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ARTICLE

Cathelicidins prime platelets to mediate arterial
thrombosis and tissue inflammation
Joachim Pircher1,2, Thomas Czermak1, Andreas Ehrlich1, Clemens Eberle1, Erik Gaitzsch3, Andreas Margraf3,

Jochen Grommes 4,5, Prakash Saha6, Anna Titova1, Hellen Ishikawa-Ankerhold1, Konstantin Stark1,2,

Tobias Petzold1,2, Thomas Stocker1, Ludwig T Weckbach1,3, Julia Novotny1, Markus Sperandio2,3,

Bernhard Nieswandt7,8, Alberto Smith6, Hanna Mannell3, Barbara Walzog 3, David Horst9,

Oliver Soehnlein2,4,10, Steffen Massberg1,2 & Christian Schulz 1,2

Leukocyte-released antimicrobial peptides contribute to pathogen elimination and activation

of the immune system. Their role in thrombosis is incompletely understood. Here we show

that the cathelicidin LL-37 is abundant in thrombi from patients with acute myocardial

infarction. Its mouse homologue, CRAMP, is present in mouse arterial thrombi following

vascular injury, and derives mainly from circulating neutrophils. Absence of hematopoietic

CRAMP in bone marrow chimeric mice reduces platelet recruitment and thrombus formation.

Both LL-37 and CRAMP induce platelet activation in vitro by involving glycoprotein VI

receptor with downstream signaling through protein tyrosine kinases Src/Syk and phos-

pholipase C. In addition to acute thrombosis, LL-37/CRAMP-dependent platelet activation

fosters platelet–neutrophil interactions in other inflammatory conditions by modulating the

recruitment and extravasation of neutrophils into tissues. Absence of CRAMP abrogates

acid-induced lung injury, a mouse pneumonia model that is dependent on platelet–neutrophil

interactions. We suggest that LL-37/CRAMP represents an important mediator of platelet

activation and thrombo-inflammation.
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P latelets play a fundamental role in hemostasis. They also
contribute to inflammatory conditions and modulate the
host immune response1,2, thereby representing an impor-

tant link between innate immunity and thrombosis3,4. Platelets
bind to circulating leukocytes and foster their recruitment to the
inflamed or injured vessel wall5–7. These interactions, particularly
with neutrophils, play an important role in the pathophysiology
of common conditions, such as acute lung injury (ALI), ischemic
stroke, and organ ischemia-reperfusion injury8,9. Previous studies
have addressed the question of how platelets affect leukocyte
functions and recruitment10,11, but the reciprocal effects of

leukocytes on platelets and the implications for thrombo-
inflammatory processes remain largely elusive.

Innate immune cells actively participate in thrombotic pro-
cesses. Through initiation of blood coagulation they can induce
local thrombosis, which contributes to the containment of
pathogens and represents a central mechanism in host defense4.
Immunothrombosis has long been considered a sole feature of the
microvasculature; however, leukocytes are also abundant in
arterial thrombi of patients with acute myocardial infarction
(AMI)12,13. Blood leukocytes, together with platelets, accumulate
rapidly at sites of arterial injury14,15, where activated neutrophils

b c

a
Human arterial thrombus (IHC)

Mouse arterial thrombus (IHC)

LL-37 MPO CD41 DAPI CRAMP CD41 DAPI

LL-37 Control

*

ControlCRAMP

Human art. thromb. (IF)

*

Mouse art. thromb. (IF)

d

*

LL-37-5-FAM
Scrambled-5-FAM
Vehicle

50

100

150

0

C
el

l c
ou

nt

5-FAM (log)
1 2 3

M
F

I

0

50

100

150

200

250

LL
-3

7
5-

F
A

M

S
cr

.
5-

F
A

M

P= 0.002

CRAMP-5-FAM Scrambled-5-FAM

e f

GPIbGPIbMerge Merge

Fig. 1 Cathelicidins are present in human and mouse arterial thrombi. a, b Representative images of coronary artery thrombi isolated from five patients with acute
myocardial infarction. a Immunohistochemistry for LL-37 indicated enrichment within leukocytes (arrowhead), but also stained leukocyte-free areas (asterisk).
Bars, 200 µm (overview) and 10 µm (magnification). b Immunofluorescence analysis of LL-37 (red), myeloperoxidase (MPO, yellow), CD41 (platelets, green),
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(GPIb, red in merged image) in the forming thrombus. Right: Image for 5-FAM-labeled control peptide and platelets (GPIb, red in merged image). Bar, 500 µm.
See also Supplemental Movies 1, 2. f Flow cytometry analysis of LL-37 binding to isolated human, platelets in vitro. 5-FAM-labeled LL-37 (red), scrambled 5-
FAM-labeled control peptide (blue), or vehicle (gray). Graph shows mean and SEM. P-value was determined by unpaired t-test
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release their nuclear material in the form of decondensated
nucleosomes (neutrophil extracellular traps, NETs) to induce
platelet activation and initiate coagulation16,17. Neutrophils also
release their granule content containing various enzymes that
promote blood coagulation14. The role of innate immune cells in
large-vessel thrombosis and specifically the molecular cues link-
ing leukocytes with thrombus formation are, however, incom-
pletely understood. Here we examine the role of cathelicidins in
thrombotic and inflammatory conditions.

Cathelicidins are antimicrobial peptides that form an integral
effector component of the innate immune system in vertebrates.
The only human cathelicidin identified to date is LL-37, which
derives from its precursor protein hCAP18 through proteolytic
cleavage18. The respective homologue in mice is cathelicidin-
related antimicrobial peptide (CRAMP). LL-37 was detected in
neutrophils and other leukocyte populations (i.e., lymphocytes,
monocytes, and eosinophils)19–22. It is also present in tissues,
where high local concentrations can be reached23. LL-37/CRAMP
exerts broad antimicrobial effects in response to bacterial24 and
viral infections25 and, dependent on the context and leukocyte
subset involved, both pro- and anti-inflammatory effects of this
peptide have been described26. These complex and differential
functions were assigned to the ability of LL-37 to activate a broad
variety of receptors including the formyl peptide receptor (FPR2),

chemokine (C-X-C motif) receptor 2 (CXCR2), or purinergic
receptors (e.g., P2X7 ionotropic receptor)18. LL-37/CRAMP
induces a proinflammatory phenotype in endothelial cells27, and
absence of CRAMP is associated with reduced atherosclerosis28,29.
However, while LL-37/CRAMP has been extensively studied in
classical inflammatory cells, the effects of cathelicidins on platelets
remain elusive. Here, we show that cathelicidins directly activate
platelets and foster platelet–neutrophil interactions. Deletion of
hematopoietic CRAMP reduces arterial thrombus formation and
abrogates inflammation-induced pulmonary injury. Thus, we
identify CRAMP/LL-37 as an important mediator of thrombo-
inflammation.

Results
Cathelicidins are present in human and mouse arterial
thrombi. Recent histological studies in human patients with AMI
showed that accumulation of immune cells, and specifically
neutrophils, represents a hallmark of coronary artery thrombo-
sis12,13. The role of immune cell-derived molecules in thrombosis
is, however, incompletely understood. We analyzed tissue taken
from five patients with AMI and found that cathelicidins were
abundant in arterial thrombi (Fig. 1a, b and Supplementary
Fig. 1a, b). LL-37 was not only concentrated within leukocytes
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Fig. 2 Cathelicidins contribute to arterial thrombosis. a–d Ferric chloride induced thrombus formation in the mouse carotid artery. a Representative
intravital microscopy images of wild type (wt→wt) and CRAMP-deficient (ko→wt) BM chimeras. Thrombus size was visualized by in vivo staining with
DiOC6. Bar, 400 µm. Analysis of b time to complete thrombotic occlusion of the carotid artery, c maximal thrombus size, and d duration of vessel
occlusion (n= 6). e, f Platelet recruitment and aggregate formation after carotid artery injury induced by temporary mechanical ligation in wild type
(wt→wt) and CRAMP-deficient (ko→wt) BM chimeras. Platelets were labeled in vivo using a DyLight488-labeled non-blocking GPIbβ antibody.
e Representative intravital microscopy images. Bar, 50 µm. f Quantitative analysis of platelet recruitment by measuring mean fluorescence intensity (MFI)
at the site of injury versus background fluorescence (n= 4). g, h Hemostatic parameters. g Tail bleeding time (n= 4). h Clotting time and clot formation
time induced by either extrinsic or intrinsic activation of coagulation (n= 6). Graphs show mean and SEM. All P-values were determined by unpaired
t-test except for h (extrinsic clotting time, Mann–Whitney U-test)
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(Fig. 1a, b and Supplementary Fig. 1a, c), but also associated with
areas of the platelet-rich thrombus in which leukocytes were
mostly absent (Fig. 1a). In mice, CRAMP was present in arterial
thrombi induced by injury of the carotid artery. Similar to human
thrombi, CRAMP was readily detectable in neutrophils but was
also found in leukocyte-poor areas of the thrombus (Fig. 1c, d and
Supplementary Fig. 2a), suggesting that cathelicidins associate
with platelets. To further investigate this interaction, we injected
fluorescent CRAMP into wild type (WT) mice and induced injury

of the carotid artery. Using intravital microscopy, we observed
that CRAMP-5-FAM, but not the scrambled 5-FAM-control
peptide, associated with platelets at the site of platelet-thrombus
formation (Fig. 1e, Supplementary Movie 1, 2). Fluorescent
cathelicidin also bound to isolated platelets in vitro
as determined by flow cytometry (Fig. 1f). In summary, the
experiments indicate that LL-37/CRAMP binds to platelets. We
were therefore interested in studying the role of cathelicidins for
platelet function and thrombus formation.
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Together with platelets, neutrophils were rapidly recruited to
the injured carotid artery (Supplementary Fig. 3a). Depletion of
neutrophils before arterial injury abrogated the accumulation of
CRAMP in mouse thrombi, indicating that neutrophils were the
most relevant source of cathelicidins in the blood circulation
(Supplementary Fig. 3b). While cathelicidins were abundant in
arterial thrombi, CRAMP plasma levels did not change
significantly in response to arterial thrombosis (Supplementary

Fig. 3c), suggesting a local enrichment within the forming
thrombus.

Cathelicidins contribute to arterial thrombosis. In order to
investigate the role of hematopoietic cathelicidins in thrombo-
inflammation, we generated chimeric mice by transplanting bone
marrow (BM) of WT (wt→wt) or Cramp−/− (ko →wt) mice.
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Absence of CRAMP led to reduced thrombus formation (Fig. 2a
and Supplementary Movie 3, 4). Time to complete vessel occlu-
sion was prolonged (Fig. 2b), maximal thrombus size reduced
(Fig. 2c), and the duration of vessel occlusion was shortened
(Fig. 2d), suggesting that hematopoietic CRAMP contributes to
arterial thrombus formation and stability. To address the role of
CRAMP in platelet accumulation at the site of injury, we carried
out ligation of the carotid artery, which produces a more localized
injury than that induced by ferric chloride (FeCl3). Carotid artery
ligation, resulted in rapid platelet adhesion and aggregate for-
mation, which was diminished in CRAMP-deficient BM chimera
(Fig. 2e, f). Taken together, these data show that absence of
CRAMP reduces platelet activation and arterial thrombosis.
Bleeding time and plasma clotting time were not altered in
CRAMP-deficient BM chimera (Fig. 2g, h). Likewise, blood cell
counts and baseline platelet activation markers were similar to
controls (Supplementary Table 1, 2).

Neutrophil activation was a common feature in arterial
thrombosis. Approximately 60% of Ly6G+ cells stained positive
for citrullinated histone 3 (citH3), a marker for neutrophil
priming toward NETosis30–32. Similar numbers of citH3+
neutrophils were found in thrombi of WT and Cramp−/− BM
chimeric mice (Supplementary Fig. 4a-d).

Cathelicidins induce platelet activation and secretion. The
impact of CRAMP on arterial thrombosis and on platelet
aggregation at the arterial wall (Fig. 1), led us to speculate of a
role for cathelicidins in platelet activation. To identify the
underlying mechanisms we carried out in vitro experiments using
isolated human and mouse platelets. LL-37 dose-dependently
induced alpha degranulation of human platelets as shown by P-
selectin (Fig. 3a, Supplementary Fig. 5a) and CD40L surface
expression, as well as by CD40L release into the supernatant
(Fig. 3b, c). In addition, LL-37 induced expression of the
inflammatory molecules IL-1β (Fig. 3d) and HMGB1 (Fig. 3e).
These effects were not observed upon incubation with a scram-
bled peptide, which served as negative control. In contrast, sti-
mulation of isolated platelets with LL-37 had no effect on
activation of the integrin GPIIb/IIIa (Fig. 3f). Furthermore, LL-37
did not induce platelet spreading on fibrinogen-coated slides
(Supplementary Fig. 6a). Consequently, LL-37 does not induce
platelet aggregation itself (Supplementary Fig. 6b), nor does it
influence ADP-, Collagen-, or thrombin-receptor activating
peptide (TRAP)-induced aggregation in citrate- or heparin-
anticoagulated platelet rich plasma (PRP) (Supplementary
Fig. 6c).

To determine whether the mouse homologue CRAMP exerts
effects on mouse platelets, we isolated platelets from WT C57Bl/6
mice and stimulated them in vitro with increasing concentrations
of CRAMP. Similar to the effects observed in human platelets,
stimulation of mouse platelets with CRAMP-induced upregula-
tion of platelet P-selectin (Fig. 3g) and CD40L surface expression
(Fig. 3h), but had no effect on integrin GPIIb/IIIa activation as
measured by JON-A-binding (Fig. 3i).

Cathelicidin-dependent signaling in platelets. We next analyzed
the signaling pathways underlying cathelicidin-induced activation
of human and mouse platelets using different inhibitors. Blocking
of intracellular calcium release by BAPTA (15 μmol/L) and of
phospholipase C (U-73122 5 μmol/L) reduced P-selectin and
CD40L surface expression of human platelets in response to LL-
37 (Fig. 4a and Supplementary Fig. 7a). While blocking of G-
protein signaling (pertussis toxin 100 ng/mL or cholera toxin 5
ng/mL) had no effect on LL-37 induced platelet activation (Fig. 4b
and Supplementary Fig. 7b), prior inhibition of the tyrosine
kinases Syk (R406, 5 μmol/L) and Src-family kinases (Dasatinib,
1 μmol/L) reduced LL-37 induced platelet activation (Fig. 4c and
Supplementary Fig. 7c). Accordingly, LL-37 led to phosphoryla-
tion of tyrosine kinases Syk and Src (Fig. 4d, Supplementary
Fig. 8a, b). Furthermore, inhibition of STAT3 (Stattic 20 μmol/L),
which has been attributed non-transcriptional functions in tyr-
osine kinase signaling in platelets33, also attenuated LL-37
induced platelet activation (Fig. 4e). Scavenging of extracellular
calcium (EGTA 2mmol/L) or blocking of calpain (MG101 20
μmol/L), phosphoinositide 3-kinase (wortmannin 1 μmol/L),
protein kinase C (GF109203X 10 μmol/L), or p38-MAPK
(SB203580 10 μmol/L), had no effect on LL-37-induced P-
selectin surface expression on platelets (Supplementary Fig. 7d,
e). Similar effects were observed for LL-37-induced surface
expression of CD40L (Supplementary Fig. 7f, g).

We next addressed the surface receptors involved in LL-37
mediated platelet activation. Addition of a GPVI receptor
blocking antibody (HGP5C4) decreased LL-37 induced activation
of isolated human platelets (Fig. 4f). Inhibition of GPIIb/IIIa-
receptors using Abciximab (10 μg/mL) or Tirofiban (1 mg/mL,
Fig. 4g), as well as inhibition of FPR1 (Boc-MLF 10 μmol/L),
FPR2 (WRW4 1 μmol/L), or purinergic P2X7 receptor (A438079,
1 μmol/L) did not influence LL-37-induced P-selectin expression
on platelets (Fig. 4h, i). Comparable results were also observed for
LL-37-induced surface expression of CD40L (Supplementary
Fig. 7h-j).

Similar to man, CRAMP-induced upregulation of P-selectin on
mouse platelets was inhibited in the presence of a GPVI receptor-
depleting antibody (JAQ1, Fig. 4j). Furthermore, CRAMP-
induced platelet activation was decreased in PF4Cre:Sykflox/flox

mice with platelet deficiency of Syk (Fig. 4k). Platelets of these
animals also showed no increase in phosphorylation of PLCγ
compared with respective controls (Fig. 4l, Supplementary
Fig. 8c). These data infer that both human and mouse
cathelicidins elicit platelet activation involving, at least in part,
GPVI receptor and calcium-dependent downstream signaling via
Syk and PLC.

Cathelicidins induce platelet–neutrophil interactions. Cathe-
licidins induced robust platelet activation with P-selectin and
HMGB1 surface expression (Fig. 2). We therefore investigated
whether this pathway promotes platelet–neutrophil interactions.
Using flow cytometric analysis we found that platelet pre-

Fig. 4 Cathelicidin-dependent signaling in platelets. a–i LL-37 induced signaling in isolated human platelets. a–c Flow cytometry analysis of platelet P-
selectin surface expression in the presence of a the calcium chelator BAPTA (n= 5) or a phospholipase C inhibitor (U-73122, n= 6), b pertussis or cholera
toxin to inhibit G-protein signaling (n= 4), or c inhibitors of tyrosine kinases Src-family kinases (Dasatinib, n= 7) and Syk (R406, n= 5). d Representative
western blots of phosphorylated Src-family kinase and phosphorylated Syk upon incubation of platelets with LL-37. Collagen was used as positive control
for tyrosine kinase phosphorylation, β-actin served as loading control. Images are representative of three independent blots. e–i Flow cytometry analysis of
LL-37 platelet P-selectin surface expression in the presence of e STAT3 small molecule inhibitor (Stattic, n= 6), f GPVI antibody (HGP5C4, n= 9), g
GPIIb/IIIa antibody (Abciximab or Tirofiban, n= 4), h formyl-peptid-receptor (FPR1 or FPR2) antibody, and i inhibitors against the purinergic P2X7-receptor
(Boc-MLF 10, WRW4 or A438079, n= 4). j–l CRAMP-induced signaling in isolated mouse platelets. j P-selectin surface expression in the presence of a
GPVI depleting antibody (JAQ1, n= 6). k P-selectin surface expression and l phospholipase C phosphorylation in platelet lysates from platelet-specific Syk-
deficient mice and respective littermates after stimulation with CRAMP (flow cytometry: n= 10 Syk−/− and n= 5 Syk+/+ animals, western blot analysis
n= 5 each). Graphs show mean and SEM. P-values were determined by unpaired (a, f, j–l) or paired (c, e, h) t-test
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stimulation with LL-37 increased platelet–neutrophil aggregates
formation as compared with platelets incubated with a scrambled
version of the peptide (Fig. 5a, Supplementary Fig. 5b). Formation
of platelet–neutrophil aggregates was prevented by a blocking
antibody against P-selectin (Fig. 5b). These interactions were
accompanied by neutrophil activation, as indicated by increased
CD11b expression (Fig. 5c), production of reactive oxygen species

(ROS) (Fig. 5d) and L-selectin shedding (Fig. 5e) after incubation
with LL-37 stimulated platelets. LL-37 pre-stimulated platelets
also induced the release of extracellular nucleosomes from neu-
trophils (Fig. 5f). In contrast, NET formation was not observed in
the absence of platelets or following pre-stimulation with the
scrambled peptide (Fig. 5g, h). Both neutrophil activation
(Fig. 5c) and NET formation (Fig. 5g, h) was abrogated in the
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presence of a P-selectin antibody. These data show that
cathelicidin-primed platelets can induce neutrophil activation and
NET release.

To further analyze the role of CRAMP for platelet–neutrophil
interactions in vitro, we performed co-incubation assays of isolated
mouse platelets with BM-derived mouse neutrophils. Platelets pre-
stimulated with CRAMP showed increased platelet–neutrophil
aggregates formation compared with unstimulated platelets
(Fig. 5i). This effect was blunted in co-incubation assays carried
out with platelets from P-selectin deficient (P-Sel−/−) mice (Fig. 5i).
Conversely, phorbol ester (50 μmol/L phorbol 12-myristate 13-
acetate (PMA)) activated neutrophils from Cramp−/− mice had
reduced aggregate formation with WT platelets compared with
neutrophils from Cramp+/+ mice (Fig. 5j). Absence of CRAMP did
not confer differences in P-selectin, CD40L or activated GPIIb/IIIa
expression on platelets under steady-state conditions in vivo

(Supplementary Table 3). In summary, neutrophil-derived cathe-
licidins elicit platelet activation and platelet–neutrophil interactions
in vitro.

CRAMP-activated platelets promote neutrophil extravasation.
Next, we investigated whether CRAMP-induced platelet activa-
tion influences inflammatory processes in vivo. Platelets isolated
from WT donor mice, labeled with rhodamine-6G and treated
with CRAMP (20 μmol/L) or vehicle were injected into lysozyme
M (LysM)-eGFP mice, in which mostly neutrophils but also
a fraction of monocytes express the green fluorescent protein
(GFP)34. Intravital microscopy was carried out in a model of
trauma-induced inflammation of the cremaster muscle. CRAMP-
pretreatment of donor platelets increased platelet tethering in
postcapillary venules (Fig. 6a, b and Supplementary Movie 5, 6).
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Fig. 6 CRAMP-activated platelets promote neutrophil recruitment and extravasation. a–f Intravital microscopy of the mouse cremaster muscle following
trauma-induced inflammation. Platelets were isolated and pretreated ex vivo with CRAMP or vehicle. 107 platelets were then injected into lysozyme 2
(LysM)-eGFP (neutrophil reporter) recipient mice. a Tethering of CRAMP-pretreated platelets in cremaster muscle venules and arterioles (n= 8 vessels
each, see also Supplemental Movies 3, 4). b Representative intravital epifluorescence microscopy images of neutrophils (white). Bar, 20 µm.
c Platelet–neutrophil aggregates formation in whole blood of GFP-positive neutrophils and transfused platelets that were pretreated with CRAMP or
vehicle control (n= 3). d Neutrophil rolling, e adhesion efficiency, and f extravasation in cremaster muscle venules (n= 10–12 vessels of four different
animals). Graphs show mean and SEM. P-values were determined by unpaired t-test

Fig. 5 Cathelicidins induce platelet–neutrophil interactions. a–h Co-incubation experiments. Human platelets were pretreated with LL-37 or scrambled
control peptide (Scra) and platelet–neutrophil interactions were analyzed. a–e Flow cytometry analysis of a platelet–neutrophil aggregates formation (n=
9), b platelet–neutrophil aggregates in the presence of a blocking antibody against P-selectin and respective isotype control (n= 5), c CD11b expression on
neutrophils, d neutrophil intracellular formation of reactive oxygen species (ROS), e shedding of neutrophil L-selectin (n= 4). TNFα (50 ng/mL) served as
positive control. f–h Neutrophil extracellular trap (NET) formation assay. f Representative epifluorescence image of a NET. DAPI (nuclear stain, blue),
myeloperoxidase (MPO, red), and citrullinated histone H3 (citH3, green). Bar, 10 µm. g NET formation was induced by platelets that were pretreated with
LL-37 or a GPVI-activating antibody (HGP4C9). Upper row (DAPI nuclear stain, white), middle row (MPO, red), and bottom row (merged image of DAPI in
blue, and MPO in red). Arrowheads indicate NET. Bar, 10 µm. h Quantitative analysis of NET formation (n= 4). i, j Interactions of mouse cells. i
Platelet–neutrophil aggregates formation of mouse neutrophils with platelets isolated from wild type (WT) or P-selectin deficient mice (n= 7). j
Platelet–neutrophil aggregates formation after co-incubation of isolated WT platelets with PMA (50 µmol/L) activated neutrophils of WT or CRAMP−/−

mice (n= 4). Graphs show mean and SEM. P-values were determined by one-way repeated measures ANOVA with Bonferroni correction (a–c), paired
t-test (d, e), ANOVA on Ranks/Dunn’s method (h) or Mann–Whitney U-test (i, j)
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Moreover, CRAMP-pretreated platelets formed more aggregates
with neutrophils as measured ex vivo in whole blood (Fig. 6c).
While the number of rolling leukocytes was not affected (Fig. 6d),
injection of CRAMP-pretreated platelets enhanced trauma-
induced adhesion (Fig. 6e), as well as extravasation (Fig. 6f) of
neutrophils in cremaster muscle venules. Thus, cathelicidin-
induced platelet–neutrophil interactions promote neutrophil
extravasation at sites of tissue inflammation.

Cathelicidins contribute to ALI. Acid-induced ALI in mice is
driven by platelet–neutrophil interactions35. We therefore aimed
to determine whether cathelicidins play a role in pulmonary
injury and inflammation. LL-37 was abundant in lung specimen
of patients with pneumonia (patients 1–4), including a case of
aspiration pneumonia (patient 1). LL-37 expression was asso-
ciated with the infiltration of inflammatory cells (Fig. 7a, b). We
then investigated the role of the mouse cathelicidin CRAMP in a
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mouse ALI model in vivo. Cramp−/− mice compared with WT
animals showed lower amounts of neutrophils in the alveolar
space (Fig. 7c, d, Supplementary Fig. 5c), as well as in the
interstitial (including pulmonary vascular) compartment
(Fig. 7e). To define the contribution of hematopoietic CRAMP to
these effects, we carried out the ALI model in BM chimeric mice.
CRAMP-deficient BM chimeric mice displayed reduced amounts
of neutrophils in the alveolar space (Fig. 7g) and in the interstitial
(including pulmonary intravascular) compartment (Fig. 7h).
citH3+ neutrophils were also detected in lung tissue after ALI,
albeit with lower frequency (5–6%) as compared to arterial
thrombi (Fig. 7i). Absence of CRAMP reduced the absolute
number of citH3+ neutrophils (Fig. 7j), but did not alter the
percentage of citH3+ cells in the ALI model (Fig. 7k).

CRAMP-deficient BM chimeric mice showed decreased
alveolar permeability (Fig. 7l). Ex vivo analysis revealed a
reduction in platelet–neutrophil aggregates in the systemic
circulation and the vascular compartment of the lung in
CRAMP-deficient chimeras (Fig. 7m, n). Circulating platelets of
CRAMP-deficient chimeras also showed reduced surface expres-
sion of P-selectin and decreased activation of GPIIb/IIIa
compared with WT BM chimeras (Fig. 7o, p), but reduction in
surface HMGB1 and phosphatidylserine did not reach statistical
significance (Fig. 7q, r). Importantly, absence of CRAMP in BM
chimeric mice was associated with a survival benefit (Fig. 7s) and
an improved oxygen saturation following ALI (Fig. 7t).

In summary, cathelicidins are abundant in inflamed lung tissue
of mice and men. Absence of hematopoietic CRAMP reduces
platelet–neutrophil interactions and abrogates ALI. These find-
ings suggest that cathelicidins are important signaling molecules
provided by neutrophils that activate platelets and promote
inflammatory conditions and acute thrombosis.

Discussion
We report here that hematopoietic LL-37/CRAMP induces pla-
telet activation and secretion, which mediates platelet–leukocyte
aggregate formation and neutrophil recruitment at sites of
inflammation. We identified LL-37/CRAMP in thrombi and
demonstrated that depletion of CRAMP reduces the development
of arterial thrombosis in mice. Further, in a mouse model driven
by platelet–neutrophil interactions, absence of CRAMP abrogated
pulmonary injury. Inhibition of hematopoietic cathelicidin may
therefore represent a novel strategy to reduce thrombo-
inflammatory disease.

Arterial thrombosis is a common condition with high mor-
bidity and mortality. While platelets are considered key elements
of this process, immune cells have recently been identified
in coronary artery thrombi of patients with AMI12,13. The
implications of these findings are only partly understood, but the
local release of leukocyte content at sites of vascular injury has
been implicated in promoting thrombosis. Neutrophil-derived

nucleosomes form a pro-thrombotic matrix that activates plate-
lets and stimulates factor XII-dependent coagulation14,36. In
addition, enzymes, such as serine proteases, cleave tissue factor
pathway inhibitor thereby enhancing TF-dependent coagula-
tion14. Immune cell-derived molecules therefore seem to play a
role in large-vessel thrombosis. While various non-hematopoietic
cells (endothelia and epithelia) release LL-37/CRAMP upon
activation24,37, our findings in Cramp−/− BM chimeric mice
demonstrate the relevance of hematopoietic CRAMP in arterial
thrombosis and lung injury. Furthermore, depletion of neu-
trophils from the blood circulation diminished CRAMP in
arterial thrombi, suggesting that neutrophils are the most relevant
source of hematopoietic LL-37/CRAMP in the pathologic con-
ditions analyzed. Together with platelets, neutrophils are rapidly
recruited to the site of arterial injury. Through their release of LL-
37/CRAMP, neutrophils contribute to the activation and aggre-
gation of platelets, to promote thrombosis. We provide evidence
that cathelicidins directly bind to platelets in vitro, and
fluorescence-tagged CRAMP, but not the scrambled version of
the cathelicidin peptide, readily associates with arterial thrombi
in vivo. While it was not possible to visualize the release of
cathelicidins from neutrophil granules and their direct binding to
platelets by intravital microscopy due to technical limitations, our
experiments clearly demonstrate the enrichment of cathelicidins
within arterial thrombi. Further, the immunohistochemistry of
both human and mouse arterial thrombi indicates that cathe-
licidins are not only concentrated within neutrophils but also
associate with thrombus areas that are platelet rich and devoid of
leukocytes. In mice with genetic absence of CRAMP we then
show that thrombus growth and stability is significantly reduced.
Taken together, these experiments indicate that neutrophil-
derived LL-37/CRAMP accumulates in arterial thrombi and
promotes platelet activation and thrombus formation.

The physiological concentrations of cathelicidins prevailing at
sites of injury are incompletely understood, which poses a
potential limitation. Analysis of bronchoalveolar lavage (BAL)
fluid and samples taken from different mucosal sites estimates
concentrations to be around 1 and 10 μmol/L for LL-37 and
CRAMP, respectively38–40, which are much higher than the
concentrations reached in plasma23. The in vitro concentrations
applied in this study (5 μmol/L LL-37, and 20 μmol/L CRAMP)
are in this order of magnitude. Further, in our histological ana-
lysis we found that cathelicidins were abundant in inflamed lungs
and in arterial thrombi, which is in line with the local enrichment
of LL-37/CRAMP within other tissues23,38–40. However, mea-
suring in vivo levels of cationic peptides has been challenging41,
and the precise concentrations reached locally at the site of tissue
injury remain to be determined. In the concentrations indicated
above, LL-37/CRAMP induced activation of isolated human and
mouse platelets resulting in the secretion of the adhesive mole-
cules P-selectin and CD40L as well as other inflammatory
molecules such as IL-1β and HMGB1. In vitro, LL-37 did not

Fig. 7 Cathelicidins promote lung injury. a, b Representative histology images of lung tissue obtained from patients with acute pneumonia and two control
subjects without tissue inflammation. Patient 1 presented with aspiration pneumonia. Immunohistochemistry for LL-37 (a, b) and hematoxylin-eosin (H&E)
staining (b). Bars, 100 µm (a) or 50 µm (b). c–t Mouse model of acute lung injury (ALI) induced by intratracheal injection of 0.1 M HCl. c Representative
images of H&E stained mouse lung tissue after ALI in wild type and CRAMP−/− mice. Bar, 50 µm. d Alveolar neutrophil counts, e number of interstitial
(including pulmonary intravascular) neutrophils, and f alveolar permeability after ALI in wild type (n= 6) and CRAMP−/− mice (n= 7). g Alveolar
neutrophils and h interstitial (including pulmonary intravascular) neutrophils after ALI in wild type (wt→wt) and CRAMP−/− (ko→wt) chimeras (n= 7).
i–k Analysis of citrullinated histone H3 (citH3) staining in Ly6G+ neutrophils. i Representative image of lung tissue after ALI. CitH3 (green), Ly6G (red),
DAPI (nuclear stain, blue). Bar, 10 µm. j, k Quantification of citH3 staining in Ly6G+ neutrophils (n= 6). l Alveolar permeability after ALI (n= 7). m, n Flow
cytometry analysis of platelet–neutrophil aggregates after ALI in m systemic circulation (n= 6) and n the pulmonary vascular compartment (n= 7). o–r
Flow cytometry analysis of o P-selectin surface expression, p GPIIb/IIIa activation, q HMGB1 surface expression, and r phosphatidylserine (PS) exposure on
platelets. s Survival curves and t oxygen saturations after 30min after ALI induction (n= 6). Graphs show mean and SEM. P-values were determined by
Mann–Whitney U-test (d, f, g, h, l, n), unpaired t-test (e, j, k, m, o, p, q, r, t), or Log-rank (Mantel-Cox) test (s)
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influence agonist-induced platelet aggregation, which is in con-
trast to effects described at very high and potentially artificial
concentrations (0.1–1 mM)42, at which cathelicidins exert cyto-
toxic effects43.

In immune and cancer cells, LL-37 has been shown to activate
various intracellular signaling pathways, including calcium-
dependent activation of PI3K/Akt and PKC/MAP kinases18.
These signaling cascades have a role in both classical (aggrega-
tion) and nonclassical (immunity) platelet functions. We found
that LL-37-mediated platelet activation is, at least in part, calcium
dependent involving signaling via Syk. Notably, platelet activation
via the non-receptor protein tyrosine kinase Syk has been asso-
ciated with thrombo-inflammatory conditions, such as auto-
immune thrombocytopenia and cerebral infarction44, and
inhibition of Syk may yield novel treatment options therein45,46.

In platelets, Syk signaling is associated with receptors that
provide an immunoreceptor tyrosine-based activation motif, such
as the collagen receptor complex GPVI-FcR γ-chain47. Applica-
tion of GPVI antibodies inhibited cathelicidin-induced platelet
activation indicating that this pathway plays a mechanistic role.
GPVI is the central platelet collagen receptor, which mediates
platelet adhesion and thrombosis following vascular injury48.
Recent work has linked GPVI to immune and inflammatory
processes49,50. Notably, ligation of the GPVI receptor has been
shown to promote proinflammatory actions of platelets, such as
neutrophil activation and secretion, which is an important
mechanism in tissue injury7,50. However, other receptors may
have a role in this context, specifically in humans, where GPVI-
blockade only partly inhibited platelet activation by LL-37. The
C-type lectin CLEC-2 could represent such an alternative recep-
tor, as this has also been shown to signal through Syk51. In
contrast, neither pharmacological inhibition of G-protein coupled
receptors, FPRs nor the purinergic P2X7 receptor, which mod-
ulate immune cell functions and chemotaxis52, altered LL-37
induced platelet activation at indicated concentrations in vitro.

In addition to arterial thrombosis, we identified cathelicidin-
induced platelet–neutrophil interactions to play a role in
inflammatory scenarios. CRAMP-activated platelets enhanced
aggregate formation with neutrophils and fostered their recruit-
ment and extravasation at sites of tissue injury in vivo. Absence of
CRAMP-dependent platelet activation reduced cremaster muscle
inflammation and pulmonary injury. Because activated platelets
stimulate neutrophils and induce their secretion, neutrophil-
dependent platelet activation, via LL-37, reinforces bidirectional
interactions between these cells (Supplementary Fig. 9). This
notion is further supported by our in vitro findings showing that
cathelicidin-activated platelets elicit neutrophil activation in
various ways. This includes upregulation of CD11b, ROS pro-
duction, and NET formation. All of these processes could dif-
ferentially contribute to thrombo-inflammation53–56. Whether
LL-37 can induce NETosis autonomously in vivo is unclear to
date57. Our findings, however, suggest that cathelicidins are not
required for priming of neutrophils toward NETosis under the
conditions analyzed. Notwithstanding the above, cathelicidins can
associate with extracellular DNA released by neutrophils58, and
could potentially be presented to nearby platelets to foster
thrombo-inflammation.

It has been shown that neutrophils engage activated platelets
and recruit them to sites of inflammation to modulate local
inflammatory responses7. Depletion of platelets, as well as inhi-
bition of surface receptors relevant for platelet–neutrophil inter-
actions, such as P-selectin glycoprotein ligand-1, improves
outcome in mouse thrombo-inflammation models, including
arterial thrombosis and ALI7,59. This is in line with previous work
indicating the essential role of platelet–neutrophil interactions in
ALI9. Given the importance of the platelet–neutrophil interplay

in a number of diseases, a deeper understanding of the exact
mechanisms modulating these processes could open new ther-
apeutic avenues. First clinical trials targeting platelet–leukocyte
interactions (via P-selectin) to prevent and treat atherosclerosis
have recently been initiated in man60. Cathelicidins may provide
an alternative target in inflammatory conditions and thrombosis.

Methods
Human blood and tissue samples. The study conformed to the principles out-
lined in the Declaration of Helsinki. All individuals had given their written
informed consent, and tissue samples were pseudonymized. Studies on human
samples were approved by the Ethics Committee of the University of Munich.
Human coronary artery thrombi were obtained from patients with myocardial
infarction undergoing catheter thrombectomy (ProntoTM thrombectomy catheter
device, Vascular Solutions, Minneapolis, USA) during percutaneous coronary
intervention. Samples were immediately submerged in liquid nitrogen after
retrieval and stored at −80°C. Paraffin-embedded lung tissue specimens from
patients with or without acute pneumonia were drawn from the archives of the
Institute of Pathology for studies on human lung tissues. Specimens were
anonymized.

Animal experiments. All animal procedures were in accordance with the German
animal protection law and the Directive 2010/63/EU of the European Parliament
and were approved by the Government of Bavaria (Regierungspräsidium Ober-
bayern), Munich, Germany. Surgical procedures were carried out under short-term
anesthesia using midazolam (5 mg/kg), fentanyl (0.05 mg/kg), and medetomidine
hydrochloride (0.5 mg/kg). In vivo experiments were carried out using male ani-
mals, for ex vivo experiments both males and females were used. Experiments were
carried out using 12–20 weeks old mice. Specifically, all mice undergoing BM
transplantation were 20 weeks old at the time of final experiments (thrombus
formation in vivo, lung injury model) were carried out. All other mice were
12 weeks old at the time of final experiments. All controls were age- and sex-
matched. All mice were on C57Bl/6 background. WT mice were obtained from
Janvier Labs (France). Cramp−/−, P-selectin−/−, PF4Cre/+Sykfl/fl, and LysM-GFP
mice were described previously3,29,61,62. Mice were maintained in a specific
pathogen-free environment and fed standard mouse diet ad libitum.

Generation of Cramp−/− BM chimeric mice. Whole BM cells were isolated from
Cramp−/− donors and 107 cells were injected into the tail vein of irradiated reci-
pient mice (2 × 650 Rad with an interval of 8 h, injection was 3 h after second
irradiation) to generate of BM chimeras. Experiments were carried out 8–12 weeks
after transplantation. Efficiency of chimerism was analyzed 8 weeks after trans-
plantation by flow cytometry and was at least 90%.

Immunohistochemical staining. For immunohistochemistry, 5 μm sections of
paraffin-embedded tissue samples were deparaffinized, incubated with rabbit anti-
human LL-37 antibody (Innovagen, Sweden, Cat# PA-LL-37-100) or rabbit anti-
mouse CRAMP antibody (Innovagen, Sweden, Cat# PA-CRPL-100) at 1:300, and
stained on a Ventana Benchmark XT autostainer with an ultraView Universal DAB
detection kit (Ventana Medical Systems).

Immunofluorescence analysis. Frozen tissue samples were cut with a cryotome
(CryoStar NX70, ThermoFisher Scientific) into 10 μm sections, fixed with 4%
formaldehyde and blocked with the respective serum. The sections were incubated
with primary antibodies for 1 h at room temperature. Rabbit polyclonal anti-LL-37
(Cat No. PA-LL-37-100) and rabbit polyclonal anti-CRAMP (Cat No. PA-CRPL-
100) antibodies were from Innovagen (Lund, Sweden), mouse monoclonal anti-
human myeloperoxidase (MPO) antibody (clone 2C7) was from Abcam (Cat No.
ab25989), goat polyclonal anti-human MPO antibody was from R&D Systems (Cat
No. AF3174), mouse monoclonal anti-human CD41 (clone HIP8) was from Bio-
legend (Cat No. 303710), and rat anti-mouse CD41 (clone MWReg30) antibody
was from eBioscience (Cat No. 14-0411-82). Mouse monoclonal anti-human his-
tone H3 citrulline antibody (clone 7C10) was from Covalab (Cat No. mab0072-P)
and rabbit polyclonal anti-mouse histone H3 (citrulline R2+R8+R17) antibody
was from Abcam (Cat No. ab5103). Respective Alexa488-, Alexa555-, and
Alexa594-conjugated secondary antibodies were from Invitrogen. DNA was stained
with 1 μg/mL Hoechst 33342 (Invitrogen, Cat No. H1399) or 1 μg/mL DAPI
(Sigma, Cat No. 28718-90-3), and a coverslip was placed using mounting medium
(DAKO, Cat No. S3023). Primary antibodies were applied 1:1000 (final dilution),
secondary antibodies and DAPI/Hoechst 1:2000, respectively. Images were
acquired using either a Zeiss Imager M2 Axio epifluorescence microscope and
processed using AxioVision SE64 Rel. 4.9 software, or a Leica DMRB epi-
fluorescence microscope equipped with a Zeiss AxioCam and processed using
AxioVision 4.6 software (Zeiss), or a LSM 880 confocal microscope with Airyscan
module and Plan-Apochromat ×20/0.8 air objective (Carl Zeiss Microscopy) and
processed using ZEN software (Zeiss).
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For cathelicidin staining in mice, spleen of Cramp−/− mice served as control
(Supplementary Fig. 2b).

FeCl3-induced thrombus formation in the mouse carotid artery. The mice were
anesthetized using 2% isoflurane and intraperitoneal injection of fentanyl (0.05 mg/
kg), midazolam (5.0 mg/kg), and medetomidine (0.5 mg/kg). Thereafter, the right
common carotid artery was exposed. FeCl3 (1 μL of 10% FeCl3 soaked in 1 mm²
Whatman paper) was topically applied for 4 min to the common carotid artery.
The artery was then thoroughly rinsed with saline and kept moist for the time of
observation. For immunohistochemistry or immunofluorescence analysis thrombi
were collected surgically 30 min after injury and were immediately embedded in
OCT and frozen at −80 °C, or fixed in 4% formaldehyde and embedded in paraffin.

For intravital microscopy, the fluorescent dye DiOC6 (5 μL/g of body weight of
a solution with 100 μmol/L) was injected via tail vein before application of FeCl3 to
allow visualization and thrombus formation was monitored for 60 min by placing
the carotid artery under a fluorescence microscope equipped with a camera
(AxioScope; Carl Zeiss). Fluorescent images were acquired sequentially (1 image/s)
and thrombus size and kinetics (i.e., time to occlusion, duration of occlusion) were
analyzed using AxioVision 4.7 imaging software (Zeiss). In some experiments,
neutrophil depletion was performed before thrombus formation using a Ly6G-
specific mAb (clone 1A8, BD Biosciences, Cat No. 551459). The antibody was
injected intravenously at a concentration of 5 μg/g body weight (in 150 μL PBS) 24
and 6 h before induction of thrombosis63.

To analyze binding of CRAMP to thrombus in vivo, 5-carboxyfluorescin
(5-FAM)-labeled CRAMP peptide (Innovagen, Sweden, CAT No. SP-5352-1) or 5-
FAM-labeled scrambled peptide (custom made from Innovagen, Sweden) were
infused intravenously (4 μg per gram body weight in 150 μL of sterile PBS) shortly
before FeCl3 application. Platelets were labeled by injection of a fluorescently
labeled non-blocking platelet antibody (anti-mouse GPIb-DyLight649, Emfret, Cat
No. X649) at a concentration of 0.1 μg (1 μL) per gram body weight in 150 μL of
sterile PBS. Imaging was performed by videofluorescence microscopy (microscope:
Leica DM 6 FS; camera system: Andor Zyla sCMOS).

Ligation injury of the mouse carotid artery. Platelet recruitment and aggregate
formation was investigated after carotid artery ligation14. Vascular injury was
induced by ligating the carotid artery with a suture and maintaining obstruction of
blood flow for 5 min. Afterwards blood flow was reestablished by removal of the
suture. In order to visualize platelet aggregate formation a fluorescently labeled
platelet antibody (anti-mouse GPIb-DyLight488, Emfret, Cat No. X488) was
injected via the tail vein. Measurements were carried out with a high-speed
widefield Olympus BX51WI fluorescence microscope using a long-distance con-
denser and a ×20 (NA 0.95) water immersion objective with an Olympus MT 20
monochromator and an ORCA-ER CCD camera (Hamamatsu). Cell^R software
(Olympus) was used for image recording and analysis.

Blood cell count. Differential blood cell counts in mouse blood were performed
using an Idexx Procyte Dx hematology analyzer (Idexx Europe, Hoofddorp, the
Netherlands).

Bleeding time. To assess bleeding time a 5 mm segment of the tail of anesthetized
mice was removed with a razor blade. The tail was immediately immersed in 0.9%
isotonic saline at 37°C, and the time required to stop spontaneous bleeding was
measured.

Assessment of plasmatic coagulation. Parameters of the plasmatic coagulation
were assessed by thrombelastometry (ROTEM, Tem International GmbH, Ger-
many) according to the instructions of the manufacturer64. Clotting time (time to
onset of clot formation) and clot formation time (time from onset of clot formation
to a clot firmness of 20 mm) were analyzed for the extrinsic, as well as for the
intrinsic activation.

Plasma levels of CRAMP. Mouse plasma was obtained by centrifugation (2000×g,
5 min) of citrated whole blood taken by cardiac puncture 2 h after FeCl3 induced
carotid artery injury. CRAMP levels were measured using an ELISA kit from
MyBiosource (San Diego, USA) according to the instructions of the manufacturer.

Platelet isolation. For all in vitro blood cell studies, samples were obtained from
healthy individuals who had not taken medications for at least 10 days. Human
PRP was obtained by centrifugation of anticoagulated (3.13% sodium citrate) whole
blood at 340×g for 15 min. After another centrifugation step at 400×g for 10 min, in
the presence of 0.5 μg/mL prostaglandin (Sigma), platelets were washed and
resuspended in modified Tyrode’s solution (138 mmol/L NaCl, 2.7 mmol/L KCl,
12 mmol/L NaHCO3, 400 mmol/L Na2HPO4, 1 mmol/L MgCl2, 5 mmol/L D-glu-
cose, and 5 mmol/L HEPES). Platelet concentration was adjusted to that required
for the respective experiment. Platelet counts were obtained using a resistance
particle counter (Coulter Z2, Beckman, Krefeld, Germany).

Isolation of mouse platelets followed the same protocol but with minor
modifications. Blood was drawn from the inferior vena cava of anesthetized mice.

Centrifugation steps were 130×g for 5 min for preparation of PRP and 340×g for
10 min for isolation of platelets.

Platelet stimulation. Antimicrobial peptides (LL-37, CRAMP) and scrambled
peptide were obtained from Innovagen (Lund, Sweden). Stimulation of platelets
was carried out with the time and concentrations indicated. As positive controls
bovine thrombin (Sigma), TRAP (Roche, Switzerland), ADP (Sigma), Horm Col-
lagen (Takeda), or GPVI-activating antibody HGP4C965 were used.

Cathelicidin binding to platelets. Isolated washed human platelets were incubated
with 5-FAM labeled LL-37 (5 μmol/L) or the same concentration of a 5-FAM
labeled scrambled peptide (Innovagen, Sweden). After washing, binding to platelets
was assessed by flow cytometry on a BD LSR Fortessa (BD Biosciences, USA).

Flow cytometric analysis of platelet activation. Resting or stimulated isolated
human or mouse platelets were stained with labeled antibodies or respective isotype
controls for 15 min at 37 °C. Human platelets were incubated with antibodies
detecting P-selectin (BD Biosciences, clone AK4, Cat No. 550888), CD40L (BD
Biosciences, clone M90.1, Cat No. 552559), activated GPIIb/IIIa (PAC-1, BD
Biosciences, Cat No. 340507) or high-mobility group box 1 protein (R&D Systems,
clone #115603, Cat No. IC1690G). Mouse platelets were incubated with antibodies
detecting P-selectin (BD Biosciences, clone RB40.34, Cat No. 561923), CD41
(eBioscience, clone MWReg30, Cat No. 14-0411-82), CD61 (BD Pharmingen, clone
2C9.G2, Cat No. 561911), CD42b (Emfret, clone Xia.G5, Cat No. M040-3), GPVI
(R&D Systems, clone #784808, Cat No. MAB6758-SP), GPIX (Emfret, clone Xia.
B4, Cat No. M051-1), CD40L (BD Biosciences, Clone MR1, Cat No. 553658),
activated GPIIb/IIIa (JON-A, Emfret, Cat No. M023-2). In addition, we carried out
Annexin-V (BD Pharmingen, Cat No. 556420) staining. P-selectin antibodies were
applied 1:20 (final dilution), all other antibodies 1:50. In another set of experiments
to assess platelet activation in mice ex vivo, whole blood was incubated with
respective antibodies and red blood cells were lysed with FACS lysing solution (BD
Biosciences, Cat No. 349202) before analysis. All samples were analyzed using a
FACS Canto II flow cytometer (BD Biosciences).

Platelet secretion. Platelet CD40L secretion was measured using a human CD40L
ELISA kit (Biozol Diagnostica, Houston, USA). Therefore, supernatant of LL-37 or
control treated platelets was acquired by repeated centrifugation. Supernatants
were snap frozen and stored at –80 °C. Measurements were carried out according
to the manufacturer’s instructions. Intracellular levels of IL-1β were measured by
flow cytometry analysis. Washed human platelets were stimulated for the indicated
times and fixed using 1% PFA, permeabilized using 0.1% Triton X-100 (Sigma-
Aldrich) and stained using a PE-conjugated, IgG1 mouse anti-human IL-1β anti-
body (R&D Systems, clone #8516, Cat No. MAB201-100).

Western blot analysis. After stimulation platelets were immediately lysed on ice
using cell lysis buffer (Cell Signaling Technology, USA). Protein concentration was
determined using BCA (bicinchoninic acid) protein assay reagent kit according to
the manufacturer’s protocol. Equal amounts of protein were separated by gel
electrophoresis (SDS-PAGE) and blotted onto a nitrocellulose membrane. Mem-
branes were blocked by incubation 5% (w/v) BSA in Tris-buffered saline with
Tween (TBST) for 30 min prior to incubation at 4 °C overnight with indicated
antibodies. Rabbit anti-human phospho-Syk Tyr525/526 (clone C87C1, Cat No.
2710), anti-human Syk (polyclonal, Cat No. 2712), anti-human p-Src Tyr416
(clone D49G4, Cat No. 6943), anti-human Src (clone 36D10, Cat No. 2109), and
anti-beta-actin (clone D6A8, Cat No. 8457) were from Cell Signaling Technology.
Anti-phospho-PLCγ2 (clone #1016D, Cat No. MAB74542) was from R&D Sys-
tems. After washing with TBST the membrane was incubated with a horseradish
peroxidase conjugated secondary antibody for 1 h at room temperature. Enzymatic
activity was detected with a chemiluminescence detection kit according to the
supplier’s protocol and recorded with a digital camera (Hamamatsu). Densito-
metric analysis of the blots was carried out digitally using HOKAWO Software.

Platelet aggregation. Platelet aggregation in PRP was carried out by optical
aggregometry. PRP was incubated with LL-37 or vehicle and aggregation was
started by adding ADP, collagen, or TRAP under continuous stirring at 1000 r.p.m.
at 37 °C and measured in a two-channel-aggregometer (ChronoLog 490-2D,
Havertown, USA). Percentage of maximal platelet aggregation was analyzed 6 min
after addition of the agonist using Aggrolink software (ChronoLog, USA).

Platelet spreading. Isolated human platelets (2 × 107/mL) were allowed to spread
for 1 h on fibrinogen-coated μ-slides (Ibidi, Martinsried, Germany), following
stimulation with LL-37 (5 μmol/L) or thrombin (0.5 U/mL). Non-adherent platelets
were removed after washing gently and spreading platelets fixed with 1% for-
maldehyde, permeabilized with 0.1% triton and stained using alexa546-labeled
phalloidin (Invitrogen). Spreading was analyzed by fluorescence microscopy
(Axiovert 200M microscope Zeiss, Jena, Germany).
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Inhibitors of platelet signaling pathways. Each inhibitor was added 20 min
before stimulation with LL-37 or CRAMP. BAPTA (inhibitor of intracellular cal-
cium release); U-73122 (phospholipase C inhibitor); GF109203X (Protein kinase C
inhibitor); SB203580 (p38-MAPK inhibitor), MG101 (calpain inhibitor); wort-
mannin (phosphoinositide 3-kinase inhibitor); Boc-MLF (FPR1-receptor inhi-
bitor); WRW4 (FPR2-receptor inhibitor); and A438079 (P2X7 receptor inhibitor)
were all obtained from Tocris (Bristol, UK). Pertussis toxin and cholera toxin
(inhibitors of G-protein signaling) and Tirofiban (GPIIb/IIIa inhibitor) were from
Sigma. Abciximab was from Elly Lilly (USA). Dasatinib (inhibitor of Src-family
kinases), R406 (Syk Inhibitor), and Stattic (STAT3-Inhibitor) were from Sell-
eckchem (Houston, USA). Anti-mouse GPVI antibody was from Emfret (clone
JAQ1, Cat No. M011-0). The inhibitory monoclonal antibody HGP5C4 directed
against human GPVI and the respective isotype control antibody RmC7H8 were
generated by immunization of Lou/C rats with an adenovirally expressed human
GPVI-Fc fusion protein. The latter represents a soluble form of GPVI with the
extracellular domain of human GPVI fused to the human Fc domain. 4C9 and 5C4
monoclonal antibodies (immunoglobulin G1 subtype) specifically bound to GPVI-
Fc but not control Fc65. RmC7H8, raised in rats against an irrelevant human
antigen, served as control monoclonal antibody (mAb).

Isolation of neutrophils. Human and murine neutrophils were isolated from
anticoagulated whole blood of healthy adult volunteers or mouse BM. Isolation of
the neutrophils was carried out using a discontinuous isotonic PercollTM gradient
(52/64/72%) and centrifuged at 1000×g for 30 min. PMNs were collected from the
64/72% interface, washed in PBS. After isolation, human neutrophils (2 × 106/mL)
were directly suspended in adhesion medium (HBSS supplemented with 20 mM
HEPES, 0.25% BSA, 0.1% glucose, 1.2 mM Ca2+, and 1.0 mM Mg2+). Murine
neutrophils were cultivated for 24 h in RPMI1640 medium supplemented with 20%
WEHI-3B-conditioned medium at 37 °C and 5% CO2. Neutrophil viability eval-
uated by trypan blue exclusion test was >99% for human neutrophils and >95% for
mouse neutrophils, respectively.

Platelet–neutrophil aggregates formation and neutrophil activation in vitro.
The effects of cathelicidin-induced platelet activation on platelet–neutrophil
interactions in vitro was examined using platelets and neutrophils isolated from
human volunteers or mice as described above. Platelets were treated with 5 μmol/L
LL-37 for 20 min and labeled with FITC-conjugated anti-human or anti-mouse
CD41 antibody (Abd-Serotec or eBiosience, respectively). A total of 107 platelets
were co-incubated with 106 neutrophils in a volume of 400 μL neutrophil adhesion
medium (see above). In some experiments a blocking mouse anti-human CD62P
antibody (BioLegend, clone AK4, Cat No. 304902) was added. Analysis of
platelet–neutrophil aggregates was carried out by flow cytometry. Neutrophils were
identified by forward and sideward scatter characteristics, and aggregates expressed
as the percentage of platelet (CD41-FITC)-positive neutrophils. In a separate set of
experiments neutrophil activation upon platelet co-incubation was assessed with a
PE-conjugated anti-human CD11b antibody (BD Biosciences, clone ICRF44, Cat
No. 557321) and a PE-conjugated anti-human CD62L antibody (BD Biosciences,
clone DREG56, Cat No. 555544). In a separate set of experiments neutrophil
intracellular ROS generation was determined using 2′-7′-dichlorodihydro-
fluorescein diacetate (DCFH-DA, Invitrogen, USA). Cells were incubated with 5
μg/mL (final concentration) DCFH for 20 min at 37°C and washed afterwards.
Fluorescence was measured by flow cytometry (BD LSR Fortessa, BD Biosciences,
USA).

NET formation in vitro. NET formation of freshly isolated human neutrophils was
analyzed in a model of static adhesion on fibrinogen-coated μ-slide eight-well
chambers (Ibidi). Platelets were isolated as described above and stimulated wit LL-
37 (10 μmol/L), scrambled control peptide (10 μmol/L), or GPVI receptor acti-
vating antibody HGP4C9 (1 μg/mL) for 20 min. Afterwards they were washed in
buffer, added to neutrophils and co-incubated for 1 h at 37 °C. Stimulation of
neutrophils with TNFα (Peprotech) and PMA (Sigma) served as positive controls
to induce NET formation. After stimulation the non-adherent cells were gently
removed by washing. The adherent cells were then fixed using 4% PFA and stained
with anti-human MPO antibody (Abcam), anti-human histone H3 citrulline
antibody (7C10) (Covalab, France) and respective secondary antibody and DAPI to
visualize NET formation. Imaging was conducted by fluorescence microscopy
(Axiovert 200M microscope Zeiss, Jena, Germany) and quantitative analysis was
carried out by manual counting of NET-structures per visual field of 3-5 randomly
defined ROIs per sample.

Platelet preparation for cremaster experiments. Platelets were isolated from
WT C57Bl/6 mice. Platelets were labeled with Rhodamine (0.05%; 50 μL/mL,
Sigma) for intravital studies and with anti-GPIb-X649 (1:200; non-blocking anti-
body, Emfret, Germany) for post-imaging FACS-analysis. Labeling was carried out
in PRP for 30 min in the presence of prostaglandin (0.5 μg/mL) to avoid activation,
and platelets were then centrifuged at 400×g for 5 min. Isolated platelets were
treated with 20 μmol/L CRAMP for 20 min. CRAMP was washed out by another
centrifugation step at 400×g for 5 min and platelets were resuspended in buffer.

Platelets (107 per mouse) were injected via a tail vein catheter to a recipient mouse
with exposed cremaster muscle for intravital imaging.

Intravital microscopy in the cremaster muscle. Trauma-induced inflammation
of the cremaster muscle was analyzed in anesthetized lysozyme 2 (LysM)-eGFP
mice, in which mostly neutrophils express the GFP, allowing imaging of neutrophil
behavior and interaction with platelets. The cremaster muscle was exteriorized
following incision of the scrotum. The muscle was opened through a longitudinal
incision, immobilized on a customized intravital microscopy stage and constantly
superfused with warmed bicarbonate-buffered saline, equilibrated with 5% CO2 in
N2

66. Analysis of platelets and leukocytes was carried out by analyzing mean rolling
velocities, number of adherent cells per mm², extravasated neutrophils and
tethering platelets were determined at different time points after injection of pla-
telets (0, 10, 30 min) using intravital epifluorescence microscopy (Olympus
BX51WI microscope, water immersion objective ×20, 0.95 numerical aperture,
Olympus). All scenes were recorded using a CCD camera (model CF8/1 HS,
Kappa) and virtual dub software for later off-line analysis. Blood flow velocity was
measured using a dual-slit photodiode device (Circusoft Instrumentation, Hock-
essin, Germany). During the entire observation, the cremaster muscle was super-
fused with thermo-controlled (35 °C) bicarbonate-buffered saline. Postcapillary
venules under observation ranged from 20–40 μm in diameter. Microvascular
parameters (venular diameter, venular vessel segment length) were determined
using Fiji software. Neutrophil rolling, adherence, and extravasation were analyzed.
Those platelets that were not moving during at least one single image of the movie
(exposure time 40 ms) were considered as tethering platelets. Analysis of mouse
blood cell counts was carried out using an Idexx Procyte Dx hematology analyzer
(Idexx Europe, Hoofddorp, the Netherlands).

Platelet–neutrophil aggregates ex vivo. Platelet–neutrophil aggregates formation
was analyzed in whole blood drawn from the inferior vena cava after intravital
imaging of the mouse cremaster. Erythrocytes were lysed using FACS lysing
solution according to manufacturer guidelines (BD Biosciences, USA).
Platelet–neutrophil aggregates were analyzed by flow cytometry. Neutrophils could
be identified by their green fluorescence in LysM-eGFP mice, platelets were
identified by labeling with the non-blocking GPIb-antibody X649 (Emfret,
Germany).

Mouse model of ALI. Anaesthetized mice received an intratracheal injection of 2
μL/g body weight of 0.1 mol/L HCl (pH 1.5) and mice were killed 4 h later. BAL
was performed immediately before euthanasia. Therefore, the trachea was dissected
and cannulated (PortexFineBore Polythene Tubing, 0.28 mm inner diameter/0.61
mm outer diameter, Smiths Medical International, Keene, NH). 5 × 0.5 mL PBS
was injected and withdrawn. Thereafter, the ribcage was opened by a midline
incision and the pulmonary vasculature was rinsed with 15 mL ice-cold PBS with
0.5 mmol/L EDTA after cutting the inferior cava vein to facilitate exsanguination.
The lungs were removed, minced and digested with Liberase (1:20; 25 mg Liberase
RI/mL aqua, Roche, Mannheim, Germany). Digested lungs were passed through a
cell strainer (70 μm; MiltenyiBiotec GmbH, Bergisch Gladbach, Germany) and the
resulting single cell suspension was centrifuged for 5 min at 300×g. The pellets were
resuspended in 1 mL Hank’s balanced salt solution with 0.3 mmol/L EDTA and
0.1% BSA. Similarly, the BAL fluid was centrifuged for 5 min at 300×g and cell
pellets were resuspended.

Flow cytometry analysis of neutrophils in ALI. Resuspended cells of digested
lungs and BAL fluid were labeled with PerCP-Cy5.5 anti-mouse Ly6G (eBioscience,
Cat No. 127615), APC-Cy7 anti-mouse CD45 (eBioscience, Cat No. 103115), and
PE anti-Mouse CD41 (BD, Cat No. 561850). Neutrophils were identified as CD45
and Ly6G positive cells. All studies were carried out on a FACS Canto II (BD
Biosciences) and data were analyzed using FlowJo software.

Lung permeability in ALI. FITC-Dextran (70 kDa, Sigma-Aldrich) was used to
assess vascular leakage. A volume of 100 μL FITC-Dextran (30 mg/mL) were
administered by tail vein injection 30 min prior to euthanasia and dye extravasa-
tion was used to assess change in vascular permeability. The fluorescence of 100 μL
BAL supernatant (FluoBAL) and of 50 μL serum (FluoSerum) was measured and the
volume of passaged fluid was expressed in microlitres (VPerm= (FluoBAL/100 μL)/
(FluoSerum/50 μL) x BAL volume)67.

Histological and immunofluorescence analysis in ALI. In some animals, one part
of the right lung was fixed in formalin, embedded in paraffin wax and stained with
Mayer’s hematoxylin and eosin for histological examination, or placed in sucrose
30% for 12 h and then embedded in OCT for immunofluorescence staining.

Blood oxygen saturation in ALI. In a separate set of ALI experiments without
external oxygen supplementation, blood oxygen saturation was measured by
noninvasive pulse oximetry using MouseOx Plus (Starr Life Sciences, USA). The
experiments were carried out in deep anesthesia as described above and were
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terminated (and counted as deceased), when mice showed clinical signs of
respiratory failure.

Statistical analysis. Data were analyzed using paired or unpaired Student's t-test
or one-way repeated measures ANOVA (Bonferroni Correction) as appropriate to
compare normally distributed variables and Mann–Whitney U-test or ANOVA on
ranks (Dunn’s method) when normal distribution was not given. All data are
expressed as mean ± SEM. To compare survival distributions log-rank test (Mantel-
Cox test) was used. Differences were considered significant when the error prob-
ability was P < 0.05.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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