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Abstract 

The Developing Human Connectome Project (dHCP) is an Open Science project which 

provides the first large sample of neonatal functional MRI (fMRI) data with high temporal and 

spatial resolution. This data enables mapping of intrinsic functional connectivity between 

spatially distributed brain regions under normal and adverse perinatal circumstances, offering a 

framework to study the ontogeny of large-scale brain organisation in humans. Here, we 

characterise in unprecedented detail the maturation and integrity of resting-state networks 

(RSNs) at term-equivalent age in 337 infants (including 65 born preterm).  

 

First, we applied group independent component analysis (ICA) to define 11 RSNs in term-born 

infants scanned at 43.5-44.5 weeks postmenstrual age (PMA). Adult-like topography was 

observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among 

six higher-order, association RSNs, analogues of the adult networks for language and ocular 

control were identified, but a complete default mode network precursor was not. Next, we 

regressed the subject-level datasets from an independent cohort of infants scanned at 37-43.5 

weeks PMA against the group-level RSNs to test for the effects of age, sex and preterm birth. 

Brain mapping in term-born infants revealed areas of positive association with age across four 

of six association RSNs, indicating active maturation in functional connectivity from 37 to 43.5 

weeks PMA. Female infants showed increased connectivity in inferotemporal regions of the 

visual association network. Preterm birth was associated with striking impairments of 

functional connectivity across all RSNs in a dose-dependent manner; conversely, connectivity 

of the superior parietal lobules within the lateral motor network was abnormally increased in 

preterm infants, suggesting a possible mechanism for specific difficulties such as 

developmental coordination disorder which occur frequently in preterm children.  

 

Overall, we find a robust, modular, symmetrical functional brain organisation at normal term 

age. A complete set of adult-equivalent primary RSNs is already instated, alongside emerging 

connectivity in immature association RSNs, consistent with a primary-to-higher-order 

ontogenetic sequence of brain development. The early developmental disruption imposed by 

preterm birth is associated with extensive alterations in functional connectivity. 

 

  



Introduction 

The Developing Human Connectome Project (dHCP) is an Open Science project funded by the 

European Research Council to provide a large dataset of functional and structural brain images 

from 20 to 44 weeks of gestational age (GA). This enables the characterisation of 4-

dimensional (three spatial dimensions and time) connectivity maps, which map the trajectories 

of human brain development to improve understanding of normal development and allow 

earlier detection and intervention for neurological and psychological disorders.  

This paper analyses functional connectivity at the time of normal birth in infants born at term 

and preterm. Temporal coherences in the blood-oxygen–level-dependent (BOLD) contrast 

measured with resting-state functional magnetic resonance images (rs-fMRI) can be 

spatiotemporally decomposed into resting-state networks (RSNs) (Damoiseaux et al., 2006) 

(Biswal et al., 1995), predominantly at low frequency (< 0.1 Hz) (Cordes et al., 2001), distinct 

from cardiovascular signal (De Luca et al., 2006). Whilst RSNs have been extensively and 

robustly characterized in the mature brain, previous studies of RSN development in newborn 

infants have been limited by smaller sample sizes. The dHCP provides the first high-quality, 

large-scale, 4-dimensional dataset of functional connectivity at this critical period of 

development, enabling us to address two key questions. Firstly, are higher-order RSNs such as 

the default-mode network (DMN) (Raichle et al., 2001) instated with adult topology in the 

neonatal period? Some find analogues of these at term-equivalent age (TEA) (Doria et al., 

2010; Fransson et al., 2009; Fransson et al., 2007; Smyser et al., 2010; Smyser et al., 2016) 

while others locate their origin in later infancy or early childhood, contemporaneous with the 

emergence of the higher cognitive abilities these networks are believed to support (Gao et al., 

2014; Gao et al., 2015). Secondly, what is the effect of preterm birth on RSN development? 

Preterm birth is associated with significant risk for enduring neurodevelopmental and 

psychiatric problems in later life (Bhutta et al., 2002; Marlow et al., 2005; Saigal and Doyle, 

2008; Nosarti et al., 2012), even in the absence of overt structural brain injury during the 

preterm period. Various alterations in the complexity, scope, strength and efficiency of 

functional connectivity in preterm-at-term infants have been reported (Smyser et al., 2010; 

Toulmin et al., 2015; Ball et al., 2016; Smyser et al., 2016; Bouyssi-Kobar et al., 2019); 

however, the majority of studies lack the large numbers of control subjects required to 

characterise these effects with precision. 

The mature adult RSNs are well characterised, with high intra-subject reproducibility (Finn et 

al., 2015; Wang et al., 2015), largely consistent topology across healthy subjects, and 

anatomical mapping that reinforces both structural and task-fMRI-derived parcellations of the 

cortex (Glasser et al., 2016). The identification of fMRI-RSN signatures associated with 



disease offers considerable translational potential due to rs-fMRI’s relatively straightforward 

and widely-used acquisition, whole-brain coverage, and high spatial resolution compared to 

other functional imaging methods. The achievement of this in the immature brain requires a 

complete account of RSN ontogeny. The developing CNS shows spontaneous, patterned, 

correlated intrinsic activity from early prenatal life (reviewed in Blankenship and Feller, 2010; 

Keunen et al., 2017; Vasung et al., 2019); immature RSNs can be identified from as early as 26 

weeks postmenstrual age (PMA) in the preterm infant (Doria et al., 2010; Smyser et al., 2010). 

By TEA, RSNs encompassing brain regions serving primary functions (sensorimotor, auditory, 

visual) are clearly apparent in mature configuration in both term and preterm-born infants 

(Doria et al., 2010; Fransson et al., 2011; Fransson et al., 2009; Fransson et al., 2007; Gao et 

al., 2014; Gao et al., 2015; Smyser et al., 2016) and show minimal change in infancy, while 

higher-order association networks appear to be largely fragmented at TEA, with studies 

suggesting that they synchronise into complete adult-like core structure in the first year (DMN, 

dorsal attention network) or second year (salience network, bilateral frontoparietal networks) of 

life (Gao et al., 2014; Gao et al., 2015). Importantly, TEA is not a single timepoint but rather a 

window encompassing a critical period of brain development in which there is intense 

myelination of white matter (reviewed in Dubois et al., 2014) and rapid expansion in both the 

size and gyrification of the cerebral cortex (Dubois et al., 2019; Shimony et al., 2016). Dense 

sampling across the age range is therefore required to map the associated changes in functional 

connectivity. 

Here we apply a data-driven approach to 337 rs-fMRI datasets acquired in term and preterm 

infants between 37 and 44.5 weeks PMA. We first defined a normative set of RSNs in a sub-

sample of term-born infants scanned at 43.5-44.5 weeks PMA using probabilistic independent 

component analysis (ICA) (Beckmann and Smith, 2004). ICA is a dimensionality reduction 

technique which decomposes data into a set of components with maximal statistical 

independence; applied to rs-fMRI, ICA can reveal large-scale brain networks without 

requirement for a predefined model of network structure. We then regressed subject-level data 

from term and preterm infants scanned at 37-43.5 weeks PMA against these networks. The 

resulting whole-brain correlation maps enabled us to both characterise the ontogeny of 

individual RSNs, and investigate the influence of prematurity on cortical functional 

connectivity. We hypothesised that primary sensorimotor RSNs would be well established at 

TEA, while higher-order RSNs would be immature and emerging; and that preterm birth would 

be associated with reduced functional connectivity at TEA. 



Materials and methods 

Subjects 

Research participants were prospectively recruited as part of the dHCP, an observational, 

cross-sectional Open Science programme approved by the UK National Research Ethics 

Authority (14/LO/1169). Written consent was obtained from all participating families prior to 

imaging. Term-born infants were recruited from the postnatal wards and approached on the 

basis of being clinically well. Preterm-born infants were recruited from the neonatal unit and 

postnatal wards. Infants were not approached for study inclusion if there was a history of 

severe compromise at birth requiring prolonged resuscitation, a diagnosed chromosomal 

abnormality or any contraindication to MRI scanning (e.g., due to incompatible implants). No 

infants included in the final study group required treatment for clinically significant brain 

injury. We selected 416 structural-functional datasets acquired at TEA from the 2019 (second) 

dHCP data release. Only infants scanned at 37-44.5 weeks PMA in term-born infants, or 37-

43.5 weeks PMA in preterm-born infants, were considered for inclusion. One infant was 

included twice due to two datasets being acquired at different ages; only the second dataset was 

used. Thirty-five infants were excluded due to a history of neurodevelopmental disorder in a 

first-degree relative. Forty-three were excluded due to motion (see Functional data pre-

processing). The final study population therefore consisted of 337 infants, divided into three 

groups: term-born infants scanned at 43.5-44.5 weeks PMA, who were used to define the 

normative set of RSNs and excluded from all subsequent subject-level analyses (i); and the 

remaining infants scanned at 37-43.5 weeks PMA, including both term-born (ii) and preterm-

born (iii) infants (Table 1). No infants in the preterm study group had major brain injury such 

as periventricular leukomalacia, grade 3 or 4 intraventricular haemorrhage, major intracerebral 

haemorrhage, or ischaemic focal brain lesions. As is commonly seen in preterm infants there 

was evidence of mild pathologies including 15 (23%) with a history of grade 1 or 2 IVH; 10 

(15%) with small cerebellar haemorrhage with no involvement of the vermis; 22 (34%) with 

punctate white matter lesions; and 22 (34%) with diffuse excessively high signal intensity 

(DEHSI) of the white matter. These mild pathologies are known to be poorly predictive of later 

neurodevelopmental outcome at the individual level (O'Shea et al., 2012; Steggerda et al., 

2013; Kersbergen et al., 2014; Broström et al., 2016), and there were no significant differences 

in early developmental outcome between the term and preterm-born groups (Table 1). 

 



MR data acquisition   

Neuroimaging was acquired in a single scan session for each infant at the Evelina Newborn 

Imaging Centre, Evelina London Children’s Hospital, using a 3-Tesla Philips Achieva system 

(Philips Medical Systems, Best, The Netherlands). All infants were scanned without sedation 

in a scanner environment optimized for safe and comfortable neonatal imaging, including a 

dedicated transport system, positioning device and a customized 32-channel receive coil, with a 

custom-made acoustic hood (Hughes et al., 2017). MR-compatible ear putty and earmuffs were 

used to provide additional acoustic noise attenuation. Infants were fed, swaddled and 

comfortably positioned in a vacuum jacket prior to scanning to promote natural sleep. All scans 

were supervised by a neonatal nurse and/or paediatrician who monitored heart rate, oxygen 

saturation and temperature throughout the scan.  

High-temporal-resolution BOLD fMRI optimized for neonates was acquired over 15 minutes 3 

seconds (2300 volumes) using a multislice gradient-echo echo planar imaging (EPI) sequence 

with multiband excitation (multiband factor 9). Repetition time (TR) was 392 milliseconds, 

echo time (TE) was 38 milliseconds, flip angle was 34°, and the acquired spatial resolution was 

2.15 mm isotropic (Price et al., 2015). For registration of the fMRI data, high-resolution T1- 

and T2-weighted anatomical imaging was also acquired in the same scan session, with a spatial 

resolution of 0.8 mm isotropic (T1w: field of view 145 × 122 × 100 mm, TR 4795 ms; T2w: 

field of view 145 × 145 × 108 mm, TR 12000 ms, TE 156 ms). 

 

Functional data pre-processing    

Data were pre-processed using an in-house pipeline optimized for neonatal imaging and 

specifically developed for the dHCP, detailed in Fitzgibbon et al. (2020). In brief, susceptibility 

dynamic distortion together with intra- and inter-volume motion effects were corrected in each 

subject using a bespoke pipeline including slice-to-volume and rigid-body registration 

(Andersson et al., 2018; Andersson et al., 2017; Andersson et al., 2001; Andersson et al., 

2003). In order to regress out signal artifacts related to head motion, cardiorespiratory 

fluctuations and multiband acquisition (Salimi-Khorshidi et al., 2014), 24 extended rigid-body 

motion parameters were regressed together with single-subject ICA noise components 

identified with the FSL FIX tool (Oxford Centre for Functional Magnetic Resonance Imaging 

of the Brain’s Software Library, version 5.0). Denoised data were registered into T2w native 

space using boundary-based registration (Greve and Fischl, 2009) and non-linearly registered 

to a standard space based on a weekly template from the dHCP volumetric atlas (Schuh et al., 

2018) using a diffeomorphic multimodal (T1/T2) registration (Avants et al., 2008). 



While the fMRI preprocessing pipeline for the dHCP (Fitzgibbon et al., 2020) addresses the 

potential problem of head motion in rs-fMRI data (Power et al., 2012; Satterthwaite et al., 

2012), motion is also a surrogate marker of the arousal state of the infant, which interacts with 

the underlying neural activity (Denisova, 2019; Whitehead et al., 2018). To address this issue, 

we opted for a conservative approach consisting in the selection of a continuous sub-sample of 

the data (~70%) with lowest motion for each subject, and excluding those subjects with a high 

level of motion from further analyses. Specifically, volumes with DVARS (the root mean 

square intensity difference between successive volumes) higher than 1.5 IQR above the 75th 

centile, after motion and distortion correction, were considered as motion outliers (Fitzgibbon 

et al., 2020). Mean DVARS was 90.5 (SD 18.5) in the term-born group and 95.5 (SD 20.3) in 

the preterm-born group (p = 0.056, unpaired t-test). As DVARS is a relative measure, the 

absolute DVARS cutoff varied between subjects. Within each acquired dataset (2300 

volumes), the continuous set of 1600 volumes with the minimum number of motion-outlier 

volumes was identified, and the dataset cropped accordingly for all subsequent analyses. 

Subjects with more than 160 motion-outlier volumes (10% of the cropped dataset) were 

excluded entirely. This allowed us to minimise the potential effect of different states of arousal 

even after appropriately denoising the data. The number of motion-outlier volumes remaining 

in the cropped dataset was recorded for each subject and included as a covariate in all 

subsequent regression analyses. The median number of motion-outlier volumes in the term-

born group was 49.5 (IQR 27-86.5) and in the preterm-born group was 34 (IQR 12-83) (group 

difference not significant under assumption of normality [p = 0.185, unpaired t-test] or non-

normality [p = 0.052, Mann-Whitney U test]). 

 

Functional data analysis 

Group-level network definition    

We first defined the normative set of RSNs by group ICA in 24 healthy term-born infants 

scanned at 43.5-44.5 weeks PMA. These subjects were excluded from all subsequent 

regression analyses. Probabilistic group ICA by temporal concatenation across subjects was 

carried out using FSL MELODIC (Beckmann and Smith, 2004). The ICA dimensionality was 

set at 30, representing a pragmatic balance between robustness and interpretability (as in 

(Toulmin et al., 2015)). The output comprised 30 group-average spatial maps representing 30 

independent components. The maps were visually inspected and each component manually 

labelled as RSN or noise, following guidelines in Fitzgibbon et al. (2020). 

 



Subject-level analyses  

We next regressed the group-level spatial maps into the subject-level 4D space-time datasets of 

the subjects scanned at 37-43.5 weeks PMA (248 term-born, 65 preterm-born). Specifically, 

the group-level spatial maps (including both RSN signal and artifact components) were used to 

generate subject-specific versions of the spatial maps and associated time series using dual 

regression (Nickerson et al., 2017). Artifact components were included to better account for 

confound variance (noise) in the regression model (Beckmann et al., 2009). First, for each 

subject, the set of group-level RSN spatial maps was regressed (as spatial regressors in a 

multiple regression) into the subject's 4D space-time dataset. This resulted in a set of subject-

specific time series, one per group-level spatial map. Next, those timeseries were regressed (as 

temporal regressors, again in a multiple regression) into the same 4D dataset, resulting in a set 

of subject-specific spatial maps, one per group-level spatial map.  

We then performed cross-subject analysis using general linear models (GLM) to test for the 

effects of group (term vs. preterm birth, sex) and continuous variables (GA at birth, PMA at 

scan) on the subject-level RSN spatial maps, including the number of motion-compromised 

volumes as a nuisance covariate. Specifically, in the model evaluating the effect of PMA at 

scan (term-born infants only) the covariates were sex and motion; in the model evaluating the 

effect of sex the covariates were PMA at scan, GA at birth and motion; in the model evaluating 

the effect of term vs. preterm birth the covariates were PMA at scan, sex and motion; and in the 

model evaluating the effect of GA at birth the covariates were PMA at scan, sex and motion. A 

further group-level analysis was conducted in which term-born infants were separated into 

weekly bins according to their PMA at scan, enabling group-average maps of functional 

connectivity at each week of brain development to be generated for qualitative comparison. For 

this we entered data from the 20 subjects in each bin (37.5-38.5 weeks, 38.5-39.5 weeks, 39.5-

40.5 weeks, 40.5-41.5 weeks, 41.5-42.5 weeks) with the lowest number of postnatal days of 

life at time of scan, to maximise similarity between groups for meaningful visual comparison. 

The covariates in this model were sex and motion. Voxel-wise statistical tests were 

implemented in FSL randomise (Winkler et al., 2014) using threshold-free cluster 

enhancement (Smith and Nichols, 2009) with 5000 permutations. As all contrasts were two-

tailed, family-wise error-rate (FWE) corrected (for multiple comparisons across voxels) p-

values less than 0.025 were accepted as significant. Due to the exploratory nature of this study 

the main results are presented without correction for the effect of multiple RSNs assessed, 

however we also provide the Bonferroni-corrected results (i.e. p < 0.025 / n RSNs)) as 

supplementary figures. 



To further quantify longitudinal changes in within-network functional connectivity, we 

analysed the relationship between PMA at scan and a derived parameter we term ‘core network 

strength’. This measure was determined for each RSN for each subject by masking the RSN-

specific spatial map (the output of stage two of dual regression) by the corresponding group-

ICA network template thresholded at Z > 3, then calculating the mean β parameter value 

(regression coefficient) within the masked image. The partial Spearman’s correlation between 

core network strength and PMA at scan was calculated in term-born infants while controlling 

for sex and motion (number of motion-compromised volumes), and a GLM was used to test for 

group differences in core network strength between term and preterm infants while controlling 

for PMA at scan, sex and motion. Correlation and GLM analyses of core network strength 

were implemented in Python 3.7 with pingouin 0.2.9 and statsmodels.api 0.10.1. 

 

 

Anatomical localisation and data visualisation 

Results were localised in the standard space using an in-house adaptation of the neonatal 

version (Shi et al., 2011) of the AAL atlas (Tzourio-Mazoyer et al., 2002), projected to the 40-

week high-resolution neonatal dHCP template (Schuh et al., 2018). 

Data were displayed using FSLeyes for planar visualisation and Connectome Workbench for 

cortical surface visualisation. 

 

Data availability 

The dHCP is an open-access project. The imaging and collateral data used in this study were 

included in the 2019 (second) dHCP data release, which can be downloaded by registering at 

https://data.developingconnectome.org/ 

 

Results 

Resting-state networks 

Eleven RSNs were identified by group ICA in a sub-sample of term-born infants scanned 

between 43.5 and 44.5 weeks PMA (n =24), who were excluded from any further analyses. 

Five RSNs included primary motor or sensory cortical areas and were categorised as primary 

networks (Fig. 1A): medial motor, lateral motor, somatosensory, auditory and visual. The 

https://data.developingconnectome.org/


remaining six were categorised as association networks (Fig. 1C): motor association (including 

the premotor and supplementary motor areas), temporoparietal (including Broca’s area and the 

extended Wernicke’s area), posterior parietal (including the precuneus and posterior cingulate 

cortices), frontoparietal (including the frontal, supplementary and parietal eye fields), 

prefrontal and visual association. The full cortical surface parcellation is provided in 

Supplementary Fig. S1 and the Supplementary Video.  

 

 

Figure 1. Resting-state networks identified by group independent component analysis. 

Spontaneous BOLD activity patterns (RSNs) derived from group ICA in 24 term-born infants 

scanned at 43.5-44.5 weeks PMA. Panels: Example axial, coronal, and sagittal slices for 

meaningful spatial patterns in primary (A) and association (C) RSNs, thresholded at Z > 3 and 

overlaid on a T1 structural template, displayed in radiological convention. Centre: Functional 

parcellation of the brain using a ‘winner-takes-all’ approach based on the RSNs from group 

ICA. RSNs were spatially smoothed and thresholded at Z > 1 prior to determination of the 

‘winning’ RSN at each voxel. The resulting volume was projected to the midthickness cortical 

surface using enclosed (nearest neighbour) volume-to-surface mapping, here displayed on the 

pial surface of an individual subject scanned at 42 weeks PMA and viewed from the dorsal (B) 

and left lateral (D) aspects. 

 



Effect of postmenstrual age at scan 

To characterise normal maturation in functional connectivity from 37-43.5 weeks in term-born 

infants, we analysed the association between previously calculated RSNs independently 

regressed to each subject and PMA at scan, while controlling for sex and motion. Brain regions 

showing increasing connectivity with older PMA at scan were identified in four RSNs, all 

association networks (Fig. 2; Bonferroni-corrected, Supplementary Fig. S2). Localisation of 

significant voxels to the AAL atlas is provided in the Supplementary Table S1. There were 

no brain tissue regions showing negative association with older age at scan. 

 

Figure 2. Changes in network shape with increasing age at scan. Brain regions showing 

increasing functional connectivity with older PMA at scan in term-born infants scanned at 37-

43.5 weeks PMA. Example sagittal, coronal, and axial slices for meaningful spatial patterns in 

four RSNs are shown, overlaid on a T1 structural template and displayed in radiological 

convention. T-statistic maps were thresholded at p < 0.025 (FWE corrected). White lines 

represent the outlines of the group-ICA RSNs, thresholded at Z > 3.  



To further illustrate maturational changes in functional connectivity, we produced spatial maps 

of average network structure in term-born infants categorised into weekly groups according to 

their PMA at scan, while controlling for sex and motion (Fig. 3).  

 

Figure 3. Weekly maturation in functional network structure at term-equivalent age. Group-

average t-statistic maps of functional connectivity in term-born infants scanned at 37.5-42.5 

weeks PMA, grouped into weekly bins by PMA at scan. Within each bin 20 subjects with the 

lowest postnatal age at time of scan were selected. Example axial slices for meaningful spatial 

patterns in primary (A) and association (B) RSNs are shown, overlaid on a T1 structural 

template and displayed in radiological convention. Results were thresholded at p < 0.05 (FWE 

corrected). 



To further quantify longitudinal changes in within-network functional connectivity, we 

analysed the relationship between PMA at scan and a derived parameter we term ‘core network 

strength’, defined as the mean β parameter value in each subject’s RSN-specific spatial map 

(the outputs of stage two of dual regression) after masking by the corresponding group-ICA 

network template thresholded at Z > 3. Three RSNs showed a positive partial correlation 

between PMA at scan and core network strength (Fig. 4). There were no RSNs with negative 

correlation. 

 

Figure 4. Relationship between postmenstrual age at scan and core network strength. 

Relationship between the residuals (after correcting for sex and motion) for PMA at scan and 

core network strength in term-born infants scanned at 37-43.5 weeks PMA. Core network 

strength was defined as the mean β parameter value in each subject’s RSN-specific spatial map 

after masking by the corresponding group-ICA network template thresholded at Z > 3. Partial 

Spearman’s correlation coefficients and associated p values are displayed for the three RSNs 

significant at p < 0.025. Example axial, coronal and sagittal slices for meaningful spatial 

patterns in the corresponding group-ICA network templates are shown for reference. 



Effect of Sex 

To determine differences in functional connectivity between male and female infants we 

analysed this as a group effect, while controlling for GA at birth, PMA at scan and motion. 

Female infants showed increased connectivity of inferior occipito-temporal regions (including 

the posterior fusiform gyrus) within the visual association network (Fig. 5; Bonferroni-

corrected, Supplementary Fig. S3). 

 

 

Figure 5. Increased functional connectivity in the visual association network in female 

infants. Brain regions showing increased functional connectivity within the visual association 

RSN in female infants. Example axial, sagittal and coronal slices for meaningful spatial 

patterns are shown, overlaid on a T1 structural template and displayed in radiological 

convention. T-statistic maps were thresholded at p < 0.025 (FWE corrected). White lines 

represent the outline of the group-ICA visual association network, thresholded at Z > 3.  

 

Effect of preterm birth 

To determine differences in functional connectivity between term- and preterm-born infants we 

first analysed this as a group effect, while controlling for PMA at scan, sex and motion. There 

was extensive impairment of functional connectivity across all RSNs in preterm-born infants; 

uncorrected core network strength was 23-41% reduced relative to term-born infants across the 

11 networks (all p < 0.001, independent samples t-tests). Conversely, preterm-born infants 

showed increased connectivity of the bilateral superior parietal lobule within the lateral motor 

network (Fig. 6; Bonferroni-corrected, Supplementary Fig. S4). The association of younger 

GA at birth with impaired functional connectivity was replicated across all networks in a 

separate analysis in which GA at birth was entered as a continuous variable, indicating a dose-

dependent effect of prematurity on functional connectivity (Supplementary Fig. S5; 

Bonferroni-corrected, Supplementary Fig. S6). 



  

 

Figure 6. Effect of preterm birth on functional connectivity. Group differences in functional 

connectivity between term- and preterm-born infants scanned at 37-43.5 weeks PMA. Coloured 

t-statistic maps thresholded at p < 0.025 (FWE corrected) show brain regions with reduced 

(blue) or increased (red-yellow) connectivity in preterm-born infants. Example sagittal, 

coronal, and axial slices for meaningful spatial patterns within each RSN are shown, overlaid 

on a T1 structural template and displayed in radiological convention. White lines represent the 

outlines of the group-ICA RSNs, thresholded at Z > 3. Boxplots show group differences in core 

network strength after regressing out PMA at scan, sex and motion. Core network strength was 

defined as the mean β parameter value in each subject’s RSN-specific spatial map after 

masking by the corresponding group-ICA network template thresholded at Z > 3. P-values 

relate to the term vs. preterm group contrast in a GLM in which core network strength was the 

dependent variable and PMA at scan, sex and motion were controlled for as nuisance 

covariates. 

 



Discussion 

In this large cohort of newborn infants we provide detailed characterization of the maturational 

trajectories of normal functional network development at TEA, and show that the early 

developmental disruption imposed by preterm birth is associated with significant and 

widespread alterations in functional connectivity. 

 

Network architecture and maturation in term-born infants 

Overall we find a robust, modular, symmetrical functional organisation of the brain at TEA. 

Our results confirm and further elucidate the primary-to-higher-order maturational sequence of 

RSN development. Using a whole-brain, voxel-level approach we depicted changes in the 

posterior parietal, frontoparietal, prefrontal and visual association networks, showing 

expansions in network shape with increasing age at scan (Fig. 2). We also investigated the 

effect of age at scan across a predefined area (the core region, as defined by the template 

network), demonstrating global changes in network strength or integrity in the somatosensory, 

posterior parietal and visual association networks (Fig. 4). 

 

Primary networks 

We identified five primary RSNs (Fig. 1A) which showed adult-like topology from the earliest 

ages studied (Fig. 3A) and no significant change in architecture from 37-43.5 weeks PMA. 

Primary, unimodal RSNs mature earlier than higher-order networks in the preterm brain (Doria 

et al., 2010; Liu et al., 2008; Smyser et al., 2010); our finding of an adult-like configuration of 

primary RSNs at TEA is in agreement with previous studies at this age (Doria et al., 2010; 

Fransson et al., 2011; Fransson et al., 2009; Fransson et al., 2007; Gao et al., 2014; Gao et al., 

2015; Smyser et al., 2010). The precise localisation of sensorimotor networks along the central 

sulcus is especially striking in our data, even in the youngest infants studied (Fig. 3A). 

Determination of somatotopic maps in primary sensorimotor cortical areas occurs as early as 

mid-third trimester equivalent age, with similar stimulation response to adults observed by 

TEA (Allievi et al., 2015; Dall’Orso et al., 2018). We additionally observed a significant 

increase in core network strength within the somatosensory network from 37-43.5 weeks PMA 

(Fig. 4), possibly reflecting increasing integration of secondary somatosensory cortex at this 

age (Allievi et al., 2015), and/or increased influence of ex-utero experience on this network. 

The bilateral insula (Fig. 1A) and thalamus (Supplementary Fig. S1C) were strongly 

connected within the medial motor network, consistent with previous studies finding strong 



thalamocortical connectivity in sensorimotor networks (Smyser et al., 2016; Toulmin et al., 

2015). 

 

Association networks 

We identified six RSNs representing higher-order association networks (Fig. 1C). Using 

quantitative (Fig. 2, Fig. 4) and qualitative (Fig. 3) methods, we found modest expansions in 

both the spatial extent and core temporal coherence of higher-order association networks from 

37-43.5 weeks PMA. To our knowledge this is the first time these changes have been 

quantified over this brief but developmentally critical period. The heterogeneous timing of 

functional network development, in which primary networks mature earlier than higher-order 

association networks, can be related to parallel changes in brain structure (reviewed in Keunen 

et al., 2017). Structural connectivity of the cortex begins with thalamic connections to frontal, 

auditory, visual and somatosensory cortices at 24-32 weeks gestation, while long-range 

cortico-cortical connections are not established until 33-35 weeks (reviewed in Dubois et al., 

2016; Kostovic and Jovanov-Milosevic, 2006). The same sequence is later repeated in cortical 

myelination, with the “primordial” sensorimotor and visual cortices histologically more mature 

at the time of birth (Flechsig, 1901). White matter tracts connecting to these regions, such as 

the corticospinal tract and optic radiation, are also the first to mature later in infancy (reviewed 

in Dubois et al., 2014). The structural and functional ontogeny mirrors the observed 

behavioural sequence of developmental ‘milestones’ in young children, in which sensorimotor, 

auditory and visual competencies are acquired before higher-order cognitive functions (Keunen 

et al., 2017). 

The two RSNs showing greatest increase in intrinsic connectivity (core network strength) from 

37-43.5 weeks PMA were the posterior parietal network and visual association network (Fig. 

4). The former encompasses the medial precuneus and posterior cingulate cortices 

(Supplementary Fig. S1C), an area of emerging functional connectivity at TEA (Gao et al., 

2009). In adulthood these regions are a prominent component of the DMN, leading some to 

label infant RSNs encompassing these as DMN precursors (Doria et al., 2010; Fransson et al., 

2009; Fransson et al., 2007; Smyser et al., 2010; Smyser et al., 2016). However, the mature 

DMN also incorporates distinct modules in the anterior cingulate/medial prefrontal cortex, 

orbitofrontal cortex, lateral temporal cortex and hippocampus (reviewed in Raichle, 2015). We 

observe no temporal involvement in the posterior parietal network, and only sparse frontal 

involvement, specifically at the right anterior cingulate (Supplementary Fig. S1C) and 

bilateral orbitofrontal cortex (Supplementary Fig. S1E). This dominant posterior hub with 

limited frontoparietal connectivity bears more similarity to the adult DMN under anaesthesia 



(Amico et al., 2014; Bonhomme et al., 2016). Overall we find support for the concept of 

fragmented local modules prevailing over long-range integration at this period of development, 

preceding the emergence of a full analogue of the adult DMN at 6-12 months of age (Gao et 

al., 2014; Gao et al., 2015; Gao et al., 2009). 

The visual association network comprises lateral occipital (Supplementary Fig. S1D) and 

inferotemporal (Supplementary Fig. S1B) cortices; regions which contribute to the ventral 

stream of visual processing, in which simple features coded by primary visual cortex are 

transformed into higher-level representations of objects, invariant of their size, rotation and 

position, enabling downstream object recognition and semantic processing (DiCarlo et al., 

2012; Goodale and Milner, 1992). It was therefore not surprising to find significant growth in 

the strength of this network from 37-43.5 weeks PMA (Fig. 2, Fig. 4), a period in which 

infants are increasingly exposed to, and able to resolve, objects in the visual field (Dubowitz et 

al., 1983). Furthermore, after controlling for differences in age, we found areas of increased 

connectivity within this network in female infants across inferotemporal regions including the 

posterior fusiform gyrus (Fig. 5). The fusiform is sensitive to complex visual stimuli including 

faces and facial expressions (Li et al., 2019); in the corresponding region of the macaque brain 

the code determining face cell firing was recently deciphered (Chang and Tsao, 2017). In 

humans, reduced functional connectivity of the fusiform face area is associated with 

developmental prosopagnosia (Lohse et al., 2016). The sex difference in functional 

connectivity we have identified in this region is especially interesting in the context of 

behavioural data in which female neonates, compared to males, show increased preference for 

looking at faces (Connellan et al., 2000). Sex differences in visual attention to social stimuli 

have also been described in older infants (Alexander et al., 2009) and in other newborn 

primates (Simpson et al., 2016). Structural brain development is sexually dimorphic, with 

small differences in tissue morphometry observed across the lifespan, frequently involving the 

temporal lobes, and under the influence of fetal testosterone in males (Lombardo et al., 2012; 

Studholme et al., 2020). Our finding of a sex difference in functional brain development in the 

inferior temporal lobes is interesting in this context, although the biological mechanisms for 

this and any correlations with behavioural data remain unknown at this time. Further 

investigation of functional connectivity in the ventral stream and social-cognitive development 

might elucidate mechanisms for sex differences in this domain.  

Two RSNs comprised segregated (i.e. non-contiguous) brain regions revealing anatomically 

meaningful patterns of functional connectivity. The temporoparietal network (Fig. 1D) 

connects a posterior module encompassing the extended Wernicke’s area to a smaller anterior 

module corresponding to Broca’s area. Integrated structural-functional analysis in adults 



showed this network is facilitated by the arcuate fasciculus (O'Muircheartaigh and Jbabdi, 

2018). The instatement of a putative ‘language network’ in early infancy is supported by 

stimulus-fMRI showing activation of these regions in response to speech (Dehaene-Lambertz 

et al., 2002; Dehaene-Lambertz et al., 2006). The frontoparietal network (Fig. 1B) connects the 

frontal, supplementary and parietal eye fields, with close resemblance to the adult dorsal 

attention network (Vossel et al., 2014). Ocular control relies on widespread white-matter 

connections between cortical and subcortical regions, the microstructural integrity of which 

correlates with visual fixation behaviour in the neonate (Stjerna et al., 2015). Striatal 

projections of the frontal and supplementary eye fields converge upon the caudate nucleus 

(Parthasarathy et al., 1992); we found a positive association between older PMA at scan and 

functional connectivity of the caudate nucleus within this frontoparietal network (Fig. 2), 

consistent with active development of the oculomotor corticostriatal system at this age.  

 

Impact of preterm birth 

Preterm birth confers a high risk of neurodevelopmental impairment (Bhutta et al., 2002; 

Marlow et al., 2005; Saigal and Doyle, 2008) and psychiatric illness in later life (Nosarti et al., 

2012). Pervasive deficiencies and delays in structural brain maturation have been identified in 

preterm infants scanned at TEA, even in those without focal brain injury, including 

macrostructural differences in tissue volume and gyrification (Ball et al., 2012; Kapellou et al., 

2006; Keunen et al., 2012; Shimony et al., 2016) and microstructural alterations in both grey 

and white matter (Ball et al., 2013b; Bouyssi-Kobar et al., 2018a; Krishnan et al., 2007). The 

overall structural network architecture appears unchanged, with preservation or even abnormal 

strengthening of the rich-club organisation of highly connected cortical hubs, at the expense of 

diminished peripheral connectivity and specific disruptions to thalamocortical, cortical-

subcortical and short-distance corticocortical connectivity (Ball et al., 2014; Ball et al., 2013a; 

Ball et al., 2015; Batalle et al., 2017; Lee et al., 2019). 

 

Widespread impairment of functional connectivity 

Now we show that, similar to structural connectivity, functional connectivity is profoundly 

affected by preterm birth. We found striking deficiencies in within-network connectivity across 

the full range of RSNs studied (Fig. 6), also replicated as a dose-dependent relationship, such 

that increased exposure to prematurity (younger GA at birth) was associated with decreased 

functional connectivity (Supplementary Fig. S5); effects we were not powered to detect in a 

prior study due to a limited number of term-born infants (Doria et al., 2010). Our results 



suggest that although functional connectivity increases across the preterm period (Cao et al., 

2016; Doria et al., 2010; Smyser et al., 2010; Smyser et al., 2016; van den Heuvel et al., 2015), 

it does not reach a normal configuration at TEA. Instead there appears to be an aberrant 

developmental trajectory, in which connections between brain regions are reconfigured by 

premature exposure to the extrauterine environment. Graph theoretical approaches have shown 

global network measures of clustering, integration and modularity at TEA are all reduced in 

preterm infants compared to full-term controls (Bouyssi-Kobar et al., 2019; Scheinost et al., 

2016). Hypothesis-driven seed-based approaches have identified disrupted thalamocortical 

connectivity (Smyser et al., 2010; Toulmin et al., 2015), consistent with structural disruption of 

the same (Ball et al., 2015). In our data-driven, whole-brain ICA approach, the main finding 

was globally reduced within-network functional connectivity. Primary and association RSNs 

appeared to be similarly affected, in contrast to the findings of Smyser and colleagues, who 

also employed whole-brain correlation mapping, and found primary RSNs were less affected 

by prematurity (Smyser et al., 2016). This discrepancy may be due to differences in approach 

to RSN definition (adult-derived RSNs), network mapping (node-based) and inclusion criteria 

for the preterm group (< 30 weeks GA at birth). In another study investigating preterm-at-term 

infants with whole-brain ICA, the method comprised identification of 71 nodes by ICA 

followed by subject-specific network estimation and selection of discriminatory edges between 

cases and controls using machine-learning classifiers (Ball et al., 2016). Connections to frontal 

and basal ganglia nodes were overrepresented among the discriminatory edges, indicating 

altered connectivity in preterm infants. Taken together, these different approaches provide 

complementary demonstrations of spatially widespread impaired RSN coherence in the 

preterm-at-term brain. 

 

Modulation of parieto-motor connectivity 

In the context of brain-wide deficiencies in functional connectivity in preterm-at-term infants, 

it was notable that there was also increased functional connectivity of the bilateral superior 

parietal lobule (Brodmann area 5) within the lateral motor network, both when prematurity was 

evaluated as a group effect (Fig. 6) and as a continuous variable (Supplementary Fig. S5). 

The lateral motor network corresponds approximately to the primary somatotopic regions 

serving the upper limb, hand and face (Fig. 1D). Ex-utero experience during the preterm period 

strongly influences the development of sensorimotor networks: bilateral functional responses in 

the perirolandic cortices to stimulation of the wrist increases with postnatal age, even after 

controlling for GA at birth (Allievi et al., 2015). Interestingly, connectivity with superior 

parietal regions appears to occur as a feature of normal development in the lateral motor 



network in older term-born infants (Fig. 3A). Area 5 comprises the somatosensory association 

cortex which integrates visual and somatosensory inputs to encode limb configuration in space, 

enabling coordinated movements within the immediate environment (Graziano et al., 2000; 

Mountcastle et al., 1975). Neural circuits are shaped by experience during critical periods of 

development; in animal studies, peak plasticity in somatosensory networks occurs earlier than 

peak plasticity in visual and auditory networks (reviewed in Reh et al., 2020). It is intuitive that 

connectivity of area 5 with lateral motor cortex could be highly dependent upon ex-utero 

experience, given the natural constraints upon limb movement and visuomotor integration in 

utero. We propose therefore that the experience of premature exposure to the extrauterine 

environment, occurring at a time of heightened sensorimotor plasticity (Staudt, 2010; Arichi et 

al., 2014; Allievi et al., 2015), modulates the normal development of parieto-motor 

connectivity and leads to an abnormal increase in connectivity at TEA; while acknowledging 

this mechanistic account as speculative at the present time. 

Previous studies have identified increased functional connectivity of certain primary cortical 

regions in preterm-at-term infants compared to controls, specifically the lateral postcentral 

gyrus with the thalamus (Toulmin et al., 2015) and regional connectivity within occipital/visual 

networks (Bouyssi-Kobar et al., 2018a). This may occur at the expense of connectivity in other 

brain areas, and can persist into later life; analysis of language networks in preterm children 

scanned at 12 years of age showed increased connectivity with primary sensorimotor areas, but 

reduced connectivity with higher-order frontal areas (Schafer et al., 2009). Relatively 

conserved topology of core structural networks has been reported in preterm-born babies 

(Batalle et al., 2017), persisting into later childhood and adulthood (Fischi-Gomez et al., 2016; 

Karolis et al., 2016). Disruption of the normal balance of sensorimotor development may have 

persisting effects on later motor and cognitive development. In the mature brain, the superior 

parietal lobule supports not only the smooth execution of motor plans (Simon et al., 2002) but 

also more abstract visuospatial functions such as mental rotation (Gogos et al., 2010). The 

aberrant parietal connectivity we have identified at TEA could therefore be a prelude to 

specific difficulties occurring with high prevalence in preterm children, such as developmental 

coordination disorder (Caravale et al., 2019; Davis et al., 2007; Dewey et al., 2019; Kashiwagi 

et al., 2009; Wilson et al., 2017), inattention and intellectual impairment (reviewed in Rogers et 

al., 2018). Long-term follow up of the study population at school age will be required to 

confirm this hypothesis. 

 



Limitations 

The customised neonatal imaging system for the dHCP includes a close-fitting head coil sized 

specifically for the neonatal head, thus providing exceptional signal-to-noise at the cortical 

surface (Hughes et al., 2017). This bias towards surface-proximate sources is compounded by 

the use of highly accelerated multiband EPI (Fitzgibbon et al., 2020). As such, this has likely 

resulted in greater sensitivity to detect correlated signal fluctuations in the cerebral cortex 

compared to deeper sources such as the thalamus, basal ganglia and cerebellum. This may 

explain the relatively sparse involvement of subcortical regions in the identified RSNs (Fig. 

1A, 1C). Thalamocortical and cerebellar functional connectivity may be better appreciated 

with seed-based methods (Herzmann et al., 2018; Toulmin et al., 2015). We also noted sparse 

involvement of inferior frontotemporal regions, even at Z > 1 (Supplementary Fig. S1B). The 

dHCP functional pipeline includes advanced distortion-correction techniques (Fitzgibbon et al., 

2020), but some signal loss related to air/tissue and bone/tissue interfaces in this vicinity 

cannot be fully excluded, and our use of a single phase-encode direction (anterior-posterior) 

may also compress signal in the frontal regions. However, this sparsity may also reflect 

biological reality in these brain regions, which are the least myelinated at birth (Flechsig, 1901) 

and so may be the least able to participate in long-range phase-synchronous activity.  

In this study we used a dense sampling strategy at TEA to infer longitudinal change in RSNs, 

but each infant was scanned on only one occasion. GA at birth and PMA at scan were strongly 

correlated within the term-born group, which complicates the interpretation of these 

longitudinal analyses. Furthermore, as some potentially relevant neonatal characteristics such 

as intracranial volume and postnatal days of life, are intrinsically associated to some of our 

variables of interest (i.e., postmenstrual age at scan, sex, gestational age at birth), it is difficult 

to disentangle their relative contributions to our results. 

The optimised fMRI dHCP pipeline includes multiple steps to control for motion and 

physiological confounds, thus minimising data loss. However, while well-fed babies tend to 

fall asleep during the scan, subject motion is inherently correlated with the arousal and sleep 

state of the baby, which may have an effect in the reconstructed RSNs (Horovitz et al., 2009). 

While our stringent control for high motion during the scan will minimise the potential effect 

of subject differences in arousal and sleep state, the specific measure that should be used as a 

surrogate to model arousal state is unclear. Future studies using simultaneous EEG-fMRI could 

help to better understand the effect of different sleep states on RSNs. Differences in arousal in 

the scanner between infants and adults should also be considered when comparing RSN 

topology between these groups (Mitra et al., 2017). Our use of infants scanned at 43.5-44.5 

PMA to define the group-ICA components may have missed some sources of structured noise 



occurring predominantly at younger ages, such as CSF signal in the cavum septum pellucidum. 

More fundamentally, the extent to which BOLD signal might be confounded by 

cerebrovascular factors differing between preterm- and term-born infants (Bouyssi-Kobar et 

al., 2018b) remains open to debate. Some of the spatial expansions in association RSNs 

depicted in Fig. 2 were localised to white matter (see Supplementary Table S1), which may 

also reflect maturational changes in cerebrovascular factors, combined with other age-related 

changes in sulcal depth and white matter signal to noise ratio. Some of the important temporal 

dynamics in functional networks may be missed by rs-fMRI, which predominantly identifies 

activity at < 0.1Hz (Cordes et al., 2001). Complementary approaches such as EEG may help to 

address this (Arichi et al., 2017; Mehrkanoon, 2019).  

 

Conclusion 

Brain development occurs in a pre-programmed and spatially heterogeneous progression, 

modulated by environmental influence. As such, we observed different trajectories for different 

neural systems, obeying a generally primary-to-higher-order sequence of maturation. At TEA 

we find already instated a complete set of adult-analogous unimodal RSNs corresponding to 

primary sensorimotor, visual and auditory cortices, with relatively little change from 37-43.5 

weeks PMA. In contrast, association RSNs appear fragmented and incomplete compared to the 

adult repertoire, and are undergoing active maturation at this time. Connectivity within the 

visual association network in particular is highly associated with age, likely as a result of 

postnatal environmental experience, but also modified by the sex of the infant. Preterm birth is 

associated with profoundly reduced functional connectivity across all RSNs, but also with 

augmentation of parieto-motor connectivity, with possible implications for understanding 

certain neurocognitive sequelae of prematurity. In future we may be able to positively 

modulate RSN development in prematurity via targeted environmental manipulations (Lordier 

et al., 2019). Preterm birth is best conceptualised as a developmental perturbation which 

reconfigures, rather than simply diminishes, the organisation of functional brain networks. 
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Figure Legends 

Figure 1. Resting-state networks identified by group independent component analysis. 

Spontaneous BOLD activity patterns (RSNs) derived from group ICA in 24 term-born infants 

scanned at 43.5-44.5 weeks PMA. Panels: Example axial, coronal, and sagittal slices for 

meaningful spatial patterns in primary (A) and association (C) RSNs, thresholded at Z > 3 and 

overlaid on a T1 structural template, displayed in radiological convention. Centre: Functional 

parcellation of the brain using a ‘winner-takes-all’ approach based on the RSNs from group 

ICA. RSNs were spatially smoothed and thresholded at Z > 1 prior to determination of the 



‘winning’ RSN at each voxel. The resulting volume was projected to the midthickness cortical 

surface using enclosed (nearest neighbour) volume-to-surface mapping, here displayed on the 

pial surface of an individual subject scanned at 42 weeks PMA and viewed from the dorsal (B) 

and left lateral (D) aspects. 

Figure 2. Changes in network shape with increasing age at scan. Brain regions showing 

increasing functional connectivity with older PMA at scan in term-born infants scanned at 37-

43.5 weeks PMA. Example sagittal, coronal, and axial slices for meaningful spatial patterns in 

four RSNs are shown, overlaid on a T1 structural template and displayed in radiological 

convention. T-statistic maps were thresholded at p < 0.025 (FWE corrected). White lines 

represent the outlines of the group-ICA RSNs, thresholded at Z > 3.  

Figure 3. Weekly maturation in functional network structure at term-equivalent age. 

Group-average t-statistic maps of functional connectivity in term-born infants scanned at 37.5-

42.5 weeks PMA, grouped into weekly bins by PMA at scan. Within each bin 20 subjects with 

the lowest postnatal age at time of scan were selected. Example axial slices for meaningful 

spatial patterns in primary (A) and association (B) RSNs are shown, overlaid on a T1 structural 

template and displayed in radiological convention. Results were thresholded at p < 0.05 (FWE 

corrected). 

Figure 4. Relationship between postmenstrual age at scan and core network strength. 

Relationship between the residuals (after correcting for sex and motion) for PMA at scan and 

core network strength in term-born infants scanned at 37-43.5 weeks PMA. Core network 

strength was defined as the mean β parameter value in each subject’s RSN-specific spatial map 

after masking by the corresponding group-ICA network template thresholded at Z > 3. Partial 

Spearman’s correlation coefficients and associated p values are displayed for the three RSNs 

significant at p < 0.025. Example axial, coronal and sagittal slices for meaningful spatial 

patterns in the corresponding group-ICA network templates are shown for reference. 

Figure 5. Increased functional connectivity in the visual association network in female 

infants. Brain regions showing increased functional connectivity within the visual association 

RSN in female infants. Example axial, sagittal and coronal slices for meaningful spatial 

patterns are shown, overlaid on a T1 structural template and displayed in radiological 

convention. T-statistic maps were thresholded at p < 0.025 (FWE corrected). White lines 

represent the outline of the group-ICA visual association network, thresholded at Z > 3.  

Figure 6. Effect of preterm birth on functional connectivity. Group differences in functional 

connectivity between term- and preterm-born infants scanned at 37-43.5 weeks PMA. 

Coloured t-statistic maps thresholded at p < 0.025 (FWE corrected) show brain regions with 



reduced (blue) or increased (red-yellow) connectivity in preterm-born infants. Example 

sagittal, coronal, and axial slices for meaningful spatial patterns within each RSN are shown, 

overlaid on a T1 structural template and displayed in radiological convention. White lines 

represent the outlines of the group-ICA RSNs, thresholded at Z > 3. Boxplots show group 

differences in core network strength after regressing out PMA at scan, sex and motion. Core 

network strength was defined as the mean β parameter value in each subject’s RSN-specific 

spatial map after masking by the corresponding group-ICA network template thresholded at 

Z > 3. P-values relate to the term vs. preterm group contrast in a GLM in which core network 

strength was the dependent variable and PMA at scan, sex and motion were controlled for as 

nuisance covariates. 

Supplementary Figure S1. Spontaneous BOLD activity patterns (RSNs) derived from 

group ICA in 24 term-born infants scanned at 43.5-44.5 weeks PMA. RSN are expressed as 

a functional parcellation of the brain using a ‘winner-takes-all’ approach based on the RSNs 

from group ICA. RSNs were spatially smoothed and thresholded at Z > 1 prior to determination 

of the ‘winning’ RSN at each voxel. The resulting volume was projected to the midthickness 

cortical surface using enclosed (nearest neighbour) volume-to-surface mapping, here displayed 

on the pial surface of an individual subject scanned at 42 weeks PMA and viewed from the 

superior (A), inferior (B), medial (C), lateral (D), anterior (D) and posterior (E) aspects. 

Supplementary Figure S2. Changes in network shape with increasing age at scan 

(Bonferroni-corrected). Brain regions showing increased functional connectivity with older 

PMA at scan in term-born infants scanned at 37-43.5 weeks PMA. Example sagittal, coronal, 

and axial slices for meaningful spatial patterns in four RSNs are shown, overlaid on a T1 

structural template and displayed in radiological convention. T-statistic maps were thresholded 

at p < 0.025/11 (i.e. p < 0.002) (FWE corrected). White lines represent the outlines of the 

group-ICA RSNs, thresholded at Z > 3. 

Supplementary Figure S3. Increased functional connectivity in the visual association 

network in female infants (Bonferroni-corrected). Brain regions showing increased 

functional connectivity within the visual association RSN in female infants. Example axial, 

sagittal and coronal slices for meaningful spatial patterns are shown, overlaid on a T1 structural 

template and displayed in radiological convention. T-statistic maps were thresholded at p < 

0.025/11 (i.e. p < 0.002) (FWE corrected). White lines represent the outline of the group-ICA 

visual association network, thresholded at Z > 3. 

Supplementary Figure S4. Effect of preterm birth on functional connectivity (Bonferroni-

corrected). Group differences in functional connectivity between term- and preterm-born 



infants scanned at 37-43.5 weeks PMA. Coloured t-statistic maps thresholded at p < 0.025/11 

(i.e. p < 0.002) (FWE corrected) show brain regions with reduced (blue) or increased (red-

yellow) connectivity in preterm-born infants. Example sagittal, coronal, and axial slices for 

meaningful spatial patterns within each RSN are shown, overlaid on a T1 structural template 

and displayed in radiological convention. White lines represent the outlines of the group-ICA 

RSNs, thresholded at Z > 3. 

Supplementary Figure S5. Effect of gestational age at birth on functional connectivity. 

Association of functional connectivity and gestational age at birth (GA) in term- and preterm-

born infants scanned at 37-43.5 weeks PMA. Coloured t-statistic maps thresholded at p < 0.025 

(FWE corrected) show connectivity in brain regions negatively (blue) or positively (red-

yellow) associated with gestational age at birth. Example sagittal, coronal, and axial slices for 

meaningful spatial patterns within each RSN are shown, overlaid on a T1 structural template 

and displayed in radiological convention. White lines represent the outlines of the group-ICA 

RSNs, thresholded at Z > 3. 

 

Supplementary Figure S6. Effect of gestational age at birth on functional connectivity 

(Bonferroni-corrected). Association of functional connectivity and gestational age at birth 

(GA) in term- and preterm-born infants scanned at 37-43.5 weeks PMA. Coloured t-statistic 

maps thresholded at p < 0.025/11 (i.e. p < 0.002) (FWE corrected) show connectivity in brain 

regions negatively (blue) or positively (red-yellow) associated with gestational age at birth. 

Example sagittal, coronal, and axial slices for meaningful spatial patterns within each RSN are 

shown, overlaid on a T1 structural template and displayed in radiological convention. White 

lines represent the outlines of the group-ICA RSNs, thresholded at Z > 3.  
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