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Abstract 

• Impedance pneumography (ImP) is widely used for respiratory rate (RR) monitoring. 

However, ImP-derived RRs can be imprecise. Our aim was to develop a signal quality 

index (SQI) for the ImP signal, and couple it with a RR algorithm, to improve RR 

monitoring. An SQI was designed which identifies candidate breaths and assesses 

signal quality using: the variation in detected breath durations, how well peaks and 

troughs are defined, and the similarity of breath morphologies. The SQI categorises 32 

second signal segments as either high or low quality. Its performance was evaluated 

using two critical care datasets. RRs were estimated from high-quality segments using 

a RR algorithm, and compared with reference RRs derived from manual annotations. 

The SQI had a sensitivity of 77.7%, and specificity of 82.3%. RRs estimated from 

segments classified as high quality were accurate and precise, with mean absolute 

errors of 0.21 and 0.40 breaths per minute (bpm) on the two datasets. Clinical monitor 

RRs were significantly less precise. The SQI classified 34.9% of real-world data as high 

quality. We conclude that the proposed SQI accurately identifies high-quality 

segments, and RRs estimated from those segments are precise enough for clinical 

decision making. This SQI may improve RR monitoring in critical care. Further work 

should assess it with wearable sensor data. 
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Abbreviations 

 bpm breaths per minute 

CI  confidence interval 

 ImP impedance pneumography 

ICU intensive care unit  

MAE  mean absolute error 

R correlation coefficient  

RR  respiratory rate 

 SQI signal quality index 
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1. Introduction 

Respiratory rate is a key marker of the progression and severity of acute illness [1]. 

Consequently, respiratory rate (RR) is routinely monitored in acutely- and critically-ill 

hospitalised patients [2]. It is often estimated from the thoracic electrical impedance 

pneumography (ImP) signal, from which individual breaths can be identified and RR can be 

estimated [3], [4]. However, the ImP signal is susceptible to motion artifact [5], and RRs 

estimated from ImP signals have been found to be imprecise and inaccurate in several studies 

[6]–[9]. Erroneous RRs could adversely impact clinical decision making with true clinical 

deteriorations being missed, or false alerts of deteriorations being raised [10]. Therefore, 

methods for improving the performance of ImP-based RR monitoring could improve patient 

safety and reduce resource utilisation. 

A common approach to improve the estimation of parameters from physiological signals 

is to use a signal quality index (SQI) to identify segments of high quality signal, from which 

parameters can be more reliably estimated [11]. SQIs have been used to improve: (i) heart 

rate estimation from the electrocardiogram signal [11]; (ii) pulse rate estimation from the 

photoplethysmogram signal [12]; and (iii) cardiac output estimation from the arterial blood 

pressure signal [13]. However, little research has been conducted on the development of a 

SQI for RR estimation from the ImP signal. Previous studies of ImP signal processing 

techniques have focused on: motion artifact detection [14] and removal [15], [16]; 

suppressing cardiac content [17]; decomposition into cardiac and respiratory components 

[18]; calibration for respiratory parameter estimation [19]; and signal quality assessment 

during patient transport [10], [20]. In addition, we previously developed a technique termed 

the agreement SQI, to determine whether a segment of ImP signal is deemed to be of 

sufficiently high quality to estimate RR from it accurately [21] [22]. Whilst this technique has 

been applied to data from healthy volunteers and hospitalised patients, its performance has 

not been assessed, and was found to be sub-optimal in this work. Therefore, there is scope 

for developing a novel SQI to improve the performance of ImP-derived RRs in the hospital 

setting. 

The choice of algorithm to estimate RR from physiological signals also affects the 

performance of RR monitoring [23]. Different RR algorithms have been shown to have 

different performances when applied to the electrocardiogram and photoplethysmogram 

signals [24], and the ImP signal [25]. Indeed, a comparison of eight different RR algorithms 

applied to ImP signals acquired at rest found a fourfold increase in mean absolute error 

between the best and worst performing algorithms (which were either based on detecting 

individual breaths in the time domain, or identifying the frequency corresponding to the 
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maximum spectral power in the frequency domain) [25]. Therefore, it is important to ensure 

that a high-performance RR algorithm is used for ImP-based RR monitoring. 

The aim of this study was to develop a novel SQI, and couple it with a high performance 

RR algorithm, to improve the performance of ImP-based RR monitoring in the hospital 

inpatient setting. The primary objective was to assess the discriminatory performance of the 

novel SQI for distinguishing between high and low quality ImP signal segments. Our second 

objective was to compare the accuracy and precision of RRs obtained from high quality 

segments identified by the novel SQI when using: (a) RRs reported by a clinical monitor; and 

(b) RRs estimated using a high performance RR algorithm. Our third objective was to assess 

the frequency at which RRs are reported when using the novel SQI in a real-world setting. The 

novel SQI was compared with the agreement SQI, and the generalisability of the findings was 

assessed using a second independent dataset. In Section 2 we describe the datasets used in 

this study, the signal processing methods, and the analysis methods. The results are 

presented in Section 3. The potential implications of this work for clinical practice are 

discussed in Section 4. This study builds on the work presented in [23], [26], in which the 

algorithm design was presented, but its performance was not assessed on separate datasets. 
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2. Materials and Methods 

2.1 Datasets 

Two datasets were used in this study: the RRest-vent dataset and the MIMIC dataset. 

Both datasets contain ImP signals, which were split into adjacent 32 s segments for analysis. 

A duration of 32 s was chosen as a compromise between a longer duration (which in other 

applications has been found to improve RR estimation) and a shorter duration (which could 

allow shorter high quality segments to be identified between transient artifacts and allow 

changes in RR to be tracked more accurately) [27]. 

The RRest-vent dataset was used to: (i) develop the SQI; (ii) assess its discriminatory 

performance; (iii) compare the accuracy and precision of RRs reported by a clinical monitor, 

and estimated by a RR algorithm; and (iv) assess the impact of false positives (segments falsely 

identified as high quality by the novel SQI) on RR estimates. This dataset, described in [23], 

contains data from 59 hospital patients during their recovery from major cardiac surgery at 

St Thomas’ Hospital (London, UK). The following data were recorded from the clinical 

monitors (IntelliVue MP70, Philips Medical Systems, Andover, MA, USA) used as part of 

routine post-operative care: ImP signals at a sampling rate of 125 Hz, and the RRs estimated 

by the monitor from its ImP signals at 1 Hz. Data were acquired throughout patients’ critical 

care stay using BedMaster data acquisition software (v.4.1.12, Excel Medical Electronics, 

Jupiter, FL, USA). Data were extracted at three time points during each patient’s stay: whilst 

mechanically ventilated on the intensive care unit (ICU, in the hour immediately prior to 

disconnection from the ventilator); unassisted on ICU (within the hour after disconnection); 

and, shortly before discharge from critical care to the ambulatory ward (within the eight hour 

period leading up to discharge). A total of 29.5 hours of data were extracted, consisting of 10 

minutes of data (18 segments) at each time point for each patient. This dataset is a subset of 

the LISTEN dataset, which was collected in accordance with the Declaration of Helsinki as part 

of National Clinical Trial no. 01549717, and approved by the Bloomsbury Research Ethics 

Committee (reference 12/LO/0526) [28]. Patients provided informed consent to participate 

in the study. The 59 patients studied in this work were selected from the wider LISTEN dataset 

using the following criteria: (i) patients had to follow a typical recovery trajectory (moving 

from intensive care to a high-dependency unit, to an ambulatory ward) and be in sinus rhythm 

during the recording periods; and (ii) patients were excluded if they were paced, or if a full 

set of physiological signals could not be recorded from the monitor. 

The RRest-vent dataset was split into training and testing subsets. The training subset, 

consisting of data from 34 subjects, was used to design the novel SQI. The testing subset, 

consisting of data from the remaining 25 subjects, was used for analysis. Each of the 1,350 



An impedance pneumography signal quality index 

 

 

6 

segments in the testing subset was manually labelled as being either high or low quality, 

where a “high quality” label was only given if the single expert annotator was confident that 

all the breaths in that segment could be accurately identified. In addition, individual breaths 

were annotated in those segments deemed to be of high quality in any of: the manual 

annotations, the novel SQI, or the agreement SQI. These were used to calculate reference RRs 

(calculated as the mean breath duration) to compare with those estimated from the ImP 

signal. 

The MIMIC dataset was used to: (i) compare the accuracy and precision of RRs reported 

by a clinical monitor, and estimated using a RR algorithm; and (ii) assess the frequency at 

which RRs are reported when using the novel SQI in a real-world setting. For this study, a 

single hour of data from each of 100 adult critical care patients at the Beth Israel Deaconess 

Medical Center (Boston, MA, USA) was extracted from the MIMIC-III Waveform Database 

Matched Subset [29], [30]. The resulting dataset was termed the RRest-mimic dataset. 

Patients were continuously monitored using the same clinical monitors as in the RRest-vent 

dataset [31]. Similarly, ImP signals sampled at 125 Hz and RRs estimated from the ImP signals 

at 1 Hz, were extracted from the routine monitoring data. Individual breaths were manually 

annotated in a sample of the segments deemed to be of high quality by the novel SQI: breaths 

were annotated in five segments for each of the 87 patients with at least five high-quality 

segments; annotations were made for between one and five segments for 8 patients; and no 

high quality segments were available to annotate in 5 patients. A total of 452 segments were 

annotated. The MIMIC-III Waveform Database Matched Subset is freely available. Details of 

how to access the data used in this study (the RRest-mimic dataset), and the Matlab ® code 

used to download and extract the data, are provided in the Data Access Statement.  

2.2 The novel signal quality index algorithm 

The novel SQI was developed by adapting the approach proposed by Orphanidou et al. 

for cardiac signals in [11]. It takes a 32 s segment of ImP signal as an input, and outputs the 

signal quality (either high or low), and a RR estimate for high-quality segments. The novel SQI 

consists of three stages. Firstly, individual breaths are detected in the signal. Secondly, breath 

durations are assessed for physiological plausibility. Any signal segments with implausible 

cycle timings were deemed to be of low quality. Thirdly, template matching is used to assess 

the similarity of breath morphologies as shown in Figure 1. If the correlation between the 

average breath's morphology, and each individual breath's morphology, is high enough then 

the signal segment is deemed to be of high quality. The three stages of the SQI are illustrated 

in Figure 2, and are now described in detail. 
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Figure 1: Impedance (ImP) signal quality assessment: A novel SQI algorithm was designed to 
assess the quality of ImP signal segments. On the left, two segments are shown with dots 
indicating detected breaths. On the right, the corresponding breath templates (red) and 
individual breaths (grey) are shown. The upper segment is of low quality, as indicated by a low 
correlation coefficient (R) of 0.54. The lower segment is of high quality, as indicated by a high 
R of 0.97. 
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Figure 2: A flowchart of the signal quality index (SQI) algorithm. 

 

The first stage, detection of breaths, was performed as follows. The ImP signal was low-

pass filtered to remove frequency content above 1 Hz (60 breaths per minute, bpm) using a 

Tukey window to avoid edge effects, and downsampled to 5 Hz. Each 32 s segment was 

normalised to have a mean of 0 and standard deviation of 1; inverted; and any linear trend 

was removed. Individual breaths were then identified in the ImP signal using a modified 

version of the Count-orig method proposed in [32], containing the following steps: peaks and 

troughs were detected as local extrema; a threshold was defined as 0.2 times the 75th 

percentile of peak values; peaks with an amplitude below this threshold were ignored; valid 

breaths were identified as consecutive peaks separated by at least one trough with a negative 

32 s ImP segment

Detect breaths

- Low-pass filter below 1 Hz

- Detect breaths using Count-Orig algorithm

- Identify ‘valid’ breaths

- Estimate RR from mean duration of valid breaths

Assess plausibility of valid breath durations

1. Is the normalised standard deviation of breath 

durations < 0.25 ?

AND

2. Are < 15 % of breath durations > 1.5, or < 0.5, 

times the median breath duration?

AND

3. Is > 60 % of the segment duration occupied by 

valid breaths?

Assess similarity of breath morphologies

- Calculate a template breath

- Calculate correlation between individual breaths 

and the template

4. Is mean correlation coefficient > 0.75?

Yes

Yes

High Quality Low Quality
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amplitude. This process helped reduce the influence of spurious peaks. The RR was estimated 

from the mean duration of valid breaths. 

The second stage, assessment of the physiological plausibility of valid breath durations, 

was performed as follows. Three criteria were used: (i) the normalised standard deviation of 

breath durations had to be < 0.25 to permit only moderate variation in the durations of 

detected breaths; (ii) the proportion of breath durations > 1.5, or < 0.5, times the median 

breath duration had to be < 15 % to prevent errors due to outlying breath durations; (iii) > 60 

% of the segment duration had to be occupied by valid breaths. Any segment which did not 

satisfy these three criteria was deemed to be of low quality. 

The third stage, assessment of the similarity of breath morphologies, was performed as 

follows. The similarity was quantified using the mean correlation coefficient between 

individual breath morphologies, and a template breath calculated as the mean breath 

morphology (centred on the identified breaths). The correlation coefficient had to be > 0.75.  

The criteria and thresholds used in the SQI were manually chosen from a range of possible 

values to optimise performance on the RRest-vent training subset. This approach resulted in 

similar performance to automatic determination of thresholds using a linear logistic 

regression model. 

2.3 The agreement signal quality index algorithm 

The previously proposed agreement SQI was used as a comparator in this study, since it 

was also originally designed to determine whether RR can be accurately estimated from a 

segment of ImP signal in the hospital setting [21] [22]. The agreement SQI consists of 

estimating RR using independent time- and frequency-domain techniques, calculating the 

difference between the two resulting RRs, and concluding that the signal segment is of high 

quality if and only if the difference is < 2 bpm. In this study the two RRs were estimated by: 

(i) using the time-domain Count-orig method described in Section 2.2; and (ii) calculating the 

power spectrum of the signal using the Welch Periodogram (analysing 32s windows with 

overlapping sections of duration 12.8s, and 50% overlap), and estimating the RR as the 

frequency corresponding to the maximum power spectral density. These methods were 

chosen because of their high performance in [23]. Further details on these two methods are 

provided in [24]. 

2.4 Assessing the Discriminatory Performance of the Novel SQI 

The discriminatory performance of the novel SQI for distinguishing between high and low 

quality signal segments was assessed by comparing its labels of signal quality to the manual 
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annotations on the RRest-vent testing subset. Discriminatory performance was quantified 

using sensitivity and specificity, with high quality as the positive class. 95% confidence 

intervals (CIs) were calculated using bootstrapping with 1000 bootstrap replicas. 

The performance of the novel SQI was compared to that of the previously proposed 

agreement SQI using the two-sided asymptotic McNemar test at the 5% significance level [33]. 

The statistical measures of discriminatory performance reported for the novel SQI were also 

reported for the agreement SQI. 

2.5 Comparing RRs obtained from a clinical monitor and using a RR algorithm 

The RRest-vent testing subset and the RRest-mimic datasets were used to compare the 

accuracy and precision of RRs obtained from high quality segments when using: (a) RRs 

reported by a clinical monitor, and (b) RRs estimated using a high-performance RR algorithm. 

To do so, RRs were obtained from those reported by the clinical monitor by calculating the 

median of the RRs outputted by the monitor during each segment. The RR algorithm used to 

estimate RRs from ImP signals was the Count-Orig algorithm [32], since it has performed well 

in several previous studies [23]–[25]. This consisted of identifying valid breaths (as performed 

in the first stage of the novel SQI, described in Section 2.2), and calculating RR as the mean 

duration of valid breaths. The reference RR for each segment was calculated as the mean 

breath duration derived from the manually annotated breaths. 

A further subgroup analysis of the RRest-vent testing subset was conducted to assess the 

impact of false positives (i.e. low quality segments falsely identified by the SQI as high quality) 

on RR estimates. The accuracy and precision of RRs estimated using the RR algorithm were 

calculated for two subgroups of segments: those which were correctly identified as high 

quality by the novel SQI, and those which were incorrectly identified as high quality (as 

detemined through manual annotation). 

The following statistical methods were used to assess the accuracy and precision of RRs. 

The agreement between each method’s RRs and the reference RRs was quantified using the 

Limits of Agreement technique [34]. The accuracy of RRs was quantified using the bias (i.e. 

mean error, corrected for repeated measurements within subjects), 

𝑏𝑖𝑎𝑠 =  
∑ (∑ [𝑅𝑅𝑟𝑒𝑓𝑖𝑗 − 𝑅𝑅𝑒𝑠𝑡𝑖𝑗]

𝑚𝑖
𝑗=1 )𝑛

𝑖=1

∑ 𝑚𝑖
𝑛
𝑖=1

 

which was calculated as the mean difference between the estimated RRs, RRest, and the 

reference RRs, RRref, across the i = 1, …, n subjects, each of which had mi pairs of estimated 

and reference RRs. The precision of RRs was assessed by calculating the limits of agreement 



An impedance pneumography signal quality index 

 

 

11 

(i.e. the expected range of 95% of errors around the systematic bias), 1.96s, denoted as 2SD, 

where s is the standard deviation of the errors. Any segments in which the estimated RR was 

zero were excluded from the analysis. The method described in [35] was used to account for 

repeated measurements per subject. s was calculated from the total variance: the sum of the 

within subjects variance, 𝜎2
𝑤, and between subjects variance, 𝜎2

𝑏, which were estimated 

using one-way analysis of variance: 

𝜎2
𝑤 =  𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

𝜎2
𝑏 =  

𝑀𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡 − 𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

(
(∑ 𝑚𝑖)2 − ∑ 𝑚𝑖

2

(𝑛 − 1) ∑ 𝑚𝑖
)

 

where MSresidual is the mean square error, and MSsubject is the difference between the mean 

squares for subjects, and the sums are from i = 1, …, n. 

Two further statistics were used to assess the utility of RRs. The coverage probability, 

CP2, is the proportion of high quality segments for which highly useful RRs are returned, 

defined as being within 2 bpm of the reference RR. The mean absolute error (MAE) was also 

reported. 

Scatter plots of estimated and reference RRs, and Bland-Altman plots of RR errors, were 

provided. Errors of > 10 bpm were truncated to 10 bpm on Bland-Altman plots. 

2.6 Assessing the frequency at which RRs are reported when using the novel SQI 

The frequency at which RRs are reported when using the novel SQI in a real-world setting 

was assessed using the real-world RRest-mimic dataset. Firstly, the proportion of segments 

which were deemed to be high quality by the novel SQI was assessed, both for the entire 

dataset and for individual subjects (reported as the median and inter-quartile range). 

Secondly, the durations of gaps between consecutive high-quality segments were assessed.  

Case studies were provided to illustrate clinical scenarios in which the novel SQI 

combined with a RR algorithm may confer clinical benefit over current clinical monitoring.  
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3. Results 

3.1 The discriminatory performance of the novel SQI 

The novel SQI had a sensitivity and specificity (95% CIs) of 77.7 (74.9 – 80.4) and 82.3 

(79.0 – 85.2) % respectively on the RRest-vent testing subset. The novel SQI classified 79.6 % 

of the segments correctly, and only 7.3 % of segments were misclassified as high quality when 

the reference annotation was low quality. The confusion matrix is provided in Table 1: these 

indicate that there was a good balance between high and low quality data in the testing 

subset: 58.7 % high quality and 41.3 %  low quality. 

Table 1: The discriminatory performance of the novel SQI, assessed on the RRest-vent 
testing subset. The confusion matrix for the novel SQI is shown, indicating the number of 
ImP signal segments in each category, and the percentage of segments deemed to be of 
high and low quality by manual annotations (bottom row). 

 

Actual Class 

(determined by manual annotation) 

High Quality Low Quality 

Predicted Class 

(determined by 

novel SQI) 

High 

Quality 
615 99 

Low 

Quality 
177 459 

  58.7% 41.3% 

 

In comparison, the previously proposed agreement SQI had a sensitivity and specificity 

of 59.7 (56.3 – 62.9) and 74.9 (71.4 – 78.2) % respectively on the same data. It classified 66.0% 

of the segments correctly, and misclassified 10.4 % of segments as high quality. The confusion 

matrix is provided in the Supplementary Material. The discriminatory performance of the 

novel SQI was superior to that of the agreement SQI, as shown by the McNemar test rejecting 

the null hypothesis of marginal homogeneity between the two SQIs (p < 0.001). Both the 

sensitivity and specificity of the novel SQI were significantly higher than that of the agreement 

SQI. Additional results for the novel and agreement SQIs across the different clinical settings 

in the RRest-vent testing subset are provided in the Supplementary Material. 

3.2 A comparison of RRs obtained using a RR algorithm and from a clinical monitor  

Table 2 shows the performance of two methods for obtaining RRs from ImP segments 

deemed to be of high quality by the novel SQI: the Count-Orig RR algorithm, and obtaining RR 

estimates from the clinical monitor RRs. RR estimates were more precise when obtained using 
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the RR algorithm, with limits of agreement of 0.0  1.0 bpm and 0.1  1.8 bpm on the two 

datasets. In comparison, when using clinical monitor RRs the limits of agreement were 

significantly wider (0.3  3.7 bpm and -0.1  6.0 bpm), indicating less precision. The results 

indicate that performance was significantly improved when using the RR algorithm, rather 

than using RRs provided by the clinical monitor. Indeed, the frequencies of erroneous RRs 

(those with an error of > 2.0 bpm, indicated by CP2) were only 1.4 % and 7.7 % when using 

the RR algorithm, compared to 15.1 % and 29.8 % when using RRs from the monitor. 

Furthermore, the frequencies of highly erroneous RRs which could affect treatment decisions 

(those with an error of > 5.0 bpm), were 0.1 % and 0.2 % when using the novel SQI, compared 

to 3.1 % and 10.2 % when using the clinical monitor RRs. The reference and estimated RRs 

obtained using each method are shown in Figure 3. 

 

Table 2: The performance of RRs estimated from segments deemed to be of high quality by 
the novel SQI. Results are reported for each dataset, when: (i) using the Count-Orig RR 
algorithm to estimate RRs; and (ii) obtaining RR estimates from the clinical monitor RRs. CI: 
confidence interval. Statistics are as defined in Section 2.5. 

 

RRest-vent testing subset RRest-mimic dataset 

Novel SQI & 

RR Algorithm 

Novel SQI & 

Clinical Monitor RRs 

Novel SQI & 

RR Algorithm 

Novel SQI & 

Clinical Monitor RRs 

Bias [bpm] 

(95% CI) 

0.0 

(-0.2 – 0.1) 

0.3 

(-0.2 – 0.7) 

0.1 

(-0.1 – 0.2) 

-0.1 

(-0.8 – 0.5) 

2SD [bpm] 

(95% CI) 

1.0 

(0.8 – 1.2) 

3.7 

(2.9 – 4.4) 

1.8 

(1.5 – 2.1) 

6.0 

(4.9 – 7.1) 

CP2 [%] 98.6 84.9 92.3 70.2 

iCP5 [%] 0.1 3.1 0.2 10.2 

MAE [bpm] 0.21 1.04 0.40 1.90 

Number of 

windows 
714 709 452 423 

 

The impact of false positives on RR estimates was assessed by calculating RRs (using the 

Count-orig algorithm) from those segments falsely identified as high quality by the novel SQI 

in the RRest-vent testing subset. RR estimates derived from the 94 segments which were 

falsely identified as high quality had limits of agreement of 0.2  2.1 bpm (within which 95 % 

of errors are expected to lie). In comparison, RR estimates derived from the 580 correctly 

identified high-quality segments had limits of agreement of -0.1  0.7 bpm. The limits of 
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agreement were significantly wider for RR estimates derived from low-quality segments, 

indicating less precision in those segments which were actually of low quality. 



 15 

RRest-vent testing subset       RRest-mimic dataset 
 

                                      

       

                                       

Figure 3: The performance of RRs estimated from segments deemed to be of high quality by the Novel SQI in each dataset. Results are shown 
for each dataset, and when using the RR algorithm or clinical monitor RRs. Upper plots show the estimated RRs plotted against the reference 
RRs. Lower plots show the errors against the reference RRs. 
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3.3 The frequency at which RRs were reported when using the novel SQI 

The impact of the novel SQI on the proportion of segments for which RRs were reported 

was assessed using the real-world RRest-mimic dataset. Overall, the novel SQI identified 

34.9% of the 10,782 non-flat-line segments as high quality in this dataset (the 517 flat-line 

segments were excluded from the analysis). On a per subject basis, the novel SQI identified a 

median (lower – upper quartiles) of 32.7 (12.3 – 55.3) % of each subject’s non-flat-line 

segments as high quality. The RR algorithm estimated RRs from all of the segments deemed 

to be high quality, indicating that the novel SQI allowed RRs to be obtained for approximately 

one third of the time in this real-world setting. There was a median (lower – upper quartiles) 

of 64 (32 – 224) s between RRs obtained from high quality segments identified by the novel 

SQI. The most recent RR was less than five and ten minutes ago for 79.7 % and 89.6 % of the 

time respectively. 

 Figure 4 shows four case studies demonstrating potential benefits of using the novel SQI 

and RR algorithm, explained in the figure caption.  

(a)     (b)  

(c)    (d)  

Figure 4: Case studies demonstrating the utility of the novel SQI combined with a RR algorithm 
(grey shading indicates normal RRs): (a) both the clinical monitor and the novel approach 
track changes in RR precisely; (b) the clinical monitor outputs a high RR in a period of low 
signal quality (at 3 mins, as indicated by the absence of a reference RR), which could result in 
a false alert; (c) between 3 and 10 mins the clinical monitor outputs normal RRs in a period of 
predominantly low signal quality, which may result in an alert being falsely suppressed; (d) 
the clinical monitor incorrectly outputs mostly normal RRs when the true RRs are low, despite 
the signal quality being high, which may also result in an alert being falsely suppressed. Data 
obtained from the RRest-vent dataset. 
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4. Discussion 

In this study, we presented a novel SQI for use with the ImP signal. The SQI classifies 

periods of ImP signal as either high or low quality by identifying candidate breaths, assessing 

the physiological plausibility of the resulting breath-to-breath timings, and assessing the 

consistency of the signal morphology of each breath. The SQI was assessed on two datasets, 

across a range of clinical settings. It showed good performance for discriminating between 

high and low quality data, outperforming a previous technique from the literature. In 

addition, when using a RR algorithm, RRs derived from the segments identified as high quality 

by the novel SQI were highly precise and accurate across a wide range of RRs. A real-world 

assessment indicated that RRs could be obtained for approximately one third of the time 

when using the novel SQI. The results indicate that the SQI may confer benefit in high-

dependency settings. In the future it may also be found to provide benefit when used with 

wearable sensors, in both hospital and community settings. 

The criteria used by the SQI to discriminate between high- and low-quality data provide 

insight into the reasons for its performance. The SQI only deemed segments to be of high 

quality if: they did not exhibit high variation in breath durations, the majority of the segment 

was occupied by breaths with well defined peaks and troughs, and these breaths exhibited 

similar morphology. This indicates the key strength of the SQI: it identifies high quality 

segments in which there is not high variability in the breathing pattern over short periods 

(seconds), and in which RR can be accurately estimated. It seems likely this would have utility 

for detecting changes in RR which accompany acute deteriorations in monitored hospital 

patients, where current nurse observations are separated by several minutes or hours. 

However, it is not suitable for use in settings where either continuous RRs are required (such 

as for detection of apnea and respiratory arrests), or the breathing pattern is expected to be 

highly irregular (such as during ataxic breathing, cluster breathing, and potentially Cheyne-

Stokes respiration [36], or in neonates). 

This study builds on previous work on assessing the quality of physiological signals. We 

designed the novel SQI by adapting the approach presented by Orphanidou et al. for 

electrocardiogram (ECG) and photoplethysmogram (PPG) signals [11]. This approach was 

adapted for use with respiratory signals, and provided results comparable with previous work. 

The ability of the SQI to distinguish between high and low quality data (sensitivity and 

specificity of 78 and 82 % respectively on the RRest-vent testing subset) was not as high as 

when the approach was used with the ECG (94 and 97 %) and the PPG (91 and 95 %). However, 

the RRs estimated from segments deemed to be high quality had minimal bias and a precision 

of 1.0 and 1.8 bpm (2SD on each dataset), which is comparable to previous studies of gold-
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standard RR measurements (e.g. 1.3 bpm when using an oral-nasal pressure sensor in [24]), 

and a better performance than typically achieved when estimating RR from ECG or PPG signals 

[24]. Furthermore, the MAEs of 0.21 and 0.40 bpm observed when using the novel SQI with a 

RR algorithm in this study improves on the best MAE of 0.42 bpm reported in a comparison 

of previous algorithms without an SQI (in laboratory rather than clinical conditions) [25]. The 

high performance of estimated RRs can be attributed to the selection of high-quality 

segments, and the use of the Count-orig RR algorithm, which has previously been shown to 

provide superior performance to other RR estimation techniques [24], [25], [32]. 

Nonetheless, the observation that RRs were less precise in segments falsely identified as high 

quality by the novel SQI indicates that the SQI could be improved in the future. 

The novel SQI may impact clinical practice in several settings. Its performance on data 

acquired from static bedside monitors in this study indicates that it may be suitable for a 

prospective clinical study in high-dependency settings. However, it is likely to confer greater 

benefit outside of the critical care setting, where there is a lower ratio of staff to patients. In 

areas such as the ambulatory ward, or home monitoring, the SQI could potentially improve 

the alert rate resulting from ImP monitoring using wearable sensors. The case studies 

demonstrated how it could reduce the false alert rate, and increase the true alert rate, which 

would reduce healthcare costs and improve patient safety respectively. However, a key 

limitation of this study is that the performance of the SQI has not been assessed on data from 

ambulatory patients. Therefore, further work is required to assess its performance in this 

setting before it could reasonably be used with wearable sensor data. Such studies could be 

performed using both ImP monitoring and reference respiratory monitoring (such as by a 

facemask) during rest and exercise: the Vortal dataset would be suitable for such studies [24], 

[37]. In addition, the performance of the SQI was assessed against signal quality and breath 

annotations provided by a single annotator. Future studies could provide further, 

complementary evidence on its performance in additional clinical settings. 

The SQI is also expected to have impact in the research setting. A recent review of 

techniques to estimate RR from the ECG and PPG identified the need to obtain reliable RRs 

from reference respiratory signals to evaluate the performance of ECG- and PPG-based RR 

algorithms [27]. Several datasets which have been previously used to develop RR algorithms 

contain reference ImP signals, such as the MGH/MF and MIMIC datasets [29], [30], [38]. The 

MIMIC dataset, containing data from critical care patients, is widely used for other purposes 

too [39]. The SQI is suitable for extracting reliable RRs from this dataset, increasing the scope 

of studies which can be conducted on the dataset.  
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5. Conclusions 

The novel ImP SQI presented in this study was found to discriminate well between low- 

and high-quality data, and result in highly accurate and precise RR estimates when coupled 

with a high performance RR algorithm. The SQI was assessed in the critical care setting, and 

may confer clinical benefit for identifying acute deteriorations in that setting. It is also a 

valuable resource for future research, enhancing the value of existing datasets containing ImP 

signals. A Matlab ® implementation of the SQI is publicly available (see Supplementary 

Material). Importantly, the SQI is not suitable for use in settings where RRs are required 

continuously. Furthermore, it has not yet been assessed outside of the critical care setting, 

and in the presence of irregular breathing patterns. It could potentially have great benefit if 

used with wearable sensors, making this a promising avenue for future research. 
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1. Additional Results 

The confusion matrix from which the discriminatory performance of the novel SQI was 

assessed was presented in Table 1 of the main text. The corresponding confusion matrix for 

the agreement SQI is present in Table S3. 

Table S3: The discriminatory performance of the agreement SQI, assessed on the RRest-vent 
testing subset. The confusion matrix for the agreement SQI is shown, indicating the number 
of ImP signal segments in each category, and the percentage of segments deemed to be of 
high and low quality by manual annotations (bottom row). 

 

Actual Class 

(determined by manual annotation) 

High Quality Low Quality 

Predicted Class 

(determined by 

novel SQI) 

High 

Quality 
473 140 

Low 

Quality 
319 418 

  58.7% 41.3% 

 

The discriminatory performance of the novel SQI was summarised for the entire RRest-vent 
dataset in Table 1 and in the main text. The corresponding results separated according to 
clinical setting, for both the novel SQI and the agreement SQI, are provided in Table S4 and   
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Table S5 respectively. The performance of RR estimates obtained from segments deemed 

to be of high quality by each SQI is also provided for completeness. For comparison, the 

performance of RR estimates obtained from segments manually deemed to be of high quality 

is shown in Table S6. 
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Table S4: The performance of the novel signal quality index (SQI) on the RRest-vent testing 
subset. 

 All 
Ventilated in 

ICU 

Unassisted in 

ICU 

Shortly before 

ambulatory ward 

Assessing signal quality 

Sensitivity [%] (95% CI) 
77.7  

(74.9 – 80.4) 

82.4 

(77.6 – 86.8) 

76.7 

(70.0 – 81.8) 

74.0 

(68.9 – 78.7) 

Specificity [%] (95% CI) 
82.3 

(79.0 – 85.2) 

74.0 

(66.8 – 80.3) 

90.7 

(86.3 – 94.3) 

79.2 

(72.4 – 85.4) 

Number of segments 1,350 450 450 450 

The performance of RR estimates obtained using the Count-Orig RR algorithm 

Bias [bpm] (95% CI) 
0.0 

(-0.2 – 0.1) 

-0.1 

(-0.3 - 0.1) 

0.0 

(-0.3 - 0.3) 

0.0 

(-0.2 – 0.2) 

2SD [bpm] (95% CI) 
1.0 

(0.8 – 1.2) 

0.9 

(0.6 – 1.2) 

1.4 

(0.9 – 1.9) 

0.8 

(0.5 – 1.1) 

CP2 [%] 98.6 99.3 97.4 98.8 

iCP5 [%] 0.1 0.0 0.5 0.0 

MAE [bpm] 0.21 0.23 0.24 0.18 

Number of segments 714 271 192 251 

The performance of RR estimates obtained from clinical monitor RRs 

Bias [bpm] (95% CI) 
0.3 

(-0.2 – 0.7) 

0.3 

(-0.5 – 1.1) 

0.3 

(-0.7 – 1.3) 

0.2 

(-0.4 – 0.8) 

2SD [bpm] (95% CI) 
3.7 

(2.9 – 4.4) 

3.6 

(2.3 – 5.0) 

4.5 

(2.8 – 6.3) 

2.9 

(1.9 – 4.0) 

CP2 [%] 84.9 84.5 81.2 88.3 

iCP5 [%] 3.1 3.3 5.2 1.2 

MAE [bpm] 1.04 0.92 1.36 0.94 

Number of windows 709 271 191 247 
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Table S5: The performance of the agreement signal quality index (SQI) on the RRest-vent 
testing subset. 

 All 
Ventilated in 

ICU 

Unassisted in 

ICU 

Shortly before 

ambulatory ward 

Assessing signal quality 

Sensitivity [%] (95% CI) 
59.7 

(56.3 – 62.9) 

48.7 

(42.7 – 54.4) 

63.2 

(56.9 – 69.1) 

67.2 

(62.0 – 72.2) 

Specificity [%] (95% CI) 
74.9 

(71.4 – 78.2) 

71.8 

(64.2 – 77.7) 

81.5 

(76.3 – 86.3) 

68.8 

(61.5 – 75.3) 

Number of segments 1,350 450 450 450 

The performance of RR estimates obtained using the Count-Orig RR algorithm 

Bias [bpm] (95% CI) 
0.4 

(0.0 – 0.8) 

0.4 

(-0.3 – 1.1) 

0.3 

(-0.2 – 0.8) 

0.5 

(-0.3 – 1.2) 

2SD [bpm] (95% CI) 
3.0 

(2.4 – 3.7) 

2.9 

(1.8 – 4.1) 

2.3 

(1.4 – 3.2) 

3.5 

(2.2 – 4.8) 

CP2 [%] 89.6 87.4 89.1 91.5 

iCP5 [%] 1.6 1.6 0.5 2.4 

MAE [bpm] 0.60 0.62 0.53 0.64 

Number of segments 613 183 183 247 

The performance of RR estimates obtained from clinical monitor RRs 

Bias [bpm] (95% CI) 
0.4 

(-0.1 – 1.0) 

0.4 

(-0.6 – 1.3) 

0.4 

(-0.9 – 1.6) 

0.5 

(-0.3 – 1.3) 

2SD [bpm] (95% CI) 
4.5 

(3.6 – 5.5) 

4.1 

(2.5 – 5.8) 

5.7 

(3.6 – 7.9) 

3.8 

(2.4 – 5.2) 

CP2 [%] 80.0 80.9 74.6 83.3 

iCP5 [%] 4.9 3.8 7.2 4.1 

MAE [bpm] 1.32 1.13 1.72 1.18 

Number of segments 610 183 181 246 
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Table S6: The performance of RR estimates obtained from segments manually identified as 
high quality in the RRest-vent testing subset. 

 All 
Ventilated in 

ICU 

Unassisted in 

ICU 

Shortly before 

ambulatory ward 

The performance of RR estimates obtained using the Count-Orig RR algorithm 

Bias [bpm] (95% CI) 
0.0 

(-0.2 – 0.1) 

-0.1 

(-0.3 - 0.1) 

0.0 

(-0.2 - 0.3) 

0.0 

(-0.2 – 0.3) 

2SD [bpm] (95% CI) 
1.1 

(0.9 – 1.3) 

1.0 

(0.6 – 1.3) 

1.3 

(0.8 – 1.8) 

1.1 

(0.7 – 1.5) 

CP2 [%] 97.9 98.7 96.9 98.0 

iCP5 [%] 0.0 0.0 0.0 0.0 

MAE [bpm] 0.24 0.25 0.25 0.22 

Number of segments 681 238 191 252 

The performance of RR estimates obtained from clinical monitor RRs 

Bias [bpm] (95% CI) 
0.2 

(-0.3 – 0.7) 

0.1 

(-0.7 – 0.9) 

0.3 

(-0.9 – 1.4) 

0.2 

(-0.5 – 0.8) 

2SD [bpm] (95% CI) 
3.9 

(3.1 – 4.7) 

3.7 

(2.4 – 5.1) 

5.1 

(3.1 – 7.1) 

3.0 

(1.9 – 4.2) 

CP2 [%] 84.9 86.1 79.5 88.0 

iCP5 [%] 3.1 2.5 5.8 1.6 

MAE [bpm] 1.07 0.88 1.47 0.96 

Number of segments 677 238 190 249 
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2. Reproduction Instructions 

The curation and analyses of the RRest-mimic subset reported in this paper can be 

reproduced as follows. 

Reproducing the analysis 

These steps can be used to quickly reproduce the analysis using the curated and annotated 

dataset. 

1. Download the curated and annotated dataset from Zenodo using this direct 

download link. 

2. Run the analysis using the run_imp_sqi_mimic.m script. 

Reproducing data extraction, curation and analysis 

These steps include downloading the raw data files, extracting data from these files, 

collating the dataset, manually annotating the data, and performing the analysis. 

1. Use the ImP_SQI_mimic_data_importer.m script to download raw MIMIC data files 

from PhysioNet, and collate them into a single Matlab file. 

2. Prepare the dataset for manual annotation by running the run_imp_sqi_mimic.m 

script. 

3. Manually annotate the signals by running the run_mimic_imp_annotation.m script - 

the annotations are stored in separate files (the original annotation files are 

available here). 

4. Import the manual annotations into the collated data file by re-running the 

ImP_SQI_mimic_data_importer.m script. 

5. Run run_imp_sqi_mimic.m to perform the analysis described in the publication. 

 

https://doi.org/10.5281/zenodo.3973770
https://zenodo.org/record/3973771/files/mimic_imp_sqi_data.mat?download=1
https://zenodo.org/record/3973771/files/mimic_imp_sqi_data.mat?download=1
https://zenodo.org/record/3973771/files/run_imp_sqi_mimic.m?download=1
https://zenodo.org/record/3973771/files/ImP_SQI_mimic_data_importer.m?download=1
https://zenodo.org/record/3973771/files/run_imp_sqi_mimic.m?download=1
https://zenodo.org/record/3973771/files/run_imp_sqi_mimic.m?download=1
https://zenodo.org/record/3974113/files/2019_annotations.zip?download=1
https://zenodo.org/record/3973771/files/ImP_SQI_mimic_data_importer.m?download=1
https://zenodo.org/record/3973771/files/run_imp_sqi_mimic.m?download=1
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