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Privacy For Free: Wireless Federated Learning Via
Uncoded Transmission With Adaptive Power Control

Dongzhu Liu and Osvaldo Simeone

Abstract—Federated Learning (FL) refers to distributed proto-
cols that avoid direct raw data exchange among the participating
devices while training for a common learning task. This way,
FL can potentially reduce the information on the local data
sets that is leaked via communications. In order to provide
formal privacy guarantees, however, it is generally necessary
to put in place additional masking mechanisms. When FL is
implemented in wireless systems via uncoded transmission, the
channel noise can directly act as a privacy-inducing mechanism.
This paper demonstrates that, as long as the privacy constraint
level, measured via differential privacy (DP), is below a threshold
that decreases with the signal-to-noise ratio (SNR), uncoded
transmission achieves privacy “for free”, i.e., without affecting
the learning performance. More generally, this work studies
adaptive power allocation (PA) for decentralized gradient descent
in wireless FL with the aim of minimizing the learning optimality
gap under privacy and power constraints. Both orthogonal mul-
tiple access (OMA) and non-orthogonal multiple access (NOMA)
transmission with “over-the-air-computing” are studied, and
solutions are obtained in closed form for an offline optimization
setting. Furthermore, heuristic online methods are proposed that
leverage iterative one-step-ahead optimization. The importance
of dynamic PA and the potential benefits of NOMA versus OMA
are demonstrated through extensive simulations.

Index Terms—Federated learning, differential privacy, adap-
tive power control, uncoded transmission.

I. INTRODUCTION

In modern wireless systems, mobile devices generate and
store data that can be utilized to train machine learning models
[1]–[3]. While data at one device may be insufficient to obtain
effective trained solutions, networked devices can benefit from
data stored at other devices via communications. Federated
learning (FL) refers to decentralized training protocols that
avoid direct data sharing among devices, while exchanging
information about the local models [4], [5]. This has the
potential benefits of reducing the communication load and of
leaking less information about the local data sets at the devices
[6]–[8]. A well-established measure the privacy of local data
sets with respect to disclosed aggregate statistics is differential
privacy (DP) [9]. Typical DP mechanisms randomize the
disclosed statistics by adding random noise [9]. This creates a
trade-off between accuracy and privacy, as determined by the
amount of added noise.

This paper investigates the idea of letting the channel noise
serve as privacy mechanism. To this end, we focus on uncoded
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The authors have received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 Research and Innovation
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transmission of the gradients using either orthogonal or non-
orthogonal protocols, and we analytically demonstrate that
for these transmission schemes, privacy may be obtained “for
free”. This is in the sense that enforcing a DP constraint causes
no performance loss with respect to a non-private design as
long as the signal-to-noise ratio (SNR) is sufficiently low.
More generally, we introduce a novel optimal closed-form
adaptive transmit power control strategy that optimizes the
learning performance while ensuring DP requirements.

A. Wireless Federated Learning

A illustrated in Fig. 1, typical wireless FL protocols iterate
between local adaptation and centralized combining. Adapta-
tion involves local optimization steps based on a device’s data,
while central aggregation amounts to averaging operations on
the devices’ updates. To reduce the time to convergence, recent
work has proposed to leverage computations over multiple ac-
cess channels [10] as a primitive for the global combining step
[11]–[15]. Accordingly, all devices simultaneously transmit
their updates to edge server using uncoded transmission, which
are aggregated “over-the-air” by exploiting the waveform-
superposition property of a multi-access channel.

To further improve the bandwidth efficiency of this non-
orthogonal multiple access (NOMA) scheme, devices can pre-
process the analog updates via sparsification based dimension-
ality reduction [13]. And the learning performance of this
approach can be further enhanced by gradient aware power
control [14] and joint device selection and beamforming design
[15].

As a more conventional solution, FL can be implemented
using digital coded transmission. Under digital coded trans-
mission and orthogonal multiple access (OMA), quantiza-
tion of the local gradients has been proposed to trade off
communication bandwidth and convergence rate [16], with
each component of the gradient being represented even by
a single bit [17]. More complex quantization schemes include
hierarchical quantization via a low-dimensional codebook on
a Grassmann manifold [18]. With NOMA, reference [19]
proposes a strategy whereby each device quantizes the gradient
based on its informativeness and on the channel condition.
An alternative is to use one-bit quantization followed by
BPSK/QPSK modulation at the devices with NOMA, and
to estimate the aggregated gradient at the edger sever using
majority voting [20].

B. Differential Privacy for Federated Learning

According to its original motivation, FL may have desirable
privacy properties since training is conducted in a distributed
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manner without sharing the raw data. Nevertheless, the model
updates shared by the devices may reveal information about
local data. For example, a malicious server could potentially
infer the presence of an individual data sample from a learnt
model by membership inference attack [21] or model inversion
attack [7]. DP quantifies information leaked about individual
data points by measuring the sensitivity of the disclosed
statistics to changes in the input data set at a single data point.
DP can be guaranteed by introducing a level of uncertainty into
the released model that is sufficient to mask the contribution
of any individual data point [9]. The most typical approach
is to add random perturbations, e.g., Gaussian [22], Laplacian
[23], or Binomial noise [24], to the released statistics.

DP mechanisms have been investigated for FL under the
assumption that the edge server is “honest-but-curious” and
that communication is noiseless and unconstrained. In [25],
Gaussian noise is added to the local model updates, and the
power of the Gaussian noise is adapted to ensure a target pri-
vacy level. Analysis indicates that there is a tradeoff between
convergence rate and privacy protection levels. Furthermore, a
higher privacy guarantee is achievable if the DP algorithm uses
random mini-batches — the so-called “privacy amplification
by subsampling” principle [26]. Another DP mechanism based
on random quantization is explored in [24], [27].

While the work reviewed so far assumes ideal communica-
tion, several recent works have appeared that share the com-
mon theme of exploiting the channel noise for differentially
private FL. In [28], each device adds Gaussian noise before
transmission via NOMA with static power allocation. The
superposition property of NOMA is shown not only to provide
benefits in terms of efficient gradient aggregation, but also to
offer better privacy guarantees. Instead of injecting noise be-
fore transmission, an energy efficient approach is to scale down
the transmit power [29]. A digital counterpart of these ideas is
proposed in [30] which uses quantized gradient descent with
privacy-inducing binomial noise. The quantization bits and
noise parameters are optimized to maximize the convergence
rate under channel capacity and privacy constraints.

All the discussed works assume a simple static power
allocation, not accounting for the fact that channel noise
has a different impact on convergence and privacy level.
As our analysis demonstrates, channel noise added in the
first iterations tends to impact convergence less significantly
than the noise added in later iterations, whereas the privacy
level depends on a weighted sum of the inverse noise power
across the iteration. These properties, captured by compact
analytical expressions derived in this paper, are leveraged to
define optimization problems that are solved in closed form,
yielding significant performance gains over standard static
power allocation.

C. Contributions and Organization

In this paper, we study differentially private wireless decen-
tralized gradient descent via the direct, uncoded, transmission
of gradients from devices to edge server. The channel noise
is utilized as a privacy preserving mechanism and dynamic
power control is separately optimized for OMA and NOMA

Figure 1. Differentially private federated edge learning system based on
distributed gradient descent.

protocols with the goal of minimizing the learning optimality
gap under privacy and power constraints across a given number
of communication blocks. The main findings and contributions
of the paper can be summarized as follows.
• Offline optimized power allocation for OMA and NOMA:
Considering OMA and NOMA separately, we first analyze the
convergence rate and privacy requirements for a given number
of iterations under uncoded transmission. The resulting offline
optimization problems are shown to be convex programs, and
the optimal dynamic power allocation (PA) is obtained in
closed form. The optimal PA is shown to be adaptive across
the iterations, outperforming static PA assumed in prior works.
The analytical results prove that privacy can be obtained
“for free” as long as the privacy constraint level is below a
threshold that decreases with the signal-to-noise (SNR). We
also demonstrate that it is generally suboptimal to devote
part of the transmitted power to actively add noise to the
local updates. This is unlike the standard scenario with ideal
communication, in which adding noise is essential to ensure
DP constraints.
• Online power allocation scheme: A heuristic online ap-
proach is then proposed that leverages iterative one-step-
ahead optimization based on the offline closed-form solutions,
predicted channel state information (CSI).
• Experiments: We provides extensive numerical results
that demonstrate the advantages of NOMA over conventional
OMA protocols under DP constraints. We note here that
these benefits is not a prior evident, since, with NOMA,
devices transmit more frequently, and hence may leak more
information if power is not properly allocated.

The remainder of the paper is organized as follows. Sec-
tion II introduces the models and definitions. Section III
presents the power allocation design for OMA. The design
for NOMA is presented in Section IV. Section V provides
numerical results, followed by conclusions in Section VI.

II. MODELS AND DEFINITIONS

As shown in Fig. 1, we consider a wireless federated edge
learning system comprising a single edge server and K edge
devices connected through it via a shared noisy channel.
Each device k has its own local dataset Dk. This consists
of labelled data samples {(ui, vi)} ∈ Dk, where ui denotes
the vector of covariates and vi its associated label, which
may be continuous or discrete. Local data sets are disjoint.
A common regression or classification model, parameterized
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by vector w, is collaboratively trained by the edge devices
through communications via edge server. In this section, we
first introduce the learning protocol and the communication
model, and then detail which the definition of differential
privacy adopted in this work, along with main assumptions.

A. Learning Protocol

The regularized local loss function for the k-th device
evaluated at model vector w ∈ Rd is given by

(Local loss function) Fk(w) =
1

Dk

∑
(u,v)∈Dk

f(w;u, v)

+ λR(w), (1)

where f(w;u, v) is the sample-wise loss function quantifying
the prediction error of the model w on the training sample u
with respect to (w.r.t.) its ground-truth label v; Dk = |Dk| is
the cardinality of data set Dk; and R(w) is a strongly convex
regularization function, which is scaled by hyperparameter
λ ≥ 0. The global loss function evaluated at model vector
w is

(Global loss function) F (w) =
1

Dtot

K∑
k=1

DkFk(w), (2)

where Dtot =
∑
kDk. This amounts to the regularized

empirical average of the sample-wise loss functions on the
global data set D =

⋃K
k=1Dk obtained as the union of

the local data sets. We note that the training loss (2) is an
unbiased estimate of the generalization loss only if the devices
observe independent and identically distributed (i.i.d.) samples
from a common distribution. Nevertheless, this objective is
also routinely considered for non-i.i.d. data sets in federated
learning [31]–[33]. Other criteria that may be better suited to
account for heterogeneous statistics across the devices may
also be considered [34], but we leave this aspect for future
work. The learning process aims to minimize the regularized
global loss function as

w∗ = arg minF (w). (3)

In order to address problem (3), we study a differentially
private implementation of federated distributed gradient de-
scent via gradient-averaging. As we will detail, privacy is
defined here from the point of view of any device with
respect to the edge server, which is assumed to be “honest-
but-curious”. Accordingly, the edge server follows the protocol
described below, but may attempt to infer information about
data at the edge devices. We do not directly enforce privacy
constraints on the other devices, which are implicitly trusted.
More discussion on this point can be found in Section VI.

As illustrated in Fig. 1, at each t-th communication round,
with t = 1, . . . , T , the edge server broadcasts the current
model iterate w(t) to all edge devices via the downlink
channel. We assume that downlink communication is ideal,
so that each device receives the current model w(t) without
distortion. This assumption is practically well justified when
the edge sever communicates through a base station with
less stringent power constraint than the devices. By using the

received current model w(t) and the local dataset Dk, each
device computes the gradient of the local loss function in (1),
that is

(Local gradient) ∇Fk
(
w(t)

)
=

1

Dk

∑
(u,v)∈Dk

∇f
(
w(t);u, v

)
+ λ∇R(w(t)). (4)

The devices transmit information about the local gradient (4)
over the wireless shared channel to the edge server. Based
on the received signal, the edge server obtains an estimate
∇̂F

(
w(t)

)
of the global gradient

(Global gradient) ∇F
(
w(t)

)
=

1

Dtot

K∑
k=1

Dk∇Fk
(
w(t)

)
.

(5)
The edge server then updates the current global model via
gradient descent

(Model updating) w(t+1) = w(t) − η∇̂F
(
w(t)

)
, (6)

where η denotes the learning rate. The steps in (4), (5), and
(6) are iterated until a convergence condition is met.

The transmission of the gradient (4) from each k-th device
may reveal information about the local data sets to the edge
server. This motivates the use of DP as a rigorous mathemati-
cal framework to provide privacy guarantees that are agnostic
to the computing resources and data processing requirements
of the edge server. This will be detailed in Sec. II-C.

B. Communication Model

All devices communicate via the uplink to the edge server
on the shared wireless channel using uncoded transmission.
The main focus of this paper is the study of uncoded non-
orthogonal multiple access (NOMA)1 protocol, which enables
over-the-air computing. For reference, we also study orthogo-
nal multiple access (OMA) scheme under the same assumption
of uncoded transmission. We note that it would be useful to
include digital coded strategies for OMA as a benchmark.
However, the design of digital communication protocols under
DP constraints is a non-trivial problem that is currently subject
to research [30].

We assume a block flat-fading channel, where the channel
coefficients remain constant within a communication block,
and they vary in a potentially correlated way over successive
blocks. Each block contains d channel uses, allowing the
uncoded transmission of a gradient vector. Due to memory and
processing complexity constraints, on-device machine learning
models are typically of small size, so that the model parame-
ters dimension d can be assumed to be limited to a few tens of
thousands of entries [35]. In this case, considering that typical
coherence blocks may be of the same order of magnitude
[36], [37], it is generally feasible to communicate the entire
gradient vectors within one communication block. For larger
model sizes, the gradient would need to be communicated
across multiple coherence blocks – a setting that we leave

1In this context, NOMA is used as a transmission strategy, and it does not
imply the use of specific decoders, such as successive decoding.
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Figure 2. Illustration of the transmission schedule for the considered multiple
access protocols.

for future investigations. We consider total I blocks available
for training.

As in most papers on over-the-air computing [11]–[13],
[15], [28], we assume perfect channel state information (CSI)
at all nodes, so that each device can compensate for the phase
of its own channel, ensuring the effective channel h[i]

k for each
device k and block i is real and non-negative. This allows us
to focus on a real channel model with non-negative channel
gain, and it simplifies the design in power control parameters.
We note that this assumption is also made in [14], [38], and
that, as in these prior works, we do not make optimality claims
in this regard. Details for OMA and NOMA are provided next.

1) Orthogonal Multiple Access (OMA): For orthogonal ac-
cess, all devices time-share the channel uses via Time Division
Multiple Access (TDMA). As illustrated in Fig. 2, devices are
scheduled successively in orthogonal blocks, and we assume
that the total number of blocks satisfies I = KT , so that
T global gradient descent iterations (6) are implemented. In
the i-th block, with i = K(t − 1) + k, device k transmits
gradient information corresponding to the t-th iteration. The
signal received at the edge server during the i-th block is

y
[i]
k = h

[i]
k x

[i]
k + z

[i]
k , (7)

where h
[i]
k ≥ 0 is the channel gain for device k in

block i, x
[i]
k ∈ Rd is an uncoded function of the lo-

cal gradient ∇Fk(w(t)), and z
[i]
k is channel noise i.i.d. ac-

cording to distribution N (0, N0I). We define as y(t) =
[y[K(t−1)+1], · · · ,y[Kt]] the vector collecting all signals re-
ceived for iteration t across K blocks.

2) Non-Orthogonal Access: For non-orthogonal access, we
assume symbol-level synchronization among the devices that
transmit simultaneously in each block. This can be achieved by
using standard protocols such as the timing advance procedure
in LTE and 5G NR [39]. In the i-th block, all devices upload
the local gradients corresponding to the t = i-th iteration, and
we have I = T so that the number of blocks equals the number
of iterations. The corresponding received signal is

y[i] =

K∑
k=1

h
[i]
k x

[i]
k + z[i], (8)

where h[i]
k and z[i] are defined as above; and signal x[i]

k ∈ Rd
encodes information about the local gradient ∇Fk(w(t)) with
t = i. For NOMA, we will also write y(t) = y[t].

Note that for both forms of access, the transmit power
constraint of a device is given as

(Power constraint) E[‖x[i]
k ‖

2] ≤ P. (9)

Accordingly, we define the maximum signal to noise ratio
(SNR) as

SNRmax =
P

dN0
, (10)

where dN0 represents the power of the channel nosies within
one communication block. We refer to (10) as the maximum
SNR since devices may optimally transmit with a power
strictly smaller than P in (9) in order to satisfy the DP
constraints.

C. Differential Privacy
As a threat model, we assume a “honest-but-curious” edge

server that may attempt to infer information about local data
sets from the signals {y(t)}Tt=1 received across T successive
iterations. Note that, as discussed, T iterations correspond
to T communication blocks for NOMA and TK blocks for
OMA. The standard definition DP imposes a point-wise upper
bound on the divergence between the distributions P (y|D) and
P (y|D′) of the received signals y = {y(t)}Tt=1 conditioned on
the use of either one of two “neighboring” global data sets D
and D′. The two neighboring data sets D and D′ differ only
by one sample at one of the devices. Defining the cardinality
of the set difference for two sets A and B as ‖A − B‖1, we
have the following formal definition.

Definition 1 (Differential Privacy [9]). The communication
and learning protocol is (ε, δ)-differentially private, where ε >
0, and δ ∈ [0, 1), if any two possible adjacent global datasets
D′ =

⋃K
k=1D′k and D′′ =

⋃K
k=1D′′k , with

∥∥D′j −D′′j ∥∥1
= 1

for some device j and ‖D′k −D′′k‖1 = 0 for all k 6= j, we
have the inequality

P (y|D′) ≤ exp(ε)P (y|D′′) + δ. (11)

The bound (11) can be interpreted in terms of the test
variable.

(Differential privacy loss) LD′,D′′(y) = ln
P (y|D)

P (y|D′)
, (12)

which is referred to as differential privacy loss. This corre-
sponds to the log-likelihood ratio for the detection of neighbor-
ing data sets D′ and D′′. The (ε, δ)-DP condition (11) ensures
that, for all possible adjacent global datasets D′ and D′′, the
absolute value of privacy loss variable (12) is bounded by ε
with probability at least 1 − δ, i.e., Pr(|LD′,D′′(y)| ≤ ε) ≥
1− δ (see Lemma 3.17 in [9]). If ε and δ are suitably small,
this makes it statistically impossible, even for an adversary
that knows all data points in D except one, to identify the
remaining individual sample.

D. Assumptions On the Loss Functions
Finally, we list several standard assumptions we make on

the loss functions and on its gradients.

Assumption 1 (Smoothness). The global loss function F (w)
is smooth with constant L > 0, that is, it is continuously
differentiable and the gradient ∇F (w) is Lipschitz continuous
with constant L, i.e.,

‖∇F (w)−∇F (w′)‖ ≤ L ‖w −w′‖ , for all w,w′ ∈ Rd.
(13)
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Inequality (13) implies the following inequality

F (w′) ≤ F (w) +∇F (w)T(w′ −w) +
L

2
‖w −w′‖2 ,

for all w,w′ ∈ Rd. (14)

Assumption 2 (Polyak-Lojasiewicz Inequality). The opti-
mization problem (3) has a non-empty solution set. Further-
more, denoting as F ∗ the corresponding optimal function
value, the global loss function F (w) satisfies the Polyak-
Lojasiewicz (PL) condition, that is, the following inequality
holds for some constant µ > 0

1

2
‖∇F (w)‖2 ≥ µ [F (w)− F ∗] . (15)

The PL condition (15) is significantly more general than the
standard assumption of strong convexity [40]. A strong convex
with constant µ > 0 implies the PL inequality with same
parameter µ [41]. Note also that for a convex loss function
f(·;u, v), e.g., for least squares and logistic regression, the
strong convexity of function F (w) follows from the addition
of the regularizing term with λ > 0.

III. ORTHOGONAL MULTIPLE ACCESS

In this section, we consider the design and analysis of
orthogonal multiple access with uncoded transmission and
adaptive power control. To start, we assume that, at each
iteration t, device k transmits a scaled and noisy version of
the gradient x[i]

k = x
(t)
k in block i = K(t− 1) + k as

x
(t)
k = α

(t)
k

(
Dk∇Fk

(
w(t)

)
+ n

(t)
k

)
. (16)

In (16), the artificial noise term n
(t)
k ∼ N (0, (σ

(t)
k )2I) is added

in accordance to the standard Gaussian mechanism in the DP
literature; and α

(t)
k ≥ 0 is a scaling factor. We note that, by

(16), the effective noise in the received signal (7) is given by
the summation of channel and artificial noise. The standard
deviation of the effective noise is

m
(t)
k =

√
(h

(t)
k α

(t)
k σ

(t)
k )2 +N0. (17)

We are interested in optimizing over the sequences of param-
eters (α

(1)
k ,· · ·,α

(T )
k ) and (σ

(1)
k ,· · ·,σ

(T )
k ) in order to maximize

the learning performance under the (ε, δ)-DP constraint. To
this end, the remainder of this section first provides DP and
convergence analysis, based on which the optimization prob-
lem is then formulated and solved. Throughout this section,
we use the notation h

[i]
k = h

(t)
k , y[i]

k = y
(t)
k and z

[i]
k = z

(t)
k

for i = K(t − 1) + k, and we make the following common
assumption (see, e.g., [23], [42], [43]).

Assumption 3 (Bounded Sample-Wise Gradient). At any
iteration t, for any training sample (u, v), the gradient is upper
bounded by a given constant γ(t), i.e., for all possible (u, v)
(not limited to those in data sets {Dk}) we have the inequality

‖∇f(w(t);u, v)‖ ≤ γ(t). (18)

A. Differential Privacy Analysis

By standard results on DP, the privacy level (ε, δ) depends
on the sensitivity of the function being disclosed, excluding
the effect of noise, to the input data set. More specifically, the
sensitivity measures the amount by which a single individual
data point can change the disclosed function in the worst
case. For each device k, the edge server is assumed to be
informed about parameters {α(t)

k }. We assume here that those
parameters are fixed constants that do not reveal information
about the local datasets. Hence, the only function of the data
being disclosed is the received signal y

(t)
k , upon subtraction

of the effective noise. The sensitivity ∆
(t)
k of the noiseless

received signal y(t)
k − z

(t)
k − h

(t)
k α

(t)
k n

(t)
k is defined as

(Sensitivity in OMA) ∆
(t)
k = max

D′
k,D

′′
k

∥∥∥∥h(t)
k α

(t)
k ×( ∑

(u,v)∈D′
k

∇f
(
w(t);u, v

)
−
∑

(u,v)∈D′′
k

∇f
(
w(t);u, v

))∥∥∥∥, (19)

where data sets D′k and D′′k satisfy ‖D′k −D′′k‖1 = 1. By the
triangular inequality and Assumption 3, we have the bound

∆
(t)
k ≤ 2h

(t)
k α

(t)
k γ(t). (20)

Lemma 1 (Differential Privacy Guarantees for OMA). For any
fixed sequence of parameters {α(t)

k , σ
(t)
k }, federated gradient

averaging via OMA guarantees (ε, δ)-DP if the following
condition is satisfied

T∑
t=1

(√
2h

(t)
k α

(t)
k γ(t)

m
(t)
k

)2

≤
(√

ε+ [C−1 (1/δ)]
2 − C−1 (1/δ)

)2

(21)
∆
= Rdp(ε, δ), for all k, (22)

where m(t)
k in (17) is the standard deviation of the effective

noise, and C−1(x) is the inverse function of C(x) =
√
πxex

2

.

Proof: The proof is based on the advanced composition
theorem [9, Theorem 3.20] and is detailed in Appendix A.

Lemma 1, along with (20), indicate that the privacy
level depends on the sum of the per-iteration ratios
(
√

2h
(t)
k α

(t)
k γ(t)/m

(t)
k )2, which, by (16), depend on the ratio

between useful signal and effective noise powers. The effective
noise level m(t)

k contributing to the privacy of device k equals
the sum of the channel noise power and of the noise added by
device k in (16). The constraint (21) suggests that the effective
noise variance can be adapted to the sequence of channel gains,
as long as the impact on convergence is suitably accounted for.

B. Convergence Analysis

At the t-th iteration, encompassing the blocks i = K(t −
1)+1, · · · ,Kt, the edge server estimates the scaled local gra-
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dient Dk∇Fk(w(t)) as (h
(t)
k α

(t)
k )−1y

(t)
k , and then the global

gradient is estimated as

∇̂F (w(t)) =
1

Dtot

K∑
k=1

(
h

(t)
k α

(t)
k

)−1

y
(t)
k

=
1

Dtot

K∑
k=1

Dk∇Fk
(
w(t)

)
+n

(t)
k +
(
h

(t)
k α

(t)
k

)−1

z
(t)
k .

(23)

Building on standard results on gradient descent with noisy
gradient [41], we have the following bound on the average
optimality gap at the end of iteration T .

Lemma 2 (Optimality Gap Bound for OMA). Under Assump-
tions 1 and 2, for a learning rate η = 1/L, after T iterations
the average optimality gap is upper bounded as

E
[
F
(
w(T+1)

)
− F ∗

]
≤
(

1− µ

L

)T [
F
(
w(1)

)
− F ∗

]
+

d

2LD2
tot

T∑
t=1

(
1− µ

L

)T−t K∑
k=1

(
m

(t)
k

h
(t)
k α

(t)
k

)2

, (24)

where the standard deviation m
(t)
k of the effective noise is

defined in (17).
Proof: See Appendix B.

The first term in (24) reflects the standard geometric decay
of the initial optimality gap (F (w(1)) − F ∗) as T increases,
while the second accounts for the impact of the effective addi-
tive noise powers (21). Interestingly, the bound (24) suggests
that noise added in the initial iterations is less damaging to
the final optimality gap than the noise added in later iterations.
This is because the contribution of the noise added at iteration
t is discounted by a factor (1 − µ/L)T−t. We will leverage
this result in the next section to optimize power allocation.

C. Optimization

In this section, we are interested in minimizing the optimal-
ity bound in Lemma 2 under (ε, δ)-DP constraint (21) and the
power constraints (9), for all K devices across T iterations.
Note that, for the objective function (24), the optimization
variables only exist in the second term. By replacing m(t)

k with
its definition given in (17), the resulting optimization problem
(OMA Opt.) of interest is formulated as

min
{σ(t)

k ,α
(t)
k }

K

k=1

T∑
t=1

(
1− µ

L

)−t K∑
k=1

[
(σ

(t)
k )2+

( √
N0

h
(t)
k α

(t)
k

)2]
(25a)

s.t.

T∑
t=1

(
√

2γ(t))2

(σ
(t)
k )2 +N0/(h

(t)
k α

(t)
k )2

≤Rdp(ε, δ), ∀k,

(25b)

(α
(t)
k )2

[
(DkG

(t)
k )2 + d(σ

(t)
k )2

]
≤P, ∀k, t, (25c)

where Rdp(ε, δ) is defined in (22), and Parameter G(t)
k rep-

resents an upper bound on the norm of the local gradi-
ent as

∥∥∇Fk (w(t)
)∥∥ ≤ G

(t)
k . By Assumption 3, we have

G
(t)
k ≤ γ(t). Under OMA, the optimization (25a)-(25c) over

the additive noise deviations {σ(1)
k , · · · , σ(T )

k } and scaling
factors {α(1)

k , · · · , α(T )
k } for each devices k can be carried out

in parallel. The corresponding problem (OMA Local Opt.) to
be solved by device k is

min
{σ(t)

k ,α
(t)
k }

T∑
t=1

(
1− µ

L

)−t [
(σ

(t)
k )2 +

( √
N0

h
(t)
k α

(t)
k

)2]
(26a)

s.t.

T∑
t=1

(
√

2γ(t))2

(σ
(t)
k )2 +N0/(h

(t)
k α

(t)
k )2

≤ Rdp(ε, δ), (26b)

(α
(t)
k )2

[
(DkG

(t)
k )2 + d(σ

(t)
k )2

]
≤ P, ∀t. (26c)

Without the DP constraint (26b), the optimal solution to
problem (26) is to fully use the power budget P for the trans-
mission of the local gradient, i.e., to set α(t)

k =
√
P/(DkG

(t)
k )

and σ(t)
k = 0 for all k and t. Due to the DP constraint, we now

show that this may not be the optimal solution if the privacy
condition is sufficiently strict.

Before detailing offline and online solutions, it is useful to
observe that, in order for constraint (26b) to guarantee (ε, δ)-
DP, by leave t, it is necessary that the parameters G(t)

k be fixed
at each iteration t in a way that does not depend on the local
data sets. We will return to this point when discussing online
methods.

1) Offline Optimization: We first assume that the parame-
ters {h(t)

k , γ(t), G
(t)
k } are known beforehand so that problem

(26a)-(26c) can be tackled offline. As we show in Appendix C,
problem (26a)-(26c) can be converted into a convex program
via a change of variables. The resulting optimal solution is
described in the following theorem.

Theorem 1. The optimal offline solution of problem (25a)-
(25c) under OMA is given as follows:
• If condition

T∑
t=1

P (
√

2γ(t)h
(t)
k )2

N0(DkG
(t)
k )2

< Rdp(ε, δ) (27)

holds, there exists a unique optimal solution given as
(α

(t)
k )opt =

√
P/(DkG

(t)
k ) and (σ

(t)
k )opt = 0. In this case,

the power budget P is fully used for the transmission of
the local gradient, and the channel noise is sufficient to
guarantee privacy. The optimal solution is identical as that
of without DP constraint, and privacy is hence obtained
“for free”;

• Otherwise, there exist multiple optimal solutions, and the
solution that minimizes the transmit power is

(α
(t)
k )opt = min

{√
N0(2ζk)−

1
4

h
(t)
k

√
γ(t)

(
1− µ

L

)−t/4
,

√
P

DkG
(t)
k

}
(28)

(σ
(t)
k )opt = 0, (29)

where the value of parameter ζk can be obtained by
bisection to satisfy the constraint

T∑
t=1

(
√

2γ(t))2 min

{
(1− µ/L)−t/2√

2ζkγ(t)
,

P (h
(t)
k )2

(
√
N0DkG

(t)
k )2

}
= Rdp(ε, δ). (30)
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In this case, the transmitted power needs to be scaled
down in order to leverage the channel noise to ensure
(ε, δ)-DP.

Proof: The proof is detailed in Appendix C.
A first interesting observation from Theorem 1 is that it is

optimal for the devices not to add noise to the transmitted
signals (16). It is, in fact, sufficient to scale down their
transmitted powers, via the choice of α(t)

k , with smaller powers
transmitted when more stringent DP constraints are imposed.
Second, when condition (27) is satisfied, privacy is obtained
“for free”, that is, without affecting the learning performance
of the system, as the devices can use their full power. Third,
condition (27) is less strict as Dk increases, showing that
devices with larger datasets can attain privacy “for free” over
a broader range of SNR levels. Finally, we note that it is
generally suboptimal to use a time-invariant policy that sets
the scaling factor α(t)

k as a constant.
2) Online Optimization: Theorem 1 assumes that the se-

quence of parameters {h(t)
k , γ(t), G

(t)
k } is known a priori so

as to enable offline optimization. Here we describe a heuristic
online approach that leverages iterative one-step-ahead opti-
mization based on predicted values for the future parameters
{h(t)

k , γ(t), G
(t)
k }.

To elaborate, assume that, at each iteration t, we have
predicted values {ĥ(t′)

k , γ̂(t′), Ĝ
(t′)
k } for t′ = t, t + 1,· · ·, T

and that the accumulated DP loss is given by L(t−1)
k =∑t−1

t′=1(
√

2h
(t′)
k α

(t′)
k γ(t′)/m

(t′)
k )2 from (21). As summarized in

Algorithm 1, we propose to apply the solution in Theorem 1 to
the interval (t, t+ 1, · · · , T ) by replacing the true parameters
{h(t)

k , γ(t), G
(t)
k } with the estimates {ĥ(t)

k , γ̂(t), Ĝ
(t)
k } and the

DP constraint with the residual Rdp(ε, δ) − L(t−1)
k . The pro-

duced scaling factors α(t)
k are then applied, and the procedure

is repeated for iteration t+ 1. We now discuss the problem of
prediction of parameters {h(t)

k , γ(t), G
(t)
k }.

To start, we model the sequence of fading channels {g[i]
k }

via an autoregressive (AR) Rician model. We note that the
method can be directly extended to other probabilistic models.
Accordingly, each channel gain h[i]

k is obtained as h[i]
k = |g[i]

k |,
where the complex channel coefficient {g[i]

k } is given as

g
[i]
k =

√
κk

κk + 1
+

√
1

κk + 1
r

[i]
k , (31)

with κk being the Rice parameter and the stochastic diffuse
component r[i]

k following an AR(1) process. We specifically
write r[i+1]

k = ρkr
[i]
k +

√
1− ρ2

kr̃
[i]
k , with temporal correlation

coefficient 0 ≤ ρk ≤ 1, and r̃
[i]
k ∼ CN (0, 1) being an

i.i.d. innovation process. Given the current CSI g[i]
k , the future

channel power (h
[j]
k )2 = |g[i]

k |2 for j > i can be predicted via
minimum mean squared error (MMSE) estimation as

(ĥ
[j]
k )2 = E

[
(h

[j]
k )2

∣∣g[i]
k

]
=
κk + (ρj−ik )2

κk + 1
|g[i]
k |

2 +
1− (ρj−ik )2

κk + 1
.

(32)

Next, we discuss the estimations of parameters {γ(t)} and
{G(t)

k }. Parameter γ(t) is by definition independent of the
local data sets, and is typically determined by clipping the

local gradient before transmission to the server [22], [44].
To this end, in (4), we substitute the per-sample gradient
∇f

(
w(t);u, v

)
with its clipped version

(Clipped per-sample gradient)

∇f
(
w(t);u, v

)
= min

{
1,

γ̂

‖∇f
(
w(t);u, v

)
‖

}
×∇f

(
w(t);u, v

)
(33)

for some fixed threshold γ̂ > 0.
The definition of the parameters {G(t)

k } makes them gen-
erally data-dependent. In order to avoid leaking additional
information about the data to the server, we propose to predict
bounds {Ĝ(t′)

k } for t′ ≥ t based on an additional signal
broadcast by the server. Specifically, we let the edge server
transmit the positive scalar ‖y(t−1)

k ‖/(h(t−1)
k α

(t−1)
k ) back to

device k in addition to the broadcast signal w(t). Basing the
predictions Ĝ(t′)

k on the past received signal y(t−1)
k does not

affect privacy, since the privacy loss due to the reception of
y

(t−1)
k at the edge server is accounted for by L(t−1)

k . At each
iteration t, any device k sets

Ĝ
(t)
k =

{
‖y(t−1)

k ‖/(h(t−1)
k α

(t−1)
k Dk), t > 1,

γ̂, t = 1.
(34a)

and Ĝ(t′)
k = Ĝ

(t)
k ,∀ t′ > t. (34b)

Furthermore, in order to ensure constraint on the bounded local
gradient

∥∥∇Fk (w(t)
)∥∥ ≤ G(t)

k , we clip the local gradient for
transmission as

(Clipped gradient transmission in OMA)

∇f
(
w(t);u, v

)
= min

{
1,

γ̂

‖∇f
(
w(t);u, v

)
‖

}
×∇f

(
w(t);u, v

)
(35)

with ∇F k = 1
Dk

∑
(u,v)∈Dk

∇f
(
w(t);u, v

)
+ λ∇R(w).

Finally, we observe that, strictly speaking, the analysis of
convergence in Lemma 2 should be modified in order to
account for clipping, but we found the heuristic approach
summarized in Algorithm 1 to perform well in practice.

IV. NON-ORTHOGONAL MULTIPLE ACCESS

In this section, we consider the design and analysis of
NOMA. For the t-th iteration, local gradients are transmitted
using the uncoded strategy (16). As in [11]–[13], [15], [28],
we select the scaling factors α(t)

k so as to ensure that, in the
absence of noise, the edge server can recover a scaled version
of the global gradient (5). Accordingly, we set

(Gradient Alignment) h
(t)
k α

(t)
k = c(t), (36)

for some constant c(t). We note that the effective noise in
NOMA is equal to the summation of the channel noise and
the contributions of artificial noise from all devices, and its
standard deviation is given by

m(t) =

√√√√(c(t))2

K∑
k=1

(σ
(t)
k )2 +N0. (37)



8

Algorithm 1 Online Scheme for OMA
Input: DP level Rdp, channel noise

√
N0, channel correlation

ρ, clipping threshold γ(t) = γ̂

Initialize: Local privacy loss L(0)
k = 0

For each iteration: t = 1, . . . , T
For each device: k = 1, . . . ,K

Receive w(t) from edge server
Update local model by (35)
If t > 1

Receive y
(t−1)
k /(h

(t−1)
k α

(t−1)
k ) from edge server

end
Compute predictors {ĥ(t′)

k , Ĝ
(t′)
k } via (32) and (34)

for t′ ∈ [t, · · · , T ] with ĥ(t)
k = h

(t)
k

Apply Theorem 1 over the time interval [t, · · · , T ] with
{h(t′)

k ← ĥ
(t′)
k , G

(t′)
k ← Ĝ

(t′)
k , γ(t) ← γ̂}

and residual DP constraint Rdp − L(t−1)
k

Use optimized scaling factor α(t)
k to transmit (35)

Update local privacy loss as

L(t)
k = L(t−1)

k +
(
√

2γ(t)h
(t)
k α

(t)
k )2

N0

end
end

As per (36), in this section, we are optimizing over the
parameters (c(1), · · · , c(T )) as well as over the added noise
power (σ

(1)
k , · · · , σ(T )

k ). Throughout this section, we denote
h

[i]
k = h

(t)
k , and z[i] = z(t) for i = t.

A. Differential Privacy Analysis

As discussed in Section III-A, the DP level depends on the
sensitivity of the function being disclosed, which, in NOMA,
for the same reasons discussed in Section III-A, is the received
noiseless aggregated signal. The sensitivity to change in the
data set of device k is accordingly defined as

(Sensitivity in NOMA) ∆
(t)
k = max

D′
k,D

′′
k

∥∥∥∥c(t)×( ∑
(u,v)∈D′

∇f
(
w(t);u, v

)
−
∑

(u,v)∈D′′

∇f
(
w(t);u, v

))∥∥∥∥, (38)

where ‖D′k −D′′k‖1 = 1,
∥∥D′j −D′′j ∥∥1

= 0 for all j 6= k, and
D′ =

⋃K
k=1D′k, D′′ =

⋃K
k=1D′′k . By Assumption 3, we can

bound the sensitivity as

∆
(t)
k ≤ 2c(t)γ(t). (39)

Then, the DP guarantees for NOMA are given as follows.

Lemma 3 (Differential Privacy Guarantees for NOMA). Fed-
erated gradient averaging via NOMA guarantees (ε, δ)-DP if
the following condition is satisfied

T∑
t=1

(√
2c(t)γ(t)

m(t)

)2

≤ Rdp(ε, δ), for all k. (40)

where m(t) is the standard deviation of the effective noise (37).
Proof: The proof follows in a manner similar to Lemma 1 by
replacing the sensitivity and effective noise with those defined
in NOMA.

Lemma 3 indicates that the effective noise contributing to
the privacy of each device k is given by the sum of channel
noise and the privacy-inducing noise added by all devices. This
is an important advantage of NOMA, which was also observed
in [28].

B. Convergence Analysis

At the t-th iteration, the edge server estimates the global
gradient as

∇̂F (w(t)) =
1

Dtot

(
c(t)
)−1

y(t)

=
1

Dtot

K∑
k=1

Dk∇Fk
(
w(t)

)
+ n

(t)
k +

(
c(t)
)−1

z
(t)
k .

(41)

Lemma 4 (Optimality Gap Bound for NOMA). Under As-
sumptions 1 and 2, for a learning rate η = 1/L, after T
iterations the average optimality gap is upper bounded as

E
[
F
(
w(T+1)

)
− F ∗

]
≤
(

1− µ

L

)T [
F
(
w(1)

)
− F ∗

]
+

d

2LD2
tot

T∑
t=1

(
1− µ

L

)T−t(m(t)

c(t)

)2

, (42)

where the standard deviation m(t) of the effective noise is
defined in (37).
Proof: The proof follows via the same steps reported in
Appendix B by replacing the summation of (17) with (37).

C. Optimization

In this section, we are interested in minimizing the op-
timality bound in Lemma 4 under the (ε, δ)-DP constraint
(40) and the power constraints (9) across T iterations. The
resulting optimization problem for NOMA (NOMA Opt.) is
formulated as

min
{σ(t)

k ,c(t)}
K

k=1

T∑
t=1

(
1− µ

L

)−t K∑
k=1

(σ
(t)
k )2 +N0/(c

(t))2 (43a)

s.t.

T∑
t=1

(
√

2γ(t))2∑K
k=1(σ

(t)
k )2 +N0/(c(t))2

≤ Rdp(ε, δ) (43b)(
c(t)

h
(t)
k

)2 [
(DkG

(t)
k )2 + d(σ

(t)
k )2

]
≤ P, ∀k, t. (43c)

Without the DP constraint (43b), the optimal solution to
problem (43) is determined by the devices with the smallest
value of the ratio h(t)

k /(DkG
(t)
k ) due to the need to satisfy the

gradient alignment condition (36). In particular, the optimal
solution prescribes that such devices use the full power budget
P to transmit the local gradient while the other devices
transmit at the maximum power allowed under condition (36),
i.e., c(t) =

√
P mink h

(t)
k /(DkG

(t)
k ) and σ

(t)
k = 0. We will

see next that this is no longer the optimal solution under
sufficiently strict DP constraints.
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1) Offline Optimization: We first assume that the parame-
ters {h(t)

k , γ(t), G
(t)
k } are known beforehand so that problem

(43a)-(43c) can be tackled offline. With a change of the
variables, the problem can be shown to be convex. Unlike the
previously studied problem for OMA, the optimization (43a)-
(43c) cannot be solved in parallel across the devices.

Theorem 2. The optimal offline solution of problem (43a)-
(43c) under NOMA is given as follows:
• If condition

2P

N0

T∑
t=1

(γ(t))2 min
k

(
h

(t)
k

DkG
(t)
k

)2

< Rdp(ε, δ) (44)

holds, there exists a unique optimal solution given as
(c(t))opt =

√
P mink h

(t)
k /(DkG

(t)
k ) and (σ

(t)
k )opt = 0.

In this case, the devices with smallest value of the ratio
h

(t)
k /(DkG

(t)
k ) transmit using the full power budget P ,

while the other devices do not use full power. Therefore,
under the gradient alignment condition (36), privacy is
obtained “for free”;

• Otherwise, there exist multiple optimal solutions, and
the solution that minimizes the transmit power at all
devices is

(c(t))opt = min

{√
N0(2ζ)−

1
4√

γ(t)

(
1− µ

L

)−t/4
,

√
P min

k

h
(t)
k

DkG
(t)
k

}
(45)

(σ
(t)
k )opt = 0, (46)

where the value of parameter ζ can be obtained by
bisection to satisfy the constraint

T∑
t=1

(
√

2γ(t))2 min

{
(1− µ/L)−t/2√

2ζγ(t)
,
P

N0
min
k

(
h

(t)
k

DkG
(t)
k

)2}
= Rdp(ε, δ). (47)

In this case, all the transmitted powers need to be scaled
down in order to leverage the channel noise to ensure
(ε, δ)-DP.

Proof: The proof follows via the same steps of Theorem 1
by replacing the local optimization problem in OMA with the
optimization problem of the device with smallest value of the
ratio h(t)

k /(DkG
(t)
k ).

In a manner similar to OMA, Theorem 2 demonstrates
that it is optimal for devices not to add further noise to the
transmitted signals, i.e., to set n(t)

k = 0 in (16). Furthermore,
under condition (44), privacy is attainable “for free” since the
optimal solution coincides with that obtained when excluding
the DP constraint (43b). As for OMA, increasing the size Dk

of the data sets makes condition (44) less restrictive.
2) Online Optimization: With the offline results in Theorem

2, we are ready to describe a heuristic online approach for
NOMA which follows the same logic as in Section III-C. In
particular, at each iteration t, the edge server solves problem
(43) over the interval [t, · · · , T ] of current and future time
instants by using estimated parameters {h(t)

k , γ(t), G
(t)
k }, and

imposing the residual DP constraint for each device. We note
that the optimization problem for NOMA is solved at edge
server with the known values of {Dk}.

To detail the procedure summarized in Algorithm 2, chan-
nels are predicted as in (32). Parameter γ̂ is set through the
clipped per-sample gradient (35). Finally, estimates {Ĝ(t)

k } are
obtained by using the received signal of the last iteration as
described in OMA, but averaged with the number of global
data set, which is given as

Ĝ
(t)
k =

{
‖y(t−1)‖/(c(t−1)Dtot), t > 1,∀k,

γ̂, t = 1,∀k, (48a)

Ĝ
(t′)
k = Ĝ

(t)
k ,∀ t′ > t,∀k. (48b)

One last issue to consider is that the optimized c(t) may violate
the power constraint due to the use of estimated parameters.
We hence modify the clipped gradient transmission as

(Clipped gradient transmission in NOMA)

x
(t)
k = min

{
1,

√
Ph

(t)
k

c(t)Dk‖∇F k‖

}
c(t)

h
(t)
k

Dk∇F k
(
w(t)

)
. (49)

As for NOMA, we make no claims of optimality, and we test
the performance of the proposed online scheme via numerical
results in the next section.

Algorithm 2 Online Scheme for NOMA
Input: DP level Rdp, channel noise

√
N0, channel correlation

ρ, clipping threshold γ(t) = γ̂

Initialize: Privacy loss L(0)
g = 0.

For each iteration: t = 1, · · · , T
For edge server:

Compute predictors {ĥ(t′)
k , Ĝ

(t′)
k } via (32) and (48) for

t′ ∈ [t, · · · , T ] with ĥ(t)
k = h

(t)
k

Apply Theorem 2 over the time interval [t, · · · , T ] with
{h(t′)

k ← ĥ
(t′)
k , G

(t′)
k ← Ĝ

(t′)
k , γ(t) ← γ̂} and

residual DP constraint Rdp − L(t−1)
g

Broadcast optimized scaling factor c(t) to devices
Update privacy loss as L(t)

g = L(t−1)
g + (

√
2c(t)γ(t))2

N0

end
For each device: k = 1, · · · ,K

Update local model by (35)
Receive c(t) and apply it to transmit (49).

end
end

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
schemes in order to gain insights into the impact of the DP
constraints and into the benefits of adaptive power allocation.
We first consider a randomly generated synthetic dataset with
Dtot = 10000 pairs (u, v), where the covariates u ∈ R10 are
drawn i.i.d. as N (0, I) and the label v for each vector u is
obtained as v = u(2) + 3u(5) + 0.2zo, where u(d) is the d-th
entry in vector u and the observation noises zo ∼ N (0, 1)
are i.i.d. across the samples [28]. Unless stated otherwise, the
training samples are evenly distributed across the K = 10
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devices, so that the size of local data set is Dk = 1000
for all k. We consider ridge regression with the sample-
wise loss function f(w;u, v) = 0.5‖wTu − v‖2 and the
regularization function R(w) = ‖w‖2 with λ = 5×10−5. The
PL parameter µ and smoothness parameter L are computed
as the smallest and largest eigenvalues of the data Gramian
matrix UTU/Dtot + 2λI, where U = [u1, · · · ,uDtot ]

T is data
matrix of the data set. The initial value for w is set as an all-
zero vector. We note that the (unique) optimal solution to the
joint learning problem (3) is w∗ = (UTU+2DtotλI)

−1UTv,
where v = [v1, · · · , vDtot ]

T is label vector. We will also
consider experiments with the MNIST data set at the end of
this section.

Unless stated otherwise, the maximum SNR defined in (10)
is set to SNRmax = 30 dB, and we consider the availability of
30 communication blocks. Note that this implies T = 30/K =
3 iterations per device for OMA and T = 30 iterations for
NOMA. Furthermore, the default DP settings are ε = 20 and
δ = 0.01.

As a benchmark, we consider a scheme that divides up
the DP constraint equally across all iterations, i.e., it requires
(
√

2h
(t)
k α

(t)
k γ(t)/m

(t)
k )2 < Rdp/T for all t = 1, · · · , T in lieu

of constraint (26b) and similarly for the constraint (43b). This
yields

(Static PA in OMA)

α
(t)
k = min

{√
NoRdp(ε, δ)

2T (h
(t)
k γ(t))2

,

√
P

DkG
(t)
k

}
, (50)

(Static PA in NOMA)

c(t) = min

{√
NoRdp(ε, δ)

2T (γ(t))2
,
√
P min

k

h
(t)
k

DkG
(t)
k

}
. (51)

Another benchmark is set by the scheme that doe not impose
the DP constraint (26b) and (43b). We adopt the normalized
optimality gap [F (wT+1) − F (w∗)]/F (w∗) as performance
metric, and the offline results are averaged over 1000 channel
realizations while online results are averaged over 100 channel
realizations.

A. Offline Optimization

We now focus on offline optimization by applying the
optimal adaptive PA strategies in Theorems 1 and 2. For the
channel model in (31), we set κ = 10, and the channel corre-
lation parameter is set as ρ = 1, since this parameter has no
discernible effect on the performance of offline strategies. We
use the simple upper bounds γ(t) = 2W max(u,v)∈D L(u, v)

and G(t)
k = 2WLk, where W ≥ ‖w‖ is a bound on the norm

‖w‖ (which can be in practice ensured via convex projection
and is set to W = 3.2 in our results); and L(u, v) and Lk are
the Lipschitz smoothness constants of functions f(w;un, vn)
and Fk(w), respectively.

In Fig. 3, we plot the normalized optimality gap as a
function of the privacy level ε. In the considered range of ε,
NOMA with either adaptive or static power allocation (PA) is
seen to achieve better performance than OMA. Furthermore,
adaptive PA achieves a significant performance gain over static
PA under stringent DP constraints, while the performance
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Figure 3. Optimality gap versus DP privacy level ε (for δ = 0.01) for different
power allocation (PA) schemes and for the scheme without DP constraint
(SNRmax = 30 dB).
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Figure 4. Optimality gap versus SNRmax for different power allocation (PA)
schemes and for the scheme without DP constraint (ε = 20, δ = 0.01).

advantage of adaptive PA decreases as the DP constraint is
relaxed, i.e., for larger values of ε. The figure also shows
the threshold values of ε beyond which the privacy “for free”
conditions (27) and (44) are satisfied.

We now study the impact of the SNRmax (10) in Fig. 4.
The normalized optimality gap of all schemes is seen to
decrease with the SNR until the DP requirement becomes
the performance bottleneck. While NOMA is confirmed to be
generally advantageous over OMA, OMA with optimal PA can
perform better than NOMA with static PA, which emphasizes
the importance of PA optimization, particularly in the high-
SNR regime. In a manner analogous to Fig. 3, the plot also
marks the maximum SNR levels for which the privacy “for
free” condition (27) and (44) are satisfied.

Fig. 5 plots the normalized optimality gap versus a measure
of the heterogeneity of the data sets. To this end, one of the
devices is allocated a lager value Dk, while the remaining
data points are evenly distributed to the other devices. The
ratio maxkDk/Dtot varies from 0.1 (uniformly distributed)
to 0.95 (highly skewed). Increasing data set heterogeneity
generally affects negatively all schemes, even in the absence of
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Figure 5. Optimality gap versus data set heterogeneity parameter
maxkDk/Dtot for different power allocation (PA) schemes and the scheme
without DP constraint (ε = 20, δ = 0.01, SNRmax = 30 dB).
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Figure 6. Optimality gap versus communication budget I for different power
allocation (PA) schemes and the scheme without DP constraint (ε = 20,
δ = 0.01, SNRmax = 30 dB, κ = 5, ρ = 0).

privacy constraints. Nevertheless, the heterogeneity of Dk has
a stronger impact for NOMA than for OMA due to gradient
alignment condition (36). In particular, for NOMA, the power
constraint becomes the performance bottleneck as the ratio
maxDk/Dtot increases, and the performance of adaptive PA
converges first to that without the DP constraint and then to
that of static PA.

B. Online Optimization

We now turn to the heuristic online optimization methods
proposed in Algorithms 1 and 2. For the channel model in
(31), we set κ = 5 and ρ = 0. Note that channel prediction
is possible due to the non-zero Rician factor. The maximum
value of ‖w‖ is set as W = 10, which is ensured by
convex projection. Unless stated otherwise, we set the clipping
threshold as γ̂ = 20.

In Fig. 6, we study the impact of the communication
budget in terms of number of communication blocks I . With
conventional static PA, there exists an optimal communica-
tion budget under privacy constraints. This is because more
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Figure 7. Optimality gap versus the number of user K for different power
allocation (PA) schemes and for the scheme without DP constraint (ε = 20,
δ = 0.01, SNRmax = 30 dB, κ = 5, ρ = 0).
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Figure 8. Optimality gap versus the clipping threshold γ̂ for different power
allocation (PA) schemes and for the schemes without DP constraint (ε = 20,
δ = 0.01, SNRmax = 30 dB, T = 30).

communication blocks may cause an increase in privacy loss
(see also [25]). In contrast, increasing the communication
budget always benefits adaptive PA, which is able to properly
allocate power across the communication blocks. Furthermore,
without DP constraint, the performance of OMA converges to
that of NOMA when the communication budget I is large;
while, under privacy constraints, NOMA retains performance
advantages even with a large I .

Fig. 7 plots the normalized optimality gap versus the number
of users. It shows that increasing the number of users has a
negative effect on OMA, but it causes no harm to NOMA. This
emphasizes the spectral efficiency of NOMA in wireless edge
learning. Furthermore, under OMA, a larger number of users
implies fewer iterations, and thus less information leakage of
each user, decreasing the performances gain of adaptive PA.
Specifically, when K = 30, a simple iteration T = 1 is carried
out by OMA, and adaptive PA is equivalent to static PA.

We now study the impact of the clipping threshold γ̂ for
the gradient in Fig. 8. To show the impact of clipping, we
also plot the performance with clipped local updates without
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the DP constraint for both OMA and NOMA. Without DP
constraint, the larger clipping threshold incurs a smaller distor-
tion of the gradients, which benefits the learning performance.
However, under the DP constraint, increasing the clipping
threshold beyond a given value degrades the performance,
since ensuring privacy requires a more pronounced scaling
down of the transmitted signals. This indicates the importance
of selecting a threshold γ̂ that strikes a balance between
learning performance and privacy.

C. MNIST Data Set

We now consider the problem of classification on the
MNIST data set via multinomial logistic regression with
quadratic regularization. Accordingly, the global loss function
is given as the regularized cross-entropy loss

F (w) =
1

Dtot

∑
(u,v)∈D

C∑
c=1

1{v = c} log
exp(wT

c u)∑C
j=1 exp(wT

j u)

+ λ

C∑
c=1

‖wc‖2,

where C = 10 represents the total number of classes of
handwritten digits; u is data image extended to include a bias
term; and the model parameter w, with dimension 7650, is
comprised of the per-class vectors {wc}Cc=1. We set λ = 0.01,
the maximum value of ‖w‖ to W = 10, the clipping threshold
as γ̂ = 40, and SNRmax = 13 dB. The smoothness parameter
L and strongly convex parameter µ are treated as hyper-
parameter and selected via validation as µ = 0.3 and L = 2.5.
For ε = 5 and δ = 0.01, Fig. 9 plots the training cross-entropy
loss and the probability of error on the test set versus the value
of communication budget I for OMA. Adaptive PA is seen to
significantly outperform static PA both in terms of training loss
and test error. Similar results can be obtained for NOMA.

VI. CONCLUSIONS

In this paper, we have considered differentially private wire-
less federated learning via the direct, uncoded, transmission of
gradient from devices to edge server. The proposed approach
is based on adaptive PA schemes that are optimized to min-
imize the learning optimality gap under privacy and power
constraints. First, offline optimization problems are separately
formulated for OMA and NOMA, which are converted to
convex programs. The optimal PA, obtained in closed form,
adapts the power along the iterations, outperforming static
PA assumed in prior works. Furthermore, a heuristic online
approach is proposed that leverages iterative one-step-ahead
optimization based on the offline result and predicted CSI.

The analysis in this paper proved that privacy can be
obtained “for free”, that is without affecting the learning
performance, as long as the privacy constraint level is below a
threshold that decreases with the SNR. Our analytical results
also demonstrate that it is generally suboptimal to devote
part of the transmitted power to actively add noise to the
local updates. This is unlike the standard scenario with ideal
communication, in which adding noise is essential to ensure
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Figure 9. Training loss and test error for different power allocation (PA)
schemes on the MNIST dat set for OMA (ε = 5, δ = 0.01, SNRmax = 13
dB, κ = 5, ρ = 0).

DP constraints. Via numerical results, we have finally shown
that techniques that leverage over-the-air computing provide
significant benefits over conventional OMA protocols under
DP constraints. This is not a prior evident, since, with NOMA,
devices transmit more frequently, and hence may leak more
information.

We note that the power control policy based on channel
inversion for all the devices was proven to be suboptimal in
the scenario of over-the-air computing without DP constraint.
In fact, channel inversion can incur noise amplification by
adapting the power to the device with worst channel condition
[11], [38]. However, this may not be the case under DP
constraints since noise amplification benefits privacy. As a
possible extension of the current work, it would be interesting
to study the optimization of the threshold for channel inversion
so as to maximize the learning performance under privacy and
power constraints. As directions for future work, the threat
model could also include “honest-but-curious” edge devices,
which would generally incur larger DP loss. The study could
be further generalized to other network topologies including
multi-hop device-to-device (D2D) networks. Another inter-
esting direction is to consider the implementation of digital
transmission where quantization introduces additional privacy
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preserving mechanism on top of the channel noise. It would
also be interesting to investigate the effect of clipping in terms
of convergence as in [44], [45], and to address the convergence
properties of the proposed online scheme.

APPENDIX

A. Proof of Lemma 1

To start, we denote as yk = [y
(1)
k , · · · ,y(T )

k ] the T

successive received signals from device k, and m
(t)
k =√

(h
(t)
k α

(t)
k σ

(t)
k )2 +N0 is the standard deviation of the effec-

tive noise in y
(t)
k . According to the definition of DP loss given

in (12), for the k-th device, the privacy loss after T iterations
can be represented as

LD,D′(yk) = ln

 T∏
t=1

P
[
y

(t)
k

∣∣y(t−1)
k , · · · ,y(1)

k ,Dk
]

P
[
y

(t)
k

∣∣y(t−1)
k , · · · ,y(1)

k ,D′k
]


=

T∑
t=1

ln

P
[
y

(t)
k

∣∣y(t−1)
k , · · · ,y(1)

k ,Dk
]

P
[
y

(t)
k

∣∣y(t−1)
k , · · · ,y(1)

k ,D′k
]


=

T∑
t=1

ln

exp

(
−‖y

(t)
k −h

(t)
k α

(t)
k Dk∇Fk(w(t);Dk)‖2

2(m
(t)
k )2

)
exp

(
−‖y

(t)
k −h

(t)
k α

(t)
k Dk∇Fk(w(t);D′

k)‖2

2(m
(t)
k )2

)


=

T∑
t=1

ln

 exp

(
− ‖r

(t)
k ‖

2

2(m
(t)
k )2

)
exp

(
−‖r

(t)
k +v

(t)
k ‖2

2(m
(t)
k )2

)
 ,

where r
(t)
k ∼ N (0, (m

(t)
k )2I) represents the effective noise,

and we set

v
(t)
k = h

(t)
k α

(t)
k

[ ∑
(u,v)∈Dk

∇f
(
w(t);u, v

)
−
∑

(u,v)∈D′
k

∇f
(
w(t);u, v

)]
with ‖v(t)

k ‖ = ∆
(t)
k . Following [9, Appendix A], we can then

bound privacy violation probability

Pr

(∣∣∣∣∣
T∑
t=1

2(r
(t)
k )Tv

(t)
k + ‖v(t)

k ‖2

2(m
(t)
k )2

∣∣∣∣∣ > ε

)
(a)

≤ Pr

(∣∣∣∣∣
T∑
t=1

(r
(t)
k )Tv

(t)
k

(m
(t)
k )2

∣∣∣∣∣ > ε−
T∑
t=1

‖v(t)
k ‖2

2(m
(t)
k )2

)

= 2 Pr

(
T∑
t=1

(r
(t)
k )Tv

(t)
k

(m
(t)
k )2

> ε−
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t=1

‖v(t)
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2(m
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k )2
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(b)
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∆
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1
2

(
∆
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k
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)2
]

× exp
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1
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m
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 , (52)

where (a) is obtained by using Pr(X < −ε − b) ≤ Pr(X <
−ε + b) for an arbitrary b ≥ 0, and (b) comes from the
following bound on the tail probability of Gaussian distribution
X ∼ N

(
0, σ2

)
: Pr(X > s) = 1

σ
√

2π

∫∞
s

exp(− x2

2σ2 )dx ≤
1

σ
√

2π

∫∞
s

x
s exp(− x2

2σ2 )dx = σ
s
√

2π
exp

(
− s2

2σ2

)
.

Letting q =
ε−

∑T
t=1

1
2 (∆

(t)
k /m

(t)
k )2√

2
∑T

t=1(∆
(t)
k /m

(t)
k )2

and using (52), the DP

condition is implied by the inequality

Pr(|LD,D′(yk)| > ε) ≤ 1

q
√
π
e−q

2

< δ. (53)

Finally, defining the function C(x) =
√
πxex

2

and utilizing its
monotonicity yields the desired result.

B. Proof of Lemma 2
Under Assumption 1, we have the following equality

F
(
w(t)

)
≤ F

(
w(t−1)

)
+
[
∇F

(
w(t−1)

)]T [
w(t) −w(t−1)

]
+
L

2
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∥∥∥2
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(
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(
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.

By taking the expectation over the additive noise on both sides
of the above inequality, we obtain

E
[
F
(
w(t)

)]
≤F
(
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[(
1− Lη
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,

where the equality follows by Lemma 1 and by setting η =
1/L.

Subtracting the optimal value F ∗ at both sides yields
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, (54)
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where the last step follows from Assumption 2. Then, the
desired result yields by applying above inequality repeatedly
through T iterations and taking expectation over all the addi-
tive noises.

C. Proof of Theorem 1

We start by making the change of variables

a
(t)
k = (σ

(t)
k )2 +N0/(h

(t)
k α

(t)
k )2, b

(t)
k = (α

(t)
k )−2, (55)

so that the original variables can be written as

(σ
(t)
k )2 = a

(t)
k − (

√
N0/h

(t)
k )2b

(t)
k ≥ 0, (α

(t)
k )2 = 1/b

(t)
k > 0.

(56)

By including the constraints (56), we now obtain the equivalent
local problem (OMA Local Opt. 2)

min
{a(t)k ,b

(t)
k }
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(t)
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which is a convex optimization problem. To solve it, the partial
Lagrange function is defined as
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, (57)

where ζ ≥ 0, β(t) ≥ 0, and ξ(t) ≥ 0 are the Lagrange
multipliers associated respectively with the DP constraint,
transmit power constraints and non-negative parameter con-
straints. Then applying the KKT conditions leads to the

following necessary and sufficient conditions
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(b

(t)
k )opt

≤ 0, (58g)

(
√
N0/h

(t)
k

)2
(b

(t)
k )opt − (a

(t)
k )opt ≤ 0. (58h)

According to (58b), we have the following equality for the
optimal solutions (β(t))opt and (ξ(t))opt

(ξ(t))opt =
d(
√
N0/h

(t)
k )2 + P

(
√
N0/h

(t)
k )2

(β(t))opt. (59)

Plugging the above result into (58a) and (58e), respectively,
we obtain(

1− µ

L

)−t
− ζopt(

√
2γ(t))2

(
(a

(t)
k )opt

)−2

− (β(t))opt
P (h

(t)
k )2

(
√
N0)2

= 0 (60)

(β(t))opt
d(
√
N0/h

(t)
k )2 + P

(
√
N0/h

(t)
k )2

((√
N0/h

(t)
k

)2

(b
(t)
k )opt

− (a
(t)
k )opt

)
= 0. (61)

Combining (61) and (58d), we get the following equation

(β(t))opt

(
(DkG

(t)
k )2 − P (h

(t)
k /
√
N0)2(a

(t)
k )opt

)
= 0. (62)

Constraints (58g) and (58h) define the minimum and maxi-
mum values of (b

(t)
k )opt in terms of (a

(t)
k )opt. Accordingly, the

minimum value of (b
(t)
k )opt should be no larger than that of

the maximum value, which yields the following lower bound
on (a

(t)
k )opt:

(a
(t)
k )opt ≥ (DkG

(t)
k )2(

√
N0/h

(t)
k )2/P. (63)

In this case, the power is fully utilized for transmitting the
local gradient
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Furthermore, from (62), we have the equality (β(t))opt = 0

if (a
(t)
k )opt > (DkG

(t)
k )2(

√
N0/h

(t)
k )2/P , thereby the other

solution of (a
(t)
k )opt is obtained by solving (60) as

(a
(t)
k )opt =

√
2ζopt(1− µ/L)t/2γ(t). (64)

Combing (63) and (64), the solution of (a
(t)
k )opt is

(a
(t)
k )opt = max

{√
2ζopt(1− µ/L)t/2γ(t),

(DkG
(t)
k )2(

√
N0/h

(t)
k )2/P

}
, (65)

and the value of ζopt can be obtained by bisection search to
satisfy the equality of (58f). Specifically, we have ζopt = 0 if∑T
t=1(
√

2γ(t)h
(t)
k )2P/(

√
N0DkG

(t)
k )2 < Rdp. With the value

of (a
(t)
k )opt, the solution of (b

(t)
k )opt can be obtained by using

(58g) and (58h), which are satisfied by arbitrary value within
the range

(DkG
(t)
k )2 + d(a

(t)
k )opt

d(
√
N0/h

(t)
k )2 + P

≤ (b
(t)
k )opt ≤

(h
(t)
k )2(a

(t)
k )opt

N0
. (66)

Then, the desired result in the theorem is obtained by reverting
to the original variables using (56). Specifically, the optimal
solution to minimize the transmit power is attained by the
maximum value of (b

(t)
k )opt in (66).
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