4. There are content-driven pressures towards centralisation. Due to the differing pop-

ularities of toots, we find that outages in just 10 instances could remove 62.69% of

global toots. To ameliorate this problem, we explore the potential of building toot

replication schemes. For example, when a user has followers from different instances,

the content posted by the user could be stored and indexed (persistently) in the fol-

lowers’ instances. By enabling this type of federation-based replication, availability

improves so that only 11.4% of toots are lost when the top 3 ASes are offline (rather

than 70% without).

� 5.2 Dataset

In this section, we describe the basic operation of Mastodon, highlighting key terminology

in bold. We refer readers interested in more details to a tutorial on The Verge [220].

What is Mastodon? Mastodon is an open-source DW server platform released in

2016 [221]. It offers microblogging functionality, allowing administrators to create their

own independent Mastodon servers, aka instances. Each unique Mastodon instance works

much like Twitter, allowing users to register new accounts and post toots to their followers.

Users can also boost toots, which is the equivalent of retweeting on Twitter.
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Instances can work in isolation, only allowing locally registered users to follow each other.

However, Mastodon instances can also federate, whereby users registered on one instance

can follow users registered on another instance. This is mediated via the local instances

of the two users. Hence, each Mastodon instance maintains a list of all remote accounts

its users follow; this results in the instance subscribing to posts performed on the remote

instance, such that they can be pulled and presented to local users. For simplicity, we

refer to users registered on the same instance as local, and users registered on different

instances as remote. Note that a user registered on their local instance does not need to

register with the remote instance to follow the remote user. Instead, a user just creates a

single account with their local instance; when the user wants to follow a user on a remote

instance, the user’s local instance performs the subscription on the user’s behalf. This

process is implemented using an underlying subscription protocol. To date, Mastodon

supports two open protocols: oStatus [170] and ActivityPub [172] (starting from v1.6).

This makes Mastodon compatible with other decentralised microblogging implementations

(notably, Pleroma).

When a user logs in to their local instance, they are presented with three timelines: (i) a

home timeline, with toots posted by the accounts whom the user follows; (ii) a local timeline,

with all the toots generated within the same instance; and (iii) a federated timeline, with

all toots that have been retrieved from remote instances. Figure 5-1 explains when a toot

is captured in the federated timeline. The latter is not limited to remote toots that the

user follows; rather, it is the union of remote toots retrieved by all users on the instance.

The federated timeline is an innovation driven by Mastodon’s decentralised nature; it allows

users to observe and discover toots by remote users, and broaden their follower network.

Our goal is to better understand the nature of instances and federation, using Mastodon

as a case study. To do so, we rely on three primary datasets: (i) Instances: regular snapshots

of instance metadata and availability; (ii) Toots: historical user posts (toots) available on

each instance; and (iii) Graphs: the follower and federation graphs.

Instances. We first extracted a global list of instance URLs and availability statistics

from a dump provided by the mnm.social website. This site contains a comprehensive

index of instances around the world, allowing us to compile a set of 4,328 unique instances

(identified by their domain). These instances primarily run the Mastodon server software,

although 3.1% run the Pleroma software (https://pleroma.social/) instead. This is

because, since 2017, these two implementations have federated together using the same

front-end and federation protocol (ActivityPub). Hence, from a user’s perspective, there is

little difference between using Mastodon or Pleroma instances.

https://pleroma.social/
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We obtain our data by using the monitoring service of mnm.social. Every five min-

utes, mnm.social connected to each instance’s <instance.name>/api/v1/instance API

endpoint. The instance API returned the following information from each instance: name,

version, number of toots, users, federated subscriptions, and user logins; whether registra-

tion is open and if the instance is online.

The data on mnm.social goes back to April 11, 2017. We collected all the data until July

27, 2018. Maxmind was then used to map the IP address of each instance to their country

and hosted AS. Although some of these metadata items rarely change (e.g., country),

repeatedly fetching all the data every five minutes gives us fine-grained temporal data

revealing how values evolved across time. Overall, we observe approximately half a billion

data points.

Toots. In May 2018, we crawled all available toots across the instances. To compile a list of

instances to crawl, we started with the list collected via the mnm.social website. We then

filtered these to only leave instances that were online during May 2018: this left 1.75K active

instances which were accessible. This obviously reveals a degree of churn in the instance

population; across the 15 month measurement cycle, 21.3% of instance went offline and

never came back online. We wrote a multi-threaded crawler28 to connect with each of these

1.75K instances, via their API, and collected their entire history of toots. To expedite the

process, we parallelised this across 10 threads on 7 machines. Each thread was responsible

for querying the federated timeline of its designated instance; it did this by iterating over

the entire history of toots on the instance. To avoid overwhelming instances, we introduced

artificial delays between API calls to limit any effects on the instance operations. For

each toot, the following data were collected: username, toot URL, creation date, media

attachments, number of favourites, followers, and followings, toot contents, and hashtags.

Our toots dataset contains 67M public toots, generated by 239K unique users. By

comparing this against the publicly listed metadata obtained from the instance dataset

(recall this contained toot and user counts), we find that our dataset covers 62% of the

entire toot population. The remaining 38% of toots could not be collected: approximately

20% of these toots were set to private, and the remainder were hosted on instances that

blocked toot crawling.

Complementary Datasets.

Follower and Federation Graphs. We also crawled the followers and following lists for

users in July 2018. To this end, we scraped the follower relationships for the 239K users

we encountered who have tooted at least once. This was performed be iterating over all

28the code to collect data from Mastodon can be found here: https://rebrand.ly/dweb_crawl

<instance.name>/api/v1/instance
https://rebrand.ly/dweb_crawl
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public users on each instance, and simply paging through their (HTML) follower list.29 This

provided us with the ego networks for each user. We identified a user by their account name

on a per-instance basis, as users must create one account per instance. 87.9% of account

names are unique to a single instance, while 8.3% are on two instances, and 3.8% are on

three or more. Note that it is impossible to infer if such accounts are owned by the same

person, and therefore we treat them as separate nodes.

We then induced a graph, G
(
V,E

)
, in which user Vi has a directed link to another user Vj

if Vi follows Vj . This resulted in 853K user accounts and 9.25M follower links. Conceptually,

this graph is similar to the Twitter follower graph [181]. However, unlike Twitter, users can

follow accounts on remote instances, triggering the need for remote subscriptions between

instances (i.e., federation). Hence, the creation of a link in E can trigger an underlying

federated subscription between the respective instances. We, therefore, created a second

graph, GF

(
I, E

)
, which consists of instance-to-instance subscriptions (hereafter instance

federation graph, for short). GF

(
I, E

)
is induced by G

(
V,E

)
; a directed edge Eab exists

between instances Ia and Ib if there is at least one user on Ia who follows a user on Ib.

Twitter. For comparisons, we also gathered data about outages in Twitter as well as its

social network, dating back to when Twitter was at a similar age as Mastodon is now. while

we did not get access to the number of users accessing Twitter at that time, we collected the

uptime statistics when Twitter was roughly 1.5 years old. For this, we used pingdom.com,

a widely used website monitoring platform which probed Twitter every minute between

February and December 2007. The data is obtained from the Internet Archive [222]. As

a baseline social graph, we obtained the Twitter social graph from a 2011 dataset [223],

which consists of users and their respective follower networks.

Limitations. Our analysis reveals a highly dynamic system and, thus, our measurements

are capturing a “moving target.” Similarly, we highlight that the timelines of each dataset

differ slightly due to the progressive deployment of our measurement infrastructure. This,

however, does not impact our subsequent analysis. It is also worth noting that we do not

have comprehensive data on all toots, due to some instances preventing crawling (we have

62% of toots). Thus, we have avoided performing deeper semantic analysis on toot content

and, instead, focus on instance-level activities.

� 5.3 Characterising Mastodon

The first innovation that the DW introduces is the distribution of services across indepen-

dent instances. This means that these platforms emerge in a bottom-up fashion from the

thousands of instances running their software. Hence, inspecting them provides a window

29https://<instance.name>/users/<user.name>/followers

pingdom.com
https://<instance.name>/users/<user.name>/followers
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Figure 5-2: Available instances/user/toots over-time.

into how bottom-up DW decisions are made, and the implications they might have on the

overall system. In this section, we perform a characterisation of the instances available in

Mastodon and how they are deployed.

First, as mastodon is comprised of instances, we quantify the growth and popularity of

the 4,328 instances under study, and inspect how this relates to instance settings.

Instance Growth. We begin by briefly inspecting the recent growth of Mastodon. Fig-

ure 5-2 plots the timeseries of the number of instances, users, and toots available per day.

Mastodon is in a phase of growing popularity, with fluctuations driven by the arrival and

departure of instances. Between April and June 2017, there was an increase in the number

of instances (and users). However, while the number of instances reaches a plateau around

July 2017 (only 6% of the instances were set up between July and December 2017), the user

population continues to grow during this period (by 22%). Then, in the first half of 2018,

new instances start to appear again (43% growth). We conjecture that this may have been

driven by things like the #DeleteFacebook campaign (popular at that time) [224], and spo-

radic bursts of media attention [214, 220, 225]. Closer inspection also reveals fluctuations

in the instance population; this churn is driven by short periods of unavailability, where

certain instances go offline (temporarily). We posit that this may have wider implications,

and therefore deep dive into this in Section 5.4.2.

Open vs. Closed Instances. Mastodon instances can be separated into two groups:

(i) open, allowing anybody to register (47.8% of instances); and (ii) closed, requiring an
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(a) (b) (c)

Figure 5-3: Dissecting Instances with open and closed (invite-only) registrations. (a) Dis-
tribution of number of toots and users per-instance (b) Number of instances, toots and users
for open and closed registrations; (c) Distribution of active users (max percentage of users
logged-in in a week per instance) across all instances.

explicit invitation from the administrator (52.2%). Figure 5-3a presents a CDF of the num-

ber of users and toots per-instance, separated into open and closed instances. Overall, the

user population distribution is highly skewed, with distinct traits of natural centralisation.

For both kinds of instances (open and closed), the top 5% of all instances have 90.6% of all

users. Similar patterns can be seen among toot generation, with the top 5% of instances

accumulating 94.8% of toots. This, of course, confirms that, despite its decentralisation,

Mastodon does not escape the power law trends observed in other social platforms [180–182,

226].

Unsurprisingly, instances with an open registration process have substantially more users

(mean 613 vs. 87). Inspecting user count alone, however, can be quite misleading, as open

instances may accumulate more experimental (and disengaged) users. Figure 5-3b presents

the breakdown of users, instances and toots across open and closed instances. Whereas

the majority of users are associated with open instances and they create on average 94.8

toots per-person. In contrast, there are fewer users on closed instances, but they generate

more toots per-capita (average of 186.65). To measure the activity level of users, each

week, we compute the percentage of users who have actually logged into each instance

(available in the instance dataset) and take the maximum percentage as the activity level

of the instance. Figure 5-3c presents the CDFs of the activity level per instance. This

confirms that closed instances have more engaged populations: the median percentage of

active users per closed instance is 75%, compared to 50% for active users in open instances.

Despite this mix of instances, it is clear that a notable fraction of Mastodon users regularly

login; for example, 13.73% of users use Mastodon over once per-week. This disparity in

usage patterns, which is typical in any web system, does increase the “dominance” of the

instances that are associated with more active users. The growth of users on one side in
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Figure 5-4: Distribution of the number of instances, toots and users across various cate-
gories.

open instances, and the increased usage in closed instances merely indicate the power law

trend within the platform [227].

� 5.3.1 Instance Categories

To improve visibility and/or to specialise in certain topics, instances can explicitly “tag”

themselves with a category, as well as the activities they allow. Thus, these tags help in

understanding the types of ongoing activities within Mastodon.

Category Tags. Overall, 697 out of the 4,328 instances report a self-declared category,

taken from a controlled taxonomy of tags. Just 13.6% of users and 14.4% of toots are asso-

ciated with these categorised instances. 51.7% of these categories are labelled as “generic”.

Despite this relatively low coverage, it is still useful to inspect these tags to gain insight into

ongoing usage. Note that the following statistics pertain to this subset of instances. Figure

5-4 plots the distribution of instances, toots, and users across each category. We identify 15

categories of instances. The majority of instances are categorised as tech (55.2%), games

(37.3%) or art (30.15%). This is not entirely surprising, as Mastodon emerged from the

tech community.

Figure 5-4 also allows us to compare the popularity of each category when measured

by the number of instance vs. number of users, shedding light on the interests of the

administrators vs. the general user population. Overall, the interests of these two groups
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Figure 5-5: Distribution of instances and users across instances w.r.t. prohibited and allowed
categories.

coincide, albeit with some key discrepancies. For instance, while tech covers 55.2% of

instances, it only garners 20.8% of users and 24.5% of toots. By contrast, games correspond

to 37.3% of instances, yet generate 43.43% of all toots, suggesting they are highly active.

Similar observations apply to Anime instances, where 24.6% of instances contribute 37.23%

of global toots. There is, however, one clear outlier: adult instances constitute only 12.3% of

instances but attract 61.03% of all users; that is, adult content is clearly a topic attracting a

large user population, which is served by a small set of instances. This has been observed in

other forms of online adult content, where websites with limited content sets gain large per-

item interest [152]. These contrasts suggest that Mastodon is a powerful tool for exploring

and evaluating the different behaviours of these communities.

Activity Tags. Due to its decentralised nature, it is also possible for individual adminis-

trators to stipulate what types of activity are allowed in their instances. This is necessary

on a federated social network, as each instance can have different policy requirements. Out

of the 697 instances, 17.5% allow all types of activity. The remaining instances explicitly

specify a subset of activities acceptable on the instance. 82% of these list at least one

prohibited activity, whereas 93% explicitly specify at least one acceptable activity.
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Figure 5-5 reports the number of instances, users, and toots associated with each activity

category. The most regularly prohibited activity (left bar chart in the figure) is spam. 76%

of instances disallow it, followed by pornography (66%), and nudity (62%). These two ac-

tivities are typically only prohibited when not tagged with #NSFW (not safe for work): for

instances that allow #NSFW, the vast majority also allow nudity (84.3%) and pornography

(75.6%). On the other hand, and quite curiously, some instances explicitly allow several of

these activities (see the right bar chart in Figure 5-5), e.g., 24% of instances allow spam.

Unsurprisingly, these get few users: even though they make up 21% of instances, they only

hold 16% of users. In contrast, instances allowing advertising have disproportionately large

user groups (47% of instances, but 61% of users hosting and 75% of the toots).

Mastodon UI also has a “content warning” (CW) checkbox for the posters to give advance

notice that there are spoilers in the content. Interestingly, while 35% instances prohibit

posting spoilers without a content warning, the remaining 65% explicitly allow this.

� 5.4 Exploring Instances

� 5.4.1 Instance Hosting

Unlike a centrally administered deployment, where the presence can be intelligently se-

lected, Mastodon’s infrastructure follows a bottom-up approach, where administrators in-

dependently decide where they place their instance. Figure 5-6 presents a breakdown of the

presence of instances, toots, and users across countries and Autonomous Systems (ASes).

Countries. Japan dominates in terms of the number of instances, users and toots. In

total, it hosts 25.5% of all instances, closely followed by the US, which hosts 21.4%. Closer

inspection reveals that the ratio between the number of instances and number of users differ

across countries though. For example, Japan hosts a just quarter of instances, yet gains

41% of all users; in contrast, France hosts 16% of instances, yet accumulates only 9.2% of

users. It is also worth noting that these countries are heavily interconnected, as instances

must federate together, i.e., users on one instance may follow users on another instance

(thereby creating federated subscription links between them, see Section 5.2). To capture

their interdependency, Figure 5-7 presents a Sankey diagram; along the left axis are the

top countries hosting instances, and the graph depicts the fraction of their federated sub-

scriptions to instances hosted in other countries (right axis). Unsurprisingly, the instances

exhibit homophily: users of an instance follow other users on instances in the same country,

e.g., 32% of federated links are with instances in the same country. The top 5 countries

attract 93.66% of all federated subscription links. We posit that this dependency on a small

number of countries may undermine the initial motivation for the DW, as large volumes of
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Figure 5-6: Distribution of instances, users, and toots across the top-5 countries (top) and
ASes (bottom).

data are situated within just a small number of jurisdictions; e.g., 89.1% of all toots reside

on instances in Japan, the US, and France.

ASes. Next, we inspect the distribution of instances across ASes; this is important as an

over-dependence on a single AS, may raise questions related to data pooling or even system

resilience. When looking at the ASes that host Mastodon servers (bottom of Figure 5-6),

we observe instances spread across 351 ASes. On average, each AS, therefore, hosts 10

instances. This suggests a high degree of distribution, without an overt dependence on a

single AS.

That said, due to the varying popularity of these instances, the top three ASes account

for almost two thirds (62%) of all global users, with the largest one (Amazon) hosting more

than 30% of all users—even though it only is used by 6% of instances. Cloudflare also plays a

prominent role, with 31.7% of toots across 5.4% of instances. The reasons for this co-location

are obvious: Administrators are naturally attracted to well known and low cost providers.

Whereas a centrally orchestrated deployment might replicate across multiple redundant

ASes (as often seen with CDNs), this is more difficult in the DW context because each

instance is independently managed (without coordination). Although these infrastructures

are robust, the failure (or change in policy) of a small set of ASes could, therefore, impact a

significant fraction of users. Again, this highlights another form of tacit centralisation that

emerges naturally within such deployments.
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Figure 5-7: Distribution of federated subscription links between countries. The left axis
lists the top-5 countries, and the lower access indicates the fraction of the federated links
to instances in other countries.

� 5.4.2 Instance Availability

We next explore the availability properties emerging from the bottom-up deployment. Here,

we define availability as the ability to access and download its homepage. We posit that

the uncoordinated and (semi-)voluntary nature of some instance operations may result in

unusual availability properties.
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Figure 5-8: CDF of the instance downtime (bottom x-axis) and distribution of unavailable
users, toots, and boosted toots (top x-axis) when instances go down.

Instance Availability. We start by measuring the historical availability of our 4.3K in-

stances over time (from the instance dataset). We only count outages where an instance

becomes unavailable, and then returns again within our 15 month measurement cycle (i.e.,

we do not consider persistently failed instances as outages). Figure 5-8 plots the distribu-

tion of downtime of each instance over a 5-minute granularity (blue line, bottom X-axis).

A sizeable portion of instances do have relatively good availability properties – about half

of the instances have less than 5% downtime. 4.5% of instances were even up for 99.5% of

the time (these popular instances covered 44% of toots). However, there is a long tail of

extremely poor availabilities: 11% of instances are inaccessible more than half of the time,

which confirms that failures are relatively commonplace in Mastodon. This has obvious

repercussions for both toot availability and the ability of users to access the platform.

We cannot confirm the exact reasons for unavailability, nor can we state how reliable

instances maintain their long uptime (although the operators might be employing load

balancers and replicated back-ends). That said, it is likely that the voluntary nature of

many instance operators has a role, i.e., instances with poor availability might simply be

unpopular and lack dedicated administrators. To test this, we count the number of toots

and users that are unavailable during instance failures, see Figure 5-8 (red lines, top x-axis).

Instances may go down multiple times, so we select the 95th percentile of these values for

each instance. Disproving our hypothesis, we find that failures happen on instances across

the entire spectrum of popularity — there are a number of instances that host in excess of

100K toots which have outages.
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Figure 5-9: Distribution of per-day downtime (measured every five minutes) of Mastodon
instances (binned by the number of toots), and Twitter (Feb–Dec 2007).

This is further explored in Figure 5-9, which presents a box plot of daily downtime for

Mastodon, where we separate instances based on their number of toots. Although small

instances (<10K toots) clearly have the most downtime (median 12%), those with over

1M toots actually have worse availability than instances with between 100K and 1M (2.1%

vs. 0.34% median downtime). In fact, the correlation between the number of toots on

an instance and its downtime is -0.04, i.e., instance popularity is not a good predictor of

availability. The figure also includes Twitter’s downtime in 2007 for comparison (see Section

5.2). Although we see a number of outliers, even Twitter, which was famous for its poor

availability (the “Fail Whale” [228]), had better availability compared to Mastodon: its

average downtime was just 1.25% vs. 10.95% for Mastodon instances.

Certificate Dependencies. Another possible reason for failures is third party dependen-

cies, e.g., TLS certificate problems (Mastodon uses HTTPS by default). To test if this may

have caused issues, we take the certificate registration data from crt.sh [229], and check

which certificate authorities (CAs) are used by instances, presented in Figure 5-10a. Let’s

Encrypt has been chosen as CA for more than 85% of the instances, likely because this

service offers good automation and is free of cost [230]. This, again, confirms a central de-

pendency in the DW. We also observe that certificate expiry is a noticeable issue (perhaps

due to non-committed administrators). Figure 5-10b presents the number of instances that

have outages caused by the expiry of their certificates. In the worst case, we find 105 in-

stances to be down on one day (23 July 2018), removing nearly 200K toots from the system.

crt.sh
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(a)

(b)

Figure 5-10: (a) Footprint of certificate authorities among the instances. (b) Unavailability
of instances (on a per-day basis).

Closer inspection reveals that this was caused by the Let’s Encrypt CA short expiry policy

(90 days), which simultaneously expired certificates for all 105 instances. In total, these

certificate expirations were responsible for 6.3% of the outages observed in our dataset.

AS Dependencies. Another potential explanation for some instance unavailability is that

AS-wide network outages might occur. Due to the co-location of instances within the same

AS, this could obviously have a widespread impact. To test this, we correlate the above

instance unavailability to identify cases where all instances in a given AS simultaneously

fail — this may indicate an AS outage. Table 5-1 presents a summary of the most frequent

failures (we consider it to be an AS failure if all instances hosted in the same AS became

unavailable simultaneously). We only include ASes that host at least eight instances (to

avoid mistaking a small number of failures as an entire AS failure). We observe a small but

notable set of outages. In total, 6 ASes suffer an outage. The largest is by AS9370 (Sakura,

a Japanese hosting company), which lost 97 instances simultaneously, rendering 3.89M toots

unavailable. The AS with most outages (15) is AS12322 (Free SAS), which removed nine

instances. These outages are responsible for less than 1% of the failures observed; however,

their impact is still significant. In total, these AS outages resulted in the (temporary)

removal of 4.98M toots from the system, as well as 41.5K user accounts. Although this
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ASN Instances Failures IPs Users Toots Org. RankPeers
AS9370 97 1 95 33.4K 3.89M Sakura 2.0K 10
AS20473 22 4 21 5.7K 936K Choopa 143 150
AS8075 12 7 12 1.7K 35.4K Microsoft 2.1K 257
AS12322 9 15 9 123 4.4K Free SAS 3.2K 63
AS2516 9 4 8 559 102K KDDI 70 123
AS9371 8 14 8 165 4.7K Sakura 2.4K 3

Table 5-1: AS failures per number of hosted instances. Rank refers to CAIDA AS Rank,
and Peers is the number of networks the AS peers [231].

Figure 5-11: CDF of continuous outage (in days) of instances not accessible for at least one
day (Y1-axis) and number of toots and users affected due to the outage (Y2-axis).

centralisation can result in such vulnerabilities, the decentralised management of Mastodon

makes it difficult for administrators to coordinate placement to avoid these “hot spots”.

Outage durations. Finally, for each outage, we briefly compute its duration and plot

the CDF in Figure 5-11 (blue line, Y1-axis). While almost all instances (98%) go down at

least once, a quarter of them are unavailable for at least one day before coming back online,

ranging from 1 day (21%) to over a month (7%). Figure 5-11 also reports the number of toots

and users affected by the outages: 14% of users cannot access their instances for a whole

day at least once. Naturally, these measures are closely correlated to toot unavailability

(i.e., toots become unavailable when their host instance goes offline). In the worst case, we

find one day (April 15, 2017) where 6% of all (global) toots were unavailable for the whole

day. These findings suggest a need for more resilient approaches to DW management.
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Toots from #Home Users Toots Instances
Domain Home Users Users OD ID OD ID OD ID Run by AS (Country)
mstdn.jp 9.87M 23.2K 22.5K 24.7K 71.4M 1.94M 1352 1241 Individual Cloudflare (US)
friends.nico 6.54M 8998 8809 23.3K 37.4M 2.57M 1273 1287 Dwango Amazon (JP)
pawoo.net 4.72M 30.3K 27.6K 15.4K 34.9M 1.4M 1162 1106 Pixiv Amazon (US)
mimumedon.com 3.29M 1671 507 7510 435K 366K 420 524 Individual Sakura (JP)
imastodon.net 2.34M 1237 772 10.8K 2.37M 1.52M 711 865 Individuals (CF) Amazon (US)
mastodon.social 1.65M 26.6K 24.8K 16.1K 30.9M 525K 1442 1083 Individual (CF) Online SAS (FR)
mastodon.cloud 1.54M 5375 5209 106 7.35M 337 1198 39 Unknown Cloudflare (US)
mstdn-workers.com 1.35M 610 576 12.5K 4.18M 1.98M 735 850 Individual (CF) Amazon (JP)
vocalodon.net 914K 672 653 8441 2.6M 853K 981 631 Bokaro bowl (A) Sakura (JP)
mstdn.osaka 803K 710 363 1.64K 2.68M 2.1M 561 862 Individual Google (US)

Table 5-2: Top 10 instances as per number of toots from the home users. (OD: Out Degree,
ID: In Degree, CF: Crowd-funded, A: maintained by selling Bokaro Bowl album).

Figure 5-12: Ratio of home toots (produced on the instance) to remote toots (replicated
from other ones).

� 5.5 Exploring Federation

The previous section has explored the central role of independent instances within the

Mastodon ecosystem. The other major innovation introduced by the DW is federation.

Here we inspect federation through as the distributed placement and sharing of content

(toots) via the social graph. This section studies the resilience properties of DW federation

in light of the frequent failures observed earlier.

� 5.5.1 Breaking the Content Federation

The above process of federation underpins the delivery of toots across the social graph. For

example, when a user shares a toot, it results in the toot being shared with the instances

of all their followers. Although we obviously cannot validate if a user reads a toot, we next

explore the importance of federation for propagating content to timelines.
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(a) No replication (b) No replication (c) Subscription Repli-
cation

(d) Subscription Repli-
cation

Figure 5-13: Availability of toots based on (a) removing ASes, with ASes ranked based
on #instances, #toots and #users hosted; and (b) removing instances, ranked by #users,
#toots, and #connections with other instances. In (c) and (d), we report the toot avail-
ability when replicating across all instances that follow them.

Role of Remote Toots. Aiming to measure the prevalence of federated remote toots,

Figure 5-12 plots the proportion of home vs. remote toots taken from the federated timeline

(see Section 5.3) of every instance in our dataset, ordered by the percentage of home toots.

The majority of toots on the federated timeline are actually generated by remote instances:

78% of instances produce under 10% of their own toots. In the most extreme case, we

see that 5% of instances are entirely reliant on remote toots, and generate no home toots

themselves. This suggests that some highly influential central instances operate as ‘feeders’

to the rest of the network. Also, the more toots an instance generates, the higher the

probability of them being replicated to other instances (correlation 0.97), thus highlighting

the importance of a small number of feeders, without whom smaller instances would be

unable to bootstrap. This is another inherent form of centralisation, which any social

system will struggle to deviate from.

These results motivate us to measure the impact of instance and AS failures on toot

availability. We evaluate three scenarios: (i) where a toot is exclusively hosted on its home

instance, and fetched by the remote instance on demand (denoted as “no replication”);

(ii) where a toot is actively replicated to any instances with users that follow the toot’s

author (“subscription replication”); and (iii) where a toot is replicated onto a random set

of n instances (“random replication”). Mastodon partly supports option (ii)but replicated

toots are only temporarily cached, and they are not globally indexed, i.e., they are only

visible to users local to the instance where the replica is. For these experiments, we assume a

scenario where toots are globally indexed, e.g., via a Distributed Hash Table [232], allowing

users to access replicated toots from any instance. For simplicity, we treat all toots as equal,

even though in practice, more recent toots are likely to be more important.
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Figure 5-14: Availability of toots when removing top instances (measured by #toots) with
random replication. Lines for n > 4 overlap indicating availability above 99% (97%) in case
of instance (AS) failures.

No replication. In Figure 5-13a, we measure the availability of toots when removing

entire ASes; and in Figure 5-13b, we examine the availability of toots when individual

instances fail. Both plots depict results without replication enabled. In both cases, toot

availability declines rapidly in the face of failures. Removing the top 10 instances (ranked

by the number of toots) results in the deletion of 62.69% toots from Mastodon. Removing

the top 10 ASes (again, ranked by the number of toots) results in 90.1% of toots becoming

unavailable. Therefore, we argue that running Mastodon without replication is not a viable

option if resilience is to be a priority.

Subscription-based Replication. Figures 5-13c and 5-13d report the availability of toots

if they are replicated onto the instances that follow them, i.e., via federated links. We

consider any toot as available if there is at least one live Mastodon instance holding a

replica, and assume the presence of a global index (such as a Distributed Hash Table) to

discover toots in such replicas.

Availability improves using this method. For example, removing the top 10 instances

now only results in 2.1% of toots becoming unavailable (as compared to 62.69% without

replication). The equivalent values when removing the top 10 ASes are 18.66% with repli-

cation (vs. 90.1% without).
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Random Replication. Above, we assumed that toots are only replicated to the followers’

instances. We now experiment with a random replication strategy that copies each toot onto

n random instances. We test for n = {1, 2, 3, 4, 7, 9}, alongside no replication (No-rep) and

subscription-based replication (S-Rep). We do this for all toots and present the results in

Figure 5-14. In each iteration, we remove the current remaining top instance (as ranked by

the number of toots), and check the availability of toots according to the different replication

strategies. The figures show that random replication substantially outperforms subscription-

based replication. This is due to the biased way that subscription-based replication works,

in which we find that 9.7% of toots have no replication due to a lack of followers, yet 23% of

toots have more than 10 replicas because they are authored by popular users. After removing

25 instances, subscription-based replication has 95% availability, whereas 99.2% availability

could have been achieved with just 1 random replication. More prominently, subscription-

based replication tends to place all replicas onto a small set of popular instances (i.e., where

the followers are), due to the skewed popularity distribution of users. This is yet another

consequence of the natural centralisation that these systems experience. Thus, removing

these popular instances will remove not only the original toot but also the replica(s).

In contrast, the random strategy distributes the load more evenly, such that instance

failures impact fewer replicas of the toots. There are a number of practical concerns that

will impact such strategies. Most notably, it would be important to weight replication based

on the resources available at the instance (e.g., storage).

Thus this chapter presented a large-scale measurement study of the Decentralised Web

(DW) through the lens of Mastodon identifying the pitfalls and discussing the mechanisms

to improve the resiliency of the DW. Even though we have not seen any centralised own-

ership, across the instances, it can be seen that the economic and social pressures push the

individual choices made to a power law distribution, affecting the resiliency of the DW.

For example, 85% of the instances’ administrators choose Let’s Encrypt as the certificate

authority, mainly due to economic factor, whereas half of the users sign up to just 10% of

the instances owing to social pressures. These individual decisions, however same across

the community, leads to a power law distribution of choices and found to have huge effect

on the resiliency of the entire Mastodon ecosystem.



Chapter 6

Summary and Conclusions

T
omeet the growth in capacity requirements, this dissertation we presented the role

of content placement amongst the edge devices. We also show how strategic content

placement can help in achieving traffic and energy benefits for various applications. Overall,

we find edge storages can be exploited for a range of applications to achieve benefits in

content delivery.

Our exploration begins with an intuition of three categories of application based on

the ownership – (i) application and content systems completely owned by an organisation

(ii) application infrastructure owned by an organisation and content production done by

the users and (iii) both the content system and infrastructure managed by the users. We

use BBC iPlayer, Facebook live and Mastodon respectively for understanding how these

systems can be benefited by strategic content placements. The general takeaways from the

dissertation are given in Section 6.1, outlining the architectures to be designed for future

networks based on the application categories.

� 6.1 Summary and Takeaways

� 6.1.1 Content Sharing

We begin with a feasibility check for content sharing by asking whether there are sufficient

number of Wi-Fi access points for areas with varying population density. We find that even

for areas with the lowest population density, there are sufficient neighbours to share the

content (Section 3.3.1). We map these endpoints to user access logs of iPlayer and evaluate

the potential bounds of traffic savings (Section 3.3.2). Based on this real-world setting,

we then derive an optimisation problem for content placement within the edge devices

(Section 3.3.5). Using this, we showed that 30-70% of traffic savings could be achieved

101



6.1. SUMMARY AND TAKEAWAYS 102

and also discuss the savings under various cache replacement strategies when curtailed by

storage. We also show that up to 47% of traffic savings can be achieved within a small cell

of ≈ 100 users by following an optimal content placement approach.

Thus using large scale access to a popular content streaming platform and real-world

distribution potential edge devices, Chapter 3 evaluates the traffic savings from content

sharing and proposes a framework for content sharing in future edge deployments.

� 6.1.2 Content Caching

We then proceed to explore Facebook live, where we began by characterising broadcast

behaviour (Section 4.3). Being a popular platform, Facebook Live encounters peaks of 63

million online viewers. Despite this, we find that popularity is typically reserved for Page

accounts and a small set of celebrity users. Over half of the social users on Facebook Live

generate unwatched content at least once, with 41.5% of broadcasts never being viewed.

This casts doubt over both the terms social and broadcast in the social live broadcast. In

response, we proposed a simple mechanism to alleviate network and battery consumption.

In cases where live streams receive no viewers, we proposed locally storing the content on

the broadcasters’ mobile devices until viewers arrive (rather than uploading video chunks

that are never watched). Although this may introduce a slightly greater startup delay from

viewers, such a model would reduce the number of bytes transferred by 21.9%, and mean

that 23.18% of videos never need to leave the mobile device (only those that are viewed or

archived by the broadcasters, allowing on-demand access later on, must be uploaded).

We then proceeded to explore the geographical (Section 4.4) properties of the system.

Due to the social nature of Facebook Live, streams exhibit high degrees of the locality.

8% of viewers are within 25 KM of the broadcaster. We argue that this makes the service

well suited to many recently proposed mobile edge computing architectures (e.g., [213, 233,

234]). Unsurprisingly, these observations also result in clear trends in consumption with

most users accessing domestic content. Exceptions to this tend to align with high levels of

cultural and language similarity. Finally, we explored viewer engagement (Section 4.5) to

find that even popular streams (i.e., >10 viewers) have periods of being unwatched. We

also found that most social engagement actually occurs after the live stream for the 46%

of streams that were archived. This, again, casts doubt over the term live in social live

broadcast, with Facebook Live exhibiting on-demand-style behaviour for many consumers.

Chapter 4 also constitutes a key contribution within the broader field of mobile social

video consumption. However, there remains a series of interesting points for exploration. We

have noted several systems implications from our findings. Implementing and evaluating

these concepts would be a fruitful line of exploration, particularly as many are simple

and could be easily integrated into social broadcast apps. We should note, however, that
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we anticipate significant growth in the use of Facebook Live in the future. Hence, it is

important to monitor how behaviour evolves to understand the long-term applicability of

design choices. To date, we have also not been able to dive into how the social graph impacts

video popularity, nor how such data could be used to predict and inform delivery strategies.

Understanding how social topology impacts content consumption would be a clear line of

future work. We also found that a number of spatial properties were correlated; we wish to

expand this type of correlation analysis to other domains, e.g., understanding if broadcasts

correlate with socioeconomic metrics or things like tourism and immigration levels from

other countries. Predictive models for capacity planning and/or caching could make great

use of such insight.

� 6.1.3 Content Replication

In Chapter 5, we focused on exploring challenges arising from two key innovations introduced

by the DW: (i) the decomposition of a global service into many independent instances; and

(ii) the process of the federation, whereby these instances collaborate and interact.

We found that Mastodon’s design decision of giving everyone the ability to establish an

independent instance of their own has led to an active ecosystem, with instances covering

a wide variety of topics. However, a common theme in our work has been the discovery

of apparent forms of centralisation within Mastodon. For example, 10% of instances host

almost half of the users, and certain categories exhibit remarkable reliance on a small set

of instances. This extends to hosting practices, with three ASes hosting almost two third

of the users.

Our simulations further confirmed that these natural pressures towards centralisation

lead to potential points of failure. For example, it was possible to reduce the LCC in the

federation graph from 92% of all users to just 46% via the removal of five ASes. Similarly,

outages in just ten instances can remove almost half of all toots. This is not a theoretical

problem: we discovered regular instance (and even occasional AS) outages. Looking for pos-

sible mitigations, we experimented with simple replication strategies to find that availability

can be dramatically improved by copying toots onto secondary instances, i.e., by reducing

the level of centralisation. Interestingly, the subscription-based strategy (loosely employed

by Mastodon currently) is not as effective as a random strategy, due to the propensity to

replicate toots onto the same set of instances where the followers are based.

We argue that if these problems are ignored, the DW may risk converging towards a semi-

centralised system. As part of future work, we plan to explore the longer term properties

of the DW more generally. We will also work on mitigations to some of the identified

concerns (beyond the toot replication discussed in Section 5.5.1), including decentralised

defences against, e.g., malicious bots. One example of possible mitigation is the existing
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instance blocking supported by Mastodon; our future work will investigate the impact that

this has on the social graph and how it can be used to filter malicious content. Importantly,

we argue that mitigations and innovations (e.g., replication) should not depend on the

exposure of user information to remote instances, and plan to experiment with building

privacy-preserving federation mechanisms. Finally, we intend to study the effects of hate

speech activities, as well as alt-right communities like Gab [235] starting to use Mastodon

forks [236].

� 6.2 Future Directions

Thus in this era of growing applications and user devices, it is very important to build a

framework which can scale to handle traffic demand. Section 3.4 proposes such a generic

framework to share while streaming on demand. Through measurements and simulations,

we show how the traffic demand can be handled through content caching and replication.

However, as the ownership models for the applications are increasing with a mix of the load

from static and dynamic content, Wi-Stitch or any other proposed caching mechanisms

might not work in all the scenarios. For instance, federated learning and inference at the

edge is becoming a popular research avenue owing to the growth of applications incorporat-

ing deep learning mechanisms. The ability of Wi-Stitch can be extended in such a scenario

and if feasible, the computes can be stitched rather than just the caches.

� 6.3 Final Remarks

Capacity provisioning for growing content demand is a challenging problem, and the im-

portance will only continue not just because users are interested in a variety of content

items but also the growth in user facing applications offering various functionalities. This

dissertation lays the groundwork for distribution of content and application at the network

edge in an effective manner through strategic placements. Deep dive into various types of

content streaming platforms and bringing out general design principle for designing edge

systems represents the core technical contribution of this dissertation. In the course of col-

lecting and analysis data from these platforms and evaluating the savings achieved, we have

gained valuable insights on how the content from different gets accessed and how effective

placement at the edge can improve traffic savings as well as the resiliency of a decentralised

system. We also proposed a framework called Wi-Stitch to make the whole realm of content

sharing feasible at scale. We also hope that our work will help expose the principles of edge

placement schemes for application developers and that our results will help guide further

explorations of this topic.
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Benefits for an ISP?”, 2010 Ninth International Conference on Networks. 2010,

pp. 376–383 (cited on page 41).

[143]I. Bermudez, M. Mellia, and M. Meo. “Passive characterization of sopcast usage in

residential ISPs”, 2011 IEEE International Conference on Peer-to-Peer Computing.

2011, pp. 1–9 (cited on page 41).
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C. Puchert, D. Rehfeldt, F. Schlösser, F. Serrano, Y. Shinano, J. M. Viernickel,

S. Vigerske, D. Weninger, J. T. Witt, and J. Witzig. The SCIP Optimization Suite

5.0. Technical Report. Optimization Online, 2017 (cited on page 58).



REFERENCES 124

[205]D. Trossen and G. Parisis. “Designing and realizing an information-centric internet”,

IEEE Communications Magazine 50.7 (2012) (cited on page 59).

[206]V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and

R. L. Braynard. “Networking named content”, Proceedings of the 5th ACM CoNEXT.

2009, pp. 1–12 (cited on page 59).

[207]G. Pallis and A. Vakali. “Insight and perspectives for content delivery networks”,

Communications of the ACM 49.1 (2006), pp. 101–106 (cited on page 60).

[208]P. Georgopoulos, M. Broadbent, B. Plattner, and N. Race. “Cache as a service:

Leveraging sdn to efficiently and transparently support video-on-demand on the last

mile”, IEEE 23rd International Conference on ICCCN. 2014, pp. 1–9 (cited on

page 60).

[209]P. Bourke. http://paulbourke.net/geometry/polygonmesh/centroid.pdf.

http://paulbourke.net/geometry/polygonmesh/. Accessed: 12-07-2020. 1988 (cited

on page 65).

[210]T. Vincenty. “Direct and inverse solutions of geodesics on the ellipsoid with

application of nested equations”, Survey review 23.176 (1975), pp. 88–93 (cited on

page 66).

[211]Under the hood: Broadcasting live video to millions. Tech. rep. Facebook (cited on

page 66).

[212]M. T. Beck, M. Werner, S. Feld, and T. Schimper. “Mobile Edge Computing: A

Taxonomy”, Proc. of the Sixth International Conference on Advances in Future

Internet. 2014, pp. 48–55 (cited on page 74).

[213]P. Mach and Z. Becvar. “Mobile Edge Computing: A Survey on Architecture and

Computation Offloading”, IEEE Communications Surveys Tutorials 19.3 (2017),

pp. 1628–1656 (cited on pages 74 and 102).

[214]B. Nystedt. Tired of Twitter? Join me on Mastodon.

https://www.wired.com/story/join-mastodon-twitter-alternative/. Accessed:

12-07-2020. 2018 (cited on pages 80 and 86).

[215]C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao. “User interactions in

social networks and their implications”, ACM EuroSys. 2009 (cited on page 81).

[216]B. Doerr, M. Fouz, and T. Friedrich. “Why rumors spread fast in social networks”,

Communications of the ACM 55.6 (2012) (cited on page 81).

[217]G. J. Stigler. “The economies of scale”, The Journal of Law and Economics 1 (1958)

(cited on page 81).

[218]T. Federation. https://the-federation.info/. Accessed: 12-07-2020. 2019 (cited on

page 81).

http://paulbourke.net/geometry/polygonmesh/
https://www.wired.com/story/join-mastodon-twitter-alternative/
https://the-federation.info/


REFERENCES 125

[219]F. network. https://fediverse.network/reports/2018. Accessed: 12-07-2020.

2018 (cited on page 81).

[220]M. Farokhmanesh. A beginner’s guide to Mastodon, the hot new open-source Twitter

clone. https://www.theverge.com/2017/4/7/15183128/mastodon-open-source-

twitter-clone-how-to-use. Accessed: 12-07-2020. 2017 (cited on pages 82 and 86).

[221]Mastodon. https://github.com/tootsuite/mastodon. Accessed: 12-07-2020. 2018

(cited on page 82).

[222]Internet Archive. Twitter Outages.

https://web.archive.org/web/20110828003545/http:

//stats.pingdom.com/wx4vra365911/23773/2007/02. Accessed: 12-07-2020. 2007

(cited on page 85).

[223]J. Leskovec and J. J. Mcauley. “Learning to discover social circles in ego networks”,

NIPS. 2012 (cited on page 85).

[224]H. Timms and J. Heimans. Commentary: #DeleteFacebook Is Just the Beginning.

Here’s the Movement We Could See Next.

http://fortune.com/2018/04/16/delete-facebook-data-privacy-movement/.

Accessed: 12-07-2020. 2018 (cited on page 86).

[225]C. Steele. What Is Mastodon and Will It Kill Twitter?

https://au.pcmag.com/social-networking-1/47343/what-is-mastodon-and-

will-it-kill-twitter. Accessed: 12-07-2020. 2017 (cited on page 86).

[226]Z. Gilani, R. Farahbakhsh, G. Tyson, L. Wang, and J. Crowcroft. “Of Bots and

Humans (on Twitter)”, ASONAM. 2017 (cited on page 87).

[227]M. Fayed, P. Krapivsky, J. W. Byers, M. Crovella, D. Finkel, and S. Redner. “On the

Emergence of Highly Variable Distributions in the Autonomous System Topology”,

SIGCOMM Comput. Commun. Rev. 33.2 (Apr. 2003), 41–49 (cited on page 88).

[228]A. Lafrance. The Story of Twitter’s Fail Whale.

https://www.theatlantic.com/technology/archive/2015/01/the-story-

behind-twitters-fail-whale/384313/. Accessed: 12-07-2020. 2015 (cited on

page 94).

[229]Comodo. Comodo Launches New Digital Certificate Searchable Web Site.

https://bit.ly/2k27p64. Accessed: 12-07-2020. 2015 (cited on page 94).

[230]Let’s Encrypt - FAQ. https://letsencrypt.org/docs/faq/. Accessed: 12-07-2020.

2017 (cited on page 94).

[231]CAIDA. Ranking of Autonomous Systems. http://as-rank.caida.org/. Accessed:

12-07-2020. 2019 (cited on page 96).

https://fediverse.network/reports/2018
https://www.theverge.com/2017/4/7/15183128/mastodon-open-source-twitter-clone-how-to-use
https://www.theverge.com/2017/4/7/15183128/mastodon-open-source-twitter-clone-how-to-use
https://github.com/tootsuite/mastodon
https://web.archive.org/web/20110828003545/http://stats.pingdom.com/wx4vra365911/23773/2007/02
https://web.archive.org/web/20110828003545/http://stats.pingdom.com/wx4vra365911/23773/2007/02
http://fortune.com/2018/04/16/delete-facebook-data-privacy-movement/
https://au.pcmag.com/social-networking-1/47343/what-is-mastodon-and-will-it-kill-twitter
https://au.pcmag.com/social-networking-1/47343/what-is-mastodon-and-will-it-kill-twitter
https://www.theatlantic.com/technology/archive/2015/01/the-story-behind-twitters-fail-whale/384313/
https://www.theatlantic.com/technology/archive/2015/01/the-story-behind-twitters-fail-whale/384313/
https://bit.ly/2k27p64
https://letsencrypt.org/docs/faq/
http://as-rank.caida.org/


REFERENCES 126

[232]B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.

“Tapestry: A resilient global-scale overlay for service deployment”, IEEE Journal on

Selected Areas in Communications 22.1 (2004) (cited on page 98).

[233]Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. “Mobile Edge Computing:

Survey and Research Outlook”, CoRR abs/1701.01090 (2017). arXiv: 1701.01090

(cited on page 102).

[234]A. Lertsinsrubtavee, A. Ali, C. Molina-Jimenez, A. Sathiaseelan, and J. Crowcroft.

“PiCasso: A lightweight edge computing platform”, 2017 IEEE 6th International

Conference on Cloud Networking (CloudNet). 2017, pp. 1–7 (cited on page 102).

[235]S. Zannettou, B. Bradlyn, E. De Cristofaro, H. Kwak, M. Sirivianos, G. Stringini,

and J. Blackburn. “What is Gab: A bastion of free speech or an alt-right echo

chamber”, WWW Companion. 2018 (cited on page 104).

[236]Mastodon. Statement on Gab’s fork of Mastodon. https:

//blog.joinmastodon.org/2019/07/statement-on-gabs-fork-of-mastodon/.

Accessed: 12-07-2020. 2019 (cited on page 104).

https://arxiv.org/abs/1701.01090
https://blog.joinmastodon.org/2019/07/statement-on-gabs-fork-of-mastodon/
https://blog.joinmastodon.org/2019/07/statement-on-gabs-fork-of-mastodon/

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Thesis Statement
	Research Goals
	Methodology & Challenges
	Data Anonymisation and Integrity
	Data Consistency
	Data Storage and Ethics

	Contributions
	List of Publications

	Background
	Web Caching: A Brief History
	Intercache Protocols
	Early Caching Topologies

	Content Delivery Networks
	Content Distribution and Management
	Challenges

	Caching at the Network Edge
	Video Caching
	ICN Architectures
	Heterogeneous networks and D2D Caching
	Co-operation at the Edge
	Inference at the Edge

	Measurement & Content: State-of-the-art
	Network Measurements
	Studying the Content Systems


	On Demand Streaming and Content Sharing
	Introduction
	Dataset
	BBC iPlayer.
	WiGLE

	Exploring traffic savings from sharing
	Distribution of Access Points
	Potential bounds on savings
	Effect of storage limits
	On Scalability of Sharing
	Towards strategic content caching and sharing at the Edge

	Wi-Stitch: A framework for content sharing

	Live Broadcasts and Content Caching
	Introduction
	Dataset
	Data Capture Methodology
	On Facebook's geo-coordinates
	On Facebook's infrastructure

	Characterising Live Broadcasts
	How popular is Facebook Live?
	How long are broadcasts?
	Is broadcast really necessary?

	Geographical Exploration
	Where are the users?
	How far away are viewers?
	Domestic or international?

	Understanding Engagement
	Evolution of views over time
	Social engagement


	Decentralised web and Content Replication
	Introduction
	Dataset
	Characterising Mastodon
	Instance Categories

	Exploring Instances
	Instance Hosting
	Instance Availability 

	Exploring Federation
	Breaking the Content Federation


	Summary and Conclusions
	Summary and Takeaways
	Content Sharing
	Content Caching
	Content Replication

	Future Directions
	Final Remarks

	Bibliography

