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Reinforcement Learning-based Control of Nonlinear
Systems using Lyapunov Stability Concept and

Fuzzy Reward Scheme
Ming Chen, Hak-Keung Lam, Senior Member, IEEE, Qian Shi and Bo Xiao, Member, IEEE

Abstract—In this paper, a reinforcement learning-based control
approach for nonlinear systems is presented. The proposed
control approach offers a design scheme of the adjustable policy
learning rate (APLR) to reduce the influence imposed by negative
or large advantages, which improves the learning stability of
the proximal policy optimization (PPO) algorithm. Besides, this
paper puts forward a Lyapunov-fuzzy reward system to further
promote the learning efficiency. In addition, the proposed control
approach absorbs the Lyapunov stability concept into the design
of the Lyapunov reward system and a particular fuzzy reward
system is set up using the knowledge of the cart-pole inverted
pendulum and fuzzy inference system (FIS). The merits of the
proposed approach are validated by simulation examples.

Index Terms—Proximal policy optimization (PPO), adjustable
policy learning rate (APLR), Lyapunov reward system, fuzzy
reward system, cart-pole inverted pendulum.

I. INTRODUCTION

THE real-world control systems are full of different cate-
gories of nonlinearities, such as inverted pendulum [1],

continuum manipulator [2], chemical reactor [3], quadcopter
[4] etc.. As one of the most effective ways to achieve the
nonlinear control objective, reinforcement learning (RL) based
control strategy trains an agent that is able to learn the optimal
control policy by directly interacting with environment in
a trial-and-error manner [5], [6]. In 1989, Q-learning algo-
rithm, which is an off-policy RL algorithm was developed
for optimal control [7]. Nevertheless, basic Q-learning al-
gorithm has to check the state-action values in the Q-table
to take the optimal action at every state. The Q-table is
formed by state spaces and action spaces, which are finite
and discrete to store all of the state-action values as a look-
up table. Due to the limitations of Q-table, basic Q-learning
algorithm cannot be directly applied to the control problems
which have continuous and high-dimensional state and action
spaces. The high dimensions of the state and action spaces
raise the computational burden and cause the problem that
is known as curse of dimensionality (CoD). To address this
issue, approximate RL can be considered, in which the value
function is approximated by neural networks (NNs). With the
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tremendous breakthrough on deep learning in recent years [8],
deep Q-network (DQN) was developed for handling a variety
of difficult assignments through learning, which reaches or
even surpasses the human counterpart [9]. Although DQN can
be utilized in the continuous and high-dimensional state case
with the assistance of deep neural network (DNN). However,
the action spaces of DQN are still discrete and finite, which
might encounter the CoD problem as well. [10] presented a
deep deterministic policy gradient (DDPG) algorithm which
is an actor-critic approach with DNN function approximators,
where discretization of action spaces is not required. However,
learning rate has a tremendous impact on DDPG that small
learning rate will slow down the convergence while large
learning rate might result in the terrible performance [11]. [12]
presented a trust region policy optimization (TRPO) algorithm
which takes Kullback–Leibler (KL) divergence constraint into
the consideration for circumventing this problem. In 2017,
proximal policy optimization (PPO) algorithm was proposed,
which is inspired by TRPO but simpler and has excellent
performance [13].

In this paper, PPO is applied to the benchmark control prob-
lem of the cart-pole inverted pendulum, which is a classical
RL problem [14], [15]. However, PPO will encounter two
main challenges when it is applied to deal with the benchmark
control problem of the cart-pole inverted pendulum. The first
challenge is the instability during the learning process, which
results from negative or large advantages [16], [17]. The
second challenge is the design of the reward system, which
will have a dramatic influence on the learning effect [18].

Hence, this paper proposes a scheme of the adjustable policy
learning rate (APLR). Comparatively small policy learning rate
is used to adjust policy slightly when actions with negative
expectation of advantages are learned, which encourages the
learning of correct actions and mitigates the learning instabil-
ity. In addition, APLR will be constructed according to the
size of the expectation of advantages. For example, the policy
learning rate will be designed to be small by the proposed
approach for guaranteeing the stable optimization of the policy
gradient if the expectation of advantages is too large. For the
second challenge, this paper proposes a comprehensive reward
system which incorporates the concepts of the Lyapunov
stability and the fuzzy inference system (FIS), as well as the
knowledge of the cart-pole inverted pendulum [19]. Lyapunov
reward system is based on the concept of stability from control
theory, which guides the learning process by the Lyapunov
stability theory instead of learning by pure trial-and-error.
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Furthermore, a specific fuzzy reward system is designed using
the knowledge of the cart-pole inverted pendulum and FIS.
Lyapunov reward system and fuzzy reward system will be
integrated into a comprehensive reward system through the
weighted connection, which can achieve more proper reward
from the system stability and behavior point of view.

The rest of the paper is organized as follows. Section II
introduces the concepts of PPO and FIS. Section III describes
the proposed schemes of the APLR and Lyapunov-fuzzy
reward system. Simulation parameters and results are shown
in Section IV. Section V draws a conclusion.

II. PRELIMINARY

A. Proximal policy optimization

PPO clips the objective function to restrict the policy update
for improving the learning performance:

Jt
clip(θ) = E[min(ρ t(θ)Ât ,clip(ρ t(θ),1−ξ ,1+ξ )Ât)], (1)

where E[.] denotes the empirical expectation over a finite batch
of samples, clip(.) denotes the clipping function, which is
defined as follows, if ρ t(θ) > (1 + ξ ), then ρ t(θ) will be
clipped by (1+ ξ ); if ρ t(θ) < (1− ξ ), then ρ t(θ) will be
clipped by (1−ξ ); otherwise ρ t(θ) will not be clipped. ρ t(θ)

indicates πθ (at |st )
πθ old(at |st )

which is the probability ratio. As defined
in [5], π(at |st) denotes the selected probability of action a
given state s at time t with stochastic policy π . θ denotes the
vector of policy weights and θold denotes the vector of policy
weights ahead of the update, ξ denotes the hyper-parameter, Ât
is constructed by the generalized advantage estimation (GAE)
technique [20].

B. Fuzzy inference system

FIS is a system processing input information using human
spirit represented by fuzzy logic to general decision. It consists
of four parts which are fuzzifier, knowledge base involving
rule base or database, fuzzy inference engine and defuzzifier.
Fuzzifier converts the crisp (real-valued) input into a fuzzy set
which is represented by membership functions (MFs). Knowl-
edge base is the database made up of linguistic rules which can
be described as the following format: IF antecedent condition
THEN consequence. Fuzzy inference engine generates the
fuzzy output according to the fuzzy inputs on the basis of the
knowledge base. The function of defuzzifiers is to transform
the fuzzy output to a crisp (real-valued) output.

III. METHODOLOGY

A. Adjustable policy learning rate

The control performance depends on the selection of actions
that correct action is able to achieve better control perfor-
mance. However, the range of the proper actions which can
realize the control purpose might not be wide, let alone the pre-
cise action, which means RL agent will learn improper actions
more. The learning of actions with negative advantages will
drive the policy away from improper actions, but superfluous
learning of improper actions will lead to the instability [16].
Consequently, this paper presents heterogeneous learning rates

in Algorithm 1 for making policy more focus on actions which
can bring out positive advantages and decrease the harm of the
learning of actions with negative advantages.

Even though PPO has tried to improve the stability by the
limitation on the change in probability ratio, the large case of
Ât is still a key matter which will affect the learning stability.

PPO presented to optimize the objective function with
respect to policy weights by adaptive moment estimation
(Adam) [21]:

θ ← θ +α
policy ·Adam(Jt

clip(θ)), (2)

where α policy denotes the policy learning rate.
Therefore, we propose to circumvent the problem of large

Ât by the design of APLR, which is shown in Algorithm 1.

Algorithm 1 The design scheme of the APLR

if E[Ât ]≥ 0 then
if |E[Ât ]| > η1 (where | · | denotes the absolute value
operator) then

α
policy
2 =

α
policy
1 η2(2−η

(η2−|E[Ât ]|)
3 )

|E[Ât ]|
(where α

policy
1 denotes the original policy learning rate,

η1, η2, η3 > 0)
else

α
policy
2 = α

policy
1

end if
else

if |E[Ât ]|> η4 then

α
policy
2 =

α
policy
1 η5(2−η

(η5−|E[Ât ]|)
6 )

|E[Ât ]|
(where η4, η5, η6 > 0)

else
α

policy
2 = α

policy
1

end if
α

policy
2 = α

policy
2 η7

(where η7 is a small positive number)
end if

When E[Ât ] is not negative, if the absolute value of E[Ât ] is
more than the threshold (η1) which means the the absolute
value is so large that the stability might be affected, new
policy learning rate will replace the original policy learning
rate for guaranteeing the learning stability. In Algorithm 1,
α

policy
1 η2(2−η

(η2−|E[Ât ]|)
3 )

|E[Ât ]|
< α

policy
1 if overall Ât in the objective

function is excessively large, which demonstrates the policy
learning rate will diminish for offsetting the impact imposed
by large Ât . The design scheme has the following property:
η2(2−η

(η2−η1)
3 ) = η1, and η2(2−η

(η2−|E[Ât ]|)
3 ) < |E[Ât ]| for

the case η1 < |E[Ât ]|; η5(2− η
(η5−η4)
6 ) = η4, and η5(2−

η
(η5−|E[Ât ]|)
6 )< |E[Ât ]| for the case η4 < |E[Ât ]|. In the negative

condition, α
policy
2 should multiply a small positive value for

avoiding the occurrence of the instability resulting from the
learning of actions with negative advantages.



3

B. Cart-pole inverted pendulum

The dynamic model of the cart-pole inverted pendulum [22]
is given by:

ẋ1(t) = x2(t), (3)

ẋ2(t) =

(
gsin(x1(t))−ϕmpl(x2(t))2 sin(2x1(t))/2
−ϕ cos(x1(t))u(t)

)
4l/3−ϕmpl(cos(x1(t)))2 , (4)

where x1(t) denotes the angular displacement of the inverted
pendulum (rad), x2(t) denotes the angular velocity of the
inverted pendulum (rad/s), g is the gravity acceleration which
is 9.8m/s2, mp is the mass of the inverted pendulum which is
1kg, Mc is the mass of the cart which is 18kg, ϕ = 1

mp+Mc
,

l is the distance from the centre of mass of the inverted
pendulum to the shaft axis which is 0.5m, u(t) denotes the
force which is applied to the cart (N). The control objective is
to stabilise the cart-pole inverted pendulum, i.e., lim

t→∞
x1(t) = 0

and lim
t→∞

x2(t) = 0.

C. Scheme of the reward system

A design scheme of the specific reward system is presented
for the cart-pole inverted pendulum which consists of the
Lyapunov reward system and fuzzy reward system.

1) Lyapunov reward system: the Lyapunov reward system
is based on the Lyapunov stability concept. The architecture
of the Lyapunov reward system is shown in Algorithm 2.

Algorithm 2 Lyapunov reward system

if V (~0) = 0 and V̇ (~0) = 0 then
RL=5 (where RL denotes the Lyapunov reward)

else if V (~x(t))> 0 and V̇ (~x(t))< 0 for all ~x(t) 6=~0 then
RL=1

else
RL=0

end if

In the simulation on the cart-pole inverted pendulum, ~x(t)
is defined as [x1(t) x2(t)]T . According to the Lyapunov sta-
bility concept [23], [24], V (~x(t)) =~x(t)T P~x(t), P ∈ ℜn×n

is a symmetric constant matrix to be determined satisfying
P = PT > 0, n > 0. Lyapunov reward will be set as 5 if the
conditions that V (~0) = 0 and V̇ (~0) = 0 are matched, which
denotes the equilibrium point is reached. Before reaching the
equilibrium point, Lyapunov reward will be 1 if the control of
the cart-pole inverted pendulum can follow the asymptotically
stable law, otherwise no incentive will be given.

2) Fuzzy reward system: The design of the fuzzy reward
system is based on the FIS and the knowledge of the cart-
pole inverted pendulum. The first step is to implement the
fuzzification process. We describe the operating scopes of
x1(t) and x2(t) of the cart-pole inverted pendulum by 6 fuzzy
sets respectively, which are BN (Big Negative), MN (Medium
Negative), SN (Small Negative), SP (Small Positive), MP
(Medium Positive) and BP (Big Positive). The MFs concerning
x1(t) and x2(t) are illustrated in Fig. 1.

(a) MFs of x1(t). (b) MFs of x2(t).

Fig. 1. Antecedent MFs.

The consequence (C) in every fuzzy rule is the sum of an
ordinary value (CO) and a bonus value (CB) which are both
constants defined by designers. The ordinary values are set
according to the relationships between angular displacement
and angular velocity. The bonus value is utilized to prevent
valleys from appearing between peaks of the reward and
guarantee the growth of the maximum reward when angular
displacement is approaching 0.

The rules of x1(t), x2(t) and the corresponding outcomes
are summarized in Table I.

TABLE I
THE RULES OF ANTECEDENT CONDITIONS AND CONSEQUENCES OF THE

CART-POLE INVERTED PENDULUM.

x1(t)

C x2(t)
BN MN SN SP MP BP

BN CO(0)+
CB(0)

CO( 1
3 )+

CB(0)

CO( 2
3 )+

CB(0)
CO(1)+
CB(0)

CO( 4
3 )+

CB(0)
CO(1)+
CB(0)

MN
CO( 1

3 )+

CB(0.5)

CO( 2
3 )+

CB(0.5)
CO(1)+
CB(0.5)

CO( 4
3 )+

CB(0.5)
CO( 5

3 )+

CB(0.5)

CO( 4
3 )+

CB(0.5)

SN
CO( 2

3 )+

CB(1)
CO(1)+
CB(1)

CO( 4
3 )+

CB(1)
CO( 5

3 )+

CB(1)

CO( 4
3 )+

CB(1)
CO(1)+
CB(1)

SP CO(1)+
CB(1)

CO( 4
3 )+

CB(1)
CO( 5

3 )+

CB(1)

CO( 4
3 )+

CB(1)
CO(1)+
CB(1)

CO( 2
3 )+

CB(1)

MP
CO( 4

3 )+

CB(0.5)
CO( 5

3 )+

CB(0.5)

CO( 4
3 )+

CB(0.5)
CO(1)+
CB(0.5)

CO( 2
3 )+

CB(0.5)

CO( 1
3 )+

CB(0.5)

BP CO(1)+
CB(0)

CO( 4
3 )+

CB(0)
CO(1)+
CB(0)

CO( 2
3 )+

CB(0)

CO( 1
3 )+

CB(0)
CO(0)+
CB(0)

The minimum CO is 0 and the maximum CO is 5
3 , the

difference of CO is 1
3 . The maximum CO is supposed to occur

in the rule where x1(t) and x2(t) have the most appropriate
relationship. The exceptional circumstance is that big velocity
is not considered as the most proper angular velocity for big
angle, otherwise x2(t) will more possibly breach the constraint.
Nevertheless, if larger angular velocity can help to reach the
control purpose better, the larger velocity will be preferred
to learn because Ât is not only based on immediate reward
but also future rewards [20]. The minimum CB is 0 and the
maximum CB is 1, the difference of CB is 0.5. When absolute
x1(t) is smaller, the CB will become larger.

The defuzzified reward is defined as the following:

RF =
∑

36
i=1 Ci min(µi(x1(t)),µi(x2(t)))

∑
36
i=1 min(µi(x1(t)),µi(x2(t)))

, (5)

where RF denotes the fuzzy reward and µi denotes the
membership degree.

The ultimate outcomes after the defuzzification are shown
in Fig. 2.

3) Lyapunov-fuzzy reward system: The Lyapunov reward
system and fuzzy reward system are connected by weights
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Fig. 2. Overall surface of the fuzzy reward.

used to balance the impacts of Lyapunov reward and fuzzy
reward in the comprehensive reward system, which is shown
as the following equation:

R =WLRL +WF RF , (6)

where WL denotes the weight of the Lyapunov reward and
WF denotes the weight of the fuzzy reward, which are set as
0.1 and 3

8 respectively in this paper. Lyapunov-fuzzy reward
system takes effect only when the boundary of any variable is
not exceeded, otherwise penalty −1 will be given.

IV. SIMULATION

A. The settings of simulation parameters

In this section, we compare learning curves of the PPO
(APLR), PPO under the guidance of the existing reward
scheme, as well as the simulation results of the PPO (APLR)
which is guided by the Lyapunov-fuzzy reward system. The
inputs of three RL approaches are x1(t) and x2(t), the output is
the force applied to the cart. In the learning process, the initial
state for each episode is set as follows, x1(t) is a random value
from [−π

3 , π

3 ] and x2(t) is 0. The operating scopes of x1(t) and
x2(t) are [−π

2 , π

2 ] and [−5, 5], respectively. Besides, the range
of the force is [−850, 850]. Units of the hidden layer in the
value network and policy network are both 100. The activation
functions of the value network and policy network are rectified
linear unit (ReLU) and tanh function, respectively. The value
learning rate for the update of the value network is 0.001 and
the policy learning rate for the update of the policy network is
0.0001. η1 to η7 for the APRL are 2, 2, 1.5, 1, 1, 1.5, 0.0001,
respectively. The size of the mini-batch is 32 and epochs for
the multiple update are 10. The sampling interval is 0.05s, time
steps are 2400 and there are 500 episodes. P of the Lyapunov

reward system is chosen as
[

11 0
0 1

]
. PPO in [13] only

has one whole function, so we set learning rate 0.0005. The
existing reward scheme is defined as [25], which is employed
for comparison purposes: reward is 1 when |x1(t)| < 6π

180 rad,
if the constraint is violated, −1 will be given, otherwise the
reward will be 0.

In addition, we compare the control performance of the con-
ventional proportional-integral-derivative (PID) controller with
the policy learned by the PPO (APLR) with the Lyapunov-
fuzzy reward system. Proportional, integral and derivative
gains are −500, −1 and −100. These gains are acquired by
trial-and-error, which can obtain the best results (with the
smallest fluctuation and shortest settling time) in this case .

Fig. 3. Learning curves. (Solid line in blue: PPO (APLR) with the Lyapunov-
fuzzy reward system. Dotted line in red: PPO (APLR) with the existing reward
scheme. Dashed line in green: PPO with the existing reward scheme.)

(a) Response of x1(t). (b) Response of x2(t).

(c) Control signal u(t).

Fig. 4. Response curves. (Dashed line in green: policy learned by the PPO
(APLR) with the Lyapunov-fuzzy reward system ( 60π

180 , 0). Dotted line in red:
conventional PID controller ( 60π

180 , 0). Solid line in blue: policy learned by the
PPO (APLR) with the Lyapunov-fuzzy reward system (− 20π

180 , 0). Dash-dot
line in magenta: conventional PID controller (− 20π

180 , 0).)

B. Simulation results

Fig. 3 shows the learning curves of three RL methods.
Although the learning curve of the PPO with the existing
reward scheme can converge, the convergence episode is
around 390 far more than others. The convergence speed of the
PPO (APLR) with the existing reward scheme is faster than the
PPO with the existing reward scheme, which requires about
180 episodes. Nevertheless, the convergence speed of the PPO
(APLR) with the Lyapunov-fuzzy reward system is the fastest
in all methods, which just needs around 100 episodes. The
maximum accumulated reward of the existing reward scheme
is higher than the Lyapunov-fuzzy reward system due to the
loose reward setting of the existing reward scheme. However, it
is also the reason why the existing reward scheme is inefficient.
It is shown in Fig. 3 that the proposed PPO (APLR) with the
Lyapunov-fuzzy reward system can learn the policy with the
least number of episodes among all RL methods.

We compared the response curves of the cart-pole inverted
pendulum controlled by the conventional PID controller with
the policy learned by the PPO (APLR) with the Lyapunov-
fuzzy reward system, which is illustrated in Fig. 4. In this
simulation experiment, the settling time of x1(t) is set as the
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Fig. 5. Phase portraits of x1(t) and x2(t) under different initial conditions.

time demanded for the response curve of x1(t) to arrive at and
remain within a scope of [−0.1, 0.1]. In terms of the initial
state ( 60π

180 , 0), the settling time of x1(t) under the control of the
conventional PID controller is about 0.7s which is more than
the learned policy which is around 0.5s. In terms of the initial
state (− 20π

180 , 0), the settling time of x1(t) under the control of
the conventional PID controller is about 0.35s which is still
more than the learned policy which is around 0.25s. In two
initial conditions, response curves of x2(t) under the control
of the conventional PID controller and learned policy are all
within the operating scope.

In addition, we investigated the phase portraits of x1(t) and
x2(t). The range of initial x1(t) is [− 60π

180 , 60π

180 ], and initial x2(t)
is 0. As shown in Fig. 5, the phase flow with any initial state
condition in the setting range has the tendency to reach the
origin. Furthermore, x1(t) and x2(t) never exceed the operating
scopes, which shows that the constraints are not violated.

V. CONCLUSION

A reinforcement learning-based control approach is pro-
posed to handle the benchmark control problem of the cart-
pole inverted pendulum under the guidance of the Lyapunov-
fuzzy reward system. In this paper, APLR is proposed to
improve the learning stability of the PPO by limiting effects
of negative or large advantages. In addition, Lyapunov-fuzzy
reward system is proposed to guide the learning process more
efficiently, and the resultant comprehensive reward system can
better evaluate the generated action.

Learning curves of three RL methods have clarified the pro-
posed PPO (APLR) with the Lyapunov-fuzzy reward system is
the most efficient method. As seen from the response curves,
the proposed PPO (APLR) with the Lyapunov-fuzzy reward
system is able to learn the policy which can achieve the control
objective quicker, and the control performance of the learned
policy is better than the conventional PID controller in terms
of the settling time of x1(t). Moreover, the phase portraits
demonstrate that the learned policy can achieve the control
objective without violating constraints.
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