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ABSTRACT 
 

Purpose 

The purpose of my thesis was to assess the use of texture features derived from 2-[fluorine-

18] fluoro-2-deoxy-d-glucose (18F-FDG) images in thoracic cancers. To achieve this, two 

studies were undertaken.  

1. The aim of the first study was to determine retrospectively if texture features 

derived from 18F-FDG positron emission tomography/computed tomography (18F-

FDG PET/CT) images of malignant pleural mesothelioma (MPM) were associated with 

overall survival in a cohort of patients scanned in our institution.  

2. The aim of the second study was to correlate prospectively texture parameters from 

18F-FDG PET/CT images of untreated non-small-cell lung cancer (NSCLC) with 

histological and immunohistochemical (IHC) parameters in order to obtain a better 

understanding of the biological factors that may be related to spatial heterogeneity 

of 18F-FDG PET images.  

 

Methods 

1. Fifty-eight consecutive patients (mean age 64.4 years, 51 male) with MPM, 

investigated between January 2006 and December 2011, were included in the first 

study. Patients with previous pleurodesis were excluded as this can cause significant 

benign inflammatory 18F-FDG uptake. 18F-FDG PET/CT scans were processed and 

analysed using a standard protocol. Calculation of the texture features was 

performed using in-house software implemented with MATLAB (MathWorks, 

Natick, Mass, US). Texture features, standardised uptake values (SUVs), metabolic 
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tumour volume (MTV) and total lesion glycolysis (TLG) were derived from volume of 

interest (VOI) of the MPMs. Cox regression analysis was used to examine the effects 

of the PET parameters and other variables on survival outcomes. 

2. Nineteen consecutive patients (mean age 70.5 years, 10 male) with histologically 

proven, ≥3cm NSCLC planned for surgery and undergoing 18F-FDG PET/CT imaging 

were recruited prospectively. Calculation of the texture features was performed 

using in-house software implemented with MATLAB (MathWorks, Natick, Mass, US). 

The lobectomy specimens were marked such that its orientation within the body 

was known. Histology included markers of angiogenesis, hypoxia, glycolysis and 

proliferation. As data were not normally distributed on Shapiro-Wilk testing, 

Spearman rank correlation was used to assess correlations between eighteen 18F-

FDG PET derived texture parameters and 6 IHC stains.  

 

Results 

1. Univariable analysis indicated several variables including non-epithelioid histology 

(hazard ratio (HR) 2.13 (confidence interval (CI) 1.11-4.08)), log-TLG (HR 1.33 (CI 

1.07-1.67)), first-order entropy (HR 1.61 (CI 1.02-2.56)) and first-order energy (HR 

0.68 (CI 0.48-0.96)) were significantly associated with patient survival (p<0.05). 

Multivariable analysis showed that first-order entropy (HR 1.75 (CI 1.07-2.89)) was 

an independent predictor of patient survival. 

2. All patients underwent imaging a median of 1 day before surgery (range: 1 day to 44 

days). There were 10 adenocarcinomas (ADC), 8 squamous cell carcinomas (SCC) 

and 1 large cell neuroendocrine carcinoma (LCNC). Group 1 (all 19 patients): CD105 

microvascular density (MVD), staining neovessel endothelial cells, correlated 
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negatively with TLG and first-order energy; and positively with neighbourhood grey 

tone difference matrices (NGTDM) coarseness (r = -0.51, -0.47, 0.53, respectively: all 

p<0.05). CD34 MVD, staining vascular and lymphatic endothelial cells, correlated 

negatively with MTV and TLG; and positively with NGTDM coarseness (r = -0.59, -

0.50, 0.62, respectively: all p<0.05). Ki67average (Ki67avg) and Ki67maximum (Ki67max) 

values correlated negatively with grey level co-occurrence matrix (GLCM) energy 

and first-order skewness (r = -0.47 and r = -0.48, respectively: all p<0.05).  

Group 2 (18 patients with ADC and SCC): CD105 MVD correlated negatively with 

TLG, first-order energy and first-order entropy; and positively with NGTDM 

coarseness (r = -0.53, -0.52, -0.47, 0.53, respectively: all p<0.05).  CD34 MVD 

correlated negatively with MTV and TLG; and positively with NGTDM coarseness (r = 

-0.61, -0.52, 0.64, respectively: all p<0.05).  

Group 3 (10 ADC patients): CD105 MVD and CD34 MVD correlated with both MTV (r 

= -0.71, -0.76, respectively: all p<0.05) and NGTDM coarseness (r= 0.75, 0.77, 

respectively: all p<0.05).  

Group 4 (8 SCC patients): CD105 MVD and CD34 MVD correlated negatively with 

first-order energy (r = -0.79, -0.74, respectively: all p<0.05).  

Hypoxia-inducible factor-1 (HIF-1)-alpha correlated strongly with MTV, second-order 

textural parameters (GLCM energy, GLCM homogeneity and GLCM entropy) and 

high-order textural parameters (NGTDM coarseness and NGTDM contrast) (r = 0.73, 

0.71, 0.83, -0.81, -0.73, -0.73, respectively: all p<0.05).  

Hexokinase-II (HEX-II) correlated strongly with MTV, second-order textural 

parameter (GLCM contrast) and high-order textural parameter (NGTDM coarseness) 

(r = -0.72, 0.73, 0.72, respectively: all p<0.05). 
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If the correction for multiple correlation testing was to be applied, the only     

statistically significant correlation was between CD34 MVD and high-order 

coarseness (p = 0.004), in Groups 1 and 2. 

  

Conclusion 

1. Textural features have prognostic ability in predicting survival in MPM patients. This 

is superior to the currently used standard PET parameters such as SUVs. In particular, 

first-order entropy is significantly associated with overall survival in MPM.  

2. Several standard and textural parameters extracted from 18F-FDG images of NSCLC 

correlate strongly with MVD, Ki67, HIF-1-alpha and HEX-II histological parameters 

suggesting relevant underlying biological mechanisms are associated with 18F-FDG 

distribution in tumours. My study has also uncovered interesting differences in PET 

texture correlations with histological subtypes in NSCLC; with only limited data in 

current literature my study would add value to it.  
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PREFACE 
 

My thesis includes two independent studies conducted at King’s College London and Guy’s 

and St. Thomas’ Hospital NHS Foundation Trust. The common theme in both studies in my 

thesis is the use of texture features derived from 18F-FDG images in different areas of 

oncology. I used the software Feature Analysis Software Tool (FAST) written in MATLAB by 

Dr Muhammad Musib Siddique, a previous employee of the KCL Cancer Imaging group to 

perform all texture analysis. I drew regions of interest (ROI) on each axial slice of the image 

around the tumours and the FAST program processes a volume of interest (VOI) and then 

applies mathematical operations to output texture parameters. 

The first study investigated the role of texture features derived from 18F-FDG images to 

predict overall survival in MPM patients (chapter 4). Mr Paul Bassett provided professional 

statistical input for this study. 

The second study investigated the histological correlates of 18F-FDG images PET images of 

NSCLC (chapter 5). I prospectively recruited 19 patients with NSCLC for this study. 6 IHC 

parameters derived from pathological surgical specimens were correlated with texture 

parameters derived from 18F-FDG PET images. Dr. Emma Mclean and Dr. Daisuke Nonaka 

from St. Thomas’ Hospital histopathology department cut the surgical specimens and scored 

the IHC stained slides for all 19 patients.  
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CHAPTER 1 

INTRODUCTION 
 

For the purposes of my thesis I will focus on 2-[fluorine-18] fluoro-2-deoxy-d-glucose (18F-

FDG) tracer alone as it is the most common tracer used and the sole tracer used in all my 

experiment chapters.  

 

1.1 18F-FDG PET/CT imaging in clinical practice 
 

Cancer is one of the leading causes of death in the world (1)  including the United Kingdom 

(UK) (2). Lung cancer is the most commonly diagnosed cancer and the leading cause of 

cancer deaths worldwide (2). Imaging plays a crucial role in the management of cancer 

patients as patient management is guided by imaging, among other factors. Imaging has a 

central role in staging, follow up and restaging patients with cancer. Since its introduction 

into clinical practice, 18F-FDG positron emission tomography (PET) has established its role in 

this field and its role is increasing in oncology. It is a functional imaging modality and 18F-

FDG is the most commonly used tracer for PET imaging.  18F-FDG PET provides qualitative 

and quantitative metabolic information regarding the tumours. PET also can identify 

pathologies by abnormal tracer uptake more sensitively than on cross-sectional imaging by 

identifying disease often before morphological abnormalities are apparent. PET, when 

combined with computed tomography (CT), provides both metabolic and anatomical 

information, respectively in one setting. This combined modality helps localise the lesions 

better than on PET alone and hence increases confidence in interpreting the scans. The 
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evidence-based indications for the use of PET/CT in UK are published by the Royal College of 

Radiologists (3). 

 

1.2 Understanding tumour biology 
 

Rapid cell proliferation, local invasion and distant metastases are hallmarks of malignancy. 

Tumorigenesis is supported by polypeptide growth factors (e.g. platelet derived 

growth factor [PDGF] and insulin-like growth factor) and factors promoting tumour 

angiogenesis (e.g. vascular endothelial growth factor [VEGF] and basic fibroblast growth 

factor [bFGF]) (4). A large tumour which is rapidly proliferating and more than 1 mm to 2 

mm in diameter outgrows its existing vasculature and hence becomes necrotic unless 

neoangiogenesis occurs (4).  

Malignant cells have increased glucose utilisation due to upregulation of hexokinase activity 

leading to the phosphorylation and trapping of 18F-FDG in the cell and increased expression 

of glucose transporters-1 (GLUT-1) (5). Glucose undergoes glycolysis with the formation of 

pyruvate under aerobic conditions. However, under hypoxic conditions, glucose is 

metabolised under anaerobic conditions with resultant increased tumour lactate levels (6). 

18F-FDG is a radiolabelled analogue of glucose which is taken up by metabolically active 

tumour cells through the same GLUT-1 transporters. The rate of uptake of 18F-FDG by the 

tumour cells is proportional to their metabolic activity (6). Like glucose, it undergoes 

phosphorylation to form 18F-FDG-6-phosphate; however, unlike glucose, it does not undergo 

further metabolism, thereby becoming trapped in metabolically active cells (Figure 1). 
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Figure 1.  Metabolic pathways of Glucose and 18F-FDG 
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1.3 General principles of PET/CT imaging 
 

The principle of PET is that a radiopharmaceutical tracer is injected intravenously into a 

patient and emits photons that are registered by external detectors positioned in a ring.  

18F is a cyclotron-produced radioisotope of fluorine that emits positrons that annihilate with 

electrons to produce two nearly opposing photons (511 keV) and has a short half-life (110 

minutes) (Figure 2). FDG is labelled with 18F and can be usually imaged 60 to 90 minutes 

after injection. These opposing annihilation photons are detected by the PET scanner 

simultaneously. The PET scanner has scintillation crystals which are coupled to 

photomultiplier tubes (PMTs). The new generation PET detectors widely use Lutetium (Lu) 

based scintillators such as LSO (lutetium oxyorthosilicate) and LYSO (Lutetium yttrium 

orthosilicate) because of their higher stopping power and lower decay time which in turn 

reduces the scanning time. In our department we currently use PET/CT scanners from 2 

vendors; GE Healthcare (GE Discovery 710) and Siemens Medical Solutions (Siemens 

Biograph mCT), although all studies in this thesis were performed on the GE scanners. 
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Figure 2. 18F Positron emission and positron-electron annihilation 

 

As discussed above, PET image acquisition is based on the simultaneous (coincidence) 

detection of two photons. However, not all coincidences contribute to image formation. 

There are different types of coincidences: true, random, scatter and multiple. Ideally, we 

would want only the true coincidences detected by the scanner as the others contribute to 

background noise which leads to artefacts. The scattered attenuated photons within the 

patient are not detected which leads to attenuation artefacts due to more attenuation from 

deeper tissues but this can be corrected for. The images are then reconstructed using 

iterative reconstruction algorithms.  
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1.4 Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture 

analysis  
 

In this section I will be introducing the concept of texture analysis in 18F-FDG PET/CT scans 

for malignancies (7). 

Medical imaging is used routinely in oncology for diagnosis, staging and assessment of 

treatment response, but is less reliable for predicting response or for inferring prognosis 

before therapy has been instigated, such that the ability to stratify patients to different 

treatments or to personalise therapy remains largely limited to TNM staging information. 

Personalised medicine is a goal in modern cancer therapy that aims for optimal treatment 

for an individual patient that is dependent on tumour characteristics in that individual. The 

ability to predict the behaviour of a tumour to treatment before therapy has been instigated 

would be invaluable in enabling stratification in clinical trials or personalising future cancer 

treatments in the clinic.  

Whilst novel imaging sequences, contrast agents and tracers are being developed to explore 

new aspects of tumour biology, it is also recognised that standard medical images may 

contain more useful information than is being used in a routine clinical setting. The field of 

“radiomics”, whereby additional features may be extracted from medical images, may not 

only allow more accurate measurement of treatment response but also non-invasive 

molecular and genetic profiling of tumours as a further step towards personalised 

Medicine (8). 

18F-FDG PET/CT is already well established for staging certain cancers due to better 

sensitivity and specificity compared to anatomical imaging such as CT (9). It also has the 

advantage of being able to measure therapy response relatively early in the course of 

treatment when anatomical changes have not occurred, such that serial 18F-FDG PET/CT 
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scans are being used successfully in a number of cancers to detect early treatment effect, in 

clinical routine and increasingly, in clinical trials (10, 11). It is useful to have knowledge of 

the sensitivity of a tumour to a therapeutic regimen as early as possible as this will help 

tailor the treatment for individual patients, particularly if the patient is not responding to a 

drug. Nonresponding patients can have treatment intensified or can be switched to 

alternative therapies, increasing the probability of tumour control and avoiding toxicity from 

ineffective treatment. 

As PET also lends itself to quantification, semiquantitative measurements of tracer uptake 

are frequently adopted in clinical trials and clinical routine, including standardised 

uptake values (SUVs; e.g. SUVmean, SUVmax, SUVpeak) (12). SUV is a measurement of the tracer 

uptake in a tumour normalised on the basis of a distribution volume. It is the ratio of tissue 

radioactivity concentration at a given time (t) and the injected activity at the time of 

injection and usually divided by the body weight.  

 

SUVmax is the hottest voxel within a defined volume of interest (VOI) and this is the most 

widely used parameter due to its ease of use and being operator independent. SUVpeak is an 

average SUV computed within a fixed and most active 1cm3 VOI, often containing (and not 

necessarily centred on) the hottest pixel value. 

However, it is recognised that 18F-FDG uptake may not always accurately reflect tumour 

response due to confounding factors such as early reduction in activity in the presence of 

viable tumour (13) or increases in uptake secondary to inflammatory processes following 

chemotherapy and radiotherapy (14, 15). There is also variability in the reported accuracy of 
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18F-FDG PET/CT in this context. For example, in non-small cell lung cancer (NSCLC), the 

ability of 18F-FDG PET to predict histopathological response varies from 80 % to 97 % in 

terms of sensitivity and from 64 % to 100 % in terms of specificity (16). 

There is only limited evidence that the level of uptake on pre-treatment scans, as measured 

by various SUV parameters, may be predictive (17-21), but results sometimes conflict 

as to whether high or low SUVs are predictive depending on treatment modality, e.g. 

radiotherapy vs. chemotherapy in NSCLC (20, 21). Also, in NSCLC there are data that show 

that the baseline SUV prior to therapy may be prognostic, with low values being associated 

with longer survival, but the optimal cut-off SUV varies widely in the literature (16). Baseline 

18F-FDG PET has also shown some predictive value in radioimmunotherapy in non-Hodgkin’s 

lymphoma (22), high-grade gliomas (23), head and neck cancer (24, 25)  and anal cancer  

(26), but not oesophageal carcinoma (27). In this context, introducing predictive and 

prognostic parameters from baseline 18F-FDG PET scans that perform better than SUV 

parameters would be invaluable and would open the potential to stratify patients more 

appropriately for treatment. 

It is recognised that malignant tumours exhibit intratumoural biological heterogeneity 

associated with cellular and molecular characteristics such as cellular proliferation, necrosis, 

fibrosis, differences in blood flow and angiogenesis, cellular metabolism, hypoxia and 

expression of specific receptors, some of which may be evident on histological analysis. 

Similarly, heterogeneity of 18F-FDG uptake within tumours has been attributed to a number 

of factors including cellularity, proliferation, angiogenesis, necrosis and hypoxia, factors that 

independently have been associated with more aggressive behaviour, poorer response to 

treatment and worse prognosis. However, there is currently little evidence to confirm what 

biological and molecular features underlie differences in tumour texture in 18F-FDG PET 
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images. 

Texture analysis is emerging as a new tool for assessing intratumoural heterogeneity in 

medical imaging. Tumour heterogeneity in baseline 18F-FDG PET imaging may allow 

better tissue characterisation, image segmentation and improved prediction of therapy 

response and survival (28-35). 

Whilst the data have been rapidly accumulating for contrast enhanced CT and magnetic 

resonance imaging (MRI) in this field, the evidence for texture analysis in PET imaging is only 

just emerging. 

 

1.5 Texture analysis  
 

Texture analysis refers to a variety of mathematical methods that may be applied to 

describe the relationships between the grey level intensity of pixels or voxels and their 

position within an image. An advantage of measuring textural parameters is that it is a post-

processing technique that can be applied to data acquired during standard clinical imaging 

protocols thereby maximizing the information that can be derived from standard clinical 

images. 

A number of texture features can be derived that provide a measure of intralesional 

heterogeneity (33, 36). Textural parameters can be derived from statistics-based (37, 38), 

model-based (39-42), or transform-based (43, 44) methods. Statistics-based techniques 

have been most commonly applied and are based on the spatial distribution of pixel or 

voxel values, calculating local features at each pixel in the image and deriving parameters 

from the distributions of the local features. The statistical methods are categorised into 
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first-order (global, histogram), second-order (local, 2 pixels) and high-order (local, 3 or more 

pixels) statistics. 

First-order parameters describe global textural features that relate to the grey level 

frequency distribution within the region of interest (ROI). They are based on histogram 

analysis and include mean, minimum and maximum intensity, first-order energy, first-order 

entropy, standard deviation (SD), skewness and kurtosis.  

Second-order features describe local texture features and are calculated using grey level co-

occurrence matrices (GLCM). These matrices determine how often a pixel of intensity i finds 

itself within a certain relationship to another pixel of intensity j. Second-order features 

based on a co-occurrence matrices include second-order entropy, second-order energy, 

contrast, homogeneity, dissimilarity and correlation.  

High-order parameters can be calculated using neighbourhood grey tone (intensity) 

difference matrices (NGTDMs) to describe local features (33, 45). Local texture parameters 

derived from NGTDMs are based on differences between each voxel and the neighbouring 

voxels in adjacent image planes and are thought to closely resemble the human experience 

of the image (45).  

For example, coarseness, one of the local textural parameters, has been likened to 

granularity within an image and is the most fundamental property of texture. Contrast 

relates to the dynamic range of intensity levels in an image and the level of local intensity 

variation and busyness relates to the rate of intensity change within an image (31, 45). 

Regional features can also be calculated from voxel alignment (e.g. run length and run-

length variability) and grey level size-zone matrices that reflect regional intensity variations 

or the distribution of homogeneous regions (e.g. zone emphasis and size-zone variability) 

(33) (Table 1). 
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Table 1. Textural features 

 

To illustrate the difference between different order statistics, Figure 3 shows four simulated 

cases with different intensity patterns. All four cases will give the same features based on 

first-order statistics (e.g. histogram, mean, first-order energy, first-order entropy etc.), as 

properties are calculated using individual pixel values ignoring the spatial relationships 

between pixels. Second-order statistics based on a co-occurrence matrix will give different 

features between Figure 3a and b as the properties of two-pixel values occurring at specific 

locations relative to each other are estimated. However, features will be the same for cases 

Figure 3b, c and d when the offset is one pixel in the x-direction. High-order statistics, e.g. 

NGTDM, estimate properties based on more pixels occurring at specific locations relative to 

each other and will give different results for all the cases shown in Figure 3. 
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Figure 3. Four simulations of different intensity variations. First-order parameters are the 
same for all four cases. Although the second-order features (derived from the grey level co-
occurrence matrix with offset [10]) will be different for a compared to b, c and d, the latter 
three will be the same. Third-order features (derived from neighbourhood grey tone 
difference matrices or grey level size-zone matrices) will be different for all four cases 
 

1.6 Texture analysis in 18F-FDG PET 
 

Whilst the high spatial resolution of CT and MRI with subcentimeter pixel sizes allows 

texture analysis of relatively small tumours, the poorer spatial resolution of PET with pixel 

sizes of up to 5 mm, limits the size of small volume tumours that may be assessed, the 

requirement being for a reasonable number of adjacent pixels to be present to be able to 

measure some of the texture features. The accuracy and precision of texture analysis in 

clinical evaluation depends significantly on individual scanning protocols. Factors such as 

image acquisition, reconstruction and inherent image quality parameters such as noise, 

motion artefacts and slice thickness, may be important. It is to be expected that all texture 



26 
 

analysis methods are influenced to some extent by these factors and the sensitivity of 

various texture features may be based on different image models. 

Veenland et al. (46) investigated the sensitivity of four different texture analysis methods 

for image noise and blur and found that the discriminative performance of all texture 

features was reduced by noise. The influence of noise on the discriminative performance 

was dependent on the image type used. The discrimination of more gradually different 

images, such as fractal images, is poor for relatively low noise levels but when the images 

are more different, only high noise levels decrease the discriminative performance. Galavis 

et al. (47) studied the variability of the texture features in PET images due to different 

acquisition modes and reconstruction parameters. Texture features such as first-order 

entropy, first-order energy, maximal correlation coefficient and low grey-level run emphasis 

exhibited small variations due to differences on acquisition mode and reconstruction 

parameters. Features such as contrast-NGTDM, coarseness, homogeneity, and busyness 

showed larger variations. 

These are obviously important potential limitations of texture analysis and these aspects 

would require further evaluation if texture analysis of PET images were to be used in 

multicentre studies, for example. 

Further factors that will require careful assessment are the methods used for ROI definition 

on PET images and related intra-observer and inter-observer variation. An initial study 

has shown that the reproducibility of a number of textural parameters is as good as or 

better than that for SUVs (48). A recent study from our centre showed that textural 

parameters vary with time after injection as do SUVs in 18F-FDG PET imaging (49, 50). 
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Following radiological reports of the use of textural features, there has been more recent 

interest in the use of texture analysis in 18F-FDG PET imaging in oncology. The literature 

describing the use of 18F-FDG PET in analysing tumour heterogeneity is summarised in Table 

2. Types of cancer that have been investigated with texture analysis include head and neck 

cancer, cervical cancer, soft tissue sarcomas, oesophageal cancer and NSCLC (28-35). There 

have been numerous studies published in the last few years describing the use of 18F-FDG 

PET in analysing tumour heterogeneity and I have summarised a few, ranging over the 

years, in the table for the purposes of my thesis. 
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Table 2. Current literature describing texture analysis of 18F-FDG PET 

Cancer type Study findings Correlate 

Head and neck SCC 
(animal model) 

Heterogeneity of 18F-FDG uptake within a 
tumour correlates with histopathological 
findings (p=0.028) (28)    

Histopathology 
 

Head and neck SCC Low-intensity long-run emphasis is associated 
with higher local failure in patients treated 
with chemoradiotherapy (51)  

 

Sarcoma 
 

Tumour spatial heterogeneity predicts 
patient outcome (p<0.001) (32)  

SUVmax 

Head and neck and 
cervix 

Textural features explain tumour uptake and 
treatment resistance (cervical p=0.04; head 
and neck p=0.0012) (34)  

SUVmax 

Head and neck 
 

NGTDM features such as PET coarseness, PET 
contrast, and CT coarseness provided good 
discrimination performance (30, 31)  

 

Oesophagus Local (p<0.0006) and regional (p=0.0002) 
textural features predict response to 
chemoradiotherapy (33)  

SUVmax, 
SUVpeak 
SUVmean 

NSCLC 
 

Potential use of heterogeneity parameter 
using SUV-volume histograms described (29)  

 

NSCLC 
 

Multimodality image feature modelling is a 
predictor of locoregional recurrence after 
radiotherapy (35)  

SUV 
Hounsfield 
unit 

NSCLC Demonstrated significant associations 
between PET features, CT features, and 
histological type and potential use of PET 
texture features to differentiate between 
histological types (52)  

Histopathology 
SUV 
CT texture 
features 

Salivary gland 
carcinoma 

Minimum intensity and long run emphasis 
were significant predictors of progression 
free survival (53)  
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1.7 Tissue characterisation and segmentation  
 

Texture analysis has been used for adaptive smoothing, segmentation and classification of 

medical images (54, 55). Whilst I am not aware that this approach has yet been used in PET, 

there is the potential for improving the reproducibility of conventional parameters such as 

SUV. 

Parameters derived from NGTDMs, describing features such as coarseness, contrast and 

busyness (45), have shown the ability to differentiate primary and nodal tumour from 

normal tissue in head and neck cancer (30). It was shown that the primary tumour 

and metastatic nodes have lower coarseness and busyness but higher contrast than normal 

tissues.  

The same group studied 20 patients with head and neck cancers and 20 patients with NSCLC 

and manually segmented normal and abnormal tissues on 18F-FDG PET images (31). Texture 

features, including some derived from GLCMs and NGTDMs, were selected for 

characterisation of these segmented ROI. They concluded that NGTDM features, such as PET 

coarseness, PET contrast, and CT coarseness, extracted from the 18F-FDG PET/CT images 

provided good discrimination, and this may lead to improvement in the accuracy of 

radiation targeting of head and neck cancers. Other potential heterogeneity parameters 

using SUV–volume histograms in patients with NSCLC have been described but this has not 

been clinically tested (29).  

Another study employed deep learning (convolutional neural networks (CNN)) and machine 

learning (ML) (random forests, support vector machines (SVM), adaptive boosting and 

artificial neural network). The four ML methods separately used 13 standard diagnostic 

features (e.g. SUV, tumour size) and 82 textural features to classify mediastinal lymph nodes 
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on 18F-FDG PET images in patients with NSCLC (56). The accuracy of CNN was 86% and was 

not significantly different from those of the best ML methods that used standard diagnostic 

features or the combination of diagnostic and textural features. They concluded that the 

performance of CNN is not significantly different from the best classical methods and 

radiologists for classifying mediastinal lymph node metastasis of NSCLC from PET/CT images. 

They also noted that as CNN does not need tumour segmentation or feature calculation, it is 

more convenient and more objective than the classical methods.  

 

1.8 Prediction and prognosis 
 

Some studies have shown that texture parameters are better than SUV parameters in 

predicting response to therapy and survival in a number of cancers. Eary et al. 

retrospectively analysed 234 patients with sarcoma for tumour heterogeneity on baseline 

18F-FDG scans before either neoadjuvant chemotherapy or surgical resection (32). The 

technique assessed a parameter derived from the variation from a three-dimensional 

ellipsoid model for homogeneous tissue. It was concluded that heterogeneity was a strong 

independent predictor of survival, and that SUVmax was somewhat less predictive of survival. 

El Naqa et al. used first- and second-order texture features to predict outcome in head and 

neck cancers (9 patients) and cervix cancer (14 patients) (34). It was concluded that texture 

features could significantly aid in summarising tumour uptake characteristics in its 

microenvironment and its relationship to treatment resistance in certain clinical scenarios. 

Tixier et al. retrospectively studied response to chemoradiotherapy in 41 patients with 

oesophageal cancer (33). CT RECIST criteria were used to categorise the patients as 

complete responders (CR), partial responders (PR) or non-responders (NR). A Bayesian 
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algorithm was used to automatically delineate tumour volume, and only primary tumours 

were considered. SUV parameters (max, peak and mean) and 38 textural parameters were 

extracted from the same tumour volumes. By receiver operating characteristic curve 

analysis it was found that texture analysis was able to differentiate CR, PR and NR with 

higher sensitivity than any SUV measurement, thus demonstrating that texture analysis of 

the intratumoural tracer heterogeneity on baseline 18F-FDG PET scans can predict response 

to combined chemoradiation treatment in oesophageal cancer. Texture features derived 

from co-occurrence matrices strongly differentiated NRs from PRs, thus helping stratify 

patients appropriately. It was also suggested that regional and local characterisation of 18F-

FDG PET tracer heterogeneity in tumours is more powerful than global measurements 

currently used in clinical practice. 

Vaidya et al. analysed pre-treatment 18F-FDG PET/CT studies in 27 NSCLC patients for local 

and locoregional failures (35). They extracted 32 tumour region features based on SUV or 

Hounsfield units, intensity–volume histogram and textural characteristics. Intensity–volume 

histogram variables showed the highest univariate association with locoregional recurrence 

and it was concluded that multimodality image feature modelling with 18F-FDG PET and CT is 

a predictor of locoregional recurrence in NSCLC after radiotherapy. 

Carvalho et al., in their study demonstrated texture parameters derived from metastatic 

lymph nodes from 18F-FDG PET images in patients with NSCLC using a least absolute 

shrinkage and selection operator (LASSO) method have been found to be more strongly 

associated with overall survival than when extracted from primary tumour data (57). 

Jansen et al. established in their study that genetic mutations, including epidermal growth 

factor receptor (EGFR) mutations and anaplastic lymphoma kinase gene rearrangements, 

that are associated with improved response to certain tyrosine kinase inhibitors (TKIs), are 
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associated with image features derived from 18F-FDG PET in NSCLC (58). However, the 

correlation between EGFR mutated tumours and level of 18F-FDG uptake is conflicting in the 

published literature, with some studies predominantly showing high 18F-FDG uptake in EGFR 

mutated tumours, reflecting increased glycolysis through AKT signalling (59), and others 

showing lower uptake (60). However more recent studies have demonstrated that along 

with standard PET parameters, such as SUVmax, texture parameters also show associations 

with EGFR mutation status (61, 62) and some studies have shown that textural features can 

predict treatment response and survival following treatment with TKIs (63, 64). Moon et al. 

in their study with small cell lung cancer cohort have shown some less specific association 

between 18F-FDG PET textural features and genetic heterogeneity (65). Nair et al. published 

2 papers in 2012 and 2014 demonstrating correlation between NSCLC genomics and 18F-FDG 

textural features (66, 67). In their first paper they found that a prognostic metagene 

signature derived from 25 patients with NSCLC was associated with a multivariate 18F-FDG 

uptake feature derived from principal components analysis, both of which were associated 

with survival in external and validation cohorts (66). The radiogenomic profile was 

associated with altered cell cycle, proliferation, death and self-recognition pathways, and 

recognised nuclear factor-κB (NF-κB) protein as a central node within the metagene. The 

later study showed that NF-κB protein expression is associated with high 18F-FDG uptake 

with both being related to advanced tumour stage, grade and invasion (67). Two recent 

reviews, one of which was from our centre, described correlations between NSCLC 18F-FDG 

PET radiomic features and treatment response and survival (68, 69). Ohri et al. in their study 

with 201 datasets and 43 textural features, used the LASSO method and identified a single 

textural feature (SumMean) as an independent predictor of overall survival in large tumours 

treated with chemoradiotherapy (70). In a more recent study of 358 datasets and 665 
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radiomic features, a similar LASSO methodology was used to derive predictive feature 

vectors that were tested on an independent validation set and predicted a 14-month 

survival difference (71). 

 

1.9 Pathobiological basis of texture in 18F-FDG PET imaging 
 

Whilst several textural features in structural and functional imaging of cancer have been 

shown to differentiate tumour types and predict treatment response, and/or are 

associated with survival, it is largely unknown what the biological correlates of textural 

features are.  

There are few pre-clinical studies demonstrating the correlation between texture features 

and molecular and biological features. Henriksson et al. investigated the pattern of 18F-FDG 

uptake in relation to the intratumoural histopathological appearance in nude mice with 

xenografted tumours originating from an established head and neck squamous cell 

carcinoma (SCC) model (28). Regions containing more than 50% tumour cells showed 

significantly higher 18F-FDG uptake than those with more stromal tissue and necrosis. It was 

concluded that heterogeneous 18F-FDG uptake within a tumour is correlated with 

histopathological findings and that the variable appearance of tracer uptake on PET scan 

depends on the distribution of different tissue components in the tumour. In hepatoma and 

pancreatic murine tumour models, 18F-FDG spatial heterogeneity has been reported to be 

associated with the distribution of glucose transporters and hexokinase (72, 73). In 

orthotopic breast cancer models, a correlation was found between various radiomic texture 

features describing the spatial distribution of 18F-FDG activity in autoradiographic images 

and the spatial distribution or density of cells determined on histopathological staining (74). 
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It has also been postulated that increased image heterogeneity within tumours may be 

associated with differences in regional tumour cellularity, proliferation, hypoxia, 

angiogenesis and necrosis (33, 75), factors that independently have been associated with 

more aggressive behaviour, poorer response to treatment and worse prognosis. Other 

histopathological correlates such as antigen or receptor expression also likely are associated 

with tumour heterogeneity. It is unlikely that structural and functional imaging textural 

features are associated with the same biological causes of spatial intensity variations within 

an image, although in general, features that correspond to increased heterogeneity have 

been assumed to be related to a poorer prognosis and poor response to treatment. 

However, given the multitude of textural parameters that have been described, this is 

probably an oversimplification of the relationships between tumour biology and 

heterogeneity within an image. For example, CT features related to increased 

heterogeneity, including increased entropy or decreased energy, predict poor response 

and/or survival (76-78), whereas in 18F-FDG PET imaging of oesophageal carcinoma, 

treatment responders showed greater local heterogeneity at baseline, but measures of 

regional tumour heterogeneity showed better response stratification (33). In head and neck 

cancer, tumour and nodes have been reported as having lower coarseness and busyness but 

higher contrast than normal tissues (31). The relationship between texture features and 

tissue characteristics is therefore complex and texture feature measurements can clearly 

not simply be regarded as lying on a spectrum between heterogeneity and homogeneity. 

Some recent studies have attempted to correlate histological and biological features of 

NSCLC with radiomic features from 18F-FDG PET imaging. Bashir et al. (79) in their study of 

NSCLC observed correlations between histopathological mean cell density and lacunarity 

(large gaps between clusters of cells) and standard 18F-FDG parameters, including SUVmean 
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and total lesion glycolysis (TLG), first-order statistical features, including kurtosis and 

skewness, and 18F-FDG lacunarity. Karacavus et al. (80) in their study have shown 

associations between several texture parameters and NSCLC clinical stage and Ki67 

immunohistochemistry analysis of proliferation using k-nearest neighbours and SVM 

methods. Another recent study reported the possibility of differentiation of 

histopathological tumour subtypes (SCC and adenocarcinoma (ADC)) using texture and 

colour features derived from 18F-FDG PET images using a SVM algorithm with an area under 

the receiver operating characteristic curve of 0.89 (81).  

With the advent of immune checkpoint inhibitors that target programmed cell death-1 and 

its ligand (PD-1, PD-L1), the treatment of advanced and metastatic cancers, such as NSCLC 

and melanoma, has drastically changed and there is no longer a dismal prognosis. Currently 

immunohistochemical (IHC) measurement of PD-L1 expression in biopsy material is used to 

target these patients. It is recognised that some patients respond well despite negative PD-

L1 expression measured on IHC, and that PD-L1 expression is heterogeneous, suggesting 

inaccuracies and sampling errors in measurement (82, 83). Imaging has the potential to 

reveal global, locoregional and metastatic characteristics associated with PD-L1 expression 

either directly or by texture analysis (84, 85).  

Recent studies have also explored the relationships between regional 18F-FDG PET and MRI 

textural features from combined PET/MRI showing correlations with microvascular density 

(MVD) and expression of vascular endothelial growth factor in renal cell carcinoma, with the 

highest correlations when combining PET and MRI radiomic features (86). 

There is therefore a need to carefully investigate texture features from different imaging 

modalities and using different PET tracers to correlate with histopathological features that 

may influence image texture including angiogenesis, hypoxia, proliferation etc., either in a 
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preclinical model or in humans when tissue is available for complementary histological 

analysis. Although the current reference standard in clinical practice is histopathology and 

IHC, using extracted texture features from imaging may help us in the future to better 

understand tumour behaviour including local invasion, metastatic potential, the relationship 

and interaction of tumour cells with the microenvironment, and predict and monitor 

response or resistance to therapy (87). 

 

1.10 Texture analysis in other imaging modalities 
 

Texture analysis in other radiological imaging has been more extensively described than 

with PET. CT and MRI texture studies have shown improved tissue characterisation, 

response prediction and prognostication, and studies are emerging in which the link 

between texture features and tumour biology has been analysed.  

There is evidence that texture analysis may aid tissue characterisation. Al-Kadi and Watson 

showed that CT features can be helpful in differentiating aggressive from nonaggressive 

NSCLC (37), while it has also been possible to show differences between histological 

subtypes using textural parameters on CT (88). MRI studies have shown that texture 

features may differ between benign and malignant lesions. Co-occurrence matrix features of 

dynamic contrast-enhanced MRI images and signal enhancement ratio maps have been 

used in breast cancer to distinguish between benign and malignant lesions (89, 90), whilst 

Holli et al. have demonstrated that co-occurrence matrix features are significantly different 

between invasive lobular carcinoma and invasive ductal carcinoma (91). Similarly, texture 

features have also been used in brain, liver and prostate studies to distinguish between 

types of tumours and between benign and malignant disease (92-94). 
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There is also evidence that tumour heterogeneity on contrast-enhanced CT imaging is an 

independent predictor of response to therapy and survival. Goh et al. studied patients with 

renal carcinoma treated with TKIs and found that changes in texture features related to 

heterogeneity of CT images are independent predictors of time to progression (76). 

Ganeshan et al. analysed textural features in unenhanced CT scans of oesophageal 

carcinoma and concluded that these features are related to SUV parameters in 

corresponding 18F-FDG PET scans and to tumour stage and survival (77). 

MRI texture features have also been shown to predict response to treatment. Texture 

features change during treatment in non-Hodgkin’s lymphoma (95), coherence and fractal 

dimension predict response in limb sarcomas (96), and low fractal dimension is associated 

with better response in colorectal cancer (97). Recently studies have correlated texture 

parameters on CT with survival in NSCLC (78), glucose metabolism (98) and histological 

correlations, including angiogenic and hypoxia markers (75). Segal et al. showed that with a 

number of image characteristics in hepatocellular carcinoma, including a texture 

heterogeneity score and estimated percentage of necrosis on contrast enhanced CT images, 

it is possible to reconstruct the majority of the gene expression profiles, revealing cell 

proliferation, liver synthetic function and patient prognosis (99). 

In conclusion, clinical images contain more information than is routinely used. Additional 

information can easily be extracted to describe and quantify the spatial distribution of voxel 

intensities (textural features) from conventional radiological images and from PET images 

obtained using 18F-FDG and other tracers. Texture features of CT and MRI have shown the 

ability to characterise tissues as well as predict treatment response and survival in some 

tumour types. Recent interest in texture analysis of functional imaging, including 18F-FDG 

PET, has shown similar properties, although the biological mechanisms are unproven. 
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Further work is required to understand the biological basis of image texture in 18F-FDG PET 

and to further validate the methodology in different cancers. It remains to be seen whether 

texture analysis of other metabolic tracers, e.g. 11C- or 18F-choline, or tracers reflecting other 

aspects of tumour biology such as proliferation with 18F-FLT (fluorothymidine), 

angiogenesis/ integrin expression with labelled R-G-D compounds or hypoxia-selective 

agents, may produce similar results. 

Seeking more powerful imaging biomarkers through texture analysis is of high relevance to 

modern cancer treatment where the aim is to personalise treatment through non-invasive 

molecular and genomic profiling of tumours. 
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CHAPTER 2 

AIMS AND HYPOTHESES 
 

Texture analysis helps us quantify various aspects of the tumour microenvironment which is 

not obvious to naked eye. As I discussed in the previous chapter, texture parameters 

extracted from images have been shown to be associated with some features of tumour 

biology. Texture analysis also has been shown to help predict prognosis in patients with 

cancer and help stratify patients for individual treatment pathways. However, there are 

limited data in the literature regarding texture analysis in PET imaging compared to other 

imaging modalities and hence a need for further research studies. With numerous new 

treatment modalities available in treatment of thoracic malignancies such as NSCLC and 

malignant pleural mesothelioma (MPM), it is prudent to able to get as much information as 

possible to guide and choose appropriate treatment for individual patients.  

 

2.1 Hypotheses 
 

1. Measurement of heterogeneity parameters (textural features) may be more 

prognostic than the conventional metrics such as SUV parameters, TLG and 

metabolic tumour value (MTV) in MPM.  

2. There is a relationship between 18F-FDG heterogeneity and tumour biology as 

measured by histopathological and IHC parameters in NSCLC.   
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2.2 Aims 
 

1. To determine if texture features derived from baseline 18F-FDG PET images of MPM 

are associated with overall survival in patients 

2. To determine if textural parameters of 18F-FDG PET/CT images of untreated NSCLC 

correlate with histological and IHC parameters in order to obtain a better 

understanding of the biological factors that cause spatial heterogeneity of 18F-FDG 

PET images. 

 

Chapter 3, 4 and 5 describe Methods and Results from two experiments addressing the 

above two aims.  
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CHAPTER 3 

GENERAL METHODS 
 

3.1 18F-FDG imaging 
 

In this section I will describe the imaging performed for both my experiment chapters. 

 

3.1.1 Patient preparation 

 

Patients fasted for approximately 4–6 hours prior to the 18F-FDG PET-CT scan to enhance 

18F-FDG uptake by tumours. They were allowed to have water during this period. Before 

injection of 18F-FDG, the blood glucose level was measured and the patients were only 

injected if the blood sugar level was less than 10mmol/L. Good control of blood glucose was 

essential because, as explained in the introduction chapter, 18F-FDG and glucose use the 

common transport mechanism (GLUT) in both normal and tumour cells. Patients were also 

instructed to avoid any kind of strenuous activity prior to the examination.  

 

3.1.2 18F-FDG dose and uptake period 

 

We administered median 320 MBq, range: 303 MBq to 373 MBq of 18F-FDG intravenously. 

Following injection of the radioisotope the patients are placed in a quiet area in a cubicle for 

90 minutes for the MPM patients in chapter 4 and 60 minutes for NSCLC patients in chapter 

5. Patients were asked to limit any movements including speech to avoid physiologic muscle 

uptake of 18F-FDG.  
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3.1.3 Image acquisition 
 

18F-FDG PET/CT scans were acquired using our standard institutional clinical imaging 

protocol for oncology.  All MPM patients in chapter 4 were scanned on one of the two 

scanners Discovery VCT or DST, GE Healthcare, Chicago, USA and all NSCLC patients in 

chapter 5 were scanned with Discovery 710, GE Healthcare, Chicago, USA. All 18F-FDG 

PET/CT scans were performed at 90 minutes (mean 89.7±9.3 minutes) post-injection for the 

MPM patients in chapter 4 and after 60 minutes (mean 71.3±15.7 minutes) post-injection 

for the NSCLC patients in chapter 5.  

The patients were positioned with the arms above the head as a standard protocol. If a 

patient is not able to maintain this position comfortably without moving for the entire 

study, arms by the side was used as an alternative. The CT scan took around a minute to 

complete and the PET study approximately 20 minutes for the half-body scan from base of 

skull to mid-thighs. The CT scan was used for localisation and for attenuation correction. 

Images were corrected for effects of attenuation for accurate image analysis.  

Images were reconstructed using ordered subset expectation maximisation (OSEM, 2 

iterations, 20 subsets) with a reconstructed slice thickness of 3.27 mm and pixel size 4.7mm. 

The CT component of PET/CT scans was acquired at 140 kVp and 65 mAs without 

administration of oral or intravenous contrast agent and CT data was used for attenuation 

correction.  
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3.2 Image analysis 
 

In this section I will describe the software I used for texture analysis of PET images for both 

my experiment chapters.  

 

3.2.1 Feature Analysis Software Tool (FAST) 

 

FAST is a novel in-house built quantitative analysis software package, developed by the 

Cancer Imaging group at King’s College London, for the texture analysis of PET scans among 

other imaging modalities. Based on a number of methods including GLCM, run-length 

matrix, fractal analysis, NGTDM, FAST extracts texture features that reflect the local, 

regional and global patterns of image heterogeneity.  

The FAST can import both PET and CT images simultaneously in DICOM format and can align 

them. The FAST allows the images to be displayed in axial, coronal or sagittal views and can 

magnify the images and adjust the contrast.  

Once the images were imported, I then was able to draw ROIs in 3D on the PET image to 

separate the object of interest from the background. The same region was automatically 

overlaid to the CT component of PET so that the properties from both modalities were 

computed for the same region. For the purposes of my thesis I only used the data extracted 

from PET images. The regions were refined using various image segmentation methods 

based on thresholding for the MPM patients in chapter 4 and fuzzy logic techniques for 

NSCLC patients in chapter 5. The fuzzy logic technique could not be used in MPM due to 

irregular and non-contiguous regions.  
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Figure 4. ROI drawn on FAST on axial images in a patient with right lower lobe NSCLC (left 
hand side and central images) and 3-D image of the tumour extracted from the ROI drawn 

 

The FAST software then extracted a suite of first-order, second-order and high-order 

textural parameters based on intensity distribution and region geometry and results were 

automatically exported into an excel spread sheet. The software also calculated the SUVmax, 

SUVmean, SUVpeak, TLG and MTV. Appendix 1 lists different textural parameters commonly 

used in the literature including the parameters used in the experiment chapters of my 

thesis.  
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CHAPTER 4 

ASSOCIATION OF TEXTURE FEATURES DERIVED FROM 18F-FDG PET 

IMAGES OF MALIGNANT PLEURAL MESOTHELIOMA WITH OVERALL 

PATIENT SURVIVAL 
 

4.1 Introduction 
 

MPM is a highly aggressive primary tumour of the pleura with very poor prognosis. MPM is 

causally linked to asbestos exposure in most cases. The median survival from diagnosis is 

less than 12 months and most patients die within 10–17 months of their first symptoms 

(100, 101).  

The incidence of MPM has increased in industrialised nations because of past widespread 

exposure to asbestos (101). Asbestos is still in use in some countries especially the 

developing countries and hence the incidence of MPM is predicted to increase further in 

coming decades (102).  

Multimodality treatment with surgery, chemotherapy and radiotherapy is most commonly 

offered to MPM patients. Although multimodality treatment regimens have improved 

survival, overall outcomes are still poor (100, 103).  

There is a need for more targeted and more effective therapies, but this needs a better 

understanding of the tumour biology, particularly given that MPM is a heterogeneous 

tumour. A better understanding of tumour biology will help in future tailoring individual 

treatment plans.  

18F-FDG PET/CT is widely used for diagnosis and staging of MPM and also in differentiating it 

from benign pleural disease (104-106). There is growing interest in use of 18F-FDG PET/CT 

for the prediction of survival at baseline and also in therapy response evaluation (107-109). 
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There have been studies from our institution and others which assessed the association of 

18F-FDG PET/CT standard parameters with survival in MPM (108, 110).   

Recently there has been increasing interest in tumour heterogeneity measured using 

textural analysis of the distribution 18F-FDG PET/CT in some cancers (32, 34, 35, 111, 112). 

Additional features, extracted by computational post processing techniques, which can have 

prognostic value and may reflect the tumour phenotype and genotype. It is hoped that 

textural features may allow better tissue characterisation and better stratification of MPM 

for treatment, thus improving the individualisation of targeted therapies.  

 

4.2 Aims and hypotheses 
 

The study hypothesis was that parameters derived from 18F-FDG PET image heterogeneity at 

baseline have prognostic significance in MPM. The aim of this retrospective study was to 

determine if baseline standard and texture features derived from 18F-FDG PET images of 

MPM were associated with overall survival in a retrospective cohort of patients scanned in 

our institution. 

 

4.3 Material and methods 
 

4.3.1 Subjects  

 

This retrospective study received institutional review board approval and requirement for 

informed consent was waived. All pre-treatment staging 18F-FDG PET/CT scans performed in 

patients with MPM at our institution between January 2006 and December 2011 were 

selected from the institutional PET database. For inclusion in this study, patients should 
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have undergone a whole-body (base of skull to upper thighs) 18F-FDG PET/CT as a part of 

their routine staging procedure prior to therapy. Patients who had a pleurodesis prior to the 

PET scan were excluded to avoid false positives from the non-malignant uptake of 18F-FDG 

that results from this procedure (113). Patients with tumour volumes <5cm3 were also 

excluded (n=2; see section 4.3.2 for further information). 

 

Fifty-eight consecutive patients (mean age 64.4 years, 51 male) comprised the final cohort. 

Demographic and clinicopathological data, including histological subtype, treatment details 

and overall survival (OS) were collected.  

 

4.3.2 Image analysis 

 

One observer (SC) experienced in 18F-FDG PET in MPM and ROI definition, analysed all 58 

scans. ROIs were drawn on each slice of the scan and the VOI of the primary tumour on 18F-

FDG PET images was generated using a predefined threshold of 40% of the maximum pixel 

intensity with adjustments by the operator if non-tumoural areas of activity were incorrectly 

included within the VOI (111, 114). This procedure was repeated to include all metabolically 

active tumour even if it was not on contiguous slices. For non-contiguous tumours we 

limited our image analysis to the largest 3 VOIs for texture analysis. All the VOIs used for 

texture analysis also included SUVmax and SUVpeak regions. All VOIs were summed to 

calculate a MTV. TLG was calculated as the product of MTV and SUVmean. Only the primary 

tumour was included in the image analysis, excluding any adjacent nodal disease, if present.  

Images were analysed for texture parameters previously found to have predictive and/or 

prognostic ability including first-order features (SD, skewness, kurtosis, entropy and energy 
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(115, 116)) and high-order features (coarseness, contrast, busyness and complexity (33, 45, 

48, 115)).  

Calculation of the texture features was performed using in-house software implemented 

with MATLAB (MathWorks, Natick, Mass, US). Voxel values within the tumour VOI were 

resampled to yield 32 discrete bins.  

Since the inclusion of small tumour volumes can bias tracer uptake heterogeneity-based 

studies, we empirically chose 5cm3 as the minimum threshold volume based on other 

similar studies (33, 117). Brooks et al. (118) described a method to evaluate minimum 

volume to give 95% certainty that the global intensity distribution has been sampled 

adequately. We determined that by this method our minimum volume threshold was less 

than 5cm3 in our study.  

  

4.3.3 Statistical Analysis 

 

TLG required log transformation. The outcome of interest was patient survival. Subgroup 

analyses of individual histological types could not be undertaken because of the small 

number of patients in each non-epithelioid group.  

Cox regression analysis was used to examine the effects of the PET parameters and other 

variables upon the survival outcomes and was performed in two stages. Initially, a 

univariable model was used to test the individual association of each variable with survival 

times. Results were expressed as hazard ratios (HR) and their confidence intervals (CI). For 

categorical variables, the HR represent the relative change in the risk of death when the 

factor was present compared to when it was absent. For continuous variables, the HR 

represent the relative change in the risk of death for a one-unit increase in that variable, 



49 
 

unless one-unit is a small or larger amount, in which case effects are reported for different 

sized increases.  

Entering variables identified as significantly associated with survival from the univariable 

model; a multivariable model was then created to examine the joint effect of the variables. 

To reduce the number of parameters in this stage of the analysis, a backward selection 

procedure was used, i.e. only those showing some evidence of an association with survival 

from the univariable analyses were included and we chose an arbitrary cut-off of p<0.1.  

Before the multivariable analysis was performed, the collinearity between predictor 

variables was examined. Where there was found to be collinearity between variables 

(variance inflation factor > 10), one or more variables was excluded from the multivariable 

analysis, e.g. SUVpeak, SUVmean and MTV. MTV was excluded in favour of TLG. 

The time in months between the PET scan and the date of death was defined as overall 

survival. The time between PET scans and last censor was recorded in surviving patients. 

Kaplan-Meier curves were generated for factors found to be significant predictors on 

multivariable analysis. For the purposes of the graphs the parameters were divided into two 

approximately equal groups. A p value of less than 0.05 was considered statistically 

significant. 
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4.4 Results 
 

The mean/median and SD/range for each standard and texture parameter is presented in 

Table 3.  

 

Table 3. Mean/median and standard deviation/range for each standard and texture 
parameter 

 

 

The HR calculated using the univariable model are presented in Table 4, indicating the 

change in the risk of death at any time for each variable. The univariable analysis suggested 

that several of the variables examined were significantly (p<0.05) associated with patient 

survival. 
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Table 4. Hazard ratios calculated using the univariable model 

 

(†) HR reported for a 0.1-unit increase in predictor variable 
(††) HR reported for a 0.001-unit increase in predictor variable 
(*) HR reported for a 5-unit increase in predictor variable 
(**) HR reported for a 10-unit increase in predictor variable 
(***) HR reported for a 50-unit increase in predictor variable 
 

Histological subgroups included epithelioid (n=30), sarcomatoid (n=5), mixed (n= 13), 

desmoplastic (n=2) and unknown (n=8). Histology was significantly associated with survival 

when patients were split in to epithelioid and non-epithelioid groups. Patients with a non-

epithelioid histology had a higher risk of death, and thus shorter survival times. The risk of 

death at any time was more than twice as high compared to patients with epithelioid 

histology. 

 

There was some evidence that some standard parameters were associated with survival, 

with higher SUVmax and log-TLG values associated with an increased risk of death. However, 

the result was not statistically significant for SUVmax. 
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Of the texture parameters first-order entropy, first-order energy and complexity were all 

significantly associated with survival. Higher values of first-order entropy were associated 

with an increased risk of death and thus shorter survival time. For example, one-unit 

increase in first-order entropy was associated with a 61% increase in the risk of death at any 

time. Higher values of first-order energy and complexity were associated with a lower risk of 

death. For example, a 0.1-unit increase in first-order energy was associated with a reduction 

in the risk of death at any time of around a third. 

 

Before the multivariable analysis was performed, collinearity between predictor variables 

was examined. For example, first-order entropy and first-order energy were found to be 

highly collinear and therefore only first-order entropy was retained for the analyses.  

 

Histology, TLG, first-order entropy, complexity, coarseness, contrast and SD were used for 

multivariable analysis. The data was dichotomised around the median value for analyses. 

The results of the multivariable analyses (Table 5) indicated that first-order entropy was 

independently associated with patient survival (p= 0.03), whilst non-epithelioid histology 

and coarseness were of borderline significance (p = 0.05 and 0.06, respectively) but these 

variables were retained in the final model.  
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Table 5. Results of the multivariable analyses 
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A graphical illustration of the results for first-order entropy (figure 5) and coarseness (figure 

6) is shown in a Kaplan-Meier graph.  

 

 

 

Figure 5. Results for first-order entropy in a Kaplan-Meier graph 
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Figure 6. Results for coarseness in a Kaplan-Meier graph 

 

Correlations between first-order entropy and both SUVmax and MTV were tested. First-order 

entropy did not show a significant correlation with MTV (r2 = 0.01, p>0.05). A correlation 

was found between first-order entropy and SUVmax (r2 = 0.63, p=0.005). 

 

4.5 Discussion 
 

In this study we investigated the prognostic significance of parameters derived from 

baseline, pre-treatment 18F-FDG PET image heterogeneity in MPM. The results of our 

retrospective analysis of 58 18F-FDG PET scans have shown that non-epithelioid histology, 

standard PET parameters (SUVmax, TLG) as well as heterogeneity parameters (first-order 

entropy, first-order energy, coarseness, contrast, SD and complexity) are associated with 
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prognosis on univariable analysis. On multivariable analysis first-order entropy remained a 

significant independent predictor of survival. A one-unit increase in first-order entropy was 

associated with a 75% increase in the risk of death at any time.  

We believe this is the first study to describe a relationship between heterogeneity in 18F-

FDG PET images and survival in MPM patients. We and others have previously described the 

prognostic ability of standard PET parameters that take into account functional volume 

(MTV, TLG) (110, 119-121). In the current study, whilst TLG showed an association in 

univariable analysis, only first-order entropy was an independent predictor on multivariable 

analysis, suggesting that a measure of heterogeneity may be a superior predictor over 

standard parameters that do not take heterogeneity of activity into account.  

Biologic and genomic tumoural heterogeneity is known as an adverse feature in cancer and 

probably underlies treatment failure as resistant clones survive (122). Similarly, imaging 

heterogeneity has been associated with adverse features in thoracic malignancy including 

poor treatment response and survival (63, 69, 71, 77, 78, 111, 112).  

There have been several recently published studies evaluating textural PET parameters and 

their role in predicting patient survival and treatment response. A study of 41 patients with 

newly diagnosed oesophageal cancer noted that tumour texture features extracted from 

baseline 18F-FDG PET images allow for the best stratification of patients in the context of 

therapy-response prediction (33). Wu et al. (123)  concluded in their study on 101 patients 

with early-stage NSCLC that intratumoural heterogeneity of 18F-FDG PET could predict 

distant metastases, a feature that could potentially help to stratify patients to appropriate 

treatment pathways early on at the time of diagnosis.  

Specifically, first-order entropy is a feature that is not only reproducible and robust (48, 124-

126)  but has been shown to be predictive and prognostic in a number of cancers (63, 127, 
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128). In a recent study by Hatt et al. (129) of 101 NSCLC patients with 18F-FDG PET scans 

first-order entropy was found to be one of the significant prognostic factors for overall 

survival prediction; similar to our study findings.  First-order entropy is also independently 

associated with overall survival and treatment response to a TKI in a study of 47 patients 

with NSCLC (63).  

Whilst heterogeneity parameters may be subject to bias at small volumes and may act as 

surrogates of size (118), we found no significant correlation between first-order entropy and 

MTV in our data. In contrast, we have noted a correlation with SUVmax even though SUV and 

first-order entropy measure different characteristics. The likely cause is that greater first-

order entropy of voxel intensities is more likely in tumours with high SUVmax (and associated 

larger spread of voxel intensities) than in tumours with low SUVmax. Our dataset contained a 

wide range of intensities (SUVmax ranging from 2.16 to 28.44 and correlations between SUV 

parameters and first-order heterogeneity parameters are therefore not unexpected. A 

dataset with a smaller range of SUV parameters between subjects would be expected to 

show weaker or absent correlations.  

 

My study has some limitations. I excluded patients who had a previous pleurodesis. This was 

necessary to avoid non-tumoural 18F-FDG activity that occurs as a consequence of the 

inflammatory reaction in the pleura that follows pleurodesis (113). My results therefore 

cannot be extrapolated to patients following pleurodesis.  

With regards to analysing the influence of histology, I could not fully determine the 

influence of all histological subtypes separately on the prognosis, as the non-epithelioid 

(sarcomatoid, mixed and desmoplastic) histology subtypes were grouped together in my 
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analysis. Apart from the epithelioid group, the number of patients in each non-epithelioid 

subgroup was too small for reliable analysis.  

 

4.6 Conclusion 
 

First-order entropy has prognostic ability by predicting overall survival in MPM patients. This 

is superior to the currently used standard PET SUV parameters.  
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CHAPTER 5 
 

TEXTURAL FEATURES OF NON-SMALL-CELL LUNG CANCER ON PRE-

TREATMENT 18F-FDG PET/CT AND CORRELATION WITH HISTOLOGICAL 

PARAMETERS 
 

5.1 Introduction 
 

NSCLC remains the leading cause of cancer related death, worldwide (130). It represents 

approximately 85–90% of all lung cancers and its incidence is rising. The two main subtypes 

are ADC and SCC. ADC accounts for 50% of all lung cancer and its incidence has increased 

greatly in recent years (131). The prognosis of patients with NSCLC is poor despite many 

treatment options available and hence there is a need for reliable markers to guide 

treatment decisions, especially in this era of precision medicine. Tailoring the best individual 

management pathway that identifies the best therapeutic strategy for each patient, based 

on clinical and biological characteristics of the disease in an individual patient is crucial. 

Several prognostic factors have been identified, such as gender, performance status, 

histology, biomolecular features and stage, in order to identify subgroups of patients with 

different prognoses and thus candidates for different therapeutic options (132-134). Within 

the two main histological subtypes (ADC and SCC), different growth patterns are present 

and are associated with different grading and prognosis (135). In particular, ADC includes 

various invasive patterns belonging to three prognostic groups, including lepidic pattern, 

grade 1, acinar and papillary pattern, grade 2, micropapillary and solid pattern, grade 3. SCC 

provides three variants: keratinising, non-keratinising and basaloid form (133). The 

micropapillary and solid pattern subtypes of ADC are associated with a higher risk of 
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metastases and poorer prognosis compared to lepidic ADCs which are usually associated 

with lower risk and better prognosis (136). Acinar and papillary ADC are generally in an 

intermediate group, with a less predictable impact on patients’ outcome (137). The 

keratinisation in SCC is associated with a poor prognosis and might be associated with 

smoking (138).  

Lung cancer is often a heterogeneous tumour with different subtypes and growth patterns 

within the same tumour. However, it is not always possible to identify these differences on 

histopathology specimens. Other factors such as immune cell tumour infiltration and 

angiogenesis also influence tumour prognosis and treatment response, especially 

immunotherapy (139). One of the main problems related to the subtype classification 

system and to the detection of tumour morphological characteristics is that it is subject to 

considerable inter- and intra-observer variation and a subjective interpretation of highly 

complex pathological images by a pathologist (133). 

It is known that malignant tumours including NSCLC exhibit intra-tumoural biologic 

heterogeneity and this heterogeneity is postulated to correlate with histological features 

such as cellular proliferation, necrosis, fibrous tissue, differences in blood flow, cellular 

metabolism, oxygenation, and expression of specific receptors.  Hypoxia, which exists in 

varying degree in tumours, is one of the driving forces (140). Through selection pressures, 

hypoxia alters local expressions of p53, E-cadherin, hypoxia inducible factor–1 (HIF-1) alpha, 

GLUT-1 (increased glycolysis), and cluster of differentiation 34 (CD34; angiogenesis) and 

allows emergence of new cancer clones that are well adapted to the local environment 

(141-143). CD34 is a surface antigen expressed in the vascular endothelial cells with life-long 

expression; and does not distinguish between normal and tumour vessels (144). CD105 in 
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contrast is expressed only in tumour blood vessels and not present in normal endothelial 

cells (145). 

The current gold standard for tumour analysis in oncology practice is histopathology and IHC 

but these are subject to biopsy sampling error. Imaging augments histopathological and IHC 

measures in this scenario as the whole tumour and its microenvironment can be 

noninvasively interrogated and hence capture the heterogeneity of not only the primary 

malignancy but also the underlying molecular and cellular processes between different 

tumours in the same patient (87). 

18F-FDG PET/CT is routinely used in oncologic imaging for diagnosis and staging and 

increasingly to determine early response to treatment, often employing semi-quantitative 

measures of lesion activity such as the SUV (19-21, 146, 147). However, the ability to predict 

the behaviour of a tumour in terms of future therapy response or prognosis using SUVs from 

a baseline scan prior to treatment is limited. 18F-FDG uptake has been associated with 

various factors such as perfusion, cell proliferation, tumour viability, aggressiveness, and 

hypoxia (148).  

In NSCLC, the ability of 18F-FDG PET to predict histopathological response to 

chemoradiotherapy has been described (149, 150).  There is only limited evidence that the 

level of uptake on pre-treatment scans, as measured by various SUV parameters, may be 

predictive but results sometimes conflict as to whether high or low SUVs are predictive 

depending on treatment modality, e.g. radiotherapy vs chemotherapy in NSCLC (18-21). 

Also, in NSCLC there are data that show that the baseline SUV prior to therapy may be 

prognostic with low values being associated with longer survival but the optimal cut off SUV 

varies widely in the literature (151-155). 
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In recent years, evidence has slowly accumulated showing that parameters obtained by 

texture analysis of radiological images, reflecting the underlying spatial variation and 

heterogeneity of voxel intensities within a tumour, may yield additional predictive and 

prognostic information (33, 45). It is hoped that measurement of these textural features 

may allow better tissue characterisation as well as better stratification of treatment in 

clinical trials, or individualisation of future cancer treatment in the clinic, than is possible 

with current imaging biomarkers. Whilst the data have been rapidly accumulating for 

contrast enhanced CT and MRI in this field, the evidence for texture analysis within PET 

imaging is only just emerging.  

Cook et al. in their recent review discussed the role of PET and texture features in NSCLC 

(87). They discussed that PET provides macroscopic information on aberrant molecular 

pathways and altered cellular biology in cancer which allows most of the hallmarks of cancer 

to be imaged and quantified (156). Measurement of these cellular processes that have 

histopathological correlates is crucial to the understanding of individual tumour 

phenotypes, helping us understand how a tumour will behave with regard to local invasion 

or metastatic potential, understand the relationship and interaction of tumour cells with the 

microenvironment, and predict and monitor response or resistance to therapy (87).  

As I discussed in the introduction chapter of the thesis, the study of radiomics is of academic 

interest since it has been recognised that genetic heterogeneity exists within tumours and 

between metastatic tumours in the same patient. Heterogeneity of the tumour 

microenvironment with respect to cellular density, proliferation, angiogenesis, hypoxia, 

receptor expression, necrosis, fibrosis, and inflammation might be reflected in medical 

images and that these factors can contribute to poor treatment responses and a more 

aggressive phenotype (157). 
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A variety of textural features that describe the spatial variation of voxel intensities in 18F-

FDG PET/CT images of untreated NSCLC have been shown to predict treatment response 

and survival. Tumour heterogeneity in baseline imaging may predict survival and therapy 

response (28-35). However, the correlation of tumour biology to textural features is largely 

not understood. 

PET has relatively large voxels compared with MRI and CT, and the ability to accurately 

measure heterogeneity features without bias or dependence on volume is therefore 

more challenging. Using probability theory, Brooks et al. calculated that a volume of 45 cm3 

is required to adequately sample the tumour for measurement of second-order entropy 

without significant bias on 18F-FDG PET images of cervical cancer (118). Hatt et al. in their 

study reported that several texture features are highly correlated with tumour volume, that 

the correlation varies among different features, and the level of correlation significantly 

decreases with larger volume tumours (129). For example, second-order entropy showed 

high correlation in volumes of <10 cm3 but much less at volumes >10 cm3, suggesting a 

much lower minimum volume than 45 cm3 might be applicable. This demonstrated that 

texture features ae not just a surrogate for volume but in a subgroup of patients with NSCLC 

heterogeneity and volume were independent prognostic factors and therefore 

complementary, especially in tumours >10 cm3 (129).  

Based on this evidence I only included patients with >3cm maximum diameter (i.e. >> 

10cm3) NSCLC to avoid potential bias or volume factors.  
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5.2 Aims and hypotheses 
 

The aim of my study was to correlate textural parameters of 18F-FDG PET/CT images of 

untreated NSCLC with histological and IHC parameters in order to obtain a better 

understanding of the biological factors that potentially cause or are related to spatial 

heterogeneity of 18F-FDG distribution in PET images.  

The hypothesis was that the textural features of NSCLC derived from 18F-FDG PET/CT are 

associated with specific histological features (such as angiogenesis, hypoxia, glycolysis and 

proliferation). 

 

5.3 Material and methods 
 

This was a prospective single centre non-randomised exploratory observational and pilot 

study. This study received approval from the Research Ethics Service committee (Chelsea, 

London), Health Research Authority and from Guy’s and St. Thomas’ NHS Foundation Trust 

Research and Development Directorate. A research ARSAC (Administration of Radioactive 

Substances Advisory Committee) certificate was also granted. 

 

5.3.1 Subjects  

 

I recruited patients with untreated NSCLC with the following inclusion and exclusion criteria. 

Inclusion criteria: 

i) Patients > 18 years old with a histological diagnosis of NSCLC. 

ii) Patients planned for surgical resection without neoadjuvant treatment. 

iii) Patients with clinical 18F-FDG PET/CT imaging. 
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iv) Ability to provide informed written consent 

v) Willingness and ability to comply with scheduled study visits and tests. 

Exclusion criteria: 

i) Concomitant uncontrolled medical conditions 

ii) Patients planned for neoadjuvant chemotherapy or radiotherapy treatment prior to 

surgery.  

iii) Primary tumour < 3cm diameter. 

Demographic and clinicopathological data, including histological subtype were collected. 

Nineteen patients with a mean age of 70.5 years were included. Ten were male and nine 

were female. 10 patients had ADC, 8 had SCC and 1 had large cell neuroendocrine 

carcinoma (LCNC). All 19 patients had surgical resection of the tumour. All patients 

underwent 18F-FDG PET/CT imaging a median 1 day before surgery (range: 1 day to 44 days).  

 

5.3.2 Image analysis 

 

Analysis was performed using in-house software implemented in MATLAB (FAST, KCL) that 

can measure several textural image features on PET/CT, CT and MRI and has been validated 

as part of the International Biomarker Standardisation Initiative (158).   

Voxel values within the tumour VOI were resampled to yield 64 discrete bins, based on 

previously published data which demonstrated that a 64-bin quantisation scheme strikes 

the best compromise between minimising noise and preserving signal variation (48, 159).  

Texture parameters previously found to have predictive and/or prognostic ability including 

first-order, second-order and high-order features were assessed (38, 51-53, 63, 64, 69, 111, 
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128, 129, 159-163). SUV parameters (SUVmean, SUVmax, SUVpeak), MTV and TLG parameters 

were also derived from the same VOIs.  

The reconstructed 18F-FDG PET DICOM volumes from the reporting workstation (HERMES) 

were imported into FAST. I drew freehand (FH) ROIs around the metabolically active primary 

lung tumours on each axial slice on the 18F-FDG PET scan to generate a VOI taking care not 

to include any non-tumoural regions; however, a < 5mm rim of background was included. 

The FH VOI served as the template for automatic segmentation using a ‘fuzzy locally 

adaptive Bayesian’ algorithm (FLAB), previously reported to be more accurate for tumour 

segmentation (164). Using the FLAB algorithm, the VOI voxels were categorised into three 

classes representing tumour core, region of partial volume averaging around tumour core 

and background (165). The voxels assigned to the tumour core and region of partial volume 

averaging were kept as the final FLAB VOI and the voxels assigned to background class was 

discarded.  

I tested SUVmax, SUVmean, SUVpeak, two tumour size related parameters (MTV and TLG) and 

eleven textural parameters: five first-order parameters (SD, energy, skewness, kurtosis, 

entropy), four second-order parameters (GLCM contrast, energy, homogeneity and entropy) 

and two high-order parameters (NGTDM coarseness and contrast).  
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5.3.3 IHC staining and post processing 

 

The lobectomy specimens were obtained by the surgical team with the ex-vivo specimen 

marked such that its orientation within the body is known. The specimens were fixed in 10% 

buffered formalin for 24 hours prior to further processing. Two experienced consultant 

histopathologists (EM and DN) at Guy’s and St. Thomas Hospital NHS Foundation Trust cut 

the surgical specimens with me present in the lab to identify the best section to be used. 3 

micrometre thick tissue sections were then embedded in paraffin for IHC staining. The 

Biobank technicians at Guy’s and St. Thomas Hospital NHS Foundation Trust based at Guy’s 

Cancer Centre performed the IHC staining for angiogenesis (CD34 and CD105 MVD), hypoxia 

(HIF-1-alpha expression), glycolysis (GLUT-1 expression, HEX-II) and proliferation (Ki67).  

IHC staining was performed on a Ventana Benchmark Ultra automated autostainer (Ventana 

Medical Systems, Inc.) using a multimer detection kit (UltraView universal DAB 

(diaminobenzidine tetrahydrochloride) Detection kit [760-500]). Haematoxylin II (790-2208) 

and bluing reagent (760-2037) were used to counterstain all IHC slides. Cell conditioning 1 

was used for antigen retrieval. As the aim of my study was to correlate the micro-

environment structure of the tumour to metabolic imaging, primary antibodies were used 

to target specific tumour micro-environment components.  

The pathologists, EM and DN, scored all the slides for the 19 patients. As we had more than 

1 slide for each patient, we used the average of the scores for GLUT-1%, MVD, HIF-1-alpha 

and Hexokinase-II (HEX-II) but for Ki67 we used both the average and maximum score. This 

was because maximum Ki67 score is known to correlate with clinical outcome (166). 

Staining procedures and antibody descriptions are summarised in the following Table 6. 
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Table 6. Staining procedures summarising antigen retrieval agents and primary antibodies 
used in IHC staining 

 

IHC 
stain 

Purpose Antigen 
retrieval 

Primary Antibody 

  Time  
(minu
tes) 

Temper
ature 

Product name Dilution Time  
(minu
tes) 

Temper
ature 

CD 105 Vascular 
endothelial protein 
associated with 
angiogenesis (167)  

64 950C Abcam Anti-
CD105 
(EPR10145-10) 
(ab104836) 

1:100 32 250C 

CD 34 Vascular 
endothelial protein 
associated with 
angiogenesis; also 
highlights 
lymphatics (167)  

64 950C Abcam Anti-CD34 
(ab185732) 

1:100 32 250C 

HIF-1-
alpha 

Protein expressed 
in hypoxic tumour 
regions (168)  

36 950C Abcam HIF-1-
alpha(1A3) 
(ab113642) 

1:200 32 250C 

GLUT-1 Cell-membrane 
associated glucose 
transporter (169) 

8 950C Ventana GLUT-1 
760-4526 

Pre-
diluted 

16 370C 

HEX-II Intracellular 
enzyme involved in 
glycolysis (169)  

64 950C Abcam Anti-HEX-
II (3D3) 
(ab104836) 

1:50 32 250C 

Ki67 Marker of tumour 
proliferation (170)  

36 950C Ventana 
CONFIRM anti-Ki-
67 (30-9) 790-
4286 

Pre-
diluted 

16 360C 
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5.3.4 Statistical Analysis 

 

The Shapiro-Wilk test for normality on SPSS (IBM SPSS Statistics, version 26) was used to 

check the data distribution. Based on this test, non-parametric Spearman rank correlation 

test was used as the data were not normally distributed. Spearman rank correlation was 

used to measure correlations between sixteen 18F-FDG PET derived parameters and 6 IHC 

stains. A p-value of <0.05 was set as a cut-off to determine statistical significance for both 

tests. The cut-off threshold for correlation coefficient (r value) was based on the p-value 

thresholds and hence is different in each dataset below. A correction for multiple 

correlation testing was also determined. As I had 8 groups of data (SUV, first, second and 

high-order PET parameters; angiogenesis, hypoxia, glucose and proliferation histological 

parameters) the corrected p value was p= 0.05/8 = 0.006 for significance. 

 

5.4 Results 
 

The correlation coefficients (r value) for each standard and texture parameter versus 

histological parameters are presented in Table 7 for all 19 patients.  Table 8 demonstrates p-

values of the correlation test for the same dataset.  

CD105 and CD34 MVD correlated strongly (p-value <0.05) with 3 parameters (standard and 

textural). CD105 MVD had a statistically significant correlation with TLG, first-order energy 

and NGTDM coarseness. CD34 MVD correlated strongly with MTV, TLG and NGTDM 

coarseness; the correlation with MTV and high-order coarseness were the strongest in the 

whole dataset (r> 0.6, p value < 0.01). Ki67avg and Ki67max values correlated strongly (p-value 

< 0.05) with GLCM energy and first-order skewness, respectively.  
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Although not statistically significant (p-value < 0.10 but > 0.05) there was also some 

correlation between the following parameters: 

• Glut-1 correlated with SUVmean and SUVpeak; first-order SD, energy and entropy; and 

second-order GLCM energy. 

• CD105 MVD correlated with SUVmax, SUVpeak and MTV; first-order SD and entropy. 

• Ki67avg correlated with first-order skewness. 

• Ki67max correlated with first-order kurtosis and second-order GLCM energy. 

 

HIF-1-alpha and HEX-II demonstrated no significant correlation with any textural features.  

 

Figure 7 demonstrates a correlation graph matrix of statistically significant (p < 0.05) 

standard and texture parameter versus histological parameters for all 19 patients in this 

dataset.   

 

If the correction for multiple correlation testing was to be applied, the only statistically 

significant correlation was between CD34 MVD and high-order coarseness (p = 0.004). 
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Figure 7. Correlation graph matrix of statistically significant (p < 0.05) standard and texture 
parameter versus histological parameters for all 19 patients. Graphs in red border box 
demonstrate strongest correlation in the dataset (r> 0.6, p value < 0.01) 
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Table 7. Correlation coefficients for each standard and texture parameter versus histological 
parameters for all 19 patients 

Correlation 
Coefficient (r value) 

GLUT-1 
(%) 

CD105 
MVD 

CD34 
MVD 

HIF-1-
alpha 

HEX-II Ki67avg Ki67max 

SUVmax 
0.384 -0.393 -0.172 -0.108 0.238 0.199 0.222 

SUVmean 
0.397 -0.379 -0.162 -0.106 0.258 0.199 0.215 

SUVpeak 
0.413 -0.425 -0.191 -0.101 0.209 0.183 0.210 

MTV 
0.107 -0.453 -0.594 0.342 -0.233 -0.076 -0.017 

TLG 
0.345 -0.509 -0.496 0.239 -0.091 0.090 0.132 

First-order SD 
0.411 -0.419 -0.209 -0.284 0.209 0.133 0.147 

First-order energy 
0.397 -0.467 -0.379 0.136 0.056 0.135 0.154 

First-order skewness 
-0.248 0.332 0.265 -0.119 0.083 -0.441 -0.476 

First-order kurtosis 
-0.204 0.225 0.189 0.007 0.058 -0.385 -0.390 

First-order entropy 
0.391 -0.444 -0.231 -0.190 0.166 0.133 0.153 

GLCM contrast 
0.155 -0.093 0.096 -0.372 0.206 0.191 0.119 

GLCM energy 
-0.427 0.253 0.193 0.078 -0.149 -0.470 -0.417 

GLCM homogeneity 
-0.104 -0.060 -0.246 0.254 -0.220 -0.264 -0.226 

GLCM entropy 
0.210 -0.075 0.102 -0.381 0.242 0.297 0.220 

NGTDM coarseness 
-0.205 0.525 0.623 -0.316 0.227 0.002 -0.039 

NGTDM contrast 

0.116 0.014 0.217 -0.350 0.194 0.233 0.178 

Legend for r value 

r value Colour code 

> 0.46  

0.46 – 0.39  

< 0.39  

 



73 
 

Table 8. Demonstrates p-values of the correlation test for all 19 patients 

p-value (significance 
2-tailed) 

GLUT-1 
(%) 

CD105 
MVD 

CD34 
MVD 

HIF-1-
alpha 

HEX-II Ki67avg Ki67max 

SUVmax 
0.105 0.096 0.481 0.659 0.326 0.414 0.361 

SUVmean 
0.092 0.110 0.508 0.664 0.286 0.414 0.377 

SUVpeak 
0.079 0.070 0.434 0.680 0.390 0.452 0.389 

MTV 
0.663 0.052 0.007 0.151 0.338 0.756 0.946 

TLG 
0.147 0.026 0.031 0.324 0.710 0.713 0.591 

First-order SD 
0.081 0.074 0.390 0.238 0.390 0.589 0.549 

First-order energy 
0.092 0.044 0.110 0.580 0.819 0.581 0.528 

First-order skewness 
0.306 0.166 0.272 0.628 0.734 0.058 0.040 

First-order kurtosis 
0.403 0.355 0.439 0.977 0.814 0.103 0.099 

First-order entropy 
0.098 0.057 0.341 0.436 0.497 0.589 0.533 

GLCM contrast 
0.525 0.705 0.696 0.117 0.397 0.433 0.626 

GLCM energy 
0.068 0.297 0.428 0.750 0.542 0.042 0.076 

GLCM homogeneity 
0.673 0.808 0.310 0.293 0.364 0.274 0.353 

GLCM entropy 
0.389 0.759 0.678 0.108 0.319 0.218 0.365 

NGTDM coarseness 
0.399 0.021 0.004 0.188 0.351 0.994 0.872 

NGTDM contrast 
0.636 0.955 0.372 0.142 0.426 0.336 0.466 

Legend for p-value 

p-value Colour code 

< 0.050  

0.05 – 0.1  

> 0.1  

 



74 
 

Table 9 summarises the correlation coefficients (r value) for each standard and texture 

parameter versus histological parameters for patients with ADC and SCC only (n=18 

patients); Table 10 demonstrates the p-values of the correlation test.   

CD105 MVD had a similar correlation with TLG, first-order energy and NGTDM coarseness; 

first-order entropy was also statistically significant.  CD34 MVD again correlated strongly 

with MTV, TLG and NGTDM coarseness.   

Although not statistically significant (p-value < 0.10 but > 0.05) there were also some 

correlation between the following parameters: 

• Ki67avg correlated with first-order skewness  

• Glut-1 correlated with SUVmax, SUVmean and SUVpeak; first-order SD, energy and 

entropy; and second-order GLCM energy. 

• CD105 MVD correlated with SUVmax, SUVpeak and MTV; and first-order SD and 

entropy. 

 

HIF-1-alpha and HEX-II demonstrated no significant correlation with any textural features, as 

seen with the previous data.  

 

Figure 8 demonstrates a correlation graph matrix of statistically significant (p < 0.05) 

standard and texture parameter versus histological parameters for the 18 patients with ADC 

and SCC.   

 

If the correction for multiple correlation testing was to be applied, the only statistically 

significant correlation was between CD34 MVD and high-order coarseness (p = 0.004), as 

seen with the previous data. 
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Figure 8. Correlation graph matrix of statistically significant (p < 0.05) standard and texture 
parameter versus histological parameters for 18 patients with ADC and SCC. Graphs in red 
border box demonstrate strongest correlation in the dataset (r> 0.6, p value < 0.01) 
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Table 9. Correlation coefficients for each standard and texture parameter versus histological 
parameters for 18 patients with ADC and SCC 

Correlation 
Coefficient (r value) 

GLUT-1 
(%) 

CD105 
MVD 

CD34 
MVD 

HIF-1-
alpha 

HEX-II Ki67avg Ki67max 

SUVmax 
0.405 -0.412 -0.165 -0.142 0.253 0.217 0.234 

SUVmean 
0.418 -0.395 -0.153 -0.140 0.276 0.219 0.226 

SUVpeak 
0.437 -0.449 -0.187 -0.134 0.221 0.200 0.218 

MTV 
0.110 -0.449 -0.607 0.325 -0.221 -0.099 -0.026 

TLG 
0.352 -0.534 -0.521 0.232 -0.084 0.072 0.120 

First-order SD 
0.425 -0.457 -0.229 -0.276 0.222 0.163 0.178 

First-order energy 
0.403 -0.517 -0.413 0.130 0.066 0.131 0.153 

First-order skewness 
-0.230 0.255 0.185 -0.035 0.049 -0.427 -0.449 

First-order kurtosis 
-0.186 0.181 0.149 0.032 0.036 -0.327 -0.379 

First-order entropy 
0.409 -0.474 -0.239 -0.204 0.186 0.153 0.167 

GLCM contrast 
0.192 -0.170 0.037 -0.339 0.198 0.240 0.167 

GLCM energy 
-0.406 0.245 0.182 0.096 -0.164 -0.451 -0.390 

GLCM homogeneity 
-0.103 -0.086 -0.289 0.289 -0.237 -0.285 -0.223 

GLCM entropy 
0.248 -0.150 0.044 -0.346 0.233 0.353 0.278 

NGTDM coarseness 
-0.219 0.534 0.641 -0.295 0.212 0.015 -0.036 

NGTDM contrast 

0.147 -0.044 0.180 -0.312 0.184 0.287 0.232 

Legend for r value 

r value Colour code 

> 0.47  

0.47 – 0.40  

< 0.40  
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Table 10. Demonstrates p-values of the correlation test for 18 patients with ADC and SCC 

p-value (significance 
2-tailed) 

GLUT-1 
(%) 

CD105 
MVD 

CD34 
MVD 

HIF-1-
alpha 

HEX-II Ki67avg Ki67max 

SUVmax 
0.096 0.090 0.512 0.575 0.311 0.387 0.349 

SUVmean 
0.084 0.104 0.544 0.580 0.268 0.383 0.367 

SUVpeak 
0.070 0.062 0.457 0.597 0.378 0.425 0.385 

MTV 
0.665 0.062 0.008 0.188 0.378 0.696 0.919 

TLG 
0.152 0.023 0.027 0.355 0.741 0.776 0.636 

First-order SD 
0.079 0.056 0.362 0.267 0.376 0.518 0.481 

First-order energy 
0.097 0.028 0.089 0.606 0.794 0.604 0.545 

First-order skewness 
0.359 0.307 0.462 0.890 0.848 0.077 0.062 

First-order kurtosis 
0.459 0.473 0.555 0.899 0.887 0.129 0.121 

First-order entropy 
0.092 0.047 0.340 0.417 0.460 0.545 0.507 

GLCM contrast 
0.446 0.499 0.883 0.169 0.430 0.338 0.507 

GLCM energy 
0.095 0.328 0.470 0.704 0.515 0.060 0.109 

GLCM homogeneity 
0.684 0.735 0.246 0.245 0.345 0.252 0.374 

GLCM entropy 
0.322 0.553 0.861 0.160 0.351 0.151 0.264 

NGTDM coarseness 
0.382 0.023 0.004 0.235 0.399 0.951 0.887 

NGTDM contrast 
0.559 0.861 0.475 0.208 0.465 0.248 0.354 

Legend for p-value 

p-value Colour code 

< 0.050  

0.05 – 0.1  

> 0.1  
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Table 11 demonstrates correlation coefficients (r value) for each standard and texture 

parameter versus histological parameters for the 10 ADC patients only; Table 12 

demonstrates the p-values of the correlation test.  

 

CD105 and CD34 MVD correlated strongly with both MTV and NGTDM coarseness. The 

correlation with NGTDM coarseness was the strongest in the whole dataset for ADC (r = 

0.77, p < 0.01). None of the other standard or textural parameters demonstrated any 

significant correlation with any of the histological parameters.  

 

Figure 9 demonstrates a correlation graph matrix of statistically significant (p < 0.05) 

standard and texture parameter versus histological parameters for 10 patients with ADC. 
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Figure 9. Correlation graph matrix of statistically significant (p < 0.05) standard and texture 
parameter versus histological parameters for 10 patients with ADC. Graphs in red border box 
demonstrate strongest correlation in the dataset (r = 0.77, p value < 0.01) 
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Table 11. Correlation coefficients for each standard and texture parameter versus 
histological parameters for 10 patients with ADC 

Correlation 
Coefficient (r value) 

GLUT-1 
(%) 

CD105 
MVD 

CD34 
MVD 

HIF-1-
alpha 

HEX-II Ki67avg Ki67max 

SUVmax 
-0.281 0.152 0.152 0.049 0.158 -0.030 -0.042 

SUVmean 
-0.330 0.236 0.248 0.079 0.146 -0.042 -0.055 

SUVpeak 
-0.281 0.152 0.152 0.049 0.158 -0.030 -0.042 

MTV 
-0.012 -0.709 -0.758 0.000 -0.182 -0.176 0.055 

TLG 
0.024 -0.297 -0.418 0.219 0.097 0.103 0.248 

First-order SD 
-0.385 0.018 0.042 -0.012 0.006 -0.091 -0.055 

First-order energy 
-0.122 -0.127 -0.176 0.201 0.128 0.055 0.164 

First-order skewness 
-0.128 0.188 0.152 -0.164 -0.006 -0.394 -0.515 

First-order kurtosis 
-0.128 0.188 0.152 -0.164 -0.006 -0.394 -0.515 

First-order entropy 
-0.385 0.018 0.042 -0.012 0.006 -0.091 -0.055 

GLCM contrast 
-0.324 0.067 0.236 -0.097 -0.195 -0.103 -0.273 

GLCM energy 
-0.202 0.018 -0.055 -0.225 -0.116 -0.491 -0.515 

GLCM homogeneity 
-0.055 -0.345 -0.491 -0.097 -0.170 -0.321 -0.176 

GLCM entropy 
-0.037 0.018 0.212 -0.024 -0.055 0.212 0.152 

NGTDM coarseness 
0.049 0.745 0.770 0.000 0.231 0.188 -0.030 

NGTDM contrast 

-0.135 0.248 0.442 -0.006 -0.036 0.188 0.091 

Legend for r value 

r value Colour code 

> 0.7  

0.7 – 0.4  

< 0.4  
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Table 12. Demonstrates p-values of the correlation test for 10 patients with ADC 

p-value (significance 
2-tailed) 

GLUT-1 
(%) 

CD105 
MVD 

CD34 
MVD 

HIF-1-
alpha 

HEX-II Ki67avg Ki67max 

SUVmax 
0.431 0.676 0.676 0.894 0.663 0.934 0.907 

SUVmean 
0.351 0.511 0.489 0.828 0.688 0.907 0.881 

SUVpeak 
0.431 0.676 0.676 0.894 0.663 0.934 0.907 

MTV 
0.973 0.022 0.011 1.000 0.614 0.627 0.881 

TLG 
0.947 0.405 0.229 0.544 0.789 0.777 0.489 

First-order SD 
0.271 0.960 0.907 0.973 0.987 0.803 0.881 

First-order energy 
0.736 0.726 0.627 0.578 0.725 0.881 0.651 

First-order skewness 
0.724 0.603 0.676 0.650 0.987 0.260 0.128 

First-order kurtosis 
0.724 0.603 0.676 0.650 0.987 0.260 0.128 

First-order entropy 
0.217 0.960 0.907 0.973 0.987 0.803 0.881 

GLCM contrast 
0.361 0.855 0.511 0.789 0.590 0.777 0.446 

GLCM energy 
0.576 0.960 0.881 0.532 0.751 0.150 0.128 

GLCM homogeneity 
0.880 0.328 0.150 0.789 0.638 0.365 0.627 

GLCM entropy 
0.920 0.960 0.556 0.947 0.881 0.556 0.676 

NGTDM coarseness 
0.893 0.013 0.009 1.000 0.521 0.603 0.934 

NGTDM contrast 
0.711 0.489 0.200 0.987 0.920 0.603 0.803 

Legend for p-value 

p-value Colour code 

< 0.050  

0.05 – 0.1  

> 0.1  
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Table 13 demonstrates correlation coefficients (r value) for each standard and texture 

parameter versus histological parameters for the 8 SCC patients and table 14 demonstrates 

the p-values of the correlation test.   

 

This data set demonstrated the maximum number of statistically significant correlations 

between standard and textural parameters versus histological parameters.  

CD105 and CD34 MVD correlated strongly with first-order energy.  

This dataset of 8 SCC patients is the only one in my study where the PET standard and 

textural parameters correlated strongly (p-value <0.05) with histological parameters HIF-1-

alpha and HEX-II.  

HIF-1-alpha correlated strongly with MTV, second-order GLCM energy, GLCM homogeneity 

and GLCM entropy and high-order NGTDM coarseness and NGTDM contrast.  

HEX-II correlated strongly with MTV, second-order GLCM contrast and high-order NGTDM 

coarseness. 

 

Although not statistically significant (p-value < 0.10 but > 0.05), there was some correlation 

between the following histological and textural parameters: 

• Glut-1 correlated with second-order GLCM contrast and GLCM homogeneity; and 

high-order NGTDM contrast 

• CD105 MVD correlated with SUVpeak and first-order entropy 

• HEX-II correlated with TLG, first-order energy, second-order GLCM entropy and 

GLCM homogeneity; and high-order textural parameter (NGTDM contrast) 

• Ki67avg correlated with first-order energy 
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The histological parameter Ki67max demonstrated no significant correlation with any 

standard or textural features.  

 

Figure 10 demonstrates a correlation graph matrix of statistically significant (p < 0.05) 

standard and texture parameter versus histological parameters for 8 patients with SCC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Correlation graph matrix of statistically significant (p < 0.05) standard and texture 
parameter versus histological parameters for 8 patients with SCC 
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Table 13. Correlation coefficients for each standard and texture parameter versus 
histological parameters for 8 patients with SCC 

Correlation 
Coefficient (r value) 

GLUT-1 
(%) 

CD105 
MVD 

CD34 
MVD 

HIF-1-
alpha 

HEX-II Ki67avg Ki67max 

SUVmax 
-0.126 -0.571 -0.190 0.366 -0.240 -0.167 -0.095 

SUVmean 
-0.126 -0.571 -0.190 0.366 -0.240 -0.167 -0.095 

SUVpeak 
0.000 -0.667 -0.238 0.366 -0.347 -0.310 -0.238 

MTV 
0.504 -0.405 -0.548 0.732 -0.719 -0.333 -0.310 

TLG 
0.504 -0.619 -0.619 0.610 -0.683 -0.548 -0.524 

First-order SD 
0.000 -0.548 -0.143 0.146 -0.120 -0.310 -0.238 

First-order energy 
0.252 -0.786 -0.738 0.537 -0.623 -0.643 -0.595 

First-order skewness 
0.000 -0.190 -0.143 0.098 -0.036 -0.405 -0.286 

First-order kurtosis 
0.000 -0.286 -0.190 0.268 -0.084 -0.286 -0.143 

First-order entropy 
0.000 -0.667 -0.238 0.366 -0.347 -0.310 -0.238 

GLCM contrast 
-0.630 0.310 0.190 -0.586 0.731 0.357 0.286 

GLCM energy 
0.000 0.024 0.119 0.708 -0.287 0.310 0.405 

GLCM homogeneity 
0.630 -0.238 -0.381 0.830 -0.695 -0.286 -0.238 

GLCM entropy 
-0.504 0.238 0.262 -0.805 0.683 0.262 0.167 

NGTDM coarseness 
-0.504 0.405 0.548 -0.732 0.719 0.333 0.310 

NGTDM contrast 

-0.630 0.167 0.238 -0.732 0.659 0.310 0.238 

Legend for r value 

r value Colour code 

> 0.70  

0.70 – 0.62  

< 0.62  
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Table 14. Demonstrates p-values of the correlation test for 8 patients with SCC 

p-value (significance 
2-tailed) 

GLUT-1 
(%) 

CD105 
MVD 

CD34 
MVD 

HIF-1-
alpha 

HEX-II Ki67avg Ki67max 

SUVmax 
0.766 0.139 0.651 0.373 0.568 0.693 0.823 

SUVmean 
0.766 0.139 0.651 0.373 0.568 0.693 0.823 

SUVpeak 
1.000 0.071 0.570 0.373 0.399 0.456 0.570 

MTV 
0.203 0.320 0.160 0.039 0.045 0.420 0.456 

TLG 
0.203 0.102 0.102 0.108 0.062 0.160 0.183 

First-order SD 
1.000 0.160 0.736 0.729 0.778 0.456 0.570 

First-order energy 
0.547 0.021 0.037 0.170 0.099 0.086 0.120 

First-order skewness 
1.000 0.651 0.736 0.818 0.933 0.320 0.493 

First-order kurtosis 
1.000 0.493 0.651 0.520 0.844 0.493 0.736 

First-order entropy 
1.000 0.071 0.570 0.373 0.399 0.456 0.570 

GLCM contrast 
0.094 0.456 0.651 0.127 0.040 0.385 0.493 

GLCM energy 
1.000 0.955 0.779 0.050 0.490 0.456 0.320 

GLCM homogeneity 
0.094 0.570 0.352 0.011 0.056 0.493 0.570 

GLCM entropy 
0.203 0.570 0.531 0.016 0.062 0.531 0.693 

NGTDM coarseness 
0.203 0.320 0.160 0.039 0.045 0.420 0.456 

NGTDM contrast 
0.094 0.693 0.570 0.039 0.076 0.456 0.570 

Legend for p-value 

p-value Colour code 

< 0.050  

0.05 – 0.1  

> 0.1  
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In summary, we analysed the patients in 4 groups with key results as follows: 

Group 1 (all 19 patients): CD105 MVD, staining neovessel endothelial cells, correlated 

negatively with TLG and first-order energy; and positively with NGTDM coarseness (r = -0.51, 

-0.47, 0.53, respectively: all p<0.05). CD34 MVD, staining vascular and lymphatic endothelial 

cells, correlated negatively with MTV and TLG; and positively with NGTDM coarseness (r = -

0.59, -0.50, 0.62, respectively: all p<0.05). Ki67avg and Ki67max values correlated negatively 

with GLCM energy and first-order skewness, respectively (r = -0.47 and r = -0.48, 

respectively: all p<0.05).  

Group 2 (18 patients with ADC and SCC): CD105 MVD correlated negatively with TLG, first-

order energy and first-order entropy; and positively with NGTDM coarseness (r = -0.53, -

0.52, -0.47, 0.53, respectively: all p<0.05).  CD34 MVD correlated negatively with MTV and 

TLG; and positively with NGTDM coarseness (r = -0.61, -0.52, 0.64, respectively: all p<0.05).  

Group 3 (10 ADC patients): CD105 MVD and CD34 MVD correlated with both MTV (r = -0.71, 

-0.76, respectively: all p<0.05) and NGTDM coarseness (r= 0.75, 0.77, respectively: all 

p<0.05).  

Group 4 (8 SCC patients): CD105 MVD and CD34 MVD correlated negatively with first-order 

energy (r = -0.79, -0.74, respectively: all p<0.05).  

HIF-1-alpha correlated strongly with MTV, second-order textural parameters (GLCM energy, 

GLCM homogeneity and GLCM entropy) and high-order textural parameters (NGTDM 

coarseness and NGTDM contrast) (r = 0.73, 0.71, 0.83, -0.81, -0.73, -0.73, respectively: all 

p<0.05).  

HEX-II correlated strongly with MTV, second-order textural parameter (GLCM contrast) and 

high-order textural parameter (NGTDM coarseness) (r = -0.72, 0.73, 0.72, respectively: all 

p<0.05). 
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If the correction for multiple correlation testing was to be applied, the only statistically 

significant correlation was between CD34 MVD and high-order coarseness (p = 0.004), in 

Groups 1 and 2. 

 

5.5 Discussion 
 

In this study I investigated whether there were relationships between textural parameters 

of 18F-FDG PET images and histological and IHC parameters of untreated NSCLC. This was to 

better understand the biological factors that may cause spatial heterogeneity of 18F-FDG PET 

images and the possibility of us being able to predict the biological factors pre-operatively 

to influence management decisions.  

Our prospective exploratory analysis, taking a p-value <0.05 as a significant result, has 

shown that TLG (inverse correlation) and NGTDM coarseness (positive correlation) correlate 

strongly with CD105 and CD34 MVD. CD105 MVD also strongly correlated with first-order 

energy (inverse correlation). Ki67avg strongly correlated with GLCM energy (inverse 

correlation), CD34 MVD with MTV (inverse correlation) and Ki67max with first-order 

skewness (inverse correlation).  

The results (group 2) when the LCNC patient was excluded (n=1) showed similar strong 

correlation with CD105 MVD and CD34 MVD, except CD105 MVD also demonstrated strong 

correlation with first-order entropy (inverse correlation). Excluding the LCNC patient 

resulted in no significant correlation between PET and Ki67 IHC parameters.  

The results from ADC subgroup of patients (n=10) have shown that MTV (inverse 

correlation) and NGTDM coarseness (positive correlation) correlate strongly with CD105 and 

CD34 MVD.  
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The SCC subgroup showed the maximum number of strong correlations: CD105 and CD34 

MVD with first-order energy (inverse correlation); HEX-II with MTV (inverse correlation), 

GLCM contrast (positive correlation) and NGTDM coarseness (positive correlation); HIF-1-

alpha demonstrated positive correlation with MTV, GLCM energy and GLCM homogeneity 

and inverse correlation with GLCM entropy, NGTDM coarseness and NGTDM contrast. 

Although histopathological and IHC parameters are the current gold standard for diagnosis 

and establishing tumour biology it is subject to sampling error at biopsy. Imaging, however, 

analyses the whole tumour and hence can potentially augment and complement 

histopathological and IHC measures. 

There have been numerous studies that have shown the importance of understanding 

tumour biology and how they help in treatment decisions in NSCLC (171-174). For example, 

patients with advanced and metastatic NSCLC, who previously had barely any treatment 

options with poor prognosis, now have a better prognosis with immunotherapy targeting 

PD-1 and PD-L1 which are based on IHC measurements of PD-L1 expression (171).  

Sasaki et al. in their study of 95 patients with surgically treated NSCLC found that survival 

was significantly longer for those with tumours expressing EGFR mutations than for those 

with wild-type gene expression (174). Low ERCC1 expression (key enzyme in nucleotide 

excision repair) correlates with increased sensitivity to platinum-based therapy and high 

ERCC1 expression correlates with better overall prognosis in NSCLC (175). The prognostic 

value of molecular markers such as EGFR mutation and ALK (anaplastic lymphoma kinase) 

rearrangement and benefit of TKIs in both early and advanced NSCLC, particularly ADC, have 

been published (176-179). 

There are very limited data available in the literature correlating texture parameters with 

histological features in NSCLC. Recent studies have tried to demonstrate correlations 
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between histopathological and IHC features in NSCLC with textural features from 18F-FDG 

PET imaging.  

Bashir et al. in their recent study assessed correlations between 18F-FDG PET-derived texture 

variables and whole-slide image (WSI)-derived metrics of tumour cellularity and spatial 

heterogeneity in twenty-two patients with NSCLC prospectively (79). They concluded that 

histopathological mean cell density and lacunarity (large gaps between cluster of cells) 

correlated with standard 18F-FDG parameters, including SUVmean and TLG, first-order 

statistical features, including kurtosis and skewness, and 18F-FDG lacunarity, and thus may 

explain the biological basis of 18F-FDG PET-uptake heterogeneity in NSCLC. In my study, 

similarly I found first-order skewness to have strong inverse correlation with Ki67max (r = -

0.47, p < 0.05) and TLG to have strong inverse correlation with C105 and CD34 MVD (r = -

0.53 and -0.52, respectively, p < 0.05). 

Karacavus et al. in their study with a sub-group of 40 NSCLC patients (out of 83 total patients 

in the study) have shown correlations between a number of texture parameters (for 

example skewness, first-order entropy and first-order energy) and Ki67 IHC analysis of 

proliferation using k-nearest neighbours and SVM methods (80). TLG was the only standard 

metabolic parameter that correlated with Ki67 in their study. In my study Ki67 

demonstrated an inverse correlation with GLCM energy and first-order skewness (r = -0.47 

and r = -0.48, respectively: all p<0.05).  

Castello et al. retrospectively analysed 44 patients with NSCLC before surgery (180). The 

tumour specimens were assessed for HIF-1-alpha, CD68-TAMs (tumour-associated 

macrophages), CD8-TILs (tumour-infiltrating lymphocytes), PD-1-TILs, and PD-L1 expressions 

and 18F-FDG PET parameters, including SUVmax, SUVpeak, SUVmean, MTV, and TLG and texture 

features including tumour sphericity, skewness, kurtosis, first-entropy, and first-energy. 
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They found that a significantly higher level of mean CD8-TILs was observed in tumours with 

higher entropy (P=0.041). In my study I found that in the SCC subgroup HIF-1-alpha 

demonstrated positive correlation with MTV, GLCM energy and GLCM homogeneity (r = 

0.73, 0.71, 0.83, respectively: p<0.05) and inverse correlation with GLCM entropy, NGTDM 

coarseness and NGTDM contrast (-0.81, -0.73, -0.73, respectively: p<0.05). 

Although this was not a textural analysis study, Vessele et al. concluded that standard SUV 

parameters from 18F-FDG PET images correlated strongly with Ki-67 expression (p < 0.0001) 

(148). 

Several ex-vivo studies have correlated 18F-FDG uptake with cellularity, fibrosis, and hypoxia 

(28, 73, 181). Zhao et al. in their rat hepatoma model showed autoradiography of ex vivo 

tumour samples demonstrated 18F-FDG uptake in the central regions of the tumours and 

that those regions were also the only regions that stained positively for HIF-1-alpha (73). 

Van Baardwijk et al. studied five patients with NSCLC and found differences in zonal 

distribution of fibrosis and cellularity on histologic sampling of each region: Fibrosis 

predominated in low-activity tumour regions, whereas regions with high 18F-FDG uptake 

showed greater cellularity (181). 

The findings in my study add to the evidence in the literature. In my study SUVmax, SUVmean, 

and SUVpeak, although showed some correlation with CD105 MVD and GLUT-1 (%), these 

were not statistically significant.  

Tumour heterogeneity is closely linked to blood supply and hypoxia (182, 183). A 

heterogenous tumour’s blood supply is associated with hypoxic areas which in turn leads to 

genetic instability (182). HIF-1-alpha controls angiogenesis and glycolysis; tumour growth is 

also correlated with HIF-1-alpha expression. The hypoxic changes in tissues leads to 

resistance to treatment due to increased tumour aggression (183). I measured tumour 
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vascularity and hypoxia with MVD and HIF-1-alpha. This possibly explains why there was a 

positive correlation between HIF-1-alpha and MTV and inverse correlation between MVD 

and MTV across my data set, i.e. larger the metabolic tumour the less vasculature and 

increased areas of hypoxia.  

The textural features that commonly have been found to correlate to histological 

parameters, survival, prognosis and staging in various studies in the literature were also 

found to have statistically significant correlations in my study. Although when corrected for 

multiple correlations the p-value for my data set is <0.006, I would like to argue that these 

are exploratory findings. The correlation data with p-values between 0.05 – 0.006 would 

give relevant information on potentially useful markers going forwards in larger 

confirmatory studies.  

I have been cautious in interpreting my results for the ADC and SCC subset of patients in 

groups 3 and 4. I am aware that given the small number of patients in this data set (n = 10 

and n = 8, respectively) the probability of false positive correlations with multiple testing is 

high. However, my analyses have demonstrated differences between ADC and SCC in line 

with similar studies in the literature; there are very limited data in the literature correlating 

PET texture parameters to IHC in different histological subtypes of NSCLC.  

Ha et al. (184) in their study found that the 14 out of 15 FDG PET texture parameters that 

had significantly different values between ADC (n = 17) and SCC (n = 13) were co-occurrence 

matrix-based texture parameters. Similar results were found in my study with HIF-1-alpha 

correlating strongly with second-order textural parameters (GLCM energy, GLCM 

homogeneity and GLCM entropy) in SCC but not ADC.  

Bianconi et al. (52), in their recent study concluded that SCC had stronger PET variability and 

lower uniformity in contrast to ADC which exhibited lower variability and higher uniformity.  
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Karetsi e al. (185) in their study, concluded that HIF-1-alpha differs significantly between 

subtypes of lung cancer, with the frequency of HIF-1-alpha nuclear expression 88.2% in SCC 

and 62.5% in ADC. This is similar to my study findings where HIF-1-alpha correlated strongly 

with MTV, second-order textural parameters (GLCM energy, GLCM homogeneity and GLCM 

in SCC patients but no significant correlation was found in ADC.  

 

The limitations of my study are the number of patients recruited is small (n = 19) which may 

lead to lower statistical power. This is an exploratory study and the consistent relationship 

with the 2 different MVD measurements and the PET standard and texture parameters in all 

4 groups of analysis suggests this is a real association. The other limitation of my study is 

that I have not corrected for multiple testing upfront. As this was an exploratory study, I 

wanted to analyse correlations between all textural and IHC parameters. Although the p-

value after correction for multiple correlation testing is 0.006 for significance, I retained all 

significant results with p-value > 0.05 as my sample size is small and applying correction for 

multiple correlation may falsely lead to a type 2 error. I did not want to reject potentially 

true correlations between texture features and IHC as these features are of potential 

interest and need to be confirmed in larger series when corrections for multiple testing 

could be applied upfront. 
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5.6 Conclusion 
 

Several standard and textural parameters extracted from 18F-FDG images correlate with 

MVD, Ki67, HIF-1-apha and HEX-II histological parameters. This needs to be confirmed in 

larger series, but standard and texture parameters extracted from 18F-FDG images 

potentially provide additional useful data that could report on the tumour phenotype more 

accurately. My study has also uncovered interesting differences in PET texture correlations 

with histological subtypes in NSCLC; with only limited data in the current literature, my 

study would add value to it.  
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CHAPTER 6 
 

6.1 Discussion 

 

The aim of my thesis was to determine if texture features derived from 18F-FDG PET/CT 

were associated with survival and IHC parameters. In the following paragraph I will 

summarise my experiment chapters and future direction of my research. 

The aim of my first experiment (chapter 4) was to retrospectively determine if texture 

features derived from 18F-FDG PET/CT images of MPM were associated with overall survival. 

I did establish in my study that texture feature first-order entropy was an independent 

indicator in predicting survival in MPM patients and this parameter reflecting heterogeneity 

of 18F-FDG distribution has been shown to be a predictive and prognostic marker in other 

tumours. There are no similar studies in the literature with MPM patients as per my 

knowledge. When compared to other published literature correlating standard PET 

parameters such as SUVs, I found that first-order entropy was a better indicator of overall 

survival in MPM. However, my study was a retrospective study, and this should be validated 

with a prospective design in the future, with more patients recruited, ideally from more 

than one institution. I was not able to analyse my data between each different histological 

subtype and this would be an interesting area to study further given the heterogeneity of 

MPM tumours.  

The aim of my second experiment (chapter 5) was to prospectively measure texture 

parameters of 18F-FDG PET/CT images of untreated NSCLC and to correlate these finding 

with IHC parameters in order to obtain a better understanding of the biological factors that 

may be related to spatial heterogeneity of 18F-FDG PET images. I did establish correlations 
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between various standard, first-order, second-order and high-order 18F-FDG texture 

features and histological (MVD, Ki67, HIF-1-alpha and HEX-II) parameters, in line with other 

similar studies in the literature. Of interest, these seem to differ in the main mechanisms 

associated with 18F-FDG distribution. There are limited data in the literature comparing 

texture features to histology in NSCLC. I believe my study adds to the currently available 

data, although exploratory. Correction for multiple testing, reduces the number of 

statistically significant correlations. 

 

6.2 Conclusion 
 

I have established that texture features derived from tumours can predict overall survival in 

MPM and also correlate with immunohistochemical features in NSCLC. It thus suggests that 

FDG PET imaging has the potential to offer more information than what is currently used in 

clinical practice.  
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APPENDIX 1 
 

Textural parameters derived from 18F-FDG PET images using FAST(186-190)  

 

Measures of Central Tendency 

Mean  

The mean of a data set is the average of all the data values. The sample mean is the point 

estimator of the population mean μ. Let 𝑁 be the number of voxels in 3D ROI and 𝐼(𝑖) be the 

grey level at a particular voxel 𝑖.  

 

Median  

The median of a data set is the value in the middle when the data items are arranged in 

ascending order. Whenever a data set has extreme values, the median is the preferred 

measure of central location.  

Mode  

The mode of a data set is the value that occurs with the greatest frequency.  

Percentiles  

A percentile provides information about how the data are spread over the interval from the 

smallest value to the largest value. The pth percentile of a data set is a value such that at 

least p percent of the items take on this value or less and at least (100 - p) percent of the 

items take on more than this value.  
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Measures of Variability 

Range  

The range of a data set is the difference between the largest and smallest data values. It is 

very sensitive to the smallest and largest data values.  

Variance  

The variance is a measure of variability that utilises all the data. The variance is the average 

of the squared differences between each data value and the mean.  

 

Standard Deviation  

The SD of a data set is the positive square root of the variance. It is measured in the same 

units as the data, making it more easily interpreted than the variance.  

 

Skewness  

It is an indicator used in distribution analysis as a sign of asymmetry and deviation from a 

normal distribution. If skewness is negative, the data are spread out more to the left of the 

mean than to the right. If skewness ‘s ‘ is positive, the data are spread out more to the right. 

The skewness of the normal distribution (or any perfectly symmetric distribution) is zero.  
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• Skewness > 0: Right skewed distribution - most values are concentrated on left of the 

mean, with extreme values to the right.  

• Skewness < 0: Left skewed distribution - most values are concentrated on the right of 

the mean, with extreme values to the left.  

• Skewness = 0: mean = median, the distribution is symmetrical around the mean.  

 

Kurtosis  

This indicator is used in distribution analysis as a sign of flattening or "peakedness" of a 

distribution. Kurtosis ‘k ‘ is a sign of flattening or "peakedness" of a distribution and is a 

measure of how outlier-prone a distribution is. The kurtosis of the normal distribution is 3. 

Distributions that are more outlier-prone than the normal distribution have kurtosis greater 

than 3; distributions that are less outlier-prone have kurtosis less than 3.  

 

• Kurtosis > 3 - Leptokurtic distribution, sharper than a normal distribution, with 

values concentrated around the mean and thicker tails. This means high probability 

for extreme values.  
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• Kurtosis < 3 - Platykurtic distribution, flatter than a normal distribution with a wider 

peak. The probability for extreme values is less than for a normal distribution, and 

the values are wider spread around the mean.  

• Kurtosis = 3 - Mesokurtic distribution - normal distribution for example.  

 

 

First-Order Measures of Texture  

Entropy  

Entropy is a statistical measure of randomness that can characterise the heterogeneity of 

the tumour. It results in high value if tumour have more diverse uptake consisting of many 

distinct SUVs and uniform frequency of these SUVs. Although tumour with high SUVmax 

tends to have more distinct SUVs than a tumour with low SUVmax and it may correlate quite 

well with entropy, it may not always be the case and a tumour with low SUVmax may be 

more diverse in terms of intensity distribution. A predominantly random distribution has 

higher entropy. Highly correlated or uniform distribution have low entropy. Therefore, it 

should not be taken as an independent predictor of heterogeneity.  
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Let p(i,j) is a vector that contains the histogram counts. Entropy is defined as: 

 

Where 𝑁𝑔 is total number of different grey levels present in the image. For an image which 

has been perfectly histogram equalized, the entropy of the image will be maximum. On the 

other hand, if the image has been thresholded, so that only two states are occupied, the 

entropy will be low. If all of the pixels have the same value, the entropy of the image is zero. 

Energy  

Energy takes higher value if histogram is narrowed dominated by single vale. Broader 

intensity distribution causes the energy to decrease. Energy provides the sum of squared 

elements in the ROI. It is also known as uniformity or the angular second moment. 

 

 

Neighbourhood Grey Tone Difference Matrices 

Coarseness  

Large values represent areas where grey-tone differences are small, i.e., coarse texture. In a 

coarse texture, the primitives or basic patterns making up the texture are large. As a result, 

such a texture tends to possess a high degree of local uniformity in intensity, even over a 

fairly large area.  
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Contrast  

This quantity increases with the amount of local variation in intensity. An image is said to 

have a high level of contrast if areas of different intensity levels are clearly visible. Thus, a 

high contrast means that the intensity difference between neighbouring regions is large. 

This is usually the case when the dynamic range of grey scale is large or when it is stretched.  

 

Busyness  

A busy texture is one in which there are rapid changes of intensity from one pixel to its 

neighbour; that is the spatial frequency of intensity changes is very high. A higher value of 

busyness would tend to emphasize the frequency of spatial changes in intensity values.  

 

Complexity  

A texture is considered complex if the information content is high. This occurs when there 

are many patches or primitives present in the texture, and more so when the primitives 

have different average intensities. High values of complexity would indicate a high degree of 

information content.  

 


