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Abstract 
Current search for a new effective vaccine against tuberculosis involves selected 
antigens, vectors and adjuvants. These are being evaluated usually by their booster 
inoculation following priming with Bacillus Calmette-Guerin.  The purpose of this 
article is to point out, that despite being attenuated of virulence, priming with BCG may 
still involve immune mechanisms, which are not favourable for protection against active 
disease. It is postulated, that the responsible ‘decoy’ constituents selected during the 
evolution of pathogenic tubercle bacilli may be involved in the evasion from bactericidal 
host resistance and stimulate immune responses of a cytokine phenotype, which lead to 
the transition from latent closed granulomas to reactivation with infectious lung 
cavities.  The decoy mechanisms appear as favourable for most infected subjects but 
leading in a minority of cases to pathology which can effectively transmit the infection. 
It is proposed that construction and development of new vaccine candidates could 
benefit from avoiding decoy-type immune mechanisms.  
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1.0 Introduction 
Prophylactic vaccination had eradicated smallpox and is eminently effective for a number of 
previously devastating viral infections (e.g. polio, measles or rubella) which get transmitted 
soon after infection. Protection by these vaccines as well as following natural infection are 
antibody mediated. In contrast, the host response to intracellular pathogens, including 
Mycobacterium tuberculosis (Mtb) has been attributed to Darwinian selection of ‘decoy’ 
constituents with low immunogenicity and lack of protective antibodies 1. Unlike the viral 
transmission by most infected subjects prior to their immune response, Mtb is transmitted 
following a long asymptomatic latent phase by only about a 5 % fraction of subjects who 
reactivate into lung cavitary disease with efficient expectoration of bacilli. The duplicity of 
the immune responses is reflected by inducing initially beneficial latency in the majority of 
infected subjects, while also conditioning the host to reactivation toward pulmonary 
pathology, leading to transmission of infection. The latter aim, being a mandatory 
requirement for pathogenicity would have led to the evolution of the required Mtb 
constituents. Unlike the virulence factors of other microbial pathogens being often toxins for 
certain host cells, it has been proposed, that Mtb evolved its antigenic and 
immunomodulatory constituents as ‘decoys’ or ‘secret trumps’ to mislead the infected host 
by high-jacking its immune responses in favour of its persistence and transmission 2,3 which 
fits within the more widely formulated ‘damage-response framework’ of microbial 
pathogenesis.4 
 
Prophylactic vaccination against TB with Bacillus Calmette-Guerin (BCG) is known to be 
protective only against TB	meningitis	and	disseminated	TB	in	children	under	5	years	of	age	5, 
but not against adult TB and it failed also in reducing the transmission of tuberculous 
infection. Protection by BCG vaccination has long been classified as T cell mediated, but 
none of the cytokine bioassays correlate reliably with protection6,7 and early protection in 
mice was attributed to T cell independent recruitment of CD11b+F4/80+ monocytes into the 
lungs. 7 The geographic variations in BCG protection have been associated with the gut 
microbiome, since its protection can be reduced by either non-tuberculous mycobacteria (e.g. 
M. avium) 8, or by antibiotic induced gut dysbiosis 9. Moreover, some degree of protection 
against other infections was attributed to non-specific ‘trained’ memory of cells of the innate 
immune system 10,11. BCG vaccination is widely used in several countries, although it was 
never accepted in the USA, and has recently been labelled as ‘antiquated and inadequate’12. 
Despite such reservations, priming by BCG carries the advantage, that it abrogates the 
adjuvant dependency for the booster subunit antigen inoculation 13 and has still been retained 
within the prime-boost paradigm for the development of some of the multistage antigen 
construct based new vaccines. 14 The following paragraphs discuss the decoy elements of 
host responses to tuberculous infection, particularly with a potential of being involved 
following BCG-prime/boost vaccination and proposing that their avoidance would be 
desirable for continuing research efforts toward an effective prophylactic vaccine against TB. 
 
2.0 Early post-infection events  
2.1. Evasion from host resistance 
Tubercle bacilli escape destruction by the infected host by abrogating the initial bactericidal 
action of macrophages and then by subverting the antigen presenting function of dendritic 
cells by separate distinct mechanisms.15,16 The survival of Mtb in infected macrophages is 
facilitated through repression of their apoptosis 17,18. However the complex metabolic 
reprogramming of phagocytic cells19, involving the triggering of different ‘pattern 
recognition receptor’ (PRR) mediated pathways by mycobacterial ‘pathogen associated 
molecular patterns (PAMPs) 20,21 is beneficial not only to the host, but also to the pathogen.22 
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Thus, potentially the protective Th1 immune response is delayed by the mycobacterial 
glycolipoprotein (LprG) induced TLR-2 mediated inhibition of MHC-II antigen processing 
by dendritic cells (DC),23 and by lipoarabinomannan (LAM) mediated blocking of the 
expression of the DC-SIGN receptor and induction of immunosuppressive IL-10 and CCL18 
production 24.  
 
Although BCG has reduced expression of virulence factors and activities, such as the 
Rv3097c-encoded lipase 25 and dephosphorylation of host proteins 26, it still produces both 
LAM and LprG, which inhibit the immunostimulatory CD-1 and IL-12 production and 
induces the immunosuppressive IL-10 even in the absence of DC-SIGN 27. Hence, BCG 
retains despite its attenuated virulence, demonstrable activity in vitro, which is pertinent to 
immune evasion mechanisms and subversion of its vaccination potential. 28  
Delayed migration of antigen-bearing DCs from Mtb infected lungs of infected mice to 
draining lymph nodes results in the failure of Th1 cell activation and their recruitment to the 
lungs.29 Furthermore, an infected phagosome coat protein TACO, preventing lysosomal 
transfer and degradation of mycobacteria allows their survival. 30 Notably, both Mtb and 
BCG survive in vivo within phagosomes by initially resisting delivery to lysosomes and 
despite their subsequent lysosomal transfer 31. 
 
2.2 Conditioning for reactivation 
Experimental models of reactivation of Mtb infection in mice (‘Cornell’ models) have a 
number of variants, involving either spontaneous relapse following non-sterilizing 
chemotherapy with isoniazid and pyrazinamide or a rapid increase of bacterial counts from 
low level persistent infection, induced by immunosuppressive agents, such as hydrocortisone 
or anti-CD4 T cell antibodies. 32 The duration of the spontaneous relapse is much shorter than 
the recrudescence from chronic infection, but neither model reflects fully the unknown 
circumstances, which lead to the development of clinically active TB in the small minority of 
infected humans.  
 
Both Cornell models of reactivation were shown to occur not only following pathogenic Mtb, 
but also following intravenous BCG Pasteur strain infection.33,34, which could be explained 
by the presence of a number of virulence-related constituents (discussed in the preceding 
paragraph. 25-28 Using the post-chemotherapy spontaneous relapse model, the essential role of 
an early host response conditioning for the infection relapse has been suggested by the 
finding, that reactivation occurred only when the chemotherapy was started not earlier than 
three weeks post-infection. 33 Since the innate immune mechanisms which condition the host 
toward reactivation remain to be unidentified, further research, could be targeted on: a) the 
granulocyte macrophage colony stimulating factor (GM-CSF) and DC-SIGN receptor 
mediated function of DCs27;  b) the influence of mycobacterial DosR(Rv3133c) genes which 
had been associated with extracellular Mtb persistence35 and c) regulation of mRNA 
expression in monocytes, by the Toll-interacting ubiquitin binding protein (TOLLIP), which 
has been associated with BCG adjuvanticity and susceptibility to tuberculosis.36 Though the 
relapse was demonstrated following intravenous inoculation of BCG, a lower risk from 
subcutaneous vaccination may depend from the vaccine dose37 and could apply also to 
subsequent pathogenic Mtb infection. However, the early conditioning for reactivation is 
clearly different from the later mechanisms which can be alleviated by immunotherapy38-40 
and different from the TNFa mediated exacerbation of lung granulomas without reducing the 
bacillary load (‘Koch phenomenon’), caused by the administration of mycobacterial antigens 
following Mtb infection.41 
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3.0 Adaptive immune responses. 
3.1.MHC-permissive epitopes. 
MHC-permissive T cell recognition of mycobacterial immunodominant epitopes in the 
context of both class II  42-44 and class I alleles45 has been attributed to evolutionary selection 
on the grounds of their higher frequency in MHC- heterozygous than homozygous T cell 
hybridomas, 42 hence considered favourable for the pathogen’s transmission. 46  This 
interpretation has been confirmed by the highly conserved sequence of immunodominant 
epitopes between diverse Mtb strains.47,48 Recognition of lower peptide concentrations by the 
higher affinity of T cell receptors for these epitopes is conducive for host survival during the 
latent phase of infection. However, the decoy character of these hyperconserved epitopes and 
their evolutionary advantage to the pathogen has been proposed to be associated with 
mechanisms which lead to the subsequent reactivation in the minority of infected subjects, 
hence leading to efficient transmission of the infection in the population. 49 
 
3.2. Ambiguity of the T cell functions 
Despite the broadly accepted protective role of T cells the corresponding effector functions 
have not been clarified and a reliable protection bioassay, based on Th1 cellular or cytokine 
markers, has not been found.50 Moreover, subunit vaccination can elevate Th1 cytokine 
levels, but without protection 51, while mucosal vaccination can protect, without elevating 
Th1 cytokine levels.52 Some of this ambiguity may be due to IL-6 mediated blocking of 
bactericidal action of Th1 cytokines 53. Though IFNg can activate macrophages to become 
bactericidal and limits neutrophilic pulmonary inflammation,54 it’s levels failed to associate 
reliably with protection and adding IFNg to tissue culture media was reported even to 
enhance Mtb growth in human macrophages 55. Although protection in humans has been 
associated with the recognition of more antigen epitopes 56,57 and the production of several 
cytokines 58-62, the polyfunctional phenotype was not found fully representative of protection 
in all studies 63. 
 
Protection following BCG vaccination is considered compromised by inducing T cells mostly 
of the terminally exhausted ‘effector’ phenotype, instead of the better protective ‘central’ 
memory phenotype 64 and by the initial localization of T cells to the un-infected areas of the 
lungs, leading to delayed granuloma formation and latent infection with a potential for 
reactivation. 65 Hence, the immunity imparted by BCG, despite its attenuation, may still carry 
the decoy advantages for the transmission of infection. However, following peptide based 
vaccination, CD4+T cells also failed to target the Mtb infected cells, despite reaching the 
lung parenchyma 66. Notably, in a murine model of diabetes, BCG or recombinant BCG 
vaccination was shown to be protective against reactivation of latent lymphatic TB infection 
by CD4 and CD8 T cell independent mechanisms.67 Moreover, dysregulated CD4 T cell 
responses may have deleterious role, reflected by their amplification of infection and lung 
pathology in PD-1 receptor knockout mice 68, by enhanced T cell responses in mitochondrial 
cytophilin D (CypD) deficient mice 69 and by their influx to sites of lung pathology, mediated 
by the chemotactic CXCL10 chemokine. 70  
 
A protective role of CD8 T cells has been demonstrated in CD4- T cell depleted mice. 71 
However, their limited role for protection was argued on the grounds that CD8 T cell lines 
binding the TB10.44-11 immunodominant epitope failed to recognise and to inhibit the 
growth of Mtb-infected macrophages, although they recognised the same epitope, when 
macrophages were pulsed with irradiated Mtb.72  The authors attributed the blocking of the 
CD8 response to TB10.44 by the live infection to the subversive decoy function of this major 
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epitope. The limited protective role of CD8 T cells, despite their robust response following 
infection is supported also by the Th2 cytokine profile human HLA-E-restricted CD8 cells 73 
and by their terminally-differentiated phenotype.74. 
 
3.3 Antibody markers   
The association of prominently elevated antibody levels to the PstS1 glycoprotein75 with the 
HLA-DR2 haplotype 76,77 and with the multibacillary, infectious type of active TB qualifies 
the PstS1 antigen as a decoy constituent .78 The pathogenic mechanisms may involve epitope 
presentation by B cells instead of dendritic cells, thus diverting T cell maturation from a 
protective Th1 to a pathogenic (as well as B cell helper) Th2 phenotype.79 Thus, despite the 
MHC-permissive strong immunogenicity of PstS1, its tendency toward inducing a Th2 
response seems discouraging for further vaccine development, without removing its Th2-
stimulatory epitope moieties. The protective potential of antibodies against the a-crystallin 
(Acr) antigen was suggested following passive vaccination with the IgA (TBA61) 
monoclonal antibody combined with recombinant IFNg and anti-IL-4 treatment.80-82 and by in 
vitro killing of intracellular Mtb by human antibodies with a distinct glycosylation profile.83 
However, a possible inference toward active vaccination would need the removal from the 
antigens their potentially pathogenic IL-4 producing Th2 stimulatory moiety.  
 
4.0 Mediators and mechanisms of pathology 
The promotion of the development of destructive granulomatous lung lesions by T cell 
responses has been noted previously 84. Since the initial finding of elevated IL-4 production 
in active TB 85, the association of Th2 cytokines with pathogenic mechanisms has been 
suggested by: (1) Interference with the bactericidal action of Th1 cell cytokines 86,87, 
involving elevated intracellular (SOCS and IRAK-M) and extracellular (IL-10 and TGFbRII, 
IL-1Rn, and IDO) mediators.88; (2) Alternative activation of macrophages, which supports 
the persistence of Mtb 89;  (3) TNFa mediated change from apoptosis to necrosis of infected 
cells 90 and cAMP initiated granuloma formation 91;  (4) Inhibition of TB-resistance by 
intestinal microbiota induced IL-1092 and by (5) regulatory T cell mediated suppression of 
protective CD4 T cells 87. 
 
Neutrophils recruited to the infected lungs can counteract the cathelicidin and lipocalin 
mediated mycobactericidal action of Th1 cells 93. Low-density neutrophils in TB lesions have 
deficient phagocytosis and oxidative burst 94, while necrotic neutrophils reduce TNFa and 
increase IL-10 production 95. Infected macrophages upregulate the MCL1 gene expression, 
which interferes with Mtb killing 96, while increased Eis gene expression in Mtb-containing 
autophagosomes enhances Mtb survival by attenuating TLR mediated autophagy, modulating 
the cell death and suppressing the host innate immune defenses.97 Subsequent translocation of 
Mtb-infected alveolar macrophages from airways to the lung interstitium involves the Mtb 
ESX-1 secretion system and MyD88/IL-1 receptor inflammasome signalling 98. The quoted 
mechanisms in neutrophils and macrophages support the maturation of lung granulomas to 
cavitation with liquefaction, resulting in efficient transmission of the infection to susceptible 
hosts. The IL-1 cytokine can initially be protective against Mtb infection, but it’s persistent 
production aggravates disease by contributing	to	neutrophil	accumulation, which can be 
alleviated by co-administration of the IL-1 receptor antagonist protein with the linezolid 
antibiotic 99. This example shows, that identifying decoy mechanisms can be supportive for 
the development of ‘host directed therapies’ 100   
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5.0 Predominance of priming over response to challenge 
The key importance of the sequence of antigen exposure and the potential for a deleterious 
impact was demonstrated by the finding that immunization with various mycobacterial 
antigens can aggravate lung pathology in Mtb pre-infected mice. 41 The ‘original antigenic 
sin’ (OAS) phenomenon, reflecting the predominance of immunity to the first priming 
antigen following booster immunization, has been described following infection and 
vaccination with influenza virus and several other infections,101 thus overriding the antigenic 
specificity of the booster antigen.102,103 The subversive role of OAS as a decoy mechanism 
was proposed for the generation of non-protective antibodies against HIV-1 and Ebola virus 
infections.1 The OAS could also explain, why BCG vaccination showed preferential 
stimulation to M. avium antigens in children who were pre-exposed to environmental 
mycobacteria,104 the failure of boosting protection by antigen challenge of BCG primed 
macaques,105 and the blocking of BCG protection by prior exposure to environmental species 
of mycobacteria in mice,106 and in human populations.107 The mandatory role of the sequence 
of antigens for heterologous prime/boost vaccination has been documented also by the 
finding, that priming with the Ag85A-coding DNA yielded protection in mice when 
administered before, but not when given after BCG.108 
 
Although the readout of the OAS phenomenon has previously involved mostly antibody 
responses, the recognition mechanism has been attributed to T helper cell mediated cross-
reactivity between taxonomically related antigens109. Moreover, its impact could be even 
wider, due to non-reciprocal  (immunodominant or cryptic) cross-recognition (‘mimicry’) of 
epitopes between taxonomically unrelated mycobacterial proteins.110  Such relationships 
could contribute to the predominance of the primary antigenic exposure in the BCG-
prime/heterologous boost vaccine regimen, thus sustaining the specificity and phenotype of T 
cell response, initiated by the primary BCG, rather than of the boosting antigen subunit. 
Priming to several of the BCG antigens may include also the undesirable decoy antigens 
which evolved for initiating a host response for the ultimate advantage of the Mtb pathogen.  
 
6.0 New vaccine research 
6.1 Subunit constructs 
Current research involves ‘multistage’ fusion of proteins, containing both replicating and 
latent stage antigens 111,112, adjuvants, recombinant formulations and genetically modified 
BCG or attenuated Mtb 113-115, with emphasis on in vivo and latency expressed (IVE), DosR 
regulon and Rpf stage specific antigens, expressed on infected macrophages. In particular, the 
Rv2034 protein, strongly immunogenic in TB patients was found to be protective in HLA-
DR3 transgenic mice by inducing peptide 31-50 specific IFNg and TNFa producing CD4 T-
cells as well as antibodies.116  Significance of a cluster of 17 IVE antigens has been argued on 
the grounds of inducing TNFa secreting T cells in TB patients.117 In contrast, another choice 
of protective antigen subunits considered their downregulated expression during infection,118 
and other functions for recombinant expression in BCG, vaccinia virus and adenovirus 
vectors.119-121 Subdominant Mtb peptides of ESAT-6, though poorly recognized following 
Mtb infection were found to protect better than epitopes which are immunodominant during 
natural infection 122. On the other hand, it has been proposed to avoid antigens which are well 
expressed at early stage of infection, which may lead toward an exhaustion and dysfunction 
of T cell responses118,123. 
 
Several vaccine candidates reached various stages of evaluation in clinical trials. Significant 
protection without BCG priming was reported three years after intramuscular vaccination 
with two doses of the M72/AS01E the recombinant fusion construct of the Mtb32A and 
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Mtb39A antigens124. The case for avoiding BCG comes also from the finding, that the 
mycobacterial wall lipase LipY (Rv3097c) has been protective in mice when given as a 
purified protein in adjuvant, while its recombinant overexpression in BCG abrogated 
protection against Mtb challenge, probably by shifting the T cell response from Th1 to Th2 
phenotype.25 These considerations go along the suggestion that learning from past ‘failed’ 
trials and diversity of research need to ‘embrace risk in persuit of vaccine development’.113 
 
6.2 Route of vaccination 
Mucosal vaccination by respiratory route delivery attracts interest with the aim of fast 
localizing the protective T cells to the lungs, ready for countering inhaled Mtb infection 
without dependence on the recruitment of systemically primed T cells, 125,126  which may also 
lack CCR5 and CXCR3 chemokine receptors needed for migration to the lung.127 Oral 
inoculation of BCG in the original MRC Trial was abandoned due to cervical 
lymphadenopathy. Though intranasal BCG caused lung pathology in mice 128, profoundly 
better protection by pulmonary mucosal than intradermal delivery in rhesus macaques was 
attributed to polyfunctional TH17 cells, interleukin-10 and immunoglobulin A 129. Other 
proposed mechanisms involved the role of innate immunity in facilitating the homing of DCs 
and T cells130,131 and the recruitment and retention of protective CD8 T cells in the lungs 132. 
Interest in mucosal delivery is supported in a study of  needle-free vaccination of mice and 
guinea pigs, combining oral prime with intranasal booster 52, the use of nanoparticles 133or the 
use of tetramerized streptavidin core fused with biotinylated anti-DC antibodies 134. Notably, 
protection without BCG priming, imparted by intranasal delivery of recombinant soluble 
DnaK (hsp70) antigen was attributed to lung resident IL-17 producing T cells, acting even 
after depleting circulating CD4 T cells 135.  
 
6.3 Testing for protection against reactivation 
Preclinical testing of novel TB vaccines in animal models is done routinely in reference to 
protection against primary challenge, thus ignoring that the predominant disease in adult 
humans is the post-primary, reactivated form of TB. However, significant contributions have 
been made by testing of different recombinant vaccines on the reactivation of latent TB 
infection in murine models which mimic the susceptibility of HIV-infected humans by anti-
CD4 antibody treatment 67 or by diet-induced type-2 diabetes.136  The substantial difference 
between the primary and secondary disease has recently been pointed out, while emphasizing 
the need to test novel vaccines in available animal models of human post-primary TB 137. 
This concept is to be supported, since it would focus research on such host responses which 
can prevent reactivation, unlike natural infection which leads merely to latency, but with a 
potential for recrudescence in the minority of subjects. 
 
There is a dilemma of choosing suitable stimuli for reactivating a persisting latent infection in 
animal models. Though HIV or immunosuppressive therapy are well known to reactivate 
human TB, the vast majority of adults develop pulmonary disease without any known 
immune compromise, but associated with a broad range of causes, such as poverty, 
malnutrition, endocrine and life-habit related factors. Decoy immune mechanisms have been 
indicated by the association of reactivation of chronic infection in mice with overexpressed 
IL-10 production 138 and by the finding of higher cortisone-induced reactivation in Bcg-
resistant than Bcg-susceptible mice 34.  SIV-coinfection induced reactivation of lung TB in 
rhesus macaques showed elevated proinflammatory cytokines and chemokines, thus 
associating increased T cell activity with a decoy, rather than protective function 139.  
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The role of neuro-endocrine regulation by the hypothalamic-pituitary-adrenal axis was 
demonstrated by triggering the reactivation of TB infection by physical exertion of mice.140 
The increase in cortisol/DHEA in association with the Th1 to Th2 shift in pulmonary TB 141 
also indicated the role of dysregulation of the hypothalamic-pituitary-adrenal axis.142, while 
an even wider signature distinguishing between latent and active TB was identified by 
immunometabolomic and RNA sequence analysis 143. Future preclinical research is desirable 
to select from this broad list of available approaches, which biomarkers would be most 
suitable for testing of vaccine candidates for protection against the reactivation form of active 
TB in humans. 
 
7.0 Ethical, safety and funding issues 
Protection against disseminated TB in children and also cross-protection against other 
microbial pathogens 144 gives ethical justification for continued neonatal BCG vaccination, 
established in several countries despite a reported risk of aggravated reactions in HIV co-
infection 145. However, research toward novel vaccine constructs, aiming to reduce TB 
transmission should reconsider if priming by BCG is suitable, in view of its potential decoy 
capacities, as discussed in this article. This aspect seems pertinent also to the new genetically 
attenuated strains of Mtb and recombinant BCG constructs, despite their rigorous 
conventional testing for attenuation 146. The proposed testing of candidate vaccines for 
protection against TB reactivation would extend the housing of experimental animals in 
containment facilities, thus substantially increasing the cost of pre-clinical research.  
 
8.0. Conclusions 
The decoy reactions to tuberculous infection are represented by initial conditioning of innate 
immunity followed by subsequent Th2 cell cytokine responses to HLA-permissive epitopes. 
These host reactions are in favour of the pathogen, since following a latent infection, they 
lead to reactivation in a minority of subjects to a type of pathology which effectively 
transmits the infection. Therefore, pre-clinical testing would benefit from extended 
evaluation for protection against recrudescence from dormancy. The predominant influence 
of priming (e.g. BCG) carrying a potential risk for conditioning for reactivation, deserves a 
consideration for optimising future strategies for new subunit vaccines.  
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