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Combined AFM and super-resolution localisation microscopy:
Investigating the structure and dynamics of podosomes
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A B S T R A C T

Podosomes are mechanosensitive attachment/invasion structures that form on the matrix-
adhesion interface of cells and protrude into the extracellular matrix to probe and remodel.
Despite their central role in many cellular processes, their exact molecular structure and func-
tion remain only partially understood. We review recent progress in molecular scale imag-
ing of podosome architecture, including our newly developed localisation microscopy tech-
nique termed HAWK which enables artefact-free live-cell super-resolution microscopy of po-
dosome ring proteins, and report new results on combining fluorescence localisation microscopy
(STORM/PALM) and atomic force microscopy (AFM) on one setup, where localisation micro-
scopy provides the location and dynamics of fluorescently labelled podosome components, while
the spatial variation of stiffness is mapped with AFM. For two-colour localisation microscopy
we combine iFluor-647, which has previously been shown to eliminate the need to change buffer
between imaging modes, with the photoswitchable protein mEOS3.2, which also enables live
cell imaging.

1. Introduction

Podosomes are highly dynamic micron-sized conical integrin-based adhesion structures that form on the surface
of certain cells, especially those of monocytic origin. They are mechanosensitive, i.e. they can sense the extracellular
matrix (ECM) topography and rigidity, and besides adhesion they are capable of remodelling and digesting the ECM.
They are pivotal in many cellular processes that require matrix remodelling, such as the spread of cancer cells and
inflammatory responses of macrophages, bone resorption by osteoclasts, and remodeling of blood vessels and axons by
endothelial cells. Podosomes are linked to diseases such as cancer metastasis, chronic inflammations, cardiomyopathy
and age-related osteoporosis1,2. Understanding how and why podosomes form, and the molecular mechanics behind
how they function, will play a central role in the prevention and treatment of these diseases.

Podosomes have been studied extensively by conventional light microscopy3–5, electron microscopy6–9 and atomic
force microscopy10–12. These studies have yielded a model of the podosome, consisting of an actin-rich core nucle-
ated by the ARP2/3 complex, surrounded by a ring of adhesion-related proteins such as talin, vinculin, paxillin and
zyxin, which together with integrins anchor the podosome onto the ECM and provide structural support during force
generation. Podosomes generate forces to protrude into the ECM to probe the matrix topography and stiffness, but
the mechanism behind this force generation is unclear. Podosomes are also capable of digesting and remodelling the
ECM,2 but little is known about the molecular mechanism behind these processes.

Live cell imaging is essential in mechanobiological investigations which study function and mechanics, and it would
be helpful to have many forms of dynamic information on a small spatial scale – ideally small enough to resolve single
molecules. Atomic force microscopy (AFM)13 and fluorescence microscopy are a powerful combination in providing
different types of information that complement each other14,15, and both are compatible with physiological buffers,
allowing the observation of living biological specimens. Fluorescence microscopy allows the tagging of intracellular
molecules and cellular components with high specificity, and their observation inside cells in a minimally invasive

Abbreviations: AFM - Atomic Force Microscopy; ECM - Extracellular Matrix; HAWK - Haar Wavelet Kernel analysis; PALM - Photoactivated
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Optical Reconstruction Microscopy.
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manner using non-destructive wavelengths of light in the visible spectrum. AFM, on the other hand, uses a sharp tip
to measure the topography of the sample with sub-nanometer axial resolution, or other physical properties, such as
adhesion or stiffness. It is also possible to functionalise AFM tips to recognise specific molecules and measure binding
energies14,16, or use AFM for manipulation of the sample in nanometer scale17.

In the past, combination of fluorescence microscopy and AFM was made difficult by the diffraction limit of light
microscopy, which restricted the resolution in fluorescence microscopy to two orders of magnitude more than AFM.
Recently developed super-resolution microscopy techniques are able to go beyond this limit, but the achieveable res-
olution depends on the technique. Currently, structured illumination microscopy (SIM) is the most utilised super-
resolution method for live cell imaging due to its speed. The combination of SIM and AFM has been demonstrated18,
and SIM has been applied to study podosomes19–22. However, as SIM has only a maximum of 2-fold potential for
resolution improvement over conventional fluorescence microscopy and a typical final resolution around 120-140 nm,
its usefulness in molecular mechanobiology is very limited.

Fluorescence super-resolution techniques based on single molecule localisation microscopy (SMLM), such as
stochastic optical reconstruction microscopy (STORM)23 and photoactivated localisation microscopy (PALM)24, of-
fer theoretically unlimited resolution which is in practise limited by the signal-to-noise ratio typically to few tens of
nanometres, a similar scale to the typical lateral resolution of AFM when imaging soft biological samples16,25–27. Lo-
calisation microscopy methods have been applied to the study of podosomes with the aim of resolving the molecular
architecture. While fixed cell SMLM imaging can shed light on the molecular architecture of podosomes9,12,28, many
studies have also yielded conflicting results due to artefacts arising from sample preparation and image processing
protocols29–33.

Localisation microscopy techniques rely on the ability to switch a fluorophore between a bright and a dark state. In
its most simple experimental form, direct STORM (dSTORM)34,35, the sample is illuminated with a high power laser
while immersed in a switching buffer that makes the dye molecules blink, and a series of images is acquired where each
frame contains only a few emitting fluorophores. While the images of the fluorophores are diffraction-limited, their
centroid positions can be calculated with great accuracy, and the final image constructed by summing these locations
together. However, to induce the blinking, a switching buffer containing enzymatic oxygen scavengers is normally
required. Unfortunately the typical ingredients of this buffer stick to the AFM cantilevers, and make AFM image
acquisition impossible. Most attempts to combine AFM and STORM report adding the switching buffer for STORM
after AFM imaging36–39, which is time-consuming and cumbersome and can lead to sample movement and damage,
seriously limiting the practical use of this technique. In this work, we perform STORM imaging with the fluorescent
dye iFluor-647, which is especially suitable for imaging in a buffer without enzymatic oxygen scavenger40, allowing
combined AFM and STORM imaging without any change of buffer.

The use of endogenous fluorescent proteins, such as the green fluorescent protein (GFP), offers an alternative to
antibody labelling. With some fluorescent proteins – called photoswitchable fluorescent proteins – the on and off
states can be controlled with specific wavelengths of light. Photoswitchable fluorescent proteins offer another way to
perform localisation microscopy without special buffers, and while they also enable live cell imaging, the cost of better
resolution in SMLM is increased acquisition time: typically thousands of images are required for the reconstruction of
the final image, and the acquisition of this number of frames usually takes at least several minutes – too slow for live
cell imaging. Acquisition speed can be increased by acquiring data with higher emitter density (i.e. more molecules
/ frame), but any overlap of molecules in the raw data can lead to artefacts in the reconstructed final image, such as
artificial sharpening of sample structures and missing features. It can be very difficult to spot these artefacts, since
there is no warning of failure by the reconstruction software, and quantification of resolution, for example by Fourier
Ring Correlation (FRC)42, indicates sharpened images have a better resolution.

Artificial sharpening has been shown to be a problem with most localisation reconstruction software where the
overlapping molecules cannot be separated properly43–45, even methods designed for high density SMLM data. To
address this problem, we have recently developed a new method, Haar Wavelet Kernel (HAWK) analysis46, for sepa-
rating overlapping molecules. HAWK is a preprocessing method that separates molecules by their blinking statistics,
and has been shown to eliminate sharpening artefacts in high density localisation microscopy data. HAWK also works
for extremely high density data, allowing reconstruction of a final image from just a few hundred frames, and bringing
data acquisition time down to a few seconds – fast enough for many live cell imaging applications.

In this work we have labelled several podosome-related proteins with the photoconvertible fluorescent protein
mEOS3.241, which usually emits in green with 488 nm excitation but can convert to yellow-emitting conformation
upon 405 nm illumination. We use mEOS3.2 and iFluor-647 labelling of podosome molecular components for com-
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bined two-colour localisation microscopy and AFM on a single microscope, where localisation microscopy provides
resolution of <30 nm, while the spatial variation of stiffness is mapped with AFM. We also demonstrate typical arte-
facts created by super-resolution imaging, and how these can be reduced by HAWK imaging.

2. Methods

2.1. Sample preparation
mEOS3.2 sequence was amplified from a template (gift from Dylan Owen, King’s College London) using PCR

and cloned into an pLNT/Sffv-MCS vector via pCR Blunt vector (Invitrogen). cDNAs encoding the target sequences:
residues 1975-2541 of human talin from a template plasmid we previously generated47, paxillin and lifeact (gifts
from Maddy Parsons, King’s College London), and ARPC3 (gift from Matthias Krause, King’s College London),
were amplified using PCR and then cloned via pCR Blunt vector into the multiple cloning site of the pLNT/Sffv-
mEOS3.2-MCS vector. VSV-G pseudotyped lentiviruses encoding mEOS3.2-talin (1975-2541), mEOS3.2-paxillin,
mEOS3.2-lifeact or mEOS3.2-ARPC3 were packaged in HEK-293T cells by transient transfection of the cells with the
pΔ8.91 and pMD.G accessory plasmids along with the pLNT/Sffv transfer vector. Supernatants containing lentivirus
were harvested after 48 h and filtered through a 0.45 �m filter. THP-1 cells (ATCC #TIB-202TM) were incubated with
lentiviral supernatants in 12-well plates for 72 h and washed thoroughly. The cultures were then expanded in 37◦C,
5% CO2 in RPMI-1640 medium (R0883, Sigma) supplemented with 10% heat-inactivated FBS (SV30160.03, GE
Healthcare), 1% penicillin/streptomycin (P0781, Sigma), and 0.05 mM �-mercaptoethanol (125472500, ACROS). For
imaging, 35 mm dishes with #1.5 glass coverslip bottom (WPI, FL) were coated with 10-15 �l/ml bovine fibronectin
(F1141, Sigma) in PBS for 24 hours at 37◦C. After 2x wash with PBS, 6x105 cells were seeded on each dish with
2 ng/ml recombinant human TGF-� (240-B, R&D Systems).

For fixed cell experiments, the cells were incubated in 37◦C, 5% CO2 for 24 hours. If the cells were unroofed, the
medium was replaced with H2O buffer containing 10 �g/ml phalloidin (sc-202763, Santa Cruz Biotechnology) and
protease inhibitors (04693124001, Roche) for 40 s, and the cells were then flushed 10× with the same buffer. Both
unroofed and intact cells were fixed for 20 minutes with 4% formaldehyde, and non-unroofed cells were permeabilised
for 5 minutes in 0.1% Triton X-100. For actin staining, iFluor-647-phalloidin (23127, AAT Bioquest, CA) stock
solution was diluted 1:500 in 3% BSA in PBS, and the cells incubated for 30 minutes in the dye solution. For vinculin
staining, the cells were blocked for 30 min in 3% BSA in PBS, incubated for 1 hour with anti-vinculin mouse antibody
(V9131, Sigma) diluted 1:200 in 3% BSA in PBS, washed thoroughly, and incubated for 1 hour with anti-mouse iFluor-
647 (16783, AAT Bioquest) diluted 1:500 in 3% BSA in PBS. For imaging, MEA stock solution (1 M cysteamine
(30070, Sigma-Aldrich) in H2O, pH adjusted to 8.0 with HCl solution) was diluted in TN buffer (H2O with 50 mM
Tris pH 8.0 and 10 mM NaCl) at a final concentration of 50 mM immediately before imaging, and added to the sample
dish before imaging.

For live cell experiments the cells were incubated in 37◦C, 5% CO2 for 24-48 hours after seeding, and the medium
was then changed to RPMI-1640 without phenol red (R7509, Sigma) supplemented with 10% FBS before imaging.

2.2. Data acquisition
Samples were imaged with our custom-built hybrid system combining AFM and fluorescence imaging; see Fig 1

for a schematic diagram. The setup was built around a standard inverted microscope base (Zeiss Axio Observer.Z1) and
equipped with a LightHUB-6 laser combiner (Omicron, Germany) with 405 nm, 488 nm, 647 nm (Omicron, Germany)
and 561 nm (Cobolt, Sweden) lasers for fluorescence excitation, an EMCCD (Andor iXon Ultra) for fluorescence data
collection, and a JPK Nanowizard 3 for AFM imaging. For STORM/PALM, the sample was illuminated and imaged
from the bottom through a 100X NA 1.4 oil immersion objective (Zeiss Plan-Apochromat). For fixed cell localisation
microscopy a total of 15,000-30,000 frames were acquired. The instrumentation for fluorescence data collection was
controlled with �Manager software48. HAWK imaging was performed on a setup described previously46, using similar
settings.

For AFM imaging, a SiN cantilever with a Si tip with nominal spring constant of 0.081 N/m, tip radius <10 nm
and gold coating on the reflex side (HYDRA-6V-200WG, Applied NanoStructures, CA) was mounted on the AFM
head, and the head was placed on the top of the sample. Images were recorded on quantitative imaging (QI™) mode,
which records a complete force-distance curve for each pixel without exerting lateral forces on the sample. The set
point was 8 nN with 1000 nm ramp size and 15 ms pixel time. The scan times for the AFM images in Figs 3(b,c) and
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Figure 1: A simplified schematic diagram of the combined AFM + STORM microscope setup. The setup was built around
a standard inverted microscope base, with an AFM to image the sample from top, and a fluorescence setup underneath
for STORM imaging. AFM scans a sharp tip over the sample surface and produces a topographic image of the sample,
while in fluorescence microscopy cellular components are labelled with fluorescent tags which light up under illumination
with specific wavelengths, allowing imaging inside cells.

3(e,f) were 37 and 16 minutes, respectively. The AFM images were processed by subtracting a 1st degree polynomial
fit from each line.

2.3. STORM/PALM data processing
The raw localisation microscopy images were processed with ThunderSTORM49 software using default processing

parameters and final pixel size of 10 nm. The reconstructed images were then post-processed to only select molecules
with 50 nm < � < 250 nm where � is related to the size of the spot, and molecules appearing in consecutive frames
were merged with merging radius of 20 nm and maximum 1 off-frame between detections. Gaussian blur was added
to the final images to reduce noise.

For live cell localisation microscopy, the stacks containing high density data were pre-processed with HAWK
software46 to separate overlapping molecules. The derived data stacks were then processed with ThunderSTORM
using default processing parameters, and post-processed to only select molecules with 70 nm < � < 250 nm.

3. Results

3.1. Two-colour localisation microscopy
To test two-colour localisation microscopy in a buffer that is also compatible with AFM imaging, THP-1 cells

expressing mEOS3.2 constructs were plated onto coverslip-bottom dishes and induced to form podosomes,50,51 then
fixed and immunolabelled with iFluor-647, and imaged in the MEA buffer. The 647 channel was acquired first, and
the photoconverted form of mEOS3.2 was then imaged in the 561 channel.

Figure 2 shows localisation microscopy images of podosomes with various molecular components labelled with
mEOS3.2 (green) and iFluor-647 (red). As expected, talin (Fig 2a-d) and paxillin (Fig 2e-h) localise to the podosome
ring; here the core is labelled with iFluor-647-phalloidin. ARPC3 (Fig 2i-l) and lifeact (Fig 2m-p) localise to the core,
as expected, and vinculin labelled with iFluor-647 shows the podosome ring. In Fig 2 localisation microscopy (left
column) clearly improves the resolution over conventional wide-field microscopy (middle column). The localisation
uncertainty was calculated as 23.2 ± 1.6 nm for mEOS3.2 and 26.1 ± 7.5 nm for iFluor, with an average of 900 ± 267

photons detected from each mEOS3.2 molecule and 782± 179 photons from each iFluor dye molecule, and estimated
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Figure 2: Two-colour localisation microscopy (columns 1-3) of podosome molecular components labelled with mEOS3.2
(1st column, and green in composite images) and iFluor-647 (2nd column, and red in composite images) significantly
improves resolution over wide-field imaging (4th column). mEOS3.2-tagged talin (1st row) and paxillin (2nd row) localise
to the ring with iFluor-phalloidin highlighting the actin-rich core, while mEOS3.2-tagged ARPC3 (3rd row) and lifeact (4th
row) localise to the core and iFluor-labelled vinculin forms a ring. The last column shows enlarged areas of the composite
localisation microscopy (top) and wide-field (bottom) images.

resolution of the super-resolution images <30 nm.

3.2. Combined AFM and localisation microscopy
Figure 3 shows an example of podosomes imaged with combined two-colour localisation microscopy and AFM.

The localisation microscopy images (Fig 3a,d) show the actin-rich podosome cores labelled with iFluor-phalloidin (red)
surrounded by a mEOS3.2-tagged talin ring (green). The iFluor-647 (red) localisation image was acquired first, then
the mEOS3.2 (green) localisation image, and the AFM scan directly afterwards without buffer change, as simultaneous
acquisition is not practical due to the overlapping spectrum of the imaging and AFM laser wavelengths.

While the localisation microscopy images of the two cells look similar with the iFluor-phalloidin labelled core
surrounded by the mEOS3.2-labelled talin ring (Fig 3a,d), differences can be seen in the AFM images. In the unroofed
cell, where the top membrane was removed prior to imaging, the AFM height (Fig 3b) and stiffness (Fig 3c) images
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Figure 3: Combined AFM and STORM images of podosomes in (a-c) unroofed and (d-f) intact fixed THP-1 cells. (a,d)
Localisation microscopy images of mEOS3.2-tagged talin (green) and iFluor-phalloidin (red). In the unroofed cell, the
podosome cores can be seen as higher areas in the AFM (b) height and (c) stiffness images. In the intact cell the
podosomes are difficult to see in the AFM (e) height image due to a fluffy membrane, but the (f) stiffness image clearly
shows the podosome cores as stiffer areas under the membrane.

show the podosomes as features higher and stiffer than the area immediately surrounding them, as expected from the
high concentration of f-actin in the podosome core. In the intact cell, the podosomes are difficult to see in the AFM
height image (Fig 3e) due to the membrane on top of the podosomes. However, the AFM stiffness image (Fig 3f)
clearly shows the podosome cores as stiffer areas under the membrane, suggesting that it will be possible to perform
live cell podosome stiffness measurements through the membrane.

3.3. HAWK imaging
Live cell localisation microscopy was performed with THP-1 cells transfected with the mEOS3.2-talin construct.

Data was acquired at high fluorophore density; an example frame from the data set is shown in Fig 4a, revealing high
overlap of fluorescent molecules. HAWK processing of this data (Fig 4b,d) produces an image that shows the expected
podosome ring structure and a lower concentration of talin distributed throughout the cell. Fig 4c-g shows comparison
of different processing methods in the small area indicated in Fig 4b. The general podosome ring structure can be
seen in the wide-field image (Fig 4c) but the diffraction-limited resolution obscures all other details seen in the HAWK
processed super-resolution image (Fig 4d). Traditional single-emitter fitting (Fig 4e) produces very strong artefacts
related to high molecule density in the raw data, e.g. artificial sharpening, contraction of the ring structures and missing
features. Methods designed for high density data, multi-emitter fitting (Fig 4f) and SRRF52 (Fig 4g), improve the image
compared to single-emitter fitting but still show strong sharpening artefacts and missing information.

4. Discussion

In a quest to elucidate the mechanobiology behind podosome structure and function, a variety of different kinds
of information is required. Advances in super-resolution microscopy methods have significantly improved the scale
where we can make direct observations of the distribution of fluorescently labelled biomolecules inside cells from
hundreds of nanometers to near molecular scale. However, there are drawbacks.

Firstly, all microscopy techniques are prone to artefacts. This is especially true for super-resolution techniques
which are relatively new and often designed for specific types of data. Artefacts can be created by the fluorescence
labelling process53, the data acquisition process, the image processing method, or a combination of these. For exam-
ple, if the labelling density is not high enough or the image acquisition time is too short, continuous structures may
appear discontinuous. On the other hand, too high a density of fluorescent labels in SMLM data can lead to artificial
sharpening of sample structures. Another common problem with immunofluorescence labelling is the binding of mul-
tiple secondary antibodies to a primary antibody54, which is not visible in conventional fluorescence imaging but leads
to artificial clustering of single molecules in SMLM imaging. An image with artefacts no longer gives an accurate
representation of the sample structure, and is open to misinterpretation.

Secondly, while the observation of living cells is essential for obtaining functional and dynamic information, there
is usually a trade-off between resolution and speed. There is certainly a need for live-cell super-resolution imaging, and
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Figure 4: Live cell localisation microscopy images of mEOS3.2-labelled talin in podosomes in a THP-1 cell. (a) A frame of
raw data showing high density of emitters, and (b) HAWK-processed final image. (c-g) Comparison of (c) wide-field image
and different super-resolution processing methods: (d) HAWK, (e) single-emitter fitting, (f) multi-emitter fitting, and (g)
SRRF. While HAWK shows the expected podosome ring structure, other methods show artefacts including sharpening,
contraction of the ring and missing features. Colour bar in (b) indicates intensity scale.

super-resolution methods based on structured illumination have become increasing popular in filling this gap, but their
potential for resolution improvement is limited to a factor of 2, leading to a final resolution still over 100 nm. SMLM
techniques, on the other hand, can reach single molecule scale resolution but at the cost of increased acquisition time.
Many SMLM processing methods have tried to address this problem and are indeed capable of constructing an image
from high density SMLM data which can be acquired faster, but often with severe artefacts in the final image. Our
new technique HAWK, which is able to process extremely high density SMLM without artificial sharpening, opens up
new avenues for live-cell super-resolution microscopy with improved resolution in the scale of few 10s of nm and data
acquisition time of a few seconds. This time scale is ideal, for example, for the study of podosome dynamics in living
cells.

Finally, combining super-resolution microscopy with other methods can yield different types of information, such
as mechanical property maps, in addition to the location of the labelled biomolecules. Recent advances in both super-
resolution microscopy and AFM have made a combination of these techniques a desirable tool especially for nanoscale
mechanobiological research. A major drawback in combining AFM with localisation microscopy has been that the
standard STORM buffer, containing enzymatic oxygen scavenger, is not compatible with AFM cantilevers, and the
combination of STORM and AFM has usually required a buffer change between the imaging modalities36–39, which is
cumbersome and leads to longer time intervals and possible movement and damage to the sample between the images.
In this work, we have used a new red cyanine dye, iFluor-647, for combined AFM and STORM imaging of podosomes
in THP-1 cells in a buffer without enzymatic oxygen scavenger. This buffer is compatible with AFM imaging such
that no buffer change is required between the imaging modalities, simplifying the process and eliminating artefacts in
correlative AFM and STORM imaging.

The field of microscopy is developing at a fast pace. Super-resolution microscopy methods which were first demon-
strated less than 15 years are now becoming everyday instruments in biological sciences, and the methods for perfect-
ing image reconstruction to faithfully represent the sample structure are still being developed. AFM is now routinely
used for imaging living biological samples, and increasingly combined with super-resolution imaging methods. The
combination of live-cell AFM with HAWK super-resolution imaging is an exciting development which will allow si-
multaneous measurement of molecular architecture and mechanical properties, and will be useful in understanding
podosome structure and function.
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5. Conclusion

In this work we demonstrate an easy and straightforward method for combined AFM and SMLM super-resolution
imaging of podosomes. While the combination of these methods has previously required buffer change between the
imaging modes, this problem is eliminated using iFluor-647 dye in a simple buffer without an enzymatic oxygen
scavenger. The use of endogenous fluorescent proteins offers an alternative to antibody labelling, and enables live-cell
imaging which can be difficult with dye labels. We have combined mEOS3.2 with iFluor-647 for labelling podosome
molecular components in fixed THP-1 cells, and demonstrated two-colour localisation microscopy with AFM imaging
in one setup. We also demonstrate live-cell localisation microscopy of podosomes using a new localisation microscopy
method HAWK, which speeds up the localisation microscopy data collection time from 10s of minutes to a few seconds.

Besides podosomes, the methods introduced here can be applied to the study of a wide range of biophysical pro-
cesses in any cell biology studies, while HAWK will advance a wide variety of biological imaging applications where
the speed of data acquisition is a critical parameter and resolution below the diffraction limit is needed.
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