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Abstract

Conventional topic models have been extensively used to extract topics in documents for
topic classification. For example, Latent Dirichlet Allocation (LDA) is a topic modelling
technique that produces a probabilistic model based on word co-occurrence, for the purpose
of text classification. However, it is very challenging for these topic models to accurately
capture the semantical information of the topics because they focus on the occurrences of
words in text rather their meanings and context. They ignore the fact that words may have
multiple meanings and that different words may have the same meanings. In addition, they
ignore the semantical structures in text, such as the relationship between words in their
context. This PhD thesis proposes a novel topic classification technique that uses ontological
information and the relationship between words to provide a more accurate topic model
for topic classification. Firstly, LDA is extended to use the semantic concepts from an
ontology to help capture some of the possible semantical meanings of the words appearing
in the documents. The topic model allows topics to be defined more generally in terms
of ontological concepts rather than words and this captures the semantical meaning of the
words more accurately. In order to capture the relationship between words in the context,
this work also introduces a new entity-based algorithm for multiple-relation extraction from
unstructured text. The new algorithm uses standard Natural Language Processing (NLP)
techniques to analyse unstructured text. The algorithm offers clear performance advantages
over conventional single-relation extraction techniques and verb-based techniques. Finally,
the extracted structured relations were incorporated with the ontology-driven topic model,
resulting in what we called a relation-ontology driven topic classification technique. This
topic model allows the topics to be defined more accurately in terms of relations between
ontological concepts rather than word co-occurrence. This captures the semantical meaning
and semantical structures in text. Our classification approach can be combined with a
self-training procedure to reduce the amount of manually classified data required. The
classification performance of these topic models was compared against several variations
of existing techniques on four widely used datasets. The results show that the inclusion of
the ontology component and the contextual relationships help to reduce the training time by
nearly quarter whilst achieving the highest accuracy overall in the classification.
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Chapter 1

Introduction

Computational linguistic research has leveraged recent increases in computational power
to collect and analyse data written in natural language with unprecedented breadth, depth
and scale [Lazer et al., 2009]. In daily life, countless new articles and texts are written and
published in news outlets, scientific journals, conference proceedings and online websites
all across the world. In addition, electronic communication between people through e-mail,
text messaging and social media is now an important and common aspect of modern life.
According to IBM, around 80% of all information is unstructured, with the text being one
of the most common types of unstructured data [Schneider, 2016]. Unstructured text is an
effective means of disseminating information to humans. However, to fully comprehend all
the information embedded in this form within larger communities or across collections of
related disciplines can be very difficult or even impossible. Therefore, researchers started
to look beyond traditional approaches for textual data processing in order to recognise
and extract hidden patterns and relationships implicitly contained in neighbouring fields of
research areas.

An important analysis task in the computational linguistic field is modelling and classify
documents into categories based on different topics. By doing so, humans can focus on texts
that are most relevant to their current concerns. The fact that manual topic extraction is
time-consuming and not easy to scale makes automating this process important. Automatic
topic classification problems have been widely studied and addressed in many areas over the
last few decades. With recent breakthroughs in Natural Language Processing (NLP) and text
mining, many researchers are now developing applications that leverage text classification
methods. Automatic topic classification provides several advantages:

• Scalability: Manually analysing and organising documents is time-consuming and
scales poorly. Automatic topic modelling and classification can easily analyse millions
of documents at a fraction of cost. By automate text classification, humans can
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structure information such as e-mails, legal documents, medical reports, web pages,
chat conversations, and social media messages in a fast and cost-effective way.

• Timeliness: Some critical situations, such as public relation crises on social media,
require identifying documents as soon as possible in order to facilitate a prompt
response. Automatic topic classification can make accurate analyses in real-time so
that critical information can be identified instantly, and actions can be taken right away.

• Consistency: It is very likely for humans to make mistakes during manual annotation
due to distractions, fatigue and boredom, which can generate inconsistent criteria. In
contrast, automatic topic classification applies the same criteria to all of the documents,
thus reducing errors with centralised topic classification.

Topic classification can be applied to a wide range of tasks. For example, it can empower
product features and humans inadvertently interact with on a daily basis (such as e-mail spam
filtering [Dada et al., 2019]). It can be used to analyse a broad range of documents such as
short texts (e.g. tweets, headlines) or much larger documents (e.g. customer reviews, media
reports, legal contracts). Topic classification research has been applied successfully in various
domains, such as sentiment analysis on social media [Li et al., 2016], medical coding [Zhang
et al., 2018a], legal documents [Lu et al., 2011], human behaviour modelling [Hsu and Chiu,
2017], as well as personalised recommendation systems [Wang and Wong, 2013].

Medical coding is an area of healthcare applications where topic classification can be
highly valuable. It aims to assign medical diagnoses to specific class values obtained from a
large set of categories. In different stages of real-life diagnosis and treatments, such informa-
tion needs to be available instantly throughout the patient-physician encounters [Lauría and
March, 2011]. Topic classification can also be used to analyse Medical Subject Headings
(MsSH) and Gene Ontology (GO) [Trieschnigg et al., 2009]. However, these texts are pre-
sented in an unstructured or narrative form with ambiguous terms and typographical errors,
which makes it difficult to annotate manually and real-time. Automatic topic classification
can automatic summarise and extract structured and interpretative knowledge from all kinds
of unstructured medial reports for each patient.

Analysing legal documents is also an essential application for topic classification. Huge
volumes of legal information and documents have been generated by government institutions.
The categorisation of these documents is the main challenge for the lawyer community.
Automatically extracting this information and classifying them based on topics can help
not only lawyers but also their clients [Turtle, 1995]. For example, five basic categories to
classify the law are: Constitutional law, statutory law, treaties, administrative regulations,
and the common law [Bergman and Berman, 2016].
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Fig. 1.1 Typical procedure of topic classification

Topic classification problem normally can be solved by two steps: 1)Topic modelling:
employ a statistical model to summarise text documents into abstract topics; 2) Text classifi-
cation: using the obtained topic model to train a classifier to identify topic terms and classify
texts. Figure 1.1 shows a typical procedure of topic classification. Given a document dataset,
some standard NLP techniques are performed for data pre-processing. Then they are fed
into a topic modelling procedure to obtain a statistical topic model, which is a mixture of
topics. Such a topic model can be used to train a classifier to perform text classification. With
the topic model, a new text document can be summarised into abstract topics and then be
classified into a specific topic by the trained classifier.

Naturally, a reliable topic model would result in high accuracy of text classification,
regardless of the classifiers. Thus, topic modelling provides an effective framework for ex-
tracting the symbolic representation from unstructured text data. Latent Dirichlet Allocation
(LDA) [Blei et al., 2003] is one of the most commonly used topic modelling techniques [Li
et al., 2016, Hsu and Chiu, 2017, Burkhardt and Kramer, 2018]. LDA is a probabilistic
model that infers probability distributions from frequency statistic. However, the symbolic
representation of topics which treating words as self-contained tokens can only reflect the
co-occurrence relationships of words. The fact that it can not accurately consider the hidden
semantical information, such as semantical meanings of words and semantical structures
of texts, results in limited performances of the topic models they produce [Campbell et al.,
2015b]. Without considering the semantical meanings of words in the text, conventional LDA
ignores the fact that words may have multiple meanings and that different words may have
the same meaning. However, only consider semantical meanings of words may introduce
too many irrelevant information, results in the topic model becoming too general. In order
to only consider the relevant concepts in the context, the semantical structures in texts need
to be considered. Recently, distributed word representations with neural network language
model (NNLM) [Bengio et al., 2003] have significantly improved the performances for
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NLP and Machine Learning (ML) tasks [Otter et al., 2020, Khan et al., 2020]. Traditional
word embedding frameworks, such as word2vec [Mikolov et al., 2013b] and the GloVe
toolbox [Pennington et al., 2014], represent the target word based on a slide window of
adjacent words, which is insufficient to capture the entire contextual semantical information,
especially when dealing with a small corpus. In addition, the quality of word embedding
has a significant influence on topic modelling. Most word embedding methods get word
embedding from external corpora, which is inaccurate for word expression, and words that
are not included in external word embedding are ignored [Fu et al., 2016]. Recently, new
word embedding language models relying on neural network architectures and machine
learning frameworks have significantly improved the performance of various NLP tasks,
such as BERT [Devlin et al., 2018], GPT and GPT-2/3 [Radford et al., 2018, 2019, Brown
et al., 2020], and XLMs [Lample and Conneau, 2019] (they are described in more detail
in Section 2.1). They are pre-trained unsupervised on large datasets with over a billion
parameters. They can be easily applied in different NLP tasks across domains. By utilising
these pre-trained language models, existing state-of-the-art topic modelling approaches are
able to include contextual semantics and achieve good classification results [Liu et al., 2019,
Peinelt et al., 2020].

In addition, LDA models produced by supervised techniques outperform those produced
by unsupervised techniques [Li et al., 2016, Hsu and Chiu, 2017, Burkhardt and Kramer,
2018]. However, supervised techniques require a large amount of manually classified training
dataset, which can be very costly to produce [Ko and Seo, 2009]. And as a result, these
training datasets are usually small, while larger training datasets not only assure better
generalisation but also provide better accuracy.

The main objective of this PhD thesis was to develop a topic model for automated text
classification that can address these shortcomings of existing work. The desired topic model
can interpret topics more accurately in terms of their semantical meanings and semantical
structures. The desired topic classification can be trained with less manually classified data
in a faster process. To reach this aim, the following specific objectives and questions are
posed.

• Research question (RQ1): Could a topic model considering the semantical meanings
of the words achieve better results?
We developed an ontology-driven topic classification method with LDA topic model.

With a new dataset consisting of raw text documents, we first project a document
into a topic matrix by including ontological concepts. Each topic is represented
by ontological concepts of words instead of words themselves. By incorporating
the ontological concepts, we aim to construct a topic model that can consider the
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semantical meanings of texts rather than solely depends on their symbolical meanings.
This topic model with ontology allows us to illustrate topics more specifically with
knowledge bases so that it can perform the modelling independently of the particular
set of words.

• Research question (RQ2): Can a method be developed to capture semantical struc-
ture in unstructured texts?
We developed an entity-based relation extraction algorithm to extract multiple rela-
tions from single sentences. This algorithm aims to extract structured relationships
embedded in sentences and documents so that unstructured documents are projected
into relation matrices. These extracted relations enable us to capture the semantical
structure in texts.

• Research question (RQ3): Could a topic model considering both the semantical
meanings and semantical structures of texts achieve better results?
We developed a relation-ontology driven topic classification method with LDA topic

model. By combining the ontology-driven topic model and the extracted relations, we
finally project documents into a relation-ontology topic matrix. Here, each topic is
represented by relations between ontological concepts. This topic model is improved
by leveraging not only semantical meanings of texts but also semantical structures
embedded in the texts.

• Research question (RQ4): Can some techniques be employed to accelerate the
training process of a topic classifier and reduce the required amount of manually
classified training data?
We employed a self-training process to reduce the required amount of manually
classified data. Such a self-training process can enlarge a small amount of pre-classified
training data and achieve a semi-supervised learning process. In addition, we performed
the computing process into a distributed cloud computing service to further accelerate
the training process of the topic classification.

Figure 1.2 shows a top-level follow of our research work. Given a document dataset,
the proposed topic model with ontology is able to summarise them into a statistical topic
model. Instead of relying on external word embedding toolkits to include the semantical
meanings of words, we introduced an intermediate concept variable into LDA, resulting
in a knowledge-based approach. This ontology-driven topic model is sufficient to capture
the semantical meanings of words, regardless of the size of the corpus. By employing
the proposed entity-based algorithm, structured relation information can be extracted from
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Fig. 1.2 Top-level follow of the PhD research

the document dataset. By combining the ontology knowledge and the extracted structured
relations, the obtained relation-ontology topic model is able to consider both the semantical
meaning and semantical structures in texts. In addition, a self-training algorithm is introduced
and combined with both ontology-driven topic model and relation-ontology driven topic
model, aiming to reduce the required amount of manually classified data. A distributed
cloud computing platform is also employed to further accelerate the training process of the
construction process of the topic model. Finally, the proposed topic model with relation and
ontology combined with the self-training algorithm and distributed computing platform is
used to train a classifier to perform text classification.

The proposed relation driven topic classification and the entity-based relation extraction
algorithm can be evaluated separately using various datasets. Therefore, we performed two
experiments for each methodology and described them their corresponding chapters. In order
to evaluate the performance of the relation-ontology driven classification, which combines
both the relation driven topic classification and the entity-based relation extraction algorithm,
a third experiment was performed. For evaluation purpose, all experiment of the proposed
work will be presented in this thesis as follows:

• Experimental Setup: we describe the experimental setup. We explain the partition
of training sets and testing sets, some commonly used toolkits and the computing
environment.

• Datasets Used in the Analysis: we describe the datasets used in evaluation experiments,
including the reason for choosing such dataset and basic information about the dataset
(number of instances, example of instance, partition of training sets and testing sets).
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• Experimental Results: we present the experimental results and discuss the perfor-
mances of different approaches.

Here, we describe the main contributions of this PhD research:

• Incorporate ontology knowledge with LDA for topic classification to consider semanti-
cal meanings of unstructured texts, resulting in a knowledge-based ontology-driven
topic classification method. We evaluated the ontology-driven topic classification
method using four commonly used datasets against several variations of state-of-the-art
methods, such as Term Frequency - Inverse Document Frequency (TF-IDF), Latent
Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA). Even though our
knowledge-based OLDA approach achieves lower accuracy of classification compared
against word embedding with LDA [Fu et al., 2016](78.01% against 80.94% on 20
Newsgroups dataset) and [Liu et al., 2019] (78.01% against 83.05% on 20 Newsgroups
dataset), our approach is superior to theirs in two ways: 1) it does not rely on external
word embedding toolkits; 2) it is able to deal with small corpus. Comparing against
state-of-the-art knowledge-based approach [Allahyari and Kochut, 2015], the inclusion
of the ontology component and logistic regression increase the accuracy of classifica-
tion employed by between 3 and 7 percentual points (depending on different datasets).
It also reduces the construction time of the topic model by nearly half.

• Extract structured relations from unstructured texts using a rule-based algorithm, we
call entity-based relation extraction algorithm, to capture the semantical structures
of unstructured texts. In order to evaluate the proposed algorithm, two datasets from
different domains were used, one from the biomedical domain and the other from the
general domain. Comparing against conventional single-relation extraction algorithms,
our proposed extensions achieved at least 17 percentual points increase in precision and
at least 27 percentual points increase in recall. Our entity-based algorithm outperforms
existing state-of-the-art work in datasets from different domains: for the biomedical
domain, the F-score is increased by 0.15 [Khordad and Mercer, 2017]; for the general
domain, the F-score is creased by 0.04 [Wang et al., 2016]. Our algorithm also
outperforms the state-of-the-art algorithm based on Transformers [Eberts and Ulges,
2019]: the F-score is increased from 0.7147 to 0.955. As a side contribution of this
work, we also created a new dataset from PubMed for relation extraction task in the
biomedical domain that we call PubMed600.

• Combine the ontology knowledge and the extracted structured relations with LDA for
topic classification to consider both the semantical meaning and semantical structures
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in texts. The result knowledge-based relation-ontology driven topic classification was
evaluated using four datasets against the previous ontology-driven topic classifica-
tion method. Comparing against word embedding with LDA [Fu et al., 2016], our
knowledge-based relation-ontology driven approach increases the accuracy of classi-
fication by 0.61% (81.55% against 80.94% on 20 Newsgroups dataset). Comparing
against state-of-the-art knowledge-based approach [Allahyari and Kochut, 2015], the
inclusion of the relationship component increases the accuracy of classification by
between 5 and 13 percentual points (depending on different datasets). In addition,
the inclusion of the self-training process and the distributed cloud computing process
significantly reduces the training time by nearly half.

These experiments results confirm the importance of considering semantics in texts while
performing topic classification task. In order to differentiate one topic from others, both
symbolical words and semantical meanings are important. In order to classify documents
into one topic, a good topic model needs to capture not only symbolical words but also their
contexts, such as semantical meanings and semantical structures.

The proposed relation extraction algorithm was published in a conference paper entitled
“An Entity-Based Algorithm for Multiple-Relation Extraction from Single Sentences” [Hao
et al., 2017]. The proposed topic classification incorporating ontology knowledge with LDA
was presented in a conference entitled “A self-Training Ontology-Driven Approach for Topic
Classification (ST-OLDA)”.

Organisation of the Thesis

The rest of the thesis is organised as follows. Chapter 2 presents a literature review about
background techniques, including Natural Language Processing, existing relation extraction
techniques, machine learning and classification techniques. Chapter 3 describes the topic
model with ontology and the self-training process. This chapter also presents the experimental
results of the combined self-training ontology-driven approach for topic classification. In
this chapter, an ontology-driven topic model is proposed so that the semantical meanings of
words can be considered when classifying documents based on topics. In order to reduce
the required amount of pre-classified training data, a self-training procedure is introduced
into the topic classification process. Next, an entity-based relation extraction algorithm is
explained in Chapter 4. These extracted relation information are then combined with the
ontology-driven topic model in Chapter 5, resulting in a novel relation-ontology driven topic
classification technique. Chapter 5 also presents the distributed cloud computing process of
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this topic classification technique. Finally, Chapter 6 concludes the whole thesis with some
potential future work.



Chapter 2

Background

The topic of this thesis is interdisciplinary involving natural language data, computational
linguistics, information extraction, modelling, classification and machine learning. Therefore,
Natural Language Processing techniques for data processing are described. Besides, existing
information extraction approaches for relation extraction from biomedical text data are also
introduced. Furthermore, the related works for machine learning and classification of natural
language documents are also covered for further study.

This chapter is divided into three main sections. Section 2.1 introduces some standard
Natural Language Processing (NLP) techniques such as word segmentation, part-of-speech
tagging and Named Entity Recognition. Some state-of-the-art techniques and applications of
NLP tasks are also described in this section. Some state-of-the-art techniques and applications
of NLP tasks are also described in this section. And Section 2.2 discusses four existing
relation extraction approaches with corresponding examples. Section 2.3 presents two
commonly used machine learning techniques for classification.

2.1 Introduction to Natural Language Processing

In order to process and analyse natural language text, Natural language processing techniques
are used. Natural Language Processing (NLP) is a cross-disciplinary field in artificial
intelligence and computational linguistics in which computers can interact with humans
and understand natural human languages. Modern Natural Language Processing algorithms
are improved by statistical machine learning. Without the direct manual coding of a large
number of rules, machine learning enables computers to learn linguistic rules automatically
through statistical analyses of large corpora from real-world human natural language. By
attaching weights to each input feature, computers are able to make probabilistic decisions
and predictions when trying to understand natural languages.
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Due to the natural complexity and ambiguity, Natural Language Processing has a wide
range of focused research areas such as Natural Language Generation (NLG), Natural
Language Understanding (NLU), and natural language meaning extraction and summary. In
this section, we first describe some standard techniques including word segmentation, Part-of-
Speech (PoS) tagging, parsing and Named Entity Recognition (NER). They are fundamental
tasks when working with natural language texts. We also present the improvements of these
NLP techniques when using word embedding with neural network and machine learning.
Some state-of-the-art open-source platforms for NLP tasks are also described in this section.

Word Segmentation is an important Natural Language Processing problem. Due to the
fact that words are often not specifically space-separated in English and other languages,
it enables computers identifying and extracting valid terms like "San Francisco" from a
continuous word stream. Traditional word segmentation systems employ supervised models
containing complex sets of hand-written rules, decision trees, etc. These systems require
a large amount of training data with correct annotations. In addition, supervised models
are unable to solve new language problem whose linguistic properties were not covered
by the computational learning model [Mochihashi et al., 2009]. For example, a model
trained with an English dataset cannot deal with Chinese linguistic problems. Traditional
unsupervised learning techniques such as neural networks [Pei et al., 2014] and genetic
algorithms have contributed to automatic word segmentation in recent years. Furthermore,
Bayesian networks are becoming the dominant approach nowadays because it provides an
intuitive graphical visualisation of the probabilistic model and the conditional dependent. In
addition, Bayesian Networks successfully represent the joint probability distribution so that
the computational complexity of the inferences can be significantly reduced [Mochihashi
et al., 2009]. In order to perform word segmentation in cross-lingual language models,
machine learning techniques were utilised to increase the dictionary size or consider the
content in historical documents [Liu and Wang, 2016, Homburg and Chiarcos, 2016, Kavitha
et al., 2017]. Unlike words in English that can be easily recognised by the space token
as a word divider, languages that do not have obvious word delimiters such as Chinese,
Korean and Japanese do not have a clear word divider. By utilising deep learning techniques,
Chinese Word Segmentation (CWS) is able to treat segmented words as basic units for
operations. Each segmented word can be represented by a fixed-length vector, so that these
representations of Chinese words are able to be processed by deep learning models in the
same way as to how English words are processed [Yang et al., 2018, Li et al., 2019b].
Word segmentation is a fundamental NLP technique to solve NLP tasks such as sentiment
mining [Shi et al., 2015], topic identification [Ehsan and Shakery, 2016], and language
detection [Potrus et al., 2014].
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Part-of-Speech (POS) tagging is a process of assigning labels to a word in a text based on
both its definition and its context. In English, typical labels include noun, verb, adjectives, etc.
Parsing is the process of analysing a string of words based on the rules of formal grammar
and POS tags. When performing POS tagging and parsing to a sentence, a Penn Treebank
style sentence with corresponding POS tagged words is produced to show its grammatical
constructs. For example, Figure 2.1 shows the result of this process for the sentence. However,
words are ambiguous due to the nature of human languages. For example, the word "increase"
can be either a noun or a verb in different sentences. The tagging accuracy is restricted by
the ambiguity of words. Hidden Markov Model (HMM) is one of the most widely used
models for unsupervised inference in stochastic taggers [Banko and Moore, 2004, Collins,
2002, Lee et al., 2000, Thede and Harper, 1999]. Other models such as maximum entropy
models [Ratnaparkhi et al., 1996], conditional Markov models [Klein and Manning, 2002,
McCallum et al., 2000], conditional random fields [Lafferty et al., 2001], cyclic dependency
networks [Toutanova et al., 2003], and Dynamic Bayesian Networks [Goldwater and Griffiths,
2007, Reynolds and Bilmes, 2005] are also helpful for part-of-speech tagging tasks. In part
of speech (POS) tagging and parsing, the main challenge is to predict the right tags for
both in-vocabulary (IV) and out-of-vocabulary (OOV) words. Recently, artificial neural
networks, such as multi-layer perceptron (MLP) and long short term memory (LSTM), have
been applied to POS tagging and parsing to overcome this challenge since they have high
generality capabilities. Zhang et al. proposed an effective sequence-to-sequence neural model
for Chinese word segmentation and POS tagging, based on a well-defined transition system,
by using LSTM neural network structures [Zhang et al., 2018b]. By using well-trained
character-level embedding, their neural joint model obtained the best-reported performances
on five different datasets. [Yan et al., 2020] proposed a graph-based model to integrate
Chinese word segmentation and dependency parsing, which is more concise with fewer
efforts of feature engineering compared with transition system. They also combined their
model with a character-level pre-trained language model to reduce the performance gap of
parsing between joint models and gold-segmented word-based models[Yan et al., 2020].
Besharati et al. proposed an innovative model that combines a Hidden Markov Model and a
single-layer bidirectional LSTM model to perform POS tagging and parsing in the Persian
language. Their model successfully improved the accuracy compared against a simple
second-order hidden Markov model HMM and a simple LSTM neural model. Same as word
segmentation, part-of-Speech tagging and parsing in themselves may not be the solution to
any particular NLP problem. It is, however, a pre-requisite process to simplify a lot of more
complicated NLP tasks, such as text to speech conversion [Ning et al., 2019] and opinion
extraction [Zhang et al., 2019].
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“Female hormones lower magnesium but increase calcium levels which enhance
migraine ubiquitousness." [Dhillon et al., 2011]
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Fig. 2.1 Sample output result of the pre-processing of a sentence.

Named Entity Recognition (NER) is a cross-field task of Natural Language Processing
and information extraction. It helps computers locate and classify named entities (NEs) that
are rigid designates [Nadeau and Sekine, 2007] in natural texts into pre-defined categories
such as generic NEs (e.g., person, organisations and location) and domain-specific NEs (e.g.,
certain biological species, substances proteins, enzymes, and genes) [Li et al., 2020]. The
major difference between POS and NER is that the former focuses on grammatical roles
whereas the latter focuses on named entities. Named Entity Recognition tasks can be divided
into two major problems: the identification of names which is similar to the problem of
word segmentation, and the classification of names into different types [Tjong Kim Sang and
De Meulder, 2003]. Statistical models with linguistic grammar-based techniques are used for
Named entity recognition systems. However, they require a large amount of manual effort to
annotate training data. In 2011, Collobert et al. proposed neural network NER systems to
minimise feature engineering efforts. Their models became popular because they typically
do not require domain-specific resources like lexicons, and are thus poised to be more
domain-independent. Since then, various neural architectures have been proposed, mostly
based on deep learning models such as recurrent neural networks (RNN) over characters,
sub-words and/or word embeddings. Yang et al. proposed a neural reranking model for
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NER, where a convolutional layer with a fixed window-size is used on top of a character
embedding layer. Their model leveraged recurrent neural network models to learn sentence-
level patterns that involve named entity mentions [Yang et al., 2017]. Yadav et al. proposed
an RNN model to learn specific representations of the prefixes and suffixes of words, which
are then combined with the words or the character-level information to perform NER.
Their approach achieved state-of-the-art results on the CoNLL 2002 Spanish and Dutch
and CoNLL 2003 German NER datasets in multilingual and multi-domain [Yadav et al.,
2018]. Jia et al. proposed a cross-domain Language Model as a bridge for NER domain
adaptation, performing cross-domain and cross-task knowledge transfer by designing a novel
parameter generation network with a bi-directional LSTM layer [Jia et al., 2019]. Xia
et al. presents a novel framework for Multi-Grained Named Entity Recognition (MGNER).
Unlike traditional NER approaches annotating entities consecutively, MGNER detects and
recognises entities on multiple granularities: it is able to recognise named entities without
explicitly assuming non-overlapping or totally nested structures [Xia et al., 2019]. NER is
also an important pre-processing step for a variety of NLP applications such as information
retrieval, question answering, machine translation, etc. There are some different scoring
techniques for evaluating the quality of a named entity recognition system’s output. F-
measures [Tjong Kim Sang and De Meulder, 2003] is one of the most widely used methods
for exact-match evaluation. With such measurements, a true positive (T P) represents an
entity that has been correctly identified by the NER, a false positive (FP) represents an
entity that has been incorrectly identified (i.e., it should not have been extracted); and a false
negative (FN) represents an entity that should have been extracted but was missed by the
NER. These definitions were introduced by CoNLL [Sang and De Meulder, 2003]. Using
these definitions for true/false positives/negatives, precision and recall are defined in the usual
manner as shown in Equation 2.1 and 2.2 [Perry et al., 1955]. The precision represents the
percentage of the NER system results which are correctly recognised and the recall represents
the percentage of total entities correctly recognised by the NER system [Nadeau and Sekine,
2007, Li et al., 2020].

Precision =
T P

T P+FP
(2.1)

Recall =
T P

T P+FN
(2.2)
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The F-measure of an approach is computed in the traditional balance F-score, as the harmonic
mean of precision and recall [Perry et al., 1955]:

F1 = 2× Precision×Recall
Precision+Recall

(2.3)

With these fundamental techniques, NLP is being used to more sophisticated tasks such
as question answering, sentiment analyses, speech recognition, information extraction (IE),
statistical machine translation, and semantic web information extraction recent years [Wallis
and Nelson, 2001]. Techniques utilising neural networks [Mikolov et al., 2013c], dimen-
sionality reduction [Li et al., 2015] and probabilistic models [Globerson et al., 2007] with
word embedding have been shown to boost the performance in NLP tasks involving word
similarity and word analogy/analysis in deep learning studies [Socher et al., 2013a,b].

Word embedding is the collective name for a set of language modelling and feature
learning techniques in NLP where words or phrases are represented as numerical vectors
with certain distributions. Transitional methods such as bag-of-word (BoW) models have
been proved unable to classify short texts [Sriram et al., 2010], as they ignore the order and
semantic relations between words. Being a more advanced model, word embedding has been
shown to preserve semantic types and syntactic relationships. It involves a mathematical
mapping from space with many dimensions per word to a continuous vector space with a
much lower dimension [Mikolov et al., 2013a]. The vectors of words in the same embedding
space have similar semantic relationships, enabling the advancement of clustering tasks in
NLP [Mikolov et al., 2013c].

The technique of representing words as space vectors was first introduced with the
development of the vector space model (VSM) in the 1970s [Salton et al., 1975]. Then the
introduction of latent semantic analysis (LSA) helps to reduce the number of dimensions by
using singular value decomposition [Sahlgren, 2015]. Based on LSA, Blei et al. proposed
an improved model based on the Dirichlet prior probability distribution [Blei et al., 2003] –
the so-called Latent Dirichlet Allocation (LDA). In 2000, Bengio et al. proposed a series
of Neural probabilistic language models that learns a distributed representation of words
so that they can reduce the high dimensionality of words representations in contexts. Two
different types of word embedding techniques are commonly used [Lavelli et al., 2004]: 1)
words are represented as vectors of co-occurring words: this technique normally utilises
bag-of-words and ignores the semantical context of the words; 2) words are represented as
vectors of linguistic contexts in which the words occur: this technique is able to include
the semantical context of the words in representation [Mnih and Hinton, 2009]. After
2010, word embedding techniques have been developed significantly because important
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improvements had been made on the quality of vectors and the training speed of machine
learning models. Google created word2vec in 2013, which is an open toolkit to train
vector space models for computing vector representations of words [Mikolov et al., 2013b].
Pennington et al. proposed a global log-bilinear regression model called Global Vectors for
Word Representation(GloVe) [Pennington et al., 2014]. It is an open-source unsupervised
learning algorithm for obtaining vector representations for words, which is trained on
aggregated global word-word co-occurrence statistics from a corpus. These representations
can then be subsequently used in many natural language processing applications and for
further research.

Recently, new word embedding techniques relying on neural network architectures and
machine learning frameworks have achieved an improved performance, resulting in a much
broader application area.

Two most popular deep learning frameworks among researchers for NLP tasks are
described here. Tensorflow is a free and widely adopted machine learning platform for fast
numerical computing [Abadi et al., 2016]. It was created and released by Google under the
Apache 2.0 open source license. It is powerful to build easy models and robust models on any
platform. It provides simplified APIs which can be used both in research and development
and in production systems. PyTorch is an open-source machine learning library used for
various types of applications such as computer vision and natural language processing [Rao
and McMahan, 2019]. It was developed by Facebook’s AI Research lab (FAIR) [Patel, 2018].
Google, Facebook, Microsoft and many other organisations across industries are increasingly
using these two frameworks as the foundation for their most important machine learning
(ML) research to solve NLP tasks.

In 2018, a team from Google AI Language proposed a Bidirectional Encoder Represen-
tations from Transformers (BERT), which is pre-trained on a large corpus comprising the
Toronto Book Corpus and Wikipedia [Devlin et al., 2018]. Language representation models
analyse a string of text either from left to right or combined left-to-right and right-to-left
training during word embedding [Peters et al., 2018, Radford et al., 2018]. Instead of reading
the text input sequentially (left-to-right or right-to-left), BERT looks at the entire sequence
of words at once using a procedure called “masked LS” (MLM). With MLM, BERT is able
to obtain contextual representations of words using both left and right contexts, resulting in
bidirectional language representations. BERT also employed a Next Sentence Prediction
(NSP) which uses pairs of sentences as input to predict if the second sentence in the pair is
the subsequent sentence in the original text. BERT can be applied to different NLP tasks in a
pretty straight forward way by simply adding one additional output layer to the core model.
This pre-trained representation model reduces the required efforts for heavily engineered
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tasks to construct individual-specific architectures. To the best of our knowledge, BERT
is the first pre-trained representation that achieves state-of-the-art results on different tasks
without modifying the architecture for specific tasks.

GPT and GPT-2 were proposed by OpenAI as unidirectional language models trained by
Generative Pre-Training method [Radford et al., 2018, 2019]. Such unidirectional language
models enable them to predict the next token in a sequence based on all of the previous
context. GPT was pre-trained on the Toronto Book Corpus with a causal language modelling
(CLM) objective, resulting in a left-to-right architecture. GPT-2 improved GPT by employing
1.5 billion parameters and a much larger dataset consisting of 8 million web pages. As a
result, GPT-2 is able to be applied and achieves good results in many tasks across many
domains. Both GPT and GPT-2 have been proven to significantly improve upon the state-of-
the-art in various NLP tasks such as reading comprehension, text summarisation, translation
and question answering. At May 2020, OpenAI proposed the third generation language
prediction model GPT-3 [Brown et al., 2020]. Unlike the previous two versions, GPT-3
is an autoregressive language model that automatically generates human-like text. It was
pre-trained with 175 billion parameters, making it the largest non-sparse language model
to date. Therefore, GPT-3 achieves strong performance on many NLP tasks from different
domains. GPT-3 is able to produce highly coherent text that is difficult to distinguish from
that written by a human, which brings both benefits and risks [Sagar, 2020].

Because GPT-3 can "generate news articles which human evaluators have difficulty
distinguishing from articles written by humans,"[4] GPT-3 has the "potential to advance
both the beneficial and harmful applications of language models."[1]:34 In their May 28,
2020 paper, the researchers described in detail the potential "harmful effects of GPT-3"[4]
which include "misinformation, spam, phishing, abuse of legal and governmental processes,
fraudulent academic essay writing and social engineering pretexting".[1] The authors draw
attention to these dangers to call for research on risk mitigation.[1]:34

Facebook proposed two methods to learn cross-lingual language models (XLMs): one
unsupervised method to learn cross-lingual representations that only relies on monolingual
data, and one supervised that utilises parallel data that existing improves cross-lingual
pre-training [Lample and Conneau, 2019]. Their methods significantly outperform the
existing state-of-the-art on cross-lingual classification, unsupervised machine translation and
supervised machine translation.

In this work, we utilised existing toolkits from StanfordNLP [Manning et al., 2014b]
and OpenNLP [Morton et al., 2005] to perform some fundamental NLP tasks. StanfordNLP
is an open-source Python package to perform natural language analysis. It contains tools,
which can be used in a pipeline, to perform common NLP tasks such as word segmentation,
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POS tagging and NER. It is designed to be parallel among more than 70 languages, using the
Universal Dependencies formalism [Berzak et al., 2016]. StanfordNLP is normally treated as
a state-of-the-art toolkit when performing standard NLP tasks. This package is built with
highly accurate neural network components that enable efficient training and evaluation
with various datasets from different domains. The OpenNLP is another commonly used
machine learning based toolkit for the processing of natural language text. It supports the
most common NLP tasks, such as sentence and word segmentation, POS tagging and NER.
It contains components which enable others to execute the respective NLP task, to train a
new model for specific NLP task and to evaluate the performance of a model. They are all
accessible via its application program interface (API) and a command line interface (CLI).

2.2 Relation Extraction

A substantial amount of valuable information is recorded in the form of unstructured text data,
such as news, emails, journal articles and academic papers. Identifying entities, relations
and information of interest is the pre-requisite of extracting structured knowledge from these
unstructured raw texts, which has received growing interest recently [Zweigenbaum et al.,
2007, Kreimeyer et al., 2017, Wang et al., 2017]. A relationship extraction (RE) task is a
subtask of information extraction (IE), which requires the detection and classification of
semantic relationship mentions within a set of text or XML documents. The biomedical
literature is one body of knowledge of this form. The use and management of biomedical
relations and information to stay updated and informed are important issues [Singh and Gupta,
2017]. Biomedical relation extraction outputs play important roles in question-answering
systems [Aggarwal and Zhai, 2012], diagnosis categorisation [Luo et al., 2017] and clinical
decision support [Chowdhury and Mahbub, 2013]. However, Biomedical literature often
contains special named entities that are long and complicated. They also tend to use long and
complicated sentences, which is more difficult to analyse automatically compared to texts
from general domains. In this section, we first describe some state-of-the-art work on relation
extraction on various datasets from general domains, such as news articles, web pages, etc.
Then we focus on four types of approaches for relation extraction on biomedical datasets.

A typical relation extraction model approach this task by extracting a list of triples from
the text, i.e., REL(e1,e2), which represents the relation REL exists between entity e1 and
entity e2. Existing models can be divided into two major categories: the pipelined approach,
which first uses NER models to identify entities, and then uses relation extraction models to
identify the relation between each entity pair; and the joint approach, which combines the
NER model and the relation model through different strategies.
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For the pipelined approaches, relation extraction is tackled by using two separate mod-
els for entity recognition and relation classification. The introduction of neural networks
constitutes the state-of-the-art, such as RNNs [Zhang and Wang, 2015, Zhang et al., 2018c],
recursive neural networks [Socher et al., 2012] and CNNs [Zeng et al., 2014]. Pre-trained
Transformer models also have been used for relation classification [Verga et al., 2018, Wang
et al., 2019]: The input text is fed through a Transformer model, such as BERT and GPT-2,
and the resulting embeddings are classified as relations. However, these approaches with
neural models have difficulties to capture all the lexical, semantic and syntactic cues [Li et al.,
2019c], especially when (1) entities are far away (i.e. relations are embedded in complex
sentence structures such as clauses structures or conjunction structures); (2) one entity is
involved in multiple triplets (i.e. text contains one to many, many to one or many to many
relations); or (3) relation spans have overlaps (i.e. text containing entities e1,e2,e3,e4 has
relations REL(e1,e3) and REL(e2,e4)). As we shall see, our proposed algorithm described
in Chapter 4 can successfully solve these drawbacks by including several extensions.

In recent years, there has been an increasing interest of performing joint entity-relation
extraction, recognising entities and relations at the same time from unstructured texts data.
Miwa and Sasaki proposed the first joint entity-relation extraction model. They treat the
joint entity-relation extraction task as a table-filling problem, where each cell of the table
corresponds to an entity pair of the sentence. The table is filled with relations by minimising
a scoring function based on several standard NLP features such as POS tags and entity
labels [Miwa and Sasaki, 2014]. Vu et al. took this idea to solve the task, whereas they
employed a bidirectional recurrent neural network to label each relation pair [Vu et al., 2016].
Miwa and Bansal proposed a stacked model for to perform joint entity-relation extraction
task. They employed a bidirectional sequential LSTM model to tag entities of interest and a
bidirectional tree-structured RNN to label relations based on the dependency parse tree [Miwa
and Bansal, 2016]. Zhou et al. combined a bidirectional LSTM and a CNN to extract a
high-level feature representation of the input text. Their model extracts a fewer number of
relations compared to the table-filling approaches because they only extract entities for the
most likely relations [Zhou et al., 2017]. Bekoulis et al. proposed a model that employs a
Conditional Random Fields (CRF) layer for entity recognition. Their model treats the relation
extraction task as a multi-head selection problem so that it can potentially identify multiple
relations for each entity Bekoulis et al. [2018]. Their model does not require any manually
extracted features or the use of any external NLP tool. Transformer networks use their idea
to approach joint entity-relation extraction as a multi-head self-attention problem, resulting
in an improvement in this task. Li et al. tackle the joint entity-relation extraction task by
incorporating a BERT-based multi-turn question answering model [Li et al., 2019c]. Answers
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to the manually defined question templates constitute extracted entities and their relations.
The main limitation of their approach is that these hand-crafted question templates require
domain expertise (e.g., for biomedical or clinical corpora). Similarly, Giorgi et al. employed
the pre-trained, transformer-based language model BERT to performs entity recognition and
relation extraction simultaneously without relying on external NLP tools such as dependency
parsers [Giorgi et al., 2019]. Eberts and Ulges also proposed an attention-based Transformer
type network with BERT embedding [Eberts and Ulges, 2019]. To the best of our knowledge,
their approach achieved the best performance of relation extraction on CoNLL04 dataset
(The F1 score for relation extraction is 71.47 and for entity extraction is 88.94) 1. As we
shall see, our proposed entity-based algorithm outperforms their algorithm. Besides all
the advantages of joint entity-relation extraction models, problems such as co-reference
resolution and relation extraction synchronisation remain existing challenges [Ghamami and
Keyvanpour, 2018].

The rest of this section mainly focuses on existing approaches for relation extraction
task in biomedical text data. Different approaches and relation extraction systems have been
developed and utilised to extract biomedical concepts and relationships from text, including
MedLEE [Friedman et al., 1994], KnowledgeMap [Denny et al., 2003], cTAKES [Savova
et al., 2010], HiTEX [Goryachev et al., 2006], and MedTagger [Liu et al., 2013]. Existing
approaches for biomedical relation extraction can be divided into four categories: approaches
based on co-occurrence, link-based approaches (pattern-based), machine learning approaches
and rule-based approaches. In what follows, we briefly introduce these approaches giving a
typical example for each. For the purpose of evaluating the relation extraction algorithms
by means of F-measures, a true positive (T P) represents a relation that has been correctly
identified by the extraction algorithm, a false positive (FP) represents a relation that has
been incorrectly identified (i.e., it should not have been extracted); and a false negative
(FN) represents a relation that should have been extracted but was missed by the extraction
algorithm. Using these definitions for true/false positives/negatives, precision and recall
are define as in Equation 2.1, 2.2 and 2.3. The first three of these techniques can only
deal with simple relations between two entities connected by a target word and generally
achieve relatively low precision and recall. Applying them in different domains can be time-
consuming. Rule-based extraction normally achieves higher precision and can be applied
in a variety of domains [Sharma et al., 2010]. In this work, we proposed a novel rule-based
method for relation extraction, which can be applied in both the biomedical domain and
general domain. 2

1See https://paperswithcode.com/sota/relation-extraction-on-conll04
2This technique is discussed in more detail in Chapter 4
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2.2.1 Co-occurrence Approaches

Co-occurrence approaches provide the simplest way to detect relations when the two entities
frequently co-occur within a collection of texts or sentences [Garten et al., 2010]. They
assume two entities are related based on lexical statistics such as word frequency counts.
In 1996, Gordon and Lindsay developed the computer-based statistical methods to discover
the connection between Raynaud’s disease and dietary fish oil through medical literature
[Gordon and Lindsay, 1996]. They considered both the frequency of tokens within text
data and the number of records containing various tokens to indicate literature relations and
potential entity-relation discoveries. Srinivasan developed open and closed algorithms to
identify and rank key terms based on term-weighting strategies [Srinivasan, 2004]. Hristovski
et al. presented BITOLA to discover novel relations between a given gene candidate of
interest and other concepts from literature [Hristovski et al., 2005]. They include background
knowledge about different diseases and genes from resources like LocusLink and the Human
Genome Organization (HUGO). Torvik and Smalheiser proposed a two-node search interface
to discover a certain number of B-terms according to eight strongly correlated complementary
features [Torvik and Smalheiser, 2007]. They estimated the overall number of relevance
between B-terms and a given two-node search using a logistic regression model. Their
system simplified the process of a two-node search and was capable of applying in various
general domains. He et al. designed a web-based tool for Protein-Protein interactions (PPI)
finding based on co-occurrences and interaction words from PubMed abstracts [He et al.,
2009]. They considered shared evidence from human PPI databases and Gene Ontology
(GO) database. Senger et al. created a one-step solution called prolific (protein-literature
investigation for interacting compounds) to extract protein names or sequences information
using frequencies of co-occurrences. They automatically extracted up to 69% drug-protein
relationships [Senger et al., 2012].

However, co-occurrence approaches have some drawbacks. Since it is likely that the two
entities might be mentioned together without any relation, Zweigenbaum et al. considered
frequency-based scoring schemes to eliminate such relation [Zweigenbaum et al., 2007].
The schemes give higher scores to the relation when it is more unlikely to be observed.
Co-occurrence approaches result in high recalls. But they may have poor precisions because
biomedical texts contain complex sentences embedding multiple entities, most of which
are not always actually related. For example, "Low magnesium intakes and blood levels
have been associated with type 2 diabetes, metabolic syndrome, elevated C reactive protein,
hypertension, atherosclerotic vascular disease, sudden cardiac death, osteoporosis, migraine
headache, asthma, and colon cancer" [Rosanoff et al., 2012] contains 12 entities but the last
ten entities are not related to each other. To address this, filtering steps were introduced to
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improve the precision of these systems. Lindsay and Gordon generated candidate intermedi-
ates and targets by lexical statistics alone and then culled these lists with two human filters to
eliminate candidates based not only on general knowledge but also on nonspecialist medical
knowledge [Lindsay and Gordon, 1999]. Kabiljo et al. removed sentences that do not match
lexico-syntactic criteria before extracting candidate relations and proteins were considered
related only when a relation word was located between them [Kabiljo et al., 2009]. Another
issue is that co-occurrence approaches normally cannot identify the semantical context of the
relationships. Therefore, the extracted relation data still require manual annotation before
employing. Furthermore, co-occurrence methods are robust since they do not require any lin-
guistic analysis. They are usually used for comparing against other more advanced methods
as a baseline method [Pyysalo et al., 2008, Bunescu et al., 2006, Henry and McInnes, 2017].

Example

We explain the approach proposed by Senger et al. in detail because they achieved better
results compared to others based on co-occurrences. They created a prolific system to provide
a one-step solution for closing the gap between protein information in literature and sequence
information on proteins. Their database was composed of 11.7 million PubMed abstracts,
35.4 million PubChem [Bolton et al., 2008] compounds with 606.3 million (partially over-
lapping) synonyms. They connected all the compounds with their 28.3 million original
characters and 2.0 million synonyms with their UniProtKB/Swiss-Prot [Magrane and Consor-
tium, 2011] protein IDs. They also attached Gene Ontology Annotation (GOA) terms [Barrell
et al., 2009] and their "gene symbols" to protein IDs. They also generated a "stop word list",
consisting of words with a high frequency of occurrence for unspecific meanings, such as
"ANOVA" used in statistical context but also an abbreviation for "RNA-binding protein Nova-
2". They annotated abstracts from a local database with protein IDs and protein synonyms by
Whatizit web services [Rebholz-Schuhmann et al., 2008] and parsed the annotated texts after
filtering with the protein "stop word list" to extract "protein-article" relationships. Then they
searched in all PubMed abstracts for compound synonyms based on the synonym processing
rules [Hettne et al., 2009] to extract "article-compound" relationships after filtering with the
compound "stop word list". At last, the extracted "protein-article-compound" relationships
were categorised into four types:

1) Co-occurrence of protein and compound in the abstract. For example, the paper with
PubMed ID 23935933 is about a compound glucocorticoid receptor modulator and
a protein Hsp70 gene promoter. This abstract contains co-occurrence of protein and
compound.
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2) Co-occurrence in the same sentence. For example, the sentence The lack of a Compound
A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid
proteasomal degradation of Hsp70 or by a Compound A-induced general block on
translation, contains co-occurrence of a compound Compound A-induced and a protein
Hsp70.

3) Co-occurrence in the same sentence enclosing a functional process or molecular function.
For example, the sentence Recently, we developed N-[4-[6-(isopropylamino) pyrimidin-
4-yl]-1,3-thiazol-2-yl]-4-[11C]methoxy-N-methyl-benzamide ([11C]ITMM) as a useful
positron emission tomography (PET) probe for mGluR1 in clinical studies, contains
co-occurrence of a molecular function N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-
thiazol-2-yl]-4-[11C] methoxy-N-methyl-benzamide and a protein mGluR1.

4) Co-occurrence in a sentence enclosing curated relationship verbs. For example, Metabotropic
glutamate receptor subtype 1 (mGluR1) is a crucial target in the development of new
medications to treat central nervous system (CNS) disorders, contains co-occurrence of a
protein Metabotropic glutamate receptor subtype 1 and a disease central nervous system
(CNS) disorders enclosing a verb is.

Those extracted relationships were assembled and stored de-normalised in a
NoSQL database, allowing fast access to a query started with any names, IDs or sequences.

2.2.2 Pattern-based Approaches

Pattern-based approaches extend co-occurrence approaches by identifying the relations if the
two entities often co-occur with a common term across a collection of corpus. They normally
rely on a set of patterns for relation extraction. According to diverse ways to generate
patterns, these approaches can be categorised into supervised approaches and unsupervised
approaches.

Supervised pattern-based approaches require a set of corpus created by domain experts,
which are time-consuming [Hakenberg, 2010]. They also can be affected by various factors
such as the irregularity in biomedical entity names (e.g. TP53, FtsZ), abbreviations (e.g.
VD, FOXP3), or punctuation (e.g. 4-dihydroxyphenylalanine, AY-27). These approaches
differ from each other as the process varies from one corpus to another, which makes it
difficult to evaluate and compare due to corpus incompatibilities. Blaschke and Valencia
developed one of the first systems to extract phrases expressing protein-protein interactions
using hand-crafted regular expressions [Blaschke and Valencia, 2002]. Zhou et al. started
with simple patterns such as protein1-relation-protein2 [Zhou et al., 2008]. They extracted
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a limited number of relations between proteins connected by a set of pre-defined relation
words such as inhibit, bind, activate, etc. Their system yields high precision, but the recall
rate remains low. Syntactic analysis or semantic parsing of sentence structures, such as POS
tagging and parsing, has been introduced to define grammars before extracting relations. Such
procedures are referred to as surface-pattern approaches, and they improved the performances
of supervised pattern-based approaches while worked not well on complex sentences [Hao
et al., 2005]. Overall, supervised pattern-based approaches result in high precisions, but low
recalls. They can be applied to different knowledge domains after carefully fixed to some
specific problems. However, there is still no guarantee that they can extract relations that do
not occur in the pre-defined training patterns after tuning. Until recently, methods based on
manually generated patterns still could not achieve satisfactory results.

Unsupervised pattern-based approaches were proposed to increase the recall of super-
vised pattern-based approaches. Only input data is given to the system, and there are no
correct answers nor trainers. Algorithms are left to their own abilities to discover and generate
patterns in the sentences. Hao et al. designed a minimum description length (MDL)-based
pattern-optimisation algorithm to reduce and merge patterns, which significantly increased
generalisation power, and hence the recall and precision rates [Hao et al., 2005]. In general,
two techniques for automatically generating patterns were developed depending on whether
they require a corpus or not. Approaches for generating patterns without a corpus normally
use bootstrapping techniques [Wang et al., 2011]. They obtained patterns from the input
seeds, such as a small list of PPI pairs, and extracted new relations of the same types as the
generated patterns from unstructured texts. They repeated this process until no more new
patterns can be found. However, these approaches may result in large sets of noisy patterns
[Rebholz-Schuhmann et al., 2010, Fox et al., 2010]. Nguyen et al. proposed several filters
for simple pattern selections to improve precision of relations extraction at a slight drop of
the recall [Nguyen et al., 2010]. Hakenberg et al. developed a filter by ranking sentences
with relevance containing novel interactions or evidence for physical interactions to rid of
noisy patterns [Hakenberg et al., 2010]. On the other hand, generating patterns directly from
corpora can also help to eliminate noisy patterns. Yakushiji et al. developed a method of
automatically constructing patterns on predicate-argument structures (PASs) obtained by full
parsing from a smaller training corpus [Yakushiji et al., 2006]. Both unsupervised pattern-
based techniques depend more on linguistic features than manually supervised approaches,
resulting in better recall rates. Le Minh et al. employed heuristic rules and dictionaries
to annotate event trigger words and event extraction was based on patterns created from
dependent graph [Le Minh et al., 2011].
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However, it remains challenging to choose the right amount of patterns for relation
extraction because some of the automatically generated patterns may overmatch texts due
to their generic while some of them can not match unseen texts due to their specific. Choi
proposed a novel tree pattern expression (TPE) to represent various structural patterns and
reduce pattern-matching complexity significantly [Choi, 2011].

Unsupervised pattern-based approaches achieve better performances in generating pat-
terns than supervised approaches, resulting in better performances in relations extraction
while the noisy patterns cause reduction of the precisions. As for approaches based on
co-occurrence, they also do not employ any NLP techniques for linguistic analysis so that
they are not able to consider some important aspects when extracting relations such as the
semantic context of relations.

Examples

To the best of our knowledge, approach proposed by Hao et al. was the first unsupervised
pattern-based approach for relation extraction in biomedical literature. Therefore, we explain
this approach in detail. For a set of sentences S = s1,S−2, . . . ,sn, they aim to extract as et
of interactions I = I1, I2, . . . , Im. They designed a pattern set function to manually generate
patterns for relation extraction [Hao et al., 2005]. The pattern set P∗ is the P which minimises
the expected risk R(P):

P∗ = argmin
P

R(P) = argmin
P

∫
S

L(S,P)dG(S) (2.4)

where G(S) is the probability distribution of S, and L(S,P) = |I∗−F(S,P)| is the loss
function and I∗ is the true interactions set defined by S. They also introduced the MDL
principle [Rissanen, 1978] to solve the trade-off problem between generalisation power and
accuracy:

Mmdl = argmin
M

K(M)+K(D|M) (2.5)

where K() is Kolmogorov complexity, D represents the data using model M. They
assumed the interaction set I to be a sequence given by I = I1I2 . . . and defined K(I) =
K(P)+K(I|P) as the description length of I through P, where K(P) is the description length
of pattern set P and K(I|P) is that of I given P. They also considered the Hamming distance
of two interaction sequences:

d(I, I∗) =
ni=1

∑ δ (Ii, I∗i ), (2.6)
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where δ (Ii, I∗i) =

1 Ii ̸= I∗i
0 Ii = I∗i

. . .

Therefore their optimized pattern was defined as:

P∗ = argmin
P

K(I)+ log2 d(I, I∗) = argmin
P

K(P)+K(I|P)+ log2 d(I, I∗) (2.7)

where I and I∗ are the extracted and optimal interaction sequences, respectively, and
d(I, I∗) is the number of differences between I and I∗.

Based on the pattern set P, they manually generated 192 patterns based on 963 sentences
and 1435 interactions. They implemented a cross-validation experiment and achieved a
precision of 0.851 and a recall of 0.558 with 30 patterns.

2.2.3 Machine Learning Approaches

Machine learning approaches label and segment sentences to extract relations automatically
with annotated corpora on the biomedical domain. They are typically modelled as a classifica-
tion problem with the help of NLP tools to pre-process unstructured sentences. Many machine
learning approaches employed various general models such as Hidden Markov Model [Collier
et al., 2000], Conditional Random Fields(CRF), Naïve Bayes classifier [Gildea and Jurafsky,
2002] and Support Vector Machine (SVM). In general, machine learning approaches can be
categorised into feature-based methods and kernel-based methods based on the nature of the
input to the classifier.

Feature-based Approaches

Feature-based approaches use lexical, syntactic and semantic features to represent the data
characteristics for deciding whether the entities in a sentence are related or not. They
normally are specific to binary relations between two entities (e.g. protein-protein or gene-
protein) using POS tags and dependency parse trees. Feature-based approaches can be
classified into shallow (partial) parsing based approaches and deep (full) parsing based
approaches based on the complexity of the employed features. The former approaches
explore syntactic information from only a part of the sentences to improve the efficiency and
reliability, while the latter approaches analyse the whole sentence structure, resulting in the
better performance but increased computational complexity. Gupta et al. proposed a hybrid
semi-supervised approach that combines parsed sentences with grammatical structures for
extracting simple relations from free-text mammography reports. However, the number of
features increases significantly to thousands when more feature types are included, whilst
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decreasing the precision of the system [Van Landeghem et al., 2010]. Our entity-based
approach can solve more general features without increasing computing time. Zheng et al.
presented an effective model of a parsed sentence to extract relations by introducing vectors
of context to represent all labelled nodes adjacent and nonadjacent to it to capture the direct
and indirect substructures’ information. However, unlike our entity-based approach can be
applied in different domains, their method only considered the distance between context
vectors to detect drug-drug interactions (DDIs). In order to make full use of each model
and avoid their individual weaknesses, Abacha et al. tried to combine models with different
features together to improve the performance for relation extraction [Abacha et al., 2015].
However, the combination of models requires more computational resources to train the
classifiers compared to our entity-based algorithms. Miwa et al. designed a rich feature
vector, including bag-of-words (BOW) features, shortest path features and graph features,
and aggregated them into a single support vector machine modified with corpus weighting
(SVM-CW) to complete the task of multiple corpora PPI extraction [Miwa et al., 2009b].
BOW features consist of words (lemma forms) that appear before, between and after the
entities of interest. The shortest path features consist of syntactic information extracted
from the shortest walk on the target pair entities which are represented by two nodes of a
parse tree. Graph features consist of all the nonzero labels and weights from parse structure
sub-graphs and linear order sub-graphs from the dependency parser. These features were
widely used for machine learning approaches afterwards, achieving better performances
among all other machine learning approaches for relation extraction problem. Based on
these common features, various relation extraction systems have been proposed [Sætre et al.,
2007, Van Landeghem et al., 2008, Kim, 2008, Kim et al., 2008, Ahmed et al., 2009, Niu
et al., 2010]. However, feature engineering is a precise and costly task [Aggarwal and Zhai,
2012]. Due to the complexity and high cost faced with locality and bias to features in
relation extraction task, feature-based methods have a decreased accuracy and generality
when dealing with large scale data and dimension [Yin et al., 2017].

Example of Feature-based Machine Learning Approaches

We explain the method proposed by Niu et al. in detail because it achieved better results
compared to other feature-based machine learning approaches. They proposed an interaction
detection method using various features to automatic identify PPIs in text [Niu et al., 2010].
They considered a vector of features, including context, lexical forms and positions within a
sentence that contains two target proteins M1 and M2. They used three types of features to
describe the position of the two proteins: their indices in the sentence, their distance between
each other and the number of other proteins between them. They also considered lexical
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forms in the sentence to extract context information about those extracted relations: 3 tokens
on the left of M1, 3 tokens on the right of M2 and all tokens between the two target proteins.
Their set of keywords features was developed based on the list from Plake et al. [Plake
et al., 2005]: 1) the lexical forms of keywords, 2) the position of keywords, 3) the distance
between keywords and the target protein nearest to it. They also incorporated some patterns
from Plake et al. [Plake et al., 2005] for pattern-matching, such as proteinA | form/forms
. . .complex with . . .| proteinB (the bold words have to be matched exactly). In addition,
they considered the phrase and word dependency in a sentence as a feature to achieve better
performances.

For example, the sentence The lack of a Compound A-induced increase in Hsp70 protein
levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a
Compound A-induced general block on translation contains two target protein candidates
Compound A-induced and Hsp70. Distance between each other is two tokens, and there
are no other proteins between them. The algorithm also considered lack of a, increase in
and protein levels in based on the lexical forms. The identified keyword is increase, which
is located between the target proteins and the token distance between the keyword and the
nearest target protein is 0. The protein Hsp70 actually have dependent words protein levels,
indicating the target protein name is Hsp70 protein levels. Therefore, the extracted relation
from the example sentence is Compound A-induced | increase | Hsp70 protein levels.

Their algorithm achieved an average precision of 0.60 and recall of 0.30, whereas our
entity-based approach performs better. 3

Kernel-based Approaches

Kernel-based approaches use various kernels to compute the similarity between two instances
based on the similarities of their representations. Unlike feature-based approaches, these
approaches can make better use of the structural representations of entities such as syntactic
parse trees and dependency graphs. Ahmed et al. proposed the first kernel-based approach
for PPIs extraction using string-kernels to quantify the number of subsequences that are
common to both strings for similarity calculation [Ahmed et al., 2009]. Bunescu et al.
introduced Bag-of-words (BOW) kernel to calculate the similarity between two feature
vectors, consisting of unsorted sets of words [Bunescu et al., 2005]. Giuliano et al. described
the shallow linguistic (SL) kernel, consisting of two kernels: the global kernel and local
context kernel [Giuliano et al., 2006]. The former kernel count common words in three
feature set of BOW vectors obtained from two sentences, while the latter kernel contains
linguistic features generated from words appear before and after the two entities. Moschitti

3The detail of the evaluation experiments of our entity-based approach is described in Section 4.6
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provided a simple algorithm using sub tree (ST) kernel to compute the similarity between two
input syntactic trees based on the number of common sub-trees [Moschitti, 2006]. Bunescu
and Mooney proposed the first subsequence kernel using three types of subsequence patterns
that are typically employed in natural language to assert relationships between two entities
[Bunescu and Mooney, 2005a]. Kim et al. proposed a walk-weighted subsequence kernel
considering not only of non-contiguous syntactic structures but also of semantic and lexical
structures [Kim et al., 2010]. The combination of various structural analysis enables the
system to learn more valuable aspects from a rather small amount of training data. Bunescu
and Mooney considered the shortest path between two entities in the same sentence in the
dependency graph to extract a relation between them [Bunescu and Mooney, 2005b]. Airola
et al. designed a graph kernel to calculate the similarity between the dependency structure
graph and linear order graph by counting weighted shared paths of all possible paths [Airola
et al., 2008a,b]. In order to make full use of each kernel and avoid their individual weaknesses,
researchers tried to combine them to improve the performance for relation extraction [Miwa
et al., 2008, Li et al., 2008, Miwa et al., 2009a]. However, the combination of kernels requires
more computational resources to train the classifiers [Fayruzov et al., 2009]. Kernel-based
methods work well in dealing with transferring implicit data to vector space. However, they
do not consider any semantic information [Murugesan et al., 2017].

Example of Kernel-based Machine Learning Approaches

We explain the method proposed by Segura-Bedmar et al. in detail because it achieved
better results compared to other kernel-based machine learning approaches. They proposed
a machine learning-based method using shallow linguistic kernel for drug-drug interaction
(DDI) extraction in biomedical texts [Segura-Bedmar et al., 2011]. They created the first
annotated corpus DrugDDI corpus using DrugBank database [Wishart et al., 2008]. They
treated the DDI extraction task as a drug pair classification task. Therefore, they generated
datasets to train and test the classifier from the DrugDDI corpus by enumerating all possible
ordered pairs of sentence entities: {(Di,D j) : Di,D j ∈ D,1 ≤ i, j ≤ N, i ̸= j, i < j}, where
S stands for the sentence, N stands for the number of drugs and D stands for the set of
drugs. The example was labelled 0 if the interaction did not exist between the two candidate
drugs. Otherwise, it was labelled 1. Since they did not consider the order of the drugs in

the sentence, the number of examples was CN,2 =

(
n
2

)
. A kernel function is defined as a

binary function K : X ×X → [0,∞) that maps a pair of instances x,y ∈ X to their similarity
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score K(x,y). The kernel function must satisfy the following:

∀x,y ∈ X : K(x,y) = ⟨φ(x),φ(y)⟩ (2.8)

where φ : X → F ⊆ Rn is a mapping from the input space X to a vector space F . The
normalization equation was defined as:

∀x,y ∈ X : K(x,y) = ⟨φ(x),φ(y)⟩=
m

∑
i=1

φi(x)×φi(y). (2.9)

K(xi,x j) =
⟨φ(xi),φ(x j)⟩

∥ φ(xi) ∥∥ φ(x j) ∥
(2.10)

Based on the above equations, they proposed the shallow linguistic kernel (KSL) as the
linear combination of a global context kernel (KGC) and local context kernel (KLC):

KSL(Ri,R j) = KGC(Ri,R j)+KLC(Ri,R j) (2.11)

where the global context kernel and the local context kernel were defined as:

KGC(R1,R2) = KFB(R1,R2)+KB(R1,R2)+KBA(R1,R2) (2.12)

KLC(R1,R2) = Kleft(R1,R2)+Kright(R1,R2) (2.13)

After a few experiments for investigating the suitable window-size of the local context and
n-gram of the global context for better performances, they selected the model maximising
both the F-measure and the precision (n-gram =3, window-size = 3) so that they could avoid
overloading database curators with too many false positives during the process. In the end,
they achieved a precision of 0.5103 and recall of 0.7282, whereas our entity-based approach
performs better. 4

2.2.4 Rule-based Approaches

Rule-based approaches use NLP techniques and templates generated manually by domain
experts or learned automatically from training data to identify semantic entities and extract
associations connected by some specific verbs [Fundel et al., 2006, Mykowiecka et al.,
2009, Song et al., 2015, Kim et al., 2017]. They extend the pattern-based approaches by
adding constraints to express more general patterns such as determining the sentiment of
relations [Fox et al., 2010, Koike et al., 2005, Kim et al., 2007]. Their templates tend to be

4The detail of the evaluation experiments of our entity-based approach is described in Section 4.6
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too specific, focusing on specific verbs between two entities while our entity-based approach
is focusing on semantic verbs and relying solely on the existence of multiple entities within a
sentence. In addition, by expressing rules with a set of procedures or heuristic algorithms
instead of specific constraints, these approaches improved the performances of relation
extraction [Rinaldi et al., 2007, Fundel et al., 2007, Rinaldi et al., 2006]. Unlike pattern-
based approaches, standard NLP techniques such as POS tagging, parsing, and NER are
used to analyse text data before relation extraction. Some simple co-occur relation structures,
such as Entity-Verb-Entity, gene product acts as a modifier of gene, were considered for
relation extraction at first [Proux et al., 2000]. Ono et al. manually generated a set of rules
based on syntactic features to extract negative relations such as Protein1-not verb-Protein2
from complex sentences [Ono et al., 2001]. Sharma et al. proposed a algorithm to extract
single relations from simple sentences [Sharma et al., 2010]. However, their algorithm
mainly focused on five types of entities: food, disease, protein, chemical and gene. Raja
et al. implemented a web-based text mining tool called PPInterFinder to extract human PPIs
from biomedical literature by applying a set of manually defined rules on grammatically
parsed sentences and matching the syntactic structure of the sentence with a dictionary
of patterns [Raja et al., 2013]. Cohen et al. employed the OpenDMAP semantic parser
with manually-written rules to detect trigger words in the training data to extract events,
arguments, negations and speculations [Cohen et al., 2009]. Song et al. defined rules that
rely mainly on syntactic deep parsing and manually specified dictionaries to extract relations
represented as a pair of entities, linked by a directed arc [Song et al., 2015]. Kim et al. used
an association rule learning algorithm to obtain relationships [Kim et al., 2017]. They utilised
these measures to extract meaningful relationships and weights for relationships.

As in machine learning approaches, manually generated rules are limited by expensive
time-consuming and domain constraints. It is also not realistic to cover all the possible
descriptions of relations in texts. Therefore, researchers have been trying to automatically
generate rules for relation extraction from literature. Phuong et al. generated rules auto-
matically using a set of sample sentences parsed by a link grammar parser [Phuong et al.,
2003]. In order to remove the non-protein interactions, they incorporated heuristic rules
based on morphological clues and domain-specific knowledge. Dynamic programming was
employed to automatic learn PPI rules based on POS tags [Huang et al., 2004]. Thomas
et al. incorporated the grammatical information encoded in the types of the dependencies
in dependency trees (DTs) instead of only exploiting topological features [Thomas et al.,
2011]. A large set of linguistic rules was inferred using information about interacting proteins
alone, which were then fine-tuned based on shallow linguistic features and the semantics of
dependency types.
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In general, rule-based approaches achieve better performance compared to pattern-based
and machine learning approaches since their rules are at rather abstract levels such as syntactic
structures, grammatical or semantic structures. Therefore, rule-based approaches perform
better when applied to new domains with a small amount of training data. However, the
recall rates of these approaches remain low since the pre-defined rules can only deal with
obvious cases.

Example

We explain the method proposed by Raja et al. in detail because it achieved better results
compared to other rule-based approaches. They implemented PPInterFinder to extract
human PPIs from biomedical literature using rule-based approaches [Raja et al., 2013].
They developed a vast relation keywords dictionary consisting of 354 relation words and
categorised them into 88 subtypes by identifying the common root word. Based on the
relation keywords dictionary, they designed three abstract forms considering the position
of the proteins and the keywords. For example, the expression PROTEIN1 interacts with
PROTEIN2 conforms with the first form definition PROTEIN1 - token* - RELATION - token*
- PROTEIN2. Table 2.1

Table 2.1 Abstract forms for PPI candidate pair

Form 1: PROTEIN1 - token* - RELATION - token* - PROTEIN2
Form 2: RELATION - token* - PROTEIN1 - token* - PROTEIN2
Form 3: PROTEIN1 - token* - PROTEIN2 - token* - RELATION

In addition to these abstract forms, they also set seven rules for identification of candidate
PPI pairs: 1) the position of relation keyword with proteins, 2) the number of tokens/words
between the protein pairs, 3) simple sentences with two proteins and a relation keyword,
4) simple sentences with two proteins, a relation keyword and a negation keyword 5) complex
sentences having more than two proteins and a relation keyword, 6) complex sentences
having more than two proteins, a relation keyword and a negation keyword, 7) complex
sentences having more than two proteins and two negation keywords.

According to the three abstract forms and the seven rules, they defined 11 patterns using
Tregex syntax [Levy and Andrew, 2006], such as S ((NP≪PROTEIN1) $++ (VP≪RELATION)
$++ (NP≪PROTEIN2)).

To better understand this approach, we used the sentence The lack of a Compound A-
induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal
degradation of Hsp70 or by a Compound A-induced general block on translation as an
example. This sentence contains the abstract form 1, conducting as Compound A-induced
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increase in Hsp70. The position of the only one relation keyword increase is located between
the two proteins in this simple sentence. Therefore, one PPI candidate pair compound
A-induced | Hsp70 can be extracted from this sentence based on pattern 1.

They evaluated their PPI systems with five standard corpora: AIMED [Bunescu et al.,
2005], BioInfer [Pyysalo et al., 2007], HPRD50 [Fundel et al., 2007], IEPA [Ding et al.,
2002] and LLL [Nédellec, 2005]. They achieved an average precision of 0.85 and recall of
0.65, whereas our entity-based approach performs better. Our approach also can be easily
applied in various domains with different corpus rather than only focus on PPIs.

2.3 General Introduction to Machine Learning

Machine learning (ML) is an application of Artificial Intelligence (AI) that studies algo-
rithms and statistical models. The primary aim of ML is to enable computer systems to
automatically perform a specific task and learn and improve from experience without being
explicitly programmed or need human intervention, depending on patterns and inference
instead [Bishop, 2006]. Computer programs start the machine learning process with getting
access to data and observing data, such as examples, direct experience, or instruction. In
order to look for patterns in data, machine learning algorithms build computational statistics
models based on “training data”. These models are then able to make decisions or predictions
in the future. Machine learning algorithms can be used in a wide variety of applications, such
as computer vision [Sebe et al., 2005, Grys et al., 2017], data mining [Michalski et al., 1998,
Ivezić et al., 2019], email filtering [Alurkar et al., 2019, Mallampati et al., 2019] and text
classification [Khan et al., 2010, Kadhim, 2019], etc.

Machine learning enables machines to perform automatic analysis of massive amounts
of data. Even though it generally delivers faster, more accurate results when identifying
profitable opportunities or dangerous risks, it may still require additional time and resources to
achieve efficient training. Combining machine learning with cloud computing and cognitive
technologies can make it even more effective in processing large volumes of information.

Machine learning algorithms are often categorised into four groups. Table 2.2 shows a
general comparison of these four groups.

Table 2.2 Comparison of supervised machine learning and unsupervised machine learning

Features Supervised Learning Unsupervised Learning Semi-supervised Learning Reinforcement Learning
Type of problems Regression and classification Clustering and associations Classification and clustering Reward-based

Type of data Labelled data Unlabelled data Partially labelled data No predefined data
Training External supervision No supervision Partially supervision No supervision

Approach Maps the labelled inputs to the known outputs Understands patterns and discovers the output Utilised approaches from both supervised and unsupervised Follows the trial-and-error method
Computational Complexity Computationally Simple Computationally complicated In between of supervised and unsupervised Computationally complicated

Accuracy Highly accurate Less accurate In between of supervised and unsupervised Depends on the quality of environment
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• Supervised machine learning can apply what has been learned in the past to new data
using labelled training data to predict future events [Mohri et al., 2018]. By analysing
the labelled training dataset, the supervised learning algorithm produces an inferred
function that maps an input object (typically a vector) to the desired output value
based on example input-output pairs [Russell and Norvig, 2016]. The algorithm is
able to provide predictions of labels for any unseen input after sufficient training. It
can also calculate the errors between its output and the correct, intended output so
that the model can be modified accordingly. Compared to the other three machine
learning methods, supervised machine learning often achieves higher accuracy with a
relatively low computational cost. Supervised machine learning algorithms can be used
to solve problems like regression (the output variable is a real value) and classification
(the output variable is a category). These are explained in the following sections.
Some of the most widely used supervised learning algorithms are: Support Vector
Machines (SVM) [Cortes and Vapnik, 1995], linear regression [Freedman, 2009],
logistic regression [Tolles and Meurer, 2016], naive Bayes [Rish et al., 2001], etc.

• Unsupervised machine learning is a type of self-organised Hebbian learning that can
find previously unknown patterns in a training dataset that is neither classified nor
labelled. Unsupervised learning studies how models can infer a function to describe
a hidden structure from unlabelled data [Hinton et al., 1999]. Without knowing the
correct output, the algorithm explores the training data and makes inferred functions to
describe hidden structures and patterns from unlabelled data. Unsupervised machine
learning algorithms can be used to solve a variety of problems such as clustering (to
discover the inherent groupings in the data) [Kassambara, 2017] and associations (to
discover rules that describe large portions of your data) [Lud and Widmer, 2000]. Even
though unsupervised machine learning is usually computationally complicated and
less accurate, it can help to find previously unknown patterns and discover unknown
outputs in a dataset without pre-existing labels. Some of the most widely used unsuper-
vised learning algorithms are: k-means [Garbade, 2018], Expectation–maximization
algorithm (EM) [Dempster et al., 1977], Neural Networks [Sarle, 1994], etc.

• Semi-supervised machine learning algorithms fell between unsupervised learning
(without any labelled training data) and supervised (with completely labelled training
data) since they use a large amount of unlabelled data in conjunction with a small
amount of labelled data. The systems that use this method have considerably improved
learning accuracy [Zhu, 2005]. Usually, semi-supervised learning is chosen when
the acquisition of the acquired labelled data requires skilled human agents, relevant
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resources or physical experiments. This process can be time-consuming, expensive
and infeasible, whereas acquiring unlabelled data is relatively inexpensive since it
generally does not require additional resources. In such situations, semi-supervised
learning can be of great practical value.

• Reinforcement machine learning algorithms interacts with software agents’ environ-
ment by taking actions and discovers punishments or rewards. Reinforcement learning
differs from supervised learning in two ways: It does not need labelled input and
output pairs and does not need sub-optimal actions to be explicitly corrected. Instead,
it focuses on finding a balance between exploration of uncharted territory and the
exploitation of current knowledge [Kaelbling et al., 1996]. It is trained by trial and
error search to allow machines and software agents to automatically determine the ideal
behaviour within a specific context in order to maximise its performance. Delayed
reward feedback, known as the reinforcement signal, is required for the agent to learn
which action is best.

In this work, we focus on categorisation tasks, specifically classification tasks. Categori-
sation plays an important role in machine learning, which aims to solve objects classification,
recognition, differentiation and understanding [Cohen and Lefebvre, 2005]. In a categorisa-
tion task, objects are grouped into categories based on certain purposes, such as relationships
of ideas or meanings of the categories and objects. Categorisation can be applied in many
fields, such as natural language prediction, inference, decision processes [Frey et al., 2011].

Categorisation tasks can be differentiated into two types based on whether it is a super-
vised or unsupervised training procedure:

• Classification is the problem of assigning categories to new observations based on a set
of training data in which category labels are provided to the learner for certain objects.
It involves extracting information from the labelled data sets to achieve accurate
prediction of class labels of unlabelled new data. This may require the abstraction of a
rule or concept relating observed object features to category labels [Kotsiantis et al.,
2007]. For example, deciding a given email as a "spam" email or "non-spam" email.
And giving a diagnosis to a patient based on their characteristics (sex, blood pressure,
presence or absence of certain symptoms, etc.). And in our work, assigning a document
to a given topic based on the context. The algorithm that implements classification is
known as a classifier, which is a classification algorithm consisting of mathematical
functions, that maps input data to a class [Cooke, 2011]. In machine learning, the
observations are often known as instances, the properties of observations are treated as
explanatory variables, and the predicted categories are known as outcomes, which are
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considered to be possible values of the dependent variable. The explanatory variables
are termed features, and the possible categories to be predicted are classes.

• Clustering is the task of grouping objects by similarity into classes so that objects
in the same cluster are more similar to each other than to those in other clusters. It
involves recognising inherent structure in a data set in which no labels are supplied
and generating a classification structure [Kaufman, 2012].

The procedure for building a supervised model to solve a classification problem is as
follows. It begins with separating available data into a training set and a testing set. Then a
strategy is required to find the architecture of the model that performs classification [Swain
and Sarangi, 2013]. The strategy (or algorithm) is defined by specifying an optimisation
procedure and a mathematical form of the problem. Once the model is found, it is treated as
a classifier that is trained through observing the training data set and assigning objects into
certain classes. The model then compares observations by means of similarities and adjusts
parameters of the algorithm.

In each observation, the data set can be treated as a set of quantifiable properties, which
technically are referred to as variables or features. The vectors contain multiple numbers that
represent the values of the axis in different dimensions. The space location that stores these
numbers corresponds to the variables or features.

The ability of a classifier adapting to the unknown future data is the most important factor
once the model is built and trained. This is done by examining the model with the testing
data set. The result highly depends on the characteristics and the representation of the data.
The procedure for measuring the results is called evaluation. Measuring precision and recall
are popular approaches [Tjong Kim Sang and De Meulder, 2003], while simply performing
an accuracy test is the most common way to evaluate a model [Rossi et al., 2003].

Naturally, an advanced classifier such as Here, we describe a typical supervised learning
classifier, support vector machines (SVMs [Cortes and Vapnik, 1995]), which are scalable
and efficient to classify multiple topic categories for huge text corpus [Chen, 2018]. In
our work, a typical C-SVM was used to perform the text classification task. This is the
same choice for other existing works [Allahyari and Kochut, 2015, Liu et al., 2019]. The
classification results can be used to evaluate the accuracy of different topic model approaches.

2.3.1 Support Vector Machine

In machine learning, SVMs [Cortes and Vapnik, 1995] are supervised learning models
for analysing data in order to achieve classification and regression analysis. Given a set of
training data, each labelled with one or the other of two categories, an SVM training algorithm
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Fig. 2.2 The geometric building of an optimal hyperplane for two-dimensional input space

assigns new unlabelled data to one category or the other, making it a non-probabilistic binary
linear classifier [Khamar, 2013]. An SVM model is a representation of the data as points
mapped in space, data of the separate categories are divided by a clear gap (or hyperplane)
that is as wide as possible [Lilleberg et al., 2015]. New unlabelled data are then represented
by the same space and assigned to a category according to which side of the gap they fall
on. Beside linear classification, SVM can also be to perform a non-linear classification by
including the kernel trick, so that the inputs can be mapped into high-dimensional feature
spaces [Boser et al., 1992].

For a typical SVM, given a training dataset (xi,yi)
n
i=1, where yi are either 1 or −1, each

indicating the topic category to which the point xi belongs. SVM algorithm assumes that
the topic categories are linearly separable. The maximum-margin hyperplane that used to
separate categories is defined in Equation 2.14, where w is an adjustable weight vector and b
is a bias. The desired hyperplane ensures that the distance margin ρ between the hyperplane
and the nearest point xi from either category is maximised. This desired hyperplane is the
optimal hyperplane. Figure 2.2 shows the geometric building of an optimal hyperplane for
two-dimensional input space. Each data point must lie on the correct side of the hyperplane,
as defined in Equation 2.15.

wT · x+b = 0 (2.14)

yi(w · xi −b)≥ 1, for all 1 ≤ i ≤ n (2.15)
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To extend SVM to cases in which the data are not linearly separable, the hinge loss
function is introduced and defined in Equation 2.16. This function is zero when the constraint
in Equation 2.15 is satisfied. When Equation 2.15 is not satisfied, in other words, for a data
point on the wrong side of the hyperplane, the hinge loss function’s value is proportional to
the distance from the hyperplane. In this case, Equation 2.17 should be minimised. Here λ is
the trade-off between increasing the margin size and ensuring that the xi fall on the correct
side of the hyperplane.

max(0,1− yi(w · xi −b)) (2.16)

[
1
n

n

∑
i=1

max(0,1− yi(w · xi −b))]+λ∥w∥2 (2.17)

Computing the SVM classifier, i.e., minimising Equation 2.17, can be done by solving a
constrained optimization problem with a differentiable objective function as follows. For
each i ∈ 1, . . . ,n, a variable ζi = max(0,1−yi(w ·xi−b)) is introduced, which is the smallest
nonnegative number satisfying yi(w · xi −b)≥ 1−ζi. Thus Equation 2.17 can be rewritten
as in Equation 2.18, which is called the primal problem [Boser et al., 1992].

minimise
1
n

n

∑
i=1

ζi +λ∥w∥2

subject to yi(w · xi −b)≥ 1−ζi

and ζi ≥ 0, for all i = 1, . . . ,n

(2.18)

In this work, we focus on a C-Support Vector Classification model (C-SVM) from
LIBSVM proposed by Chang and Lin [Chang and Lin, 2011] to solve text classification
problem. After representing documents using different topic models to construct a training
dataset, they are fed into the C-SVM to obtain a classifier. The primal problem of such
classifier can be written as Equation 2.19.

minimise
1
2

wT w+λ

n

∑
i=1

ξi

subject to yi(wT
φ(xi)+b)≥ 1−ξi,

and ξi ≥ 0, for all i = 1, . . . ,n

(2.19)

where φ(xi) maps xi into a higher-dimensional space. Due to the possible high dimensionality
of the vector variable w, they solve a dual problem instead following Equation 2.20. Here
e = [1, . . . ,1]T is the vector of all ones, Q is an n× n positive semidefinite matrix, Qi j ≡
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yiy jK(xi,x j), and K(xi,x j)≡ φ(xi)
T φ(x j) is the kernel function.

minimise
1
2

α
T Qα − eT

α

subject to yT
α = 0,

and 0 ≤ αi ≤ λ , for all i = 1, . . . ,n

(2.20)

After Equation 2.20 is solved, they utilised the primal-dual relationship to obtain the
optimal w following Equation 2.21 and the decision function following Equation.

w =
l

∑
i=1

yiαiφ(xi) (2.21)

sgn(wT
φ(x)+b) = sgn(

n

∑
i=1

yiαiK(xi,x)+b) (2.22)

Finally, the classifier is constructed and trained successfully and ready to make predic-
tions on any testing dataset using yiαi∀i, weight vector w, bias b, label names5, and other
information such as kernel parameters.

5In LIBSVM, label names are mapped to ±1 by assigning the first training instance to yi =+1



Chapter 3

Ontology-Driven Approach for Topic
Classification

The first task of a topic classification system is to develop a topic model to summarise and
represent unstructured texts written in natural language. The obtained topic model can then
be combined with a classifier to perform text classification task. In the chapter, we aim to
address (RQ1) by introducing an ontology-driven topic classification method with LDA topic
model.

Topic modelling techniques can summarise texts into topics and topic classification
techniques identify topic terms and classify texts accordingly. Latent Dirichlet Allocation
(LDA) is one of the most commonly used topic modelling techniques [Li et al., 2016, Hsu and
Chiu, 2017, Burkhardt and Kramer, 2018]. LDA employs a probabilistic model that projects
a document into a topic space matrix using the Dirichlet probability distribution [Girolami
and Kabán, 2003]. Each topic is represented by a collection of words and their probability
distribution [Blei et al., 2003]. An LDA model can be generated and trained by either
supervised and unsupervised machine learning techniques. In general, LDA models produced
by supervised techniques vastly outperform those produced by unsupervised techniques [Li
et al., 2016, Hsu and Chiu, 2017, Burkhardt and Kramer, 2018]. However, supervised
techniques need to be trained by a manually generated and classified dataset, which is very
costly to produce [Ko and Seo, 2009]. And as a result, these training datasets are usually small.
While larger training datasets not only ensure better generalisation, they also provide better
accuracy. Wang et al. incorporated expert knowledge when generating the topic model so that
it does not need large training datasets. However, this still requires a large amount of human
effort [Pavlinek and Podgorelec, 2017]. In order to overcome the cost of obtaining a large
pre-classified training dataset, Ocepek et al. suggested introducing a self-training phase to
automatically enlarge an initially small amount of training data annotated by humans [Ocepek
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et al., 2015]. Pavlinek and Podgorelec combined this self-training phase with LDA resulting
in a technique called Self-Training LDA (ST-LDA) [Pavlinek and Podgorelec, 2017]. Once
the enlarged training dataset is generated, the topic classifier can then be performed using a
conventional supervised technique, such as Support Vector Machine (SVM).

Conventional LDA approaches always use words as self-contained tokens so that they
normally ignore the fact that words may have multiple meanings and that different words
may have the same meaning, which result in limited performances of the topic models they
produce [Campbell et al., 2015b]. For example, the sentences

“Google is launching their new phone.”

and

“Microsoft is stepping into the study of advanced electronics.”

may not be classified into the same category when represented by an LDA topic model
because they do not have any relevant words in common. However, these sentences are
related because Microsoft and Google are both “companies” involved with “technology”.
In this work, we aim to bridge this gap by including some semantical concepts associated
with the words “Microsoft" and “Google". This can be done by making use of a database
containing a good amount of cross-domain ontological knowledge such as ConceptNet and
DBpedia.

ConceptNet is a freely-available semantic network that contains the meanings of words in
natural language and the common-sense relationships between them [Speer et al., 2017]. The
multilingual knowledge in ConceptNet is collected from a variety of resources, including
crowd-sourced resources (such as Wiktionary 1 and Open Mind Common Sense [Speer et al.,
2008]), and expert-created resources (such as WordNet [University, 2010] and JMDict [Breen,
2004]). ConceptNet is a commonly used resource for researches working with ontology
knowledge, such as sentiment analysis [Chauhan and Meena, 2020, Bandari and Bulusu,
2020] and question answering [Talmor et al., 2018, Basu et al., 2020]. DBpedia can also
provide structured information about over 6.0 million entities associated with a set of
concepts describing its general properties within the ontology. These entities and their
concepts together construct a consistent ontology.

Our approach utilises these semantical concepts from either ConceptNet or DBpedia to
include implicit relationships between words into topic models and therefore increase the
overall accuracy of the classification. In our previous example, the words “Microsoft” and
“Google” would be associated through the concepts “company” and “technology” that they

1https://www.wiktionary.org/
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share in ConceptNet. Including this ontological knowledge as an intermediate component
in LDA has the following advantages: (i) it allows the topics to be defined more generally
in terms of ontological concepts rather than specific words so that they can capture the
semantical meaning of the words more accurately; (ii) as a side-effect, we will see that this
extra component helps to reduce the time required to construct a topic model. In virtue of the
use of this ontological knowledge, we call the resulting technique Ontology-Driven Latent
Dirichlet Allocation (OLDA).

As for LDA, OLDA can also employ a self-training phase in order to reduce the amount of
human effort by enlarging the initial amount of manually classified data. The inclusion of the
self-training phase enables OLDA to deal with small corpus. Accordingly, we call the variant
using the self-training phase Self-Training Ontology-Driven Latent Dirichlet Allocation (ST-
OLDA). The self-training can be performed with any appropriate procedure. Two alternatives
were considered in this work: a relatively ad hoc method employing a logistic regression
model; and the procedure proposed by Pavlinek and Podgorelec [Pavlinek and Podgorelec,
2017], which employs Gibbs sampling. The former is faster to train, but its classification is
less accurate. In our experiments, the combination of Pavlinek’s self-training technique with
OLDA outperformed it with LDA [Pavlinek and Podgorelec, 2017] by as much as 11.01%
(in the R52 dataset), which confirms the advancement of including the ontology component.
Comparing against state-of-the-art knowledge-based approach [Allahyari and Kochut, 2015],
the inclusion of logistic regression increases the accuracy of the classification regardless
of the self-training method employed by between 3 and 7 percentual points (depending on
different datasets). Comparing against state-of-the-art word embedding based approaches [Fu
et al., 2016, Liu et al., 2019], our knowledge-based OLDA approach does not rely on the
performances of external word embeddings even though ours achieves lower accuracy of
the classification. This work has been accepted and presented in the 2019 International
Conference on Computer Science and Information Technology entitled as "A Self-Training
Ontology-Driven Approach for Topic Classification (ST-OLDA)".

The remainder of this chapter is organised as follows. Section 3.1 provides background
information about logistic regression model and some topic modelling techniques. Section ??
presents our new OLDA approach. Section 3.3 describes the two self-training techniques
and how they can be incorporated with OLDA. Section 3.4 describes the results of our
experimental analysis and Section 3.5 summarises with a discussion.
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3.1 Background

As the approach introduced here employs logistic regression, this section introduces the
logistic regression model. It also introduces existing topic modelling and classification
techniques against which our approach is compared.

3.1.1 Logistic Regression Model

In statistics, the logistic model is used to compute the probability of a specific class or event
happening, such as pass or fail, win or lose, alive or dead and healthy or sick. In machine
learning, it can be extended to solve multi-class tasks, such as determining whether an image
contains a specific object. The detected object would be assigned a probability between 0
and 1, and the sum of these probabilities is one.

A logistic regression model uses a logistic function to estimate and model a binary
dependent variable, although many more complex extensions exist [Tolles and Meurer, 2016].
In statistics, a binary logistic model has two dependent variables where each can be two
possible values, such as pass or fail are assigned with 0 and 1, which are indicator variables.
The binary logistic regression model can be extended to more than two dependent variables:
multinomial logistic regression can model categorical outputs with more than two values,
and ordinal logistic regression can model multiple ordered categorical outputs [Walker and
Duncan, 1967b].

The logistic function takes any real input t, t ∈ R, and outputs a value between 0 and
1 [Hosmer Jr et al., 2013]. A standard logistic function σ : R→ (0,1) is as:

σ(t) =
et

et +1
=

1
1+ e−t (3.1)

Assuming that t is a linear function of a single explanatory variable x, the input t can then
be expressed as:

t = β0 +β1x (3.2)

where β0 is the intercept from the linear regression equation and β1 is the regression coeffi-
cient.

And the general logistic function p : R→ (0,1) can now be written as in equation 3.3.

p(x) = σ(t) =
1

1+ e−(β0+β1x)
(3.3)
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3.1.2 Topic Modelling and Classification

Topic modelling is a type of statistical modelling to summarise a collection of documents
into the abstract “topics”. Intuitively speaking, given that a document is about a particular
topic, certain words would be expected to appear in the document more frequently, and
others less frequently. A topic model captures this intuition using a mathematical technique,
which analyses a set of documents to produce “topics” based on collections of related words
and their statistics. The topic model is able to discover what the topics might be and what
each document’s balance of topics is. Topic modelling has been widely applied to various
text mining tasks such as text classification [Hingmire and Chakraborti, 2014, Li et al.,
2018, 2019a], word sense disambiguation [Hu et al., 2014, Kim et al., 2020], sentiment
analysis [Yono et al., 2019, Lazaridou et al., 2013], and others. Manually assigning topics to
documents are prone to subjectivity and not able to scale up, especially when dealing with a
massive number of data [Mei et al., 2006, Wang and McCallum, 2006].

Vector Space Model (VSM) representation is a common topic modelling approach,
where topics are based on words as independent units with mathematical weights computed
based on Term-Frequency-Inverse Document Frequency (TF-IDF) [Salton and Buckley,
1988]. However, only considering word frequency without any context is not sufficient to
differentiate between topics in many situations because the order of the appearance of the
words may result in various meanings and topics [Sriurai, 2011]. To address this, Nigam et al.
employed a Naïve Bayes (NB) classifier to perform parameter estimation task of a statistical
Expectation Maximisation (EM) model (EM-NB) [Nigam et al., 2000]. Nigam et al. used
Naïve Bayes classifier to estimate parameters from pre-classified instances and then to assign
probabilistically weights to unclassified instances and assign their classes accordingly. In
a second iteration, these new classified instances are considered to re-estimate and adjust
parameters, and so it iterates until the results converge. A significant drawback of this
approach is that it converges to a local optimum. Deerwester et al. proposed a Latent Semantic
Analysis (LSA) approach to interpret documents as latent concepts in a low dimensional
semantic space [Deerwester et al., 1990]. Hofmann further enhanced LSA so that topics
are represented by multinomial word distributions using the probability density function,
yielding a technique called Probabilistic Latent Semantic Analysis (PLSA) [Hofmann, 1999].
However, PLSA is prone to incorrectly classify documents which cause overfitting problems.
In order to address these problems, Blei et al. proposed an improved model based on the
Dirichlet prior probability distribution [Blei et al., 2003] – the so-called Latent Dirichlet
Allocation (LDA). In LDA, each document is represented as a multinomial distribution of
topics, where each topic is represented as a distribution of words.
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d11,d12, . . . ,d1k
d21,d22, . . . ,d2k

...
dn1,dn2, . . . ,dnk

 =


q11,q12, . . . ,q1l
q21,q22, . . . ,q2l

...
qn1,qn2, . . . ,qnl

 ×


p11, p12, . . . , p1k
p21, p22, . . . , p2k

...
pl1, pl2, . . . , plk


∆ (document/words) Θ (documents/topics) Φ (topics/words)

Fig. 3.1 A typical schematic of LDA matrices

Fig. 3.1 shows a typical schematic representation of LDA matrices. Here, D = {D1, . . . ,Dn}
is a collection of documents to be classified into the topics T = {T1, . . . ,Tl} and W =

{W1, . . . ,Wk} is a set of words occurring in D . ∆ is the matrix associating documents to
words, where each cell di j is 1 if the word Wj ∈ W appears in the document Di ∈ D and 0
otherwise. LDA treats each document in a collection as having been created from several
latent topics, each of which having an associated probability distribution of co-occurring
words [Campbell et al., 2015b]. This multinomial probability distribution is captured by
a l × k matrix Φ with the probabilities pab of each topic Ta (1 ≤ a ≤ l) being described by
word Wb (1 ≤ b ≤ k). The LDA model aims to obtain from ∆ and Φ a n× l documents/topics
matrix Θ with the probabilities qxy of each document Dx (1 ≤ x ≤ n) being associated with
topic Ty (1 ≤ y ≤ l).

An LDA model is trained to obtain the topics/words matrix Θ and documents/topics
matrix Φ in an unsupervised manner. One of the most widely-used training techniques is
Gibbs sampling [Griffiths and Steyvers, 2004]. For the initial iteration, Gibbs sampling starts
by randomly assigning probabilities to pab0 in Φ0, and then the algorithm repeats over each
word Wb of each document Di in the training datasets for a number of iterations. For each
iteration t, it samples a new probability pabt computed by the conditional distribution of
the word Wbt given all other current topics/words probabilities pa′b′t (1 ≤ a′ ≤ k and a′ ̸= a,
1 ≤ b′ ≤ k and b′ ̸= b). The iteration process stops when the algorithm reaches a steady-state,
resulting in a topics/words matrix Φ with obtained topics/words probability distributions.
Finally, the desired documents/topics matrix Θ can be computed following Fig. 3.1.

Shortcomings of LDA

In spite of its strengths, LDA sometimes fails to capture the true semantical meanings of the
topics due to problems caused by word-assignment ambiguity, homonyms and polysemous
words [Ramage et al., 2009]. Some variations of the LDA model have attempted to reduce
these noise and address these problems. Panichella et al. proposed a genetic algorithm to
fine-tune the prior probabilities in Φ and Θ [Panichella et al., 2013]. Hsu and Chiu proposed
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a supervised hybrid LDA approach using a genetic algorithm to optimise the weight vector of
the documents-topics matrix Θ [Hsu and Chiu, 2017]. Krasnashchok and Jouili employed a
named entity recognition technique to recognise and include domain-specific terms into a new
weighted LDA model. This additional knowledge can improve interpretability, specificity and
the diversity of the extracted topics [Krasnashchok and Jouili, 2018]. Hida et al. proposed a
dynamic and static topic model (DSTM) for LDA to simultaneously consider the dynamic
structures of the temporal topic evolution and the static structures of the topic hierarchy
[Hida et al., 2018]. However, none of these approaches seems to address LDA’s intrinsic
inability to capture semantical meanings of words. Guo and Diab attempted to achieve
a better understanding of word semantical meanings by exploiting dictionary definitions
explicitly from WordNet [Guo and Diab, 2011], but WordNet ontologies are too fine-grained,
resulting in a topic model of less generalisation power. Hulpus et al. incorporated structured
knowledge from DBpedia with LDA. For each topic, they first found the terms with the
highest marginal probabilities by LDA and then generated a set of ontological concepts from
DBpedia to represent those terms of the topic. These concepts can then be used to construct
a graph so that graph centrality algorithms can identify the most representative concepts for
the topic [Hulpus et al., 2013]. However, their works basically treat topics as a multinomial
distribution over words, which can not interpret the semantic of each topic in an accurate
way. Recently, distributed word representations significantly improved the performances of
topic modelling tasks. Fu et al. proposed a Word-Topic Mixture (WTM) model to obtain
an improved word embedding representation and a topic model. They introduced an initial
external word embedding into the Topical Word Embeddings (TWE) model [Liu et al., 2015]
to learn word embeddings. Then probability distribution of vectors-word embeddings from
TWE is integrated into the LDA by defining the probability distribution of topic models
according to the idea of latent feature model with LDA (LFLDA) [Fu et al., 2016]. They
achieved good results in 20 Newsgroups dataset: 80.94% classification accuracy. Similarly,
Liu et al. incorporated word embedding and part-of-speech in their LDA topic model in
order to capture the context of the words in documents [Liu et al., 2019]. Indeed their
approach produced impressive results: their topic model with an SVM classifier achieved
an average of 83.05% accuracy on the 20Newsgroups dataset. However, their approach
requires a lot of manually classified training data. As we shall see, the performance of our
proposed OLDA and ROLDA are comparable with [Fu et al., 2016] and [Liu et al., 2019],
whereas ours do not rely on the performance of external word embeddings and is able to
deal with small corpus. Allahyari and Kochut introduced another latent variable called
concept into LDA between topics and words. Unlike LDA, their model treats each topic as a
multinomial distribution over concepts and each concept as a multinomial distribution over
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words [Allahyari and Kochut, 2015]. To the best of our knowledge, their OntoLDA model is
the first model to introduce an intermediate concept variable into LDA. We take the same idea
of the intermediate concept variable into LDA, resulting OLDA. Our work differentiates from
OntoLDA in that we employed a logistic regression model to predict probability distributions
of documents/topics and topics/concepts. In comparison, they employed conventional Gibbs
Sampling for probability inference and training. As we shall see, OntoLDA’s performance is
lower than the accuracy of our proposed OLDA model. Employing other machine learning
techniques such as LSTM may achieve better results on such a task. However, we chose
logistic regression due to its simplicity and efficiency. As we shall see, even with a simple
logistic regression model, the inclusion of the intermediate knowledge-based concept variable
increased the classification accuracy as well as the construction speed of a topic model.

A secondary issue with LDA is that the training process of the topic model in a purely
unsupervised manner results in difficulties to achieve an accurate topic classification. Re-
searchers attempted to create semi-supervised LDA models. Wang et al. proposed a
semi-supervised LDA model (ssLDA) by manually incorporating available expert knowl-
edge [Wang et al., 2012], but this still requires a lot of human intervention. Wu et al.
represented documents as concept vectors instead of word vectors using heuristic selection
rules to select only related keywords rather than the full-text obtained from Wikipedia [Wu
et al., 2017]. Gu et al. combined a supervised Bi-directional Recurrent Neural Network (Bi-
RNN) with Long Short-Term Memory (LSTM), and LDA to capture contextual information
and discover latent semantic information in the representation of short documents [Gu et al.,
2018]. Finally, Pavlinek and Podgorelec suggested the use of a self-training algorithm within
LDA to enlarge a small amount of pre-classified training data and achieve a semi-supervised
learning process (ST-LDA, [Pavlinek and Podgorelec, 2017]). To the best of our knowledge,
this was the first approach that utilising self-training in topic modelling. It is worth noting
that the self-training process, although done automatically, can also be very time-consuming
in LDA. As we shall see, our proposed topic modelling approach OLDA that incorporating
an ontological component can significantly reduce the required training time whilst achieving
higher classification accuracy at the same time.

3.2 Methodology

In this section, we describe our topic modelling approach addresses the two issues with
LDA mentioned above, namely its inability to consider actual word semantical meanings,
and the amount of human supervision needed to train the model. In order to address the
first problem, we include an intermediate step to the LDA topic-modelling process using
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d11,d12, . . . ,d1k
d21,d22, . . . ,d2k

...
dn1,dn2, . . . ,dnk

 =


q11,q12, . . . ,q1l
q21,q22, . . . ,q2l

...
qn1,qn2, . . . ,qnl

 ×


r11,r12, . . . ,r1m
r21,r22, . . . ,r2m

...
rl1,rl2, . . . ,rlm

×


s11,s12, . . . ,s1k
s21,s22, . . . ,s2k

...
sm1,sm2, . . . ,smk


∆ (documents/words) Θ (documents/topics) Σ (topics/concepts) Γ (concepts/words)

Each document is a collection of words in ∆. Each concept is associated with corresponding
words in Γ. Each topic is a distribution of concepts in Σ. The final topic model is Θ, where
each document is a distribution of topics.

Fig. 3.2 Ontology-Driven topic model matrices schematic

concepts representing knowledge of ontology to capture the different meanings of the words.
For this reason, our technique can be considered an ontology-driven variant of LDA, which
we abbreviate to OLDA. In its simplest approach, it also requires some level of human
supervision. But as for LDA, it also allows the incorporation of a self-training phase so
that the number of human efforts can be reduced. We refer to this self-training variant as
ST-OLDA.

Let D = {d1,d2, . . . ,di, . . . ,dn} be a collection of documents to be classified into the
topics T = {T1, . . . ,Tl} and W = {W1, . . . ,Wj, . . . ,Wk} is a set of words occurring in D .

The overall matrix schema of OLDA is shown in Figure 3.2. OLDA’s aim is to obtain a
topic model, which is a documents/topics matrix Θ in Figure 3.2 giving the probability qxy of
each document Dx being about a certain topic Ty. The incorporation of the ontology concepts
is done through the introduction of an intermediate concept dimension in the matrices as
follows. We first pre-process the documents employing standard open-source NLP tools
(StanfordNLP [Manning et al., 2014a]) for part-of-speech (POS) tagging and extracting the
set W of all words in them. In the matrix ∆, each document is a collection of words. As
before, we construct the matrix ∆ of binary values, where each cell di j is given the value 1
if the document Di contains the word Wj ∈ W or 0, otherwise. Using ConceptNet [Speer
et al., 2017] or DBpedia [Auer et al., 2007], we then construct the set of all concepts C that
are associated with a word W ∈ W . Analogously, we then construct the matrix Γ of binary
values, where each cell sro is given value 1 if the word Wo ∈ W can be described by the
concept Cr ∈ L , or 0 otherwise (this process is described in more detail in Section 3.2.1).
In the matrix Γ, each concept is associated with corresponding words. The matrix Σ giving
the probabilities rab of each topic Ta being described by each concept cb is constructed
using a logistic regression technique. When constructing Σ, each topic is represented by a
distribution of concepts. Finally, Θ is computed by ∆, Σ and Γ following the schema (the
computation of Σ and Θ are described in Section 3.2.2). In the result topic model Θ, each
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document is represented by a distribution of topics. This topic model can then be used to
train any classifier (C-SVM in our work) to perform text classification. In Section 3.3 we
explain how the amount of human supervision can be minimised.

3.2.1 Generating the Concepts/Words Matrix Γ

ConceptNet is an open-source semantic network based on the knowledge from the Open
Mind Common Sense (OMCS) database. ConceptNet is shown as a directed graph, where
nodes as concepts, and edges as assertions of common sense about these concepts [Havasi
et al., 2007]. Concepts represent sets of closely related natural language phrases, which could
be noun phrases, verb phrases, adjective phrases, or clauses. In this work, we use two types
of relationship between concepts: IsA and RelateTo to create the set of concepts C and the
matrix Γ which gives the association between words and concepts as follows (this process is
done programmatically via scripts without human intervention).

DBpedia is a crowd-sourced community website providing structured content extracted
from the information created in various Wikipedia projects. This structured knowledge
is freely available for use and described by a shallow, cross-domain ontology called the
DBpedia Ontology. The DBpedia Ontology currently consists of 685 concepts described by
2795 different properties. An important property of each concept is its Type, which loosely
describes the semantic meaning of the concept. Like ConceptNet, we use the type property
of the concepts to create the set of concepts C and the matrix Γ.

Information Extraction from Web

The process of ontological concepts extraction from the web, such as ConceptNet and
DBpedia, is called Internet information extraction. Instead of extracting concepts from
APIs, we introduced a semi-supervised approach to obtain information directly from the
web pages of ConceptNet and DBpedia via query answering, so that we could extract as
much available information as possible.This is an important programming technique in
computer science field aiming to extract records from web pages and identify items written
in Hypertext Transfer Protocol (HTML), Javascript or PHP [Chu et al., 2015]. This technique
can facilitate various applications such as data analysis and data integration and has been
applied in different research areas such as semantic web [Kayed and Chang, 2010].

One of the key components in Internet information extraction is called the wrapper,
which can be achieved by three approaches [Agarwal and Liu, 2008]: 1) manual approach
requires a human observing the web page and the source code and manually find the data
extraction patterns; 2) wrapper induction is a semi-automatic approach. It requires some
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level of manual labelling, and then generating training templates and extraction rules through
machine learning techniques; 3) automatic extraction is an unsupervised approach without
any manual labelling involved, which can be scaled up to cover more websites for data
extraction.

These three types of wrapper all can be used to extract two main types of data [Agarwal
and Liu, 2008, Su et al., 2012]: 1) a group of data that is described in a similar format, HTML
tags and rendered in a contiguous region, 2) a list of data presented in sub-trees and under
the same parent node with similar repetition of HTML tag structures. Many frameworks
designed for capturing these two types of data are published as research literature. Chang
and Lui designed an Information Extraction based on Pattern Discovery (IEPAD) that can
discover repetitive patterns by matching HTML tag strings and creating a tree structure of the
extracted data [Chang and Lui, 2001]. In order to reduce computation time and improve the
accuracy of the extracted data, Zhai and Liu designed a Data Extraction based on Partial Tree
Alignment (DEPTA) that can consider not only the source code but also visual information
with an alignment technique [Zhai and Liu, 2006].

We utilised an open-source automatic Internet information extraction system proposed by
[Chu et al., 2015]. Their approach is trained in a semi-supervised manner to extract a list of
data presented in sub-trees under key properties, such as IsA, RelatedTo or Type in our case.
The data extraction system contains six main steps:

1. By querying each noun W ∈ W in ConceptNet or DBpedia web page server, each
corresponding HTML document is syntactically parsed and converted into text strings.
This can be done based on HTML tags or the stop sign of the natural languages such
as a period.

2. Transforming a web page (HTML) into a Document Object Model (DOM) tree struc-
ture, which is a cross-platform and a language-independent convention. The system
identifies the HTML tags and their function within the text strings and converts the
HTML texts into a DOM. Each sub-tree in the DOM contains the texts within the start
and end tags of the HTML.

3. Data Path Matching (DPM) is used to identify structural similarities of the sub-trees
within the DOM structure. The conventional complex tree distance measure algorithms
are used to discover similarities of the “Data Path”. The key properties such as IsA,
RelatedTo or Type are recorded.

4. Sub-trees that have fewer similarities are deleted, and sub-trees that are exactly the
same (content overlapping) are merged together. Similar sub-trees are grouped into the
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same group, and the group that is with the largest number of key properties is identified
as the important sub-trees.

5. Path-Code-Sting Alignment technique is used to align corresponding data items, which
transform records into HTML tag strings and measure their minimum distance between
characters.

6. All the contents of the important sub-tree for each document associated with W are
extracted from DOM, and they are the set of concepts C(W ).

Generating the Concepts/Words Matrix Γ using extracted concepts

After extracting concepts of each noun W ∈W from the ontological website and constructing
the set of concepts C(W ) associated with the word W , we are ready to construct the Con-
cepts/Words Matrix Γ. Because of the way the type properties are presented in the ontological
website, we perform some basic data cleansing: we remove any redundant information in
the property, segment words as needed, and aggregate similar terms. For example, the word
“computer” has ten different Type properties in DBpedia: Thing; Device; Artifact100021939;
ComputerSystem103085915; Instrumentality103575240; Object100002684; PhysicalEn-
tity100001930; System104377057; Whole100003553 and WikicatComputerSystems. During
cleansing, we remove the reference numbers from the types, segment words in terms such
“ComputerSystem”, and combine similar words such as “System" and “Systems" into a
single concept. In this example, we would associate the word “computer” with the set
of concepts C(computer) = {T hing,Device,Arti f act,Computer System, Instrumentality,
Ob ject,Physical Entity,System, . . .}.

We then set C =
⋃

W∈W L(W ); assume a fixed ordering of concepts [C0,C1, . . . ,Cm] (for
Ci ∈ C ); and then construct the matrix Γ by setting si j = 1 if C j ∈C(Wi), or 0 otherwise.

3.2.2 Generating the Matrices Θ and Σ

The documents/topics matrix Θ, and the topics/concepts matrix Σ are generated iteratively
using the input matrix Γ in a logistic regression model. The model uses the linear weighted
combination of inputs from Γ and generates the predicted probabilities of each concept
relating to each topic (i.e., the matrix Σ) [Walker and Duncan, 1967a, Menard, 2002]. A
schematic diagram of the model is shown in Fig. 3.3. The input of the logistic regression
model is a vector of concepts Ci for word Wi. For each word Wi ∈ W , the corresponding
column in the concepts/words matrix Γ is used as an input data vector Ci (equation (3.4)
below). The output of the logistic regression model is a prediction vector yi, which represents
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f f . . . f

Softmax

Prediction

· · ·· · · · · · Input data Ci

Fully connected layer

Softmax layer

Output prediction yi

Vector size = total number of concepts (m)

Vector size = total number of topics (l)

The input is a vector of concepts Ci for word Wi. It is fed into a fully connected layer defined
by Equation 3.5. The output of the fully connected layer is normalised by a softmax layer
defined by Equation 3.6 to generate the final output yi, which is the predicted probability of
each concept being associated with a topic

Fig. 3.3 Structure of the logistic regression model

the predicted probability of each concept being associated with a topic, as described next. A
fully connected layer takes the vector Ci and generates the evidence vector zi using (3.5) and
a weight matrix Wt and bias vector bt . The initial values W0 and b0 are randomly given.

Ci j =

1 if c j ∈ L(Wi)

0 if c j ̸∈ L(Wi)
(3.4)

zi = f (Ci) = WtCi +bt (3.5)

Each element r̂a in the evidence vector zi is then normalised in the softmax layer to finally
generate the vector yi according to (3.6) (this means that the values within yi add up to 1).
Each element rab in the output vector yi is the predicted probability of each concept cb being
associated with a topic Ta. This whole process is repeated for all words (i ∈ (1,2, . . . ,k)),
resulting in the matrix Σt . Finally, the matrix Θt can be computed using the matrix schematic
shown in Fig. 3.2.

yi = so f tmax(zi) =
er̂a

∑
l
a=1 er̂a

(3.6)

Consequently, the initial matrices Σ0 and Θ0 are obtained using random values for the
weight matrix W0 and the bias vector b0. For each subsequent iteration t+1, we then measure
the Euclidean distance between the predicted classification Θt and the true classification Θs
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(recall Θs is manually done). Using the Stochastic Gradient Descent technique we obtain
new values for Wt+1 and the vector bt+1 [Kiefer et al., 1952, Bottou, 1998] that minimise
this distance. We then calculate Σt+1 and Θt+1 as before using Wt+1 and bt+1. This process
continues until the distance between the predicated classification Θ j computed in an iteration
j and the true classification Θs goes below a desired threshold. The output of this process
is the documents/topics matrix Θ, the topics/concepts matrix Σ, and the optimised weight
matrix W and bias vector b.

3.3 Topic Classification with Self-Training

Obviously, obtaining a large training dataset is costly, so we would like to minimise the
amount of pre-classified data required. As done for LDA in the creation of ST-LDA, this
can be done by introducing a self-training stage to enlarge the original amount of manually
trained data.

In this section, we consider the use of two self-training approaches for this: the first,
presented in Section 3.3.1, consists of a relatively ad hoc procedure that is quick to perform
and produces good but sub-optimal results. As an alternative, we also describe Pavlinek et
al.’s self-training procedure [Pavlinek and Podgorelec, 2017] in Section 3.3.2. We will see
that this procedure takes nearly twice as long to complete as the ad hoc method, but produces
the best results when combined with OLDA. We stress that the introduction of the concept
matrix reduces the time required for training by approximately half independently of the
training procedure used.

3.3.1 A Simple Self-training Procedure

Instead of using a large amount of pre-classified documents to calculate values for the weight
matrix W and the bias vector b, the idea is to take a very small amount of pre-classified
documents Ds and a much larger amount of unclassified documents Du to output an enlarged
classified training matrix Θss from the manually provided matrix Θs. W and b are obtained
from Ds and Θs as described in Section 3.2.2 until we reduce the distance between Θt and Θs

to below a pre-defined distance threshold DT . Here, the distance is calculated as Euclidean
distance, as shown in Equation 3.7.

deuc(x,y) =

√
n

∑
i=1

(xi − yi)2 (3.7)
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Data: Ds,Du,DT
Result: Dss
while deuc > DT do

foreach di ∈ Ds do
Perform Logistic Regression model.
Measure Euclidean distances deuc between Θt and Θs.
Adjust W and b.

end
Move selected documents d j ∈ Du to Ds based on obtained W and b.

end
Algorithm 1: Algorithm for the ad hoc self-training

In a second phase, we use the values of W and b thus obtained to automatically train the
remaining unclassified data (Du). Thus, the final training set Dss consists of the manually
classified set Ds together with the automatically trained set Du and is applicable for training
purposes as in any other supervised classification method. The resulting topic model Θss and
Σss can then be used to classify the remaining unclassified documents.

3.3.2 Advanced Self-training Procedure

Pavlinek et al. proposed a more elaborate self-training algorithm also consisting of two
phases [Pavlinek and Podgorelec, 2017]. As before, the goal of the first phase is to generate a
topic model from the smaller amount of manually classified data Ds. However, they employ
Gibbs sampling [Casella and George, 1992] to do this.

In the second phase, unclassified data (from Du) is iteratively classified using the topic
model generated in the first phase and compared using a centroids distance until a predefined
threshold is reached. The centroid distance is defined by a semantic similarity measure based
on the topic distribution and a cosine similarity measure defined in terms of the centroids for
each topic category [Han and Karypis, 2000]. Each iteration is performed in two steps:

• For each topic category Ta, a centroid vector CV is created in terms of the average
of pre-classified documents di(Ta) ∈ Ds in the given category Ta. Then the cosine
distance between unclassified data d j ∈ Du and centroid vectors CV (Ta),(1 ≤ a ≤ l)
are computed. Here, the cosine distance is defined as a complement measure to cosine
similarity as shown in Equation 3.8.

dcos(x,y) = 1− ∑
n
i=1 xiyi√

∑
n
i=1 x2

i

√
∑

n
i=1 y2

i

(3.8)
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Data: Ds,Du,ST
Result: Dss
while ε > ST do

foreach Ta ∈ T ,1 ≤ a ≤ l do
Create centroid vectors CV = cv1,cv2, . . . ,cvl based on pre-classified

documents Ds.
end
foreach d j ∈ Du do

Measure cosine distances dcos(d j,cvi),cvi ∈CV .
Calculate the difference between two minimum cosine distances.
CV = {cvx ∈CV |∃cvy ∈CV : dcos(d j,cvx)≤ dcos(d j,cvy)},CV ⊂CV
cvmin1 = argmincvi∈CV (dcos(d j,cvi))
cvmin2 = argmincvi∈CV (dcos(d j,cvi))
di f j = dcos(d j,cvmin2)−dcos(d j,cvmin1)
Sort unclassified documents based on the differences from the highest to the
lowest.

end
Define ε = max({di f1, . . . ,di fn})
if ε > ST then

Move selected documents d j ∈ Du to Ds, where T (d j) = Tcvmin1

end
end

Algorithm 2: Algorithm for Pavlinek self-training

• Unclassified documents in Du are then sorted by the difference between distances from
the two nearest centroids. The higher rank means the document is much closer to the
nearest centroid than to the next one. The unclassified document with the highest rank,
i.e. the most reliable document, are classified as the topic category according to its
nearest centroid.

The second phase finishes when for each unclassified document in Du, the difference
between the distances from the two nearest centroids is smaller than the similarity threshold
ST . As a result of this phase, we also end up with an enlarged classified training set Dss

consisting of the manually classified set Ds and the automatically classified set Du. Full
details of the whole process are shown in Algorithm 2.

3.4 Experimental Analysis

As we mentioned, OLDA can be used with or without a self-training stage. When self-
training is employed, we use the prefix “ST” and refer to the resulting classification method
as ST-OLDA instead. As we suggested two different self-training procedures, the prefix ST
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ifs subscripted with H (to indicate the use of the ad hoc training procedure) or P (to indicate
the use of Pavlinek et. al.’s). Where the distinction is irrelevant, we avoid the subscript. With
all this in mind, we conducted comprehensive benchmarking to evaluate the performance
of our method and variants against a number of other semi-supervised methods using four
different widely available datasets.

More specifically, we compared the performance of OLDA with the performance of the
Expectation-Maximisation and Naïve Bayes classifier (EM-NB) [Nigam et al., 2000]. We also
compared the performance of ST-OLDA with the Bag-of-Words (BOW) representation with
a Term Frequency-Inverse Document Frequency (TF-IDF) weighting scheme [Robertson,
2004], with the Latent Dirichlet Allocation (LDA) [Pavlinek and Podgorelec, 2017] and with
OntoLDA [Allahyari and Kochut, 2015]. Furthermore, we considered the two self-training
techniques (STH and STP) described in Section 3.3 for OntoLDA, LDA, TF-IDF and OLDA,
resulting in a total of six variations of the semi-supervised methods. In addition, we compared
our ST-OLDA with state-of-the-art word embedding based approaches [Fu et al., 2016, Liu
et al., 2019] and knowledge-based approach [Allahyari and Kochut, 2015].

3.4.1 Experimental Setup

To perform a comparative analysis, four fully classified training datasets (presented below)
were used. Each dataset was split into a training dataset (50%-70%) and a testing dataset
(30%-50%). For each round of supervised experiments, all the training datasets were used to
construct the topic model and the supervised classification method SVM. For each round
of the semi-supervised experiments, 10% of the training datasets denotes the initial pre-
classified dataset Ds, and the remaining training data form the unclassified datasets Du. The
self-training topic model was then used to prepare the final classified datasets Dss, which
were trained with a supervised classification method SVM. The trained classifiers were finally
evaluated on the testing datasets.

Both self-training algorithms were implemented in Java using WEKA [Hall et al., 2009],
which is an open-source machine learning environment. LibSVM implementation was used
to train an SVM classifier with a linear kernel on the final classified dataset [Chang and Lin,
2011]. The LDA topic models were constructed using the MALLET toolkit [McCallum,
2002]. All experiments were performed on a PC with an i7 processor, an NVIDIA GeForce
GPU GTX 970M graphics card, and 16GB RAM.
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3.4.2 Datasets Used in the Analysis

In our analysis we used the 20 Newsgroups dataset 2, the Reuters R8 and R52 datasets 3 and
the WebKB dataset 4. For each dataset, we performed some pre-processing to combine word
variants and to remove words that we deemed irrelevant. To be precise: (i) all words were
converted to lower case; (ii) stop words (such as “etc.”, “I’m” and “of”) were removed; (iii)
words shorter than three characters were also removed; and (iv) using lemmatisation tool
from StanfordNLP, for example, plural words were converted into singular. We now briefly
describe how each of these datasets was used.

20 Newsgroups

This dataset comprises a collection of 18,846 newsgroup documents, partitioned (nearly)
evenly across 20 different categories, each corresponding to a different topic. We used the so-
called “bydate” version, where duplicates and some headers are removed. In total, 233,745
words were extracted from the documents. After pre-processing the number of words was
reduced to 155,387 and hence our documents/words matrix ∆ is a 18,846×155,387 binary
matrix. We then extracted concepts from ConceptNet and DBpedia. 13,591 concepts
associated with these words from ConceptNet were extracted, yielding a concepts/words
matrix Γ of size 13,591×155,387 for the ST-OLDA methods. 13,820 concepts associated
with these words from DBpedia were extracted, yielding a concepts/words matrix Γ of size
13,820×155,387 for the ST-OLDA methods. To have a common baseline for comparison,
we randomly selected 50% of the training data for EM-NB and OLDA, leaving the remaining
50% for testing. For each round of experiments for ST TF-IDF, ST-LDA, ST-OntoLDA
and ST-OLDA, we used 5% of the data for the first phase of training, 45% for the second
semi-supervised phase, and used the remaining 50% for testing.

Reuters R8

Reuters R8 is derived from the Reuters-21578 dataset and is singly labelled with a ModApte
split, which means that each topic category contains at least two documents and hence at
least one can be used for training and one for testing. Reuters R8 contains 7674 documents
divided into 8 categories. From the words extracted, 7808 were left after pre-processing,
resulting in a 7674×7808 binary documents/words matrix ∆. We then found 5289 concepts
associated with these words in ConceptNet, yielding a 5289×7808 concepts/words matrix

2http://qwone.com/ jason/20Newsgroups/
3https://www.cs.umb.edu/ smimarog/textmining/datasets/
4http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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Γ. As for DBpedia, 5315 concepts associated with these words were extracted, yielding a
5315×7808 concepts/words matrix Γ. With this dataset, we employed an approximate 70/30
ratio for training/testing as normally employed elsewhere. For each round of supervised
experiments, we randomly selected 70% of the data for the training phase of EM-NB and
OLDA, leaving the remaining 30% for testing. For ST TF-IDF, ST-LDA, ST-OntoLDA and
ST-OLDA, we used 7% of the data for the first phase of training, 63% for the second phase,
leaving the remaining 30% for testing.

Reuters R52

As for Reuters R8, Reuters R52 is also derived from the Reuters-21578 dataset, whereas
Reuters R52 consists of 9100 documents divided into 52 categories. Pre-processing of the
words extracted resulted in 8937 words yielding a 9100× 8937 binary documents/words
matrix ∆. As before, we extracted 6291 associated concepts from ConceptNet, yielding
a 6291× 8937 concepts/words matrix Γ. As for DBpedia, we extracted 6471 associated
concepts, yielding a 6471×8937 concepts/words matrix Γ. The partition of training sets and
testing sets are the same as Reuters R8 shown above.

WebKB

This dataset comprises a collection of websites from computer science departments, whose
pages are divided into seven categories: student, faculty, staff, course, project, department
and other. Our experiments used a variant of the dataset covering 4199 documents from
the first four previous categories. After pre-processing, we were left with a 4199× 7719
binary documents/words matrix ∆. We found 5099 associated concepts in ConceptNet,
yielding a 5099× 7719 concepts/words matrix Γ. We found 5109 associated concepts in
DBpedia, yielding a 5109×7719 concepts/words matrix Γ. For each round of experiments,
we randomly selected approximately 66% of the training data for EM-NB and OLDA, leaving
the remaining 34% for testing. For ST TF-IDF, ST-LDA, ST-OntoLDA and ST-OLDA, we
used 6% of the data for the first phase of training, 60% for the second phase, and the
remaining 33% for testing.

3.4.3 Experimental Results

For concepts extracted from ConceptNet and DBpedia, we both conducted two rounds of
experiments with each of the four datasets. For the supervised approaches, we skipped the
self-training phase and used the proportions of data described in Section 3.4.2. In each round
of the semi-supervised experiments, we performed 10 repetitions in training and selected the
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Table 3.2 Time to construct the 20 Newsgroups topic model

Technique Construction time (days)

Supervised
EM-NB 30
OLDA 8

Semi-supervised STH

TF-IDF 2
LDA 5

OntoLDA 2
OLDA 2

Semi-supervised STP

TF-IDF 6
LDA 10

OntoLDA 5
OLDA 5

data for training using stratified random sampling for each topic category, so that each topic
had equal representation in the training set.

We compared the proposed OLDA and ST OLDA topic model with the following five
methods and variants:

• EM-NB: For the supervised experiments, we conducted an EM-NB model based on
the work of Nigam et al. [Nigam et al., 2000].

• ST TF-IDF: Next, we conducted a TF-IDF model by representing each document with
a bag of words and TF-IDF weighting following the work of Sriurai [Sriurai, 2011].
For further investigate, we also combined this model with a self-training procedure,
denoted as ST TF-IDF. The similarity threshold ST was set as 0.1.

• ST LDA: We conducted an LDA model following the work of Pavlinek and Podgor-
elec [Pavlinek and Podgorelec, 2017]. Standard LDA topic model from MALLET
toolkit was used. The number of Gibbs iterations was set to 500. As for their work, we
combined this model with a self-training procedure, denoted as ST LDA. The similarity
threshold ST was set as 0.1.

• ST OntoLDA: Finally, we conducted an OntoLDA topic model following the work of
Allahyari and Kochut [Allahyari and Kochut, 2015]. The number of Gibbs iterations
was set to 500. For further investigate, we also combine this model with a self-training
procedure, denoted as ST OntoLDA. We also employed concepts from ConceptNet
and DBpedia to evaluate the performances of different ontologies.

The supervised OLDA, ST TF-IDF, ST LDA, ST OntoLDA and ST OLDA topic models
were evaluated with C-SVM classifiers. Table 3.1 summarises the classification accuracy
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results of EM-NB, TF-IDF, LDA, OntoLDA and OLDA when using supervised training
procedure and either of the two self-training procedures STH and STP. Table 3.2 summarises
the topic model’s construction times for each technique for the 20Newsgroup dataset.

In what follows, we discuss the results using each self-training procedure in more detail.

Supervised Approaches

As we mentioned, we can skip the self-training phase in our method resulting in a fully
supervised classification engine that we simply refer to as OLDA (our baseline). We compared
OLDA’s accuracy with that of the supervised EM-NB approach [Nigam et al., 2000]. For
concepts extracted from ConceptNet and DBpedia, our results show that OLDA outperformed
EM-NB in all datasets. As shown in Table 3.1, OLDA outperforming EM-NB by quite a
considerable margin (e.g., with ConceptNet ontology, 26.90% against 67.11% in the Reuters
R52 dataset; with DBpedia ontology 68.02% in the same dataset). With either ConceptNet
or DBpedia ontology, OLDA achieves around the same accuracy in all four datasets. With
around the same amount of concepts from either ontology included in OLDA, a similar
classification accuracy results can be achieved. This shows that OLDA can be easily applied
in different domains with different ontologies.

As shown in Table 3.2, the construction of the topic model for the 20 Newsgroups dataset
using OLDA only took about 8 days to complete while it took 30 days for EM-NB. This
shows the efficiency of the OLDA.

Self-Training Using the Simplified Approach (STH)

As we mentioned in Section 3.3.1, the training procedure stops when the distance between
the predicted and actual classification drops below a certain threshold. In our experiments,
this distance drops dramatically in the first 2,500,000 iterations, decreasing further but
at a reduced rate in later iterations. The distance remained fairly stable after 20,000,000
iterations dropping to values close to 0.54. For that reason, we stop iterating when the
distance goes below 0.55. As for LDA and OntoLDA, Gibbs sampling algorithm was run for
500 iterations.

As shown in Table 3.1, TF-IDF performed worst of all in all datasets, and OLDA also
outperforming LDA by quite a considerable margin (e.g., with ConceptNet, 75.89% against
60.54% in the Reuters R8 dataset; with DBpedia ontology, 77.32% against 60.54% in the
same dataset). This shows the advantage of introducing the ontology intermediate matrix.
With either ontology, OLDA outperforms OntoLDA, which confirms the improvements of
Logistic Regression model (e.g., with ConceptNet, 75.89% against 68.79% in the Reuters R8
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Table 3.3 Topic classification results of state-of-the-art work on 20Newsgroup dataset

Model Accuracy

Word embedding based
LFLDA [Fu et al., 2016] 80.94%

<word, POS> embedding model [Liu et al., 2019] 83.05%

Knowledge based
STP-OntoLDA [Allahyari and Kochut, 2015] 72.41%

STP-OLDA 78.01%

dataset; with DBpedia ontology, 77.32% against 69.06% in the same dataset). In addition,
OLDA achieves around the same accuracy with both ontologies. This shows that OLDA
can be applied in different domains with different ontologies. As shown in Table 3.2, the
construction of the topic model for the 20 Newsgroups dataset using the training procedure
STH for OLDA and OntoLDA took about two days to complete while it took five days for
LDA. The introduction of the ontology reduces the training procedure of topic model by
40%.

Self-Training Using Pavlinek et al.’s Approach (STP)

OLDA’s and OntoLDA’s construction of the topic model for the 20Newsgroup dataset using
the training procedure STP took about five days, whilst LDA’s took ten days. That is, OLDA’s
construction took around half the time because of the ontology intermediate matrix.

In terms of accuracy, the training procedure STP performed better in all techniques and
datasets. TF-IDF performed worst in all datasets, albeit it was better when using the training
procedure STP than when using STH . The best combination was STP and OLDA, which
outperformed STP and LDA by quite a considerable margin (e.g., with ConceptNet, 64.08%
against 53.24% in the Reuters R52 dataset; with DBpedia, 64.25% against 53.24% in the
same dataset).

So we can conclude that the self-training procedure STP is superior to the simple training
procedure STH although its topic model takes roughly twice as long to construct. We can also
conclude that the introduction of the intermediate ontology concepts to the topic model helps
to reduce the amount of time required to train the model (independently of the self-training
procedure employed).

Table 3.3 compares the classification accuracy results of STP-OLDA against some state-
of-the-art work on 20Newsgroups dataset: including both word embedding based approaches
(LFLDA [Fu et al., 2016] and <word, POS> embedding model [Liu et al., 2019]) and
knowledge-based approaches (STP-OntoLDA [Allahyari and Kochut, 2015]). Even tough STP-
OLDA achieves slightly lower accuracy compared to LFLDA and <word, POS> embedding
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model, our proposed STP-OLDA still benefits when dealing with small corpus. The inclusion
of ontology component is able to capture more semantical meanings of words regardless
of the context. As for word embedding based approaches depending on external word
embedding tools, it is difficult for them to deal with words that are not included in the external
word embeddings. Comparing against the state-of-the-art knowledge-based approach STP-
OntoLDA, the introduction of the concept matrix into the topic model not only increases the
accuracy of the classification across all datasets but also helps to reduce the training time by
up to 60%.

3.5 Summary

Conventional data-driven approaches to topic modelling of natural language texts, such as
Term Frequency - Inverse Document Frequency (TF-IDF), Latent Semantic Analysis (LSA)
and Latent Dirichlet Allocation (LDA), come with two important limitations. Firstly, these
approaches do not use the semantical meanings of the words, ignoring the fact that individual
words may have multiple meanings and that different words may have the same meaning.
This limits the ability of the method to perform the modelling independently of the particular
set of words describing the topics. Secondly, they require a significant amount of classified
training data for supervised machine learning. Generating this training data is expensive and
time-consuming as it relies on humans to collect, read and manually classify the data in a
consistent manner.

In this chapter we propose a novel approach based on LDA that uses ontological infor-
mation obtained from DBpedia about the semantical meaning of the words, allowing topics
to be represented more faithfully and independently to the particular set of words used to
describe them. This approach, called Ontology-Driven Latent Dirichlet Allocation (OLDA),
can be combined with a self-training phase to produce a semi-supervised method (ST-OLDA),
which requires only a small amount of pre-classified training data. The idea is to generate
the topic model using the restricted amount of manually classified data – typically, only 10%
of the training data, and then use the remaining 90% of the training data to automatically
train the model. The resulting model is then used to classify the remaining testing data.

Our experiments, using the four datasets “20 Newsgroups”, “Reuters R8”, “Reuters R52"
and “WebKB”, show that the addition of the semantical component into LDA significantly
increases the accuracy of the classification. When used with different ontologies, OLDA
achieves around the same results in supervised training and semi-supervised training. In
addition, when used with self-training, this allows the reduction of the amount of trained data
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needed and significantly increases the performance of the classification over ST-OntoLDA,
ST-LDA and ST TF-IDF, while reducing the time required for training.

Our main conclusions can be summarised as follows:

1) The inclusion of the ontological component reduces the self-training time by nearly half
using two distinct self-training procedures. In particular, it reduces the time needed for
training using the self-training procedure proposed by [Pavlinek and Podgorelec, 2017] by
nearly half in the 20 Newsgroups dataset.

2) The inclusion of the ontological component also increases the accuracy of the classification
regardless of the self-training method employed by between 6 and 17 percentual points
(depending on the training method and dataset).

3) Ontologies from different resources achieves around the same results with OLDA in both
supervised training and semi-supervised training. OLDA can be easily applied in different
domains with different ontologies.

4) The self-training procedure proposed by [Pavlinek and Podgorelec, 2017] produces better
accuracy results than an Ad Hoc procedure suggested in this chapter, for LDA, OntoLDA and
OLDA, independently of the dataset, although it takes twice as long to train. When combined
with OLDA it provides the best accuracy results in all datasets, significantly outperforming
ST-LDA.

These results are very encouraging, and we think that there is scope for further improve-
ment of the classification accuracy by incorporating the relationships between words and
ontological concepts into the topic model. In order to achieve this, a relation extraction
algorithm is developed and described in the next chapter.



Chapter 4

Multiple-Relation Extraction from
Single Sentences

In this chapter, we describe a relation extraction algorithm to extract structured information
from unstructured texts written in natural language. These relationships between words
can enable us to capture the semantical structures of texts rather than solely the symbolical
structures. They can then be included into the topic model as additional, richer features for
generating more meaningful topics. This chapter contributes to ongoing efforts to develop
mechanisms for automated knowledge extraction from textual data.

While this work benefits a broad range of potential applications, our ultimate goal for
relationship extraction is the construction of networks from textual data representing various
associations among entities. Before this is achievable, a number of challenges need to be
overcome. For example, the sentence

“The quality of magnesium status directly influences the Biological Clock func-
tion (BC)." [Durlach et al., 2005]

describes a relationship between the entities magnesium and Biological Clock function. In
order to recognise and automatically extract this relationship from the sentence, one needs to
perform several tasks. Firstly, the grammatical structure of the sentence needs to be analysed
using Natural Language Processing (NLP) techniques. A number of freely available software
libraries and toolkits can be used to perform this analysis. Two important ones are Stanford’s
CoreNLP [Manning et al., 2014a] 1 and Apache’s OpenNLP [Kottmann et al., 2011] 2.
They provide a rich set of tools for common NLP tasks such as tokenisation, lemmatisation,
part-of-speech (POS) tagging, parsing, etc.

1http://stanfordnlp.github.io/CoreNLP
2https://opennlp.apache.org
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A second important challenge, which has recently seen tremendous progress, is en-
tity recognition. Existing Named Entity Recognition (NER) tools can recognise not only
general terms such as proper nouns but also more specific entities such as diseases and symp-
toms [Carpenter, 2007, Settles, 2005, Aronson, 2001, Subramaniam et al., 2003]. However,
pronouns are frequently used to refer to a previously mentioned entity, and the existing NER
tools cannot make the corresponding references, failing to extract some entities.

A third task is the relationship extraction itself. Techniques for relationship extraction can
be categorised into four distinct approaches: (i) extraction based on co-occurrence extraction,
(ii) extraction using pattern-based approaches, (iii) extraction using machine learning and
(iv) rule-based extraction [Skusa et al., 2005, Zweigenbaum et al., 2007]. 3 The first three
of these techniques can only deal with simple relations between two entities connected by
a target word and generally achieve relatively low precision and recall. Applying them in
different domains can be time-consuming. Rule-based extraction normally achieves higher
precision and can be applied in a variety of domains [Sharma et al., 2010].

Until recently, rule-based approaches could only extract a single relation embedded in a
sentence composed of a verb phrase between a pair of entities of interest. This approach works
well when extracting simple co-occurrence relations such as Entity-Verb-Entity. However, if
a sentence contains multiple relationships embedded in complex structures, such as clauses
structure and conjunctive structures, existing conventional rule-based algorithms may fail
to capture all the relationships. To address this problem, we proposed an algorithm that
extended the capability of conventional rule-based algorithms in two significant ways [Hao
et al., 2017]. Firstly, unlike conventional single-relation algorithms which can only identify
target verb phrases using POS tagging and parsing, our enhanced algorithm was able to
capture more relations by using synonyms of verbs (as obtained from WordNet [University,
2010] and VerbNet [Schuler, 2005]) (CON1). Secondly, we tackled multiple relationship
extraction by dealing with sentences in which these relationships were embedded within three
special types of sentence structure (CON2): (i) those in which the relations were connected
by a relative pronoun such as which or that; (ii) relations embedded in sentences connected
by conjunctions such as and and but; and (iii) one-to-many and many-to-many relations
expressed within the phrase level conjunctive structure.

In addition to these two extensions, we further enhanced the algorithm proposed in [Hao
et al., 2017] in three ways. Authors often use pronouns to refer to entities within a certain
context to keep coherence and avoid tautology. For example, the sentence

3These techniques are discussed in more detail in Chapter 2.2.
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“Magnesium is an essential micronutrient for the human body, and its deficiency
has been associated with risk of noncommunicable diseases.” [Hermes Sales
et al., 2014]

describes a relationship between entities Magnesium deficiency and noncommunicable dis-
eases via the pronoun “its”. However, a traditional relationship extraction procedure will
fail to extract the relationship because it does not associate the pronoun “its” with the entity
Magnesium deficiency, which can be recognised by the NER tool. For the third extension,
we introduce a co-reference resolution component to form chains between pronominal words
and the corresponding nominal words. Our algorithm then replaces the pronouns with their
corresponding nominal words to obtain pronoun-free sentences whose bio-entities can then
be correctly recognised by the NER tool.

Relations often are embedded in noun-preposition phrases. For example, the sentence

“These results suggest a profound effect of the combined supply of Mg and Mn
on the biosynthesis of terpenes and phenolics.” [Farzadfar et al., 2017]

describes a relationship between the entities Mg and Mn and biosynthesis of terpenes and
phenolics. However, the entities are connected not by a verb but by the noun-preposition
phrase “a profound effect of the combined supply of ... on ...”. To deal with these scenarios,
we propose a fourth extension to recognise sentences with unconventional structures and
extract relations connected by noun-preposition phrases.

Finally, many sentences only describe the work of the publication rather than a relation-
ship when using noun-preposition phrases. For example, the sentence

“The objective of this study was to determine the effect between vitamin D status
and broad gene expression in healthy adults.” [Hossein-Nezhad et al., 2013]

only describes the work itself rather than a relationship between “vitamin D status" and “gene
expression". In sentences such as the one above, the use of certain verbs may interfere with
the structure of relations, and some adjectives and adverbs may modify the intended meaning
of the relationship being expressed. In some cases, they could even invert the meaning that is
suggested by the verb alone. We propose a fifth extension for relationship extraction that
looks for specific verbs, adjectives and adverbs modifying the structure of relationships to
extract them with an associated positive, negative or neutral “polarity”. In the example above,
the polarity of the embedded relationship would be neutral, which means that it would be
extracted, but not explicitly recorded. Similarly, sometimes a relationship may be expressed
in the opposite way that the verb alone would suggest. For example, the sentence
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“These results reduce the possibilities of competitive inhibitory interactions
between the mutant and wild-type ChlI1a and ChlI1b proteins.” [Campbell et al.,
2015a]

expresses a negative relationship between the entities “mutant ChlI1a and ChlI1b” and
“wild-type ChlI1a and ChlI1b”, which would be extracted but again not recorded.

To summarise, the algorithm presented in this chapter offered five main contributions to
existing single-relation extraction algorithms: i) it added the ability to extract relationships
embedded in semantically similar verbs (CON1); and ii) it added the ability to extract mul-
tiple relationships embedded within certain types of sentence structures (CON2); iii) our
algorithm replaces pronouns with their corresponding bio-entities allowing the extraction
of relationships that would otherwise be missed (CON3); iv) the algorithm can also extract
relationships embedded within noun-preposition phrases (CON4); and v) once these relation-
ships are extracted, a further refinement allows us to determine the relationship polarity and
fine-tune the process by excluding relationships that have not been explicitly asserted in the
text (CON5).

The algorithm with only (CON1-2) was published as a conference paper entitled “ A verb-
based algorithm for multiple-relation extraction from single sentences” in the proceedings of
the 2017 International Conference on Information and Knowledge Engineering [Hao et al.,
2017]. (CON3) makes the relationship extraction independent of the existence of the pattern
Entity-Verb-Entity, relying solely on the existence of multiple entities within a sentence.
Thus, we claim that the extraction algorithm employing this enhancement is entity-based
algorithm.

In order to evaluate the effectiveness of the contributions, we used the conventional rule-
based algorithm as a baseline and measured its performance against the algorithm enhanced
with a full range of combinations of contributions (CON1,2,3,4,5) over two datasets, one
from biomedical domain containing 600 sentences and one from general domain containing
3,232 sentences. The detailed set of measurements is given in Table 4.9. In summary, the
conventional rule-based algorithm without any improvements achieved an overall precision
of 0.724 and had 0.643 recall. The addition of contributions (CON1,2) improved the
extraction results giving an overall precision of 0.884 and 0.817 recall. Finally, the entity-
based algorithm with contributions (CON1,2,3,4,5) achieved an overall precision of 0.914
with 0.94 recall, therefore offering significant advantages over the conventional rule-based
algorithm.

It is worth mentioning that the entity-based algorithm can be applied to different domains
as long as the embedded NER and verb detection components utilise corpora appropriate
for the domains. The entities are recognised by standard NER tools that can be trained for
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corpora of different domains. Similarly, the verbs are identified from a fixed database. In this
chapter, we used Universal Medical Language System (UMLS) for the biomedical domain,
VerbNet for the general domain. WordNet is also used to expand the list of main verbs.

The rest of the chapter is organised as follows. Section 4.1 presents a general overview of
our entity-based algorithm for relation extraction. Section 4.2 describes the data collection
and pre-process procedure. Section 4.3 describes the Named Entity Recognition process and
followed by relationship extraction process presented in Section 4.4. Section 4.5 explains
the polarity adjustment procedure. Section 4.6 provides an evaluation of the algorithm itself
and this is followed in Section 4.7 with a discussion on issues left as future work. We then
summary in Section 4.8 with some final remarks.

4.1 Methodology Overview

As mentioned above, our algorithm extracts relationships from documents. Each text is
divided into sentences, and each sentence is then processed by standard NLP techniques
for POS tagging and parsing. Then, the pronominal reference of each sentence is analysed.
Sentences with pronouns are processed by a pronominal replacement algorithm to obtain
equivalent sentences without pronouns. NER is applied to identify the relevant entities for
sentences without pronouns. A database of interest, such as NLPBA or BioCreative, is used
to train the NER tool to recognise “target” biomedical terms such as “magnesium deficiency”
or “migraine attack”. The verbal structure of each sentence is also analysed and extracted. If
a sentence is verb-centric, main verbs are extracted, which are semantically similar to one
from the UMLS, WordNet and VerbNet lists. For example, the sentence

“Female hormones lower magnesium but increase calcium levels which enhance
migraine ubiquitousness.” [Dhillon et al., 2011]

is a verb-centric sentence [Hao et al., 2017] containing three recognised main verbs lower,
increase and enhance.

If the sentence contains noun-preposition phrases, relation connection words are extracted
based on rules we created. For example, the sentence

“These results suggest a profound effect of the combined supply of Mg and Mn
on the biosynthesis of terpenes and phenolics.” [Farzadfar et al., 2017]

contains a relationship between Mg and Mn and biosynthesis of terpenes and phenolics
connected by a noun-preposition phrase “a profound effect of ... on ...”.

Once the algorithm constructs the tuples Entity| Relation connection | Entity, it checks
for any modifiers that might affect the polarity of the resulting extracted relation based on
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Fig. 4.1 Overview of a single iteration of the extraction process

SentiWordNet [Baccianella et al., 2010, Cambria et al., 2010]. Specifically, it identifies
specific verbs, adjectives and adverbs modifying the nature of extracted relationships and
assigns a positive, negative or neutral “polarity” to them. Extracted relationships with positive
polarities are recorded for evaluation, and those with neutral or negative polarities are not.
Finally, the system saves the resulting relation into a list of Entity | relation connection |
Entity constructs.

An overview of the entire process is shown in Figure 4.1. The following sections explain
those steps in detail.
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4.2 Data Pre-processing

Given a document dataset, the first step is to perform data pre-processing using standard
NLP techniques: each document is segmented into sentences, and each sentence is analysed,
parsed and tagged (see “Data Pre-processing" in Figure 4.1). In this study, OpenNLP was
used in an algorithm, written in R, for POS tagging and parsing sentences into structured
extended markup language (XML) format. The algorithm detects the sentence boundaries,
determines the lemma of each word in the sentences and labels each word with grammatical
roles such as noun, verb, adjective, etc. Finally, the algorithm determines the structures of the
sentences based on POS tags and dependencies. The algorithm output consists of sentences
with the corresponding POS tagged words in Penn Treebank style, showing the grammatical
constructs the sentence is composed of.

4.3 Entity Extraction

After pre-processing each sentence, the named entities are extracted using an existing Named
Entity Recognition tool. We evaluated the performance of three NER techniques for our
purposes: LingPipe, MetaMap and Abner. The results are presented in Section 4.6.

Table 4.1 shows a sample of the entities and their corresponding entity types that were
abstracted from an article by means of Abner. That said, the approach presented herein allows
for the NER tool to be substituted by another as circumstances demand. The performance of
different NER tools may vary depending on the domain, so different applications may call
for different NER tools.

Table 4.1 Example of extracted Entities

Candidate Entity Entity Type
Fatty acid Lipid
Vein graft DNA
Cod liver Body Part
Eicosapentaenoic acid RNA
Cod-liver rich cell Type

Pronominal References (CON3)
Human authors normally use a pronominal reference to express themselves more con-

cisely. NER tools are unable to recognise such pronominal references. For example, in the
sentence
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“Magnesium is an essential micronutrient for human body, and its deficiency
has been associated with risk of noncommunicable diseases.” [Hermes Sales
et al., 2014]

the pronoun “its” refers to the entity “magnesium” in the clause sentence. Existing NER
tools are unable to extract the entities “magnesium deficiency” because the reference to
magnesium is implicit in the term “its deficiency”.

Our algorithm deals with pronominal references by employing a co-reference resolution
component proposed by Clark et al. in order to form chains between pronouns and their
corresponding nominal words [Clark and Manning, 2016a,b]. We can use other existing co-
reference resolution components to compute the associations, such as Stanford CoreNLP. The
Clark’s co-reference resolution component is only applied to sentences containing pronouns.
Our algorithm uses the chains formed to replace the pronoun with its corresponding nominal
word if the word was tagged as a bio-entity by the NER tool. This is described in Algorithm 3.

Algorithm 3 replaces most of the pronominal words with their corresponding bio-entities.
The resulting sentences, where the pronouns have been appropriately replaced by entities,
are then re-submitted to the NER tool for entity extraction.

Data: Penn Treebank style sentence with POS and NER tags
Result: sentence without pronouns
Split words;
if current sentence contains pronouns then

if current sentence contains more than one entities then
find the pronominal and nominal co-reference resolution;
while more pronouns to process do

if corresponding nominal word is tagged as a bio-entity then
replace the pronoun with the corresponding entity;

end
end

end
end

Algorithm 3: Algorithm for Pronominal Modification

Once the entities are fully extracted from the sentence, we move to the actual relationship
extraction.

4.4 Relationship Extraction

Verb-centric algorithms normally identify potentially relevant sentences by analysing whether
they contain a verb of interest. However, this approach ignores relationships embedded in
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noun-preposition phrases. Therefore, the precision of the relationship extraction algorithm
can be increased by enabling it to extract relationships expressed in the latter way.

Intuitively, our solution is simple. Since relationships involve at least two entities, we
check if the sentence contains more than one recognised entity, instead of using the main
verb as the main factor for selecting a relevant sentence. If a sentence contains two or more
recognised entities, then it may embed a relationship between them. Next, the sentence
structure is analysed and classified into two groups. In the first group, we include the
sentences with a conventional verb-centric grammatical structure, which can be processed by
a traditional verb-based algorithm. This is described in Section 4.4.1. In the second group,
we include sentences with a more complex grammatical structure, but that nevertheless
may contain an embedded relationship. We deal with these sentences using the technique
described in Section 4.4.2.

4.4.1 Relationship extraction from verb-centric structures

Conventional verb-centric relationship extraction algorithms look for simple co-occurrences,
where a biomedical verb appears between two entities. For example, a single-relation
extraction algorithm can extract a simple co-occurrence relation magnesium | influences |
Biological Clock function from the sentence

“The quality of magnesium status directly influences the Biological Clock func-
tion (BC)." [Durlach et al., 2005]

Such co-occurrences are most commonly found in basic sentences of the form Subject-Verb-
Object. The UMLS semantic network [Humphreys and Lindberg, 1993] contains 54 verbs or
verb phrases that are commonly used to describe the relations that exist between biomedical
entities. Using these 54 tokens, we can identify sentences describing relevant relationships.
However, in order to make the relationship extraction more robust and expand the list of verbs
that are deemed to potentially express a relationship of interest, we use WordNet [University,
2010] to expand the UMLS list so that it includes other verbs that are also semantically
similar. For instance, “lower” is not from UMLS list, but if we use WordNet, we can extract
the verb since it is semantic similar to the “decrease”. Due to the fact that UMLS is focusing
on biomedical domains, VerbNet [Schuler, 2005] is used to construct the initial verb list for
datasets from general domains, such as 20Newsgroups. They are also expanded by WordNet
to construct the final list of verbs.

Due to the fact that authors commonly use more complicated sentence structures, we
developed Algorithm 4 to determining whether the sentence is a verb-centric structure
sentence. It analyses the structure of a given sentence or semantic smaller unit. If the given



4.4 Relationship Extraction 74

Data: Penn Treebank style sentence with POS tag and NER tags but without
pronouns

Result: Semantic units with only one main verb and no noun phrases
Split words;
if current sentence contains more than one recognised bio-entity then

if current sentence contains only one main verb and no noun phrases then
Process sentence using Algorithm 5

else
if current sentence matches (SS1)-(SS3) then

separate sentence into semantic units;
foreach semantic unit U in sentence do

Process U using Algorithm 5
end

end
end

end
Algorithm 4: Algorithm for determining verb-centric structures

structure consists of only a single verb and no noun-phrases, then Algorithm 5 is applied to
extract the main verb and any relationship it expresses through co-occurrence. Otherwise,
Algorithm 4 aims to decompose the sentence into smaller semantic units based on known
templates (SS1-SS3, explained below), each of which is analysed recursively by Algorithm 5.

The input of Algorithm 4 is a Penn Treebank style sentence with POS tags. The algorithm
seeks to identify three types of structures (SS1)–(SS3), which are commonly used by authors
to express relationships. We illustrate structures (SS1)–(SS3) and how they are dealt with in
Example 4.1. Sentences or semantic units of each of these structure types can be re-arranged
into the atomic semantic units that each semantic unit only contains one main verb. Since
the relative pronoun structure and conjunctive structure of the main sentence will have
been recognised by the OpenNLP parser, the sentence can be partitioned based on the Penn
Treebank style. If the relative pronoun occurs just behind a noun or a noun phrase, the
algorithm will recognise the clause sentence as a smaller unit and assert the noun into the
new unit. If the parent sub-tree of each conjunction corresponds to the entire sentence, the
algorithm will recognise it as a sentence-level word and break the sentence into smaller
semantic units. The re-arranged semantic unit can then be dealt with by the conventional
co-occurrence Algorithm 5.

Example 4.1 (Processing complex sentence structures).
(SS1) Clauses structures are structures of the form “. . . entity1 that/which verb . . .entity2”
(using clauses to describe multiple verb-based relations in one sentence). For example,
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Data: Penn Treebank style semantic unit with POS tags
Result: Relation verbs
Split words;
if current sentence contains at least one verb that is semantically similar to one of
the verb list then

while more words to process do
read current word;
if current word is the main verb then

add the current word to relation-verbs;
end
go to the next word;

end
else

exit and go to the next unit;
end

Algorithm 5: Algorithm for verb extraction

“We propose . . . .that between attacks these metabolic shifts cause instability of neu-
ronal function . . . . . . .which enhances the susceptibility of brain to develop a migraine
attack”. [Welch and Ramadan, 1995]

There are two relation verbs, cause and enhances, which are connected by the relative
pronoun word which. The relative pronoun “that” appears after the verb “propose”, while

“which” appears after the noun phrase “instability of neuronal function”. Therefore, the
sentence is divided into two parts at the relative pronoun “which”, resulting in two smaller
semantic units each containing an independent verb-based relation:

1. “We propose . . . .that between attacks these metabolic shifts cause instability
of neuronal function.”

2. “Instability of neuronal function enhances the susceptibility of brain to
develop a migraine attack”.

The sentence will produce two relationships shown in Table 4.2.
(SS2) Sentence level conjunctive structures: “. . .entity1 . . .verb . . .entity2 and/but verb
. . .entity3” (using conjunctive structure to describe multiple verb-based relations in one
sentence). For example,

“Female hormones lower magnesium. . . .but increase calcium levels . . . . . . .which enhance
migraine ubiquitousness.” [Dhillon et al., 2011]
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There are two relation verbs, lower and increase, which are connected by the conjunctive
word but. The conjunction “but” has the entire sentence recognised as its parent sub-tree.
Therefore, the sentence is divided into two parts at the conjunction but, resulting in two
smaller semantic units each containing an independent verb-based relation. Considering
(SS1) together, three smaller semantic units can be obtained:

1. “Female hormones lower magnesium.”

2. “Female hormones increase calcium levels.”

3. “Calcium levels enhance migraine ubiquitousness.

The sentence will produce three relationships shown in Table 4.3.
(SS3) Phrase level conjunctive structures: “. . .entity1 . . .verb . . .entity2, entity3, and
entity4” (using a conjunctive structure to describe a single verb-based many-to-many rela-
tionship). For example,

“Low magnesium intakes . . . .and blood levels have been associated with type 2 dia-
betes, metabolic syndrome, elevated C reactive protein, hypertension, atheroscle-
rotic vascular disease, sudden cardiac death, osteoporosis, migraine headache,
asthma, . . . .and colon cancer.” [Rosanoff et al., 2012]

There is a two-to-ten relation. The two conjunctions “and” both return phrases as their
parents. Therefore, the sentence will not be divided into smaller semantic units. The algorithm
first considers all the entities located before the main verb as one entity and then breaks them
apart. The same happens to the entities located after the main verb. Therefore, the above
sentence will produce 20 relationships. Table 4.4 shows four of the extracted relationships.

Table 4.2 Example of extracted relations from (SS1) sentence.

Subject Verb Object
Metabolic shifts cause instability of neu-

ronal function
Instability of neu-
ronal function

enhances migraine attack

Algorithm 5 ignores sentences with verbs not from the list and fails to extract relations.
For example, no relationship is extracted from the sentence

“These results suggest a profound effect of the combined supply of Mg and Mn
on the biosynthesis of terpenes and phenolics.” [Farzadfar et al., 2017]
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Table 4.3 Example of extracted relations from (SS2) sentence.

Subject Verb Object
Female hormones lower magnesium
Female hormones increase calcium levels
Calcium levels enhance migraine ubiquitousness

Table 4.4 Four example of extracted relations from (SS3) sentence.

Subject Verb Object
Low mag-
nesium
intakes

been associated with type 2 diabetes

Low mag-
nesium
intakes

been associated with metabolic syndrome

Blood lev-
els

been associated with type 2 diabetes

Blood lev-
els

been associated with metabolic syndrome

because “suggest” is not semantically similar to any words from the UMLS list.
At this point, most of the main verbs in a sentence have been extracted, and we are now

ready to construct the relations using the verbs and the entities previously recognised. The
algorithm scans the positions of each term in the semantic unit and recalls the locations of
the main verb and bio-entities. It then extracts the bio-entities that are located before and
after the main verb. Algorithm 6 describes this process.

4.4.2 Dealing with Noun-Preposition Phrases

As we mentioned in Section 4.4, Algorithm 5 is not able to extract relationships expressed
within noun-preposition phrases. In this section, we explain how some of the most common
complex grammatical structures can be dealt with. In this work, we consider three kinds of
noun-preposition phrases matching patterns (NPP1-3).

After analysing a sentence’s structure, if the sentence contains preposition words such as
between, of and due to, we consider them as sentences with noun-preposition phrases and
do not use Algorithm 5 to extract verbs. Instead, we deal with them using rules to extract
relation connection words. Example 4.2 shows the structures of patterns (NPP1-3) and how
these rules are used to help extract relationships from noun-preposition phrases.
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Data: Penn Treebank style semantic unit with POS tags
Result: Entities and relation verbs
Split words;
Scan each word and remember its position;
Construct relation from main verb;
while not the end of the semantic unit do

if current word is a bio-entity then
if it appears before the main verb then

add the current word as subject of relation;
else

add the current word as an object of relation;
end

end
go to the next word;

end
Algorithm 6: Algorithm for constructing relations

Example 4.2 (Dealing with noun-preposition phrases ).
(NPP1) “ effect/influence/... between entity-A and entity-B”: The algorithm identifies the
entity after between and before and (entity-A) as the left entity, the one immediately after and
(entity-B) as the right entity. The relation connection words are the main verb of the sentence
plus all the words between the main verb and the word between. For example, the sentence

“The objective of this study was to determine the effect between vitamin D
status and broad gene expression in healthy adults.” [Hossein-Nezhad et al.,
2013]

contains a relationship between Vitamin D status and gene expression connected by a
noun-preposition phrase “between ... and ...”. The entity “Vitamin D status” appears after
between and before and, and the entity “ gene expression” appears immediately after and.
Therefore, the extracted relationship is Vitamin D status | studied the positive influences |
gene expression.
(NPP2) “effect/influence/... of entity-A on entity-B”: The algorithm identifies the entity
after of and before on (entity-A) as the left entity, the one immediately after on (entity-B) as
the right entity. The relation connection words are the main verb of the sentence plus all the
words between the main verb and the word of. For example, the sentence

“These results suggest a profound effect of the combined supply of Mg and Mn
on the biosynthesis of terpenes and phenolics.” [Farzadfar et al., 2017]

contains a relationship between Mg and Mn and biosynthesis of terpenes and phenolics
connected by a noun-preposition phrase “of ... on...”. The entity “Mg and Mn” appears after



4.5 Polarity Adjustment 79

of and before on, and the entity “biosynthesis of terpenes and phenolics” appears immediately
after on. Therefore, the extracted relationship is Mg and Mn | suggest a profound effect |
biosynthesis of terpenes and phenolics.
(NPP3) “entity-A due to entity-B”: The algorithm identifies the entity before due to (entity-
A) as the right entity, the one after due to (entity-B) as the left entity. The relation connection
words are due to indicating the cause-effect relations. For example, the sentence

“The lesion was then classified as extra-gonadal yolk sac tumor due to alarming
ultrasound features, later confirmed at MRI and pathology.” [Esposito et al.,
2016]

contains a relationship between extra-gonadal yolk sac tumor and ultrasound features con-
nected by a preposition phrase “due to”. The entity “extra-gonadal yolk sac tumor” appears
before due to and the entity “ultrasound features” appears after due to. Therefore, the
extracted relationship is extra-gonadal yolk sac tumor | due to | ultrasound features.

The addition of these three rules above means that our algorithm is ready to deal not
only with verb-centric relationships but also with noun-preposition phrases relationships
matching patterns (NPP1)-(NPP3) above and extract their relation connection words (verbs
and noun-preposition phrases). We are now ready to construct relations with the identified
entities and relation connection words (RCW ) of interest using either Algorithm 6 or the
rules explained above. However, we do not want to record all extracted relationships from
sentences containing noun-preposition phrases. It is not uncommon for authors to mention
a relationship without asserting it. Therefore, we analyse the extracted relation connection
words to determine whether to record an extracted relationship in the following section.

4.5 Polarity Adjustment

In our experiments, we noticed that most false positives occurred when a relationship is
mentioned but not necessarily asserted. For instance, the sentence

1) “The purpose of this study was to analyse the significance of level IIB dis-
section in patients of oral cavity cancer who underwent primary surgery with
functional neck dissection.” [Chheda et al., 2017]

does not assert the existence of a relationship between level IIB dissection and oral cavity
cancer but merely describes the objective of the study itself. A conventional algorithm would
extract a relationship level IIB dissection | analyse the significance | oral cavity cancer while
we want to avoid that.
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On the other hand, some sentences express a relationship in the opposite way that the
verb alone suggests. For example

2) “These results reduce the possibilities of inhibitory interactions between the
mutant and wild-type ChlI1a and ChlI1b proteins”. [Campbell et al., 2015a]

In this example, the relationship is expressed through the use of the negative verb expression
“reduce the possibilities.” A conventional algorithm would still extract the relationship between
“mutant ChlI1a and ChlI1b” and “wild-type ChlI1a and ChlI1b” while we want to avoid that.

These scenarios normally happen in relationships expressed within noun-preposition
phrases. In order to deal with these special cases, we introduce the concept of relationship
polarity that can be used to aid in the relationship extraction. When we extract a relationship,
we associate with it one of the three possible polarities: positive, negative or neutral. A
positive polarity suggests the existence of a relationship; a negative polarity denies the
existence of a relationship; and a neutral polarity indicates a reference to a relationship,
without asserting or denying its existence. The relationship in our example 1) would be
classified as neutral and the relationship and in our example 2) would be classified as negative.
Although we extract relationships with either of the three polarities, we only record those
with positive polarities. We keep others with neutral/negative polarities for future uses.

In this work, we focus on determining the polarities of relationships embedded in sen-
tences containing Noun-Preposition Phrases. The algorithm takes the relation connection
words discovered in those structures as input and determines how each relation connection
word affects the position that expressed about that relationship. Specifically, for each relation
connection work, a polarity score is computed, where positive numbers indicate that the
associated relationship is asserted, negative numbers indicate that the relationship is rejected
and numbers close to 0 indicate that neutral position is taken with respect to the relationship.

Our approach uses SentiWordNet, an enhanced lexical resource for sentiment analysis
and opinion monitoring. SentiWordNet has assigned over 120 thousand verbs, adjectives
and adverbs from WordNet two sentiment scores: PosScore and NegScore. PosScore
represents the positive polarity of a word, while NegScore represents the negative polarity of
a word [Baccianella et al., 2010, Cambria et al., 2010].

The polarity score for a relation connection word RCW is computed as follows:

PolScore(RCW ) = PosScore(RCW )−NegScore(RCW ) (4.1)

Table 4.5 shows some examples of PolScores extracted from SentiWordNet.
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Table 4.5 Examples words with their PosScore, NegScore and PolScore

Words PosScore NegScore PolScore
Suggest 0.5 0 0.5
Verify 0.5 0 0.5
Deny 0 0.875 -0.875
Reduce 0 0.25 -0.25
Assess 0 0 0
Analyze 0 0 0
Profound 0.375 0 0.375
Difficult 0 0.75 -0.75

To compute the polarity of a relationship in a phrase containing a set of relation connection
words P, the polarity scores of the relation connection words in that phrase are added together:

PolScore(P) = ∑
RCW∈P

PolScore(RCW ) (4.2)

If the polarity score of the phrase is larger than 0, the extracted relations will be recorded.
Otherwise, they will not be recorded. The results of the algorithm can be explained with a
number of examples. The algorithm will not record any relationship from the sentence

1) “The purpose of this study was to analyze the significance of level IIB dis-
section in patients of oral cavity cancer who underwent primary surgery with
functional neck dissection.” [Chheda et al., 2017]

Because the PolScore of the relation connection word analyse is 0. Similar, the algorithm
will not record any relationships from the sentence

2) “These results reduce the possibilities of inhibitory interactions between the
mutant and wild-type ChlI1a and ChlI1b proteins”. [Campbell et al., 2015a]

In this example, the relationship is expressed through the use of the negative verb expression
“reduce the possibilities.” and the PolScore of the relation connection word reduce is -0.125.
However, the relation will be extracted and recorded from the sentence:

“These results suggest a profound effect of the combined supply of Mg and Mn
on the biosynthesis of terpenes and phenolics.” [Farzadfar et al., 2017]

because PolScore(“suggest”) + PolScore(“profound”) = 0.875.
This section has presented a number of techniques that aim to improve verb-based

relationship extraction techniques. In the next section, the effect of these techniques will be
assessed.
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4.6 Evaluation Experiments

In this section, we first evaluate the performances of three NER tools in the biomedical
domain. Then we evaluate the effectiveness of the proposed improvements in identifying
relationships in both biomedical text and daily life email texts using two different datasets.

4.6.1 Experimental Setup

To perform a comparative analysis, two datasets (presented below) were created and used:
one comes from the biomedical domain, and the other is from 20 Newsgroups dataset. The
obtained NER tools and relation extraction algorithms were evaluated on these two datasets.

For the purpose of evaluating the NER tools by means of F-measures, a true positive
(T P) represents an entity that has been correctly identified by the NER, a false positive
(FP) represents an entity that has been incorrectly identified (i.e., it should not have been
extracted); and a false negative (FN) represents an entity that should have been extracted but
was missed by the NER.

For the purpose of evaluating the relation extraction algorithms by means of F-measures,
a true positive (T P) represents a relation that has been correctly identified by the extraction
algorithm, a false positive (FP) represents a relation that has been incorrectly identified (i.e.,
it should not have been extracted); and a false negative (FN) represents a relation that should
have been extracted but was missed by the extraction algorithm.

Using these definitions for true/false positives/negatives, precision and recall are defined
as in Equation 2.1, 2.2 and 2.3.

All experiments were performed on a PC with an i7 processor, an NVIDIA GeForce GPU
GTX 970M graphics card, and 16GB RAM.

4.6.2 Datasets Used in the Analysis

For the purpose of the evaluation, we created a dataset consisting of 600 sentences for the
biomedical domain from papers taken from PubMed that we call PubMed600 dataset. This
dataset is publicly available in Github and can be downloaded from https://github.com/qihao71/PubMed-
dataset. We also used 20 Newsgroups dataset for the general domain. Here we briefly describe
how each of these datasets was used.

PubMed600 dataset

PubMed consists of more than 26 million publications from the MEDLINE bibliographic
database, life science journals, and online books. PubMed also includes the full text of the
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Table 4.6 Sample of the downloaded text data from PubMed600 dataset

PMID Title Abstract
26730018 “A Novel Surgical Technique for Thy-

roid Cancer with Intra-Cricotracheal In-
vasion: Windmill Resection and Tetris
Reconstruction”

“The most effective treatment for thyroid cancer (TC)
invading into the larynx and trachea is complete sur-
gical resection of the tumor, but currently employed
techniques are less than ideal. We report a novel sur-
gical technique, which we named Windmill resection
and Tetris reconstruction, for patients with TC invad-
ing into the laryngeal lumen. We treated eight cases of
TC with invasion into the laryngeal lumen by Windmill
resection and Tetris reconstruction. [...]”

25400410 “Gellan gum-based mucoadhesive mi-
crospheres of almotriptan for nasal ad-
ministration: Formulation optimisation
using factorial design, characterisation,
and in vitro evaluation”

“Almotriptan malate (ALM), indicated for the treat-
ment of migraine in adults is not a drug candidate fea-
sible to be administered through the oral route during
the attack due to its associated symptoms such as nau-
sea and vomiting. This obviates an alternative dosage
form and nasal drug delivery is a good substitute to
oral and parenteral administration. [...]”

biomedical articles, including their abstracts. Each record contains a PubMed ID (PMID), the
title of the article and its abstract in plain text format, ready to be analysed by NLP tools. As
in others existing work on relationship extraction from biomedical texts, we consider only the
abstracts of the articles because they are consistently available and contain a representative
summary of the main text [Sharma et al., 2010, Feldman et al., 2002, Kim et al., 2006].

Methodology

We first randomly selected 362 abstracts about “magnesium deficiency”, “migraine attack”
and “cancer” as keyword search from PubMed. In order to compare the performance achieved
by our algorithms with previous results by other works, due to the reason that the list of
articles used in previous works comprising the dataset used in their evaluation was not
publicised, we decided to use the same topics: “cancer”, “magnesium deficiency”, “migraine
attack” and to keep the comparison as close as possible to the other evaluation [Sharma et al.,
2010, Khordad and Mercer, 2017]. A typical abstract contained roughly 8-10 sentences, and
the dataset contains approximately 3000 sentences. Samples of the text data downloaded are
shown in Table 4.6.

From these 362 abstracts, we construct the PubMed600 dataset by randomly selecting
600 sentences. These sentences were manually annotated by a biochemistry graduate student
and us. 1545 biomedical named entities were annotated, including protein, DNA, RNA, body
part and cell type. To define whether a word is a biomedical entity, UMLS were used like a
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dictionary. 996 relationships between these biomedical named entities were annotated. For
these 600 sentences, the distribution of the PubMed600 dataset is illustrated in Table 4.7.

Table 4.7 Distribution of the PubMed600 benchmark dataset

Sentence structures Number of sentences
Co-references 209

(SS1) 121
(SS2) 135
(SS3) 154

(NPP1) 43
(NPP2) 37
(NPP3) 3

20 Newsgroups

As mentioned in section 3.4.2, 20 Newsgroups dataset is a commonly used benchmark
dataset for various NLP tasks such as topic classification and relation extraction. From
this dataset, Wang et al. created a benchmark dataset specifically for entity recognition
and relation extraction [Wang et al., 2016]. They first selected 200 documents from 20
newsgroups dataset, i.e., 10 documents from each category. Then these documents were split
into sentences. 3,232 sentences were randomly selected by them to construct this dataset. In
this work, we evaluated our algorithm using this dataset.

4.6.3 Experimental Results

We discuss the results of the evaluation of three NER tools and relation extraction algorithms
in the following part.

Evaluation of NER tools

For evaluating the three different NER tools in the biomedical domain, 100 sentences were
randomly selected from the PubMed600 benchmark dataset. We conducted two rounds of
experiments with these 100 sentences. Table 4.8 shows the average precision, recall and
F-measures. In our dataset, Abner achieved the best results in each criterion and, therefore,
we decided to use Abner as the main NER tool in the following relation extraction algorithm
experiments.
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Table 4.8 Evaluation results of NER tools

NER Tool Precision Recall F-measure
LingPipe 0.687 0.622 0.653
MetaMap 0.635 0.581 0.607
Abner 0.714 0.640 0.675

Evaluation of relation extraction algorithms

We evaluated the performance of the entity-based algorithm in terms of precision, recall and
F-measure on two datasets using as baseline the conventional rule-based algorithm (which
only extracts a single Entity | Verb | Entity relation from each sentence). For PubMed600
dataset, Abner NER tool was employed. And for 20 Newsgroups dataset, StanfordNLP NER
tool was employed. We also evaluated the performance of our entity-based algorithm with
contributions (CON1,2,3,4,5) in different combinations on the same datasets.

For both datasets, standard NLP techniques were used to obtain separated Penn Treebank
style sentences with POS tags from the dataset. Then, each Penn Treebank style sentence was
analysed to check for pronominal references and sentences with pronouns were processed by
Algorithm 3 for pronominal replacement. Subsequently, sentences without pronouns were fed
into Abner to automatically recognise bio-entities and output the extracted entities. Next, the
algorithm also took the Penn Treebank style sentences as input for analysing verbal structure.
The verb-centric sentences were fed into Algorithm 4 to be matched against (SS1)-(SS3)
and were fed into Algorithm 5 to extract main verbs. For the PubMed600 dataset, the list
of main verbs consists of 54 verbs from UMLS and expanded by their semantically similar
verbs from WordNet. For 20Newsgroups dataset, the list of main verbs consists of 113 verbs
from VerbNet and expanded by their semantically similar verbs from WordNet. Sentences
with noun-preposition phrases matching pattern (NPP1)-(NPP3) were processed to extract
relation connection words based on rules. Then, extracted relations were constructed with
the identified entities and relation connection words of interest using either Algorithm 6 or
the rules explained above. The polarities of the extracted relations were then determined,
and those that were positive were recorded. The application of all these steps incorporates
contributions (CON1,2,3,4,5) and constitutes our entity-based algorithm.

Table 4.9 contains the evaluation results of all valid combinations of contributions
(CON1), (CON2), (CON3), (CON4) and (CON5). Since (CON5) cannot be used without
(CON4), we have excluded the invalid combinations that include (CON5) without (CON4).
This results in 24 possible valid combinations. These combinations are represented as the
sequence of digit 12345. A bar over the digit X indicates that (CONX) was not used in
the combination. Therefore, 12345 represents a conventional rule-based algorithm without
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Table 4.9 Results of valid combinations of contributions

PubMed600 Dataset 20 Newsgroups Dataset
Algorithm TP FP FN Precision Recall F-score TP FP FN Precision Recall F-score

12345 310 118 172 0.724 0.643 0.681 342 101 157 0.772 0.685 0.723
12345 323 110 167 0.746 0.659 0.700 354 94 152 0.790 0.700 0.742
12345 328 108 164 0.752 0.667 0.707 350 88 162 0.799 0.684 0.737
12345 331 107 162 0.756 0.671 0.711 357 89 154 0.800 0.699 0.746
12345 345 104 151 0.768 0.696 0.730 368 85 147 0.812 0.715 0.760
12345 351 99 150 0.780 0.701 0.738 372 79 149 0.825 0.714 0.765
12345 369 93 147 0.799 0.715 0.755 398 75 127 0.841 0.758 0.797
12345 381 80 139 0.826 0.733 0.777 413 69 118 0.857 0.778 0.816
12345 401 76 123 0.841 0.765 0.801 421 59 120 0.877 0.779 0.825
12345 384 82 134 0.824 0.741 0.780 415 71 114 0.854 0.784 0.818
12345 407 69 124 0.855 0.766 0.808 427 60 113 0.877 0.791 0.832
12345 415 67 118 0.861 0.779 0.818 436 54 110 0.890 0.799 0.842
12345 384 81 135 0.826 0.740 0.780 419 68 113 0.860 0.788 0.822
12345 408 76 116 0.843 0.779 0.810 431 57 112 0.883 0.794 0.836
12345 428 59 113 0.879 0.791 0.833 458 45 97 0.911 0.825 0.866
12345 412 71 117 0.853 0.779 0.814 439 53 108 0.892 0.803 0.846
12345 427 68 105 0.863 0.803 0.832 456 50 94 0.901 0.829 0.864
12345 439 60 101 0.880 0.813 0.845 464 41 95 0.919 0.830 0.873
12345 443 58 99 0.884 0.817 0.849 472 38 90 0.908 0.840 0.873
12345 466 56 78 0.893 0.857 0.874 490 37 73 0.93 0.870 0.899
12345 494 51 55 0.906 0.900 0.903 523 35 42 0.932 0.926 0.929
12345 469 55 76 0.895 0.861 0.877 494 36 70 0.932 0.876 0.903
12345 502 53 45 0.905 0.918 0.911 531 33 36 0.941 0.937 0.939
12345 518 49 33 0.914 0.940 0.927 549 30 21 0.948 0.963 0.955

any of the contributions proposed in this paper. At the other extreme, 12345 represents
the entity-based algorithm resulting from the enhancement of the conventional rule-based
algorithm with all five contributions proposed in this chapter. Table 4.9 shows that the
proposed entity-based algorithm achieves good accuracy in both the biomedical domain
and daily life domain. Experiments with 20 Newsgroups dataset outperforms that with
PubMed600 dataset since biomedical texts are more complicated than daily life texts.

The chart shown in Figure 4.2 visualises the results for nine key combinations examining
the incremental benefit of each of the 5 contributions using PubMed600 Dataset. The results
demonstrate that (CON1) and (CON2) each increase precision and recall of the baseline
algorithm, as well as in combination with one another ((CON1,2)) [Hao et al., 2017].

Table 4.9 and Figure 4.2 also report the effect of extending (CON1,2) with the three new
contributions (CON3), (CON4) and (CON5) in different combinations. Note that (CON5)
performs polarity adjustment on the relationships extracted from noun-preposition phrases
by means of (CON4). As such, (CON5) is only considered in combination with (CON4).
As shown in Table 4.9 and Figure 4.2, each of these contributions also improves both
precision and recall. The marginal improvements in precision are reducing with contributions
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Fig. 4.2 Performance on the PubMed600 dataset

(CON3), (CON4) and (CON5). This is not unexpected as precision achieved with (CON1,2)
was already high and contributions (CON3), (CON4) and (CON5) are primarily aimed at
reducing false negatives. Consequently, recall improvements achieved by (CON3), (CON4)
and (CON5) on top of (CON1,2) are substantial. The entity-based algorithm with all
contributions (CON1,2,3,4,5) achieved an overall precision of 0.914 with 0.94 recall in
PubMed600 dataset and overall precision of 0.948 with 0.963 recall in 20 Newsgroups
dataset, thereby offering significant advantages over the previous relationship extraction
methods of this type.

Comparing with state-of-the-art work

Our proposed relation extraction algorithm with all contributions (CON1,2,3,4,5) are referred
as entity-based algorithm. Table 4.10 shows the comparison results of our entity-based
algorithm with some state-of-the-art work. For the biomedical dataset PubMed600, our
algorithm achieves better results compared to the existing rule-based algorithm by 5-15
percentual points [Sharma et al., 2010, Khordad and Mercer, 2017]. For the general domain
dataset 20 Newsgroups, our entity-based algorithm also achieves better results by 4 percentual
points [Wang et al., 2016]. Comparing to state-of-the-art joint entity-relation extraction
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Table 4.10 Experiment results of state-of-the-art work

Dataset Algorithm F1-score

PubMed600
[Sharma et al., 2010] 0.8736

[Khordad and Mercer, 2017] 0.7777
Entity-based algorithm 0.927

20 Newsgroups
[Wang et al., 2016] 0.916

Entity-based algorithm 0.955

CoNLL04
[Bekoulis et al., 2018] 0.8049

[Eberts and Ulges, 2019] 0.7147

models [Bekoulis et al., 2018], ours achieves better relation extraction results. Our algorithm
also outperforms the state-of-the-art algorithm based on Transformers [Eberts and Ulges,
2019].

Impact on speed of (CON1,2,3,4,5)

Table 4.11 summarises the impact on speed of (CON1,2,3,4,5). As expected, the conven-
tional rule-based algorithm without (CON1,2,3,4,5) is the fastest for both datasets. (CON3)
requires much more time to perform (an addition of 1 second/sentence) since this step relies
on external toolkit to find co-reference resolution. The other four (CON1,2,4,5) requires
nearly the same time to perform (average of 0.5 seconds/sentence). To sum up, our proposed
entity-based algorithm with five extensions (CON1,2,3,4,5) only requires 2.5 times of time
when without. This is negligible considering the huge improvements they achieved.

4.7 Discussion

Although our enhancements greatly improved the overall performance of the relationship
extraction, our evaluation showed a number of situations that gave rise to false positives and
false negatives.

Most false positives were caused by two common issues: the inability to deal with more
complex prepositional phrases and the difficulty in understanding the use of adjective phrases
associated with the relationships. For example, the sentence

“The combination of apricoxib and IL-27 resulted in augmentation of STAT1
activation.” [Lee et al., 2014]

contains a relationship the combination of apricoxib and IL-27| resulted in |STAT1 activation.
However, the algorithm ignored the preposition phrase “the combination of” and extracted
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Table 4.11 Average time required in seconds to process one sentence per algorithm

Algorithm PubMed600 Dataset 20 Newsgroups Dataset
12345 2.10 1.98
12345 2.60 2.46
12345 3.11 2.74
12345 3.05 2.97
12345 3.64 3.36
12345 4.13 3.93
12345 2.58 2.34
12345 3.08 2.81
12345 3.51 3.22
12345 3.67 3.39
12345 4.17 3.85
12345 4.71 4.65
12345 2.59 2.37
12345 3.07 2.78
12345 3.55 3.30
12345 3.51 3.21
12345 4.29 4.08
12345 4.74 4.57
12345 3.13 2.96
12345 3.56 3.32
12345 4.29 4.01
12345 4.11 3.99
12345 4.72 4.51
12345 5.32 4.91

two relationships apricoxib| resulted in |STAT1 activation and IL-27| resulted in |STAT1
activation. An example of the second type is the sentence

“Establishing the relationship between glaucoma and headaches is a formidable
challenge.” [Lipton et al., 2014]

The sentence does not assert the existence of a relationship between glaucoma and headaches
because this is part of the subject and the word “challenge” actually implies that identifying
the relationship is difficult. However, our algorithm is not yet sophisticated enough to deal
with this scenario and extracted the relationship.

Some of the false negatives during entity recognition were caused by issues with the
co-reference resolution module. For example, the sentence
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“The aim of this study was to discern whether a relation between biochemical
parameters, sonography and musculoskeletal data exists in cases of hyperthy-
roidism and whether they are modifiable through supplementation with selenome-
thionine and magnesium citrate as well as by acupuncture and manual medicine
methods.” [Moncayo and Moncayo, 2015]

contains too many entities occurring before the pronoun “they”. The system failed to identify
the corresponding nominal words referred by the pronominal word. Therefore our algorithm
failed to extract the correct entities embedded in the sentence.

In addition, some of the false negatives were caused by the inability to deal with references
to entities occurring outside the sentence. For example, the sentence

“It is generally well tolerated and has excellent oral bioavailability, providing
significant benefit in the treatment of invasive fungal infections.” [Willis et al.,
2014]

contains a pronoun “it” referring to an entity occurring in a previous sentence, but our
algorithm is currently only able to deal with a single sentence at a time and therefore
cannot yet handle co-references occurring across multiple sentences. Another example is the
sentence

“The supplementation brought a reduction of the vascularisation indices and
reduced the incidence of idiopathic moving toes.” [Moncayo and Moncayo,
2015]

This sentence actually contains two relationships: the supplementation (of an entity) | reduced
| the vascularisation indices and the supplementation (of an entity) | reduced | idiopathic
moving toes. However, the algorithm failed to extract these relationships due to the absence
of the entity’s name in this single sentence.

4.8 Summary

Automatic relationship extraction from unstructured data written in natural language is an
important field of computational linguistic research and has recently gained a lot of attention
in the literature. Currently, the most efficient approaches for relationship extraction are
based on machine learning or use special rules identifying patterns in the text describing
relationships between entities. However, the machine learning approaches used in this field
are supervised and require manually annotated training data. Similarly, conventional rule-
based approaches require domain experts to generate domain rules for pattern matching.
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These can be costly. Researchers are trying to improve conventional rule-based approaches
to retain a good level of precision while requiring minimal human intervention. Most of
them focus on algorithms that extract relationships by scanning sentences for verbs and then
analysing whether they are associated with entities in the domain of interest.

Existing rule-based approaches focusing on verbs are not without limitations. They
search exclusively for relations expressed using a Entity-Verb-Entity pattern. This limits them
to identifying a single relation in each sentence. Moreover, many relations do not follow
this pattern. In particular, verb-based approaches cannot extract relationships expressed
within noun-phrases, or relationships where an entity is referred to by a pronoun. Improving
and expanding on the enhanced verb-based algorithm presented in [Hao et al., 2017], the
entity-based algorithm proposed in this chapter can now address all of these shortcomings,
achieving better overall results.

The overall process can be summarised as follows. Standard NLP techniques are used
to analyse and parse the grammatical structure of a sentence written in English. Then,
the sentence’s components are tagged and its pronouns replaced by the entities they refer
to. Subsequently, unlike in conventional rule-based approaches, potential relationships are
identified not by the recognition of the pattern Entity-Verb-Entity, but by the existence of
multiple entities within the same sentence. Because of this, we called the enhanced algorithm
entity-based. Now, using the grammatical structure of the sentence, several transformations
are performed, allowing the extraction of relationships embedded within complex structures,
including clauses, conjunctions, and noun-preposition phrases. Finally, we introduced the
new concept of relationship polarity, which adjusts the extraction of the relationship so that
it takes into account adjectives and adverbs modifying its intended meaning.

We evaluated the performance of this new approach on two datasets, one from the
biomedical domain consisting of 600 sentences and one from general domain consisting of
600 sentences. In order to further distinguish the improvement achieved by each contribution,
we analysed the extraction results of algorithms using different combinations of contributions
(CON1), (CON2), (CON3), (CON4) and (CON5). The complete set of results is shown in
Table 4.9. The conventional rule-based algorithm without any improvements achieves an
overall precision of 0.724 and had 0.643 recall in PubMed600 dataset and overall precision
of 0.772 with 0.685 recall in 20 Newsgroups dataset. The addition of contributions (CON1)
and (CON2) each resulted in a substantial increase in precision and recall. In combination,
(CON1,2) yields an overall precision of 0.884 and recall of 0.817 in PubMed600 dataset
and overall precision of 0.908 with 0.84 recall in 20 Newsgroups dataset. These results
corroborate the evaluation results reported in [Hao et al., 2017]. We also compared the results
of extending (CON1,2) with the three new contributions (CON3), (CON4) and (CON5) in
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different combinations. Each those combinations offered improvements in both precision
and recall. Our evaluation shows that (CON3), (CON4) and (CON5) benefit recall primarily.
The entity-based algorithm with contributions (CON1,2,3,4,5) achieved an overall precision
of 0.914 with 0.94 recall in PubMed600 dataset and overall precision of 0.948 with 0.963
recall in 20 Newsgroups dataset, thereby offering significant advantages over the previous
works. These results show that the shortcomings of conventional verb-based algorithms can
be addressed by the techniques proposed herein. With both datasets, the proposed entity-
based algorithm achieves a stable accuracy, which means it can be easily applied in different
domains by using different training corpus and NER tools. (see Table 4.9 and Figure 4.2 for
a detailed comparison).

At this point, the extracted relationship information is ready to be included in the topic
model. In the following chapters, we focus on incorporating relations between words into
the OLDA topic model to classify text documents based on their contents and topics.



Chapter 5

Ontology Driven Topic Classification
with Structured Relationships

In this chapter, we further improve the OLDA topic model (described in Chapter 3) by
incorporating relationships between words and ontology concepts.

As described in the previous chapter, by including an ontological knowledge base as an
intermediate concept component in LDA, OLDA allows topics to be defined more generally
by ontological concepts instead of words so that the semantical meaning of words can be
captured. However, the ontological knowledge introduced may contain irrelevant information
in the context. For example, the following sentences from 20 Newsgroups dataset are about
three different topics.

Example 5.1. Topic(comp.sys.ibm.pi.hardware): “IBM launched a new Windows laptop. A
lot of money is invested for this laptop.”

Example 5.2. Topic(misc.forsale): “David broke my car windows yesterday. He has to sell
his laptop to pay for the repairs.”

Example 5.3. Topic(soc.religion.christian): “David purchased a new Dell laptop as a Christ-
mas gift.”

However, LDA would classify them into the same topic category since they contain
same words “laptop”, “windows”. OLDA would also classifies them incorrectly because
these sentences contain different words with same ontological concepts: word “IBM” in
Example 5.1 and word “Dell” in Example 5.3 have the same ontological concept “company”;
They also contain same words with different semantical meanings in different context: word

“windows” in Example 5.1 means “software while it in Example 5.2 means “barrier”. In order
to only consider the relevant concepts in the context, we incorporate the relationships between
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words and ontology concepts embedded in each document so that the semantical structures
in texts can be considered. This can be done by extracting relationships between words
embedded in the texts using algorithms described in Chapter 4. Then relationships between
concepts that are associated with corresponding words are constructed using ontological
knowledge. Our approach uses these relationships to find implicit knowledge in the context
and therefore increase the overall accuracy of the topic modelling and classification. In our
previous example, the three texts would be classified into different topics because they do not
share the same relationships between words or concepts. This has the following advantages:
(i) it allows the topics to be defined more specifically in terms of contextual relationships
between words and concepts rather than general concepts, and this captures the contextual
semantical meaning of words more accurately; (ii) as a side-effect, we will see that this extra
dimension helps to reduce the training and classification times. In virtue of the use of this
relationship knowledge, we call the resulting technique Relation-Ontology Driven LDA for
Topic Classification (ROLDA).

ROLDA can also slightly reduce the training and classification times compared to OLDA
by incorporating the extra relation dimension. As for OLDA, ROLDA can also employ a
self-training phase. The resulting technique ST-ROLDA can further reduce the training and
classification times and reduce the amount of manually classified training data.

In order to further speed up the training process, a distributed cloud computing process
was developed that can be used for OLDA, ROLDA and any other topic modelling approaches.
It significantly reduces the training time by nearly half.

The remainder of this chapter is organised as follows. Section 5.1 describes the method-
ology of ROLDA. Section 5.2.2 describes the background of distributed computing and our
design of the process with ROLDA. Section 5.3 presents the results of our experimental
analysis and Section 5.4 concludes with a discussion and areas for future work.

5.1 Methodology

By incorporating the relationships between words and ontology concepts, our improved
topic model addresses a significant limitation of OLDA, namely its inability to consider
the hidden semantic meanings within the context. We introduce a third dimension to the
topic-modelling process using subject-object nouns and concepts relationships extracted from
sentences within each document. These cause-effect relationships between labels are able to
capture the hidden semantic meanings. For this reason, our technique can be considered an
Relation Incorporated variant of OLDA, which we abbreviate to ROLDA.
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∆ = Θ×Σ×Γ (5.1)

As for OLDA, ROLDA’s aim is also to generate a documents/topics matrix Θ giving
the probability qxy of each document Dx being about a certain topic Ty. The incorporation
of the relationships between words and concepts is accomplished by introducing a third
dimension in the matrices as follows. We first pre-process the documents D employing
standard open source NLP tools (OpenNLP) for sentence segmentation, part-of-speech (POS)
tagging and parsing. By utilising algorithms described in Chapter 4, we extract a set RN

of all cause-effect relations in the documents and a set N of all nouns in the documents.
Each relation RN ∈ RN consists of a subject noun NS ∈ N and a object noun NO ∈ N .



5.1 Methodology 96

As before, we construct the three dimension matrix ∆ of binary values, where each cell di jk

is given the value 1 if the document Di ∈ D contains the relation RN jk ∈ RN (i.e. the
document Di contains the the cause-effect relation between the subject noun NS j and NOk)
or 0, otherwise (this process is described in more detail in Section 5.1.1). Using ConceptNet
or DBpedia, we then construct the set of all concepts C that are associated with a noun
N ∈ N . Each subject (or object) nouns NS ∈ N (or NO ∈ N ) can be associated with a
subject (object) concept CS ∈ C (or CO ∈ C ). Next, we construct a set of relations RC of
all cause-effect relations between concepts. Each relation RC ∈ RC consists of a subject
concept CS ∈ C and an object concept CO ∈ C . It is now possible to construct the four
dimensional matrix Γ of binary values, where each cell smneo is given value 1 only if the
dataset contains the relation RCem ∈ RC , i.e. the following three conditions are satisfied
(this process is described in more detail in Section 5.1.2):

• the subject noun NSn ∈ N can be described by the subject concept CSe ∈ C ,

• object noun NOo ∈ N can be described by the object concept COm ∈ C ,

• the dataset contains the relation RNno ∈ RN between subject noun NSn ∈ N and
object noun NOo ∈ N

The matrix Σ giving the probabilities rabc of each topic Ta being described by each relation
between concepts RCbc ∈ RC is constructed using a logistic regression technique. Finally,
Θ is computed by a supervised learning method using ∆, Σ and Γ (the computation of Σ and
Θ are described in Section 5.1.3). This overall matrix equation is shown in Equation 5.1.
Figure 5.1, 5.2, 5.3 and 5.4 shows the matrix schema with their dimensions.

5.1.1 Generating the Documents/subject nouns/object nouns Matrix ∆

The document/subject noun/object noun matrix ∆ is a three dimensional matrix consisting of
all the relations extracted from documents. The construction of this matrix takes two steps:

• obtaining the set RN of all cause-effect relations embedded in sentences and the set
N of all nouns embedded in relations from each document D ∈ D ,

• assign 1 or 0 to each cell based on the existence of relations for each document.

The first step is done by the approaches described in Chapter 4 [Hao et al., 2017]. Each
document D ∈D is processed following the extraction process in Figure 4.1. Firstly, standard
NLP techniques from OpenNLP [Kottmann et al., 2011] 1 are used to pre-process the text data,

1https://opennlp.apache.org
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such as tokenisation, lemmatisation, part-of-speech (POS) tagging and parsing. Sentences
in each document are re-organised into Penn Treebank style with the corresponding POS
tagging. Then NER techniques are applied to extract named entities (nouns). Different NER
tools and corpus can be used for documents from different domains: LingPipe, MetaMap
and Abner can be used for biomedical domains to recognise DNA, RNA, cell type, body part,
etc., Standford NLP offers a NER tool that can be used for general domains to recognise
Location, Person, Organisation, etc. [Finkel et al., 2005]. Then following Algorithm 3, 4, 5
and 6, relations embedded in single sentences are extracted. Relations embedded in noun-
preposition phrases can also be extracted following rules define in Section 4.4.2. Finally,
polarity adjustment is also utilised to further fine-tune the extracted relations and construct
the set RN of all cause-effect relations. Each relation RN ∈ RN is in the format of

“Subject Noun NS | Relation Connection | Object Noun NO”. The set N consists of all the
subject nouns NS and object nouns NO. For example, four relations RN(Example 5.4) can
be extracted from Example 5.4, as shown in Table 5.1. Four subject nouns can be extracted
from these relations: NS(Example 5.4) = {Zoroaster, Animal, Zoroastrians, Ahura Mazda}.
And four object nouns can be extracted from these relations: NO(Example 5.4) ={Culture,
Gods, Ahura Mazda, Lord of Wisdom and Light}. In total, seven nouns can be extracted from
these relations: N(Example 5.4) ={Zoroaster, Animal, Zoroastrians, Ahura Mazda, Culture,
Gods, Lord of Wisdom and Light}.
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Example 5.4. “Their prophet, Zoroaster, seeking to make sense of a culture in which animal
sacrifice to multiple gods was common, preached that there was only one god, a good one.
Zoroastrians call their god Ahura Mazda, which translates as Lord of Wisdom and Light.”

Table 5.1 Extracted relations between nouns RN(Example 5.4)

Subject noun (NS) Relation Connection Object noun (NO)
Zoroaster Seeking to make sense of Culture
Animal Sacrifice to Gods
Zoroastrians Call Ahura Mazda
Ahura Mazda Translates Lord of Wisdom and Light

We then set RN =
⋃

NS∈N ,NO∈N RN(NS,NO); assume a fixed ordering of subject
nouns [NS0,NS1, . . . ,NS j, . . . ,NSy] (for NS j ∈ N ) and a fixed ordering of object nouns
[NO0,NO1, . . . ,NOk, . . . ,NOz] (for NOk ∈ N ); and then construct each cell di jk in the
matrix ∆ for document Di ∈ D follows Equation 5.2.

di jk =

1 if Di contains RN jk ∈ RN

0 if Di does not contain RN jk ∈ RN
(5.2)

5.1.2 Generating the Subject Concepts/Object Concepts/Subject
Nouns/Object Nouns Matrix Γ

The Subject Concepts/Object Concepts/Subject Nouns/Object Nouns Matrix Γ is a four
dimensional matrix consisting of all the relations between concepts that are associated with
their corresponding nouns. The construction of this matrix takes two steps:

• obtaining the set RC of all relations between concepts and the set C of all concepts
associated with the set N ,

• assign 1 or 0 to each cell based on the existence of concepts relations.

In order to associate nouns to their corresponding concepts, IsA and RelateTo properties
from ConceptNet and type properties from DBpedia are extracted automatically using the
Internet information extraction techniques described in Section 3.2.1. As for OLDA, we
query ConceptNet or DBpedia to obtain the ontological concepts of each subject/object
noun NS/NO ∈ N and then construct the set of concepts CS/CO(NS/NO) associated with
the subject/object noun NS/NO. The same data cleansing approaches are also employed
here. For example, the subject noun “Ahura Mazda” has eight different Type properties
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in DBpedia: Thing; Abstraction100002137; Cognition100023271; Concept105835747;
Content105809192; Idea105833840; PsychologicalFeature100023100; WikicatConception-
sOfGod. After data cleansing, we can obtain the set of concepts CS(AhuraMazda) ={Thing,
Abstraction, Cognition, Concept, Content, Idea, Psycological Feature, Conceptions of God}.
The object noun “Ahura Mazda” has the same set of concepts CO(AhuraMazda) as the sub-
ject noun “Ahura Mazda”. For a noun that does not have any required ontological concepts
in ConceptNet or DBpedia, its set of concepts only contains the word itself. For example,
CO(Lordo fWisdomandLight) ={Lord of Wisdom and Light }.

The relations between concepts are then constructed. Each relation RC ∈ RC is in the
format of “Subject Concept CS | Relation connection | Object Noun CO”. Each subject
concept of the subject noun CS(NS)e ∈CS(NS) can be associated with every object concept
of the object noun CS(NO)m ∈ CS(NO). For example, eight RC can be derived from the
relation RN(AhuraMazda|Call|Lordo fWisdomandLight) as shown in Table 5.2. The set
RC consist of all concepts relations, and the set C consists of all the subject concepts CN
and object concepts CO.

Table 5.2 Relations between concepts RC(AhuraMazda,Lordo fWisdomandLight)

Subject concept (CS) Relation Connection Object concept (CO)
Thing Translates Lord of Wisdom and Light
Abstraction Translates Lord of Wisdom and Light
Cognition Translates Lord of Wisdom and Light
Concept Translates Lord of Wisdom and Light
Content Translates Lord of Wisdom and Light
Idea Translates Lord of Wisdom and Light
Psycological Feature Translates Lord of Wisdom and Light
Conceptions of God Translates Lord of Wisdom and Light

Next, we set RC =
⋃

CS(NS)∈C ,CO(NO)∈C RC(NS,NO); assuming a fixed ordering of
subject concepts [CS0,CS1, . . . ,CSe, . . . ,CSv] (for CSe ∈ C ) and a fixed ordering of object
nouns [CO0,CO1, . . . ,COm, . . . ,COu] (for COm ∈ C ); and then construct each cell smneo in
the matrix Γ follows Equation 5.3.

smneo =

1 if RCem ∈ RC

0 if RCem ̸∈ RC
(5.3)
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5.1.3 Generating the Matrices Θ and Σ

The documents/topics matrix Θ and the topics/subject concepts/object concepts matrix Σ are
generated iteratively using the input matrix Γ with a logistic regression model. As in OLDA,
the model uses the linear weighted combination of inputs from Γ and generates the predicted
probabilities of each relation between subject/object concepts relating to each topic (i.e., the
matrix Σ) [Menard, 2002, Walker and Duncan, 1967a]. A schematic diagram of the model is
shown in Fig. 5.5. For each relation RNi j ∈ RN between subject noun NSi and object noun
NO j, the corresponding columns of subject concepts CS(NSi) and object concepts CO(NO j)

in the subject concepts/object concepts/subject nouns/object nouns matrix Γ is used as an
input data vector RCij (Equation 5.4).

RCijk =

1 if RC(NSi,NO j)k ∈ RC(NSi,NO j)

0 if RC(NSi,NO j)k ̸∈ RC(NSi,NO j)
(5.4)

The size of the input vector is the total number of object concepts u× total number of subject
concepts v× total number of object nouns z× total number of subject nouns y. The output
vector yij is the predicted probability of each relation between subject/object concepts being
associated with a topic, as described next. A fully connected layer takes the vector RCij and
generates the evidence vector zij using Equation 5.5 and a weight matrix Wt and bias vector
bt . The initial values W0 and b0 are randomly given.
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zij = f (RCij) = WRCij +b (5.5)

Each element r̂a in the evidence vector zij is then normalised in the softmax layer to
finally generate the vector yij according to Equation 5.6 (this means that the values within yij

add up to 1). Each element rabc in the output vector yij is the predicted probability of each
relation RCbc between subject concept CSb and object concept COc being associated with a
topic Ta. This whole process is repeated for all relations between subject nouns and object
nouns (i ∈ (1,2, . . . ,y) and j ∈ (1,2, . . . ,z)), resulting in the matrix Σt . Finally, the matrix Θt

can be computed using the matrix schematic shown in Fig. 3.2.

yij = so f tmax(zij) =
er̂a

∑
w
a=1 er̂a

(5.6)

The iteration process works the same as OLDA. The initial matrices Σ0 and Θ0 are
obtained using random values for the weight matrix W0 and the bias vector b0. For each
subsequent iteration t +1, we then measure the Euclidean distance between the predicted
classification Θt and the true classification Θs (recall Θs is manually done). Using the
Stochastic Gradient Descent technique we obtain new values for Wt+1 and the vector
bt+1 [Bottou, 1998, Kiefer et al., 1952] that minimise this distance. We then calculate Σt+1

and Θt+1 as before using Wt+1 and bt+1. This process continues until the distance between
the predicated classification Θ j computed in an iteration j, and the true classification Θs goes
below the desired threshold. The output of this process is the documents/topics matrix Θ, the
topics/subject concepts/object concepts matrix Σ, and the optimised weight matrix W and
bias vector b.

5.2 Topic Classification with Distributed Computing

In order to further speed up the training process of the topic model, a distributed computing
process is introduced. In this section, we describe a distributed computing process that can
handle the computation of large scale matrices and accelerate the computing process. We
first describe the background of distributed computing and cloud computing in Section 5.2.1.
Then in Section 5.2.2 ROLDA is combined with a distributed computing process.

5.2.1 Background

Distributed computing studies distributed systems, whose components are located on different
networked processors, each with their own local memory to communicate and coordinate
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their actions by passing messages to one another [Tanenbaum and Van Steen, 2007]. These
components interact with one other aiming to achieve a common goal. Distributed computing
can achieve a large and complex computation through leveraging computing resources from
different locations connected by networks [Wu and Buyya, 2015]. Fig 5.6 shows a typical
distributed system structure. Distributed systems have five advantages compared to traditional
single computing, vertical scaling computing and parallel computing:

• Scalability and Modular Growth: Distributed systems can scale horizontally as they
work across different machines. Traditional computing systems rely on upgrading the
hardware to handle increasing workload whereas distributed systems can simply add
another machine. When the demand is high, a system can run each machine to the full
capacity; when the workload is low, it can take machines offine [Schmidt et al., 1999].

• Fault tolerance and redundancy: The distributed system can tolerate failures in indi-
vidual components [Ghosh, 2014]. It can stay the same reliable even if one or more
nodes (processors) stop working, and the performance demand on the remaining nodes
would go up.

• Low Latency: Distributed systems prioritise node based on their distance to users
geographical locations, resulting in low latency and better performance [Ghosh, 2014].

• Cost Effectiveness: The initial cost of distributed systems is higher than traditional
vertical scaling systems, but after a certain point, they are more about economies of
scale. A distributed system consisting of many mini computers can be more cost-
effective than a mainframe machine. [Peleg, 2000]

• Efficiency: Distributed systems break complex problems/data into smaller pieces and
have multiple mini computers working on them in parallel, which can help reduce the
time needed to compute those problems [Ghosh, 2014].

Cloud computing is a computer system resource for data storage and computing power
without direct active management by the user. Large clouds often have functions distributed
over multiple processors from central servers. Cloud computing can achieve coherence and
economies of scale by sharing resources. Cloud computing has several advantages compared
to computing on local machines[Mell et al., 2011]:

• Agility: The cloud allows innovating faster because resources can be mainly used
on developing applications rather than managing infrastructure and data centres[Lin,
2008, Bruneo et al., 2013].
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Fig. 5.6 A distributed computing system

• Elasticity: Cloud computing enables the provision of the number of resources required
to instantly scale up or down [Mao and Humphrey, 2012, Nouri et al., 2019, Shawky
and Ali, 2012].

• Cost savings: The cloud allows trading capital expense (data centres, physical servers,
etc.) for variable operational expenditure. Pricing is based on actual usage. As well,
less in-house IT skills are required for the implementation of projects that use cloud
computing [Knorr and Gruman, 2008, Subramanian, 2009].

Nowadays, many public cloud services are available and open for public use. Gener-
ally, public cloud service providers like Amazon Web Services (AWS) [Varia et al., 2014],
IBM [Iannucci et al., 2013], Oracle [Saygili, 2017], Microsoft [Copeland et al., 2015],
Google [Krishnan and Gonzalez, 2015], and Alibaba [Ren et al., 2017] own and operate
the infrastructure at their data centre and users normally get access via the Internet. Differ-
ent cloud services provide different components for object storage, message queuing and
computing platform. In particular, we present three cloud services provided by AWS.

• Amazon Simple Storage Service (Amazon S3): provides object storage through a web
service interface [Varia et al., 2014, Huang and Wu, 2017]. Amazon S3 can be used to
store a variety type of objects which allows storage for Internet applications, backup
and recovery, disaster recovery, data archives, data lakes for analytic, and hybrid cloud
storage [Andreozzi et al., 2008].

• Amazon Simple Queue Service (Amazon SQS): is a distributed message queuing
service. It sends messages via web service applications for communications over the
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Internet. SQS can provide a highly scalable hosted message queue that addresses
issues arising from the common producer-consumer problem or connectivity between
producer and consumer [Robinson, 2008].

• Amazon Web Services Lambda (AWS Lambda): is an event-driven, serverless com-
puting platform that runs codes in response to events and automatically modifies
the computing resources required [Handy, 2014]. The purpose of Lambda is to
simplify building smaller, on-demand applications that are responsive to events and
new information. AWS aims to start a Lambda instance within milliseconds of an
event [Hendrickson et al., 2016].

In Section 5.2.2, ROLDA is combined with a distributed computing process. For experi-
ment purpose, we use these AWS cloud services in our distributed computing process.

5.2.2 ROLDA with Distributed Computing

The construction time and computing resources of building a topic model with ROLDA are
massive due to the 3D and 4D matrices calculation process. Therefore, we implemented a
distributed cloud computing process to accelerate the computation process.

Generating the Documents/subject nouns/object nouns Matrix ∆

Each document D ∈ D is stored in an object storage bucket in the cloud service (in our
case, Amazon S3 bucket) instead of a local computer. Then, a distributed message queuing
service (in our case, Amazon SQS service) is created using a First-In-First-Out queue. Each
document in the input generates a message by the queuing service to communicate between
the storage and the computing platform (in our case, Amazon Lambda). When receiving a
message, the computing platform takes in the document D, starts to run the codes to extract
relations (following Figure 4.1) and outputs relations embedded in the document D. The
outputs are stored in a new storage bucket in the cloud service. The output subject nouns of
relations are stored in their corresponding document folders, and the output object nouns of
relations are stored in their corresponding subject nouns folders within their corresponding
document folders. Then, each cell in the matrix ∆ can be assigned with 1 or 0 based on the
existence of each file stored in the storage bucket. Once a processor finishes the process
of one document, the memory is released and ready to accept the next message from the
queuing service. Figure 5.7 shows an example of this distributed process.

With this distributed computing process, all documents can be processed at the same time
in the cloud. In average, the construction time for generating ∆ with distributed cloud system
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Fig. 5.7 Distributed computing process for ∆

can be reduced to only 5% of a traditional local computing system. The detail information is
shown in Section 5.3.

Generating the Subject Concepts/Object Concepts/Subject Nouns/Object Nouns Ma-
trix Γ

For traditional local computing, the construction of the matrix Γ takes the same two steps:

• Obtaining the set RN of all relations;

• Assign 1 or 0 to each cell. However, for a distributed cloud computing.

These two steps can be done by one processor in a cloud computing platform.
The output data from the previous stage are the input of this stage: each object noun

NOk ∈N are stored under the folder of their related subject noun NS j ∈N and each subject
noun folder are stored under the folder of their corresponding document Di ∈ D . All the
documents are stored in a storage bucket in the cloud instead of in a local computing machine.



5.2 Topic Classification with Distributed Computing 107

Object Noun NO1 ∈ RN(NS1,NO1)

Object Noun NO2 ∈ RN(NS1,NO2)

...

Subject Noun NS1 ∈ RN(NS1,NOk)

Object Noun NO1 ∈ RN(NS2,NO1)

Object Noun NO2 ∈ RN(NS2,NO2)

...

Subject Noun NS2 ∈ RN(NS2,NOk)

...

Document D1

Processor

Processor

Processor

...

Processor

Processor

Processor
...

Object Concept CO1 ∈ RC(CS1,CO1)

Object Concept CO2 ∈ RC(CS1,CO2)

...

Subject Concept CS1 ∈ RC(CS1,COk)

Object Concept CO1 ∈ RC(CS2,CO1)

Object Concept CO2 ∈ RC(CS2,CO2)

...

Subject Concept CS2 ∈ RC(CS2,COk)

...

Document D1

Storage

Computing platform

Storage

Queuing

Queuing

Queuing

Queuing

Queuing

Queuing

Queuing

Queuing

Queuing

Queuing

Queuing

Queuing

Fig. 5.8 Distributed computing process for Γ

Then a distributed message queuing service is created using First-In-First-Out queue. Each
object noun in a document Di generates a message by the queuing service to communicate
between the storage and the computing platform. After all object nouns in the same subject
noun NS j folder have been associated with their object concepts from the ontology, the
subject noun generates a message by the queuing service to inform the computing platform
running the code. Then the object nouns in the next subject noun NS j+1 folder starts to
generate messages by the queuing service to run the code in the computing platform. After
all subject nouns in document Di have been associated with their subject concepts from the
ontology, the object nouns and subject nouns in the next document Di generate messages
by the queuing service to run the code in the computing platform. Each cell in the matrix Γ

can be assigned with 1 or 0 based on the existence of each file stored in the storage bucket.
Every time when a processor in the computing platform finishes one process, the memory
is released and ready to receive the next message sent from the queuing service. Figure 5.8
shows an example of this distributed process.

With this distributed process, all nouns can be associated with their corresponding
concepts at the same time in the cloud. In average, the construction time for generating Γ
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with distributed cloud system can be reduced to only 5% of a traditional local computing
system. The detail information is shown in Section 5.3.

Generating the Matrices Θ and Σ

The Document/topics matrix Θ and the topics/subject concepts/object concepts matrix Σ are
generated iteratively using the input matrix Γ in a logistic regression model. The training
process of the logistic regression model is set up in a cloud GPU. The input is stored in
two storage buckets, one contains the subject nouns and object nouns for each document,
and the other contains the subject concepts and object concepts for each document. For
each iteration, the queuing service generates u× v× y× z messages to generate the input
vector RCij from the storage buckets and start training the logistic regression model. The
training process is the same as in the local computing machine. This process continues until
the distance between the predicated classification Θ j computed in an iteration j, and the
true classification Θs goes below the desired threshold. The output of this process is the
documents/topics matrix Θ, the topics/subject concepts/object concepts matrix Σ, and the
optimised weight matrix W and bias vector b.

5.3 Experiment Analysis

As for OLDA, ROLDA can also be used with or without a self-training stage. When self-
training is employed, the resulting topic model can be referred to as ST-ROLDA instead.
Those two different self-training procedures ST can be subscripted with H (to indicate the
use of the ad hoc training procedure) or P (to indicate the use of Pavlinek et. al.’s). Where
the distinction is irrelevant, we avoid the subscript. With all this in mind, we conducted
comprehensive benchmarking to evaluate the performance of our ROLDA, OLDA and
variants against a number of other semi-supervised methods using the same four datasets.

More specifically, we compared the classification accuracy of ROLDA with the perfor-
mance of OLDA. Furthermore, we considered the two self-training techniques (STH and
STP) described in Section 3.3 for OLDA and ROLDA, resulting in a total of four variations of
the semi-supervised methods. Both ontologies from ConceptNet and DBpedia are used with
OLDA and ROLDA for experiments. The results of our experiments are given in Tables 5.4.
Table 5.5 shows the time to construct a topic model using 20 Newsgroups dataset.
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5.3.1 Experimental Setup

To perform a comparative analysis, four fully classified training datasets (presented below)
were used. The experimental setup in this phase is similar to Section 3.4.1. Each dataset
was split into a training dataset (50%-70%) and a testing dataset (30%-50%). For each
round of supervised experiments, all the training datasets were used to construct the topic
model and the supervised classification method SVM. For each round of the semi-supervised
experiments, 10% of the training datasets denotes the initial pre-classified dataset Ds, and the
remaining training data form the unclassified datasets Du. The self-training topic model was
then used to prepare the final classified datasets Dss, which were trained with a supervised
classification method SVM. The trained classifiers were finally evaluated on the testing
datasets.

Both self-training algorithms were implemented in the Java programming language using
WEKA [Hall et al., 2009], which is an open-source machine learning environment. LibSVM
implementation was used to train an SVM classifier with a linear kernel on the final classified
dataset [Chang and Lin, 2011]. All experiments were performed on a PC with an i7 processor,
an NVIDIA GeForce GPU GTX 970M graphics card, and 16GB RAM. All experiments
with distributed computing were set up on the Amazon cloud. In our experiments, the cloud
storage bucket is Amazon S3 bucket, the distributed message queuing service is Amazon
SQS, and the computing platform is AWS Lambda.

5.3.2 Datasets Used in the Analysis

The same four datasets were used in this analysis: 20 Newsgroups dataset, the Reuters
R8 and R52 datasets and the WebKB dataset. The same pre-processing steps explained in
Section 3.4.2 were performed on them. The same number of words were extracted from
each dataset. After named entity recognition and relation extraction, subject nouns and
object nouns were extracted to construct the documents/subject nouns/object nouns matrix ∆.
Then concepts were extracted from either ConceptNet or DBpedia and associated with these
nouns to construct the subject concepts/object concepts/subject nouns/object nouns matrix Γ.
Table 5.3 shows the size of each matrix for each dataset. The same portion of data from each
dataset explained in Section 3.4.2 were used for evaluation experiments.

5.3.3 Experimental Results

For ontologies from ConceptNet and DBpedia, we conducted two rounds of experiments with
each of the four datasets. For the supervised approaches, we skipped the self-training phase
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Table 5.3 The size of each matrix for each dataset

Dataset documents/subject nouns/object nouns matrix ∆ subject concepts/object concepts/subject nouns/object nouns matrix Γ

ConceptNet DBpedia
20 Newsgroups 18,846×132,385×137,824 12,311×13,198×132,385×137,824 12,450×13,215×132,385×137,824

Reuters R8 7674×7522×7609 4989×5114×7522×7609 5011×5209×7522×7609
Reuters R52 9100×7397×7388 5963×5989×7397×7388 6011×6076×7397×7388

WebKB 4199×6691×6421 4809×4924×6691×6421 5009×4899×6691×6421

and used the proportions of data described in Section 5.3.2. In each round of the experiments,
we performed 10 repetitions in the training and selected the data for training using stratified
random sampling for each topic category, so that each topic had equal representation in the
training set.

Table 5.4 summarises the classification accuracy results of EM-NB, OLDA and ROLDA
when using supervised training procedure and either of the two self-training procedures STH

and STP. Table 5.5 summarises the topic model’s construction times for each technique for
the 20Newsgroup dataset.

In what follows, we discuss the results using each self-training procedure in more detail.

Supervised training

As we mentioned, we can skip the self-training phase in our method resulting in a fully
supervised classification engine that we simply refer to as ROLDA. We compared ROLDA’s
accuracy with that of the supervised OLDA and EM-NB approach [Nigam et al., 2000]. Our
results show that EM-NB performed worst in all datasets, especially in Reuters R52. These
results are expected as EM-NB tends to perform poorly when classifying documents into a
larger set of topic categories. As shown in Table 5.4, ROLDA outperforming OLDA by quite
a considerable margin regardless of ontologies (e.g., with ConceptNet ontology, 72.54%
against 67.11% in the Reuters R52 dataset; with DBpedia ontology, 73.11% against 68.02%
in the same dataset). With either ontology, ROLDA achieves around the same accuracy,
which means ROLDA can be applied in different domains with different ontologies.

As shown in Table 5.5, the construction of the topic model for the 20 Newsgroups dataset
using ROLDA only took about 3 days to complete while it took 16 days for EM-NB. Even
though the matrix computation process of ROLDA is more completed than OLDA, the
fact that the construction time of ROLDA only took 3/4 of the time for OLDA shows the
efficiency of the introduction of distributed cloud computing. The construction times of
EM-NB and OLDA are about half of the time for that on a local machine (as shown in
Table 3.2) further confirm the efficiency of the introduction of distributed cloud computing.
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Table 5.5 Time to construct the 20 Newsgroups topic model

Technique Construction time (days)
Local machine Distributed cloud computing

Supervised
EM-NB 30 16
OLDA 8 4

ROLDA NA 3

Semi-supervised STH
OLDA 2 2

ROLDA NA 1

Semi-supervised STP
OLDA 5 4

ROLDA NA 2

Self-Training Using the Simplified Approach (STH)

As we mentioned in Section 3.3.1, the training procedure stops when the distance between
the predicted and actual classification drops below a certain threshold. In our experiments
for ROLDA, this distance drops dramatically in the first 2,500,000 iterations, decreasing
further but at a reduced rate in later iterations. The distance remained fairly stable after
20,000,000 iterations dropping to values close to 0.44. For that reason, we stop iterating
when the distance goes below 0.45. As for OLDA, we stop iterating when the distance goes
below 0.55 after around 20,000,000 iterations.

As shown in Table 5.4, ROLDA outperforms OLDA by quite a considerable margin
regardless of ontologies (e.g., with ConceptNet ontology, 62.32% against 56.02% in the
Reuters R52 dataset; with DBpedia ontology, 62.90% against 56.14% in the same dataset).
With either ontology, ROLDA achieves around the same accuracy, which means ROLDA
can be applied in different domains with different ontologies. As shown in Table 3.2, the
construction of the topic model for the 20 Newsgroups dataset using the training procedure
STH for ROLDA took one day to complete, which is the same for OLDA regardless of the
more complicated computing process. Furthermore, the construction time for OLDA with
STH on distributed computing process was reduced to one day, which is half of that on local
machines and 20% of LDA (see Table 3.2).

Self-Training Using Pavlinek et al.’s Approach (STP)

ROLDA’s construction of the topic model for the 20Newsgroup dataset using the training
procedure STP took about three and a half days, whilst OLDA’s took three days. That is,
ROLDA’s construction took around the same time as OLDA regardless of a more complicated
computing process. This is also 60% of OLDA on local machines and 30% of LDA (see
Table 3.2).
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Table 5.6 Topic classification results of state-of-the-art work on 20Newsgroup dataset

Model Accuracy

Word embedding based
LFLDA 80.94%

<word, POS> embedding model 83.05%

Knowledge based
STP-OntoLDA 72.41%
STP-ROLDA 81.55%

In terms of accuracy, the training procedure of STP performed better than when using
STH in all techniques and datasets. The best combination was STP and ROLDA, which
outperformed STP and OLDA by quite a considerable margin regardless of ontologies (e.g.,
with ConceptNet, 70.09% against 64.08% in the Reuters R52 dataset; with DBpedia, 70.23%
against 64.25% in the same dataset). With either ontology, ROLDA achieves around the
same accuracy, which means ROLDA can be applied in different domains with different
ontologies.

Table 5.6 compares the classification accuracy results of STP-ROLDA against some state-
of-the-art work on 20Newsgroups dataset: including both word embedding based approaches
(LFLDA [Fu et al., 2016] and <word, POS> embedding model [Liu et al., 2019]) and
knowledge-based approaches (STP-OntoLDA [Allahyari and Kochut, 2015]). Our proposed
STP-OLDA increases the accuracy of classification by 0.61% compared to LFLDA and
achieves slightly lower accuracy compared to <word, POS> embedding model. Similarly
to STP-OLDA, our proposed STP-ROLDA still benefits when dealing with small corpus
as it does not rely on external word embeddings. Comparing against the state-of-the-art
knowledge-based approach STP-OntoLDA, the introduction of the relation component into
the topic model further increases the classification accuracy by 9%.

5.4 Summary

OLDA described in Chapter 3 has certain advantages compared to conventional data-driven
approaches. Firstly, OLDA uses the semantical meanings of the words and integrating the
fact that individual words may have multiple meanings and that different words may have the
same meaning. This enables the ability of OLDA to perform the modelling independently
of the particular set of words describing the topics. Secondly, OLDA can be trained with a
self-training procedure, which reduces the amount of classified training data for supervised
machine learning. For conventional approaches, generating the training data is expensive
and time-consuming as it relies on humans to collect, read and manually classify the data in
a consistent manner. However, OLDA still has some drawbacks. Firstly, the introduction
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of all semantical meanings of words also introduces irrelevant information in the context.
OLDA ignores semantical structures in texts, such as the relationships between words and
semantical meanings. Secondly, the construction time of the topic model using OLDA (with
or without the self-training process) still took quite a long time.

In this chapter we propose a novel approach based on OLDA that uses not only ontological
information about the semantical meaning of the words but also integrates relations between
these ontological information embedded in documents, allowing topics to be represented
more faithfully and independently to the particular set of words used to describe them. This
approach, that we called Relation-Ontology-Driven Latent Dirichlet Allocation (ROLDA),
can be combined with a self-training phase to produce a semi-supervised method (ST-OLDA),
which requires only a small amount of pre-classified training data. We also developed a
distributed cloud computing process that can be used for ROLDA and OLDA, which reduced
the training time required.

Our experiments, using the four datasets “20 Newsgroups”, “Reuters R8”, “Reuters
R52" and “WebKB”, show that the addition of the relationships between concepts into
OLDA significantly increases the accuracy of the classification. In addition, when used with
distributed cloud computing, this significantly reduces the time required for training.

Our main conclusions can be summarised as follows:

1) The inclusion of the relationship component reduces the self-training time by nearly half
using the supervised procedure and two distinct self-training procedures. In particular, it
reduces the time needed for training using the self-training procedure proposed by [Pavlinek
and Podgorelec, 2017] by nearly half in the 20 Newsgroups dataset.

2) The inclusion of the relationship component also increases the accuracy of the classification
regardless of the self-training method employed by between 1 and 6 percentual points
(depending on the training method and dataset).

3) The inclusion of the distributed cloud computing process significantly reduces the training
time by nearly half using the supervised procedure and two distinct self-training procedures
while retaining the high classification accuracy.



Chapter 6

Conclusion and Future Work

This thesis looked for answers on the questions about topic modelling and classification,
especially, how one topic is different from others; what makes the documents being grouped
into one topic; if semantical meanings of words in a document matter in topic modelling; if
the context is important in topic modelling; and what tools and machine learning techniques
work best for topic classification.

Automatic classifying documents into topics need computers to look not only at the
occurrence of words but also at their meaning in the document. However, conventional topic
classification techniques treat topics as a bag of words, ignoring their semantical meanings
and context. During this PhD research, three main contributions were proposed:

• Incorporate ontology knowledge with LDA for topic classification to consider semanti-
cal meanings of unstructured texts.

• Extract structured relations from unstructured texts using an entity-based algorithm to
capture the semantical structures of unstructured texts. As a side contribution of this
work, we also created a new dataset from Pubmed for relation extraction task in the
biomedical domain.

• Combine the ontology knowledge and the extracted structured relations with LDA for
topic classification to consider both the semantical meaning and semantical structures
in texts.

The proposed relation extraction algorithm was published in a conference paper entitled “An
Entity-Based Algorithm for Multiple-Relation Extraction from Single Sentences” [Hao et al.,
2017]. The proposed topic classification incorporating ontology knowledge with LDA was
presented in a conference entitled “A self-Training Ontology-Driven Approach for Topic
Classification (ST-OLDA)”.
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6.1 To incorporate ontology knowledge with LDA for topic
classification

In order to consider the semantical meanings of words when constructing a topic model, we
proposed a novel topic modelling approach based on LDA that uses ontological information
obtained from ConceptNet or DBpedia about the semantical meaning of the words. Chapter 3
explains this approach, that we called Ontology-Driven Latent Dirichlet Allocation (OLDA).
By associating ontology knowledge, OLDA allows the topics to be defined more generally
in terms of ontological concepts rather than words. The proposed ontology-driven topic
model improves the topic coherence in comparison to the standard LDA model by integrating
ontological concepts with probabilistic topic models into a unified framework. The inclusion
of these ontological information also helps to increase the accuracy of the classification and
reduce the training and classification times.

In order to further reduce the amount of manually classified data needed and to increase
the speed of construction the topic model, we introduced a self-training phase, which can
produce a large amount of classified data from the relatively small amount of manually
classified data. This variant using the self-training phase is called Self-Training Ontology-
Driven Latent Dirichlet Allocation (ST-OLDA). Two alternatives in the self-training phase
were considered: a relatively ad hoc method employing a logistic regression model and
Pavlinek procedure using Gibbs sampling [Pavlinek and Podgorelec, 2017]. The inclusion of
this self-training procedure enables OLDA to construct the topic model using only 10% of
manually pre-classified data and the remaining 90% of unclassified data.

Two rounds of experiments with each of four datasets, “20 Newsgroups”, “Reuters
R8”, “Reuters R52” and “WebKB” were conducted for comparison with OLDA. We re-
implemented three existing topic modelling approaches: EM-NB, TF-IDF and LDA. Self-
training techniques were employed with the latter three approaches, resulting in six variations
in our experiments. In order to experiment with different ontologies, ConceptNet and
DBpedia were used for OntoLDA and OLDA. These topic models were then combined
with an SVM classifier to perform topic classifications. The experiments results, shown in
Table 3.1, Table 3.2 and Table 3.3, confirms that the addition of the semantical component
into LDA significantly increases the classification accuracy. When used with self-training,
these ontology knowledge reduces the required amount of manually classified training data
and also increases the performance of topic classification.
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6.2 To extract structured relations from unstructured texts
using an entity-based algorithm

In order to capture the semantical structures of unstructured texts, automatic extract relation
information embedded in text documents is important. In Chapter 4, our proposed entity-
based algorithm for relation extraction is presented. Unlike machine learning approaches
and rule-based approaches, the proposed algorithm does not require a large amount of
manually annotated training data or domain rules. Conventional rule-based approaches
that fail to capture relationships embedded in complex sentence structures as they focus
on verbs or relation connection words. Unlike them, the proposed algorithm can identify
multiple relationships based on the existence of multiple entities within a single sentence. By
utilising standard NLP techniques, the grammatical structure of the sentences are considered
to identify and extract relationships embedded within complex structures, including clauses,
conjunctions, and noun-preposition phrases. The algorithm also employed a relationship
polarity adjustment function so that it takes into account adjectives and adverbs modifying
relations’ intended meanings.

Five main improvements were employed in our entity-based algorithm:

• It replaced pronouns with their corresponding bio-entities allowing the extraction of
relationships that would otherwise be missed. By employing a co-reference resolution
component, chains between pronouns and their corresponding nominal words can
be formed. This step enables a better accuracy of Named Entity Recognition, which
results in better accuracy of relation extraction;

• It added the ability to extract relationships embedded in semantically similar verbs,
which are synonyms provided by UMLS, WordNet and VerbNet lists. The extracted
relation structures are the same as a conventional verb-based approach, which is a verb-
centric tuple Entity| Relation connection | Entity. Except that the relation connection
words in our approach are enlarged by the semantical similar corpus;

• It added the ability to extract multiple relationships embedded within certain types of
sentence structures. Specifically, three sentence structures were considered: clauses
structures, sentence level conjunctive structures and phrase level conjunctive struc-
tures. By identifying these structures and processing them into smaller semantic units,
multiple verb-centric relations embedded in complex long sentences can be extracted;

• It extracted relationships embedded within noun-preposition phrases. Specifically,
three patterns of noun-preposition phrases were considered. By identifying these
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structures, relations embedded in noun-preposition phrases can be extracted, which
means our algorithm can deal with most of the commonly used sentence structures;

• It determined the relationship polarity and fine-tuned the process by excluding rela-
tionships that have not been explicitly asserted in the text. By defining the concept of
relationship polarity, the polarity score of relation connection words can be computed
by using SentiWordNet so that the extracted relation can be associated with three
possible polarities: positive, negative or neutral. Only recording those with positive
polarities enable a better understanding of the texts.

In order to evaluate the performance of our approach, we analysed the extraction results
of algorithms using different combinations of contributions. Table 4.9 shows the complete set
of results on two datasets from different domains, which show that our proposed algorithm
performances the conventional rule-based algorithms by a large margin (overall precision
of 0.19 and recall of 0.297). The experiments using different datasets also confirms that
the proposed algorithm can be easily applied in new domains with training corpus. This
algorithm enables the machine to better capture the structured information embedded in the
unstructured text data.

6.3 To combine the ontology knowledge and the extracted
structured relations with LDA for topic classification

By combining the ontology knowledge and the extracted structured relations with the topic
model LDA, we proposed the topic modelling approach in Chapter 5 so that both the
semantical meaning and semantical structures embedded in the texts can be considered. This
approach that we called Relation Incorporated Ontology-Driven Latent Allocation (ROLDA),
allows topics to be represented more faithfully and independently in terms of relations of
ontology concepts rather than the particular set of words. We utilised the relation extraction
algorithm proposed in Chapter 4 to automatically extract relations from text documents.
The inclusion of the relationship component increases the topic classification accuracy and
reduces the required time for topic model construction. As for OLDA, ROLDA can also be
combined with a self-training phase to achieve a semi-supervised method (ST-OLDA).

In order to further increase the speed of the training procedure, we employed a computing
process of ROLDA and OLDA in a distributed manner. The inclusion of distributed cloud
computing significantly reduces the training time by nearly half. This distributed computing
process can be used in various topic modelling and classification methods to accelerate the
computing process.
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Two rounds of experiment with each of four datasets as OLDA were conducted. The
experiments results, shown in Table 5.4, Table 5.5 and Table 5.6, confirms that the addition of
the relation component into OLDA significantly increase the classification accuracy. When
used with self-training, ST-ROLDA reduces the required amount of manually classified
training data and also increases the performance of topic classification. When used with the
distributed cloud computing process, both ROLDA and OLDA requires nearly half of time
for training.

6.4 Application

The relation-ontology driven topic classification has an important significance for the research
community at large, such as information retrieval and recommendation systems [Paul and
Girju, 2009]. This approach can be very useful to computational linguists that can extract
novel ideas of novel topics, generate theoretical models from different linguistics, build
sophisticated systems and apply them to Education [Reisenbichler and Reutterer, 2019]. This
can be intensified in the future—both on the implementation of topic models and on the
level of extending the method itself. For example, this topic model can be shifted from an
exploitative method to one that solves hypotheses testing problems by modifying the outputs
of the topic model into two subsequent models [Sun et al., 2013].

Sentiment Analysis is probably the most common example of topic classification [Iman
et al., 2017, Recalde and Baeza-Yates, 2018]. It is a computational approach aiming to
identify opinion, sentiment, and subjectivity in text. Rather than classify documents based
on their topics, sentiment classification classifies them with opinions, such as positive or
negative or neutral [Ravi and Ravi, 2015]. According to a survey from Hootsuite, around half
of Americans have interacted with companies or institutions on at least one of the commonly
used social media networks [Kinsky et al., 2016]. For example, users send 500 million tweets
every day on Twitter [Stats]. These interactions may potentially have a lot of actionable
insights for businesses, such as detecting sales opportunities when customers are complaining
about certain products, identify users who are seeking help and route them to the support
team. Manually analysis these data would have to be deemed impossible. By employing
topic classification to perform sentiment analysis, one can easily make use of what people
are talking about on social media, how they are doing so and track trends over time. When
using the proposed relation-ontology driven topic classification for sentiment analysis, the
hidden semantical meanings of the words can be considered. And it also considers the
polarities of the extracted relations embedded in the texts, so that the polarities of semantical
structures can be considered. The inclusion of these two factors can potentially improve the



6.5 Future Work 120

accuracy of sentiment classification. By doing such sentiment analysis, one can easily answer
questions that require a large amount of texts data, such as “What are people complaining
about when they mention a particular brand?” or “What are people reacting to the Brexit
results?”. These information can then be useful for product analysis, brand monitoring,
customer support, and market research.

In addition, this topic classification method can be used to model customer behaviours
in online deal websites and give product recommendations [Zhao et al., 2017]. The topic
model can learn customers behaviours from their feedback (history of the search queries
or self reports) on products as well as self-explained features (filter or conditions on the
queries) [Pazzani and Billsus, 2007].

6.5 Future Work

There are many possible ways to extend this work. In terms of conceptual information used,
we would like to incorporate different types of concepts besides the current ones (e.g.: IsA and
RelateTo). Including more types of concepts means larger matrices and a more complicated
computing process for the creation of the topic model, which can result in longer time for
training. The extra concepts can potentially result in a too general topic model, and different
topics are difficult to be differentiated from each other. To address this, certain rules may
need to be generated to select the concepts of interest. Ontology from ConceptNet provides
a hierarchical network of different types of concepts. We would like to incorporate these
hierarchical relations between the ontology concepts into the topic model. These hierarchical
relations can potentially form a graph-learning network to achieve a fine-tuned selection of
concepts. The graph-learning network, for example, a Bayesian Network, can filter out the
more relevant concepts based on the frequency and co-occurrence in the context [Andrea
and Franco, 2012]. For example, Figure 6.1 shows an example of a knowledge graph using
ConceptNet ontology. In this example, words such as “PC supplier”, “Engineer”, “Risk
Manager”, etc can be connected to form a graph-learning network by hierarchical relations
between ontology concepts.

Furthermore, it is interesting to consider the inclusion of time-varying information and
analyse changes in topics over time. New terms and special words are occurring every day
over the Internet. The semantical meaning of these information is novel and unknown to most
existing ontologies. Integrating these time-dependent knowledge with relations and concepts
can result in a dynamic topic classification method, which can have great potential in the
field of marketing research. Including time-varying information with the topic classification
method can also be used in medical domains to analyse electronic health records (EHRs).
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Fig. 6.1 An example of knowledge graph using ConceptNet ontology

EHRs consist of thousands of variables representing a patient admission on each day, many
of which affect the patient’s condition. These variables, so-called time-varying data, change
over time and suggest that as a patient spends time in the hospital, his/her actual condition
will vary. Furthermore, how these variables affect their conditions is likely to change over
time. By including these time-varying data, the topic classification method can identify
patients at high risk of acquiring a Clostridium diffcile infection (CDI).

In terms of the relation extraction algorithm, we would like to further improve the
performance of the entity-based algorithm based on the discussion in Section 4.7. Three
open issues are described In order to deal with more complex prepositional phrases, more
general rules to understand the structure of the prepositional phrases should be designed.
In order to understand the use of adjective phrases associated with the relationships, the
polarity adjustment procedure can be modified. In order to identify the references to entities
occurring outside a sentence, the algorithm should be able to consider the context rather than
the single sentences.

In terms of applying the topic classification approach in different domains, we would like
to employ different corpus for training, such as the biomedical domain and medical domain.
Documents in these domains are normally unstructured in a narrative form with ambiguous
terms and typographical errors, consisting of a lot of domain-specific entities and phrases.
Manually annotate and classify these documents is time-consuming and requires knowledge
from domain experts. Due to the lack of training dataset, this is left for future work.
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