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A dynamic ordered logit model with fixed effects
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Abstract

We study a fixed-T panel data logit model for ordered outcomes that accommodates fixed

effects and state dependence. We provide identification results for the autoregressive param-

eter, regression coefficients, and the threshold parameters in this model. Our results require

only four observations on the outcome variable. We provide conditions under which a com-

posite conditional maximum likelihood estimator is consistent and asymptotically normal. We

use our estimator to explore the determinants of self-reported health in a panel of European

countries over the period 2003-2016. We find that: (i) the autoregressive parameter is positive

and analogous to a linear AR(1) coefficient of about 0.25, indicating persistence in health sta-

tus; (ii) the association between income and health becomes insignificant once we control for

unobserved heterogeneity and persistence.
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P
(

Yi,t+1 = y′
∣∣Yi,t = y

)

y/y′ 1 2 3 4 5

P(Yi,t = y) 1 36.48 43.40 13.84 5.03 1.26

2 10.23 44.44 35.38 8.77 1.17

3 0.88 10.23 52.18 30.69 6.02

4 0.15 1.08 14.87 59.74 24.16

5 0.08 0.29 4.18 33.38 62.07

Table 1: Current and future self-reported health, United Kingdom.

1 Introduction

Certain individual-level conditions may tend to persist over time, in the sense that a condition has

a memory of a previous period’s state, or may involve an element of adaptation. Furthermore,

the way individuals experience the same condition may vary, and they may also have a different

understanding of how this is measured. A common example that fulfils these characteristics, and

which is used extensively in the literature, is self-reported health status. Health status often depends

on its value in the previous period, as health conditions may persist over time, given that recovery

can take long, and that an illness may even have permanent effects. For example, Table 1 presents a

transition matrix for self-reported health status in the United Kingdom for the period 2003-2016.1

For individuals that report a value of current health in a given year (rows, on a 5-point scale with

5 being the highest), it shows the relative proportion of those that report a certain value in the

subsequent year (columns). A striking feature of this transition matrix is that a lot of mass is on or

near the main diagonal. This feature is found across all countries in our analysis. In other words,

self-reported health status is persistent: individuals tend to stay in the same level of health.

There are at least two explanations for this observed persistence (Heckman, 1981; Honoré and

Kyriazidou, 2000): unobserved heterogeneity and state dependence. Consider first unobserved

heterogeneity. It refers to unobservable characteristics that affect the propensity to report higher

health status. Unobserved heterogeneity is important in the literature on health status, because self-

1More information about the data and source is in Section 5, where we analyze this data using

the methodology proposed in this paper.
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reported health has been used extensively in the literature as a measure of health outcomes (see for

example Bound and Waidmann, 1992; Banerjee et al., 2004; Gravelle and Sutton, 2009; McInerney

and Mellor, 2012). It is often viewed as a limitation that self-reported measures are subjective. For

example, reporting one’s own health may depend on cultural factors (Jylhä et al., 1998; Baron-Epel

et al., 2005; Jürges, 2007), and people may have a different understanding of reference points for

health (Groot, 2000; Sen, 2002). Previous studies have used vignettes to address cross-country

differences in reporting of health and disability (King et al., 2004; Salomon et al., 2004; Kapteyn

et al., 2007). However, the issue with unobserved heterogeneity across individuals remains. As a

result, it is important to take into account the role of unobserved heterogeneity when analyzing self-

reported health data. The appropriate econometric approach to this is to allow for fixed effects.2

A number of studies have found a positive association between income and health (Carrieri and

Jones, 2017; Ettner, 1996; Frijters et al., 2005; Mackenbach et al., 2005), but empirical evidence

of a strong effect is sometimes limited (Larrimore, 2011; Gunasekara, 2011; Johnston et al., 2009).

2Studies have long debated the accuracy and reliability of subjective measures of health, such

as self-reported health status (see for example Butler et al., 1987; Lindeboom and van Doorslaer,

2004; Johnston et al., 2009). As an alternative response to these concerns, a number of objective

measures of health have been included in household surveys. These include blood pressure, BMI,

the number of medicines taken (Health Survey England, 2019), the number of sick days off work,

the number of days hospitalised (BHPS, 2019) etc. Some household surveys ask respondents to

perform a task such as walking across the room or buttoning a shirt to capture any limitations

(SHARE, 2019). Indexes such as the EQ-5D index are being used to cover different types of

conditions and merge them into a single measure. The Euro-D scale measures mental health, and

the CASP-12 index captures quality of life. However, these objective measures are often very

specific to particular diseases, and even when creating a relevant index it may be impossible to

include and accurately reflect all conditions. As such, while objective measures may accurately

capture some health conditions, they have serious limitations in capturing the overall picture of

one’s health.
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Nevertheless, the literature on the impact of economic downturns (which mean reduced income)

has previously demonstrated positive effects of unemployment on health (Ruhm, 2000; Ruhm

and Black, 2002), and more recently, no effect (Ruhm, 2015). What also appears to matter, at

least in terms of happiness, apart from absolute income, is also relative income, i.e. how one’s

income compares to that of those around them (Frijters et al., 2008). The relationship between

income and health is endogenous and complex, and both can be correlated with other factors,

that are not always measured and included in empirical models. For example, Gunasekara et al.

(2011) found that when controlling for unmeasured confounders, the association between the two

becomes weaker. With regards to self-reported hypertension in particular, Johnston et al., (2009)

found no link to income – something that did change when using objective measures. In our paper,

using models that do not control for individual unobserved heterogeneity yields a positive and

statistically significant coefficient (Table 3). However, this becomes insignificant when using fixed

effects, suggesting that there are other factors that potentially drive the association between the two

variables.

Consider now the second explanation for the observed persistence in health outcomes: state de-

pendence. It refers to the possibility that past self-reported health status may be related to current

self-reported health status even after conditioning on unobserved heterogeneity. State dependence

arises if actual (as opposed to self-reported) health shocks are persistent, in the sense that a shock

on health can have a long-lasting effect (a typical example is injury leading to disability). Con-

toyannis et al. (2004), using a random effects approach, found evidence for such persistence in

respondents of the British Household Panel survey.

State dependence in self-reported health can also arise due to adaptation: self-reported health

status may change over time for a person whose actual health has not changed. People tend to adapt

to good or bad developments in life. According to the Global Adaptive Utility Model, individuals

reallocate weights on various domains of life in order to maintain their previous level of utility

(Bradford and Dolan, 2010). Similarly, the AREA model developed by Wilson and Gilbert (2008),

suggests that attention is focused on a change, followed by reaction, explanation, and, finally,
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adaptation. This also applies to health, as health status tends to improve even when individuals’

health has actually not experienced any objective change (Daltroy et al., 1999; Damschroder et

al., 2005), and time since diagnosis is positively associated with self-reported health (Cubí-Mollá

et al., 2017). Whether persistence or adaptation, or both, characterise a variable, this calls for a

dynamic element in a model.

Overall, the challenges with studying self-reported health status is that (a) people with the

same actual health status might be reporting different health levels; and (b) health shocks can have

a lasting effect. Against this background, we propose and analyze a panel data ordered logit model

that includes both fixed effects and a lagged dependent variable. This allows a researcher faced

with panel data and an ordinal outcome variable to disentangle unobserved heterogeneity from

state dependence, and to quantify state dependence. Thus, we address the limitations of using self-

reported health as a proxy for individuals’ health. Our contribution is important for studies using

subjective health measures as it can help correct biases that naturally occur when using this type

of measure.3

Specifically, we study the dynamic ordered logit model with fixed effects:

Y ∗
i,t = αi +Xi,tβ +ρ1

{
Yi,t−1 ≥ k

}
−Ui,t, t = 1,2,3, (1)

Yi,t =





1 if Y ∗
i,t < γ2,

2 if γ2 ≤ Y ∗
i,t < γ3,

...

J if Y ∗
i,t ≥ γJ,

(2)

Ui,t|(αi,Xi,Yi,<t)∼ LOG(0,1), t = 1,2,3, (3)

3For example, happiness is perceived and reported differently across individuals and people

adapt to things that make them happy (Layard, 2006), while shocks on happiness can have a scar-

ring effect on next periods (Clark et al., 2001).
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where 2 ≤ k ≤ J is a fixed and known cutoff for the lagged dependent variable. The person-specific

parameter αi captures unobserved heterogeneity, which we allow to be correlated with the other

quantities in the model in an unrestricted way (fixed effects). The time-varying covariates Xi,t

are collected across time periods in Xi = (Xi,1,Xi,2,Xi,3), and the lagged dependent variables for

period t are collected in Yi,<t = (Yi,0, · · · ,Yi,t−1). The autoregressive parameter ρ is the regression

coefficient on the lagged dependent variable 1
{

Yi,t−1 ≥ k
}

; β is the regression coefficient on the

contemporaneous covariates; and the threshold parameters γ j map the underlying latent variable

Y ∗
i,t into the observed ordered outcome Yi,t . Equation (3) restricts the error terms Ui,t to be i.i.d.

logistic, and is a strict exogeneity assumption on the regressors and past outcomes.4

This model combines a number of noteworthy features. First, it is a model for discrete or-

dered outcomes, and therefore a nonlinear model. Second, it is dynamic, in the sense that the

current outcome depends directly on the outcome in the previous period. This feature, called state

dependence, is governed by the autoregressive parameter ρ . Third, it allows for unobserved het-

erogeneity in an unrestricted way, i.e. it is a fixed effects model. Fourth, the model is only specified

for a small number of time periods, T = 3. Period 0 is unmodelled, but an observation on the

outcome variable in time 0 is required for identification.

We believe that we are the first to provide identification and estimation results for all common

parameters in a dynamic ordered logit model with fixed effects and a fixed number of time periods.

Using four time periods of data on the ordinal outcome variable, we identify the autoregressive

coefficients on the lagged dependent variable, and the regression coefficients on the exogenous

regressors. We also identify the threshold parameters, which makes it possible to interpret the

magnitude of the estimated coefficients. This distinguishes the ordered choice model from the

dynamic binary choice model with fixed effects, where such an interpretation is not available.

4The dynamics in our model are restricted to depend on Yi,t through 1
{

Yi,t−1 ≥ k
}

only. An

alternative model for which we can identify some features is one that is linear in its history, i.e.

Y ∗
i,t = αi +Xi,tβ +ρYi,t−1 −Ui,t. We were unable to use our approach to obtain identification in the

more general model with Y ∗
i,t = αi +Xi,tβ +∑J

j=2 ρ j1
{

Yi,t−1 = j
}
−Ui,t .
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Our identification result suggest a composite conditional maximum likelihood estimator for the

parameters in our model. We establish conditions under which that estimator is consistent and

asymptotically normal.

We use our estimator to investigate the determinants of self-reported health, focusing on the

link between income and health in a panel of European countries over the period 2003-2016. We

obtain two main findings. First, even after controlling for unobserved heterogeneity, persistence

plays a positive and significant role in one’s self-reported health. In other words, one’s health is

dependent on the health in the previous period, which is a reasonable thing to expect, as health

problems may expand over a number of periods, or become permanent. Quantitatively, we esti-

mate a persistence parameter that is analogous to an autoregressive parameter of about 0.25 in a

linear AR(1) model. Second, we find that, when controlling for unobserved heterogeneity, the link

between income and health becomes statistically insignificant, suggesting that other factors might

explain the association between the two. This is in line with studies that have found a smaller or

insignificant association when using fixed effects (Gunasekara, 2011; Larrimore, 2011).

2 Related literature in econometrics

We believe that our paper is the first to provide identification and estimation results for a panel

data model with (i) ordered outcomes; (ii) a lagged dependent variable; (iii) fixed effects; and

(iv) a fixed number of time periods. Our econometric contribution is related to several strands of

literature, each of which features a subset of these features.

Most closely related to our paper is the literature on binary and multinomial choice models

with fixed effects and lagged dependent variables, which features all but (i). The seminal work

by Honoré and Kyriazidou (2000) builds on Cox (1958) and Chamberlain (1985) to estimate the

parameters in dynamic binary choice logit model with fixed effects and time-varying regressors.

Hahn (2001) discusses the information bound for a special case of their model. Honoré and Kyri-

azidou (2019) discuss identification of some closely related models. Honoré and Weidner (2020)
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construct moment conditions that shed light on identification in this and related models, and pro-

vide a
√

n-consistent estimator. Honoré and Tamer (2006), Aristodemou (2020) and Khan et al.

(2020) obtain results for models that do not have logistic errors. For the static multinomial model,

Chamberlain (1980) studies the logit case; Shi et al. (2008) provides results for the general static;

and Magnac (2000) studies the dynamic version. We supplement these results by showing that,

in an ordered choice model, the thresholds in the latent variable model can be identified along

with the regression coefficients and the autoregressive parameter. This allows for a quantitative

interpretation of true state dependence. Such an interpretation is not available in the binary and

multinomial choice models.

The literature on static ordered logit models with fixed effects features all but (ii). This model

was analyzed by Das and van Soest (1999), Baetschmann et al. (2015), and Muris (2017). Our

result differs from the results in those papers, because we provide results for a dynamic version of

the ordered logit model.

The literature on random effects dynamic ordered choice models features all but (iii). Random

effects dynamic ordered choice models have been studied and applied extensively (Contoyannis et

al., 2004; Albarran et al., 2019). Such approaches require strong restrictions on the relationship

between the unobserved heterogeneity and the exogeneous variables in the model. Such restrictions

are usually unappealing to economists, as evidenced by the fact that they are rarely used in linear

models. Our approach does not impose random effects restrictions and is the first to provide a fixed

effects approach for dynamic ordered choice models.

Note that our approach is fixed-T consistent. The difficulty of allowing for fixed effects is

alleviated when one can assume that T → ∞, referred to as “large-T ”. Large-T fixed effects dy-

namic ordered choice models have been studied by Carro and Traferri (2014) and Fernández-Val

et al. (2017), see also Carro (2007) for the binary outcome case. In the large-T case, one can use

techniques that correct for the bias that comes from including fixed effects in the nonlinear panel

model. This approach does not feature (iv). These techniques are not appropriate for our empirical

application, which is a rotating panel with T = 4.
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One limitation of our approach is that we restrict the way in which the lagged dependent vari-

able enters the model. The random effects and large-T approach can accommodate a richer dy-

namic specification. We leave for future work whether such an extension is possible with a fixed-T

fixed-effects approach.

3 Identification

We normalize γk = 0, where k is as in equation (1). This scale normalization is without loss

of generality because the scale of αi is unrestricted. Our model implies that the binary variable

Di,t(k) = 1{Yi,t ≥ k} follows the dynamic binary choice logit model in Honoré and Kyriazidou

(2000), HK hereafter. Specifically, equation (3) in HK applies to the transformed model

Di,t(k) = 1
{

Xi,tβ +ρDi,t−1 (k)+αi −Ui,t ≥ 0
}
,

i.e. the transformed model follows a dynamic binary choice logit model with fixed effects. The

implied conditional probabilities relevant for our analysis are

P
(

Di,0 (k) = 1
∣∣Xi,αi

)
≡ p0 (Xi,αi) , (4)

and, for t = 1,2,3,

P(Di,t (k) = 1|Xi,αi,Di,<t (k)) =
exp(αi +Xi,tβ +ρDi,t−1 (k))

1+ exp(αi +Xi,tβ +ρDi,t−1 (k))
, (5)

where we have let Di,<t (k) = (Di,0 (k) , · · · ,Di,t−1 (k)). HK provide conditions that guarantee iden-

tification of β and ρ by constructing a conditional probability that features (β ,ρ) but that is free

of αi.

If Yi,t has at least three points of support, there is information in Yit beyond Dit (k). In the
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remainder of this section, we show that this information can be used to identify the threshold

parameters

γ ≡ (γ2,γ3, · · · ,γk−1,γk+1, · · · ,γJ) .

This leads to an interpretation of the magnitude of (β ,ρ) that is not available for the dynamic

binary choice model. Muris (2017, Section III.C) discusses this for the static panel data ordered

choice models (ρ = 0).

We now construct a conditional probability that features (β ,ρ ,γ) but not the incidental param-

eters αi. To this end, extend the definition

Di,t ( j) = 1{Yi,t ≥ j} , 2 ≤ j ≤ J,

to thresholds j 6= k, and abbreviate Di,t ≡ Di,t (k). Define the events
(
A j,l,B j,l,C j,l

)
, with 2 ≤ j ≤

k ≤ l ≤ J,5 as follows:

A j,l =
{

Di,0 = d0,Di,1 = 0,Di,2 (l) = 1,Di,3 ( j) = d3

}
,

B j,l =
{

Di,0 = d0,Di,1 = 1,Di,2 ( j) = 0,Di,3 (l) = d3

}
,

C j,l = A j,l ∪B j,l.

For d0 = d3 = 0, the event A j,l corresponds to moving up in the middle periods t = 1,2, starting

below k to moving up to at least l ≥ k. The event B j,l corresponds to moving down in the middle

periods, starting from at least k and moving below j ≤ k.

5Choosing j ≤ k guarantees that when Di,2 ( j) = 0, the lagged dependent variable in period 3

is 0. The opposite is true for l ≥ k and Di,2 (l) = 1. There would be no gain from considering

a threshold different from k in the first period. Using k as the threshold in the second period is

the only way to cancel out the threshold parameters from period 1. Given that we are using the

subpopulation Xi,2 = Xi,3, the fact that j, l are used alternately in periods 2 and 3 does not create

additional difficulties.
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If j = k = l, the event Ck,k corresponds to switchers (observations with Di1 +Di2 = 1), as in

HK. In the ordered model, it is possible to vary the cutoffs in the periods t = 2,3 if the dependent

variable has more than two points if support. Varying the cutoffs over time is what distinguishes

our conditioning event from that in HK. It is what allows us to identify the threshold parameters.

The following sufficiency result shows that different choices of ( j, l) reveal different com-

binations of thresholds in certain conditional probabilities that do not depend on the incidental

parameters αi. In what follows, the logistic function is denoted by Λ(u) = exp(u)/(1+ exp(u)),

and the change in the regressors from period 1 to 2 by ∆Xi = Xi2 −Xi1.

Theorem 1 (Sufficiency). For the dynamic ordered logit model with fixed effects, for any ( j, l)

such that 2 ≤ j ≤ k ≤ l ≤ J, and for any d0,d3 ∈ {0,1} ,

P
(

A j,l

∣∣Xi,C j,l,Xi,2 = Xi,3

)
= 1−Λ

(
∆Xiβ +ρ (d0 −d3)+(1−d3)γl +d3γ j

)
(6)

P
(

B j,l

∣∣Xi,C j,l,Xi,2 = Xi,3

)
= Λ

(
∆Xiβ +ρ (d0 −d3)+(1−d3)γl +d3γ j

)
. (7)

Identification of the model parameters comes from considering all possible combinations of

cutoffs. It is clear from Theorem 1 that different choices for ( j,k, l,d0,d3) reveal information

about distinct linear combinations of (ρ ,γ). By considering multiple choices of ( j,k, l,d0,d3), and

then aggregating the resulting information, we can identify all the model parameters. We require

an additional assumption before stating our main identification result.

Assumption 1. For all ( j, l) such that 2 ≤ j ≤ k ≤ l, and for all d0,d3 ∈ {0,1}

Var
(

∆Xi|Xi,2 = Xi,3,C j,l

)

is invertible.

This assumption guarantees that for each choice of ( j, l), there is sufficient variation in ∆Xi in

the subpopulation of stayers Xi,2 = Xi,3 to identify the regression coefficient. This assumption can

be weakened: we only need sufficient variation for some ( j, l). However, if it fails for sufficiently
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many ( j, l), identification of some of the threshold parameters may fail.

Denote by Yi = (Yi,0,Yi,1,Yi,2,Yi,3) the time series of dependent variables for a given individual.

Theorem 2 (Identification). If Assumption 2 holds, then (β ,ρ ,γ) can be identified from the joint

distribution of the vector (Xi,Yi) generated by the dynamic ordered logit model with fixed effects.

4 Estimation

Theorem 1 suggests that, for each choice of 2 ≤ j ≤ k ≤ l, we could use a conditional maximum

likelihood estimator (CMLE) to estimate a linear combination of the model parameters. Theorem 2

suggests that a composite CMLE (CCMLE), based on the combination of conditional likelihoods

across all choices of ( j,k, l), may be used to estimate the model parameters (β ,ρ ,γ). In this

section, we define that CCMLE and establish conditions under which it has desirable large sample

properties. We focus on the discrete regressor case. Results for continuous regressors can be

obtained by adapting Theorems 1 and 2 in HK to our case.

The binary random variable

Ci, jl = 1
{
(Di,1 = 0,Di,2 (l) = 1) or (Di,1 = 1,Di,2 ( j) = 0)

}
×1
{

Xi,2 = Xi,3

}
.

indicates whether i’s time series fits the description in C j,l = A j,l ∪B j,l , and that it is also a “stayer”

in the sense that Xi2 = Xi3. Note that if Ci, jl = 1, then Di,1 = 1 implies that the individual time

series is of the type B j,l. Similarly, if Ci, jl = 1, then Di,1 = 0 implies that individual i is of type

A j,l.

In the log-likelihood contribution below, (8), we have substituted Di,0 for d0 in equation (7).

The value to substitute for d3 depends on whether we are in case A or B. To that end, define

Di,3, jl =





Di,3 ( j) if Di,1 = 0,

Di,3 (l) if Di,1 = 1.

12



The conditional log likelihood contribution for individual i, for cutoffs ( j, l) , 2 ≤ j ≤ k ≤ l ≤ J,

can then be written

li, jl
(
β ,ρ ,γ j,γl

)
=Ci, jl

[
Di,1 ln

{
Λ
(
∆Xiβ +ρ

(
Di,0 −Di,3, jl

)
+ γl

(
1−Di,3, jl

)
+ γ jDi,3, jl

)}
+

+(1−Di,1) ln
{

1−Λ
(
∆Xiβ +ρ

(
Di,0 −Di,3, jl

)
+ γl

(
1−Di,3, jl

)
+ γ jDi,3, jl

)}]
.

(8)

The CCMLE is

θ̂n =
(

β̂n, ρ̂n, γ̂n

)
= argmax

1

n
∑

2≤ j≤k≤l

n

∑
i=1

li, jl
(
β ,ρ ,γ j,γl

)
, (9)

where we have implicitly imposed γk = 0 in the definition of li, jl.

We maintain the following assumption to establish the asymptotic properties of the CCMLE.

Assumption 2 (Stayers). P(Xi,2 = Xi,3)> 0.

With additional technical work, this assumption can be relaxed to the case where Xi,2 −Xi,3 is

continuously distributed with positive density around zero, see HK’s Theorem 1 and 2.

Theorem 3. Let {(Yi,Xi) , i = 1, · · ·n} be a random sample of size n from the dynamic ordered logit

model with fixed effects with true parameter values θ0 = (β0,ρ0,γ0). Under Assumptions 1 and 2,

and for any value of θ0,

θ̂n
p→ θ0 as n → ∞.

Furthermore,

√
n

(
θ̂n −θ0

)
d→ N

(
0,H−1ΣH−1

)
as n → ∞,

where Ω as the variance of the score of the composite likelihood, defined in (21), and H is the

associated Hessian defined in (22).

Remark 1. The convexity of the summands in (9) means that the objective function is convex. We
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compute the CCMLE using the Newton-Raphson algorithm in R’s nlm function (R Core Team,

2020). Supplying analytical gradients and Hessians speeds up the estimation.

5 Persistence in self-reported health status

Our analysis uses panel data for the period 2003-2016 from the European Union Statistics on In-

come and Living Conditions (EU-SILC), see Eurostat (2017) for detailed documentation. The

microdata is publicly available upon request.6 EU-SILC provides a set of indicators on income

and poverty, social inclusion, living conditions and, importantly, health status. For each coun-

try in the European Union, plus Iceland, Norway, and Switzerland, EU-SILC contains data on a

representative sample of the population of those 18 years and older.

EU-SILC is a rotating panel. Every individual is followed over a period of two to four years.

The total number of individual-years for the period 2003-2016 is 1273877. Our identification result

demands four observations per individual, so we restrict attention to individuals that report valid

information on their health status for 4 consecutive years. This restriction, and the restriction that

the explanatory variables that we use in the analysis below have non-missing information, leaves us

with a sample of 260601 individuals, for 1042404 individual-years. The proportion of incomplete

samples differs across countries. As a result, the sample we work with may not be representative

of EU-SILC’s population. For example, out of the 27 countries that contribute to our sample, the

largest contributors are Italy (with 43385 individuals), Spain (25634), and Poland (22628); the

smallest are Portugal (12), Iceland (1496), and Slovakia (1982).

The outcome variable in our analysis is self-reported health status: self-perceived physical

health, elicited during EU-SILC interviews. The person answers the question on how she perceives

her physical health to be in general, at the date of the survey, by classifying it as one of: (1) bad

and very bad (12% in our sample); (2) fair (26%); (3) good (44%); (4) very good (19%).7 Out of

260601× 3 = 781803 health transitions that we observe, most often there is no change in health

6The data were made available to us by Eurostat under Contract RPP 132-2018-EU-SILC.
7We have merged the separate categories “bad” and “very bad” in the original reported variable,
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Log income

mean sd

health status 1 8.68 0.92

2 8.95 0.94

3 9.29 0.94

4 9.51 0.90

∆Log income

mean sd

-3 0.05 0.47

∆health status -2 0.06 0.43

-1 0.07 0.40

0 0.08 0.38

1 0.08 0.40

2 0.08 0.43

3 0.07 0.49

Table 2: Health and income

status (65.6%). Decreases by one unit (16%) are slightly more frequent than increases by one unit

(15%). Two-unit increases (1.2%) and decreases (1.5%) are infrequent, and three-unit increases

(0.08%) and decreases (0.12%) are rare.

Table 2 relates the outcome variable, and changes to the outcome variable, to our main explana-

tory variable of interest, log income (total disposable household equivalised income). Household

income was scaled using the composition and size of each household. This scale is based on the

OECD modified equivalence scale, which gives a weight of 1.0 to the first adult in the household,

0.5 to other adults and 0.3 to each child (under 14 years old).

The table provides descriptive statistics for log income in our sample, grouped by health status.

The top panel is in levels. Average income is increasing in health status. The bottom panel is in

changes, which represents one way to control for unobserved heterogeneity. The implied increases

for changes are close to zero, hinting at the imported role of unobserved heterogeneity.

Table 3 reports a set of descriptive statistics on income and other explanatory variables, de-

scribed in the next few paragraphs. In our analysis below, we control for some time-varying vari-

ables that are standard in the literature. First, the number of children is measured as the number

because there is only a small fraction of observations with “very bad” health status.
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of persons living in the private household that are age 14 or less, top-coded at 3 children. In our

sample, 74% of respondents have no children, and the average number of children is 0.40. Second,

marriage status is a dummy variable that indicates being married or living together. The majority

of the individuals are married (61%). Third, we use a self-reported indicator for labor market status

variable that we map onto 4 values: (1) employed, 51%; (2) unemployed, 5.2%; (3) retired, 12%

and (4) other, 32%. The value “other” includes students, permanently disabled or unfit to work,

and fulfilling domestic tasks and care responsibilities.

In our fixed effects results below, we do not further control for variables that do not change over

the sample period for a given individual. However, we include a set of time-invariant explanatory

variables when we obtain results for non-fixed effects estimators.8 Table 3 provides descriptive

statistics for such variables. The total sample contains slightly more females (54%) than males

(46%). The proportion of individuals aged between 18 and 25 is 8.2%; 21% of individuals are

aged 65 or more. With regards to education, 1.3% of the sample have no schooling (0); 14% have

attended primary school (1); 19% have lower secondary education (3); 42% have upper secondary

education (4); 3.8% have post-secondary education (5) and 20% have tertiary education (6). Ge-

ographically, 39% of individuals live in areas with a high degree of urbanisation and 39% live in

areas with low levels of urbanisation.

We estimate the parameters in the dynamic ordered choice model with fixed effects, with latent

variable outcome equation

SRH∗
i,t = αi +ρ1

{
SRHi,t−1 ≥ 3

}
+β1 log incomeit +β2childit +β3marriedit+ (10)

+β4unempit +β5retiredit +β6otherit −Uit.

Regression results are presented in Table 4. The first four columns (a-d, “DOLFE”, for dynamic

ordered logit with f ixed effects) presents the results for (10) using the estimator described in Sec-

8Coefficient estimates for these variables are omitted from the main text, and reported in Ap-

pendix B.
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mean sd

health status (1) bad and very bad 0.115

(2) fair 0.260

(3) good 0.437

(4) very good 0.187

Time-varying explanatory variables

log income 9.172 0.965

child 0.401 0.755

married 0.614

employment status employed 0.512

unemployed 0.052

retired 0.117

other 0.319

Time-invariant explanatory variables

age group [18;25] 0.082

]25;35] 0.145

]35;45] 0.188

]45;55] 0.194

]55;65] 0.182

]65;∞] 0.208

urbanisation high 0.388

middle 0.224

low 0.388

male 0.460

educ no schooling 0.013

primary 0.143

lower secondary 0.188

upper secondary 0.420

post-secondary 0.038

tertiary 0.199

n 260601

T 4

nT 1042404

Table 3: Descriptive statistics

17



tion 4. Different values of h refer to a bandwidth parameter that we introduce because one of

the explanatory variables is continuous, as in HK. Column (d) omits the employment variables, to

check whether relationship between employment status and income matters for estimation of the

effect of income on health.

We also present estimation results for different estimators. Results for the static ordered logit

model with fixed effects, i.e. setting ρ = 0 in (10), are obtained using the estimator in Muris

(2017), and presented in column (e) (“FEOL”). Column (f) (“DOL”) estimates a dynamic ordered

logit model without fixed effects, i.e. (10) with αi = 0. Column (g) (“OL”) presents results for

cross-sectional ordered logit estimator that does not take into account fixed effects or dynamics (i.e.

αi = ρ = 0 in (10)). We also present results for a static linear model with (h, “FELM”) and without

(i, “LM”) fixed effects. The standard errors for all estimators are obtained using the bootstrap

(500 replications). For the estimators that are not of the fixed effects type, we additionally control

for education, gender, education level and the level of urbanisation. DOLFE uses four periods of

data, corresponding to t = 0,1,2. For comparability, the other dynamic estimator also uses periods

0,1,2; static estimators use periods 1,2.

Income. Our main explanatory variable of interest is income (log income, coefficient β1).

Across almost all specifications, we find a positive association between income and self-reported

health. The only exception is column (b), where the point estimate is negative, and about the same

magnitude as the standard error.

Controlling for unobserved heterogeneity leads to a very strong reduction in the magnitude of

the association. For example, for the static case, a comparison of columns (e) and (g) says that, for

the static case, controlling for unobserved heterogeneity reduces the coefficient on income by more

than a factor 20. For this comparison, note that the threshold differences increase, suggesting that

the scale increases; compare also the coefficients on the other variables, with an unchanged order of

magnitude. We are not the first to observe a limited association between income and self-reported

health. In a review of the literature, Gunasekara et al. (2011) found a small positive link between

income and self-reported health, which is reduced when controlling for unmeasured confounders.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

DOLFE DOLFE DOLFE DOLFE FEOL DOL OL FELM LM

h = 1 h = 0.1 h = 10 h = 1

log(income) 0.049 -0.047 0.059 0.061 0.020 0.340 0.492 0.003 0.194

(0.033) (0.056) (0.029) (0.029) (0.019) (0.004) (0.004) (0.003) (0.002)

child -0.030 0.006 -0.031 -0.026 0.021 0.060 0.089 0.002 0.033

(0.051) (0.069) (0.050) (0.049) (0.032) (0.005) (0.005) (0.005) (0.002)

married 0.139 -0.041 0.157 0.130 0.164 0.073 0.141 0.029 0.062

(0.087) (0.119) (0.086) (0.088) (0.053) (0.007) (0.008) (0.009) (0.003)

unemp -0.188 -0.230 -0.178 -0.196 -0.242 -0.308 -0.033 -0.127

(0.070) (0.110) (0.068) (0.038) (0.014) (0.015) (0.007) (0.006)

retired -0.132 -0.043 -0.139 -0.154 -0.050 -0.097 -0.027 -0.047

(0.082) (0.119) (0.080) (0.041) (0.010) (0.011) (0.007) (0.004)

other -0.370 -0.207 -0.369 -0.473 -0.771 -1.087 -0.082 -0.460

(0.061) (0.087) (0.061) (0.040) (0.010) (0.012) (0.007) (0.005)

ρ 0.733 0.723 0.733 0.734 1.987

(0.020) (0.025) (0.020) (0.017) (0.023)

γ2 -3.275 -3.260 -3.272 -3.211 -3.487 -2.506 -1.992

(0.054) (0.068) (0.053) (0.048) (0.015) (0.007) (0.006)

γ4 3.326 3.356 3.329 3.321 3.997 3.089 2.603

(0.055) (0.076) (0.055) (0.054) (0.024) (0.006) (0.006)

Table 4: Main results.
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Interestingly, Johnston et al. (2009) found no link between self-reported hypertension and income;

an association that, however, became positive when using objective measures of hypertension.

The estimated effect of income also changes when we control for state dependence. Comparing

columns (f) and (g), we see that controlling for state dependence in a model without unobserved

heterogeneity reduces the association between income and self-reported health. So, individually

controlling for unobserved heterogeneity or for dynamics reduces the magnitude of the association

between health and income.

Finally, a comparison between columns (a) and (d) shows that the estimate for income associ-

ation is robust to controlling for employment status,

State dependence. We estimate an autoregressive parameter of around 0.75, with threshold

differences of about 3. The estimated ratio of ρ to the thresholds (which measure the distance

from category 3) are much lower than for column (f). This confirms the importance of controlling

for unobserved heterogeneity, which reduces the estimated magnitude of persistence by a factor 3.

Nevertheless, even when controlling for unobserved (and observed) heterogeneity, we find strong

evidence for large, positive persistence in self-reported health.

There are at least two ways to get a sense of the magnitude of persistence. The first approach,

also available for binary choice methods, is to compare estimates of ρ to estimates of regression

coefficients. For example, in our preferred specification in column (a), a health shock that lifts you

from any category below 3, to category 3 or 4, has an impact on future health that is almost 4 times

that of becoming unemployed. The impact is more than 5 times that of marrying.

The second approach to interpreting estimates of ρ uses the estimated thresholds to obtain

an estimate similar to a linear autoregressive model.9 Differences between the thresholds are a

measure of the distances between two categories. If γ2 = −γ4, then categories 2 and 3 are as far

apart as categories 3 and 4. In such a case, a linear model may yield similar results in terms of

partial effects. In this case, −ρ/γ2 and ρ/γ3 can be interpreted as linear regression coefficients for

9This approach is not available for binary choice models because threshold parameters are not

available.
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that category; we find that they are about 0.25. Said differently, we find the analog of an AR(1)

coefficient of 0.25 in a linear model.

Other time-varying covariates. The literature so far has been inconclusive on how retirement

is associated with health. On one hand, retiring allows more time for health-promoting activities,

and reduces work-related stress. On the other hand, people may lose traction and motivation and

may become less active. Therefore, while Coe and Zamarro (2011) find that retirement improves

health, Behncke (2012) finds an increase in the likelihood of disease following retirement. In

our DOLFE model, the coefficient is statistically insignificant. This suggests that the association

between retirement and health may not be as strong as previously thought. Compared to the FEOL

model, the effect of retirement on health disappears when controlling for state dependence.

The extensive literature on the link between unemployment and health in particular, and eco-

nomic conditions and health more generally, is broadly inconclusive. Some studies have suggested

a protective role of unemployment on health (Ruhm, 2000), while others suggest that unemploy-

ment is detrimental for health (McInerney and Mellor, 2012). Our results appear to be more in line

with the findings of Ruhm (2015) and Böckerman and Ilmakunnas (2009). In DOLFE, the coeffi-

cient of being unemployed is negative and statistically significant. Controlling for state dependence

does not change things compared to the FEOL model.

Having children is insignificant in our DOLFE model, while previous studies have provided

mixed findings on this question (Mckenzie and Carter, 2013; Evenson and Simon, 2005). This is

also insignificant in the FEOL model, suggesting that previous findings on having children might

have been driven by unobserved heterogeneity.

Being married is generally considered a protective factor for health (Kaplan and Kronick, 2006;

Molloy et al., 2009). In our model, however, it is statistically insignificant – as opposed to the

FEOL model where it was positive and significant. Thus, controlling for state dependence appears

to be important for this variable.
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6 Conclusion

This paper studies a fixed−T dynamic ordered logit model with fixed effects (DOLFE) and is

the first to provide identification and estimation results for all common parameters in a dynamic

ordered logit model with fixed effects and a fixed number of time periods. The results require

only four time periods of data on the ordinal outcome variable. We demonstrate identification of

the autoregressive coefficients on the lagged dependent variable, the regression coefficients on the

exogenous regressors, and differences of the threshold parameters. The latter makes it possible to

interpret the magnitude of the coefficients.

Including fixed effects and state dependence in the model is particularly relevant for self-

reported health, a measure that is widely used in the literature. Future research using self-reporting

health can benefit from our model for two main reasons. First, controlling for fixed effects, one can

take into account unobserved heterogeneity (Carro and Traferri, 2014; Halliday, 2008; Fernández-

Val et al., 2017), which is especially important due to differences in understanding and reporting

health status (Groot, 2000; Sen, 2002; Jylhä et al., 1998; Baron-Epel et al., 2005; Jürges, 2007).

Second, it incorporates elements of persistence (Contoyannis et al., 2004; Ohrnberger et al., 2017;

Hernández-Quevedo et al., 2008; Roy and Schurer, 2013) or adaptation (Cubí-Mollá et al., 2017;

Daltroy et al., 1999; Damschroder et al., 2005; Heiss et al., 2014) by controlling for state depen-

dence (Carro and Traferri, 2014; Fernández-Val et al., 2017; Halliday, 2008). Thus, using our

estimator addresses such biases often present in studies using self-rated health (Davillas et al.,

2017).

We thus applied the new dynamic ordered logit model with fixed effects to investigate the

determinants of self-reported health, focusing on the link between income and health in a panel of

European countries. We found that when controlling for unobserved heterogeneity, the association

between income and health becomes statistically insignificant. This is in line with studies that have

found a smaller or insignificant association when using fixed effects (Gunasekara, 2011; Larrimore,

2011) – while other studies have suggested a positive association between the two (Carrieri and

Jones, 2017; Ettner, 1996; Frijters et al., 2005; Mackenbach et al., 2005). Being retired or married
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also becomes statistically insignificant in our model when controlling for state dependence. Being

unemployed or having children does not appear to be associated with self-reported health in our

model.

Our empirical results suggest that persistence plays a positive and significant role in one’s self-

reported health. In other words, one’s health is dependent on the health in the previous period,

which is a reasonable thing to expect, as health problems may expand over a number of periods, or

become permanent. This element reflects persistence of health status over time (Contoyannis et al.,

2004). Furthermore, what is particularly interesting is that in our data, self-reported health tends to

improve, on average, over time - even as people become four years older during the study period -

and being older is typically associated with worse health outcomes. Therefore, it is reasonable to

believe that this improvement in self-reported health is often subjective, and does not necessarily

reflect one’s objective health level. This element might reflect adaptation to health problems: Even

though one’s health does not improve, they adapt to their situation and therefore report better health

(Cubí-Mollá et al 2017; Daltroy et al., 1999; Damschroder et al., 2005). This second element is a

typical bias when using self-reported health outcomes, and our model helps correct such biases by

introducing the dynamic element to a fixed effects ordered model. Another interesting finding is

that, when controlling for unobserved heterogeneity, the link between income and health becomes

statistically insignificant, suggesting that other factors might explain the association between the

two.

Overall, measurement bias in studies using self-reported outcomes often poses challenges to

research, that may discourage the use of such variables. Our model addresses these biases, and

thus provides a basis for more choices in conducting research with databases that provide such

variables.
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A Proofs

Proof of Theorem 1. Recall the definition of the events in the main text, for 2 ≤ j ≤ k ≤ l ≤ J,

A j,l =
{

Di,0 (k) = d0,Di,1 (k) = 0,Di,2 (l) = 1,Di,3 ( j) = d3

}

B j,l =
{

Di,0 (k) = d0,Di,1 (k) = 1,Di,2 ( j) = 0,Di,3 (l) = d3

}
,

C j,l = A j,l ∪B j,l.
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The following derivations modifies the development in HK (p. 843-844). The probability of the

event B j,l, conditional on the covariates Xi and the unobserved heterogeneity αi is given by

P
(

B j,l

∣∣Xi,αi

)
= p0 (Xi,αi)

d0 [1− p0 (Xi,αi)]
1−d0 (11)

× exp(αi +Xi,1β +ρd0)

1+ exp(αi +Xi,1β +ρd0)

× 1

1+ exp
(
αi +Xi,2β +ρ − γ j

)

× [exp(αi +Xi,3β − γl)]
d3

1+ exp(αi +Xi,3β − γl)
.

Similarly, for A j,l,

P
(

A j,l

∣∣Xi,αi

)
= p0 (Xi,αi)

d0 [1− p0 (Xi,αi)]
1−d0 (12)

× 1

1+ exp(αi +Xi,1β +ρd0)

× exp(αi +Xi,2β − γl)

1+ exp(αi +Xi,2β − γl)

×
[
exp
(
αi +Xi,3β +ρ − γ j

)]d3

1+ exp
(
αi +Xi,3β +ρ − γ j

) .

The probability of event A j,l, conditional on the event C j,l = A j,l ∪B j,l and on Xi,2 = Xi,3 is given

by

P
(

A j,l

∣∣Xi,αi,C j,l,Xi,2 = Xi,3

)
=

P
(

A j,l,A j,l ∪B j,l

∣∣Xi,αi,Xi,2 = Xi,3

)

P
(

A j,l ∪B j,l

∣∣Xi,αi,Xi,2 = Xi,3

)

=
P
(

A j,l

∣∣Xi,αi,Xi,2 = Xi,3

)

P
(

A j,l

∣∣Xi,αi,Xi,2 = Xi,3

)
+P

(
B j,l

∣∣Xi,αi,Xi,2 = Xi,3

)

=
1

1+P
(

B j,l

∣∣Xi,αi,Xi,2 = Xi,3

)
/P
(

A j,l

∣∣Xi,αi,Xi,2 = Xi,3

) . (13)

where the first step follows from the definition of conditional probability; the second follows from

the fact that A j,l and B j,l are disjoint; the third from division by the probability of A j,l. Plugging the

conditional probabilities (11) and (12) into the final expression (13) in the display below obtains
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our final sufficiency result:

P
(

A j,l

∣∣Xi,C j,l,Xi,2 = Xi,3

)
=

1

1+ exp
(
∆Xiβ +ρ (d0 −d3)+(1−d3)γl +d3γ j

) , (14)

P
(

B j,l

∣∣Xi,C j,l,Xi,2 = Xi,3

)
=

exp
(
∆Xiβ +ρ (d0 −d3)+(1−d3)γl +d3γ j

)

1+ exp
(
∆Xiβ +ρ (d0 −d3)+(1−d3)γl +d3γ j

) . (15)

Proof of Theorem 2. For notational convenience, we refer to the conditional probability obtained

in our sufficiency result, Theorem 1, equation (15), as

p jl (Xi,d0,d3) = P
(

B j,l

∣∣Xi,C j,l,Xi,2 = Xi,3

)

= Λ
(
∆Xiβ +ρ (d0 −d3)+(1−d3)γl +d3γ j

)
. (16)

Evaluate this for the case of j = k = l and for d0 = d3 = 0,

pkk (Xi,0,0) = Λ(Xiβ ) ,

which is a simplification of (16) because the second and fourth term are zero due to d0 = d3 = 0

and the third term is zero because of the choice of l and the scale normalization, γl = γk = 0. Then

β = Ekk,00

[
∆X

′
i ∆Xi

]−1

Ekk,00

[
∆X

′
i Λ−1 (pkk (Xi,0,0))

]
,

where E jl,00 is the expectation conditional on
(
Xi,C j,l,Xi,2 = Xi,3

)
and using the cutoffs j = l = k

and starting and ending values d0 = d3 = 0. The invertibility of the first term is due to Assumption

1, and the second term is well-defined because pkk is bounded away from 0 and 1 because of the

logistic errors. This obtains identification of β .

Next, note that

pkk (Xi,1,0) = Λ(∆Xiβ +ρ) .
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From this we obtain

ρ = Ekk,10

[
Λ−1 (pkk (Xi,1,0))−∆Xiβ

]
,

where Ekk,10 now uses starting and ending values d0 = 1 and d3 = 0. This identifies the persistence

parameter, since β was identified previously.

To identify the thresholds γl, l > k, consider that for all l > k:

pkl (Xi,0,0) = Λ(∆Xiβ + γl) ,

γl = Ekl,00

[
Λ−1 (pkl (Xi,0,0))−∆Xiβ

]
.

Finally, to identify the thresholds γ j, j < k, consider that for all j < k,

p jk (Xi,1,1) = Λ
(
∆Xiβ + γ j

)
,

γ j = E jk,11

[
Λ−1

(
p jk (Xi,1,1)

)
−∆Xiβ

]
.

Proof of Theorem 3. Consistency. We will use the fact that the objective function is concave

(demonstrated in the next paragraph). We can therefore use Theorem 2.7 in Newey and McFadden.

That condition (i, identification) holds is suggested by our identification result in Theorem 2. The

information inequality and Assumption 1 ensure that identification is not lost when moving to the

composite conditional likelihood function, see also the Hessian below. Condition (iii, pointwise

convergence) follows from a law of large numbers for i.i.d. data.

To see that the objective function is concave, denote Zi jl =
(
∆Xi,Di,0 −Di,3, jl,

(
1−Di,3, jl

)
,Di,3, jl

)

and θ jl =
(
β ,ρ ,γl,γ j

)
, so that

li, jl
(
θ jl

)
=Ci, jl

[
Di,1 lnΛ

(
Zi, jlθ jl

)
+(1−Di,1) ln

[
1−Λ

(
Zi, jlθ jl

)]]
, (17)
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so that the score contribution is

si, jl

(
θ jl

)
=Ci, jl

[
Di,1 −Λ

(
Zi, jlθ jl

)]
Z

′
i, jl (18)

and the contribution to the Hessian is

Hi, jl

(
θ jl

)
=−Ci, jlΛ

(
Zi, jlθ jl

)(
1−Λ

(
Zi, jlθ jl

))
Z

′
i, jlZi, jl. (19)

It can be seen immediately from (19) that li, jl
(
θ jl

)
is concave: Ci, jl ∈{0,1}, Λ

(
Zi, jlθ jl

)(
1−Λ

(
Zi, jlθ jl

))
∈

(0,1), and Z
′
i, jlZi, jl is positive semi-definite. Because sums of concave functions are concave, the

objective function

ln (β ,ρ ,γ) = ∑
2≤ j≤k≤l

ln, jl
(
β ,ρ ,γ j,γl

)

is concave. This completes the proof of concavity.

Asymptotic normality. To demonstrate asymptotic normality of the estimator, we will verify

the conditions in Theorem 3.1 of NM94. Condition (i, interior) holds by construction. The fact that

condition (ii, twice CD) holds can be seen by inspecting the expression of the second derivative

in (19). Since the composite conditional likelihood function is a sum of functions of that form,

it is also twice continuously differentiable. Condition (iii, CLT for score) holds because standard

central limit theorems for i.i.d. data apply to (18). To see this, note that

Var
[
si, jl

(
θ jl,0

)]
= E

[
si, jl

(
θ jl,0

)
si, jl

(
θ jl,0

)′]

= E

[
Ci, jl

[
Di,1 −Λ

(
Zi, jlθ jl

)]2
Z

′
i, jlZi, jl

]

= E

[
E

[
Ci, jl

[
Di,1 −Λ

(
Zi, jlθ jl

)]2
Z

′
i, jlZi, jl

]∣∣∣Zi, jl,Ci, jl

]

= E
[
Ci, jlE

[
Di,1 −Λ

(
Zi, jlθ jl

)2
∣∣∣Zi, jl,Ci, jl

]
Z

′
i, jlZi, jl

]

= E

[
Ci, jlΛ

(
Zi, jlθ jl

)[
1−Λ

(
Zi, jlθ jl

)]
Z

′
i, jlZi, jl

]

≡ Σ jl. (20)
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The score for the composite likelihood function reuiqres more notation. First, note that the score

in (20) is for the parameter θ jl, and is therefore a matrix of dimensions at most (K +1+2)×

(K+1+2) matrix. The score contribution for the composite likelihood is necessarily a (K +1+(J −2))×

(K+1+(J −2)) matrix, with rows and columns of zeros inserted into the location where param-

eters in θ are absent from θ jl is called Ω jl. Formally,

s̃i, jl (θ) =
∂ li, jl

(
θ jl

)

∂θ
,

Ω jl ≡ E

[
s̃i, jl (θ0) s̃i, jl (θ0)

′]
.

The variance of the score of the composite conditional log likelihood function is

Ω ≡ E



(

∑
j,l

s̃i, jl (θ0)

)(

∑
j,l

s̃i, jl (θ0)

)′


= ∑
jl

Ω jl + ∑
( j,l)6=( j′,l′)

E

[
s̃i, jl (θ0) s̃i, j′l′ (θ0)

′]
. (21)

That the conditions for a CLT (cf. condition iii in NM94) are satisfied then follows from the

boundedness of C and Λ, and Assumption 1.

Furthermore, note that the Hessian of the ( j, l) contribution is given by

E
[
Hi, jl

(
θ jl

)]
=−Σ jl,

which follows immediately from comparing (20) and (19). To obtain a Hessian for the composite

likelihood, we enlarge the dimension of that Hessian by defining

H̃i, jl (θ) =
∂ 2li, jl

(
θ jl

)

∂θ∂θ
′ .
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It follows that E
[
H̃i, jl (θ0)

]
=−Ω jl and

H =−∑
j,l

Ω jl. (22)

Conditions (iv, v, Hessian) then follow from Assumption 1. All conditions in Theorem 3.1 of

NM94 hold, and Theorem 3 therefore holds.

B Additional empirical results

We present a version of our main results in Table 4 that incldues the coefficients on the time-

invariant variables, in Table 5. In the main text, we established that controlling for unobserved

heterogeneity is important, so we should be careful in interpreting results from models without

fixed effects (columns f, g, i). We find that men demonstrate higher levels of self-reported health

(Caroli and Weber-Baghdiguian, 2016; Bago d’Uva et al., 2008), and those living in rural areas are

also more likely to report better health (Lindeboom and van Doorslaer, 2004). Results also show

that age is negatively related to self-reported health (Bago d’Uva et al., 2008; Lindeboom and van

Doorslaer, 2004); and that individuals with higher levels of education report better health (Conti et

al., 2010).
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

DOLFE DOLFE DOLFE DOLFE FEOL DOL OL FELM LM

h = 1 h = 0.1 h = 10 h = 1

log(income) 0.049 -0.047 0.059 0.061 0.020 0.340 0.492 0.003 0.194

(0.033) (0.056) (0.029) (0.029) (0.019) (0.004) (0.004) (0.003) (0.002)

child -0.030 0.006 -0.031 -0.026 0.021 0.060 0.089 0.002 0.033

(0.051) (0.069) (0.050) (0.049) (0.032) (0.005) (0.005) (0.005) (0.002)

married 0.139 -0.041 0.157 0.130 0.164 0.073 0.141 0.029 0.062

(0.087) (0.119) (0.086) (0.088) (0.053) (0.007) (0.008) (0.009) (0.003)

unemp -0.188 -0.230 -0.178 -0.196 -0.242 -0.308 -0.033 -0.127

(0.070) (0.110) (0.068) (0.038) (0.014) (0.015) (0.007) (0.006)

retired -0.132 -0.043 -0.139 -0.154 -0.050 -0.097 -0.027 -0.047

(0.082) (0.119) (0.080) (0.041) (0.010) (0.011) (0.007) (0.004)

other -0.370 -0.207 -0.369 -0.473 -0.771 -1.087 -0.082 -0.460

(0.061) (0.087) (0.061) (0.040) (0.010) (0.012) (0.007) (0.005)

ρ 0.733 0.723 0.733 0.734 1.987

(0.020) (0.025) (0.020) (0.017) (0.023)

γ2 -3.275 -3.260 -3.272 -3.211 -3.487 -2.506 -1.992

(0.054) (0.068) (0.053) (0.048) (0.015) (0.007) (0.006)

γ4 3.326 3.356 3.329 3.321 3.997 3.089 2.603

(0.055) (0.076) (0.055) (0.054) (0.024) (0.006) (0.006)

male 0.126 0.180 0.070

(0.006) (0.007) (0.003)

urban_mid -0.005 -0.018 -0.006

(0.008) (0.009) (0.004)

urban_low 0.048 0.021 0.006

(0.007) (0.008) (0.003)

age ]25;35] -0.613 -0.772 -0.282

(0.015) (0.016) (0.005)

age ]35;45] -1.047 -1.349 -0.496

(0.015) (0.016) (0.005)

age ]45;55] -1.423 -1.938 -0.722

(0.015) (0.015) (0.005)

age ]55;65] -1.392 -2.016 -0.747

(0.016) (0.017) (0.006)

age ]65;∞[ -1.549 -2.278 -0.854

(0.017) (0.019) (0.007)

Primary schooling 0.385 0.510 0.204

(0.028) (0.031) (0.013)

Lower secondary 0.516 0.737 0.302

(0.029) (0.031) (0.013)

Upper secondary 0.694 0.952 0.384

(0.028) (0.031) (0.012)

Post-secondary 0.717 0.931 0.377

(0.031) (0.034) (0.014)

Tertiary 0.890 1.233 0.490

(0.029) (0.031) (0.013)

Table 5: Main results.
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