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Abstract: Objective: To determine possible associations of hemispheric-regional alpha/theta ratio
(α/θ) with neuropsychological test performance in Parkinson’s Disease non-demented
patients (PD).
Methods: 36 PD were matched to 36 Healthy Controls (HC). Resting-state quantitative
electroencephalograms (qEEG) were recorded, the α/θ in eight hemispheric regions
were computed from relative power spectral densities. Correlations between α/θ and
performance in several neuropsychological tests were conducted, significant findings
were included in a moderation analysis.
Results: The α/θ in all regions was lower in PD than in HC, with larger effect sizes in
the posterior regions. Right parietal, and right and left occipital α/θ had significant
positive correlations with performance in Judgement of Line Orientation Test (JLOT) in
PD. Adjusted moderation analysis indicated that right, but not left, occipital α/θ
influenced the JLOT performance related to PD.
Conclusions: Reduction of the occipital α/θ, in particular on the right side, was
associated with visuospatial performance impairment in PD.
Significance:  Visuospatial impairment in PD, which is highly correlated with the
subsequent development of dementia, is reflected in α/θ in the right posterior regions.
The right occipital α/θ may represent a useful qEEG marker for evaluating the
presence of early signs of cognitive decline in PD and the subsequent risk of dementia.
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Reviewer #1: 

Comment 1: Overall, the topic is relevant .But, given  major statistical issues there is no further results 
supported by the current study. I am not convinced by many of the findings and data presentation.The main 
issue is the multiple comparisons: The authors selected 8 ROI and ran independent t-test but didn't correct 
for multiple comparison in both power (alpha/theta) and correlation analysis. 

Answer 1: Thank you for your valuable comments. We have made various changes in our manuscript 
according to your suggestions about multiple testing. Now we have included false discovery rate 
(FDR) values for the independent t-test comparing the relative power (alpha/theta) and the 
neuropsychological tests, please see Table 2. Given the exploratory nature of the correlations 
between the alpha/theta ratio in 8 ROIs and the neuropsychological tests, we did not correct for 
multiple testing in that step, but we have done FDR correction in the group comparisons as well as in 
the final moderation analysis. Therefore, once we identified the target neuropsychological and qEEG 
variables (JLOT and the RP, RO, LO) in the exploratory correlations, we corrected the p-values of the 
three moderation models (one model for each ROI associated with JLOT performance) with the FDR 
estimations, obtaining significant results, after correction, for the moderation effect of the right 
occipital alpha/theta over the JLOT performance. 

Comment 2: Statistical report and data presentation needs a major revision (i.e., please use boxplot for 
cognitive results, 2D-plot and the fitted line for correlation, topoplot for power spectrum distribution,…) 

Answer 2: Thanks for your suggestions. We have checked and made substantial changes in the 
statistical report to make it more clear as suggested by the reviewer. Also, we have added boxplots 
for the cognitive results (Figure 1), the 2D-plot for correlations between the ROIs and JLOT 
performance (Figure 3), and the topoplot with the relative power spectrum distribution (Figure 2A). 

________________________________________________________________________________________ 

Reviewer #2: 

Overall this is an interesting article and focused on an important neuroscientific area, i.e. neurophysiological 
correlates of cognitive functions in neurodegenerative disorders. In particular, the Authors compare the α/θ 
ratio in eight ROIs in patients with PD vs HC. Then they correlate this index with scores from tests evaluating 
neuropsychological functions. They show that α/θ ratio in the right occipital region is associated with an 
impairment in visuospatial functions and it may represent an early marker of cognitive impairment in PD. 

I have few minor flaws to highlight: 

Comment 1: The authors checked the association between α/θ ratio and confounders such as LEDD (in PD 
group) and age (in HC) before performing the correlations between α/θ ratio and neuropsychological tests. 
However, even though age was not associated with α/θ ratio from many posterior ROIs, it was associated with 
α/θ ratio from frontal, temporal and parietal ROIs (Supplementary Table 3). I would suggest adding also the 
results of correlations between α/θ ratio and neuropsychological tests including age as covariate. 

Answer 1: Thank you for your suggestion. Now we have conducted non-parametric partial 
correlations controlling for age. The relationships between the JLOT performance and right parietal, 
right occipital, and left occipital alpha/theta ratios are still significant and the correlations coefficients 
are slightly lower but similar to the previous ones (age-unadjusted), please see Table 5 - 
Supplementary materials.  
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Comment 2:  The authors combine the group of PD-nMCI with the group of PD-MCI since they did not differ 
in α/θ ratio. This group include both patients with and without a global cognitive impairment as measured by 
the MoCA test. It could be helpful including in Supplementary Materials a table showing the MoCA and 
neuropsychological test scores (mean and SD) in PD-nMCI and PD-MCI patients. 

Answer 2: Thank you. We have added a table in the supplementary materials including this 
information, please see Table 2 - Supplementary materials. 

Comment 3: The authors perform a moderator analysis to test whether cognitive performances related to the 
PD diagnosis were influenced by the α/θ ratio in specific regions. I would propose to use words such as 
"influence" or "modulate" instead of "modify" to better express the clinical meaning (rather than statistical) 
of this analysis. 

Answer 3: Thank you for this valuable suggestion. Now we have adjusted our manuscript avoiding 
the use of the word “modify”. 

Comment 4: The authors found that a decreased right occipital α/θ ratio was associated with an impairment 
in visuospatial functions measured by JLOT. The JLOT test is a complex measure of visuo-perceptual abilities 
that encompasses visual processing from more basic visual functions to more high elaborated visual 
processing to judge the lines orientation. In this study the clock drawing test was also used to measure the 
visuospatial functions but the performances in this test did not correlate with α/θ ratio. The clock test 
evaluates a complex process including also visuo spatial and visuo constructive skills.  I would suggest to 
extend the discussion on this point and also to formulate an hypothesis about the reason why the α/θ ratio in 
posterior regions is associated with JLOT but not with the clock drawing test performances. 

Answer 4: Now, we have added a paragraph considering these important issues that you have 
remarked (please see page 9, paragraphs 1, and 2). 

Comment 5:  In the Table 2 footnotes the letter d indicates the Chi square test. Since the table does not show 
results from Chi square test, it can be deleted. 
 

Answer 5: Thank you, we have corrected that in the revised version of the manuscript. 
 
 

Please note: In addition to the suggestions of the reviewers, we have made a minor change in the title of the 
manuscript. 



Resting-state qEEG Alpha/Theta ratio related to neuropsychological test 
performance in Parkinson’s Disease 
 
Alberto Jaramillo-Jimenez1,2,3,4,5,6*; Jazmin Ximena Suarez-Revelo3,4; John Fredy 
Ochoa-Gomez3,4; Jairo Alexander Carmona3,4; Yamile Bocanegra3,4; Francisco 
Lopera3; Omar Buriticá3; David Antonio Pineda Salazar3,4; Leonardo Moreno 
Gómez7; Carlos Andrés Tobón Quintero3,4; Miguel Germán Borda1,2,8; Laura 
Bonanni9; Dominic H. Ffytche10,11; Kolbjørn Brønnick1,2; Dag Aarsland1,11. 
 
1. Centre for Age-Related Medicine (SESAM), Stavanger University Hospital. 
Stavanger, Norway. 
2. Faculty of Health Sciences, University of Stavanger. Stavanger, Norway. 
3. Grupo de Neurociencias de Antioquia, Universidad de Antioquia, School of 
Medicine. Medellín, Colombia. 
4. Grupo Neuropsicología y Conducta, Universidad de Antioquia, School of 
Medicine. Medellín, Colombia. 
5. Semillero de Investigación SINAPSIS, Universidad de Antioquia, School of 
Medicine. Medellín, Colombia. 
6. Semillero de Investigación NeuroCo, Universidad de Antioquia, School of 
Medicine & School of Engenieering. Medellín, Colombia. 
7.  Neurology Unit, Pablo Tobón Uribe Hospital. Medellín, Colombia.  
8.  Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, 
Pontificia Universidad Javeriana. Bogotá, Colombia. 
9. Department of Neuroscience, Imaging and Clinical Science, and Aging Research 
Centre, G. d’Annunzio University. Chieti, Italy.  
10. Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and 
Neuroscience, King’s College London. London, UK. 
11. KCL-PARCOG Group, Institute of Psychiatry, Psychology, and Neuroscience, 
King's College London, London, UK. 
 

* Corresponding author at: Centre for Age‐Related Medicine (SESAM), Stavanger 
University Hospital, PB 8100, N‐4068. Stavanger, Norway. Tel: +47 51 51 56 19. 
E-mail address: alberto.jaramilloj@udea.edu.co 
 
Keywords: Electroencephalography, Parkinson’s Disease, Alpha rhythm, Theta 
rhythm, Neuropsychological tests. 
 
 
Highlights: Parkinson’s related performance in the Judgment of Line Orientation 
Test is influenced by the right occipital α/θ. 
 
A hemispheric approach of occipital α/θ must be considered for further research. 
 
The right occipital α/θ is a promising marker for evaluating Parkinson’s Disease 
patients with visuospatial impairment. 
 
 

Abstract: Corrected

mailto:alberto.jaramilloj@udea.edu.co


Abstract 
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demented patients (PD). 
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quantitative electroencephalograms (qEEG) were recorded, the α/θ in eight 
hemispheric regions were computed from relative power spectral densities. 
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conducted, significant findings were included in a moderation analysis. 
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in PD. Adjusted moderation analysis indicated that right, but not left, occipital α/θ 
influenced the JLOT performance related to PD. 
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associated with visuospatial performance impairment in PD. 
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Abstract 
Objective: To determine possible associations of hemispheric-regional alpha/theta 
ratio (α/θ) with neuropsychological test performance in Parkinson’s Disease non-
demented patients (PD). 
Methods: 36 PD were matched to 36 Healthy Controls (HC). Resting-state 
quantitative electroencephalograms (qEEG) were recorded, the α/θ in eight 
hemispheric regions were computed from relative power spectral densities. 
Correlations between α/θ and performance in several neuropsychological tests 
were conducted, significant findings were included in a moderation analysis. 
Results: The α/θ in all regions was lower in PD than in HC, with larger effect sizes 
in the posterior regions. Right parietal, and right and left occipital α/θ had 
significant positive correlations with performance in Judgement of Line Orientation 
Test (JLOT) in PD. Adjusted moderation analysis indicated that right, but not left, 
occipital α/θ influenced the JLOT performance related to PD. 
Conclusions: Reduction of the occipital α/θ, in particular on the right side, was 
associated with visuospatial performance impairment in PD. 
Significance:  Visuospatial impairment in PD, which is highly correlated with the 
subsequent development of dementia, is reflected in α/θ in the right posterior 
regions. The right occipital α/θ may represent a useful qEEG marker for evaluating 
the presence of early signs of cognitive decline in PD and the subsequent risk of 
dementia. 
 
1. Introduction 
Parkinson’s Disease (PD) is defined primarily as a movement disorder 
pathologically characterized by the loss of nigrostriatal dopaminergic neurons and 
Lewy bodies in the remaining neurons. In addition to dopamine-related motor 
symptoms, serotonin, noradrenaline, and acetylcholine may play a key role in the 
genesis of nonmotor symptoms (NMS) including cognitive decline. Cognitive 
decline is among the most common and important NMS in PD, increasing the risk 
of PD dementia (PDD), although the rate of cognitive decline and time to dementia 
varies (Armstrong 2019). Around 36% of PD patients have Mild Cognitive 
Impairment (MCI) at diagnosis compromising executive function, attention, 
memory, or visuospatial domains (Aarsland et al. 2017). In PD, early dysexecutive 
and attentional impairments depend on dopaminergic frontostriatal circuit lesions 
(Kehagia et al. 2012). Besides, cortical and striatal cholinergic pathways become 
affected, contributing to frontostriatal dysfunction (Ballinger et al. 2016). Worsening 
of visual memory, visuospatial abilities, and semantic fluency have been 
associated with posterior cortical and temporal lobe dysfunction which, to some 
extent, can improve with cholinergic treatments (Kehagia et al. 2012). Although the 
cognitive profile in PD is heterogeneous, mild visuospatial impairment represents a 
higher risk of PDD compared to attentional/executive impairment (Williams-Gray et 
al. 2007). Synaptic and network dysfunction models have been proposed for 
explaining different electrophysiological patterns of cognitive decline. For instance, 
aggregation and accumulation of misfolded proteins cause an imbalance between 
excitatory and inhibitory neurotransmitter activity (Roberts and Breakspear 2018). 
Hence, identifying biomarkers that can reliably measure synaptic and neuronal 
network disruptions is important for diagnosis and prognosis in neurodegenerative 
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diseases, and may serve as predictors for cognitive decline in PD.  
 
Quantitative electroencephalogram (qEEG) may reflect cholinergic dysfunction 
(van der Zande et al. 2018; Massa et al. 2020), and some qEEG features seem to 
be promising biomarkers for PD and other neurodegenerative dementias (Bonanni 
et al. 2008, 2016; Geraedts et al. 2018; Babiloni et al. 2020). As a case in point, 
our group has shown that frontal coherence is related to executive function in PD 
MCI (Carmona Arroyave et al. 2019). However, Power Spectral Density (PSD) is 
one of the most widely used qEEG features, and the progression of cognitive 
decline in PD patients is associated with increased PSD in delta and theta bands, 
as well as decreased alpha PSD (Bousleiman et al. 2014; Caviness et al. 2016). 
Those findings have been interpreted as “slowing-down” in posterior regions 
(Schmidt et al. 2013; Al-Qazzaz et al. 2014), but synoptic PSD indexes such as the 
ratio between alpha and theta PSD (α/ θ) may enhance the differences between 
patients and healthy controls (Schmidt et al. 2013; Massa et al. 2020). However, 
few studies have calculated those indexes in PD, and if so, have computed an 
average of α/θ rather than regional ratios in the right and left hemisphere 
(Eichelberger et al. 2017; Massa et al. 2020) despite known asymmetries in PSD 
(Bousleiman et al. 2014). Other works have examined the correlation of EEG 
features with global scores of cognition rather than domain-specific 
neuropsychological impairments (Cozac et al. 2016; Geraedts et al. 2018). With 
the present study, we aim to determine possible associations of hemispheric-
regional α/θ changes with impairment in specific neuropsychological tests in PD 
patients without dementia. Based on previous preliminary findings, we hypothesize 
that visuospatial and semantic fluency impairments of PD are associated with a 
reduction of the α/θ in posterior hemispheric-regions. 
 
2. Methods: 
2.1 Participants 
We analyzed a non-randomized sample of PD patients from the outpatient service 
of the Grupo de Neurociencias de Antioquia (Neuroscience group of Antioquia) 
(Carmona Arroyave et al. 2019). Detailed inclusion criteria were stated in section 
2.2. We excluded participants with parkinsonian syndromes other than PD, other 
major neurological or psychiatric disorders, and dementia (based on impairment in 
cognition and function) (Emre et al. 2007), intracranial devices, and current use of 
other drugs than antiparkinsonian that could alter the qEEG rhythms. PD patients 
were under stable antiparkinsonian treatment during at least 4 weeks before 
evaluations and recordings. We included PD patients without MCI (PD-nMCI, n = 
22) if Montreal Cognitive Assessment - MoCA (see below) was 23 or above 
(according to validation in Colombian population) (Gil et al. 2015), no significant 
cognitive complains or cognition-related functional decline. Besides, PD patients 
with MCI (PD-MCI, n = 14), defined following level one task force criteria - 
Movement Disorders Society (Litvan et al. 2012), i.e. subjective cognitive 
complaints, MoCA < 23, and no significant cognition-related functional decline, 
were also included. Finally, from an open call for volunteers, we selected 36 
participants with normal cognition and no relevant neurologic or psychiatric 
disorders as Healthy Controls (HC). HC were manually matched to the PD group 
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based on gender, age, and years of education. The study had the approval of the 
Ethical Research Committee of the Universidad de Antioquia (Certificate No. 15-
10-569). All participants signed informed consent before enrolment in the study. All 
assessments, including qEEG acquisition, were completed in phase ‘On’ of 
levodopa treatment.  
 
2.2 Clinical and neuropsychological assessment 
For determining PD diagnosis, all participants were assessed by a team of two 
neurologists and one trained physician following the MDS Clinical Diagnostic 
Criteria for Parkinson’s Disease (Postuma et al. 2015). The Hoehn & Yahr scale 
(Hoehn and Yahr 1967) and the Unified Parkinson’s Disease Rating Scale 
(UPDRS) part III (Goetz 2003) were used for evaluating the severity of the disease 
stage and motor symptoms. The two neurologists ruled out alternative diagnoses 
of parkinsonism and verified pharmacological regimens and the presence of 
intracranial devices, as per exclusion criteria. 
Neuropsychological examinations of PD and HC subjects were performed by a 
team of four trained psychologists who evaluated MCI and dementia (exclusion 
criterion). The cognitive screening was performed using the MoCA test with 
validated cut-offs for the Colombian population (Gil et al. 2015). The functional 
level was evaluated through the Barthel Index (Mahoney and Barthel 1965) and 
Lawton & Brody scale (Lawton and Brody 1969). To test executive functions and 
attention, we administered the Stroop test – Golden version (Stroop) (Golden and 
Freshwater 1978), and INECO Frontal Screening battery (IFS) (Torralva et al. 
2009) composed of: Luria motor series, conflicting instructions, go-no-go, modified 
Hayling test, backward months, backward digit span, modified Corsi tapping test 
and proverb interpretation. Language domain tests included Semantic fluency of 
animals (SF) and FAS phonemic fluency tests (FAS) (Casals-Coll et al. 2013). 
Memory was assessed using the delayed free recall of the Memory Capacity Test 
(MCT-DFR) (Rentz et al. 2010). Visuospatial abilities were evaluated using the 
Benton Judgment of Line Orientation Test (JLOT) (Benton et al. 1978) and the free 
draw of the clock drawing test (Clock) (Agrell and Dehljn 1998). We included the 
raw scores of each test in the analysis.  
 
3. qEEG recordings and preprocessing 
Resting-state qEEGs in quiet wakefulness with eyes closed were recorded for five 
minutes in a Faraday cage. A cap of tin electrodes and 58 scalp leads was placed 
according to the international 10–10 system with the reference electrode on the 
right earlobe with subsequent re-reference to average in the preprocessing. 
Another electrode between Cz and Fz was used as ground. Impedances were kept 
below 10 kOhm. The sampling frequency was fixed at 1000 Hz. Signals were 
filtered online with a band-pass (0.05 to 200 Hz) and a notch filter (60 Hz). A semi-
automated pipeline was implemented for pre-processing using two MATLAB 
toolboxes: EEGLAB (Delorme and Makeig 2004), and a standardized qEEG 
preprocessing pipeline (PREP) (Bigdely-Shamlo et al. 2015) validated in our group 
(Suárez-Revelo et al. 2018) with proved test-retest reliability (Suarez-Revelo et al. 
2016) (See supplementary materials for details regarding preprocessing method). 
For each recording, 50 randomly automatically selected epochs of 2 seconds 
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length and free-of-artifacts, were used to compute relative PSD. We used the multi-
taper method available in the MATLAB toolbox Chronux (http://chronux.org) (Mitra 
and Bokil 2007) to have less variance, bias, and better frequency resolution on 
PSD (Babadi and Brown 2014; Prerau et al. 2017). The magnitude of relative PSD 
in the selected epochs was averaged for each electrode. Then, relative PSD in 
each electrode was calculated in four frequency bands: delta (1-4 Hz), theta (4-8 
Hz), alpha (8–13 Hz), beta (13–30 Hz), and eight Regions of Interest (ROIs), as 
follows: left frontal (AF3, F1, F3, FC1, FC3), right frontal (AF4, F2, F4, FC2, FC4), 
left temporal (FC5, C5, CP5, T7, TP7), right temporal (FC6, C6, CP6, T8, TP8), left 
parietal (CP1, CP3, P1, P3), right parietal (CP2, CP4, P2, P4), left occipital (PO3, 
PO5, PO7, O1), and right occipital (PO4, PO6, PO8, O2). Finally, we computed the 
α/θ (alpha relative PSD/theta relative PSD) and its logarithmic transformation (i.e. 
natural log) following previously published methods (Moretti et al. 2004; Schmidt et 
al. 2013; Massa et al. 2020). Delta and frequencies higher than alpha were 
excluded from the current analysis.  
 
2.4 Statistical analysis 
Statistical analyses were performed using SPSS (version 25). Statistical 
significance was set at p < 0.05. Since α/θ in most of the posterior regions was 
different when comparing HCs and the two PD groups, but not when PD-MCI and 
PD-nMCI were compared (Tables 1, 2, and 3 – Supplementary materials), we 
merged PD-MCI and PD-nMCI in a single PD group to increase our statistical 
power with a greater sample size, and evaluate a wider spectrum of PD. Group 
comparisons were conducted using independent samples t-test or Mann-Whitney's 
U for continuous variables, and chi-square for categorical variables. Multiple testing 
correction of the p-values obtained in the group comparisons of neuropsychological 
and qEEG data was conducted using the False Discovery Rate (FDR) method 
defining a threshold of 0.05. Effect sizes were calculated with Cohen’s d. In 
addition, Receiver Operator Characteristic (ROC) curves for neuropsychological 
test and α/θ with the largest effect size were obtained. The cut-off value for the α/θ 
with the largest effect size was calculated with Youden's J statistic.  
 
To determine any possible confounder effect of dopaminergic treatment over qEEG 
variables, Pearson correlations between the Levodopa Equivalent Daily Dose 
(LEDD) and the α/θ in each ROI were conducted. Given no significant results in the 
latter correlations (Table 6 – Supplementary materials), we did not adjust for LEDD 
the subsequent analyses. Besides, Pearson correlations were used to explore the 
effect of age on α/θ in HC (Table 4 – Supplementary materials), but no significant 
results were found in most of the posterior regions (i.e. right and left occipital, and 
right parietal). Therefore, we performed age-unadjusted bivariate correlations to 
explore the relationship between α/θ in the eight ROIs and the scores of the eight 
neuropsychological tests. However, the results of these exploratory correlations 
were also confirmed using partial non-parametric correlations controlling for the 
effect of age (Table 5 - Supplementary materials). As JLOT, Clock, and MoCA 
were non-normally distributed, we performed non-parametric correlations with 
these variables and Pearson correlations with the remaining, as shown in Table 3. 
FDR correction was not conducted in these correlations due to the exploratory 
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nature of this step but was made in the subsequent analyses after selecting target 
ROIs and neuropsychological tests. 
 
Finally, to test our hypothesis that PD performance in some neuropsychological 
tests was influenced by the α/θ, those regions (ROIs) that were significantly 
correlated with neuropsychological tests in the exploratory correlations were 
included independently as a moderator variable through a conditional process 
analysis (moderation analysis) using the SPSS macro “PROCESS” (Preacher and 
Hayes 2004). These moderation analyses were conducted using 10000 Bootstrap 
sampling. The p-values of the three resulting moderation models were corrected 
for multiple testing with the FDR method. 
 
3. Results  
72 participants were included (HC = 36; PD = 36). Given the matched design of our 
study, non-significant differences among the groups were found in the 
demographic characteristics of the sample (Table 1).  
 

Insert here Table 1 
 
The neuropsychological test scores of the PD group were worse in all the tests 
compared to HC as shown in Figure 1 and Table 2. In the PD group, the α/θ 
exhibited statistically significant lower values in all the ROIs, Table 2.   
 

Insert here Figure 1 
Insert here Table 2 

 
When comparing regional α/θ values in PD and HC, large effect sizes were seen, 
particularly in the occipital regions: right occipital (t = 4.33 ; FDR < 0.001; Cohen’s 
d = 1.00), and left occipital (t = 3.89; FDR < 0.001; d = 0.92). Differences in other 
ROIs also reflected a large effect size in right temporal (t = 3.82; FDR < 0.001; d = 
0.90), left temporal (t = 3.88; FDR < 0.001; d = 0.91), right parietal (t = 3.64; FDR < 
0.001; d = 0.86), and left frontal (t = 3.10; FDR = 0.004; d = 0.75). Right frontal (t = 
2.99; FDR = 0.004; d = 0.70) and left parietal (t = 2.99; FDR = 0.004; d = 0.71) 
showed moderate effect size. Figure 2A depicts the mean value of α/θ in each ROI 
in PD and HC.  
 
The ROC curves for right occipital α/θ and MCT-DFR (the test which exhibit the 
largest effect size; t = 6.96; p < 0.001; d = 1.64) were presented in Figure 2B. To 
separate PD patients from HC, the cut-off value obtained in ROC analysis for α/θ 
right occipital was 0.832, providing a sensitivity of 89% (95% CI: 74 – 97%), 
specificity of 56 % (95% CI: 38 – 72%), positive predictive value of 67% (95% CI: 
58 – 75%), negative predictive value of 83% (95% CI: 65 – 93%).  
 

Insert here Figure 2 
 
We then conducted exploratory correlations between hemispheric-regional α/θ and 
neuropsychological test scores in the PD group. Significant positive correlations 
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between performance in JLOT and α/θ were found in right parietal (rho = 0.362; p = 
0.030), right occipital (rho = 0.407; p = 0.014), and left occipital regions (rho = 
0.382; p = 0.022), see Figure 3. We did not find any other significant correlations in 
these exploratory analyses, see Table 3. We confirmed these results controlling for 
the effect of age and obtained significant findings in the same ROIs (Table 5 – 
Supplementary materials). These p-values were not corrected given the 
exploratory nature of these correlations. 
 

Insert here Table 3 
Insert here Figure 3 

 
Further, we tested the moderation effect of each region significantly correlated with 
the JLOT performance of PD patients using three independent moderation 
analyses (i.e. one moderation model per each ROI). Among the three moderation 
models, we only found significant effects after the FDR correction in the model that 
included the α/θ in the right occipital region as a moderator of the JLOT 
performance related to PD diagnosis (p < 0.005; FDR = 0.014).  
 

Insert here Figure 4 
 
Figure 4 shows the moderation model including the α/θ in the right occipital region. 
Three different pathways in this model were examined: a direct pathway from the 
group (HC vs. PD) to JLOT performance (X to Y) (b= -3.3; p = 0.002); a direct 
pathway from α/θ in right occipital in both groups (W) to JLOT performance (Y) (b = 
0.32; p = 0.594); the conditional effect of α/θ in right occipital (W) on the relation 
between PD diagnosis (X) and JLOT performance (Y) (b= -2,6; p = 0.034). 
Therefore, the α/θ in the right occipital region influenced significantly the effect of 
PD diagnosis in JLOT performance.  
 
Conversely, no significant moderation effects were found in the two remaining 
models that included the right parietal (p = 0.115) and the left occipital (p = 0.066) 
ROIs as moderators (Figure 3 - Supplementary materials). Finally, we explored the 
conditional effect of different values of the α/θ – right occipital on the relationship 
between PD diagnosis and JLOT performance. Natural Log transformed α/θ - right 
occipital values below 0.633 significantly modulate the JLOT performance related 
to PD (Figures 1 and 2 - Supplementary materials). Thus, low α/θ (i.e. slowing-
down) in the right occipital region, influenced the JLOT impairment related to PD 
diagnosis.  
 
4. Discussion  
In this study, we investigated the associations between hemispheric-regional α/θ 
(i.e. slowing-down of the qEEG) and neuropsychological performance in non-
demented PD patients. We observed, in most of the posterior regions, significant 
correlations between α/θ and performance in JLOT, which tested visuospatial 
abilities. The lower the α/θ in right and left occipital, and right parietal regions, the 
worse the performance in the JLOT test. However, after examining how posterior 
α/θ influences the JLOT performance related to PD diagnosis, only the slowing-
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down in the right occipital region showed significant effects. The latter suggests a 
hemispheric asymmetric effect that has to be considered in further research since 
hemispheric asymmetry in theta, alpha, and beta PSD have been reported 
previously in PD (Bousleiman et al. 2014; Yuvaraj et al. 2014). 
 
PSD has been one of the most widely explored qEEG features (Al-Qazzaz et al. 
2014; Geraedts et al. 2018; van der Zande et al. 2018), and also is an easily 
obtainable marker that can reflect cholinergic pathways damage (Moretti et al. 
2004). Both dopaminergic and cholinergic dysfunctions explain the cognitive 
symptoms in PD as indicated in a dual syndrome hypothesis: Early dysexecutive 
syndrome and attentional impairments have been related to frontostriatal 
dopaminergic dysfunction secondary to caudate denervation (Kehagia et al. 2012). 
On the other hand, deficits in visual memory, visuospatial abilities, and semantic 
fluency that improve with cholinergic treatments have been associated with 
posterior cortical and temporal lobe dysfunction (Kehagia et al. 2012). Additionally, 
cholinergic impairment appears to be greater in PD than in AD, seems to trigger 
the global cognitive decline and progression to dementia, and precedes further 
basal forebrain cell loss (Bohnen et al. 2015; Ballinger et al. 2016). Apart from 
functional mechanisms, structural changes such as reduced cortical thickness in 
the right hemisphere (including right occipital) have been identified in PD patients 
with formed hallucinations and low performance in JLOT, supporting the link 
between visuospatial impairment, complex visual hallucinations, and progression to 
PDD (Ffytche et al. 2017).  
 
In line with those findings, both PSD and frequency features may also exhibit 
impairments in non-dopaminergic ascending systems (Massa et al. 2020), but the 
alpha frequency is relatively independent of cholinergic dysfunction (Moretti et al. 
2004). Cholinergic deficits lead to cortico-cortical and cortico-thalamo-cortical 
dysfunction resulting in slowing-down of the qEEG rhythms (Franciotti et al. 2020). 
This slowing-down can be observed with increasing PSD in low-frequency bands 
(i.e. delta and theta) while reducing in high-frequencies (i.e. alpha and beta) 
(Eichelberger et al. 2017; Geraedts et al. 2018). In consequence, the full integrity 
of cholinergic systems, and cortico-cortical dynamics are reflected by alpha PSD 
(Moretti et al. 2004). Besides, global deafferentation due to pathophysiological 
processes (i.e. functional or anatomic injuries on cholinergic systems) and non-
specific thalamic systems may be involved in augment of delta and theta PSD 
(Llinás et al. 1999; Schmidt et al. 2013). Therefore, combining alpha and theta 
PSD in a synoptic index of the alpha-to-theta transition frequency may be useful for 
indicating the cholinergic dysfunction, and enhancing the differences between HCs 
and patients with neurodegenerative diseases such as Alzheimer’s Disease (AD) 
(Moretti et al. 2004; Schmidt et al. 2013), dementia with Lewy bodies (Bonanni et 
al. 2008, 2016) and PD (Massa et al. 2020). Nevertheless, further research is 
needed to determine the patterns of α/θ related to MCI, but a recent publication 
has shown similar α/θ in PD-MCI and PD-nMCI in concordance with our results 
(Massa et al. 2020). 
 
To evaluate the resting-state qEEG correlates of cognitive decline in PD, we 
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suggest to use specific neuropsychological tests for cognitive domains, rather than 
screening tests for global cognition due to the heterogeneity of cognitive symptoms 
in PD (Williams-Gray et al. 2007; Kehagia et al. 2012). In our study, an α/θ 
association with MoCA was not observed. Similarly, PSD and tests of global-
cognition (e.g. Mini-Mental State Examination) have not always shown significant 
correlations, but specific neuropsychological tests have exhibited consistent results 
(van der Hiele et al. 2007). One previous work has associated visuospatial 
impairments with occipital and parietal α/θ in non-demented PD patients 
(Eichelberger et al. 2017), yet PD-MCI patients were not included and those results 
cannot be extrapolated to PD-MCI. In our study, a reduced right occipital α/θ ratio 
was associated with an impairment in visuospatial functions measured by JLOT, 
but not with performance on the clock drawing test. The clock drawing test 
presented a ceiling effect (i.e. scores of 10±1 in HC, and 9±2 in PD), thus, bivariate 
correlations could be affected by the minimal variation in this variable. Another 
possible explanation for the different associations is that the JLOT test is 
considered a “pure” visual-perceptual task, without major involvement of the motor 
component, whereas the clock drawing test assesses both visuospatial, 
visuoconstructive, and executive functions (Watson et al. 2013). Thus, in line with 
our findings, injuries in the right lateral superior occipital gyri and other areas of the 
visual dorsal stream such as the supramarginal gyri have been proposed as the 
neuropathological substrate related to decreased performance in the JLOT. 
Therefore, JLOT seems to represent a good clinical test for the right 
occipitoparietal functioning (Tranel et al. 2009), whereas the clock drawing test 
depends more on the right parietal and left inferior frontoparietal opercular lesions 
and it is not a very specific test for the right posterior functioning in chronic injuries 
(Tranel et al. 2008). Further research is necessary to elucidate the role of Lewy 
pathology in neurophysiological and neuropsychological impairment of different 
Lewy body diseases.  
 
With all the above, our findings seem to support that slowing-down in the right 
occipital region is related to visuospatial performance patterns in non-demented 
PD patients. We suggest that the right occipital α/θ may be a promising marker of 
dementia risk in PD since patients with mild visuospatial impairment had more 
rapid progression PDD (Williams-Gray et al. 2007; Kehagia et al. 2012).  
 
4.1. Limitations  
There are some limitations to this study. The cross-sectional design and non-
randomized sample may affect the statistical power and the external validity of our 
results in other populations. Also, the lack of follow-up did not make us able to 
determine the progression to PD-MCI or PDD in PD subjects. In addition, the effect 
of dopamine agonists on cortical excitability (i.e. widespread variations in delta and 
alpha sources) (Babiloni et al. 2019) has to be considered. However, little effect of 
dopaminergic treatments has been related to PSD changes (George et al. 2013) as 
reported in our results (Table 6 – Supplementary materials), also it is unlikely that 
medication effects would only apply to specific brain regions (i.e. left but not right 
occipital). Also, the lack of correction for multiple testing in some of our analyses 
should be considered when interpreting our results. This important limitation of our 
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exploratory study encourages future investigations to replicate our results and 
provide external validation to our findings. 
Moreover, our work has several strengths. Even if there are more sophisticated 
features on qEEG than relative PSD (Al-Qazzaz et al. 2014), highly refined 
techniques may apart us from the usefulness in a clinical setting (van der Hiele et 
al. 2007). Thus, we aimed to improve PSD extraction with our proposed signal 
processing methods. Therefore, we implemented a standardized, validated, and 
reliable method for qEEG preprocessing (Bigdely-Shamlo et al. 2015; Suarez-
Revelo et al. 2016; Suárez-Revelo et al. 2018). PREP pipeline is a semi-automatic 
algorithm that enhances a more uniform statistical behavior of qEEG data, even 
between different paradigms, headsets, or collections of data (Bigdely-Shamlo et 
al. 2015). Also, we used a highly accurate method for obtaining PSD features 
based on multi-tapers. The multi-taper method has been widely recommended due 
to its better tradeoff among variance, bias, frequency resolution for PSD, and for 
assessing attenuation estimations when compared with the single-tapers and 
Welch method (Babadi and Brown 2014; Prerau et al. 2017). Besides, assessing 
our participants with an extensive neuropsychological battery allowed us to 
evaluate neuropsychological patterns in several cognitive domains which are highly 
heterogeneous in PD patients (Williams-Gray et al. 2007; Kehagia et al. 2012; 
Aarsland et al. 2017), and most of the statistical methods we used to test our 
hypothesis has been also implemented previously, supporting our analysis (van 
der Hiele et al. 2007). 
 
5. Conclusion 
Slowing-down in the right occipital α/θ seems to be associated to, and influences, 
the visuospatial performance impairments related to PD diagnosis. Single 
averaged measures of occipital α/θ must be avoided due to possible hemispheric 
asymmetry, but further research is needed to confirm this hypothesis. The right 
occipital α/θ may represent a promising qEEG feature for evaluating PD patients 
with mild visuospatial impairments, who have a higher risk of progression to PDD 
(Williams-Gray et al. 2007; Kehagia et al. 2012).  
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Tables and Figures 
 
Table 1. Demographic and clinical characteristics of the sample  
 HC (n = 36) PD (n= 36) 

Age (years) 63 (6) 63 (8) 

Gender (F/M)  12/24 12/24 

Education (years)  12(5) 12 (5) 

Years from diagnosis  - 5.2 (3.1) 

Hoehn & Yahr a - 2 (0) 

UPDRS-III score a - 28 (17) 
Values presented in the table are means with Standard Deviation (S.D) 
a The marked situations show median (interquartile range) 

 
 
 

Table 2. Neuropsychological and qEEG characteristics of the sample 
 

 HC (n = 36) PD (n= 36) FDR 

Neuropsychological Characteristics 

Executive/attention 

IFS b 22.8 (2.5) 19.2 (3.5) <0.001 

Stroop b 38.7 (6.9) 29 (7.4) <0.001 

Memory 

MCT – DFR b 21.4 (3.3) 15.8 (3.6) <0.001 

Language 

FAS b 14 (3.3) 10.5 (3.6) <0.001 

SF b 22.1 (3.9) 17.4 (5.3) <0.001 

Visuospatial abilities  

Clock a, c 10 (1) 9 (2) 0.005 

JLOT a, c 23 (4) 22 (6) 0.023 

Global cognition 

MoCA a, c 27 (3) 25 (5) 0.002 

qEEG – α/θ 

α/θ right frontal b  0.40 (0.49) 0.05 (0.51) 0.004 

α/θ left frontal b 0.41 (0.51) 0.03 (0.51) 0.004 

α/θ right temporal b 0.54 (0.38) 0.15 (0.48) <0.001 

α/θ left temporal b 0.57 (0.37) 0.18 (0.48) <0.001 

α/θ right parietal b 0.69 (0.47) 0.26 (0.53) <0.001 

α/θ left parietal b 0.63 (0.50) 0.27 (0.52)  0.004 

α/θ right occipital b  0.81 (0.58) 0.22 (0.60) <0.001 

α/θ left occipital b 0.74 (0.56) 0.20 (0.61) <0.001 
Values presented in the table are means with Standard Deviation (S.D) 
a The marked situations shown median (interquartile range) 
b Independent samples t-test c Mann-Whitney U test 
p-values were FDR corrected. FDR values < 0.05 are printed in bold 
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Table 3. Exploratory correlations between α/θ and neuropsychological 
performance in PD patients. 
 

Log (α/θ) IFS a Stroop a MCT-DFR a FAS a SF a Clock b JLOT b MoCA b 

R. Frontal  -0.182 0.093 -0.072 -0.202 0.032 -0.064 0.315 -0.174 

L. Frontal  -0.135 0.135 -0.070 -0.194 0.047 -0.092 0.321 -0.177 

R. Temporal -0.122 0.027 0.052 -0.118 0.034 -0.014 0.254 -0.044 

L. Temporal  -0.163 0.011 -0.061 -0.111 0.059 -0.044 0.324 -0.163 

R. Parietal  -0.200 0.024 -0.098 -0.162 0.044 -0.133 0.362 -0.205 

L. Parietal -0.120 0.067 0.022 -0.151 0.079 -0.079 0.237 -0.165 

R. Occipital  -0.077 0.128 0.026 -0.194 0.112 -0.092 0.407 -0.081 

L. Occipital  -0.066 0.101 0.036 -0.191 0.072 -0.057 0.382 -0.086 
R: Right; L: Left 
a Pearson correlation b Spearman correlation  
Coefficients with unadjusted p < 0.05 are printed in bold 
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Figure 1. Performance of PD patients and HC in neuropsychological tests  
 

 

PD: Parkinson’s Disease; HC: Healthy Controls; IFS: INECO Frontal Screening Test; Stroop: Stroop test 
interference score; MCT - DFR: Memory Capacity Test - Delayed Free Recall; FAS: FAS verbal fluency test; 
SF: Animals semantic fluency; Clock: Free draw of the Clock drawing test; JLOT: Judgement of Line 
Orientation Test; MoCA: Montreal Cognitive Assessment. 
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Figure 2. Log (α/θ) values and its accuracy to separate PD patients from HC 
 

 
A. Mean of Log (α/θ) by ROI in PD and HC group; B. ROC curves for right occipital α/θ and MCT-DFR 
R: Right; L: Left; CI: Confidence Interval; RO: Right occipital; AUC: Area Under Curve. 
For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article. 
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Figure 3. Correlation plots between JLOT performance and the Log (α/θ) in the right parietal, and the right and left 
occipital regions in the PD group.  
 

 
 
RP: right parietal; RO: right occipital; LO: left occipital; JLOT: Benton Judgement of Line Orientation Test.
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Figure 4. Moderation effect of the α/θ - right occipital on JLOT performance related 
to PD.  
 
 

 
 

JLOT was used as the dependent variable (Y) while group (HC vs. PD) was the independent 
variable (X). The effect of α/θ - right occipital independently of PD diagnosis (W) over JLOT 
performance was examined. The moderation effect of W (α/θ - right occipital) on the PD-related 
JLOT performance (X to Y) was also considered. 
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EEG pre-processing methods: PREP pipeline 

The pipeline consists on: data importation, removing of artifactual epochs by visual 

inspection, PREP pipeline with robust re-reference to average, detection and 

interpolation of defective channels, high pass FIR filtering at 1 Hz, independent 

component analysis (ICA INFOMAX), 2 seconds epoch segmentation, filtering of 

muscular and eye artifacts independent components using wavelets (wICA), low-

pass FIR filtering at 30 Hz, and rejection of remaining deficient epochs by a 

procedure based on linear trend, joint probability, and kurtosis approach. For each 

subject, the average amount of interpolated channels was 4.96 (±3.66), 9.0 (±3.09) 

epochs were rejected, and 164.38 (±20.01) epochs were considered for 

randomized epoch selection. 

 

Table 1 - Supplementary materials. Clinical and demographic characteristics of 

HC, PD-nMCI and PD-MCI groups 

 HC 
 (n = 
36) 

PD – nMCI 
(n = 22) 

PD-MCI  
(n = 14) 

p Value Multiple 
comparisons  

Age, mean 
(S.D) 

63.3 
(6.2) 

61.8 (8) 66.1 (7.4) 0.218 PDnMCI: 
0.662 c 
PD-MCI: 
0.382 c 
PDnMCI vs. 
PD-
MCI:0.247 d 

Sex (F/M) 12/24 8/14 4/10 0.946 a - 

Education - 
years, mean 
(S.D) 

12.4 
(4.8) 

11.5 (5) 11.9 (5.6) 0.800 PDnMCI: 
0.752 c 
PD-MCI: 
0.927 c 
PDnMCI vs. 
PD-MCI:1 d 

Years from 
diagnosis of 
PD, mean 
(S.D) 

- 4.4 (2.7) 6.2 (3.5) 0.129 b - 

Hoehn & 
Yahr, mean 
(S.D) 

- 2.1 (0.4) 2.1 (0.3) 0.745 b - 

UPDRS-III, 
mean (S.D) 

- 28.3 (12.6) 34.6 (10.3) 0.057 b - 
 

LEDD (mg), 
mean (S.D) 

- 586.7 
(304.8) 

748.5 (396.9) 0.176 b 
 

- 

a p Values for Fisher exact  
b p Values for Mann-Whitney U 
c p Values for Dunnet t (2-sided), treating HC as the control group and comparing all other groups against HC.  
d p Values for Bonferroni test 

Optional e-only supplementary files: Corrected



After conducting a one-way ANOVA, non-significant differences were obtained for 

age, gender, years of education, years from PD diagnosis, Hoehn & Yahr stage, 

UPDRS – III or Levodopa Equivalent Daily Dose (LEDD), even after correcting for 

multiple comparisons using Dunnett and Bonferroni tests. See Table 1 – 

Supplementary materials. 

 

 

Table 2 - Supplementary materials. Neuropsychological performance in PD 

subgroups (PD-nMCI & PD-MCI) and HC. 

 Healthy Controls (n = 36) PD – nMCI (n = 22) PD-MCI (n = 14) 

Executive Function 

IFS  22.8 (2.5) 20.7 (2.4) * 16.6 (3.5) ** †† 

Stroop 38.7 (6.9) 29.5 (6.9) ** 28.2 (8.5) ** 

Language 

FAS 14.0 (3.3) 11.5 (3.4) * 8.9 (3.4) ** 

SF 22.1 (3.9) 19 (5.0) * 14.8 (4.7) ** † 

Memory 

MCT-DFR 21.4 (3.3) 17.7 (2.7) ** 12.8 (2.9) ** †† 
Visuospatial abilities 

Clock a 10 (1.0) 10 (1.0)  9 (3) ** †† 

JLOT  23.0 (2.5) 21.1 (3.0) 20.6 (4.2) * 

Global Cognition 

MoCA 26.6 (1.) 26.4 (1.5) 20.9 (1.5) ** †† 
Values presented in the table are means with Standard Deviation (S.D).  
a The marked situations show median (interquartile range) 
*Differs from Healthy Controls (p<0.05) **Differs from Healthy controls (p<0.005). †Differs from PD-nMCI 
(p<0.05) †† Differs from PD-nMCI (p<0.005). 

 

Table 2 – Supplementary materials, shows the neuropsychological characteristics 

of the three subgroups. All the neuropsychological tests exhibited significant 

differences between cognitively normal subjects and patients of the PD-MCI group. 

The Stroop interference and the JLOT did not show significant differences between 

the two PD subgroups (PD-MCI and PD-nMCI) suggesting similar performances in 

those patients, but different when compared to the HC subgroup.  

 

 

 

 

 

 



Table 3 – Supplementary materials. Differences in Log α/θ between the three 

groups 

Log (α/θ)  HC 
(n = 36) 

PD – nMCI  
(n = 22) 

PD-MCI  
(n = 14) 

F (p Value) Multiple 
Comparisons  

Right 
Frontal 

0.400 
(0.49) 

-0.003 (0.60) 0.125 
(0.35) 

4.71 (0.012) PDnMCI: 
0.008 a 
PD-MCI: 
0.161 a 
PDnMCI vs. 
PD-MCI:1 b 

Left 
Frontal 

0.408 
(0.51) 

-0.017 (0.58) 0.112 
(0.38) 

5.04 (0.009) PDnMCI: 
0.006 a 
PD-MCI: 
0.132 a 
PDnMCI vs. 
PD-MCI: 1 b 

Right 
Temporal 

0.540 
(0.38) 

0.160 (0.52) 0.135 
(0.42) 

7.20 (0.001) PDnMCI: 
0.004 a 
PD-MCI: 
0.009 a 
PDnMCI vs. 
PD-MCI:1 b 

Left 
Temporal 

0.574 
(0.37) 

0.154 (0.52) 0.229 
(0.42) 

7.57 (0.001) PDnMCI: 
0.001 a 
PD-MCI: 
0.025 a 
PDnMCI vs. 
PD-MCI:1 b 

Right 
Parietal 

0.692 
(0.47) 

0.220 (0.60) 0.330 
(0.43) 

6.78 (0.002) PDnMCI: 
0.002 a 
PD-MCI: 
0.048 a 
PDnMCI vs. 
PD-MCI:1 b 

Left 
Parietal 

0.630 
(0.50) 

0.250 (0.58) 0.291 
(0.44) 

4.45 (0.015) PDnMCI: 
0.017 a 
PD-MCI: 
0.080 a 
PDnMCI vs. 
PD-MCI:1 b 

Right 
Occipital 

0.813 
(0.58) 

0.199 (0.68) 0.243 
(0.40) 

9.26 (<0.001) PDnMCI: 
0.001 a 
PD-MCI: 
0.006 a 
PDnMCI vs. 
PD-MCI:1 b 

Left 
Occipital 

0.740 
(0.56) 

0.190 (0.69) 0.222 
(0.49) 

7.48 (0.001) PDnMCI: 
0.002 a 
PD-MCI: 
0.013 a 



PDnMCI vs. 
PD-MCI:1 b 

a p Values for Dunnet t (2-sided), treating HC as control group and comparing each PD group against HC.  
b p Values for Bonferroni test 

Significant differences are printed in bold (p<0.05) 

 

Before merging PD-nMCI and PD-MCI groups, we conducted Dunnett t-test, to 

adjust for multiple comparisons (i.e. comparing PD-MCI vs. HC, and PD-nMCI vs. 

HCs). We found significant differences between the two PD groups and HCs in all 

the ROIs except for frontal regions and left parietal. In addition, we checked for 

differences in Log (α/θ) between PD-MCI and PD-nMCI groups using Bonferroni 

and Hochberg tests but we did not find significant differences, as shown in Table 3 

- Supplementary materials. Thus, we hypothesized that our findings in α/θ seem to 

be related to PD rather than PD-MCI diagnosis. Similarly, significant differences in 

JLOT scores between PD and HCs groups were found after adjusting for multiple 

comparisons using Dunnett t-test (HC vs. PD-nMCI = 0.044; HC vs. PD-MCI: 

0.029). Besides, non-significant differences were founded when comparing PD-

nMCI and PD-MCI groups using both Bonferroni and Hochberg tests (p > 0.05). 

Then, we merged PD-MCI and PD-nMCI groups into a single PD group to increase 

our statistical power and include a wider spectrum of PD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 – Supplementary materials. Correlations between Age and Log α/θ in 

HCs 

Log (α/θ)  Age 

Right Frontal r 0.426** 

p-Value 0.010 

Left Frontal r 0.391* 

p-Value 0.019 

Right Temporal r 0.324 

p-Value 0.054 

Left Temporal r 0.333* 

p-Value 0.047 

Right Parietal r 0.328 

p-Value 0.051 

Left Parietal r 0.362* 

p-Value 0.030 

Right Occipital r 0.170 

p-Value 0.323 

Left Occipital r 0.232 

p-Value 0.172 
** Pearson Correlation is significant at the 0.01 level (2-tailed). 

* Pearson Correlation is significant at the 0.05 level (2-tailed). 

 

The correlation between α/θ and age was evaluated in our HC group using 

Pearson correlations to explore possible confounding effects for subsequent 

analyses. As non-significant correlations were found in HCs between age and most 

of the α/θ in posterior regions, then we chose to perform bivariate correlations in 

those regions where age was not correlated (i.e. right and left occipital, and right 

parietal). See Table 4 – Supplementary materials. 

 

 

 

 

 

 

 



Table 5 – Supplementary materials. Exploratory non-parametric partial 

correlations between α/θ and neuropsychological performance in PD patients, 

controlling for Age. 

 

Log (α/θ) IFS a Stroop a MCT-DFR a FAS a SF a Clock a JLOT a MoCA a 

R. Frontal  -0.060 0.113 -0.102 -0.240 0.060 -0.117 0.308 -0.267 

L. Frontal  -0.045 0.168 -0.127 -0.231 0.072 -0.145 0.314 -0.269 

R. Temporal -0.020 0.099 0.022 -0.150 0.061 -0.072 0.245 -0.138 

L. Temporal  -0.060 0.104 -0.112 -0.156 0.073 -0.082 0.318 -0.232 

R. Parietal  -0.093 0.073 -0.129 -0.175 0.111 -0.182 0.356 -0.289 

L. Parietal -0.061 0.107 -0.100 -0.189 0.116 -0.147 0.227 -0.282 

R. Occipital  0.011 0.155 -0.017 -0.231 0.198 -0.163 0.404 -0.192 

L. Occipital  0.028 0.139 0.029 -0.229 0.128 -0.115 0.377 -0.181 

R: Right; L: Left 
a Spearman correlation  

Coefficients with p < 0.05 are printed in bold 

 

Even if the α/θ in most of the posterior ROIs did not show correlations with age, 

some other regions exhibited an association with age. Therefore, to confirm our 

exploratory results, we conducted additional non-parametric partial correlations 

between the α/θ in the eight ROIs and the neuropsychological tests. Table 5 – 

Supplementary materials, shows the significant exploratory correlation between 

JLOT and the same ROIs obtained without controlling for age (i.e. the right parietal, 

and the right and left occipital α/θ). The correlation coefficients were slightly 

reduced after controlling for age but remained above 0.4 in the right occipital α/θ. 

 

 

 

 

 

 

 

 



Table 6 – Supplementary Materials. Correlations between Levodopa Equivalent 

Daily Dose (LEDD) and Log α/θ in the PD group. 

 

Log α/θ  LEDD 

Right Frontal r 0.099 

p-Value 0.573 

Left Frontal r 0.119 

p-Value 0.495 

Right Temporal r 0.093 

p-Value 0.595 

Left Temporal r 0.045 

p-Value 0.796 

Right Parietal r 0.119 

p-Value 0.495 

Left Parietal r 0.091 

p-Value 0.605 

Right Occipital r 0.093 

p-Value 0.596 

Left Occipital r 0.131 

p-Value 0.453 
LEDD: Levodopa Equivalent Daily Dose 

The correlation between α/θ and Levodopa Equivalent Daily Dose was evaluated in 

the PD group. We computed LEDD in 35 PD patients (except for one PD-MCI 

patient due to loss of data regarding medication). Since LEDD was normally 

distributed, Pearson correlations were used to explore the effect of LEDD on α/θ 

for adjusting subsequent correlation and moderation analyses. However, no 

significant correlations were found between LEDD and any of the α/θ, then we did 

not conduct LEDD-adjusted analyses. See Table 6 – Supplementary materials. 

 

 

 

 

 

 



Figure 1 – Supplementary Materials. The mean value of α/θ– right occipital in 

HCs and PD groups (up) and its conditional effects on JLOT performance (down).  

  

 
 

RO: right occipital; CI: Confidence Interval; JLOT: Benton Judgement on Line Orientation Test. 

 

Figure 1 – Supplementary materials, depicts the mean values of α/θ – right 

occipital for HC and PD groups (up). Also, beta coefficients for the conditioned 

effects of low (blue), medium (red), and high (green) values of the α/θ – right 

occipital in HC and PD groups are presented (down). Dotted lines indicate 

statistically significant conditional effects of lower and medium values of α/θ – right 

occipital on the relationship between PD diagnosis and JLOT performance. 



Figure 2 – Supplementary Materials. Conditional effects of α/θ values in the right 

occipital region on the relationship between PD diagnosis and JLOT performance. 

 

  

RO: right occipital; CI: Confidence Interval; JLOT: Benton Judgement on Line Orientation Test. 

 

Estimations of α/θ – right occipital significance region was defined using Johnson – 
Neyman method. All the values of Log (α/θ – right occipital) below 0.633 (p ≤ 0.05) 
showed a significant conditional effect on the relationship between PD diagnosis 
and JLOT performance (left inferior quadrant).  
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 3 – Supplementary materials. Moderation effects of the α/θ - left occipital 

(up) and right parietal (down) on JLOT performance related to PD.  

 

Left Occipital 

 
 
 
 

Right Parietal 

 

JLOT was used as the dependent variable (Y) while group (HC vs. PD) was the independent 

variable (X). The effect of α/θ independently of PD diagnosis (W) over JLOT performance was 

examined. The moderation effect of W (α/θ) on the PD-related JLOT performance (X to Y) was also 

evaluated. 
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