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A B S T R A C T

High-throughput imaging methods can be applied to relevant cell culture models, fostering their use in research
and translational applications. Improvements in microscopy, computational capabilities and data analysis have
enabled high-throughput, high-content approaches from endpoint 2D microscopy images. Nonetheless, trade-
offs in acquisition, computation and storage between content and throughput remain, in particular when cells
and cell structures are imaged in 3D. Moreover, live 3D phase contrast microscopy images are not often
amenable to analysis because of the high level of background noise.

Cultures of Human induced pluripotent stem cells (hiPSC) offer unprecedented scope to profile and screen
conditions affecting cell fate decisions, self-organisation and early embryonic development. However, quanti-
fying changes in the morphology or function of cell structures derived from hiPSCs over time presents significant
challenges. Here, we report a novel method based on the analysis of live phase contrast microscopy images of
hiPSC spheroids. We compare self-renewing versus differentiating media conditions, which give rise to spheroids
with distinct morphologies; round versus branched, respectively. These cell structures are segmented from 2D
projections and analysed based on frame-to-frame variations. Importantly, a tailored convolutional neural
network is trained and applied to predict culture conditions from time-frame images.

We compare our results with more classic and involved endpoint 3D confocal microscopy and propose that
such approaches can complement spheroid-based assays developed for the purpose of screening and profiling.
This workflow can be realistically implemented in laboratories using imaging-based high-throughput methods
for regenerative medicine and drug discovery.

1. Description of theoretical basis and framework for the
technique

Significant attention has been dedicated to the development of re-
levant cell culture models that can mirror the behaviour of human cells
in vivo. Imaging methods are being deployed as important tools to
analyse cells in complex environments in vitro [1]. This has interesting
applications in the establishment of quality control protocols for ther-
apeutics, as well as in cell therapy development and manufacturing. In
particular, many systems are emerging that enable scientists to observe
and quantify cell patterning and the formation of 3D structures, such as
spheroids [2]. These applications require the ability to acquire dynamic

information over time and ideally perform on-the-fly analyses for
quality control, screening and profiling campaigns [3].

High content analysis (HCA) approaches designed to obtain quan-
titative read-outs from microscopy images provide opportunities to
derive automated multi-parametric data to quantify single cell beha-
viour and morphology. This information can be obtained from both live
and endpoint image datasets [4]. There is a clear advantage in com-
bining these two methods especially to study morphogenetic events.
Indeed, live imaging yields important time-dependent morphological
information despite being more challenging to segment. On the other
hand, endpoint images collected from cultures stained with dyes or
immunofluorescent cell lineage markers tend to be easier to segment.
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Quantitative data can be processed via image analysis pipelines and
workflows [5,6]. This approach enables scientists to explore cell dy-
namics, allowing for insights into biological and biochemical mechan-
isms in vitro [7,8].

Continuous improvements in microscopy and computation have
effectively empowered high-throughput HCA from endpoint micro-
scopy images in 2D. Nonetheless, trade-offs between content and
throughput remain. In particular, quantifying changes in 3D mor-
phology over time is potentially of great interest and yet generally
operationally challenging in terms of set up, workflow, data storage and
computation. Moreover, live 3D images from phase contrast microscopy
tend to prove suboptimal and bring challenges to segmentation. More
complex solutions with dyes, reporters and immunofluorescence have
been explored and yet are harder to deploy for characterisation of large
panels of human cell lines [9]. Furthermore, especially in complex
cultures such as hiPSCs and primary cells, studies often focus on either
live or endpoint imaging and are rarely combined [5,7].

hiPSCs have the ability to self-renew (producing identical daughter
cells) and to differentiate into virtually all cell types of the human body.
These cells offer promising applications for disease modelling and drug
discovery. Analysing patterns of cells in vitro has the potential to pro-
vide insight into the mechanism of cellular behaviour, cell fate, and
early embryonic development [10,11]. However, significant challenges
in acquisition and analysis present when attempting to recapitulate self-
organisation, cell fate patterning, and morphogenesis of early mam-
malian embryogenesis in vitro in 3D and in a dynamic manner [12].

Multicellular aggregates called embryoid bodies (EBs) recapitulate
some aspects of in vivo development and facilitate the understanding of
cell fate dynamics and organisation [12,13]. More complex 3D ap-
proaches have provided robust simulation of in vivo gastrulation in-
cluding symmetry breaking-like events prior to differentiation [14,15].
Methods have been described that dissect the molecular mechanisms
involved in gastrulation in manageable in vitro systems that can be
referred to as 2.5D [16]. Interesting examples have recently moved the
field forward towards predictive modelling via in silico analysis [17].
These methods will have an important value in quality control of cells
and could be exploited across a wide range of applications for re-
generative medicine [1].

Our eyes effectively combine low resolution frame to frame varia-
tion for detection of movements with refined definition and colours. In
fact, synergistic strategies have evolved in mammals that combine de-
tection of movements in low lighting conditions (rods for peripheral
vision) with higher resolution and colours (cones in the fovea). This
combination can be modelled and has in fact been explored for specific
purposes in other fields [18]. Similarly in concept, high content analysis
strategies have been developed that couple screening lower magnifi-
cation images with acquisition of a higher magnification images for
regions of interest that satisfy defined criteria (see [19,20]).

Here, we report a method based on frame by frame subtraction,
efficiently eliminating areas for which pixel intensities do not vary from
frame to frame which in growing spheroids images correspond to the
background. This pipeline refines segmentation by considering only the
extracted pixels with changes in intensity values from one image to the
other in subsequent timeframes. We analyse hiPSC in self-renewing
versus differentiating conditions in 96-well plates. We demonstrate that
this method can successfully capture distinct morphology variations
dependent upon biological conditions in a scalable and high-throughput
manner. We demonstrate the value of this approach and propose it can
be applied to a range of cell systems presenting similar challenges.

2. Materials and methods

2.1. Human iPSCs culture

As described [21] 6-well plates were coated with 4% Vitronectin
(STEMCELL Technologies) diluted in Phosphate Buffered Saline (PBS,

Sigma). Cells were cultured in feeder-free Essential 8 (E8, Thermo-
Fisher) with 2% supplement according to manufacturer’s instructions,
and 1% (5000U/ml) Penicillin/Streptomycin (Pen/Strep, Gibco). Cul-
tures were medium-changed daily and passaged every 4 days at ap-
proximately 80% confluence. hiPSCs colonies are washed with Hank’s
Balanced Salt Solution (HBSS), incubated with Versene cell dissociation
solution (Gibco) for 3–4 min at 37 °C, 5% CO2 and resuspended in E8
medium in 6-well vitronectin-coated plates. The hiPSC cell line Hoik_1
was obtained from the HipSci biobank (www.hipsci.org) [21].

2.2. Preparation of 96 well V-bottom plates

Before dissociating hiPSCs colonies into single cells and seeding in
96 well V-bottom plates, hiPSCs were observed visually to confirm that
they had not undergone spontaneous differentiation as this will affect
the spheroid formation and differentiation. To pre-treat the 96 well V-
bottom plates, 50 μl of 5% pluronic solution were added before cen-
trifugation for 5 min at 500 × g, to ensure the plate is free of bubbles. If
bubbles remain we suggest to centrifuge again at higher speed or
maximum speed for an additional 5 min. Incubation at RT for 1 h was
followed by washing with PBS and addition of 50 μl of E8 medium with
10 μM Y-27632 Rho-kinase inhibitor (ROCKi, ENZO Life Sciences) to
each well to avoid drying. This prevents hiPSCs from adhering to the
plate and promotes spheroid formation. Note that for the 96 well V-
bottom plate layout of this experiment, cells in E8 condition were
plated in columns 1–3 whereas cells in KSR-BMP4 condition were
plated in columns 10–12. Results in Fig. 1 are from a representative
experiment with n = 9 technical replicates. Over 3 biological replicates
have been obtained with these conditions in parallel.

2.3. Spheroid formation

Cells were washed with HBSS (Gibco), colonies dissociated into
single cells by incubating them for 4 min in Accutase (BioLegend) at
37 °C, 5% CO2. Single cells were resuspended in E8 and 10 μM ROCKi.
Prior to cell seeding, 96 well V-bottom plates (ThermoFisher Scientific)
were coated with 5% (w/v) Pluronic solution (Sigma) for 1 h. In these
ultra-low adherence conditions, cells were seeded at a density of 750
cells/well in 96 well V-bottom plates, incubated at 37 °C, 5% CO2 in E8
and 10 μM ROCKi and left for 24 h to allow cell aggregation. Following
another 24 h of culture in E8 medium, hiPSCs cluster and form ag-
gregates. Medium was then replaced with different medium conditions
in the presence of 10 μM ROCKi as following: Self-renewing conditions:
E8 medium and 1% Pen/Strep; Differentiating conditions: Knock Out
Serum Replacement medium (KSR) consisting of Advance DMEM/F-12
medium, supplemented with 20% KnockOut serum replacement, 1% L-
Glutamine, 1% Penicillin Streptomycin (5000U/ml) (all Gibco), 0.1 mM
β-mercaptoethanol (Sigma), 10 ng/ml basic fibroblast growth factor
(bFGF) (Invitrogen) supplemented with 50 ng/ml BMP4 (Invitrogen)
morphogen. Culture medium was changed after 48 h once the spheroids
formed to the following medium conditions all in the presence of 10 μM
ROCKi; E8 medium, and KSR supplemented with (50 ng/ml) BMP4.
Subsequently, hiPSCs spheroids were monitored for 96 h using a JuLI™
Stage live imaging microscope in a controlled environment at 37 °C and
5% CO2 inside a tissue culture incubator. The plate was spun down for
30 s at 200 × g after medium replacement as described in the previous
step, to bring all spheroids to the bottom of the plate in the centre of V-
bottom wells.

2.4. Immunostaining and comparison with end-point analysis

After 96 h, spheroids were fixed using 4% paraformaldehyde (PFA)
for 45 min at RT, and washed three times with PBS. Cells were per-
meabilised with 0.3% Triton X100 in PBS for 1 h at RT, followed by
blocking with 5% donkey serum in PBS for 1 h at RT. Primary anti-Oct4
antibody (Abcam) at (1:500) was diluted in 5% donkey serum in PBS
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and incubated overnight at 4 °C. After three washes with PBS, sec-
ondary antibody donkey anti-rabbit Alexa Fluor 488 at (1:500)
(Invitrogen), and DAPI at (1:5000) were added and incubated for 1 h at
RT in the dark. Spheroid images were acquired using Leica TCS SP8
Confocal laser scanning microscope with a 40x oil objective. Confocal
images were analysed in Columbus (Perkin Elmer). Maximum projec-
tion for each channel were merged into one image (Calculated Image)
smoothed with a Gaussian filter. The resulting image was used to create
a mask of the whole organoid (Image Region) and the morphological
properties such as area and width to length ratio were measured from
these masks. We used proprietary software exclusively to validate the
consistency of morphological changes in the spheroids when imaged in
more cumbersome endpoint 3D images.

2.5. Live imaging

Images of spheroids were obtained by acquiring every hour for 96 h.
We tiled 4 fields at 10x objective using the JuLI™ Stage Real-Time Cell
History Recorder (NanoEnTek). To image all 96 wells in our conditions
takes 18 min. The total time of 96 h (4 days) is calculated for every
cycle (1 h). In other words, 96 cycles are acquired in parallel with a
shift in time of up to 18 min. Thus, the interval time is calculated for
each well and the monitoring of spheroid growth for each well can be
considered independent. The difference in time for acquisition of
neighbouring fields within the same well is negligible as an entire well
is imaged in under 12 s. Selection of the image position is nonetheless
critical as it is necessary to ensure that spheroids will be imaged for
96 h. We typically define the central position of the 2 × 2 fields within
the well within ample margins accounting for the maximum expected
spheroid growth in the following 96 h based on previous experiments.

These conditions can be modified for other specific spheroids mon-
itoring needs, other devices and different image acquisitions.
Importantly, image acquisition set up (focus, time exposure, and level
of brightness) may also vary slightly from one experiment to another
and adjustment of focus, brightness level and exposure time are re-
commended. It is worth noting that this analysis applies to imaging
spheroids in transparent material suspension and is more challenging in
situations in which this is not the case. Because the image analysis pi-
pelines in this study are based on Delta images as detailed below, we
recommend choosing the time-frame intervals that effectively capture
growth. In other words, if spheroids growth is not detectable in suc-
cessive timepoints, longer time intervals should be considered.

2.6. Image analysis and segmentation

The image analysis pipeline was created to analyse spheroids’ area
and shape using CellProfiler (Broad Institute) software [11]. Initially,
raw images are extracted from timepoint 1 to 96, then these images are
tiled, batch-loaded and processed using the segmentation pipeline.
Here, the differences in pixel intensity values between consecutive
images are calculated to identify those that are static. Areas that largely
do not change pixel intensities value belong to the background and not
the growing spheroid. A subtraction (Delta) is thus performed on every
pixel of two consecutive timepoints images. A difference of 0 highlights
no change in pixel intensity and therefore no movement between the
two time frames, which is classified as the background. Any differences
above 1 are classified as a moving spheroid and used to generate the
Delta image series. The resultant cell area in this processed Delta image
series is segmented to quantify changes in morphology. We then expand
the pixels that make up the spheroids as detailed in Appendix 1 (step-

Fig. 1. Spheroids obtained from hiPSCs present con-
sistent changes in morphology in different media
conditions. (A) Scheme of this study – hiPSC (left) are
plated in suspension. After 2 days medium is changed
either maintaining in self-renewing E8 conditions or
moved to differentiating KSR BMP4 conditions. Wells
are imaged every hour from day 2 to day 6. Scale Bar,
500 uM. (B) Consistency of changes in shape – We
observe formation of round or branched spheroids in
the different media. Representative experiment at
96 h with n = 9 technical replicates. Images included
are of spheroids in E8 (left) and KSR BMP4 conditions
(right). (C) Endpoint confocal imaging –
Representative spheroids at 96 h (endpoint day 6)
imaged with confocal microscopy. Note the con-
sistent shape changes in DAPI and staining of Oct4
pluripotency marker.
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by-step description of the CellProfiler pipeline). The rationale is similar
to methods described by others [22]. In order to evaluate whether
quantitatively, the values of features extracted from our pipeline could
be used to cluster spheroids from these two conditions, we performed
Principal Component Analysis using Spotfire High Content Profiler
(Tibco, PerkinElmer) on individual spheroids imaged over a 96 h time
course (see Appendix 2B for the list of morphological features con-
sidered).

2.7. Spheroid phenotype classification

Images are squared and centred by cropping on the width dimen-
sion, using the centroid of the segmented Delta mask as the focal point
for each stored image. Data is preprocessed by defining two simple bins
based on metadata obtained from the medium conditions: E8 versus

KSR+BMP4. The classification model accepts a batch of single-channel
grayscale processed images with dimensions of (batch, 1, height, width)
and outputs the softmax probability of spheroid type (rounded or
branched). The model network is setup as follows. ResNet18 was se-
lected as the backbone of the spheroid classification model, as it has
been well-characterised and is available from the PyTorch model
module [23]. The ResNet architecture accepts 3-channels RGB images.
To accommodate our single channel grayscale images into this archi-
tecture, a single 2D convolutional layer was implemented in between
the input and ResNet structure. This layer served to expand the input
tensor from 1-channel to 3-channels, creating an artificial “RGB” image
for input into ResNet. The output layer of ResNet18 was amended to
output 2 possible classifications, instead of 1000. Total experiment
dataset includes 36 wells, of 96 timepoints each, broken equally among
the treatment groups. Datasets for training and evaluation were broken

Fig. 2. Exploiting live images’ frame-to-frame variations to improve segmentation and automated analysis with computational neural networks. (A) Representative
images of spheroids cultured in E8 and KSR+BMP4 media at the beginning (1–2 h), middle (45–46 h), and end (95–96 h) of the observation period. The image Delta
is produced by subtraction of pixel intensities: note that background halos surrounding the spheroids are effectively removed with this strategy. Segmentation is
obtained from the Delta images via a dedicated CellProfiler pipeline (see Appendix 1 for details). Scale Bar, 500 um. (B) colours refer to prediction (top right square)
and actual condition (frame); one early timepoint example is inaccurately classified, whereas one late timepoint example is correct. (C) A tailored Convolutional
Neural Network is trained and used to predict Spheroid Phenotype Classification in two classes based on metadata of the medium conditions used. The graph shows
phenotype prediction accuracy (rolling average over 10 h) over time increasing at later timepoints.
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up as follows. A held-out evaluation set was composed of the images
from four complete wells from each treatment group (~20% of total
samples), selected at random. The training set was composed of the
remaining wells from each treatment. For training, standard augmen-
tation was used (random flip, random crop, and resize). Cross-entropy
against the binary classification for each image was computed as the
loss function, and the ADAM optimiser was used for backpropagation.
The model weights were checkpointed regularly and each checkpoint
model was evaluated against the held-out evaluation set without aug-
mentation or dropout regularisation. Importantly, the evaluation set
was composed of images derived from wells completely excluded from
the training set to prevent overfitting via timepoints directly before or
after that would have existed in the training set.

3. Results

3.1. Spheroid formation

Distinct cellular behaviour is observed in the different medium
conditions for 3D spheroids (Fig. 1A). In essence, hiPSCs spheroids
cultured in KSR+BMP4 medium elongate in shape producing budding
and branches. Conversely, cell structures in E8 medium grow to form
larger, round spheroids. These structures stain positively for plur-
ipotency marker Oct4 as observed under confocal microscopy (Fig. 1C).
The majority of cells are Oct4 positive in round spheroids from E8
conditions whereas only a minority of cells remain pluripotent in KSR
+BMP4 conditions and are typically localised in the ‘neck’ of the
budding regions. Examples of the shape parameters obtained for these
structures from confocal microscopy images are included indicating
changes in spheroid morphology parameters (Appendix 2A).

3.2. Image analysis

Having consistently observed such morphologies in structure from
these diverse conditions in endpoints, we set to evaluate whether
simple live imaging could be used instead of confocal endpoint analysis.
To quantify the phenotypic features variations over time, including size
and shape of hiPSCs we developed a dedicated image analysis workflow
within the framework of the open source CellProfiler software [11]. An
image series, termed Delta, was generated by quantifying the differ-
ences in pixel intensity values of consecutive images within a time
frame. This strategy efficiently subtracts the background from one
image to the other (Fig. 2A). Morphological features from the seg-
mented regions, such as area and form factor, were captured for each
timepoint and Principal Component Analysis of all features is shown
over time (Appendix 2B). This indicates that as time progresses from 1 h
to 96 h the spheroids diverge presenting specific morphological para-
meters. Altogether these observations prompted us to explore whether
the information retained with simple microscopy over time would be
sufficient to predict using an automated approach the conditions of
culture of the specific spheroid. We used the Delta segmentation images
to guide cropped box-shaped image datasets and trained a convolu-
tional neural network by presenting images assigned to two bins of
round/E8 versus branched/KSR+BMP4 cell structures. Examples of
predicted erroneous and correct classifications are given (Fig. 2B, in-
sets). Confusion is present in early timepoints which appear to be al-
most random. Conversely, the binning gradually becomes more

accurate as the morphology of the spheroids in the diverse medium
conditions becomes more distinct over time (Fig. 2C).

4. Conclusion

We propose a novel method to exploit frame to frame variation for
efficient segmentation of simple phase contrast microscopy for live 3D
spheroids. This increases significantly the speed and hence the
throughput compared to existing strategies based on analysis of end-
points. A CellProfiler based pipeline is coupled with a trained con-
volutional network to predict distinct media conditions analysing
morphology. This self-contained method is validated by unsupervised
clustering using principal component analysis and by comparison with
3D confocal microscopy. In this study, spheroids are obtained from
hiPSCs. A broad range of application across diverse cell systems in re-
generative medicine and drug discovery can be pursued. We re-
commend such approaches can be immediately adapted and efficiently
implemented by laboratories using imaging-based high-throughput
methods.
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Appendix 1. Detailed CellProfiler pipeline

Step-by-step description of the CellProfiler pipeline modules to facilitate application of the described strategy to specific readers needs.

Module Function Purpose Output

i. Primary analysis
Image math Calculates absolute difference in pixel intensity

between each frame and the following frame to
generate a new set of images.

Filters out all pixels defined as back-
ground, with no change in intensity
from each frame to the following frame
in the stack.

Save images Exports images as a new stack (Delta) for further
analysis.

Exports a new set of images as a stack
(Delta) that can be analysed.

Identify primary
objects

Filters out objects to only retain those between 1
and 5000 pixels via thresholding.

Identifies objects (areas of pixels in-
tensities that make up the spheroid).

Expand or shrink
objects

Expands each object by 2 pixels. Allows all objects including the ones
that make up the spheroid to be in
contact with each other.
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Split or merge
objects

Merges all objects that are in contact with each
other (i.e. have a distance in pixels of 0).

Transforms all small objects that make
the spheroid into a single object.

Fill objects Holes smaller than an area of 800 pixels will be
filled.

Fills up left-over holes within the ob-
ject (spheroid).

Measure object
size shape

Identifies the size of all objects. Identifies the size of all remaining
objects in the field, including the
spheroid.

Filter objects Removes all objects with an area of less than
60,000 pixels.

Filters out anything not large enough
to be a spheroid.
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Expand or shrink
objects

Shrinks object by 2 pixels. Returns the edge of the spheroid to its
original size after initial 2-pixel ex-
pansion.

ii. Extract features
Measure object

size shape
Measures the morphology properties of the object. Measures features of object (spheroid),

e.g. area, form factor.

Export to sprea-
dsheet

Exports measurements to a spreadsheet for ana-
lysis.

Allows subsequent analysis of exported
values for desired features.

iii. Extract segmented spheroid stack
Convert objects

to image
Converts object to an image, generating a stack of
binary spheroid (termed Binary).

Generates an image from the object
(currently a binary form) to extract
spheroid from Delta stack.

Image math Calculates absolute difference in pixel intensity
between each frame of Delta against Binary,
which generates a set of images of background
frames (termed Background).

Uses Binary spheroid image stack to
remove spheroid from Delta, thus
creating a stack containing only the
Background from Delta.

Image math Calculates absolute difference in pixel intensity
between each frame of Delta and Background to
generate a set of images (termed Segmented).

Removes background of spheroid from
Delta, and generates a stack of images
with a completely segmented spheroid.
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Save images Exports Segmented as a stack. Exports Segmented stack to be subse-
quently analysed.

CellProfiler pipeline and example dataset included in Supplementary.

Appendix 2. Validation with proprietary software

Validation of morphology change in endpoint (Columbus) (A) For the examples images in Fig. 1B, Maximum projection DAPI staining is seg-
mented with Columbus as Mask from Calculated Image. Morphological parameters Width to Length Ratio (top) and Area (bottom) are shown for
representative spheroids analysed to highlight and quantify morphological differences between conditions. (B) Validation of morphology features
value change (Spotfire High Content Profiler, Tibco, PerkinElmer). Multidimensional reduction on morphology features extracted from live image
analysis through the CellProfiler pipeline allows separation of spheroids based on the different conditions. Principal Component Analysis for
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segmented images at each timepoint for E8 (blue) or KSR+BMP4 (orange). Size of the data points represents time; shape represents different wells.
Unsupervised clustering based on morphology parameters becomes apparent after several hours.

Appendix 3. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ymeth.2020.05.017.
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