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 19 
It is well known that the spin angular momentum of light, and therefore that of 20 
photons, is directly related to their circular polarization. Naturally, for totally 21 
unpolarized light, polarization is undefined and the spin vanishes. However, for 22 
nonparaxial light, the recently discovered transverse spin component, orthogonal to 23 
the main propagation direction, is largely independent of the polarization state of the 24 
wave. Here we demonstrate, both theoretically and experimentally, that this 25 
transverse spin survives even in nonparaxial fields (e.g., focused or evanescent) 26 
generated from totally unpolarized paraxial light. This counterintuitive phenomenon 27 
is closely related to the fundamental difference between the meanings of ‘full 28 
depolarization’ for 2D paraxial and 3D nonparaxial fields. Our results open an 29 
avenue for studies of spin-related phenomena and optical manipulation using 30 
unpolarized light. 31 

1. Introduction 32 
Classical polarization optics usually regards paraxial light and its 2D polarization states 33 

[1]. Similarly, the spin of photons in quantum electrodynamics textbooks is also described by 2D 34 
circular polarizations of plane electromagnetic waves [2]. However, modern nano-optics is based 35 
on the use of structured nonparaxial fields, where all three spatial components of the field vector 36 
generically play a role [3]. This has required extending the existing polarization theory to the 3D 37 
case [4–12] . This extension is by no means trivial: the four Stokes parameters describing generic 38 
2D polarization are now substituted by nine polarization parameters characterizing generic 3D 39 
polarization. 40 

Simultaneously, the notion of spin has to be augmented to 3D structured fields [13–17], 41 
where the local spin density is well-defined for monochromatic waves and can be associated 42 
with the radiation torque on small dipole particles [17]. This resulted in the discovery of the 43 
unusual transverse spin in inhomogeneous fields with several remarkable properties [18–32] (for 44 
reviews, see [17,33–35]). This spin, orthogonal to the main propagation direction and 45 
wavevectors, is a very robust phenomenon that has found applications for spin-direction 46 
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coupling using evanescent waves, which is highly efficient and largely independent of the details 47 
of the system [22–25,27–29,33–35]. Moreover, it was recently found that the transverse spin is 48 
equally present in inhomogeneous sound waves [36–38], which are traditionally considered as 49 
scalar (i.e., spinless), quantum electron waves [29], and even gravitational waves [39]. 50 

In this work, we demonstrate, both theoretically and experimentally, that the transverse 51 
spin is essentially a 2D-polarization-independent phenomenon, which survives even in 3D fields 52 
generated from totally unpolarized paraxial light, Fig. 1. This is in sharp contrast to the usual 53 
longitudinal spin, which is directly related to the 2D polarization and vanishes in unpolarized 54 
fields. We show that this phenomenon is intimately related to the difference between the 2D and 55 
3D polarization descriptions. Namely, the totally unpolarized 2D field is at the same time half-56 
polarized in the 3D sense (according to the definition [5]). Indeed, 2D depolarization implies a 57 
single random phase between the two orthogonal field components (with equal amplitudes), 58 
while complete 3D depolarization requires two random phases between the three mutually-59 
orthogonal field components. Therefore, any regular optical transformation producing a 60 
nonparaxial 3D field from a 2D-unpolarized far-field source will have partial 3D polarization, 61 
with the degree of polarization not less than 1/2. In particular, the local increase of the degree of 62 
polarization up to almost 1 was demonstrated for the tight focusing of an unpolarized paraxial 63 
beam [40,41]. Below we show that the transverse spin appears in any paraxial-to-nonparaxial 64 
transformation (see Fig. 1), even without a change in the degree of polarization; the minimal 65 
value of 1/2 allows for nonzero spin in such fields. The origin of this phenomenon lies in 66 
intrinsic spin-orbit interaction of light [34], where any transformation in the wavevector 67 
direction produces spin-related phenomena, even for 2D-unpolarized light. 68 

Since spin is a fundamental dynamical property of light, which is very important in both 69 
quantum and classical, theoretical and applied optics (e.g., for optical manipulation of micro- and 70 
nano-particles), our findings provide a novel opportunity to use polarization-independent spin 71 
from unpolarized sources. 72 
2. Theoretical background 73 

Nonparaxial optical fields are usually generated from far-field sources of paraxial light via 74 
some optical transformations (see Fig. 1): focusing, diffraction, scattering, etc. In this work, we 75 
consider two of the most common examples of nonparaxial fields: (i) tightly focused Gaussian-76 
like beams and (ii) evanescent waves. These are generated via high-NA focusing and total 77 
internal reflection of the incident paraxial light, respectively.  78 

The incident paraxial light can be approximated by a plane wave, so its 2D polarization 79 
state can be described by the 2×2 polarization (density) matrix Φ̂2D  or, equivalently, by 4 real 80 
Stokes parameters : Φ̂2D = 1

2
s

l
σ̂

ll=0

3 , with σ̂
l
 being the basic Pauli matrices 81 

[1]. Here, the normalized parameter s
3
 corresponds to the normalized spin angular momentum 82 

density of the wave ( z -directed along the wave propagation): S
z

/ I = s
3

/ s
0

∈ −1,1  [17], where 83 
I = W / ω  is the wave intensity expressed via the energy density W  and frequency ω . The 84 
degree of paraxial 2D polarization is defined as P2D = s

i
2

i=1

3 s
0

∈ 0,1  . For totally 2D-85 
unpolarized light, , P2D = 0, and the spin vanishes: S

z
= 0 (see Fig. 1). 86 

For the generated nonparaxial field, all three components are significant, and its 87 
polarization state at a point is described by a 3×3 Hermitian polarization (density) matrix Φ̂3D , 88 
or equivalently by 9 real parameters : Φ̂3D = 1

3
Λ

l
λ̂

ll=0

8 , with λ̂
l
 being the 89 
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basic Gell-Mann matrices [4–12] [see Supplementary Information (SI)]. In such fields, the 90 
polarization ellipsoid can have an arbitrary orientation, and the spin angular momentum density 91 
(orthogonal to it) involves all three components [14,17]. Its normalized value can be expressed 92 
via the properly normalized parameters Λ

2
, Λ

5
, and Λ

7
 (see SI): 93 

 
S

I
≡ 1

I
S

x
,S

y
,S

z( ) = 2

3Λ
0

−Λ
7
,Λ

5
,−Λ

2( ) . (1) 94 
There are several quantities characterizing the degree of polarization of a 3D field, which can be 95 
more or less relevant to the particular problem [4–12]. In our case, one of the most common 96 
definitions of the 3D degree of polarization is useful: P3D = Λ

i
2

i=1

8 3Λ
0

∈ 0,1   [5,10–97 
12,40,41], because it explicitly involves the norm of the spin given by Eq. (1), so that ￼ is a sum 98 
of spin-dependent and spin-independent parts. For a totally unpolarized 3D field, 99 

, P3D = 0, and the corresponding vanishing S = 0 . 100 
One remarkable feature of the above definitions of the degree of polarization is that totally 101 

2D-unpolarized paraxial light, P2D = 0 , is partially polarized in the 3D sense: P3D = 1/ 2  102 
[5,11,12] (see SI). This is because total 3D depolarization requires total mutual decoherence of 103 
all of the three field components with equal amplitudes, while in paraxial light the longitudinal z  104 
component vanishes. As a result, Λ8 = 3 / 2( )Λ0 ≠ 0  even for a totally 2D-unpolarized paraxial 105 
field. This “discrepancy” between the 2D and 3D polarization degrees naturally manifests itself 106 
as a nonzero transverse spin in a nonparaxial field generated from a 2D-unpolarized paraxial 107 
source, Fig. 1. 108 

We first consider the case of a focused polarized field. Both the incident paraxial and 109 
focused nonparaxial fields can be modeled by the post-paraxial description of a Gaussian beam 110 
[17] with the infinite and finite Rayleigh range z

R
, respectively. Using the natural cylindrical 111 

coordinates r,ϕ ,z( ), the normalized spin density in the focal plane of a polarized Gaussian beam 112 
can be written as (see SI):  113 
 . (2) 114 
Here S

0
/ I

0
= s

3
/ s

0( ) z  is the spin density in the plane-wave limit,  is the 115 
intensity distribution, k is the wavenumber, , and the overbars indicate the unit vectors 116 
of the corresponding axes. Equation (2) exhibits the usual polarization-dependent longitudinal 117 
spin, as well as the transverse spin component [17,26,32,33] which is totally independent of the 118 
polarization (Stokes parameters) of the incident plane wave.  119 

The totally 2D-unpolarized Gaussian beam can be considered as an incoherent 120 
superposition of two Gaussian beams with mutually orthogonal polarization states (e.g., with 121 

 and ). The corresponding 3×3 polarization matrix and parameters  122 
in the focal plane of such unpolarized Gaussian field become (see SI): 123 
Λ

1
= Λ

2
= Λ

3
= Λ

4
= Λ

6
= 0 , 124 

 ,    ,    , (3) 125 
where  and . In the paraxial limit z

R
→ ∞ , only the Λ

8
/ Λ

0
 ratio survives, 126 

providing the 3D degree of polarization P3D = 1/ 2  [5,11,12]. In the nonparaxial case, the 127 
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nonzero parameters Λ
5
 and Λ

7
 appear. These parameters exactly describe the transverse part of 128 

spin (2) in agreement with Eq. (1): 
S⊥

I
= 2

3Λ
0

−Λ
7
,Λ

5
,0( ), while the longitudinal spin naturally 129 

vanishes:  (see Fig. 1). 130 
Second, we consider an evanescent wave, which can be generated via total internal 131 

reflection of a paraxial incident field (plane wave). Such z-propagating and x-decaying wave is 132 
characterized by the propagation constant k

z
> k ≡ ω / c  and the decay constant κ = k

z
2 − k 2 . 133 

Assuming, for simplicity, that the transmission coefficients of the total internal reflection are 134 
polarization-independent, the generation of the evanescent field can be regarded as a transition 135 
from the plane-wave limit κ = 0, k

z
= k , to a given finite κ > 0. The normalized spin density of 136 

the polarized evanescent wave is [17,20]: 137 
 . (4) 138 
Here, as before, S

0
/ I

0
= s

3
/ s

0( ) z  is the spin density in the plane-wave limit, and the intensity 139 
distribution is I ∝ e−2κ x . As for the focused field, the spin (4) consists of the longitudinal 140 
polarization-dependent component and the transverse ( y -directed) polarization-independent 141 
term [17,20,29,33,34]. 142 

The totally 2D-unpolarized evanescent field is obtained as an incoherent superposition of 143 
evanescent waves with orthogonal polarization states. The corresponding parameters  for such 144 
evanescent field are (see SI): Λ

1
= Λ

2
= Λ

4
= Λ

6
= Λ

7
= 0, 145 

 
Λ

8

Λ
0

= 3

2

k 2 −κ 2 / 2

k
z
2 ,    

Λ
3

Λ
0

= 3

4

κ 2

k
z
2

,    
Λ5

Λ
0

= 3

2

κ
k

z

. (5) 146 
In the plane-wave limit κ = 0 , only the ratio Λ

8
/ Λ

0
 survives, yielding P3D = 1/ 2 . In the 147 

evanescent-wave case, both Λ
3

 and Λ
5

 are different from zero, the latter corresponding 148 
precisely to the transverse part of the spin (4) in agreement with Eq. (1): 149 
S⊥

I
= 2

3Λ
0

−Λ
7
,Λ

5
,−Λ

2( ), whereas the longitudinal spin vanishes:  (see Fig. 1). 150 
Importantly, considering r / z

R
 and κ / k  as a small parameter ε  in the above two 151 

problems, the 3D degree of polarization of the 2D-unpolarized focused and evanescent fields has 152 
the form 

  
P3D = 1

2
+ δ P3D , with δ P3D ∼ ε 2  and δ P3D ∼ ε 4 , respectively (see SI), while the 153 

transverse spin is of order ε . This means that, to first order, focusing or total-reflection 154 
processes (with polarization-independent transmission amplitudes) do not change the 3D degree 155 
of polarization of the incident 2D-unpolarized light [40,41], while the spin changes from zero in 156 
the incident wave to the nonzero transverse spin in the nonparaxial field. This appearance of spin 157 
without polarization originates from the intrinsic spin-orbit interaction of light [34]. The plane-158 
wave transversality condition k ⋅E = k ⋅H = 0  imposes constraints on the relations between 159 
longitudinal and transverse field components, which therefore have some intrinsic mutual 160 
coherence even for fields generated from 2D-unpolarized sources. Transformations from 161 
paraxial to nonparaxial fields can be approximated by k -vector transformations (re-directions), 162 
which do not affect the degree of polarization but inevitably generate the transverse spin, as 163 
schematized in Fig. 1. 164 
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Another important point is that in our calculations we considered both electric and 165 
magnetic field contributions to all quadratic quantities (see SI): spin S = S(e) + S(m) , intensity 166 
I = I (e) + I (m), polarization parameters , etc. For polarized fields, the electric and 167 
magnetic contributions are not equal to each other, and additional terms generally appear when 168 
considering only the electric or the magnetic fields [17,20,26,32]. In contrast, for 2D-unpolarized 169 
fields, these contributions are always equal to each other, so that one can only consider the 170 
electric (or magnetic) field contributions. One can say that unpolarized light and its transverse 171 
spin have a dual-symmetric nature [16,42], similarly to circularly-polarized fields with well-172 
defined helicity [15]. 173 

In what follows, we present experimental measurements of the nonzero transverse spin 174 
from Eqs. (2) and (4) in tightly focused and evanescent fields generated from 2D-unpolarized 175 
sources. The two experiments use different types of unpolarized sources and measure both the 176 
electric and magnetic contributions to the spin. 177 
3. Focused-beam experiment 178 

In order to measure the transverse spin of a 2D-unpolarized tightly focused beam, we first 179 
prepared a suitable input field. We sent a Gaussian beam (wavelength λ = 2π / k = 620 nm , 180 
linewidth ) through a linear polarizer and two liquid-crystal variable retarders 181 
(LCs) oriented at 45° and 90° with respect to the axis of the linear polarizer, respectively. The 182 
experimental setup is schematically shown in Fig. 2a [32,43]. With this arrangement, the 183 
polarization state of the generated beam can span the whole Poincaré sphere ( s

i
2

i=1

3 = s
0
2 ) with 184 

the position on the sphere depending on the settings of the LCs. These LCs were controlled via a 185 
voltage applied to the corresponding devices to induce a voltage-dependent birefringence. For 186 
the applied voltage, we used two random numbers in a range spanning multiple wavelengths of 187 
retardance, updated 10 times per second. This produced a beam that is fully and homogeneously 188 
polarized over its cross-section for a fixed instance in time. However, the beam appears totally 189 
2D-unpolarized ( P2D = s

i
2

i=1

3 = 0 ) when averaged over a certain time frame.  190 
For tight focusing and subsequent collimation of the light beam, we used two confocally 191 

aligned microscope objectives (MOs) with numerical apertures NA
1

= 0.9  and NA
2

= 1.3 , 192 
respectively (see Fig. 2a). Following a scheme developed recently [32] for the reconstruction of 193 
the electric and magnetic parts of the transverse spin, we used a spherical silicon nanoparticle of 194 
diameter d = 168nm  as a local probe in the focal volume. The NA of the collection MO

2
 was 195 

considerably larger than 1 in order to access the angular range above the critical angle, which is 196 
required for the applied reconstruction technique. Then, we performed a polarization analysis in 197 
the back focal plane (BFP) of MO

2
 imaged onto a camera, which allowed us to access the far 198 

field of the scattered light. This polarization analysis involved a LC, a linear polarizer and an 199 
imaging lens (see Fig. 2a). At this stage of the setup, a single LC was sufficient because for the 200 
reconstruction of the transverse spin we only need to distinguish between the x- and y-201 
polarizations. According to the method in Ref. [32], intensities of the x- and y-components of the 202 
scattered field, dependent on the transverse wavevectors, I

x ,y
sc k⊥( ) , allowed unambiguous 203 

reconstruction of both the electric and magnetic field contributions to the transverse spin density, 204 
S⊥

(e)  and S⊥
(m), in the focused field at the location of the particle.  205 

In order to provide a full map of the transverse electric and magnetic spin densities, S⊥
(e)  206 

and S⊥
(m), shown in Fig. 2b, we raster scan the nanoparticle across the focal plane (over the square 207 
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area of 1.5×1.5 μm2  with a step size of 30nm ) and record the polarization-resolved BFP 208 
images for each particle position. For each position and polarization, the data is averaged over a 209 
time frame of  40s. The distributions of the transverse spin obtained experimentally are in good 210 
agreement with simple theoretical expression (2) with the fitted Rayleigh range . 211 
We also performed more accurate numerical calculations of the transverse spin densities using 212 
vectorial diffraction theory [44] (which takes into account the finite aperture of the focused 213 
beam) and plotted these as insets in Fig. 2b. In doing so, we adjusted all parameters of the 214 
focusing system and the incoming beam to the experimental case. One can see that the 215 
experimental results are in excellent agreement with the numerical data. 216 

Importantly, the electric and magnetic spin densities in Fig. 2b exhibit very similar spatial 217 
distributions, in agreement with the dual-symmetric nature of the transverse spin for 2D-218 
unpolarized light: S⊥

(e) = S⊥
(m) = S⊥ / 2 (see SI). The same feature is present in nonparaxial fields 219 

with well-defined helicity [15], such as fields obtained by focusing circularly polarized input 220 
light [45]. However, in our case of an unpolarized source, the helicity and longitudinal spin 221 
vanish. Note also that the change in the 3D degree of polarization upon focusing [40,41] is small: 222 

, where we used  nm corresponding to the maximum of the spin 223 
density in Fig. 2b (see SI). 224 
4. Evanescent-wave experiment 225 

In order to measure the transverse spin of a 2D-unpolarized evanescent wave, the total 226 
internal reflection of collimated far-field light coming from an unpolarized tungsten lamp was 227 
employed. To generate the evanescent wave, a BK7 glass prism (Thorlabs, refractive index 228 
n = 1.51 at the wavelength λ = 600 nm) was illuminated by an unpolarized tungsten lamp of 229 
wavelength 500–800 nm. The angle of incidence was measured to be 49°, which changes to 47° 230 
upon refraction entering the right-angle prism. This is above the critical angle of 41°, producing 231 
total internal reflection and an evanescent wave with  above the glass. Such an 232 
evanescent wave has noticeable transverse spin (4) and negligible change in the 3D degree of 233 
polarization:  (neglecting the anisotropy of the Fresnel coefficients, 234 
see SI). Akin to the focused-beam experiment, a small nanoparticle acting as a probe for the 235 
local field polarization – in this case a gold nanoparticle (diameter d = 150 nm, Sigma Aldrich) 236 
– was placed in the evanescent field above the prism and the far-field scattered radiation was 237 
analyzed (see Fig. 3a). 238 

The scattered signal from the gold nanoparticle was collected by a 100× microscope 239 
objective with a numerical aperture NA = 0.9, allowing us to analyze the scattered light within a 240 
very large solid angle. The BFP of the detection objective (Fourier plane) was then imaged onto 241 
an imaging spectrometer using a set of relay lenses. The scattered signal was analyzed using a 242 
linear polarizer and a quarter wave plate in order to reconstruct the full Stokes parameters of the 243 
light scattered from the particle in all directions in the upper half-space (see SI). Figure 3b shows 244 
the results of these measurements, i.e., angular dependences of the normalized Stokes parameters 245 
s

1,2,3
/ s

0
, as well as the 2D degree of polarization, P2D , for the far-field scattering from the 246 

nanoparticle.  247 
Note that the gold nanoparticle in this experiment behaves as an electric dipole, i.e., it is 248 

sensitive to the electric rather than magnetic field properties. However, we have already shown 249 
that the magnetic field shares the same features in 2D-unpolarized light, so we omit the 250 
superscript “(e)”. 251 
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The degree of polarization P2D  and third Stokes parameter s
3

/ s
0
 in the scattered radiation 252 

show that the scattered light becomes partially polarized and acquires opposite-sign spins in the 253 
 ± y  directions. This is in perfect agreement with the y-directed transverse spin in Eq. (4) and the 254 
well-established fact that this transverse spin in an evanescent field is converted to the usual far-255 
field spin (i.e., the third Stokes parameter) upon transverse scattering by a dipole particle [23–256 
25,27–29,33–35]. The insets in Fig. 3b show the analytically calculated Stokes parameters of the 257 
scattered light for an unpolarized λ = 600 nm  source. (The patterns depend very weakly on 258 
wavelength so that they are almost constant within the whole 500–800 nm range.) The analytical 259 
calculation was performed by matching the experimental parameters (angle of incidence, type of 260 
glass, particle diameter and material), including the total internal reflection of the incident beam, 261 
the particle modeled as a point dipole, and the subsequent scattering of the particle (taking into 262 
account the effects of the surface reflections; see SI). One can see a very good agreement 263 
between the theory and the experiment. 264 
5. Conclusions 265 

We have shown that pure redirection of wavevectors can generate nonzero spin angular 266 
momentum in initially completely 2D-unpolarized paraxial light. This surprising result 267 
establishes an important link between two areas of research: (i) 3D polarization in nonparaxial 268 
fields [4–12,40,41] and (ii) transverse spin [17–39]. The direct relation between the redirection 269 
of wavevectors and the appearance of spin points to the fundamental spin-orbit interaction origin 270 
of this phenomenon [34]. We have provided theoretical calculations and two sets of experimental 271 
measurements for the transverse spin generated upon tight focusing and total internal reflection 272 
(i.e., generation of an evanescent wave) of an unpolarized paraxial light. All these results use 273 
well-established methods for spin calculations and measurements, and are in perfect mutual 274 
agreement.  275 

Thus, our work has revealed one more exceptional feature of transverse spin. Together 276 
with other properties found previously, we can conclude that transverse spin is not just “one of 277 
the components of spin angular momentum density”, but rather a separate physical entity whose 278 
main features are completely different from those of the usual polarization-controlled 279 
longitudinal spin of paraxial light or photons. As such, the transverse spin can offer novel 280 
phenomena and applications in angular-momentum and polarization optics. The remarkable 281 
“spin-momentum locking” associated with the transverse spin has already found promising 282 
applications for highly efficient spin-direction couplers [22–25,27–29,33–36]. The present study 283 
opens an avenue for the use of spin from unpolarized and incoherent sources. It also sheds light 284 
onto the appearance of nonzero local spin in nonparaxial sound waves [36–38], which do not 285 
feature a polarization degree of freedom in the paraxial regime and correspond to spin-0 286 
quantum particles (phonons). 287 
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Figure captions 407 
Figure 1. Spin and polarization in paraxial and nonparaxial fields. Schematic illustration of 408 
the longitudinal and transverse spin for the paraxial (plane-wave) and nonparaxial regimes for 409 
polarized and unpolarized (in the 2D sense) fields. Transverse spin S⊥  appears in nonparaxial 410 
fields, while the depolarization of the paraxial source eliminates only the longitudinal spin . 411 
 412 
Figure 2. Focused beam experiment. a, Experimental setup for the reconstruction of the 413 
transverse spin in a tightly focused 2D-unpolarized field. A linear polarizer and two liquid 414 
crystal variables retarders (LCs) are used to prepare a beam with randomly varied polarization. 415 
Subsequently, two confocally aligned microscope objectives (MOs) focus and collimate the 416 
beam. A spherical silicon nanoparticle is placed on a coverslip in the focal plane. It produces 417 
scattered light with wavevectors outside of the aperture of the transmitted beam, which carries 418 
information about the local transverse spin density in the beam [26,32]. Polarization-resolved 419 
back focal plane images using the scattered light are recorded by using another LC, a linear 420 
polarizer and a lens. b, Experimental results of the reconstructed electric and magnetic transverse 421 
spin, S⊥

(e)  and S⊥
(m) (normalized to the maximum absolute value), which equal each other in the 422 

2D-unpolarized field (see SI). The results of numerical calculations are shown as insets. 423 
 424 
Figure 3. Evanescent wave experiment. a, Experimental setup used to detect the non-zero 425 
transverse spin in an evanescent wave from a 2D-unpolarized source. Light from an unpolarized 426 
source undergoes total internal reflection, generating an evanescent wave, which is then scattered 427 
by a nanoparticle. The scattering from this nanoparticle is collected via a microscope objective. 428 
The radiation diagram above the nanoparticle represents the measured P2D  (i.e., the degree of 429 
polarization in different directions), whereas the color represents the spin of the far-field 430 
radiation given by s

3
/ s

0
. b, Experimentally retrieved and analytically calculated (inset) maps of 431 
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P2D  and normalized Stokes parameters s
1,2,3

/ s
0
 of the scattered light in every direction of the 432 

upper half-space. 433 
 434 
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