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Abstract1

Central blood pressure (cBP) is a highly prognostic cardiovascular (CV) risk factor2

whose accurate, invasive assessment is costly and carries risks to patients. We3

developed and assessed novel algorithms for estimating cBP from non-invasive aortic4

haemodynamic data and a peripheral blood pressure measurement. These algorithms5

were created using three blood flow models: the 2- and 3-element Windkessel (0-D)6

models and a one-dimensional (1-D) model of the thoracic aorta. We tested new7

and existing methods for estimating CV parameters (left ventricular ejection time,8

outflow BP, arterial resistance and compliance, pulse wave velocity, and characteristic9

impedance) required for the cBP algorithms, using ‘virtual’ (simulated) subjects10

(n=19,646) for which reference CV parameters were known exactly. We then tested11

the cBP algorithms using ‘virtual’ subjects (n=4064), for which reference cBP were12

available free-of-measurement error, and clinical datasets containing invasive (n=10)13

and non-invasive (n=171) reference cBP waves across a wide range of CV conditions.14

The 1-D algorithm outperformed the 0-D algorithms when the aortic vascular geometry15

was available, achieving central systolic blood pressure (cSBP ) errors ≤ 2.1±9.7 mmHg16

and root-mean-square errors (RMSEs) ≤ 6.4 ± 2.8 mmHg against invasive reference17

cBP waves (n=10). When the aortic geometry was unavailable, the 3-element 0-D18

algorithm achieved cSBP errors ≤ 6.0 ± 4.7 mmHg and RMSEs ≤ 5.9 ± 2.4 mmHg19

against non-invasive reference cBP waves (n=171), outperforming the 2-element 0-D20

algorithm. All CV parameters were estimated with mean percentage errors ≤ 8.2%,21

except for the aortic characteristic impedance (≤ 13.4%), which affected the 3-element22

0-D algorithm’s performance. The freely-available algorithms developed in this work23

enable fast and accurate calculation of the cBP wave and CV parameters in datasets24

containing non-invasive ultrasound or magnetic resonance imaging data.25
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New and noteworthy26

Firstly, our proposed methods for CV parameter estimation and a comprehensive set of27

methods from the literature were tested using in silico and clinical datasets. Secondly,28

optimised algorithms for estimating cBP from aortic flow were developed and tested for29

a wide range of cBP morphologies, including catheter cBP data. Thirdly, a dataset of30

simulated cBP waves was created using a 3-element Windkessel model. Fourthly, the31

Windkessel model dataset and optimised algorithms are freely available.32
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1. Introduction33

Recent clinical studies have shown that central (aortic) blood pressure (cBP) is a better34

cardiovascular risk indicator than brachial blood pressure (bBP) (2, 38, 58, 73), since35

cBP is more representative of the load exerted on major organs (2, 28). Regardless36

of gender or disease, cBPs in subjects with similar brachial systolic blood pressure37

(SBP ) may differ by up to 33 mmHg, resulting in “a significant overlap of central SBP38

scores between brachial SBP risk groups” (56). Furthermore, bBP can be misleading39

in healthy young adults due to central-brachial pulse pressure (PP) amplification40

of up to 30 mmHg (39). The most direct method to measure cBP is cardiac41

catheterisation, which is costly and carries risks to patients (e.g. blood clot formation42

and embolisation) due to its invasive nature, even when performed in specialised43

centres (38). Consequently, there is great value in developing methods for estimating44

cBP non-invasively which are less risky and more suitable for frequent use.45

A potential approach is to use a computational model of the circulation to estimate46

cBP from non-invasive measurements of aortic flow and peripheral blood pressure47

(BP)(31). Aortic flow can be measured using magnetic resonance imaging (MRI) or48

ultrasound (US). Peripheral systolic and diastolic BP can be easily measured using49

a brachial cuff, whilst a peripheral BP wave can be measured using, for example,50

applanation tonometry. MRI can also measure vascular geometry which can be used51

to further refine the model – the importance of aortic geometry was proposed by52

Westerhof et al. (68). Consequently, computational models could be personalised to53

estimate cBP in cardiac MRI and US settings. Moreover, these imaging modalities54

are the gold standard when assessing cardiac anatomy (cardiac magnetic resonance and55

echocardiography). Combining the information they provide with the knowledge of cBP56

could enable the non-invasive derivation of PV-loops and myocardial wall stress, two57
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major indicators of cardiac performance. Although previous studies have used reduced-58

order models to estimate cBP non-invasively, they either did not use patient-specific59

MRI aortic geometry (26), or did not validate their cBP estimates against invasive cBP60

measurements or compare the performance of several algorithms (5,9, 18, 31,33).61

The aim of this study was to develop and assess three novel algorithms of increasing62

complexity for estimating the cBP wave from aortic flow, using non-invasive, patient-63

specific data from the thoracic aorta (Figure 1). Each algorithm used a different blood64

flow model: the 2-element (24) and 3-element (70) zero-dimensional (0-D) Windkessel65

models, and a one-dimensional (1-D) model of the thoracic aorta (5). The first step66

in each algorithm was to estimate cardiovascular (CV) parameters from non-invasive67

haemodynamic data measured in the thoracic aorta and a peripheral BP measurement.68

These CV parameters were: left ventricular ejection time (LV ET ), outflow vascular69

BP (Pout), total arterial resistance (RT) and compliance (CT), aortic pulse wave70

velocity (PWV ), and characteristic impedance (Z0). The second step was to use these71

parameters as inputs to one of the three blood flow models to estimate a patient-72

specific cBP waveform. In this study we assessed the performance of the CV parameter73

estimation methods and cBP algorithms against reference data, including invasive cBP74

measurements.75

2. Methods76

2.1. Datasets77

The CV parameter estimation methods and cBP algorithms were initially developed and78

tested using two datasets of virtual subjects. The cBP algorithms were then assessed79

using three clinical datasets. The characteristics of each dataset are shown in Table 1.80
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Clinical datasets81

The first clinical dataset, called the ‘Aortic Coarctation’ dataset, contains data acquired82

from 10 patients with aortic coarctation (59). The St Thomas’ Hospital Research Ethics83

Committee approved this prospective study, and informed consent was obtained from84

all patients (ethics reference number R&D REC 08/H0804/134). Inclusion criteria85

comprised native or residual aortic coarctation. Exclusion criteria were the presence86

of stented aortic coarctation or aortic dissection. Data were acquired in a hybrid87

magnetic resonance/X-ray suite guidance system. A 1.5-T MRI scanner (Philips Intera,88

Philips, Best, The Netherlands) was used to obtain a breath-hold 3-D contrast-enhanced89

angiography of the thoracic aorta (used to obtain aortic geometry measurements) and90

free-breathing 2-D phase contrast flow velocity through-plane scans at the ascending91

and upper-descending aorta (used to obtain flows at both locations). Invasive BP92

data were measured using X-ray guided cardiac catheterisation (Philips BV Pulsera).93

Measurements were taken simultaneously at the ascending and descending aorta,94

immediately after the flow acquisition, using multi-purpose catheters (angiographic95

catheter 4F with carbon dioxide-filled balloon).96

The second and third clinical datasets, called the ‘Normotensive’ and ‘Hypertensive’97

datasets, were obtained from (35): (i) 13 normotensive healthy volunteers at baseline98

and after the administration of different doses of four inotropic and vasoactive drugs99

(dobutamine, norepinephrine, phentolamine, and nitroglycerin); and (ii) 158 subjects100

assessed for hypertension (including those found to be normotensive). Both datasets101

were approved by the London - Westminster Research Ethics Committee, and written102

informed consent was obtained. Aortic flow was obtained by Doppler sonography103

and peripheral BP measurements were obtained by carotid applanation tonometry.104

Reference cBP measurements were acquired using the SphygmoCor R© system (AtCor105
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Medical, Sydney, Australia), which employs a transfer function to calculate cBP from106

carotid BP measured non-invasively by applanation tonometry (2,57).107

The range of cBP waves contained within each clinical dataset is shown in Figure 2.108

Datasets of virtual subjects109

Two datasets of BP and flow waves measured in virtual subjects were created110

by simulating arterial haemodynamics using 0-D and 1-D computational models111

respectively (Figure 3). A new 0-D dataset, whose reference CV parameter values were112

known precisely, was used to initially test existing CV parameter estimation methods113

and develop new ones. An existing 1-D dataset was used to further test and refine these114

methods and the cBP estimation algorithms, as it is based on a more physiological115

model of the arterial circulation (14).116

The 0-D dataset was created using a 3-element Windkessel model (Section 2.4).117

Each virtual subject’s cBP wave was simulated using an aortic flow wave generated118

by the AorticFlowWave script (12) based on prescribed values of heart rate (HR) and119

stroke volume (SV ) in combination with prescribed values of RT, CT, Z0, and Pout. CV120

parameters were selected to create a dataset of cBP waves representative of a sample121

of healthy adults. To do so: (i) mean (µ) and standard deviation (σ) values of each122

parameter in healthy adults were identified from the literature (see Appendix A); (ii)123

five values for each parameter were calculated as µ, µ ± 0.5σ, and µ ± σ; and (iii) a124

virtual subject was created using each of the 15,625 combinations of CV parameters.125

The 1-D dataset was created by using a 1-D blood flow model in the aorta and larger126

arteries of the head and limbs. The CV properties of 25-75 year olds were identified127

through a comprehensive literature review. Pressure, flow velocity and luminal area128

waves were simulated in the aorta and other common measurement sites of 4,374 virtual129

subjects and were verified by comparison against clinical data (see (14) for full details).130
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We removed non-physiological data from further analysis, based on limits derived131

from the ‘Hypertensive’ and ‘Normotensive’ datasets (see Table 1). Maximum limits132

of central systolic BP (cSBP ) and central pulse pressure (cPP ) were obtained from133

the ‘Hypertensive’ dataset. Minimum limits of central diastolic BP (cDBP ) and cPP134

were obtained from the ‘Normotensive’ dataset. Consequently, we excluded subjects135

with cSBP >220 mmHg, cDBP <44 mmHg, and cPP <18 mmHg or >109 mmHg. 43136

subjects were excluded from the 0-D dataset; 310 subjects were excluded from the 1-D137

dataset.138

2.2. Cardiovascular parameter estimation methods139

The following CV parameters were required as inputs to at least one of the cBP140

estimation algorithms: LV ET , Pout, RT, CT, Z0, and aortic pulse wave velocity (PWV ).141

A comprehensive literature review of CV parameter estimation methods was performed.142

The methods listed in Table 2 and described in Appendix B were implemented and143

assessed in this study. To be included, they had to satisfy at least one of the following144

inclusion criteria: they were reported as the optimal method (10, 19, 50, 61, 71); their145

performance was similar to that of the optimal method (15, 19, 37, 50, 71); they were146

the only reported method (1, 4, 7, 13, 16, 17, 24, 25, 30, 32, 40–42, 52, 54, 55, 60, 63, 69, 72);147

or their performance had not been sufficiently assessed due to their novelty (13,25,32).148

Additionally, new, improved methods were developed.149

2.3. Assessing cardiovascular parameter estimation methods150

The performance of the CV parameter estimation methods was assessed using the mean151

percentage error (MPE) and σ between estimated and reference CV parameter values152

for the two datasets of virtual subjects. Additionally, Bland-Altman plots (8) were153

created to show the bias and limits of agreement (± 1.96 standard deviation from the154
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bias) between estimated and reference CV parameter values. For the 0-D dataset,155

reference values were obtained from the prescribed values used for each virtual subject156

(Table A1). For the 1-D dataset, reference values for LV ET , Pout and aortic root PWV157

were obtained from the prescribed values. RT was calculated from the aortic root BP158

and flow waves using (24)159

RT =
MBP − Pout

Qin

, (1)160

where MBP is the mean blood pressure and Qin is the mean blood flow. CT and Z0 were161

extracted from aortic root BP and flow waves using the optimised 3-element Windkessel162

model described in Appendix A.2.163

Two common clinical scenarios were considered when assessing CV parameter164

estimation methods for each dataset: ‘carotid+’, where the carotid BP wave was165

available; and ‘carotid−’, where only brachial DBP and SBP values were available166

(Figure 1a). The 1-D dataset of virtual subjects was used to determine, for each scenario167

and CV parameter, the optimal (i.e. smallest MPE and σ) CV parameter estimation168

methods to be used by the cBP algorithms described in Section 2.4.169

2.4. Central blood pressure estimation algorithms170

The three algorithms used to estimate cBP each consisted of two stages. Firstly,171

CV parameters were estimated using the optimal CV parameter estimation methods.172

Secondly, a cBP wave was simulated using a computational model of arterial blood flow.173

We considered the following models: the 2-element (24) and 3-element (70) Windkessel174

models, and a 1-D model of the thoracic aorta (5), referred to as ‘1D-Ao’ hereafter.175

2-element Windkessel (0-D) model176

This model, referred to as ‘2-Wk’ hereafter, idealises the arterial system as a reservoir of177

compliance CT. Blood flows into the reservoir from the heart, Qin(t), at a pressure P (t),178
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encounters a resistance to flow, RT, and flows out into the vascular beds at a pressure179

Pout (Figure 1c, top). The governing equation is180

dP

dt
+
P − Pout

RTCT

=
Qin

CT

, (2)181

which can be solved for P (t) using the integrating factor method,182

P (t) = Pout + (P0−Pout)e
− t−t0

RTCT +
e
− t

RTCT

CT

∫ t

t0
Qin(t′)e

t′
RTCT dt′, t ≥ t0, (3)183

where t0 is the initial time and P0 = P (t0).184

3-element Windkessel (0-D) model185

This model, referred to as ‘3-Wk’ hereafter, results from adding an impedance, Z0, in186

series to the ‘2-Wk’ model where RT = Z0 + R (Figure 1(c), middle). Z0 is commonly187

known as the characteristic impedance and was initially introduced to represent the188

impedance of the aorta (71). The governing equation is189

dP

dt
+
P − Pout

RCT

= Z0
dQin

dt
+

(Z0 +R)Qin

RCT

, (4)190

which can be solved analytically for P (t) using the integrating factor method,191

P (t) = Pout + (P0 − Pout − Z0Q0)e
− t−t0

RCT + Z0Qin(t)192

+
e
− t

RCT

CT

∫ t

t0
Qin(t′)e

t′
RCT dt′, t ≥ t0, (5)193

where Q0 = Qin(t0).194

1-D aortic model195

This model uses the 1-D equations of blood flow in the network of compliant vessels196

shown in Figure 1c (bottom) to compute cBP (5). The inputs to the model are: (i)197

the geometry (i.e. lengths and cross-sectional areas) of the thoracic aorta, including the198

supra-aortic arteries; (ii) flow waves at the ascending and descending aorta and, when199

available, each supra-aortic artery; and (iii) a peripheral BP measurement.200
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The 1-D and ‘Aortic Coarctation’ datasets contained the vascular geometry and201

PWV data required to run the ‘1D-Ao’ algorithm. For the ‘Aortic Coarctation’ dataset,202

the geometry of the thoracic aorta was extracted from MRI data using an in-house203

segmentation software (21, 45). Besides, since peripheral BP measurements were not204

available the BP acquired invasively in the descending aorta was used instead. For205

the 1-D dataset, the geometry was extracted from the corresponding arterial segments.206

For both datasets, volumetric blood flow waves were obtained at the ascending (Qin,207

acquired as close to the aortic root as possible) and descending thoracic (Qout) aorta. Qin208

and Qout were used to calculate the pulse wave velocity, PWV , as described in Table 2.209

Qin was imposed as an inflow boundary condition at the aortic root and ‘3-Wk’210

models were coupled to the outlet of each terminal 1-D model segment. The parameters211

of each outflow model j, Zj
0,Wk, Cj

T,Wk and Rj
Wk, were calculated using Qin, Qout, and212

the outflow distribution (OD) in the supra-aortic arteries, ODj
flow = Q

j

out/Qin, under213

the assumption that DBP , MBP , and Pout remain constant within large arteries (2).214

We used the following equations (5):215

Zj
0,Wk =

ρPWV

Ajout

, (6)216

Rj
Wk =

RT

ODj
− Zj

0,Wk, (7)217

Cj
T,Wk = (CT − CT,art)

RT

Rj
Wk

, (8)218

where CT,art is the total compliance of the 1-D model arterial segments calculated as219

the sum of each segment compliance,220

Ck
T,art =

A
k
Lk

ρPWV 2
, (9)221

with A
k

the average area and Lk the length of the arterial segment k. When Q
j
out were222

unavailable at each outflow j, the difference between the mean values of Qin and Qout223

was distributed among the supra-aortic arteries proportionally to their outlet areas,224

Ajout, as ODj
area = (Qin −Qout)A

j
out/

j∑
Ajout.225
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2.5. Assessing central blood pressure estimation algorithms226

The performance of each cBP estimation algorithm was assessed by comparing estimated227

cBP values to corresponding reference values in all clinical datasets and in the 1-D228

dataset. Performance was quantified using the µ and the σ of the errors for central229

diastolic (cDBP ) and systolic (cSBP ) blood pressure. Additionally, the root mean230

square error (RMSE) between estimated and reference cBP waves was computed.231

Similarly to Section 2.3, Bland-Altman plots were used to show the bias and limits of232

agreement between estimated and reference BP values. Finally, the correlation between233

estimated and reference cBP values was assessed using the coefficient of determination234

(R2).235

3. Results236

3.1. Assessment of CV parameter estimation methods237

The last two columns of Table 2 show mean percentage error (MPE) and standard238

deviation (σ) for all CV parameter estimation methods assessed in the two datasets of239

virtual subjects. MPE for the 1-D dataset was reduced by at least 40% if the carotid240

BP wave (‘carotid+’) was used instead of brachial DBP and SBP values (‘carotid−’).241

Table 3 displays the methods that led to the smallest MPE for each clinical scenario242

and dataset. By using these optimal methods, all six CV parameters were calculated in243

less than 1 second for each virtual subject, and in less than 1 hour for the entire 0-D or244

1-D dataset using a Dell Precision M4800 laptop (Round Rock, Texas, United States).245

All parameters from the 0-D dataset were estimated with MPE < 2% in both246

clinical scenarios (Table 3, top). Figure 4 shows Bland-Altman plots for all CV247

parameters estimated using the optimal methods obtained from the 1-D dataset (Table 3,248

bottom). These methods were then used in the cBP estimation algorithms (Section 3.2).249
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For both scenarios, LV ET , Pout, RT, CT, and PWV were estimated without any250

considerable bias of their corresponding reference mean values (< 6% for ‘carotid+’251

and < 10% for ‘carotid−’). However, Z0 was overestimated with a much greater bias252

of its corresponding reference mean value (13% for ‘carotid+’ and 82% for ‘carotid−’).253

The bias as a function of each CV parameter reference value remained approximately254

unchanged, with the exceptions of Pout (which had a singular reference value) and CT for255

‘carotid−’ (whose absolute bias increased with increasing reference values). The same256

optimal methods were identified for PWV in both scenarios.257

3.2. Assessment of cBP algorithms258

The cBP algorithms employed the optimal CV parameter estimation methods obtained259

from the 1-D dataset (Table 3, bottom). Table 4 shows the estimation errors for all260

three cBP algorithms, with each algorithm evaluated in four datasets for both clinical261

scenarios. In the 1-D dataset, RMSEs for ‘carotid+’ (µ± σ: < 3.4 ± 1.7 mmHg) were262

lower than those for ‘carotid−’ (< 5.1 ± 2.5 mmHg). In the clinical datasets, RMSEs263

were similar for both scenarios and larger than those obtained in the 1-D dataset. The264

‘1D-Ao’ algorithm led to the smallest RMSEs in the 1-D (2.0± 1.0 mmHg) and ‘Aortic265

Coarctation’ (6.4 ± 2.8 mmHg) datasets. The ‘3-Wk’ algorithm led to the smallest266

RMSEs in the ‘Normotensive’ (5.9± 2.4 mmHg) and ‘Hypertensive’ (5.7± 2.4 mmHg)267

datasets (these did not contain the aortic geometry data needed to run the ‘1D-Ao’268

algorithm).269

Overall, estimation errors for cDBP and cSBP were smaller in the 1-D dataset270

compared to the clinical datasets, for all cBP algorithms and clinical scenarios.271

Furthermore, cDBP errors were smaller than cSBP errors for all algorithms, datasets,272

and scenarios. However, within each dataset and scenario, cDBP and cSBP errors273

changed considerably depending on the cBP algorithm used. For both clinical scenarios274
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in the Aortic Coarctation and 1-D datasets, the ‘1D-Ao’ algorithm led to cSBP errors275

that were smaller or similar compared to the 0-D models (< 2.2 ± 5.3 mmHg vs < 4.5276

± 5.9 mmHg for the 1-D dataset; < 2.1 ± 9.7 mmHg vs < 17.3 ± 7.9 mmHg for the277

‘Aortic Coarctation’ dataset). The 0-D algorithms performed similarly in both datasets278

and led to smaller cDBP errors than the ‘1D-Ao’ algorithm in the ‘Aortic Coarctation’279

dataset. R2 correlation values between reference and estimated cBP calculated using280

the best performing (i.e. 1-D aortic) algorithm and scenario in the 1-D dataset were:281

0.834 for cDBP and 0.976 for cSBP (all p < 0.001). In the ‘Aortic Coarctation’ dataset282

they were: 0.776 for cDBP and 0.903 for cSBP (all p < 0.001).283

The ‘Normotensive’ and ‘Hypertensive’ datasets contained non-invasive reference284

cBP waves calculated by the SphygmoCor R© device using a transfer function. For285

‘carotid−’, both 0-D models estimated cDBP and cSBP values with errors < 6.0± 4.7286

mmHg, though the ‘3-Wk’ algorithm led to smaller RMSEs in both datasets and287

scenarios. All errors for the ‘3-Wk’ algorithm were larger for ‘carotid+’. R2 correlation288

values for these clinical datasets using the best performing 0-D algorithm (i.e. ‘3-Wk’)289

and scenarios were: 0.949 for cDBP and 0.997 for cSBP (all p < 0.001).290

An extended version of Table 4, which also contains errors for cMBP and cPP , is291

provided as Supplement Table at https://doi.org/10.5281/zenodo.3968540. Bland-292

Altman plots of cDBP , cSBP , cMBP , and cPP are also available (see Supplement293

Figures S1 to S8). Supplement Figures S3 and S4 show increases in the absolute294

bias for cSBP with increasing reference BP values in the 1-D, ‘Normotensive’, and295

‘Hypertensive’ datasets for ‘carotid−’. Remaining estimates were less affected by varying296

reference BP values.297

Supplement Figures S9 to S16 show individual cBP wave estimations by each cBP298

algorithm for a set of randomly chosen subjects in the 1-D dataset and for all subjects299

https://doi.org/10.5281/zenodo.3968540
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in the ‘Aortic Coarctation’, ‘Normotensive’ and ‘Hypertensive’ datasets, in both clinical300

scenarios. Using a Dell Precision M4800 laptop, the 0-D algorithms took less than 1301

second per patient to compute the cBP wave, whereas the ‘1D-Ao’ algorithm took less302

than 1 minute (both times include the time required to calculate all patient-specific CV303

parameters).304

4. Discussion305

We have developed fast algorithms to estimate several clinically relevant haemodynamic306

parameters of the systemic circulation and reconstruct the cBP wave from non-invasive307

data. Our algorithms are based on physical phenomena occurring in the thoracic aorta308

and are patient-specific for all physical parameters except for blood density and viscosity.309

We have tested them in several in silico and clinical datasets with a wide range of310

cBP wave morphologies. The ‘1D-Ao’ algorithm outperformed the 0-D algorithms at311

estimating cBP wave morphology when the aortic vascular geometry was available.312

Both 0-D models estimated cBP values with similar errors when only the aortic flow313

and peripheral BP waves were available, though the ‘3-Wk’ algorithm produced the314

smallest RMSEs. The aortic characteristic impedance was the most challenging CV315

parameter that needed to be estimated, limiting the ability of the ‘3-Wk’ algorithm to316

achieve smaller cBP errors. The novel Windkessel model dataset and optimised cBP317

algorithms are a valuable resource for developing and testing new, improved algorithms318

to estimate CV parameters and cBP waves.319

4.1. Cardiovascular parameter estimation methods320

Obtaining reliable in vivo reference values for the CV parameters required to estimate321

cBP is challenging. We therefore assessed the accuracy of several CV parameter322
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estimation methods using datasets of virtual subjects for which theoretical reference323

values were either known exactly (all parameters for the 0-D dataset; LV ET , Pout324

and PWV for the 1-D dataset) or could be estimated from the aortic BP and flow325

waves without measurement error (RT , CT and Z0 for the 1-D dataset). Unlike the326

0-D models, the 1-D model accounts for wave propagation phenomena and can capture327

high-frequency features of the pressure wave such as the first systolic shoulder, thus328

providing information which can be derived through pulse wave analysis. The 1-D329

dataset, therefore, provided the optimal combination of methods for the cBP algorithms330

and identified accurate methods for estimating CV parameters that, by themselves, can331

be used to assess cardiovascular function from non-invasive data available in the clinic.332

Left ventricular ejection time (LV ET ) is a valuable metric of left ventricular333

performance both in health and disease (27). According to our results, it can be334

estimated accurately from the aortic flow wave using the novel LV 4 method (MPE335

± σ: 0.3± 0.6%).336

The physiological meaning and range of values of the asymptotic BP (Pout) are337

still not fully understood (49). According to some studies, Pout is related to capillary338

and venous BP (65), though others argue this pressure is larger than the venous BP339

due to waterfall effects (3, 11, 66). We have found that estimation methods based on340

an exponential fit to the diastolic part of the BP wave outperformed those using a341

percentage of DBP (−5.1± 8.0% vs 9.1± 11.0%).342

Arterial resistance (RT) is also an important parameter for assessing small blood343

vessel function (44,46). According to our results, calculation of RT from peripheralDBP344

and SBP values underestimated reference RT values by 5% on average. More accurate345

estimates could be obtained when using the whole peripheral BP wave (0.0± 0.1%).346

Changes in arterial compliance (CT) can have important effects on the pulse wave,347
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left ventricular dynamics, cardiac output, and the ratio of systolic to diastolic flow into348

capillary beds (51). Our proposed optimised ‘3-Wk’ method for estimating CT led to349

a MPE = −0.8 ± 4.2%, outperforming existing methods. Similarly to Stergiopulos et350

al. (62), we found MPE < 12% for the ‘diastolic decay’, ‘area’ and ‘two-area’ methods,351

though our MPE for the ‘pulse pressure’ method was higher (27% vs 17%).352

Pulse wave velocity (PWV ) provides a direct measure of aortic stiffness and is353

an independent predictor of cardiovascular risk (6, 53). We found that methods for354

estimating PWV which used the ascending and descending aorta flows outperformed355

those using the carotid and femoral BP waves, in agreement with the study by Obeid356

et al. (43) which also involved in silico data and theoretical reference PWV values.357

Aortic characteristic impedance (Z0) is directly related to aortic stiffness (42,64). In358

the 1-D dataset, the PQ-loop methods led to smaller MPE (13.4%) than other methods359

(> 37.1%), including those with MPE < 3% when run on the 0-D dataset. Most360

methods involving BP and flow waves require these to be measured simultaneously at361

the same location, but in this study BP was taken from the periphery and combined with362

the aortic flow wave, resulting in large MPE for the 1-D dataset (> 13.4%). PQ-loop363

methods only require a linear proportionality between aortic BP and flow in early systole364

which, according to our results, is maintained between peripheral BP and aortic flow.365

In fact, BP and flow morphology in early systole is mainly dictated by the propagation366

of a pulse wave travelling from the heart to the periphery, with the backward-travelling367

wave having little influence (34). This observation led to the derivation of the novel368

method Z4 which provided the smallest MPE for ‘carotid−’ (82.3± 32.6%).369

Lastly we note that all CV parameters were estimated individually from the clinical370

data. However, due to the interdependence between some CV parameters (e.g. RT371

and Pout), performance may be improved via simultaneous or iterative estimation, as372
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suggested in (49), though this was beyond the scope of our study.373

4.2. Central blood pressure algorithms374

We have developed algorithms which estimate the cBP wave from non-invasive, patient-375

specific measurements by using 0-D and 1-D blood flow modelling. 0-D models were376

chosen for their simplicity and low number of CV parameters that have to be estimated.377

The ‘1D-Ao’ model was chosen because it captures pulse wave propagation phenomena,378

though at the expense of a much larger number of parameter estimations. Only the379

thoracic aorta was simulated using 1-D model segments since cardiac MRI usually380

provides vessel anatomy and blood flow in the upper part of the aorta only. Furthermore,381

previous work has shown that it is possible to reduce the topological complexity of the382

arterial network and, hence, the number of parameters to be estimated, while sufficiently383

capturing relevant BP values such as cSBP and cPP (20,23).384

We tested the cBP algorithms in several clinical datasets to cover a wide range385

of cBP wave morphologies, including those seen in hypertensive subjects and in386

normotensive subjects under the effect of four inotropic and vasoactive drugs which387

significantly affect BP wave morphology (22). When the aortic vascular geometry was388

available, the ‘1D-Ao’ algorithm outperformed the 0-D algorithms at estimating cBP389

wave morphology as well as cSBP values, leading to RMSEs < 2.0 ± 1.0 mmHg in390

the 1-D dataset and < 6.4± 2.8 mmHg in the ‘Aortic Coarctation’ dataset. When the391

aortic vascular geometry was unavailable, the 3-element 0-D algorithm achieved RMSEs392

< 2.0 ± 1.7 mmHg for in silico data and < 5.9 ± 2.4 mmHg for clinical data from the393

‘Normotensive’ and ‘Hypertensive’ datasets.394

Relative errors for cBP estimates were smaller in the 1-D dataset than in the clinical395

datasets since all haemodynamic data in the former were free of measurement error and396

inconsistencies that are inherent to clinical datasets (e.g. heart rate differences between397
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pressure and flow waves) (5). Therefore, results obtained from the 1-D dataset provided398

a theoretical lower bound of cBP errors to be expected when analysing clinical datasets.399

Recent (2017) clinical guidelines for the validation of non-invasive cBP devices400

propose a mean absolute difference ≤ 5 mmHg with σ ≤ 8 mmHg compared with the401

reference cSBP (57). The potential of the algorithms used in this study to achieve mean402

absolute differences which are almost within recommended values in clinical cohorts403

with either invasive reference cBP values (‘Aortic Coarctation’ dataset) or cBP values404

calculated by the widely used SphygmoCor R© device (‘Normotensive’ and ‘Hypertensive’405

datasets) has been shown. On the one hand, the ‘1D-Ao’ algorithm achieved mean406

absolute differences < 2.1 ± 9.7 mmHg for cSBP values in the ‘Aortic Coarctation’407

dataset for both scenarios. On the other hand, the 0-D models achieved mean absolute408

differences < 8.6 ± 5.0 mmHg in the ‘Normotensive’ dataset and < 8.0 ± 10.6 mmHg409

in the ‘Hypertensive’ dataset. Furthermore, the lower-bound RMSEs obtained when410

testing all algorithms in the measurement error-free 1-D dataset were even smaller411

(< 3.4 ± 1.7 mmHg for ‘carotid+’ and < 5.0 ± 2.5 mmHg for ‘carotid−’), suggesting412

that our algorithms’ performance could be within recommended values if measurement413

error and data inconsistencies could be reduced further during data acquisition.414

Central BP estimates for some subjects in the ‘Normotensive’ and ‘Hypertensive’415

datasets showed large errors (> 50 mmHg). These subjects had ‘noisy’ ultrasound416

velocity time integral (VTI) waves (used to calculate aortic flow waves) characterised417

by either an extended diastolic phase (resulting in LV ET > 50% of the cardiac cycle418

duration) or a large second peak after the systolic peak. Both artefacts could explain419

the smaller cBP estimation errors for the 0-D models in the more challenging ‘carotid−’420

scenario compared to ‘carotid+’.421

A review of methods to estimate cSBP from arterial pulse waves (47) found a422
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mean error (95% confidence interval) of -1.1 (-2.8 – 0.7) mmHg when calibrated using423

invasive BP values, and a mean error of -5.8 (-7.8 – -3.8) mmHg when calibrated424

using non-invasive BP values. In our study, the ‘1D-Ao’ algorithm was found to425

have mean errors of: 0.0 (-6.0 – 6.0) when calibrated using an invasive BP waveform426

(‘carotid+’ scenario in the ‘Aortic Coarctation’ dataset); -2.1 (-7.8 – 3.6) when using427

invasive BP values (‘carotid-’ scenario in the ‘Aortic Coarctation’ dataset); and the428

‘2-Wk’ algorithm was found to have mean errors when calibrated non-invasively of:429

-3.3 (-3.9 – -2.7) (‘carotid-’ scenario in the ‘Normotensive’ dataset) and -5.5 (-6.1 – -430

4.9) (‘carotid-’ scenario in the ‘Hypertensive’ dataset). Thus, the mean cSBP error431

provided by the models presented in this study was comparable to those observed432

in previous studies of cSBP estimation methods. Unlike transfer function methods,433

our proposed cBP algorithms do not need to be trained on existing clinical datasets434

and make no assumptions regarding generalisability, since they simulate patient-specific435

haemodynamic phenomena occurring in the aorta where cBP is calculated. This may436

be advantageous when applying these algorithms to the wider population, including437

patients suffering from a range of CV diseases or under pharmacological treatment.438

However, a direct comparison against such techniques was not possible due to the lack439

of required data and corresponding devices.440

4.3. Limitations441

The peripheral pressure wave (P ) required by the cBP algorithms was measured442

invasively in the descending aorta in the ‘Aortic Coarctation’ dataset. Since this443

may give the algorithms an advantage compared to non-invasive methods using444

cuff or tonometry measurements, the 1-D dataset – which contained P at the445

required peripheral locations – was also used for the final cBP algorithm assessment.446

In the ‘Normotensive’ and ‘Hypertensive’ datasets, since invasive reference cBP447
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measurements were not available, non-invasive measurements were obtained using the448

SphygmoCor R© device. Although these measurements are not exactly equivalent to449

invasive cBP, they allowed us to compare the performance of the cBP algorithms to450

a widely used non-invasive device. We note that the ‘Aortic Coarctation’ dataset451

contained data from 10 subjects – in the future further studies should verify the452

conclusions presented here using additional data with invasive reference measurements.453

4.4. Perspectives454

Patients with cardiovascular disease would benefit from an accurate non-invasive455

assessment of their cBP. Our approach removes the risk of complications due to cardiac456

catheterisation and allows for a more regular assessment of a patient’s cBP, due to its457

non-invasive nature. Moreover, it is relatively quick: it only takes a few seconds (when458

using the 0-D algorithms) or a few minutes (‘1D-Ao’ algorithm) to compute cBP on459

a Dell Precision M4800 laptop. The 1-D algorithm is particularly relevant in clinical460

cardiology, where cardiac MRI is increasingly used. Indeed, the detailed geometric and461

flow data obtained using MRI can lead to important improvements in non-invasive cBP462

estimation, which could lead to a better adaption in clinical practice. Additionally, the463

0-D algorithms can be used in combination with US scans to obtain patient-specific cBP464

estimates.465

The novel Windkessel model dataset and optimised cBP algorithms are freely466

available (DOI of respository will be made available prior to publication) to develop467

and test new, improved algorithms for estimating CV parameters and cBP waves.468

4.5. Conclusion469

We have presented freely-available, fast, patient-specific algorithms to estimate clinically470

relevant CV parameters and reconstruct the cBP wave from the aortic flow wave, using471
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non-invasive data and patient-specific models of aortic blood flow. We have tested our472

algorithms against a wide range of cBP morphologies from several clinical datasets, one473

of which included catheter cBP waves. Finally, we have shown the potential of our474

algorithms to estimate cBP values within guideline recommended values. Our approach475

could improve CV function assessment in clinical cohorts for which aortic ultrasound or476

magnetic resonance imaging data is available.477
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Table 1: Datasets’ characteristics.

Dataset

Ao Co Normotensive Hypertensive 0-D dataset 1-D dataset

Subjects (males) 10 (9) 13 (10) 158 (80) 15582 (N/A) 4064 (N/A)

Age [years] 20.8 ± 9.1 48.4 ± 9.4 46.2 ± 16.7 N/A 50 ± 17.1†
DBP [mmHg] 53.2 ± 8.9 68.4 ± 10.4a 81.8 ± 12.8a 64.6 ± 9.0 75.3 ± 7.3

MBP [mmHg] 69.3 ± 9.7 85.6 ± 12.1b 102.0 ± 15.8b 83.9 ± 11.2 94.2 ± 6.7

pSBP [mmHg] 82.0 ± 15.2 111.4 ± 17.3c 129.6 ± 22.6c
117.6 ± 21.3

119.3 ± 11.4

cSBP [mmHg] 93.7 ± 11.9 107.2 ± 17.3 126.4 ± 22.2 110.4 ± 12.5

pPP [mmHg] 30.6 ± 13.0 43.2 ± 12.2 48.2 ± 16.0
52.9 ± 16.9

46.5 ± 14.1

cPP [mmHg] 40.5 ± 12.7 38.8 ± 11.0 44.6 ± 15.4 35.1 ± 15.3

SV [mL] 57.4 ± 29.9 100.6 ± 35.3 83.3 ± 32.8 88.4 ± 12.2 60.3 ± 12.3

HR [bpm] 65.1 ± 14.4 62.2 ± 11.2 65.5 ± 10.4 68.8 ± 11.3 75.9 ± 9.3

CO [L/min] 3.6 ± 1.7 6.2 ± 2.5 5.3 ± 1.9 6.1 ± 1.3 4.6 ± 1.1

Abbreviations: Ao Co: ‘Aortic Coarctation’ dataset. DBP and MBP : diastolic and

mean BP (central values, which are similar to peripheral ones, are used here); pSBP and

cSBP : peripheral and central SBP , respectively; pPP and cPP : peripheral and central PP ,

respectively; SV : stroke volume; HR: heart rate; CO: cardiac output. †Age ranges from 25

to 75 years, with 10 year intervals. aBrachial oscillometric measurement. bRadial tonometry

measurement. cCarotid tonometry measurement.
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Table 2: CV parameter estimation methods assessed in this study. Performance was

assessed in two clinical scenarios (‘carotid+’: carotid BP wave available; ‘carotid−’:

only brachial DBP and SBP available) using the 0-D and 1-D datasets (Figure 1a).

Errors are presented as the mean ± standard deviation of the percentage error between

estimated and reference CV parameter values.

Parameter Description Sce Ref Abb Percentage error [%]

0-D dataset 1-D dataset

Left Ventricular

Ejection Time,

LV ET

dP/dt analysis, 1 + (13) LV1 ‡ 0.4 ± 1.0

dP/dt analysis, 2 + (32) LV2 -12.4 ± 0.1 -5.7 ± 4.1

0.37
√
T +,− (7) LV3 26.1 ± 8.5 6.9 ± 8.1

Q analysis +,− † LV4 0.1 ± 0.2 0.3 ± 0.6

Outflow

Pressure, Pout

Diastolic decay fit, 1 + (24,71) OP1 0.0 ± 0.0 -5.1 ± 8.0

Diastolic decay fit, 2 + (24,60) OP2 0.0 ± 0.0 -10.5 ± 7.5

0.5 DBP +,− † OP3 1.6 ± 16.9 9.1 ± 11.0

0.7 DBP +,− (49) OP4 42.3 ± 23.6 52.7 ± 15.4

Arterial

Resistance, RT

(MBP − Pout)/Q + (24) AR1 0.0 ± 0.0 0.0 ± 0.1

(DBP + 0.4PP − Pout)/Q +,− (10,24) AR2 0.7 ± 5.7 -4.9 ± 2.9

Arterial

Compliance, CT

2-point diastolic decay + (24) AC1 -0.1 ± 0.0 -6.5 ± 4.9

Diastolic decay fit, 1 + (24) AC2 0.0 ± 0.0 -6.6 ± 3.3

Diastolic decay fit, 2 + (24,60) AC3 0.0 ± 0.0 -10.2 ± 5.0

Area method + (15,52,71) AC4 -10.0 ± 4.1 -11.4 ± 4.6

Two-area method + (55,71) AC5 -10.0 ± 4.1 -7.1 ± 7.1

DBP method +,− † AC6 -1.5 ± 4.1 -17.3 ± 7.5

PP method +,− (61,71) AC7 -0.1 ± 0.2 -27.6 ± 11.6

SV /PP +,− (15) AC8 -13.8 ± 20.3 4.9 ± 18.4

Optimised 3-Wk + † AC9 0.0 ± 0.3 -0.8 ± 4.2

Pulse Wave

Velocity, PWV

Foot-to-foot: QAo +,− (25) PV1 - 8.2 ± 6.0

Foot-to-foot: Pc−f +a (25) PV2 - 27.8 ± 10.8

Least-squares: QAo +,− (25) PV3 - -12.7 ± 8.3

Least-squares: Pc−f +a (25) PV4 - 43.0 ± 36.0

Sum of squares + (17) PV5 - 33.2 ± 17.2

Characteristic

Impedance, Z0

Frequency methods + (1,16,19,30,40,42,50,54) Z1 2.5 ± 2.1 64.6 ± 44.3

PQ-loop methods + (19,37,63) Z2 0.2 ± 1.4 13.4 ± 56.6

0.05 RT +,− (41,69) Z3 -1.5 ± 40.8 133.8 ± 66.7

(MBP −DBP )/Qmax +,− † Z4 -38.7 ± 12.4 82.3 ± 32.6

ρPWV/A +,− (72) Z5 - 90.4 ± 18.1

Optimised 3-Wk + † Z6 -0.1 ± 0.7 37.1 ± 20.0

Abbreviations: Sce: clinical scenarios (+: ‘carotid+’, −: ‘carotid−’); Ref : references; Abb:

coded abbreviations used to refer to each method; P : peripheral BP waveform; T : duration of

cardiac cycle; Q: aortic root flow waveform; DBP , MBP , PP : diastolic, mean, and pulse BP

values from P , respectively; Q: mean value of Q over T ; SV : stroke volume; 3-Wk: 3-element

Windkessel; QAo: ascending and descending aorta flow wave pair; Pc−f : carotid−femoral blood

BP wave pair; Qmax: peak aortic flow; ρ: blood density; A: aortic root cross-sectional area.

†Newly proposed methods (described in Appendix B). ‡BP waves from the 0-D dataset do

not present a second systolic peak as required by LV1. aBP waves at the carotid and femoral

arteries required.
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Table 3: Optimal CV parameter estimation methods for both datasets and clinical

scenarios. The abbreviations for each method (e.g. LV4) correspond to those described

in Table 2.

Optimal CV parameter estimation methods (MPE [%])

Dataset Sce LV ET Pout RT CT PWV Z0

0-D dataset
+

LV4 (0.3)
OP1/2 (0.0) AR1 (0.0) AC2/3 (0.0)

N/A
Z6 (-0.1)

− OP3 (-2.0) AR2 (0.9) AC7 (-0.1) Z3 (-1.5)

1-D dataset
+

LV4 (0.3)
OP1 (-5.1) AR1 (0.0) AC9 (-0.8)

PV1 (8.2)
Z2 (13.4)

− OP3 (9.1) AR2 (-4.9) AC8 (4.9) Z4 (82.3)

Abbreviations: Sce: clinical scenarios (+: ‘carotid+’, −: ‘carotid−’); MPE: mean percentage

error for the entire dataset; LV ET : left-ventricular ejection time; Pout: outflow BP; RT:

arterial resistance; CT: arterial compliance; PWV : pulse wave velocity; Z0: characteristic

impedance.

Table 4: Performance of cBP estimation algorithms. Results are presented as mean (µ)

and standard deviation (σ) errors between estimated and reference values of cDBP and

cSBP . The RMSE between estimated and reference cBP waves is shown in the last

column. Each cBP algorithm was assessed in four datasets and two clinical scenarios:

‘carotid+’ (peripheral BP wave available) and ‘carotid−’ (only peripheral SBP and

DBP available).

Estimation error (µ± σ) [mmHg]

Dataset Scenario Algorithm cDBP cSBP RMSE

1-D dataset

carotid+

2-Wk 1.2 ± 0.7 1.0 ± 0.8 3.4 ± 1.1

3-Wk 0.1 ± 1.0 1.8 ± 1.9 2.0 ± 1.7

1D-Ao 0.1 ± 1.1 2.2 ± 1.8 2.0 ± 1.0

carotid−
2-Wk 0.8 ± 1.5 -4.5 ± 5.9 5.0 ± 2.5

3-Wk -2.6 ± 0.8 -0.2 ± 4.7 5.1 ± 2.0

1D-Ao -1.5 ± 1.2 -1.7 ± 5.3 4.2 ± 2.1

Aortic

Coarctation

carotid+

2-Wk 0.8 ± 3.1 -15.7 ± 7.2 10.1 ± 3.9

3-Wk 0.2 ± 2.8 -15.4 ± 7.4 8.0 ± 3.2

1D-Ao -3.4 ± 4.8 -0.0 ± 9.7 6.4 ± 2.8

carotid−
2-Wk -1.5 ± 2.4 -17.3 ± 7.9 10.9 ± 4.3

3-Wk -1.8 ± 2.5 -17.2 ± 7.9 8.4 ± 3.6

1D-Ao -6.1 ± 2.8 -2.1 ± 9.2 7.8 ± 3.3

Normotensive

carotid+
2-Wk 4.7 ± 1.9 -8.6 ± 5.0 10.3 ± 3.0

3-Wk -4.4 ± 3.5 13.4 ± 13.4 8.6 ± 5.5

carotid− 2-Wk -0.1 ± 0.5 -3.3 ± 3.5 11.0 ± 3.5

3-Wk 0.2 ± 0.5 -3.7 ± 4.0 5.9 ± 2.4

Hypertensive

carotid+
2-Wk 5.0 ± 3.2 -8.3 ± 6.3 10.6 ± 4.1

3-Wk -2.9 ± 3.6 8.0 ± 10.6 7.1 ± 4.2

carotid− 2-Wk -0.3 ± 0.8 -5.5 ± 4.0 11.1 ± 4.2

3-Wk 0.0 ± 0.6 -6.0 ± 4.7 5.7 ± 2.4
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Figure 1: Study methodology. (1) cBP estimation algorithms consisted of three steps.

(a) Clinical data acquisition and pre-processing: blood flow measured at the ascending

and descending (1-D algorithm only) aorta; peripheral BP measurement; and aortic

anatomy (1-D algorithm only). (b) Cardiovascular (CV) parameters estimated from

clinical data. (c) These parameters, along with the non-invasive clinical data, were

used as inputs to one of three cBP models. (2) Algorithm performance was assessed by

comparing cBP estimates provided by each model to reference values.

Figure 2: Clinical cBP wave morphologies: (left) ‘Aortic Coarctation’ dataset (obtained

invasively); (middle) ‘Normotensive’ (non-invasive) dataset; and (right) ‘Hypertensive’

(non-invasive) dataset. Black lines illustrate a random patient’s cBP waveform. Shaded

regions represent the range of cBP waves within each dataset.

Figure 3: Generating datasets of virtual subjects. (a), top: a range of values for each

CV parameter was obtained from the clinical literature for healthy individuals (see

Table A1). (a), bottom: the thick line illustrates the flow wave corresponding to the

baseline values of SV and HR, and the shaded region represents the range of flow waves

corresponding to all SV and HR variations. (b) Two reduced-order models were used to

generate cBP waves. (c) cBP waves generated by each model: black lines illustrate the

cBP wave corresponding to the baseline set of parameter variations, and shaded regions

represent the range of cBP waves within each dataset.

Figure 4: Bland-Altman plots for the optimal CV parameter estimation methods. They

were obtained from all 1-D dataset waves using clinical+ (top) and clinical− (bottom).
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Appendix A. Datasets of virtual subjects728

Appendix A.1. 0-D dataset: CV parameter variations729

Table A1: CV parameter variations used for the 3-element Windkessel (0-D) dataset.

These values are based on observations in healthy humans from the clinical literature.

Variations

Negative Baseline Positive

CV parameter [units] µ− σ µ− 0.5σ µ µ+ 0.5σ µ+ σ References

SV [mL] 71.2 79.8 88.4 97.0 105.7 (67)

HR [bpm] 52.9 60.8 68.8 76.7 84.7 (67)

Pout [mmHg] 31.7 32.5 33.2 34.0 34.7 (48)

RT [mmHg·s/mL] 0.468 0.484 0.500 0.516 0.532 (60)

CT [mL/mmHg] 2.20 2.23 2.27 2.30 2.34 (36)

Z0 [mmHg·s/mL] 0.0256 0.0358 0.0485 0.0644 0.0847 (6,29)

Abbreviations: µ and σ: mean and standard deviation values, respectively, for each CV

parameter from the clinical literature; SV : stroke volume; HR: heart rate; Pout: outflow

vascular pressure; RT: total arterial resistance; CT: total arterial compliance; and Z0: aortic

characteristic impedance.
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Figure A1: Extracting reference Z0 and CT values at the aortic root. (a) Reference cBP

wave for a 1-D model virtual subject, and corresponding initial and optimal estimates.

(b) Contour plot (in mmHg) of the mean difference between the estimated and reference

cBP waves, with Z0 in the x-axis and CT in the y-axis. Each iteration is shown in

white squares; iterations 0 and 5 correspond to the initial and optimal cBP estimates,

respectively. (c) The values of Z0, CT, and the cBP mean difference are shown for the

initial estimate and for every iteration until numerical convergence is reached.
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Appendix A.2. 1-D dataset: calculating reference Z0 and CT values at the aortic root730

Reference Z0 and CT values for the 1-D dataset were calculated from aortic root BP (P )731

and flow (Qin) waves using an in-house algorithm written in Matlab R© and based on the732

‘3-Wk’ model (Figure A1). Assuming that Pout is known and that the total resistance733

RT = Z0 + R is given by Equation (1), a parameter estimation problem can be solved734

for Z0 and CT. The estimated BP at time tk can be written as735

P (tk) = f(Z ′0, C
′
T, Qin(tk)) + ek, (A.1)736

with ek the residual error between the estimated and reference BP at each time tk,737

k = 1, . . . , K, and Z ′0 and C ′T the estimated parameters. The problem can be solved738

through iterative minimisation of the cost function e>e, where e is the vector containing739

the residual errors at each time tk. The iterative procedure starts from an initial estimate740

(Z ′0,0, C ′T,0). The parameters at iteration i+1 are then calculated using the recursive741

equation742

(Z ′0,i+1, C
′
T,i+1) = (Z ′0,i, C

′
T,i)−Hiqi, (A.2)743

where Hi and qi are the Hessian and the gradient, respectively, of the cost function744

evaluated at iteration i. This equation can be obtained by approaching the cost function745

by a second-order Taylor expansion and minimising the approached function. The746

‘mean cBP difference’ shown in Figure A1(b,c) was calculated for each iteration as747

1
K

√∑K
k=1 ek

2, with ek the residual error at time tk. The iterative procedure was stopped748

when either (i) the change in both Z0 and CT estimates between iterations was smaller749

than 10−6, or (ii) after 15 iterations.750

Appendix B. Cardiovascular parameter estimation methods751

All CV parameter estimation methods used in this study are described next. Novel752

methods are marked with an asterisk in the title.753



38

Appendix B.1. LV - Left ventricular ejection time, LVET754

LV1 - dP/dt analysis, 1*755

The method is described in (13). LV ET corresponds to the point of peak pressure after756

the pressure systolic peak.757

LV2 - dP/dt analysis, 2758

This method is described in (32). LV ET coincides with the minimum of759

dP

dt

(
0.5−

∣∣∣∣0.5− HR · t
60

∣∣∣∣)2

, (B.1)760

where P is a peripheral BP wave and HR represents the heart rate in bpm.761

LV3 - 0.37
√
T762

LV ET is calculated using the empirical relationship described in (7): 0.37
√
T , where T763

is the duration of the cardiac cycle in seconds.764

LV4 - Q analysis*765

Q is analysed from the global minimum after peak flow to 50% of T (Figure B1). If766

all Q values are smaller than 1% of maximum Q, LV ET corresponds to the time of767

the global minimum. Otherwise, starting from the time of the global minimum, all sign768

changes (from negative to positive), all maxima, and all zero values are found. LV ET769

corresponds to either the first sign change, the first local maximum, or the first zero770

value (whichever one occurs first). If all else fails, method LV 3 is used.771
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Appendix B.2. OP - Outflow pressure772

OP1 - Diastolic decay fit, 1773

The concept of a diastolic decay fit was first described in (24). P is analysed between774

LV ET and the end of diastole (Pd). The multidimensional unconstrained nonlinear775

minimisation (Nelder-Mead) Matlab R© function fminsearch.m is used to find the best776

fit between Pd and an exponential decay curve of the form: Pexp = Pout + (Pexp(t0) −777

Pout)e
−(t−t0)/τ , where t0 = LV ET . To avoid non-physiological values of Pout, the778

following filters are applied: if τ < 0 or Pout < 0, Pout is set to 0; and if Pout ≥ DBP ,779

Pout is set to 0.5DBP .780

OP2 - Diastolic decay fit, 2781

Similarly to OP1, but using t0 = 2
3
LV ET + 1

3
T instead, as described in (60).782

OP3 - 50% of DBP*783

Pout is estimated as 50% of DBP .784

OP4 - 70% of DBP785

As suggested by Parragh et al. Pout is estimated as 70% of DBP (49).786

Appendix B.3. AR - Arterial resistance787

AR1 - Peripheral pressure waveform788

RT is calculated using Equation (1) and MBP is calculated as the mean of P .789

AR2 - Peripheral DBP and SBP values790

Similarly to AR1, but using MBP = 0.4SBP + 0.6DBP instead, as described in (10).791
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Appendix B.4. AC - Arterial compliance792

AC1 - 2-point diastolic decay793

The concept of a diastolic decay fit was first described in (24). Using only the first and794

last points of the diastolic part of P , CT is calculated as:795

T − LV ET
ln(P (LV ET )−Pout

DBP−Pout
)RT

. (B.2)796

AC2 - Diastolic decay fit, 1797

Given that τ = (RT − Z0)CT, OP1 can be used to calculate τ , and rearranging:798

CT =
τ

RT − Z0

. (B.3)799

If τ is negative then Pout is set to 0 and τ is recalculated.800

AC3 - Diastolic decay fit, 2801

Similarly to AC2, but using t0 = 2
3
LV ET + 1

3
T instead, as described in (60).802

AC4 - Area method803

This method is described in (52). CT is calculated as:804 ∫ t2
t1

(P − Pout)dt

RT(P (t1)− P (t2))
, (B.4)805

where t1 and t2 are equal to 2
3
LV ET + 1

3
T and 90% of T , respectively.806

AC5 - Two-area method807

This method is described in (55). CT is calculated by solving two simultaneous equations808

of the form:809 ∫ t2

t1
Qdt− 1

RT

∫ t2

t1
(P − Pout)dt = CT(P (t1)− P (t2)), (B.5)810

from the start of the cycle to LV ET , and from LV ET to T .811
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AC6 - Diastolic blood pressure method*812

CT is calculated by minimising the relative error, DBPerr = (DBPest−DBPref)/DBPref ,813

between the estimated (DBPest) and reference (DBPref) values of DBP , as seen814

in Figure B2. For each iteration, j, DBPest is calculated as the minimum of the815

estimated BP, Pest, using the three-element Windkessel model (Equation (5)). The816

initial conditions are CT,0 = SV/PP and P0 = DBPref . While DBPerr > 1%,817

CT,j = CT,j−1/DBPerr
2. CT corresponds to the final value of CT,j.818

AC7 - Pulse pressure method819

This method is described in (61). Similarly to AC6, but minimising the relative PP820

error, PPerr, instead.821

AC8 - Stroke volume over pulse pressure822

This method is described in (15). CT corresponds to SV/PP .823

AC9 - Three-element Windkessel optimisation*824

This method is described in Appendix A.2. The initial value of CT is calculated using825

AC8.826

Appendix B.5. PV - Pulse wave velocity827

The foot-to-foot (PV 1 and PV 2) and least-squares (PV 3 and PV 4) methods used here828

are described in (25). Both methods require the measurement of two pulse waves at both829

ends of a given arterial path of length L. The foot-to-foot method focuses on detecting830

the ‘feet’ (i.e. minimum value) of both pulse waves to calculate the transit time (TT )831

between them. For each pulse wave, the ‘foot’ is detected as the intersection between a832
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horizontal projection of the minimum value and a projection of the maximum slope of833

the systolic upstroke.834

The least-squares method calculates the sum of the squared differences between835

the systolic upstroke of both waves multiple times, by fixing one wave and shifting the836

other one by one datapoint at a time. The temporal shift which minimises the squared837

differences is used to estimate TT . For both methods, PWV is then calculated as838

PWV = L/TT .839

PV1 - Foot-to-foot: aortic flow840

The inputs are two non-invasive flow waves at the ascending and descending aorta.841

PV2 - Foot-to-foot: carotid−femoral pressures842

The inputs are two non-invasive BP waves at the carotid and femoral arteries.843

PV3 - Least-squares: aortic flow844

The inputs are two non-invasive flow waves at the ascending and descending aorta.845

PV4 - Least-squares: carotid−femoral pressures846

The inputs are two non-invasive BP waves at the carotid and femoral arteries.847

PV5 - Sum of squares848

This method has been adapted from the original one described in (17). PWV is849

calculated from the peripheral BP, P , and aortic flow, Q waves using850

PWV =
1

ρA

√√√√∑ dP 2∑
dQ2 (B.6)851
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where ρ is the blood density, A is the cross-sectional area at the aortic root, dP and852

dQ are differences in P and Q, respectively, between two adjacent time points, and the853

sums extend over a cardiac cycle. P and Q do not need to be aligned in time.854

Appendix B.6. Z - Aortic characteristic impedance855

Method Z2 is sensitive to temporal misalignments between P and Q, so the following856

restrictions were applied to account for waves which were not recorded simultaneously857

and/or at the same site: (i) P is shifted so that its value at the start of the cycle858

coincides with DBP , and (ii) Q is shifted so that its value at the start of the cycle is859

as close as possible to the intersection between the x-axis and the tangent of Q at the860

time of maximum dQ/dt in early systole.861

Z1 - Frequency methods862

Frequency domain methods to estimate characteristic impedance (Z0) are based on the863

Fourier analysis of P and Q extracted simultaneously at the ascending aorta. Z0 is864

usually estimated as the average impedance modulus over a range of frequencies where865

fluctuations – due to wave reflections – above and below the characteristic impedance866

value are expected to cancel each other out. The following harmonic ranges, extracted867

from the literature, have been assessed in this study: 2-12th (42), 6-10th (54), 1-8th (16),868

1-9th (19), 2-10th (40), 3-10th (30), 4-10th (63), 6-8th (1), and 4-8th (50) harmonics.869

These methods, in their original form, require P and Q measured simultaneously at the870

ascending aorta. However, for the proposed algorithms, a peripheral P measurement is871

used instead.872
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Z2 - P-Q loop methods873

P-Q loop methods analyse the relationship between aortic P and Q during early systole,874

assuming that during this interval the effects of wave reflections are minimal (19, 37),875

and hence876

Z0 '
P (t)−DBP
Q(t)−Q(0)

, (B.7)877

where Q(0) is the value of Q at the start of the cycle (normally zero). In this study,878

four P-Q loop methods were assessed where Z0 was estimated as:879

I the mean value of Equation (B.7) between the start of the cycle and the time of880

maximum Q;881

II the slope of the linear least squares fit to the ratio between P and Q between the882

start of the cycle and the time of maximum flow;883

III the value of Equation (B.7) at the time of maximum dQ/dt in early systole; and884

IV the mean value of Equation (B.7) between the start of the cycle and the time of885

maximum dQ/dt in early systole.886

The best performing P-Q loop method, IV, was used to calculate the errors in Table 2.887

These methods, in their original form, require P and Q measured simultaneously at the888

ascending aorta. However, for the proposed algorithms, a peripheral P measurement is889

used instead.890

Z3 - 5% of RT891

As suggested by Murgo et al. Z0 is estimated as 5% of RT (41).892

Z4 - Approximated aortic characteristics*893

During early systole, wave reflections reaching the aortic root are assumed to be absent,894

and characteristic impedance can be estimated as Z0 = ∆P/∆Q, where ∆P and ∆Q895
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are the changes in BP and flow rate, respectively (30). Peak flow, Qpeak, and the first896

systolic shoulder/peak, P1, occur at a similar time, so ∆Q = Qpeak and ∆P = P1, and897

therefore Z0 ' P1/Qpeak, as seen in Figure B3. Assuming that DBP and MBP remain898

constant within the large arteries, P1 is approximated as MBP −DBP extracted from899

a peripheral P measurement. Hence, Z0 ' (MBP −DBP )/Qpeak.900

Z5 - Aortic characteristics901

This method is described in (72). Assuming that the aortic radius is much larger than902

the aortic wall thickness, Z0 corresponds to ρPWV/A, where ρ is the blood density,903

PWV is the aortic pulse wave velocity, and A is the aortic-root cross-sectional area.904

Z6 - Three-element Windkessel optimisation*905

This method is described in Appendix A.2. The initial values of CT and Z0 are calculated906

using the AC8 and Z3 methods, respectively.907
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Figure B1: Novel method to estimate LV ET from the aortic flow wave, Q. LV ET

corresponds to the time of the first sign change (green circle), which occurs earlier than

the local maximum (red triangle).

Figure B2: Novel iterative method to estimate CT from the aortic flow and peripheral

pressure (pBP) waves. CT estimates are calculated by minimising the relative error

between the estimated and reference values of DBP . The latter is obtained from the

pBP wave (black dashed line). The BP waves corresponding to the initial and optimal

estimates of CT are shown in red and blue lines, respectively.

Figure B3: Novel method to estimate aortic characteristic impedance from the aortic

flow and peripheral BP waves. Pressure (top) and flow (bottom) waves at central (left)

and peripheral (right) arterial locations for a subject from the 1-D dataset. The time

of Qpeak and P1 is indicated by the vertical, red, dashed line. The value of P1 is

approximated as MBP −DBP calculated from the peripheral BP wave.
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